Как работает антенна: Ликбез: основы теории по антеннам

Содержание

Теория радиоволн: антенны / Хабр

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.


Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.

Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны

Симметричный вибратор

В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.
Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.


Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.

В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Диаграмма направленности следующая:

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.
Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны

Также имеет название — антенна наклонный луч.

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

Антенна волновой канал


Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

Рамочная антенна

Направленность — двулепестковая

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность — рамочная антенна с рефлектором:

Логопериодическая антенна

Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.
Диаграмма направленности следующая:

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

Поляризация

Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т. к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

PS:

Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.

В чем разница между антенной и диполем?

Каждому беспроводному устройству нужна антенна. Это проводящее механическое устройство представляет собой преобразователь, который преобразует передаваемый радиочастотный (RF) сигнал в электрические и магнитные поля, составляющие радиоволну. Он также преобразует полученную радиоволну обратно в электрический сигнал. Для антенн возможно почти бесконечное множество конфигураций. Однако большинство из них основано на двух основных типах: дипольных и штыревых антеннах.

Понятие «антенны»

Радиоволна содержит электрическое поле, перпендикулярное магнитному полю. Оба перпендикулярны направлению распространения (рисунок ниже). Это электромагнитное поле и создает антенну. Сигнал, излучаемый устройством, вырабатывается в передатчике и затем отправляется на антенну с помощью линии передачи, обычно коаксиального кабеля.

Линии представляют собой магнитные и электрические силовые линии, которые движутся вместе и поддерживают друг друга, когда они «движутся наружу» от антенны.

Напряжение создает электрическое поле вокруг антенных элементов. Ток в антенне создает магнитное поле. Электрические и магнитные поля объединяются и регенерируют друг друга в соответствии с известными уравнениями Максвелла, и «комбинированная» волна отправляется с антенны в пространство. При приеме сигнала электромагнитная волна индуцирует напряжение в антенне, которое преобразует электромагнитную волну обратно в электрический сигнал, который может быть дополнительно обработан.

Первичным рассмотрением в ориентации любой антенны является поляризация, которая относится к ориентации электрического поля (E) с землей. Это также ориентация передающих элементов относительно земли. Вертикально установленная антенна, перпендикулярная к земле, излучает вертикально поляризованную волну. Таким образом, горизонтально расположенная антенна излучает горизонтально поляризованную волну.

Поляризация также может быть и круговой. Специальные конфигурации, такие как винтовые или спиральные антенны, могут излучать вращающуюся волну, создавая вращающуюся поляризованную волну. Антенна может создавать направление вращения либо вправо, либо влево.

В идеальном случае антенны как на передающем, так и на приемном устройстве должны иметь одинаковую поляризацию. На частотах ниже примерно 30 МГц волна обычно отражается, преломляется, вращается или иным образом модифицируется атмосферой, землей или другими объектами. Следовательно, согласование поляризации на двух сторонах не является критическим. На частотах ОВЧ, УВЧ и СВЧ поляризация должна быть одинаковой для обеспечения максимально качественной передачи сигнала. И, обратите внимание, что антенны демонстрируют взаимность, то есть они одинаково хорошо работают как на передачу, так и на прием.

Диполь или симметричная вибраторная антенна

Диполь представляет собой полуволновую структуру из проволоки, трубки, печатной платы (PCB) или другого проводящего материала. Он разделен на две равные четверти длины волны и подпитывается линией передачи.

Линии показывают распределение электрических и магнитных полей. Одна длина волны (λ) равна:

λ = 984/fMHz

половина волны:

λ/2 = 492/fMHz

Фактическая длина обычно сокращается в зависимости от размера антенных проводов. Лучшее приближение к электрической длине:

λ/2 = 492 K/fMHz

где K — коэффициент, связывающий диаметр проводника с его длиной. Это 0,95 для проводных антенн с частотой 30 МГц или менее. Или:

λ/2 = 468/fMHz

Длина в дюймах:

λ/2 = 5904 K/fMHz

Значение K меньше для элементов большего диаметра. Для трубки диаметром в полдюйма K составляет 0,945. Дипольный канал для 165 МГц должен иметь длину:

λ/2 = 5904(0.945)/165 = 33.81 дюйма

или два 16,9-дюймовых сегмента.

Длина важна, потому что антенна является резонансным устройством. Для максимальной эффективности излучения он должен быть настроен на рабочую частоту. Однако антенна работает достаточно хорошо на узком диапазоне частот, как резонансный фильтр.

Полоса пропускания диполя является функцией его структуры. Обычно он определяется как диапазон, в котором отношение коэффициента стоячей волны антенны (КСВ) меньше 2:1. КСВ определяется величиной отраженного сигнала от устройства назад по линии передачи, подающей на него. Это функция импеданса антенны с отношением к импедансу линии передачи.

Фактическое сопротивление антенны в ее центральной точке зависит от ее частоты и высоты антенны. При резонансе и полуволне над землей импеданс антенны составляет приблизительно 73 Ом. Паразитный резонанс, импеданс антенны будет включать либо индуктивный, либо емкостный компонент реактивного сопротивления.

Идеальной линией передачи является сбалансированная проводящая пара с сопротивлением 75 Ом. Также можно использовать коаксиальный кабель с характеристическим импедансом 75 Ом (Zo). Коаксиальный кабель с характеристическим импедансом 50 Ом также может использоваться, так как он хорошо соответствует антенне, если он меньше половины длины волны над землей.

Коаксиальный кабель является несбалансированной линией, так как радиочастотный ток будет протекать снаружи коаксиального экрана, создавая некоторые нежелательные индуцированные помехи в соседних устройствах, хотя антенна будет работать достаточно хорошо. Лучший метод подачи — использовать симметрирующий трансформатор в точке подачи с коаксиальным кабелем. Симметрирующий трансформатор — это трансформаторное устройство, которое преобразует сбалансированные сигналы в несбалансированные сигналы или наоборот.

Диполь может быть установлен горизонтально или вертикально в зависимости от желаемой поляризации. Линия подачи идеально должна проходить перпендикулярно к излучающим элементам, чтобы избежать искажения излучения, поэтому диполь наиболее часто ориентирован горизонтально.

Диаграмма излучения сигнала антенны зависит от ее структуры и монтажа. Физическое излучение является трехмерным, но обычно оно представлено как горизонтальными, так и вертикальными диаграммами направленности.

Горизонтальная диаграмма направленности диполя представляет собой цифру восемь (рисунок 3). Максимальный сигнал появляется на антенне. На рисунке 4 показана вертикальная диаграмма направленности. Это идеальные образцы, которые легко искажаются землей и любыми соседними объектами.

Усиление антенны связано с направленностью. Коэффициент усиления обычно выражается в децибелах (дБ) с учетом некоторого «эталона», такого как изотропная антенна, которая является точечным источником радиочастотной энергии, излучающая сигнал во всех направлениях. Подумайте о точечном источнике света, освещающем внутреннюю часть расширяющейся сферы. Изотропная антенна имеет коэффициент усиления 1 или 0 дБ.

Если передатчик формирует или фокусирует диаграмму излучения и делает ее более направленной, он имеет усиление по изотропной антенне. Диполь имеет коэффициент усиления 2,16 дБи по изотропному источнику. В некоторых случаях коэффициент усиления выражается в зависимости от дипольного задания в дБд.

Вертикальная антенна с дополнительными горизонтальными отражающими элементами

Данное устройство представляет собой, по существу, половину диполя, установленного вертикально. Термин монополь также используется для описания этой установки. Земля ниже под антенной, проводящая поверхность с наименьшим λ / 4 по радиусу или образец λ / 4-проводников, называемых радиальными, составляют вторую половину антенны (рис.5).

Если антенна подключена к хорошему заземлению, она называется антенной Маркони. Основной структурой служит другая λ / 4 половина передатчика. Если плоскость заземления имеет достаточный размер и проводимость, то производительность заземления эквивалентна вертикально установленному диполю.

Длина четвертьволновой вертикали:

λ/4 = 246 K/fMHz

Коэффициент K меньше 0,95 для вертикалей, которые обычно изготавливаются с более широкой трубкой.

Импеданс точки питания представляет собой половину диполя или примерно 36 Ом. Фактическая цифра зависит от высоты над землей. Подобно диполю, плоскость заземления является резонансной и обычно имеет реактивный компонент в своем основном импедансе. Наиболее распространенной линией передачи является 50-Ω коаксиальный кабель, поскольку он относительно хорошо соответствует импедансу антенны с КСВ ниже 2: 1.

Вертикальная антенна с дополнительным отражающим элементом является ненаправленной. Горизонтальная диаграмма направленности — это круг, в котором устройство излучает сигнал одинаково хорошо во всех направлениях. На рисунке 6 показана вертикальная диаграмма направленности. По сравнению с вертикальной диаграммой направленности диполя плоскость заземления имеет более низкий угол излучения, что дает преимущество более широкого распространения при частотах ниже примерно 50 МГц.

Выводы

Практически все другие антенны, которые часто используются, являются вариациями антенн дипольного или вертикального плана. Например, антенна Яги-Уда добавляет паразитные элементы, такие как ретранслятор и / или отражатель, к диполю, чтобы увеличить его усиление и направленность. Несколько диполей можно укладывать вертикально или располагать в разных массивах, что значительно увеличивает коэффициент усиления. Телевизионные антенны УКВ-«бабочки» и антенны с печатными платами, используемые в некоторых беспроводных устройствах, являются дипольными вариациями. Патч (микрополосковая линия) и щелевые антенны, используемые на микроволновых частотах, также являются дипольными производными.

Кроме того, могут быть выполнены две или более вертикальные антенны с дополнительным отражающим элементом для создания более направленного сигнала с усилением. Например, направленная радиостанция AM использует две или более башни для направления сильного сигнала в одном направлении, подавляя его в другом.

Коэффициент стоячей волны

Стоячие волны представляют собой схемы распределения напряжения и тока вдоль линии передачи. Если характеристический импеданс (Zo) линии соответствует выходному импедансу генератора (передатчика) и нагрузке антенны, напряжение и ток вдоль линии постоянны. При согласованном импедансе происходит максимальная передача мощности.

Если нагрузка антенны не соответствует линейному импедансу, не вся передаваемая мощность поглощается нагрузкой. Любая мощность, не поглощенная антенной, отражается назад по линии, мешая прямому сигналу и создавая изменения тока и напряжения вдоль линии. Эти вариации представляют собой стоячие волны.

Мерой этого несоответствия является коэффициент стоячей волны (КСВ). КСВ обычно выражается как отношение максимального и минимального значений прямого и обратного тока или значений напряжения вдоль линии:

КСВ = Imax/Imin = Vmax/Vmin

Другим более простым способом выразить КСВ является отношение характеризующего импеданса линии передачи (Zo) к импедансу антенны (R):

КСВ = Zo/R или R/Zo

в зависимости от того, какой импеданс больше.

Идеальный КСВ составляет 1: 1. КСВ от 2 до 1 указывает на отраженную мощность 10%, а это означает, что 90% передаваемой мощности поступает на антенну. КСВ 2: 1 обычно считается максимально допустимым для наиболее эффективной работы системы.

Основы радиолокации — Антенна Яги (волновой канал)

Антенна Яги (волновой канал)

Антенны Яги относятся к продольным излучателям и используют в своем составе элементы, возбуждаемые излучением. Этот тип антенн получил свое название по имени одного из его изобретателей, японского профессора Яги. Иногда используется наименование «антенны Яги-Уда», а в русскоязычных источниках такие антенны называют антеннами типа «волновой канал». Эта конструкция антенн была специально разработана для диапазона радиоволн от высоких частот (ВЧ, HF) до верхней части диапазона очень высоких частот (ОВЧ, UHF). Антенны Яги очень популярны по причине простоты их конструкции и относительно высокого коэффициента усиления.

Как правило, их относят к высоконаправленным антеннам. Помимо радио, антенны этого типа применяются и в радиолокации.

В антеннах Яги используется взаимодействие между элементами, в которых возникают стоячие волны тока, в результате чего возникает бегущая волна с выраженной диаграммой направленности. Такая антенна состоит из одного или нескольких активных вибраторов (диполей) и дополнительных пассивных элементов. Элементы антенны Яги обычно привариваются к проводящему стержню или трубке, называемому стрелой. Точка соединения соответствует средине элемента. Такая конструкция имеет целью только обеспечение механической прочности антенны и не влияет на ее рабочие характеристики. Поскольку активный элемент имеет ценральное питание, он не приваривается к опорному стержню. Входной импеданс антенны может быть увеличен путем использования петлевого вибратора в качестве активного элемента.

Элементы, из которых состоит антенна Яги, показаны на Рисунке 1. Расстояния между ними выбираются не одинаковыми. Единственный элемент антенны, который возбуждается от передатчика, это активный вибратор. Все остальные элементы являются пассивными, однако играют важную роль в формировании излучения антенны. Излучение элементов складывается в фазе при распространении в прямом направлении и в противофазе — в противоположном. Ширина полосы частот антенны Яги определяется длиной и диаметром элементов, а также расстоянием между ними. Для большинства конструкций ширина полосы обычно составляет всего несколько процентов от частоты, на которую проектировалась антенна.

Антенна Яги, изображенная на Рисунке 1, имеет один рефлектор, один петлевой вибратор в качестве активного элемента и три директора. В общем, чем больше используется пассивных элементов (директоров и рефлекторов), тем выше коэффициент усиления антенны. Увеличение количества этих элементов приводит к уменьшению ширины луча антенны, но, вместе с этим, и к сужению ее полосы частот.

Поэтому правильная настройка антенны имеет большое значение. Коэффициент усиления антенны не увеличивается прямо пропорционально увеличению количества используемых элементов. Например, трехэлементная антенна Яги имеет относительное усиление по мощности от 5 до 6 дБ. Добавление дополнительного директора приводит к увеличению этого параметра примерно на 2 дБ. Однако добавление последующих директоров имеет все меньший и меньший эффект.

Принцип действия

Рисунок 2. Двухэлементная решетка из полуволнового резонансного диполя в качестве активного элемента и более короткого диполя в качестве пассивного элемента

Рисунок 2. Двухэлементная решетка из полуволнового резонансного диполя в качестве активного элемента и более короткого диполя в качестве пассивного элемента

Основной элемент Яги имеет три составные части. Длина каждого пассивного элемента отличается от половины длины волны, являющейся резонансной для антенны. Если она больше (обычно на величину около 15 процентов), то такой элемент имеет индуктивные свойства и работает как рефлектор. Если же длина элемента меньше половины длины волны (с шагом 5 процентов), то элемент имеет емкостные свойства и определяется как директор, поскольку он вызывает усиление излучения в направлении от активного вибратора к директору. Для понимания принципа действия рассмотрим резонансный диполь и добавим к нему пассивный элемент, расположив его на небольшом расстоянии. Излучение диполя вызывает возбуждение пассивного элемента, причем с разностью фаз, определяемой расстоянием между ними. Емкостной характер из-за меньшей длины пассивного элемента приводит к дополнительной задержке токов и напряжений в этом элементе и, соответственно, в фазе излучаемого им поля. Поскольку разность фаз соответствует расстоянию между элементами, то оба излучаемых поля (активного и пассивного элементов) синфазны в одном направлении и противофазны в другом направлении.

Поскольку амплитуды колебаний в элементах антенны не одинаковы, сумма излучаемых ими полей увеличивается в одном направлении и уменьшается в другом.

Рисунок 3. Трехэлементная антенна Яги, суперпозиция колебаний, вызванных активным элементом, рефлектором и директором

Рисунок 3. Трехэлементная антенна Яги, суперпозиция колебаний, вызванных активным элементом, рефлектором и директором

Возникновение одного поперечного луча при использовании одного активного вибратора и одного пассивного элемента позволяет предположить, что еще большее усиление может быть достигнуто использованием рефлектора и директора по разные стороны от активного вибратора. В действительности так и есть. Трехэлементная антенна Яги имеет коэффициент усиления, достигающий 6 дБ. В рефлекторе, имеющем длину больше половины длины волны, индуцируется ток, который, в свою очередь, является источником волны, гасящей волну от активного вибратора. Директоры несколько короче, их сопротивление носит емкостной характер, и они должны быть расположены на расстоянии, несколько меньшем половины длины волны, для обеспечения синфазности волн от активного вибратора и от директоров. Коэффициент усиления антенны Яги может быть увеличен путем увеличения количества элементов, однако каждыей новый дополнительный элемент будет вносить все меньший и меньший вклад. Для умеренного количества элементов усиление в прямом направлении пропорционально этому количеству.

Массив элементов Яги можно описать как структуру с медленной волной. Поэтому антенны Яги относятся к категории антенн бегущей волны. В такой структуре поддерживается неубывающая волна в прямом направлении, а токи в директорах имеют примерно одиноковые значения, хотя и с увеличивающейся фазовой задержкой. Фазовая скорость волны в этом случае составляет от 0,7 до 0,9 скоростей света.

Figure 4: 3D representation of the antenna pattern of a Yagi antenna having 8 elements including folded dipole fed with a power of 11 dBm

Рисунок 4. Трехмерное представление диаграммы направленности антенны Яги, имеющей 8 элементов, включая петлевой вибратор, запитываемый мощностью 11 дБм

Рисунок 5. Радиолокатор, в котором используется решетка антенн Яги (П-18 «Терек», по классификации НАТО «Spoon Rest D») с коэффициентом усиления G = 69

Что такое ЕН-антенна и как она работает?

Что такое ЕН-антенна и как она работает?
Сушко Сергей Анисимович
UA9LBG «Радио-Вектор-Тюмень» —
«Радиоклуб индивидуального (любительского) радиовещания «Tesla» в Тюменской обл.
Individuаl broadcast «Радио-Вектор-Тюмень»

E-mail: broadcast72 (at) yandex.ru

Введение

Радиолюбители всегда отличались своими неутомимыми изысканиями, они всегда ищут лучшую антенну для конкретного места ее установки, будь то поле, горы, водная гладь  или жилой дом, и это достаточно сложный вопрос. Ключевым вопросом в этих условиях могут оказаться размеры, эффективность, стоимость, надежность, или полоса пропускания. Нет антенны, которая удовлетворяла бы всем этим критериям одновременно. Все антенны имеют сильные и слабые стороны. Цель данной статьи состоит в том, чтобы дать понятие о том, как же работает ЕН-антенна, что такое диполь сопряженных полей (ДСП), что любая антенна, это открытый колебательный контур, который имеет свои характеристики по резонансу, добротности, диаграмме направленности и ширине полосы пропускания.

Излучатель

Что бы понять до конца, как работает эта антенна, нужно полностью изменить свое представление о работе этого типа антенн и понять, что излучатель этой антенны не укороченный диполь Герца, а открытый конденсатор, который тоже создает   электромагнитное поле. Сравнивать диполь-провод и диполь-емкость, так же бессмысленно и невежественно, как сравнивать подъемную силу самолета и стратостата. Вспомним, что в среде вокруг проводника, по которому протекает постоянный электрический ток, возникает только постоянное магнитное поле, которое не может создать вокруг себя электромагнитное поле.

Для правильного понятия работы емкостного излучателя нужно вспомнить работу электростатического поля. — Если к двум электродам (пластинам), находящимся на определенном расстоянии друг от друга, приложен постоянный электрический потенциал, то в среде между ними и вокруг них возникает только электростатическое поле, которое так же не может создать вокруг себя электромагнитное поле.

Задавшись целью создать электромагнитное поле, достаточно к проводнику или пластинам приложить переменный по знаку электрический потенциал. Только эта цель объединяет эти два совершенно разных излучателя.

Теперь мы знаем, что переменный по знаку электрический потенциал (переменное напряжение), приложенный к пластинам, будет изменять направление и величину напряженности электрического поля между ними, а поле становится электромагнитным, потому что каждое переменное электрическое поле создает электрический ток смещения и закономерно вызывает электромагнитное поле. Вот, основной принцип работы емкостного излучателя по Максвеллу.

Разность потенциалов между излучателями и расстояние их друг от друга, определяют напряженность электромагнитного поля между ними. Напряженность поля выражается в Вольт/метр (В/м, мВ/м, мкВ/м). К примеру, если к электродам излучателя, находящимся друг от друга на расстоянии 0,1м приложить напряжение в 100В, то напряженность поля между ними составит 1000В. Если эти электроды размещены на расстояние 0,2 м, то напряженность поля между ними составит всего 500В. Это один из принципов работы емкостного излучателя и как мы видим, ни чего общего с диполем Герца здесь нет.  Теперь мы имеем начальное представление о работе емкостного излучателя, что может стать определяющим направлением конструкции емкостного диполя и его размеров.

Возвращаясь к истокам открытого колебательного контура Максвелла, Никола Тесла решил задачу излучения электромагнитной волы другим путем. Если Генрих Герц вытянул витки в длинный провод, то Никола Тесла создал развитый элемент связи со средой не вытягиванием провода, а при помощи объемного емкостного излучателя, как это было в первых опытах Максвелла. Точно так же решил эту задачу наш современник Тэд Хард.

Конструкция антенны Т.Харда, это диполь Тесла. Стоит ли, лишний раз утверждать, что ЕН-антенна конструкции Т. Харда, см. Рис.1, это копия оригинала антенны Тесла, см. Fig.1. Тот же резонансный контур, тот же емкостной излучатель с катушкой индуктивности и катушкой связи. Антенна Тесла напоминает первый автомобиль Ford, а антенна Т. Харда, — последнюю модель Ford-Focus. Да, действительно Тед до максимума отработал конструктив антенны так, что бы он был легко повторяемым, как для начинающих радиолюбителей, так и для промышленного производства. Тем не менее, справедливости ради, автор данной статьи склонен называть эту антенну диполем Тесла с конструктивом Т. Харда. Думаю трудно недооценить, как заслуги Г.Форда, так и заслуги великого изобретателя начала 20-го века Н.Тесла?

Основой несущей конструкции инженера Т. Харда служит недорогая пластиковая труба с хорошими изоляционными характеристиками. Фольга в виде цилиндров плотно облегает ее, тем самым формируя излучатели антенны с небольшой емкостью. Индуктивность L1 образованного последовательного колебательного контура располагается за апертурой излучателя. Катушка индуктивности L2, расположенная в центре излучателя компенсирует противофазное и вредное излучение катушки L1. Разъем питания антенны (от генератора) W1 располагается внизу, это удобно для подключения фидера питания, уходящего вниз.

В данной конструкции настройка антенны производится двумя элементами, L1 и L3. Методом подбора витков катушки L1, антенна настраивается в режим последовательного резонанса по максимуму излучения, где антенна приобретает емкостной характер. Отвод от катушки индуктивности определяет входное сопротивление антенны и наличие у радиолюбителя фидера с волновым сопротивлением на 75 или 50 Ом. Подбором отвода от катушки L1 можно добиться КСВ = 1,2-1,5. Катушкой индуктивности L3 добиваются компенсации с емкостного характера антенны, по входному сопротивлению антенны и КСВ=1,05-1,1. Антенна принимает активный характер. Что бы понять до конца, как же нужно настраивать эту антенну, нужно подробнее изучить ее теорию и принцип действия диполя Тесла.

Примечание: Катушки L1 и L2 намотаны в разные стороны, а катушки L1 и L3 перпендикулярны друг другу для уменьшения взаимного влияния.

Рассмотрим принцип действия диполя Тесла.

Анализируя работу такой антенны, нужно рассматривать ее с разных позиций, как:
1. Работа последовательного колебательного контура (ПКК) со стороны генератора;
2. Питание контура и работа излучателя;
3. Работа емкостного излучателя со стороны среды.

1. Работа последовательного колебательного контура (ПКК) со стороны генератора.
На рис.2а изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь Rк, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Очевидно, что на резонансной частоте, когда величины реактивных сопротивлений катушки XL и конденсатора -ХC равны по модулю, реактивная величина обращается в ноль, но фазы их противоположны. Действительно, напряжение на катушке UL опережает ток на 90°, а напряжение на конденсаторе UC отстает от тока на 90°. Ясно, что между этими напряжениями сдвиг фаз равен 180° (Рис.2б).  Следовательно, сопротивление в цепи чисто активное, а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/r. При этом на катушке и на конденсаторе, в которых запасена реактивная электроэнергия, падает одинаковое напряжение UL=UC=I|XL|=I|-XC|.

Резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой последовательного колебательного контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер.

На (рис.2в) изображен график изменения полного сопротивления контура Z и тока Iконт. при изменении частоты генератора f. Таким образом, напряжение генератора U равно падению напряжения на активном сопротивлении Rк.

При резонансе напряжений, ток в контуре увеличивается. На индуктивном и емкостном сопротивлениях создается высокое напряжение, значительно превышающее напряжение генератора.

И действительно, если к контуру приложить напряжение U =100В, то напряжение на пластинах излучателя U2 с учетом  добротности контура Q=26  будет выглядеть согласно следующей формуле:
U2 = Q * U ,
где U напряжение на входе контура.
Согласно скромным расчетам U2 может составлять 2600В!

При расстройке контура выше или ниже по частоте на уровне 0,707, фазы отличаются друг от друга на 45 градусов, что часто применяется в фазоинверторах многих электронных устройств. Данное свойство так же используется для точной настройки LC- элементов и совмещения по фазе напряжения и тока в диполе Тесла.

2. Питание контура и работа излучателя.

Мы знаем, что диполь Тесла это последовательный колебательный контур (ПКК), где емкость С является открытым элементом связи со средой, участвующем в излучении. Индуктивность L участвует только в резонансе (рис. 3а). Кроме того, ее участие в излучении категорически неприемлемо, т.к. мы знаем, что напряжение на индуктивности противофазно на 180 градусов напряжению емкости образованного контура.                        

Но напряжение, приложенное к пластинам излучателя Uc (зеленая кривая, см. Рис.3б), это еще не напряженность поля среды вокруг излучателя. Напряженность поля излучения Ec, сосредоточенная в электрическом поле излучателя, без учета расстояния между пластинами равна:

где: С — ёмкость конденсатора.
U — максимальное значение напряжения на пластинах конденсатора.
ЕLнапряженность поля излучения катушкой индуктивности.

Из приведенной формулы ясно, что напряженность поля среды Ес в данной антенне прямо пропорционально емкости открытого конденсатора умноженное на квадрат приложенного напряжения, минус напряженность противофазного поля EL (рис.3б). Напряжение емкостного излучателя антенны может составлять десятки и сотни киловольт, что немаловажно для рассматриваемого излучателя. Здесь прослеживается полное подтверждение работы резонансного трансформатора Тесла как антенны, ведь вокруг излучателя трансформатора Тесла наблюдаются нимбы и коронарное свечение. Особенно это наблюдается при большой подводимой мощности или очень маленьких размеров диполя Тесла по отношению к длине волны. Подобное свечение вокруг излучателя диполя Тесла создаются за счет содержания в земной атмосфере газов, способствующих этому, ровно как свечение газа в неоновой лампе при напряжении между электродами всего в 50-60 В.

Исходя из теории работы последовательного колебательного контура, размещение и конструкция катушки индуктивности L в конструктиве Т. Харда играет не маловажную роль. Если разместить ее между электродами излучателя C (рис.4а), а энергия излучения катушки L противофазна энергии излучения емкостного излучателя C, то общая энергия излучения будет вычитаться, а при развитой одновитковой катушке будет стремиться к нулю. Противофазная напряженность EL  показана на графике, см. рис.3б красной линией. По этому катушку индуктивности строят с максимальным применением мероприятий по устранению ее излучения. Размещение катушки индуктивности L за апертурой излучателя C, дает более положительные результаты (рис.4б), что так же отмечено на графике рис.3б синей линией.

Значительное устранение влияния катушки индуктивности на излучатель возможно введением в центр апертуры излучения противофазной катушки индуктивности L пр.ф. (рис.4в) или катушки фазовой компенсации. Обычно эта катушка составляет четвертую часть витков, намотанных в противоположном направлении относительно катушки L.  Так сделал Тед Хард (катушка L2, рис.1) в предложенной им конструкции ЕН- антенны.

3. Работа емкостного излучателя со стороны среды.

И так, мы имеем ПКК с емкостным излучателем, в который необходимо вкладывать максимальную энергию излучения. Потери на сопротивлении среды Rср. это потери на излучение. При идеальной настройке ПКК в резонанс напряжений, реактивные элементы становятся равны друг другу. Токи и напряжения в цепи приобретают характер как на графике рис.2б.

Поскольку индуктивность искусственным путем не должна участвовать в излучении, далее в графиках мы будем рассматривать только работу емкостного излучателя. Размеры излучателя по отношению к длине волны и элементы реактивного характера настолько малы, что ими можно пренебречь и излучатель можно рассматривать как активный элемент, имеющий связь со средой. По этому при появлении на клеммах излучателя потенциала Uc, ток смещения Iсм. в среде появляется без задержки по фазе, как это происходит в диполе Герца. В силу вступают законы электромагнитной волны по Максвеллу, где каждый электрический ток в среде вызывает  сопряженное электромагнитное поле (рис.5). С этого момента можно дать определение емкостному диполю, как диполю сопряженных полей (ДСП) и поставить знак равенства между диполем Тесла и ДСП! Но амплитуда Iсм. еще мала, т.к. ток контура Iк. опережает ток смещения на 90 градусов.  Здесь процесс настройки ДСП еще не завершен, т.к. распределение мощностей не достигнуто до необходимого уровня, ровно как не достигнуто максимальное излучение. Используя возможность фазирования контура методом настройки LC –элементов, необходимо настроить контур так, что бы он приобретал емкостной характер (осторожно сдвигая резонанс вниз по частоте), а фаза Ес и Iсм. максимально приближались к фазе тока контура Iк.

Рассматривая задачу настройки диполя Тесла на максимальное излучение, можно подойти к этому вопросу тремя путями:

— настройкой катушкой индуктивности;
— настройкой емкостью излучателя;
— изменением частоты генератора. Используя любой из этих путей или решая эту задачу комплексно, напряжение U0 на излучателе согласно векторной диаграмме, см. Рис.6. резко увеличивается, а вместе с ней и напряженность поля Ес по графику, рис.6.

Благодаря этому в среде между элементами излучателя диполя Тесла создаются мощное синфазное электромагнитное ЕН поле. Этот процесс можно считать завершающей фазой настройки диполя, если не учитывать компенсацию емкостного характера антенны индуктивностью L3, см. Рис.1. Здесь поля взаимно перпендикулярны и синфазны уже в ближней зоне антенны (рис.7).

Этот тип антенны имеет небольшую емкость и достаточно большое L/C соотношение. Мощность излучения такой антенны в непосредственной близости выше диполя Герца примерно на 30 дб и являются сосредоточенной. В дальней зоне общая излучаемая мощность антенны, должна быть такой же, как у диполя Герца.   Подобное явление на уровне волновой теории можно сравнить с осветительными лампами. К примеру, лампу мощностью 40 Вт можно считать как излучатель с концентрированным полем. Ее можно приравнять к диполю Тесла. В свою очередь длинную гирлянду с той же излучаемой мощностью, где каждая из ста ламп излучает всего по 0,4 Вт, можно приравнять к диполю Герца, и здесь нет ни каких противоречий.

В антенне, разработанной Тедом Хардом, уровень излучения чуть ниже, чем у диполя Герца. Это связано с тем, что емкостной излучатель еще не до конца  исчерпал своих конструктивных возможностей, но имеет большую перспективу в своем развитии.

Подводя итог, мы можем сказать, что емкостной излучатель диполя Тесла, создает вокруг себя мощное и концентрированное электромагнитное излучение. Диполь Тесла обладает особенностью накопления энергии, что характерно последовательному LC- контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно по результатам простых расчетов. Данное свойство давно практикуют в промышленных радио-устройствах с большим входным сопротивлением. Таким образом, мы можем сделать следующий вывод:
Диполь Тесла — это открытый колебательный контур, где емкость — С,    это  конденсатор, который является открытым элементом (в виде сфер, конусов или цилиндров), осуществляющим связь со средой. Индуктивность L является лишь  резонансным элементом, не участвующим в излучении. Это диполь сопряженных полей (ДСП).

Заключение.

На практике, вплоть до 50-60х годов прошлого столетия, такие антенны применялись в войсковой радиосвязи многих развитых стран мира (СССР, США, ФРГ, Франции, и Великобритании) и по непонятным причинам были забыты. Чаще всего они использовались как антенны зенитного излучения (АЗИ) на мобильных объектах КВ радиосвязи и кое — где их можно встретить в службах обеспечения связи гражданских аэропортов в секторе списанного оборудования, и это не блеф. Особенно запоминаемым был тот факт, когда подобную антенну успешно применял для своих радиообменов оператор незаконно действующего передатчика (НДП) на юге Тюменской области с позывным радиосигнала «Катерина» в 1978-93 годах.

ДСП может быть использован, как временная антенна городского радиолюбителя с ограниченным бюджетом или возможностями. Антенна для туризма и экспедиций. Антенна имеет принцип работы, основанный на  классической теории, но требует некоторой теоретической подготовки.

Дуэт из двух и более одинаковых антенн с легкостью может быть преобразован в направленную антенную систему, но питание отдельных элементов его должно быть только активным. Для увеличения эффективности излучающих элементов, стоит обратить свой взор на статический излучатель Чижевского и все встанет на свои места. В обиходе автора статьи, эта антенна имеет название «Кактус». ДСП только технологически сложнее диполя Герца, но значительно меньше его по размерам. Это не кусок провода, который можно отмерять рулеткой и забросить на ближайший высоко стоящий объект. Это хорошо выверенный четырехполюсник с LC элементами со стороны фидера и С-излучатель со стороны среды. В связи с выше сказанным, диполь Тесла по праву занимает одну нишу с диполем Герца, но условия их применения разнятся, как использование разных инструментов, предназначенных для выполнения одной и той же задачи, — где-то требуется использовать острый топор, а где-то ножовку…

FPV антенна, что это такое, как работает и какие бывают — Все о квадрокоптерах

В этой большой статье вы узнаете, что такое FPV антенна, как она работает, устройство, а также какие бывают FPV антенны.

Аналогия лампочки

Начнем с простой аналогии для понимания принципа работы радиосвязи. Представьте, что вы стоите посреди поля в полной темноте. У вас есть квадрокоптер, на который вы повесили лампочку. Вы ее включили, дрон взлетел и начинает летать вокруг вас. Теперь вашей целью будет поставить около себя камеру, которая всегда должна улавливать свет от лампочки квадрокоптера, при том, что он летает.

Как вы это сделаете? Сделаете лампу яркой, чтобы она лучше светила и камере было проще видеть свет? Будете использовать объектив на 360 градусов? Или может несколько объективов с поворотными механизмами? Смысл этой аналогии в том, что свет, который излучает лампа, является формой электромагнитного излучения, подобного радиоволнам. Так работают и антенны, они должны уловить радиоволны.

Мы применим эту аналогию к системе видеопередачи с квадрокоптера:

  • Интенсивность источника света представляет собой выходную мощность VTX (измеряется в милливаттах или мВт/mW).
  • Тип источника света (лампочка, фонарик, флуоресцентный свет и т. д.) — это тип антенны на видеопередатчике.
  • Тип объектива на камере, — это тип антенны на вашем шлеме или очках.
  • Чувствительность камеры (часто выраженная в мегапикселях) — это чувствительность вашего шлема или очков.

Далее в статье, будем использовать аналогию с видимым светом, чтобы было проще понимать, как это все работает.

 Для чего нужна FPV антенна?

Целью антенны является преобразование осциллирующей электрической энергии в электромагнитное излучение и наоборот: преобразование электромагнитного излучения в колебания электрической энергии в цепи.

Электромагнитное излучение — это научный термин для «радиоволн», это физическое «вещество», которое несёт видео, звук и данные по радиоволнам.

В обычном квадрокоптере есть две радиосистемы: система радиоуправления для управления дроном и видеосистема для трансляции видео через FPV камеру.

Передающими элементами этих двух систем будет радиопередатчик, который вы держите в руках (пульт), и передатчик видео на борту дрона, который называется видеопередатчик или VTX. Принимают сигналы приемники.

Более простое объяснение — вы поворачиваете стик, сигнал с пульта отправляется на приемник, который есть в квадрокоптере, он обрабатывает сигнал. Камера на дроне отправляет свой сигнал на видеопередатчик, который находится на борту квадрокоптера, он отправляет этот сигнал в приемник ваших очков или шлема и вы видите видео.

Давайте поговорим конкретно о видеосистеме квадрокоптера. В этой системе передатчик видеосигнала принимает аналоговый видеосигнал от камеры в качестве входного сигнала и преобразует его в импульсы электрической энергии, которые колеблются 5 800 000 000 раз в секунду или 5,8 GHz. Эта энергия направляется в антенну, которая преобразовывает ее в очень «яркие» радиоволны 5,8 GHz. При правильной настройке и позиционировании эти волны подхватываются второй антенной, установленной на ваших очках или шлеме FPV. В зависимости от того, насколько удален ваш квадрокоптер, эти волны будут значительно «тусклее» или «ярче». 

Антенна преобразует волны обратно в электрические колебания, а затем плата управления переходит к преобразованию этой энергии обратно в аналоговый видеосигнал —  противоположный процесс, который происходил в передатчике квадрокоптера — после этого вы видите видео на экране шлема.

 Нужна ли антенна для работы квадрокоптера?

Сейчас некоторые подумают — что за глупый вопрос? Возник этот вопрос вот почему: опытные пилоты наверняка замечали, что если включить передатчики без антенн, они все равно будут ловить сигнал, но слабенький. Происходит это потому, что у передатчиков есть SMA или любой другой разъем, он металлический и начинает работать в качестве антенны. Из этого сделаем вывод, что роль антенны может выполнять любой проводящий материал, в том числе медные дорожки на платах дрона и даже карбоновая (углеродная) рама вашего дрона.

Строение FPV антенны

Каждая FPV антенна, независимо от внешнего вида, имеет одинаковый набор компонентов:

Проводящий элемент

Формирует осциллирующий электрический сигнал и «передает» его в эфир в виде радиоволн. Каждая антенна имеет хотя бы один элемент. Некоторые могут иметь несколько элементов.

Земля/основание

Этот компонент делают металлическим, он соединен с квадрокоптером посредством коннектора, также, при правильном позиционировании, усиливает сигнал, который передается до/от квадрокоптера. Основание нужно располагать так, чтобы оно было параллельно земле.

Структура

В качестве материала пластик или акрил, не проводящий материал, служит для опоры проводящих элементов.

Коаксил

Коаксиальный кабель представляет собой специальный тип защитного провода, который может передавать электрические сигналы от одной точки к другой без излучения радиосигнала.

Коннектор

Коннектор это то, чем соединяется антенна к плате или передатчику на дроне. Служит проводящим элементом.

Как работает FPV антенна?

Так как эта тема для новичков, мы не будем углубляться в механику работы радиоволн, да и это не обязательно знать, чтобы использовать радиоуправление на дроне.
Принцип работы основан на теории резонанса, волны протекают по антенне со скоростью света. Предположим, что мы подаем на антенну импульс 5В, вначале импульса будет +5В, в середине -5В, в конце снова +5В, наглядно можете посмотреть на этой гифке:

Читайте также: Линейная поляризация и круговая, какая антенна лучше для квадрокоптера

Мощность передатчика

Помните ту аналогию с лампочкой? Чем мощнее передатчик будет генерировать сигнал, тем ярче будет гореть лампочка. Большинство видеопередатчиков на 200-400 mW и им не требуется дополнительное охлаждение, в то время как передатчикам на 1 W уже нужны специальные радиаторы, чтобы отводить тепло от платы, а видеопередатчики на 2 W оборудуются вентиляторами для обдува. На сегодня, радиаторы ставятся на видеопередатчики от 600 mW.

Чем больше мощности, тем больше будет различных радиошумов, так как вся электроника на дроне не экранирована. Еще одной особенностью будет то, что если вы увеличите мощность передатчика, от этого не увеличится расстояние, на которое сможет пробить сигнал этот видеопередатчик. Для увеличения расстояния, требуется более энергозатратное и мощное устройство, чем рядовой видеопередатчик.

Какие бывают антенны

Круговая поляризация / «Гриб» / «Грибовидная антенна»

У антенн с круговой поляризацией, диаграмма направленности напоминает бублик. На стержне антенны закрепляется такая конструкция, как на фото ниже. Благодаря своей универсальной поляризации, эти антенны отлично принимают и передают радиоволны почти в любом положении. Наибольшее усиление происходит в горизонтальной плоскости, а наименьшее в вертикальной. По факту, хуже всего такая антенна будет работать, если ее конец направить на квадрокоптер, но сигнал все равно будет.

 

Монополь или линейная

У монопольных антенн, диаграмма направленности тоже напоминает бублик, но более сжатый и с большим отверстием в центре. Основное отличие от антенны с круговой поляризацией заключается в том, что сигнал монопольной антенны работает лучше всего, когда антенны параллельны. Если такие антенны (прием и передача) расположить перпендикулярно или под прямым углом, а также, если они направлены прямо друг на друга, то сигнал будет очень плохой.

 

Линейная антенна, как на 1 фото

Линейная антенна, как на 2 фото

 

Диполь

Дипольная антенна тоже формирует диаграмму-бублик, но немного другой. Разница между дипольной и монопольной антенной заключается в том, что монопольный бублик намного более круглый с меньшим отверстием в середине. Это, дает дипольной антенне лучшие характеристики, чем монопольной, при более широком диапазоне углов.

Дипольная антенна

Патч / Плата / Заплатка

Патч-антенны имеют трехмерную диаграмму направленности излучения в форме капли в одном направлении. Это означает, что у них высокий коэффициент усиления в одном направлении (направление, в котором находится патч), но очень низкий коэффициент усиления в других направлениях. Они идеально подходят для установки на приемник.

Спиральная антенна

Спиральные антенны — отличный способ получить высокую направленность из круговой поляризации антенны. Чем больше витков спирали, те мбольше мощность и направленность. Спиральные антенны с 1 или 2 оборотами имеют характеристики, очень похожие на патч-антенну. Однако добавление 6 и больше оборотов может значительно улучшить диапазон антенны.

Как установить антенну на квадрокоптер

Теперь вам нужно узнать, как правильно установить FPV антенну на квадрокоптер, потому что от это зависит качество сигнала.

Карбоновое волокно рамы блокирует радиоволны, в этом случае, антенны нужно ставить так, чтобы они как можно меньше экранировались рамой.

Расположение и установка антенн приемника 2.4 GHz квадрокоптера

У большинства приемников 2.4 GHz используются две линейные антенны. В идеале они должны устанавливаться под прямым углом 90° друг к другу.

Самый популярный способ крепления — это использовать пластиковые стяжки, как показано на фото ниже. Не менее популярным местом будет и расположение антенн со второго фото, когда антенны располагаются буквой V на хвосте дрона.

Для второго способа можно купить специальное крепление для антенн, либо распечатать модельку на 3D принтере. По нашим наблюдениям, со вторым способом помехи возникают реже.

Дипольные антенны и Crossfire 

Такие антенны нужно устанавливать так, чтобы было как можно меньше экранирования от карбоновой рамы. У антенн Crossfire на концах есть наконечники, для гонок на близком расстоянии ничего учитывать не нужно, а вот для фристайла и при полетах на дальние расстояния, нужно следить за тем, чтобы наконечники «не смотрели» на пульт управления. Ниже на фото показано расположение такой антенны.

Расположение и установка антенн видеопередатчика 5.8 GHz квадрокоптера

Правильно установленная антенна видеопередатчика обеспечит оптимальный сигнал. Антенна видеопередатчика должна быть установлена ​​перпендикулярно направлению камеры. Таким образом, он всегда будет направлен вверх, когда дрон летит вперед. Это касается и самолетов с неподвижным крылом. Это идеальный угол для установки антенн как с линейной, так и с круговой поляризацией. В идеале следует использовать антенну CP, такую ​​как Lumeneir AXII. Если использовать более дорогие варианты антенн, то будет обеспечена максимальная производительность.

Что касается размещения антенны VTX на дроне, ее следует располагать как можно дальше от рамы. В идеале антенна должна находиться в таком положении, чтобы между ней и антеннами на вашем шлеме или очках можно было провести воображаемую линию, при этом рама дрона не будет блокировать ее. Лучшее решение для этого — установить антенну под углом в ​​задней части квадрокоптера.

Важно хорошо закрепить антенну, чтобы в случае краша (аварии) антенна не сломала разъем видеопередатчика, так как крепление там жесткое.

Если собираетесь участвовать в гонках, то лучше использовать короткую антенну, которую сложнее повредить. Так как вы не будете далеко летать, то особого снижения качества видео не будет. Другое дело фристайл или полеты на дальние расстояния, тут нужна антенна более длинная.

Как расположить антенну на FPV очках и шлеме?

Расположение и тип антенн на шлемах и очках тоже имеет значения для качества сигнала. Если у ваших очков или шлема один приемник без разнесения, то нужно использовать антенну с круговой поляризацией. Если внутри шлема/очков два приемника или есть разнесение, то нужно использовать на одном разъеме круговую, антенну, а на другом — патч антенну. Так вы добьетесь наилучшего сигнала. Патч антенну не рекомендуется использовать там, где много шумов — где много электроники и линий электропередач, особенно в помещении.

Лучшим решением будет использование наземной станции для антенн, так ничего не будет зависеть от движений вашей головы.

Качество антенн

Качество антенн достаточно сильно влияет на производительность сигнала, его качество. Наверняка в интернет-магазинах вы видели антенны за 30-40 долларов и рядом за 10 или меньше. Дешевые варианты обычно плохо откалиброваны и у них наименьшая чувствительность. У дорогих антенн наоборот, максимальная чувствительность и хорошая калибровка в завода.

Ниже видео тестирования антенн с результатами. Видео на английском, но можно включить субтитры с переводом на русский.

Заключение

Надеемся, вы пополнили багаж своих знаний и теперь будете знать какие антенны где применять, как их располагать и почему не стоит покупать самые дешевые антенны.

Читайте также: Как собрать гоночный квадрокоптер 6S на раме TRANSTEC LASER S, собираем и настраиваем с фото

Нет сигнала от антенны | Что делать если не работает антенна на телевизоре LG

Что вы делаете в первую очередь, когда возвращаетесь домой? Правильно, около 86% людей сначала нажимают на кнопку телевизионного пульта, и только после этого приступают к домашним делам и обязанностям. Под телевизор мы едим, убираемся, отдыхаем и засыпаем. Строка посреди экрана «нет сигнала (NO SIGNAL)» вызывает раздражение, негатив, разочарование, досаду панику. Перед владельцем сразу встает вопрос: «Что делать?».

Для начала необходимо убедиться, что не показывают все телевизионные программы, а также уточнить существование проблемы у соседей. В случае, когда у соседей все в порядке, а ваш телевизор не работает и не ловит сигнал, можно перед вызовом мастера выяснить причину самостоятельно.

Основные причины, почему телевизор не видит сигнал антенны

Существует 4 основных случая, когда телевизор не видит антенну.

Самая распространенная причина почему не показывает телевизор кроется в том, что нет сигнала от антенны. Такая проблема может быть обусловлена внутренними и (или) внешними неполадками, которые не зависят от вида телевизионной антенны и марки телевизора (LG, Самсунг, Сони и прочие).

К внутренним проблемам относятся:

  • Обрыв кабеля в квартире.
  • Поломка ресивера.
  • Сбой настроек ресивера.

К внешним проблемам относятся:

  • Неблагоприятные погодные условия.
  • Профилактические работы у оператора.
  • Сбой возможности приема сигнала.
  • Обрыв кабеля на улице.
  • Неисправность антенны.

Как решить проблему отсутствия сигнала от антенны самостоятельно?

Прежде чем вызывать мастера по ремонту телевизоров и телевизионных антенн, попробуйте разобраться в причине отсутствия сигнала самостоятельно. Возможно, все исправить будет легко:

  • При плохой погоде (гроза, снегопад, сильный дождь) выключите телевизор на несколько минут. Обычно погода влияет на качество прохождения сигнала, и после включения он может появиться. Если надпись «нет сигнала» не исчезла, то придется переждать непогоду, не предпринимая никаких дальнейших действий.
  • Сбой настроек ресивера. Если погода хорошая, а телевизор от антенны не показывает каналы, можно обратиться в службу техподдержки (актуально для абонентов Триколор) либо войти на телевизоре в «Меню» и обновить списки каналов в автоматическом режиме.
  • Профилактические работы. Обычно, если оператор проводит профилактические работы, то на его сайте должно быть заранее размещено объявление, при том не показывать будут все каналы. В этом случае останется только дождаться окончания профилактических работ, после которых трансляция возобновляется.
  • Кабель в квартире. Если погода хорошая, а обновление каналов не помогло – ищите обрыв кабеля. Сначала проверьте все места соединения кабеля с телевизором, подкрутите зажимные болты, закрепите кабель в гнезде. Затем проверьте места легкодоступные детям и домашним животным на предмет механических повреждений (заломы, трещины, разрывы). Обычно человек, владеющий базовыми знаниями о кабелях, легко зачистит и соединит место разрыва. При серьезном и масштабном повреждении может понадобиться полная либо частичная замена кабеля.
  • Уличный кабель. При отсутствии сигнала телевизионной антенны на телевизоре проверьте уличный кабель на целостность в местах соединений, на изгибах и в легкодоступных местах для непогоды, птиц или животных. Возможно, телевизор не показывает из-за обрыва или залома уличного кабеля.
  • Повреждение антенны. Если все обследовано на предмет повреждений, а телевизор продолжает выдавать на экране: «нет сигнала», то причина – в неполадке антенны. В этом случае целесообразней сразу обратиться к специалисту по ремонту, но вначале можно попытаться перенаправить антенну. Для этого вам понадобится помощник, который будет следить за изменениями на экране и сообщать вам об этом. Ослабьте немного зажимы и чуть поверните антенну в одну сторону, потом – в другую. Если неполадка исчезнет – не забудьте вновь надежно закрепить антенну. Не забудьте проверить, чтобы на антенне не было снега, наледи и других посторонних предметов.
  • Изменение возможности приема сигнала со спутника – еще одна внешняя проблема, почему телевизор не видит каналы. Чаще всего она возникает при долгом простое оборудования. За это время могут появиться препятствия для прохождения сигнала (деревья, рекламные щиты). Проверить очень просто: в 13 часов между солнцем и спутниковой антенной не должно быть препятствий.

Что делать, если все проверено, а телевизор по-прежнему не ловит сигнал?

    Вышеперечисленные причины – это самые распространенные неполадки, когда телевизор не работает и нет сигнала от антенны. Но проблема может лежать значительно глубже, и даже составлять совокупность нескольких меньших. Например, это может быть поломка конвертора на антенне из-за плохих погодных условий, либо скопление насекомых в головке антенны. Чтобы неловким вмешательством не причинить еще больший вред антенне, обратитесь к профессионалам.

    Компания АРС-Мастер занимается диагностикой, профилактикой и устранения неполадок телевизионных антенн любых видов и независимо от вашего оператора. Наш специалист приедет к вам после заявки, в указанное время. Возможен заказ срочного ремонта в Москве. И даже, если вы не смогли определить причину, почему ваш LG, Самсунг, Сони или другой телевизор не работает и не видит антенну, то мы приедем, разберемся и поможем. Вам почти ничего не надо будет делать, только позвонить в нашу компанию!

Простая антенна начинающего коротковолновика | Записки программиста

Поработав некоторое время в эфире, а также почитав про прохождение, антенны, согласующие устройства и всякое такое, я составил лучшее представление о том, что мне нужно от антенны. Было решено с учетом накопленных знаний и опыта сделать новую антенну, которая лучше подходила бы под мои текущие ограничения и интересы. Также хотелось получить как можно более дешевую и простую антенну, чтобы ее могли повторить другие начинающие радиолюбители.

Постановка задачи

В последнее время я использовал многодиапазонную дельту. Антенна верой и правдой прослужила мне больше года, давая выход на все КВ-диапазоны от 10 до 40 метров, и, с заметной потерей эффективности, даже на 80 метров. Было произведено множество QSO самыми разными видами связи, в том числе некоторое количество межконтинентальных, все с хорошими рапортами. В целом, получилась нормальная антенна.

Так в чем же ее проблемы:

  • Нижняя часть полотна антенны проходит на уровне человеческого роста. То есть, практически вплотную к антенне могут находится родственники или соседи. В дневное время приходится либо постоянно смотреть в окно, либо работать на передачу с пониженной мощностью;
  • Антенна расположена близко к дому, в связи с чем имеет высокий уровень шума и собирает внезапные импульсные помехи. Разница по сравнению с диполем, расположенным в 10 метрах от того же дома, заметна невооруженным взглядом;
  • Не очень понятна диаграмма направленности и поляризация антенны на каждом из диапазонов. Результаты моделирования расходятся с наблюдаемыми данными, тем же входным сопротивлением. Мне хотелось бы примерно представлять, в какую сторону и с каким усилением идет сигнал;
  • Неизвестные потери в согласующем устройстве и балуне 1:4. Видео How much power is your QRP antenna coupler losing, снятое Peter Parker, VK3YE, наглядно демонстрирует, что типичные потери в согласующем устройстве могут составлять порядка 1 dB, или 20% мощности;
  • Для смены диапазона приходится крутить ручки. Эту проблему можно решить при помощи автотюнера mAT-30. Но тогда антенна будет привязана к ограниченному числу совместимых с ним трансиверов, чего хотелось бы избежать. Кроме того, автотюнер — это лишние провода. Также, напомню, при использовании данного автотюнера Yaesu FT-891 снижает выходную мощность пропорционально КСВ;
  • Полоса антенны могла бы быть шире. При этом зимой полотно антенны может прогибаться под тяжестью снега, из-за чего меняется входное сопротивление. Как результат, только что согласованная антенна через десять минут может стать вообще не согласованной. Проявляется только во время снегопада;
  • Антенна была выполненна из провода П-274М. Это достаточно толстый провод черного цвета. Хотелось бы, чтобы антенна поменьше бросалась в глаза. Так, на всякий случай;
  • Такое чувство, что я сработал почти со всеми, с кем мог сработать на эту антенну. Новых корреспондентов удается найти довольно редко. Стоит сказать, что сейчас мне интереснее всего работать в телеграфе, и иногда в SSB. Новый корреспондентов хватает в FT8, но мне не очень интересно в нем работать;

Согласно журналу, 75% радиосвязей за все время работы в эфире я провел в диапазонах 20 и 40 метров. Я был готов пожертвовать остальными диапазонами, оставив лишь два самых часто используемых мной на практике. Для выхода на прочие диапазоны я всегда могу развернуть какую-то временную антенну.

Подготовительные работы

Простых и в то же время эффективных антенн не так много — это диполь, вертикал и рамочная антенна. Местом под две независимые антенны я не располагаю, поэтому нужна одна антенна на два диапазона. Многодиапазонную рамку сделать можно, но довольно хлопотно. Вертикал, чтобы рядом с ним не ходили люди, нужно ставить на крышу. Крыша у дома металлическая, что хорошо для вериткала. Но мне не хочется карабкаться на крышу посреди зимы, если с антенной что-то случится. Таким образом, остается диполь.

Многодиапазонный диполь можно сделать, используя либо две пары плеч, либо трапы, либо балун 1:4. Я остановился на первом варианте, поскольку он самый простой. Питать антенну было решено при помощи кабеля RG-213, поскольку это дает небольшие и заранее известные потери, а кабель можно использовать любой удобной длины. Таким образом, предстояло сделать балун по току 1:1.

Когда я делал балун в прошлый раз, он получился тяжелым и дорогим, поскольку я использовал ферритовое кольцо FT240-31. Было решено намотать балун на более дешевом и легком кольце с близкой начальной магнитной проницаемостью, и посмотреть, что из этого выйдет. В качестве кольца я выбрал М1500НМ3, 45х28х12. Кольцо обладает достаточным диаметром, чтобы на него можно было намотать кабель RG-58. Но я захотел использовать бифилярную обмотку, просто потому что никогда раньше не использовал ее в балунах.

На следующем фото изображен сам балун и то, как измерялась зависимость импеданса обмотки от частоты:

Импеданс, а также КСВ на эквиваленте нагрузки 50 Ом, получились следующими:

График, аналогичный первому, только для кольца FT240-31, ранее приводился в посте Антенный анализатор FAA-450 (EU1KY). Видно, что М1500НМ3 справляется похуже. Тем не менее, на частотах от 1 МГц до 14 МГц мы видим активное сопротивление более 500 Ом, а значит балун неплохо подавляет синфазные токи. Отмечу, что при использовании вместо бифилярной обмотки кабеля RG-58 график будет таким же.

Куда сильнее меня беспокоил КСВ. Видно, что на 14 МГц балун начинает вносить существенную реактивность. Рабочая версия заключалась в том, что эта реактивность будет скомпенсирована длиной плеч самой антенны. Также балун был проверен на эквиваленте нагрузки при подаче несущей с мощностью 100 Вт. В балуне нигде ничего не перегревается. Это свидетельствует в пользу того, что балун работает правильно.

Окончательный вид балуна получился таким:

Я заметил, что в кольцо с намоткой идеально вставляется труба ПВХ диаметром 20 мм. Ее я и использовал в качестве каркаса. Снизу в трубку вставляется разъем SO-239, сверху крепится петелька. Петелька была отрезана от решетки-гриль с помощью ножниц по металлу. Решетка была куплена новая и оказалась слишком маленькой для мангала, вот и лежала без дела. С тем же успехом можно использовать толстую медную проволоку или любые другие доступные материалы. Держится все на эпоксидном клею.

В качестве эксперимента была сделана антенна inverted-V на самый сложный для балуна диапазон, 20 метров. Антенна была поднята на телескопической удочке на высоту 7 метров. Длины плеч я сделал ровно по 5 метров, и с перовой попытки попал почти куда нужно:

Выглядит так, как если бы теория о компенсации реактивности подтверждалась. Было проведено несколько тестовых радиосвязей как в телеграфе, так и в SSB. Все они прошли без проблем. Таким образом я убедился, что балун работает как надо даже в диапазоне 20 метров.

Окончательное решение

Так выглядит антенна на два диапазона:

Графики КСВ:

Результаты похожи на те, что были получены при изготовлении fan dipole из двухпроводной линиии. На этот раз плечи были расположены почти в одной плоскости, что не сильно повлияло на свойства антенны. Интересно, что графиком КСВ в диапазоне 20 метров можно манипулировать, регулируя расстояние между плечами с земли. Чем ближе плечи друг к другу, тем ниже по частоте будет резонанс на 20 метрах. «Бонусные» диапазоны на этот раз получить не удалось. На диапазонах, отличных от 20 и 40 метров, КСВ не опускается ниже значения 5.

В отличие от предыдущей версии антенны, здесь мы имеем существенно меньшие потери в линии запитки. К тому же, линия может быть произвольной длины. Провода и леска использовались те же, что в прошлый раз. Это делает антенну не сильно заметной на фоне неба. Ближе к земле леска была обклеена изолентой. Это сделано для того, чтобы кто-нибудь случайно на нее не налетел. Также изолента дает леске дополнительную защиту от трения о забор в случае сильного ветра.

С выбором мачты я немного прогадал. На eBay была куплена телескопическая удочка длиной 20 метров. Я надеялся, что смогу использовать под мачту метров 15. Но оказалось, что в этом случае нужно как минимум два яруса оттяжек, иначе мачта сильно гнется на ветру. А мои родственники без энтузиазма относятся к идее натянуть веревок по всему двору. В итоге высоту пришлось ограничить 10-ю метрами, а удочку закрепить лишь у основания, примотав ее к забору. По прошлому опыту мне известно, что такая конструкция выдерживает сколь угодно сильный ветер, даже при использовании куда более тонких удилищ.

Fun fact! Как альтернативный вариант, мачту можно спаять из медных труб. Трубы желательно выбрать потолще, диаметром не менее 20 мм. Такую мачту саму можно использовать в качестве элемента антенны.

Чтобы секции удочки не схлопывались на ветру, я закрепил их армированным скотчем. Чтобы со временем скотч не отклеился, и чтобы под него не затекла вода, сверху он был покрыт лаком Plastik 71. Изоляция места соединения коаксиального кабеля с балуном выполнена по тому же принципу, только вместо армированного скотча применено несколько слоев изоленты.

Важно! Не используйте лак в виде спрея. При неудачном дуновении ветра лак попадет в глаза вам или проходящим неподалеку людям.

Десять метров — это очень удачная высота для inverted-V на диапазон 20 метров. Антенна хорошо подходит для проведения дальних связей. Для диапазона 40 метров высота составляет λ/4. Диаграмма направленности при этом оставляет желать лучшего. Многие радиолюбители скажут, что такая антенна вообще ни на что не годится, поскольку она «излучает в зенит». Но я рискну поспорить.

Во-первых, даже если так, антенна для дальних связей у нас уже есть. Почему бы не настроить вторую так, чтобы она лучше подходила для ближних связей? Во-вторых, на самом деле, даже при такой высоте антенна может посоревноваться в усилении под углами 20-30 градусов с вертикалом:

Настоящая проблема заключается не в самом усилении, а в том, что сигналы от дальних станций могут быть перекрыты сигналами от ближних. Но если мы говорим о телеграфе, то две станции, одновременно использующие одну частоту — явление редкое. Телефон же все равно не является лучшим видом связи для DX.

В-третьих, в книге Propagation and Radio Science за авторством Eric Nichols, KL7AJ убедительно показано, что радиоволны не отражаются буквально от поверхности земли. На самом деле, радиоволны проникают под землю, и существенно глубже, чем принято думать. Таким образом «отражение» происходит под землей. В результате низко подвешенный inverted-V работает лучше, чем должен, потому что его эффективная высота от земли получается больше.

Важно! С этой антенной обязательно используйте дроссель для защиты от статического электричества. Дроссель требуется правильно заземлить.

Результаты тестирования при помощи WSPR на мощности 5 Вт обнадеживают:

Здесь мы видим, что мой сигнал принимали в принципе во всем мире, как на 20 метрах, так и на 40 метрах.

И действительно, с этой антенной нередко удается провести дальние связи. В диапазоне 20 метров по расстоянию пока ведут Япония (7500 км) и США (8600 км). В диапазоне 40 метров мне удалось провести QSO с радиолюбителями из Бразилии (12100 км), Австралии (12500 км), а также Новой Зеландии (16150 км). Дело было во время контекста CQ WPX CW 2020. Все радиосвязи — в телеграфе.

Такой вот занимательный результат. Хотя, казалось бы, ДН антенны на 20 метрах лучше и уровень шума в этом диапазоне намного ниже. UPD: Позже в диапазоне 20 метров были проведены не менее дальние связи, чем в диапазоне 40 метров.

Заключение

Получилась просто нормальная антенна, лишенная всех названных в начале статьи недостатков. Я пользуюсь ею один месяц. Мачта держится, леска не рвется, соседи не жалуются. Антенна рекомендуется для повторения и использования начинающим коротковолновикам.

Если после прочтения статьи у вас остались вопросы, не стесняйтесь задать их в комментариях. Также было бы интересно узнать, в каких радиолюбительских диапазонах вы обычно работаете, какую антенну используете в качестве основной, и какие радиосвязи удается провести.

Дополнение: Доработка антенны описана в посте Эксперименты с трапами различной конструкции.

Метки: Антенны, Беспроводная связь, Любительское радио.

Как работают антенны и передатчики?

Как работают антенны и передатчики? — Объясни это Рекламное объявление

Криса Вудфорда. Последнее изменение: 29 июня 2020 г.

Представьте, что вы протягиваете руку и ловите слова, картинки и информация проходит мимо. Вот примерно то, что антенна (иногда называемый антенной) делает: это металлический стержень или блюдо, улавливает радиоволны и превращает их в электрические сигналы, питающие во что-то вроде радио или телевизор или телефонная система.Такие антенны иногда называют приемниками. Передатчик — это антенны другого типа, выполняющие функции, противоположные приемнику: он превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда тысячи километров вокруг Земли или даже в космос и назад. Антенны и передатчики — ключ практически ко всем формы современной телефонной связи. Давайте подробнее рассмотрим, что они есть и как они работают!

Фото: огромная 70-метровая спутниковая антенна Canberra с глубокой тарелкой в ​​Австралии.Фото любезно предоставлено НАСА в палате общин.

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслировать свои программы в более широкий мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и поворачивать их в электрическую энергию. Вы берете это электричество и слабо говоря, заставьте его течь по высокой металлической антенне (усиливая ее мощность много раз, поэтому он будет путешествовать так далеко, как вам нужно, в мир).Как электроны (крошечные частицы внутри атомов) в электрическом токе колеблются взад и вперед вдоль антенны, они создают невидимое электромагнитное излучение в виде радиоизлучения. волны. Эти волны, частично электрические и частично магнитные, распространяются со скоростью света, забирая ваше радио. программа с ними. Что происходит, когда я включаю радио у себя дома в нескольких милях отсюда? Радиоволны, которые вы послали, проходят через металлическую антенну и заставляют электроны покачиваться взад и вперед. Это порождает электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова включается в звук, который я слышу.

Иллюстрация: Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи в дизайн.Например, если вы используете что-то вроде спутникового телефона который может отправлять и принимать видео-телефонные звонки в любое другое место на Земле, используя космические спутники, сигналы, которые вы передаете и получаете все проходят через одну спутниковую антенну — особый вид антенны в форме чаши (технически известный как параболический отражатель , потому что блюдо изгибается в форме графика, называемого параболой). Часто, однако передатчики и приемники выглядят по-разному. ТВ или радио радиовещательные антенны — это огромные мачты, иногда растягивающиеся на сотни метров / футов в воздух, потому что они должны посылать мощные сигналы на большие расстояния.(Один из тех, на которые я регулярно настраиваюсь, на Саттон Колдфилд в Англии, мачта высотой 270,5 метра или 887 футов, что соответствует примерно 150 высоким стоящим людям. друг на друга.) Но вам не нужно ничего такого большого на телевизоре. или радио дома: антенна гораздо меньшего размера подойдет.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способов распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старомодных междугородных телефонных сетях микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками. (волоконно-оптические кабели в значительной степени сделали это устаревшим).
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния.Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы.Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.
Рекламные ссылки

Какой длины должна быть антенна?

Фото: Антенны, которые используют связь прямой видимости, должны быть установлены на высоких башнях, как это. Вы можете видеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе.Фото Пьера-Этьена Куртежуа любезно предоставлено Армией США.

Самая простая антенна представляет собой кусок металлического провода, прикрепленный к радио. Первое радио, которое я когда-либо построил, когда мне было 11 или 12 лет, было кристалл с длинной петлей из медного провода, выступающей в качестве антенны. Я запустил антенна прямо под потолком моей спальни, так что это должно быть всего около 20–30 метров (60–100 футов) в длину!

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из это длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотная модуляция).В другое — антенна внутри корпуса, обычно прикрепленная к основному печатная плата, и она принимает сигналы AM (амплитудной модуляции). (Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы на этих разные диапазоны волн переносятся радиоволнами разных частота и длина волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные FM-сигналы составляют около 100 МГц (мегагерцы) — поэтому они вибрируют примерно в сто раз быстрее.Поскольку все радио волны движутся с одинаковой скоростью (скорость света 300 000 км / с или 186000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем FM-сигналы. Вам нужно два антенны, потому что одна антенна не может уловить такие огромные разный диапазон длин волн. Это длина волны (или частота, если вы предпочитаете) радиоволн, которые вы пытаетесь обнаружить, определяет размер и тип антенны, которую вам нужно использовать. Говоря в широком смысле, длина простой (стержневой) антенны должна составлять примерно половину длины волны радиоволны, которые вы пытаетесь получить (также можно сделать антенны на четверть длины волны, компактные миниатюрные антенны, длина которых составляет около одной десятой длины волны, и мембранные антенны, которые еще меньше, хотя мы не будем здесь вдаваться в подробности).

Длина антенны — не единственное, что влияет на длину волны. ты собираешься забрать; если бы это было, радио с фиксированной длиной антенны может принимать только одну станцию. Антенна подает сигналы в схему настройки. внутри радиоприемника, который предназначен для «фиксации» одной конкретной частоты и игнорирования остальных. Самая простая схема приемника (вроде той, что вы найдете в кристаллическом радио) не что иное, как моток проволоки, диод и конденсатор, и он подает звуки в наушник.Схема отвечает (технически резонирует с , что означает электрические колебания) на частоте, на которую вы настроены. и отбрасывает частоты выше или ниже этого. Регулируя емкость конденсатора, вы меняете резонансную частоту, что настраивает ваше радио на другую станцию. Задача антенны — улавливать энергию проходящих радиоволн, достаточную для того, чтобы цепь резонирует только на нужной частоте.

Антенны AM и FM: длинное и короткое

Фото: Рамочная АМ-антенна внутри типичного транзисторного радиоприемника. очень компактный и очень направленный.Проволока розового цвета, из которой состоит антенна, намотана на толстый ферритовый сердечник (черный стержень). Обычно, как вы можете видеть здесь, на одном ферритовом стержне расположены две отдельные антенны: одна для AM (средневолновая) и одна для LW (длинноволновая).

Посмотрим, как это работает для FM. Если я попытаюсь послушать типичный радиовещание на частоте FM 100 МГц (100000000 Гц), волны, несущие мою программу, имеют длину около 3 м (10 футов). Итак, идеал длина антенны составляет около 1,5 м (4 фута), что примерно соответствует длина телескопической антенны FM-радио, когда она полностью выдвинута.

Теперь для AM длины волн примерно в 100 раз больше, так почему же вы этого не делаете? нужна антенна длиной 300 м (0,2 мили), чтобы принимать их? Ну, вам нужна мощная антенна, вы просто не знаете, что она там есть! АМ-антенна внутри транзисторного радиоприемника работает совсем по-другому. путь к антенне FM снаружи. Где FM-антенна улавливает электрическую часть радиоволны, вместо этого AM-антенна соединяется с магнитной частью . Это очень тонкая проволока (обычно несколько десятков метров) закольцованы вокруг ферритового (железного магнитного) сердечника от нескольких десятков до нескольких сотен раз, что значительно концентрирует магнитную часть радиосигналов и создает («индуцирует») больший ток в проводе. обернуты вокруг них.Это означает, что такая антенна может быть действительно крошечной и при этом иметь отличную производительность. Без ферритового стержня рамочной антенне требуется гораздо больше витков провода. (так что тысячи вместо сотен или десятков) или петли проволоки нужно быть намного больше. Поэтому внешние FM-антенны для радиоприемников иногда берут форма большой петли, может быть, 10–20 см (4–8 дюймов) в диаметре или около того.

Иллюстрация: Вверху: Электромагнитные радиоволны состоят из вибрирующих электрических волн (синий) и магнитных волн (красный), которые перемещаются вместе со скоростью света (черная стрелка).Внизу: Слева: FM-антенна улавливает относительно коротковолновую высокочастотную электрическую часть FM-радиоволн. Справа: ферритовая рамочная антенна AM улавливает и концентрирует магнитные составляющие более длинноволновых и низкочастотных электромагнитных волн.

Пока все хорошо, но как насчет мобильных телефонов? Почему им нужны только короткие и короткие антенны вроде той, что на фото? Мобильные телефоны тоже используют радиоволны, также движущиеся со скоростью света, и с типичной частотой 800 МГц (примерно в десять раз больше, чем FM-радио).Это означает, что их длина волны примерно в 10 раз короче, чем у FM-радио, поэтому им нужно антенна размером примерно в одну десятую. В смартфонах антенна обычно растягивается вокруг внутренней части корпуса. Посмотрим, как это вычисляется: если частота 800 МГц, длина волны 37,5 см (14,8 дюйма), половина длины волны будет быть 18 см (7,0 дюйма). Мой нынешний смартфон LG имеет длину около 14 см (5,5 дюйма), так что вы можете видеть мы на правильном пути.

Фото: 1) Эта телескопическая антенна FM-радио выдвигается на длину около 1–2 м (3–6 футов или около того), что примерно вдвое меньше длины радиоволн, которые она пытается уловить.2) Мобильные телефоны имеют особенно компактные антенны. Более старые (например, Motorola слева) имеют короткие внешние антенны или те, которые выдвигаются телескопически. (Открытая часть антенны — это то, на что указывает мой палец и есть еще одна деталь, которую мы не видим бегущей по краю печатной платы внутри корпуса.) Более новые мобильные телефоны (например, модель Nokia справа) имеют более длинные антенны, полностью встроенные в корпус.

Другие типы антенн

Простейшие радиоантенны представляют собой длинные прямые стержни.Многие Внутренние телевизионные антенны имеют форму диполя : металлический стержень, разделенный на две части и сложены горизонтально, так что немного похоже на человека, стоящего прямо их руки вытянуты горизонтально. Более изысканный открытый Телевизионные антенны имеют несколько таких диполей, расположенных вдоль центрального опорный стержень. Другие конструкции включают круглые петли из проволоки и конечно, параболические спутниковые тарелки. Почему так много разных дизайнов? Очевидно, что волны, приходящие на антенну от передатчика, абсолютно одинаковы, несмотря ни на что. форма и размер антенны.Другой вид диполей поможет сконцентрировать сигнал, чтобы его было легче обнаружить. Этот эффект можно усилить еще больше, добавив несвязанные «фиктивные» диполи, известные как направляющие и отражатели, которые направляют большую часть сигнала на действительные принимающие диполи. Это эквивалентно усилению сигнала и возможности принимать более слабый сигнал, чем более простая антенна.

Иллюстрации: Четыре распространенных типа антенн (красные) и места, где они лучше всего воспринимаются (оранжевые): основной диполь, сложенный диполь, диполь и отражатель, а также Яги.Базовая или сложенная дипольная антенна одинаково хорошо улавливает перед своими полюсами или за ними, но плохо на каждом конце. Антенна с отражателем улавливает намного лучше с одной стороны, чем с другой, потому что отражающий элемент (красная дипольная полоса слева) отражает больше сигнала на свернутый диполь справа. Yagi еще больше преувеличивает этот эффект, улавливая очень сильный сигнал с одной стороны и почти не обнаруживая сигнала где-либо еще. Он состоит из множества диполей, отражателей и директоров.

Важные свойства антенн

Три характеристики антенн особенно важны, а именно их направленность, усиление и полоса пропускания.

Направленность

Диполи очень направленные : они улавливают приходящие радиоволны, идущие в под прямым углом к ​​ним. Вот почему телевизионная антенна должна быть правильно установлен на вашем доме и смотрит в правильную сторону, если вы собираетесь получить четкую картину. Телескопическая антенна на FM-радио меньше очевидно направленный, особенно если сигнал сильный: если вы направьте его прямо вверх, он будет улавливать хорошие сигналы от практически любое направление.Ферритовая антенна AM внутри радиоприемника гораздо более направленный. Слушая AM, ты найдешь себя нужно повернуть рацию, пока она не улавливает действительно сильный сигнал. (Как только вы найдете лучший сигнал, попробуйте повернуть радио ровно на 90 градусов и обратите внимание на то, как сигнал часто отваливается практически на нет.)

Хотя высоконаправленные антенны могут показаться болезненными, когда они правильно выровнены, они помогают уменьшить помехи от нежелательных станций или сигналов, близких к той, которую вы пытаетесь обнаружить.Но направленность — не всегда хорошо. Подумайте о своем мобильном телефоне. Вы хотите, чтобы он мог принимать звонки, где бы он ни находился относительно ближайшая телефонная мачта или забирайте сообщения, в какую бы сторону он ни указывал, когда он лежит в сумке, так что направленная антенна не годится. Аналогично для GPS-приемника, который сообщает вам, где вы находитесь. с использованием сигналов нескольких космических спутников. Поскольку сигналы приходят из разных спутники, находящиеся в разных местах неба, отсюда следует, что они приходят с разных направлений, так что, опять же, высоконаправленная антенна не была бы такой полезной.

Прирост

Коэффициент усиления антенны — это очень техническое измерение, но, в общем, сводится к тому, насколько он увеличивает сигнал. Телевизоры часто принимают слабый, призрачный сигнал даже без антенна подключена. Это потому, что металлический корпус и другие компоненты действуют как основная антенна, не сфокусированная на каком-либо конкретном направление, и по умолчанию подбирает какой-то сигнал. Добавьте правильный направленная антенна, и вы получите намного лучший сигнал .Коэффициент усиления измеряется в децибелах (дБ), и (как правило), чем больше коэффициент усиления тем лучше ваш прием. В случае с телевизорами вы получите гораздо больший выигрыш от сложной внешняя антенна (например, с 10–12 диполями в параллельной «решетке»), чем от простого диполя. Все наружные антенны работают лучше, чем комнатные, а также оконные и навесные. имеют больший прирост и работают лучше встроенных.

Пропускная способность

Ширина полосы антенны — это диапазон частот (или длины волн, если хотите), на которых он работает эффективно.В чем шире пропускная способность, тем больше дальность действия различных радиостанций волны, которые вы можете уловить. Это полезно для чего-то вроде телевидения, где вам может понадобиться выбрать много разных каналов, но много менее полезен для телефона, мобильного телефона или спутниковой связи где все, что вас интересует, это очень специфическая радиоволна передача на довольно узком частотном диапазоне.

Фотографии: Другие антенны: 1) Антенна, которая питает RFID-метку, вставленную в библиотечную книгу. Схема внутри него не имеет источника питания: она получает всю свою энергию от приходящих радиоволн.2) Дипольная антенна внутри карты Wi-Fi для беспроводного Интернета PCMCIA. Он работает с радиоволнами 2,4 ГГц с длиной волны 12,5 см, поэтому его длина должна составлять всего около 6 см.

Кто изобрел антенны?

Иллюстрация: иллюстрация Оливера Лоджа посылки радиоволн через космос от передатчика (красный) к приемнику (синий) на некотором расстоянии, взятая из его патента 1898 года US 609,154: Electric Telegraphy. Предоставлено Бюро по патентам и товарным знакам США.

На этот вопрос нет простого ответа, потому что радио превратилось в полезный технологии через вторую половину XIX века благодаря работе довольно несколько разных людей — как ученых-теоретиков, так и экспериментаторов-практиков.

Кто были эти пионеры? Шотландский физик Джеймс Клерк Максвелл разработал теорию радио примерно в 1864 году. и Генрих Герц доказал, что радиоволны действительно существовали примерно 20 лет спустя (они были некоторое время спустя назвал в его честь волны Герца). Несколько лет спустя, на встрече в Оксфорде, Англия, 14 августа 1894 года, английский физик, Оливер Лодж , продемонстрировал, как радиоволны могут использоваться для передачи сигналов. из одной комнаты в другую в том, что он позже описал (в своей автобиографии 1932 года) как «очень инфантильный вид радиотелеграфии.» Лодж подал патент США на «электрический телеграф» 1 февраля 1898 года, описывая устройство для «оператора» с помощью того, что сейчас известно как «телеграфия на волнах Герца» для передачи сообщений через космос на любой один или несколько из множества различных люди в разных местах … «Неизвестный Лоджу на том этапе Гульельмо Маркони проводил свои собственные эксперименты в Италии примерно в то же время — и в конечном итоге оказался лучшим шоуменом: многие люди думают о нем как о «изобретателем радио» по сей день, тогда как, по правде говоря, он был только одним из группы дальновидных людей, которые помог превратить науку об электромагнитных волнах в практическую технологию, меняющую мир.

Ни в одном из первоначальных радиоэкспериментов не использовались передатчики или приемники, которые мы бы сразу узнали сегодня. Герц и Лодж, например, использовали часть оборудования, называемую генератором искрового разрядника: пара цинковых шариков, прикрепленных к коротким отрезкам медной проволоки с воздушным зазором между ними. Лодж и Маркони использовали когереры Бранли (стеклянные трубки, заполненные металлической опилкой) для обнаружения передаваемых ими волн. и получил, хотя Маркони счел их «слишком неустойчивыми и ненадежными» и в конце концов разработал свой собственный детектор.Вооружившись этим новым оборудованием, он проводил систематические эксперименты, выясняя, как высота антенны влияет на расстояние, на которое он может передавать сигнал.

А остальное, как говорится, уже история!

Рекламные ссылки

Узнать больше

На этом сайте

Книги

  • Теория антенн: анализ и разработка Константина А. Баланиса. Wiley, 2012. Хорошее общее теоретическое введение, предназначенное для студентов, изучающих физику и электротехнику.Не совсем подходит для начинающих — и вам понадобится хорошее понимание математики.
  • Маленькие антенны: методы миниатюризации и приложения Джона Л. Волакиса и др. McGraw-Hill, 2010. Взгляд на теорию и практическое проектирование небольших антенн для мобильных телефонов, RFID и других приложений.
  • Справочник по проектированию антенн Джона Л. Волакиса (ред.). McGraw-Hill, 2007. Огромное, исчерпывающее, теоретическое и практическое руководство по всем распространенным типам антенн.
  • Теория и практика антенн Раджешвари Чаттерджи.New Age International, 2006.

Статьи

  • Крошечные мембранные антенны Чарльза К. Чоя. IEEE Spectrum, 22 августа 2017 г. Современные антенны теперь можно уменьшить до 1/000 длины волны, которая им необходима.
  • Настраиваемые антенны из жидкого металла для настройки на что угодно. Автор Александр Хеллеманс. IEEE Spectrum, 19 мая 2015 г. Какие антенны нам понадобятся для высокочастотных и коротковолновых радиоприложений в будущем?
  • . Патент Apple, умно скрывающий антенну в клавиатуре, автор — Кристина Боннингтон.Wired, 17 августа 2011 г. Как клавиатуры Apple скрывают антенны беспроводной связи под клавишами.
  • Внутри лаборатории разработки антенн Apple, Брайан X. Чен. Wired, 16 июля 2010 г. Экскурсия по секретной лаборатории Apple по тестированию антенн.
  • Rabbit Ears Perk Up for Free HDTV от Мэтта Рихтела и Дженны Уортэм. The New York Times, 5 декабря 2010 г. Зрители, уставшие от цен на кабельное телевидение, вновь открывают для себя радость устаревших антенн и бесплатного телевидения.
  • Повышение сигнала для мобильных телефонов: BBC News, 22 апреля 2008 г.Как оксфордские ученые разработали более сложную антенну для мобильного телефона.
  • По мере того, как автомобили становятся более связными, скрытие антенн становится труднее, Иван Бергер. The New York Times, 14 марта 2005 г. ..
  • Взлом трубки Pringles, Марк Уорд, BBC News, 8 марта 2002 г. Интересная новость, объясняющая, как хакеры использовали направленные антенны, сделанные из трубок Pringles, для взлома беспроводных сетей.
  • Что следует знать о телевизионных антеннах Роберта Герцберга, Popular Science, декабрь 1950 г.Эта старая статья из архивов Popular Science остается очень ясным и актуальным введением в конструкцию антенн.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2018.Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2008/2018) Антенны и передатчики. Получено с https://www.explainthatstuff.com/antennas.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают антенны и передатчики?

Как работают антенны и передатчики? — Объясни это Рекламное объявление

Криса Вудфорда. Последнее изменение: 29 июня 2020 г.

Представьте, что вы протягиваете руку и ловите слова, картинки и информация проходит мимо. Вот примерно то, что антенна (иногда называемый антенной) делает: это металлический стержень или блюдо, улавливает радиоволны и превращает их в электрические сигналы, питающие во что-то вроде радио или телевизор или телефонная система.Такие антенны иногда называют приемниками. Передатчик — это антенны другого типа, выполняющие функции, противоположные приемнику: он превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда тысячи километров вокруг Земли или даже в космос и назад. Антенны и передатчики — ключ практически ко всем формы современной телефонной связи. Давайте подробнее рассмотрим, что они есть и как они работают!

Фото: огромная 70-метровая спутниковая антенна Canberra с глубокой тарелкой в ​​Австралии.Фото любезно предоставлено НАСА в палате общин.

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслировать свои программы в более широкий мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и поворачивать их в электрическую энергию. Вы берете это электричество и слабо говоря, заставьте его течь по высокой металлической антенне (усиливая ее мощность много раз, поэтому он будет путешествовать так далеко, как вам нужно, в мир).Как электроны (крошечные частицы внутри атомов) в электрическом токе колеблются взад и вперед вдоль антенны, они создают невидимое электромагнитное излучение в виде радиоизлучения. волны. Эти волны, частично электрические и частично магнитные, распространяются со скоростью света, забирая ваше радио. программа с ними. Что происходит, когда я включаю радио у себя дома в нескольких милях отсюда? Радиоволны, которые вы послали, проходят через металлическую антенну и заставляют электроны покачиваться взад и вперед. Это порождает электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова включается в звук, который я слышу.

Иллюстрация: Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи в дизайн.Например, если вы используете что-то вроде спутникового телефона который может отправлять и принимать видео-телефонные звонки в любое другое место на Земле, используя космические спутники, сигналы, которые вы передаете и получаете все проходят через одну спутниковую антенну — особый вид антенны в форме чаши (технически известный как параболический отражатель , потому что блюдо изгибается в форме графика, называемого параболой). Часто, однако передатчики и приемники выглядят по-разному. ТВ или радио радиовещательные антенны — это огромные мачты, иногда растягивающиеся на сотни метров / футов в воздух, потому что они должны посылать мощные сигналы на большие расстояния.(Один из тех, на которые я регулярно настраиваюсь, на Саттон Колдфилд в Англии, мачта высотой 270,5 метра или 887 футов, что соответствует примерно 150 высоким стоящим людям. друг на друга.) Но вам не нужно ничего такого большого на телевизоре. или радио дома: антенна гораздо меньшего размера подойдет.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способов распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старомодных междугородных телефонных сетях микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками. (волоконно-оптические кабели в значительной степени сделали это устаревшим).
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния.Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы.Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.
Рекламные ссылки

Какой длины должна быть антенна?

Фото: Антенны, которые используют связь прямой видимости, должны быть установлены на высоких башнях, как это. Вы можете видеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе.Фото Пьера-Этьена Куртежуа любезно предоставлено Армией США.

Самая простая антенна представляет собой кусок металлического провода, прикрепленный к радио. Первое радио, которое я когда-либо построил, когда мне было 11 или 12 лет, было кристалл с длинной петлей из медного провода, выступающей в качестве антенны. Я запустил антенна прямо под потолком моей спальни, так что это должно быть всего около 20–30 метров (60–100 футов) в длину!

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из это длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотная модуляция).В другое — антенна внутри корпуса, обычно прикрепленная к основному печатная плата, и она принимает сигналы AM (амплитудной модуляции). (Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы на этих разные диапазоны волн переносятся радиоволнами разных частота и длина волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные FM-сигналы составляют около 100 МГц (мегагерцы) — поэтому они вибрируют примерно в сто раз быстрее.Поскольку все радио волны движутся с одинаковой скоростью (скорость света 300 000 км / с или 186000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем FM-сигналы. Вам нужно два антенны, потому что одна антенна не может уловить такие огромные разный диапазон длин волн. Это длина волны (или частота, если вы предпочитаете) радиоволн, которые вы пытаетесь обнаружить, определяет размер и тип антенны, которую вам нужно использовать. Говоря в широком смысле, длина простой (стержневой) антенны должна составлять примерно половину длины волны радиоволны, которые вы пытаетесь получить (также можно сделать антенны на четверть длины волны, компактные миниатюрные антенны, длина которых составляет около одной десятой длины волны, и мембранные антенны, которые еще меньше, хотя мы не будем здесь вдаваться в подробности).

Длина антенны — не единственное, что влияет на длину волны. ты собираешься забрать; если бы это было, радио с фиксированной длиной антенны может принимать только одну станцию. Антенна подает сигналы в схему настройки. внутри радиоприемника, который предназначен для «фиксации» одной конкретной частоты и игнорирования остальных. Самая простая схема приемника (вроде той, что вы найдете в кристаллическом радио) не что иное, как моток проволоки, диод и конденсатор, и он подает звуки в наушник.Схема отвечает (технически резонирует с , что означает электрические колебания) на частоте, на которую вы настроены. и отбрасывает частоты выше или ниже этого. Регулируя емкость конденсатора, вы меняете резонансную частоту, что настраивает ваше радио на другую станцию. Задача антенны — улавливать энергию проходящих радиоволн, достаточную для того, чтобы цепь резонирует только на нужной частоте.

Антенны AM и FM: длинное и короткое

Фото: Рамочная АМ-антенна внутри типичного транзисторного радиоприемника. очень компактный и очень направленный.Проволока розового цвета, из которой состоит антенна, намотана на толстый ферритовый сердечник (черный стержень). Обычно, как вы можете видеть здесь, на одном ферритовом стержне расположены две отдельные антенны: одна для AM (средневолновая) и одна для LW (длинноволновая).

Посмотрим, как это работает для FM. Если я попытаюсь послушать типичный радиовещание на частоте FM 100 МГц (100000000 Гц), волны, несущие мою программу, имеют длину около 3 м (10 футов). Итак, идеал длина антенны составляет около 1,5 м (4 фута), что примерно соответствует длина телескопической антенны FM-радио, когда она полностью выдвинута.

Теперь для AM длины волн примерно в 100 раз больше, так почему же вы этого не делаете? нужна антенна длиной 300 м (0,2 мили), чтобы принимать их? Ну, вам нужна мощная антенна, вы просто не знаете, что она там есть! АМ-антенна внутри транзисторного радиоприемника работает совсем по-другому. путь к антенне FM снаружи. Где FM-антенна улавливает электрическую часть радиоволны, вместо этого AM-антенна соединяется с магнитной частью . Это очень тонкая проволока (обычно несколько десятков метров) закольцованы вокруг ферритового (железного магнитного) сердечника от нескольких десятков до нескольких сотен раз, что значительно концентрирует магнитную часть радиосигналов и создает («индуцирует») больший ток в проводе. обернуты вокруг них.Это означает, что такая антенна может быть действительно крошечной и при этом иметь отличную производительность. Без ферритового стержня рамочной антенне требуется гораздо больше витков провода. (так что тысячи вместо сотен или десятков) или петли проволоки нужно быть намного больше. Поэтому внешние FM-антенны для радиоприемников иногда берут форма большой петли, может быть, 10–20 см (4–8 дюймов) в диаметре или около того.

Иллюстрация: Вверху: Электромагнитные радиоволны состоят из вибрирующих электрических волн (синий) и магнитных волн (красный), которые перемещаются вместе со скоростью света (черная стрелка).Внизу: Слева: FM-антенна улавливает относительно коротковолновую высокочастотную электрическую часть FM-радиоволн. Справа: ферритовая рамочная антенна AM улавливает и концентрирует магнитные составляющие более длинноволновых и низкочастотных электромагнитных волн.

Пока все хорошо, но как насчет мобильных телефонов? Почему им нужны только короткие и короткие антенны вроде той, что на фото? Мобильные телефоны тоже используют радиоволны, также движущиеся со скоростью света, и с типичной частотой 800 МГц (примерно в десять раз больше, чем FM-радио).Это означает, что их длина волны примерно в 10 раз короче, чем у FM-радио, поэтому им нужно антенна размером примерно в одну десятую. В смартфонах антенна обычно растягивается вокруг внутренней части корпуса. Посмотрим, как это вычисляется: если частота 800 МГц, длина волны 37,5 см (14,8 дюйма), половина длины волны будет быть 18 см (7,0 дюйма). Мой нынешний смартфон LG имеет длину около 14 см (5,5 дюйма), так что вы можете видеть мы на правильном пути.

Фото: 1) Эта телескопическая антенна FM-радио выдвигается на длину около 1–2 м (3–6 футов или около того), что примерно вдвое меньше длины радиоволн, которые она пытается уловить.2) Мобильные телефоны имеют особенно компактные антенны. Более старые (например, Motorola слева) имеют короткие внешние антенны или те, которые выдвигаются телескопически. (Открытая часть антенны — это то, на что указывает мой палец и есть еще одна деталь, которую мы не видим бегущей по краю печатной платы внутри корпуса.) Более новые мобильные телефоны (например, модель Nokia справа) имеют более длинные антенны, полностью встроенные в корпус.

Другие типы антенн

Простейшие радиоантенны представляют собой длинные прямые стержни.Многие Внутренние телевизионные антенны имеют форму диполя : металлический стержень, разделенный на две части и сложены горизонтально, так что немного похоже на человека, стоящего прямо их руки вытянуты горизонтально. Более изысканный открытый Телевизионные антенны имеют несколько таких диполей, расположенных вдоль центрального опорный стержень. Другие конструкции включают круглые петли из проволоки и конечно, параболические спутниковые тарелки. Почему так много разных дизайнов? Очевидно, что волны, приходящие на антенну от передатчика, абсолютно одинаковы, несмотря ни на что. форма и размер антенны.Другой вид диполей поможет сконцентрировать сигнал, чтобы его было легче обнаружить. Этот эффект можно усилить еще больше, добавив несвязанные «фиктивные» диполи, известные как направляющие и отражатели, которые направляют большую часть сигнала на действительные принимающие диполи. Это эквивалентно усилению сигнала и возможности принимать более слабый сигнал, чем более простая антенна.

Иллюстрации: Четыре распространенных типа антенн (красные) и места, где они лучше всего воспринимаются (оранжевые): основной диполь, сложенный диполь, диполь и отражатель, а также Яги.Базовая или сложенная дипольная антенна одинаково хорошо улавливает перед своими полюсами или за ними, но плохо на каждом конце. Антенна с отражателем улавливает намного лучше с одной стороны, чем с другой, потому что отражающий элемент (красная дипольная полоса слева) отражает больше сигнала на свернутый диполь справа. Yagi еще больше преувеличивает этот эффект, улавливая очень сильный сигнал с одной стороны и почти не обнаруживая сигнала где-либо еще. Он состоит из множества диполей, отражателей и директоров.

Важные свойства антенн

Три характеристики антенн особенно важны, а именно их направленность, усиление и полоса пропускания.

Направленность

Диполи очень направленные : они улавливают приходящие радиоволны, идущие в под прямым углом к ​​ним. Вот почему телевизионная антенна должна быть правильно установлен на вашем доме и смотрит в правильную сторону, если вы собираетесь получить четкую картину. Телескопическая антенна на FM-радио меньше очевидно направленный, особенно если сигнал сильный: если вы направьте его прямо вверх, он будет улавливать хорошие сигналы от практически любое направление.Ферритовая антенна AM внутри радиоприемника гораздо более направленный. Слушая AM, ты найдешь себя нужно повернуть рацию, пока она не улавливает действительно сильный сигнал. (Как только вы найдете лучший сигнал, попробуйте повернуть радио ровно на 90 градусов и обратите внимание на то, как сигнал часто отваливается практически на нет.)

Хотя высоконаправленные антенны могут показаться болезненными, когда они правильно выровнены, они помогают уменьшить помехи от нежелательных станций или сигналов, близких к той, которую вы пытаетесь обнаружить.Но направленность — не всегда хорошо. Подумайте о своем мобильном телефоне. Вы хотите, чтобы он мог принимать звонки, где бы он ни находился относительно ближайшая телефонная мачта или забирайте сообщения, в какую бы сторону он ни указывал, когда он лежит в сумке, так что направленная антенна не годится. Аналогично для GPS-приемника, который сообщает вам, где вы находитесь. с использованием сигналов нескольких космических спутников. Поскольку сигналы приходят из разных спутники, находящиеся в разных местах неба, отсюда следует, что они приходят с разных направлений, так что, опять же, высоконаправленная антенна не была бы такой полезной.

Прирост

Коэффициент усиления антенны — это очень техническое измерение, но, в общем, сводится к тому, насколько он увеличивает сигнал. Телевизоры часто принимают слабый, призрачный сигнал даже без антенна подключена. Это потому, что металлический корпус и другие компоненты действуют как основная антенна, не сфокусированная на каком-либо конкретном направление, и по умолчанию подбирает какой-то сигнал. Добавьте правильный направленная антенна, и вы получите намного лучший сигнал .Коэффициент усиления измеряется в децибелах (дБ), и (как правило), чем больше коэффициент усиления тем лучше ваш прием. В случае с телевизорами вы получите гораздо больший выигрыш от сложной внешняя антенна (например, с 10–12 диполями в параллельной «решетке»), чем от простого диполя. Все наружные антенны работают лучше, чем комнатные, а также оконные и навесные. имеют больший прирост и работают лучше встроенных.

Пропускная способность

Ширина полосы антенны — это диапазон частот (или длины волн, если хотите), на которых он работает эффективно.В чем шире пропускная способность, тем больше дальность действия различных радиостанций волны, которые вы можете уловить. Это полезно для чего-то вроде телевидения, где вам может понадобиться выбрать много разных каналов, но много менее полезен для телефона, мобильного телефона или спутниковой связи где все, что вас интересует, это очень специфическая радиоволна передача на довольно узком частотном диапазоне.

Фотографии: Другие антенны: 1) Антенна, которая питает RFID-метку, вставленную в библиотечную книгу. Схема внутри него не имеет источника питания: она получает всю свою энергию от приходящих радиоволн.2) Дипольная антенна внутри карты Wi-Fi для беспроводного Интернета PCMCIA. Он работает с радиоволнами 2,4 ГГц с длиной волны 12,5 см, поэтому его длина должна составлять всего около 6 см.

Кто изобрел антенны?

Иллюстрация: иллюстрация Оливера Лоджа посылки радиоволн через космос от передатчика (красный) к приемнику (синий) на некотором расстоянии, взятая из его патента 1898 года US 609,154: Electric Telegraphy. Предоставлено Бюро по патентам и товарным знакам США.

На этот вопрос нет простого ответа, потому что радио превратилось в полезный технологии через вторую половину XIX века благодаря работе довольно несколько разных людей — как ученых-теоретиков, так и экспериментаторов-практиков.

Кто были эти пионеры? Шотландский физик Джеймс Клерк Максвелл разработал теорию радио примерно в 1864 году. и Генрих Герц доказал, что радиоволны действительно существовали примерно 20 лет спустя (они были некоторое время спустя назвал в его честь волны Герца). Несколько лет спустя, на встрече в Оксфорде, Англия, 14 августа 1894 года, английский физик, Оливер Лодж , продемонстрировал, как радиоволны могут использоваться для передачи сигналов. из одной комнаты в другую в том, что он позже описал (в своей автобиографии 1932 года) как «очень инфантильный вид радиотелеграфии.» Лодж подал патент США на «электрический телеграф» 1 февраля 1898 года, описывая устройство для «оператора» с помощью того, что сейчас известно как «телеграфия на волнах Герца» для передачи сообщений через космос на любой один или несколько из множества различных люди в разных местах … «Неизвестный Лоджу на том этапе Гульельмо Маркони проводил свои собственные эксперименты в Италии примерно в то же время — и в конечном итоге оказался лучшим шоуменом: многие люди думают о нем как о «изобретателем радио» по сей день, тогда как, по правде говоря, он был только одним из группы дальновидных людей, которые помог превратить науку об электромагнитных волнах в практическую технологию, меняющую мир.

Ни в одном из первоначальных радиоэкспериментов не использовались передатчики или приемники, которые мы бы сразу узнали сегодня. Герц и Лодж, например, использовали часть оборудования, называемую генератором искрового разрядника: пара цинковых шариков, прикрепленных к коротким отрезкам медной проволоки с воздушным зазором между ними. Лодж и Маркони использовали когереры Бранли (стеклянные трубки, заполненные металлической опилкой) для обнаружения передаваемых ими волн. и получил, хотя Маркони счел их «слишком неустойчивыми и ненадежными» и в конце концов разработал свой собственный детектор.Вооружившись этим новым оборудованием, он проводил систематические эксперименты, выясняя, как высота антенны влияет на расстояние, на которое он может передавать сигнал.

А остальное, как говорится, уже история!

Рекламные ссылки

Узнать больше

На этом сайте

Книги

  • Теория антенн: анализ и разработка Константина А. Баланиса. Wiley, 2012. Хорошее общее теоретическое введение, предназначенное для студентов, изучающих физику и электротехнику.Не совсем подходит для начинающих — и вам понадобится хорошее понимание математики.
  • Маленькие антенны: методы миниатюризации и приложения Джона Л. Волакиса и др. McGraw-Hill, 2010. Взгляд на теорию и практическое проектирование небольших антенн для мобильных телефонов, RFID и других приложений.
  • Справочник по проектированию антенн Джона Л. Волакиса (ред.). McGraw-Hill, 2007. Огромное, исчерпывающее, теоретическое и практическое руководство по всем распространенным типам антенн.
  • Теория и практика антенн Раджешвари Чаттерджи.New Age International, 2006.

Статьи

  • Крошечные мембранные антенны Чарльза К. Чоя. IEEE Spectrum, 22 августа 2017 г. Современные антенны теперь можно уменьшить до 1/000 длины волны, которая им необходима.
  • Настраиваемые антенны из жидкого металла для настройки на что угодно. Автор Александр Хеллеманс. IEEE Spectrum, 19 мая 2015 г. Какие антенны нам понадобятся для высокочастотных и коротковолновых радиоприложений в будущем?
  • . Патент Apple, умно скрывающий антенну в клавиатуре, автор — Кристина Боннингтон.Wired, 17 августа 2011 г. Как клавиатуры Apple скрывают антенны беспроводной связи под клавишами.
  • Внутри лаборатории разработки антенн Apple, Брайан X. Чен. Wired, 16 июля 2010 г. Экскурсия по секретной лаборатории Apple по тестированию антенн.
  • Rabbit Ears Perk Up for Free HDTV от Мэтта Рихтела и Дженны Уортэм. The New York Times, 5 декабря 2010 г. Зрители, уставшие от цен на кабельное телевидение, вновь открывают для себя радость устаревших антенн и бесплатного телевидения.
  • Повышение сигнала для мобильных телефонов: BBC News, 22 апреля 2008 г.Как оксфордские ученые разработали более сложную антенну для мобильного телефона.
  • По мере того, как автомобили становятся более связными, скрытие антенн становится труднее, Иван Бергер. The New York Times, 14 марта 2005 г. ..
  • Взлом трубки Pringles, Марк Уорд, BBC News, 8 марта 2002 г. Интересная новость, объясняющая, как хакеры использовали направленные антенны, сделанные из трубок Pringles, для взлома беспроводных сетей.
  • Что следует знать о телевизионных антеннах Роберта Герцберга, Popular Science, декабрь 1950 г.Эта старая статья из архивов Popular Science остается очень ясным и актуальным введением в конструкцию антенн.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2018.Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2008/2018) Антенны и передатчики. Получено с https://www.explainthatstuff.com/antennas.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают антенны и передатчики?

Как работают антенны и передатчики? — Объясни это Рекламное объявление

Криса Вудфорда. Последнее изменение: 29 июня 2020 г.

Представьте, что вы протягиваете руку и ловите слова, картинки и информация проходит мимо. Вот примерно то, что антенна (иногда называемый антенной) делает: это металлический стержень или блюдо, улавливает радиоволны и превращает их в электрические сигналы, питающие во что-то вроде радио или телевизор или телефонная система.Такие антенны иногда называют приемниками. Передатчик — это антенны другого типа, выполняющие функции, противоположные приемнику: он превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда тысячи километров вокруг Земли или даже в космос и назад. Антенны и передатчики — ключ практически ко всем формы современной телефонной связи. Давайте подробнее рассмотрим, что они есть и как они работают!

Фото: огромная 70-метровая спутниковая антенна Canberra с глубокой тарелкой в ​​Австралии.Фото любезно предоставлено НАСА в палате общин.

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслировать свои программы в более широкий мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и поворачивать их в электрическую энергию. Вы берете это электричество и слабо говоря, заставьте его течь по высокой металлической антенне (усиливая ее мощность много раз, поэтому он будет путешествовать так далеко, как вам нужно, в мир).Как электроны (крошечные частицы внутри атомов) в электрическом токе колеблются взад и вперед вдоль антенны, они создают невидимое электромагнитное излучение в виде радиоизлучения. волны. Эти волны, частично электрические и частично магнитные, распространяются со скоростью света, забирая ваше радио. программа с ними. Что происходит, когда я включаю радио у себя дома в нескольких милях отсюда? Радиоволны, которые вы послали, проходят через металлическую антенну и заставляют электроны покачиваться взад и вперед. Это порождает электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова включается в звук, который я слышу.

Иллюстрация: Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи в дизайн.Например, если вы используете что-то вроде спутникового телефона который может отправлять и принимать видео-телефонные звонки в любое другое место на Земле, используя космические спутники, сигналы, которые вы передаете и получаете все проходят через одну спутниковую антенну — особый вид антенны в форме чаши (технически известный как параболический отражатель , потому что блюдо изгибается в форме графика, называемого параболой). Часто, однако передатчики и приемники выглядят по-разному. ТВ или радио радиовещательные антенны — это огромные мачты, иногда растягивающиеся на сотни метров / футов в воздух, потому что они должны посылать мощные сигналы на большие расстояния.(Один из тех, на которые я регулярно настраиваюсь, на Саттон Колдфилд в Англии, мачта высотой 270,5 метра или 887 футов, что соответствует примерно 150 высоким стоящим людям. друг на друга.) Но вам не нужно ничего такого большого на телевизоре. или радио дома: антенна гораздо меньшего размера подойдет.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способов распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старомодных междугородных телефонных сетях микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками. (волоконно-оптические кабели в значительной степени сделали это устаревшим).
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния.Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы.Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.
Рекламные ссылки

Какой длины должна быть антенна?

Фото: Антенны, которые используют связь прямой видимости, должны быть установлены на высоких башнях, как это. Вы можете видеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе.Фото Пьера-Этьена Куртежуа любезно предоставлено Армией США.

Самая простая антенна представляет собой кусок металлического провода, прикрепленный к радио. Первое радио, которое я когда-либо построил, когда мне было 11 или 12 лет, было кристалл с длинной петлей из медного провода, выступающей в качестве антенны. Я запустил антенна прямо под потолком моей спальни, так что это должно быть всего около 20–30 метров (60–100 футов) в длину!

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из это длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотная модуляция).В другое — антенна внутри корпуса, обычно прикрепленная к основному печатная плата, и она принимает сигналы AM (амплитудной модуляции). (Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы на этих разные диапазоны волн переносятся радиоволнами разных частота и длина волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные FM-сигналы составляют около 100 МГц (мегагерцы) — поэтому они вибрируют примерно в сто раз быстрее.Поскольку все радио волны движутся с одинаковой скоростью (скорость света 300 000 км / с или 186000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем FM-сигналы. Вам нужно два антенны, потому что одна антенна не может уловить такие огромные разный диапазон длин волн. Это длина волны (или частота, если вы предпочитаете) радиоволн, которые вы пытаетесь обнаружить, определяет размер и тип антенны, которую вам нужно использовать. Говоря в широком смысле, длина простой (стержневой) антенны должна составлять примерно половину длины волны радиоволны, которые вы пытаетесь получить (также можно сделать антенны на четверть длины волны, компактные миниатюрные антенны, длина которых составляет около одной десятой длины волны, и мембранные антенны, которые еще меньше, хотя мы не будем здесь вдаваться в подробности).

Длина антенны — не единственное, что влияет на длину волны. ты собираешься забрать; если бы это было, радио с фиксированной длиной антенны может принимать только одну станцию. Антенна подает сигналы в схему настройки. внутри радиоприемника, который предназначен для «фиксации» одной конкретной частоты и игнорирования остальных. Самая простая схема приемника (вроде той, что вы найдете в кристаллическом радио) не что иное, как моток проволоки, диод и конденсатор, и он подает звуки в наушник.Схема отвечает (технически резонирует с , что означает электрические колебания) на частоте, на которую вы настроены. и отбрасывает частоты выше или ниже этого. Регулируя емкость конденсатора, вы меняете резонансную частоту, что настраивает ваше радио на другую станцию. Задача антенны — улавливать энергию проходящих радиоволн, достаточную для того, чтобы цепь резонирует только на нужной частоте.

Антенны AM и FM: длинное и короткое

Фото: Рамочная АМ-антенна внутри типичного транзисторного радиоприемника. очень компактный и очень направленный.Проволока розового цвета, из которой состоит антенна, намотана на толстый ферритовый сердечник (черный стержень). Обычно, как вы можете видеть здесь, на одном ферритовом стержне расположены две отдельные антенны: одна для AM (средневолновая) и одна для LW (длинноволновая).

Посмотрим, как это работает для FM. Если я попытаюсь послушать типичный радиовещание на частоте FM 100 МГц (100000000 Гц), волны, несущие мою программу, имеют длину около 3 м (10 футов). Итак, идеал длина антенны составляет около 1,5 м (4 фута), что примерно соответствует длина телескопической антенны FM-радио, когда она полностью выдвинута.

Теперь для AM длины волн примерно в 100 раз больше, так почему же вы этого не делаете? нужна антенна длиной 300 м (0,2 мили), чтобы принимать их? Ну, вам нужна мощная антенна, вы просто не знаете, что она там есть! АМ-антенна внутри транзисторного радиоприемника работает совсем по-другому. путь к антенне FM снаружи. Где FM-антенна улавливает электрическую часть радиоволны, вместо этого AM-антенна соединяется с магнитной частью . Это очень тонкая проволока (обычно несколько десятков метров) закольцованы вокруг ферритового (железного магнитного) сердечника от нескольких десятков до нескольких сотен раз, что значительно концентрирует магнитную часть радиосигналов и создает («индуцирует») больший ток в проводе. обернуты вокруг них.Это означает, что такая антенна может быть действительно крошечной и при этом иметь отличную производительность. Без ферритового стержня рамочной антенне требуется гораздо больше витков провода. (так что тысячи вместо сотен или десятков) или петли проволоки нужно быть намного больше. Поэтому внешние FM-антенны для радиоприемников иногда берут форма большой петли, может быть, 10–20 см (4–8 дюймов) в диаметре или около того.

Иллюстрация: Вверху: Электромагнитные радиоволны состоят из вибрирующих электрических волн (синий) и магнитных волн (красный), которые перемещаются вместе со скоростью света (черная стрелка).Внизу: Слева: FM-антенна улавливает относительно коротковолновую высокочастотную электрическую часть FM-радиоволн. Справа: ферритовая рамочная антенна AM улавливает и концентрирует магнитные составляющие более длинноволновых и низкочастотных электромагнитных волн.

Пока все хорошо, но как насчет мобильных телефонов? Почему им нужны только короткие и короткие антенны вроде той, что на фото? Мобильные телефоны тоже используют радиоволны, также движущиеся со скоростью света, и с типичной частотой 800 МГц (примерно в десять раз больше, чем FM-радио).Это означает, что их длина волны примерно в 10 раз короче, чем у FM-радио, поэтому им нужно антенна размером примерно в одну десятую. В смартфонах антенна обычно растягивается вокруг внутренней части корпуса. Посмотрим, как это вычисляется: если частота 800 МГц, длина волны 37,5 см (14,8 дюйма), половина длины волны будет быть 18 см (7,0 дюйма). Мой нынешний смартфон LG имеет длину около 14 см (5,5 дюйма), так что вы можете видеть мы на правильном пути.

Фото: 1) Эта телескопическая антенна FM-радио выдвигается на длину около 1–2 м (3–6 футов или около того), что примерно вдвое меньше длины радиоволн, которые она пытается уловить.2) Мобильные телефоны имеют особенно компактные антенны. Более старые (например, Motorola слева) имеют короткие внешние антенны или те, которые выдвигаются телескопически. (Открытая часть антенны — это то, на что указывает мой палец и есть еще одна деталь, которую мы не видим бегущей по краю печатной платы внутри корпуса.) Более новые мобильные телефоны (например, модель Nokia справа) имеют более длинные антенны, полностью встроенные в корпус.

Другие типы антенн

Простейшие радиоантенны представляют собой длинные прямые стержни.Многие Внутренние телевизионные антенны имеют форму диполя : металлический стержень, разделенный на две части и сложены горизонтально, так что немного похоже на человека, стоящего прямо их руки вытянуты горизонтально. Более изысканный открытый Телевизионные антенны имеют несколько таких диполей, расположенных вдоль центрального опорный стержень. Другие конструкции включают круглые петли из проволоки и конечно, параболические спутниковые тарелки. Почему так много разных дизайнов? Очевидно, что волны, приходящие на антенну от передатчика, абсолютно одинаковы, несмотря ни на что. форма и размер антенны.Другой вид диполей поможет сконцентрировать сигнал, чтобы его было легче обнаружить. Этот эффект можно усилить еще больше, добавив несвязанные «фиктивные» диполи, известные как направляющие и отражатели, которые направляют большую часть сигнала на действительные принимающие диполи. Это эквивалентно усилению сигнала и возможности принимать более слабый сигнал, чем более простая антенна.

Иллюстрации: Четыре распространенных типа антенн (красные) и места, где они лучше всего воспринимаются (оранжевые): основной диполь, сложенный диполь, диполь и отражатель, а также Яги.Базовая или сложенная дипольная антенна одинаково хорошо улавливает перед своими полюсами или за ними, но плохо на каждом конце. Антенна с отражателем улавливает намного лучше с одной стороны, чем с другой, потому что отражающий элемент (красная дипольная полоса слева) отражает больше сигнала на свернутый диполь справа. Yagi еще больше преувеличивает этот эффект, улавливая очень сильный сигнал с одной стороны и почти не обнаруживая сигнала где-либо еще. Он состоит из множества диполей, отражателей и директоров.

Важные свойства антенн

Три характеристики антенн особенно важны, а именно их направленность, усиление и полоса пропускания.

Направленность

Диполи очень направленные : они улавливают приходящие радиоволны, идущие в под прямым углом к ​​ним. Вот почему телевизионная антенна должна быть правильно установлен на вашем доме и смотрит в правильную сторону, если вы собираетесь получить четкую картину. Телескопическая антенна на FM-радио меньше очевидно направленный, особенно если сигнал сильный: если вы направьте его прямо вверх, он будет улавливать хорошие сигналы от практически любое направление.Ферритовая антенна AM внутри радиоприемника гораздо более направленный. Слушая AM, ты найдешь себя нужно повернуть рацию, пока она не улавливает действительно сильный сигнал. (Как только вы найдете лучший сигнал, попробуйте повернуть радио ровно на 90 градусов и обратите внимание на то, как сигнал часто отваливается практически на нет.)

Хотя высоконаправленные антенны могут показаться болезненными, когда они правильно выровнены, они помогают уменьшить помехи от нежелательных станций или сигналов, близких к той, которую вы пытаетесь обнаружить.Но направленность — не всегда хорошо. Подумайте о своем мобильном телефоне. Вы хотите, чтобы он мог принимать звонки, где бы он ни находился относительно ближайшая телефонная мачта или забирайте сообщения, в какую бы сторону он ни указывал, когда он лежит в сумке, так что направленная антенна не годится. Аналогично для GPS-приемника, который сообщает вам, где вы находитесь. с использованием сигналов нескольких космических спутников. Поскольку сигналы приходят из разных спутники, находящиеся в разных местах неба, отсюда следует, что они приходят с разных направлений, так что, опять же, высоконаправленная антенна не была бы такой полезной.

Прирост

Коэффициент усиления антенны — это очень техническое измерение, но, в общем, сводится к тому, насколько он увеличивает сигнал. Телевизоры часто принимают слабый, призрачный сигнал даже без антенна подключена. Это потому, что металлический корпус и другие компоненты действуют как основная антенна, не сфокусированная на каком-либо конкретном направление, и по умолчанию подбирает какой-то сигнал. Добавьте правильный направленная антенна, и вы получите намного лучший сигнал .Коэффициент усиления измеряется в децибелах (дБ), и (как правило), чем больше коэффициент усиления тем лучше ваш прием. В случае с телевизорами вы получите гораздо больший выигрыш от сложной внешняя антенна (например, с 10–12 диполями в параллельной «решетке»), чем от простого диполя. Все наружные антенны работают лучше, чем комнатные, а также оконные и навесные. имеют больший прирост и работают лучше встроенных.

Пропускная способность

Ширина полосы антенны — это диапазон частот (или длины волн, если хотите), на которых он работает эффективно.В чем шире пропускная способность, тем больше дальность действия различных радиостанций волны, которые вы можете уловить. Это полезно для чего-то вроде телевидения, где вам может понадобиться выбрать много разных каналов, но много менее полезен для телефона, мобильного телефона или спутниковой связи где все, что вас интересует, это очень специфическая радиоволна передача на довольно узком частотном диапазоне.

Фотографии: Другие антенны: 1) Антенна, которая питает RFID-метку, вставленную в библиотечную книгу. Схема внутри него не имеет источника питания: она получает всю свою энергию от приходящих радиоволн.2) Дипольная антенна внутри карты Wi-Fi для беспроводного Интернета PCMCIA. Он работает с радиоволнами 2,4 ГГц с длиной волны 12,5 см, поэтому его длина должна составлять всего около 6 см.

Кто изобрел антенны?

Иллюстрация: иллюстрация Оливера Лоджа посылки радиоволн через космос от передатчика (красный) к приемнику (синий) на некотором расстоянии, взятая из его патента 1898 года US 609,154: Electric Telegraphy. Предоставлено Бюро по патентам и товарным знакам США.

На этот вопрос нет простого ответа, потому что радио превратилось в полезный технологии через вторую половину XIX века благодаря работе довольно несколько разных людей — как ученых-теоретиков, так и экспериментаторов-практиков.

Кто были эти пионеры? Шотландский физик Джеймс Клерк Максвелл разработал теорию радио примерно в 1864 году. и Генрих Герц доказал, что радиоволны действительно существовали примерно 20 лет спустя (они были некоторое время спустя назвал в его честь волны Герца). Несколько лет спустя, на встрече в Оксфорде, Англия, 14 августа 1894 года, английский физик, Оливер Лодж , продемонстрировал, как радиоволны могут использоваться для передачи сигналов. из одной комнаты в другую в том, что он позже описал (в своей автобиографии 1932 года) как «очень инфантильный вид радиотелеграфии.» Лодж подал патент США на «электрический телеграф» 1 февраля 1898 года, описывая устройство для «оператора» с помощью того, что сейчас известно как «телеграфия на волнах Герца» для передачи сообщений через космос на любой один или несколько из множества различных люди в разных местах … «Неизвестный Лоджу на том этапе Гульельмо Маркони проводил свои собственные эксперименты в Италии примерно в то же время — и в конечном итоге оказался лучшим шоуменом: многие люди думают о нем как о «изобретателем радио» по сей день, тогда как, по правде говоря, он был только одним из группы дальновидных людей, которые помог превратить науку об электромагнитных волнах в практическую технологию, меняющую мир.

Ни в одном из первоначальных радиоэкспериментов не использовались передатчики или приемники, которые мы бы сразу узнали сегодня. Герц и Лодж, например, использовали часть оборудования, называемую генератором искрового разрядника: пара цинковых шариков, прикрепленных к коротким отрезкам медной проволоки с воздушным зазором между ними. Лодж и Маркони использовали когереры Бранли (стеклянные трубки, заполненные металлической опилкой) для обнаружения передаваемых ими волн. и получил, хотя Маркони счел их «слишком неустойчивыми и ненадежными» и в конце концов разработал свой собственный детектор.Вооружившись этим новым оборудованием, он проводил систематические эксперименты, выясняя, как высота антенны влияет на расстояние, на которое он может передавать сигнал.

А остальное, как говорится, уже история!

Рекламные ссылки

Узнать больше

На этом сайте

Книги

  • Теория антенн: анализ и разработка Константина А. Баланиса. Wiley, 2012. Хорошее общее теоретическое введение, предназначенное для студентов, изучающих физику и электротехнику.Не совсем подходит для начинающих — и вам понадобится хорошее понимание математики.
  • Маленькие антенны: методы миниатюризации и приложения Джона Л. Волакиса и др. McGraw-Hill, 2010. Взгляд на теорию и практическое проектирование небольших антенн для мобильных телефонов, RFID и других приложений.
  • Справочник по проектированию антенн Джона Л. Волакиса (ред.). McGraw-Hill, 2007. Огромное, исчерпывающее, теоретическое и практическое руководство по всем распространенным типам антенн.
  • Теория и практика антенн Раджешвари Чаттерджи.New Age International, 2006.

Статьи

  • Крошечные мембранные антенны Чарльза К. Чоя. IEEE Spectrum, 22 августа 2017 г. Современные антенны теперь можно уменьшить до 1/000 длины волны, которая им необходима.
  • Настраиваемые антенны из жидкого металла для настройки на что угодно. Автор Александр Хеллеманс. IEEE Spectrum, 19 мая 2015 г. Какие антенны нам понадобятся для высокочастотных и коротковолновых радиоприложений в будущем?
  • . Патент Apple, умно скрывающий антенну в клавиатуре, автор — Кристина Боннингтон.Wired, 17 августа 2011 г. Как клавиатуры Apple скрывают антенны беспроводной связи под клавишами.
  • Внутри лаборатории разработки антенн Apple, Брайан X. Чен. Wired, 16 июля 2010 г. Экскурсия по секретной лаборатории Apple по тестированию антенн.
  • Rabbit Ears Perk Up for Free HDTV от Мэтта Рихтела и Дженны Уортэм. The New York Times, 5 декабря 2010 г. Зрители, уставшие от цен на кабельное телевидение, вновь открывают для себя радость устаревших антенн и бесплатного телевидения.
  • Повышение сигнала для мобильных телефонов: BBC News, 22 апреля 2008 г.Как оксфордские ученые разработали более сложную антенну для мобильного телефона.
  • По мере того, как автомобили становятся более связными, скрытие антенн становится труднее, Иван Бергер. The New York Times, 14 марта 2005 г. ..
  • Взлом трубки Pringles, Марк Уорд, BBC News, 8 марта 2002 г. Интересная новость, объясняющая, как хакеры использовали направленные антенны, сделанные из трубок Pringles, для взлома беспроводных сетей.
  • Что следует знать о телевизионных антеннах Роберта Герцберга, Popular Science, декабрь 1950 г.Эта старая статья из архивов Popular Science остается очень ясным и актуальным введением в конструкцию антенн.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2008, 2018.Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2008/2018) Антенны и передатчики. Получено с https://www.explainthatstuff.com/antennas.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

Как работают антенны | Мобильные системы

Представьте, что вы протягиваете руку и ловите проходящие мимо слова, картинки и информацию. Это примерно то же самое, что и антенна (иногда называемая антенной): это металлический стержень или тарелка, которая улавливает радиоволны и превращает их в электрические сигналы, поступающие в что-то вроде радио, телевидения или телефонной системы. Такие антенны иногда называют приемниками. Передатчик — это антенна другого типа, которая выполняет функцию, противоположную работе приемника: она превращает электрические сигналы в радиоволны, чтобы они могли путешествовать иногда на тысячи километров вокруг Земли или даже в космос и обратно.Антенны и передатчики являются ключом практически ко всем формам современной электросвязи. Давайте подробнее разберемся, что это такое и как работают!

Как работают антенны

Предположим, вы руководитель радиостанции и хотите транслировать свои программы на весь мир. Как вы это делаете? Вы используете микрофоны, чтобы улавливать звуки голосов людей и превращать их в электрическую энергию. Вы берете это электричество и, грубо говоря, заставляете его течь по высокой металлической антенне (многократно увеличивая ее мощность, чтобы она могла путешествовать в мир так далеко, как вам нужно).Когда электроны (крошечные частицы внутри атомов) в электрическом токе движутся вперед и назад вдоль антенны, они создают невидимое электромагнитное излучение в форме радиоволн. Эти волны распространяются со скоростью света, унося с собой вашу радиопрограмму. Что происходит, когда я включаю радио у себя дома в нескольких милях от вас? Радиоволны, которые вы посылаете, проходят через металлическую антенну и заставляют электроны раскачиваться взад и вперед. Это генерирует электрический ток — сигнал о том, что электронные компоненты внутри моего радио снова превращаются в звук, который я слышу.

Как передатчик посылает радиоволны приемнику. 1) Электричество, поступающее в антенну передатчика, заставляет электроны колебаться вверх и вниз по ней, создавая радиоволны. 2) Радиоволны распространяются по воздуху со скоростью света. 3) Когда волны достигают приемной антенны, они заставляют электроны внутри нее вибрировать. Это производит электрический ток, который воссоздает исходный сигнал.

Антенны передатчика и приемника часто очень похожи по конструкции.Например, если вы используете что-то вроде спутникового телефона, который может отправлять и принимать видеотелефонные вызовы в любое другое место на Земле с помощью космических спутников, все передаваемые и принимаемые вами сигналы проходят через одну спутниковую тарелку особого вида. антенны в форме чаши (технически известной как параболический отражатель, потому что тарелка изгибается в форме графика, называемого параболой). Однако часто передатчики и приемники выглядят по-разному. Антенны теле- или радиовещания — это огромные мачты, иногда поднимающиеся в воздух на сотни метров, потому что они должны посылать мощные сигналы на большие расстояния.Но вам не нужно ничего такого большого на вашем телевизоре или радио дома: антенна гораздо меньшего размера отлично справится с этой задачей.

Волны не всегда проходят по воздуху от передатчика к приемнику. В зависимости от того, какие виды (частоты) волн мы хотим послать, как далеко мы хотим их послать и когда мы хотим это сделать, на самом деле существует три различных способов распространения волн:

Иллюстрация: Как волна распространяется от передатчика к приемнику: 1) По прямой видимости; 2) земной волной; 3) Через ионосферу.

  1. Как мы уже видели, они могут стрелять по прямой линии, так называемой «прямой видимости» — точно так же, как луч света. В старых сетях междугородной телефонной связи микроволновые печи использовались для передачи вызовов таким образом между очень высокими коммуникационными вышками.
  2. Они могут двигаться вокруг кривизны Земли в так называемой земной волне. AM (средневолновое) радио имеет тенденцию перемещаться по этому пути на короткие и средние расстояния. Это объясняет, почему мы можем слышать радиосигналы за горизонтом (когда передатчик и приемник не находятся в пределах видимости друг друга).
  3. Они могут выстрелить в небо, отразиться от ионосферы (электрически заряженной части верхней атмосферы Земли) и снова спуститься на землю. Этот эффект лучше всего работает ночью, что объясняет, почему удаленные (иностранные) AM-радиостанции намного легче поймать по вечерам. Днем уходящие в небо волны поглощаются нижними слоями ионосферы. Ночью этого не происходит. Вместо этого более высокие слои ионосферы улавливают радиоволны и отбрасывают их обратно на Землю, давая нам очень эффективное «небесное зеркало», которое может помочь переносить радиоволны на очень большие расстояния.

Какой длины должна быть антенна?

Фото: Эта телескопическая антенна FM-радио выдвигается на длину примерно 1-2 м (3-6 футов или около того), что примерно вдвое меньше длины радиоволн, которую она пытается уловить.

Самая простая антенна — это кусок металлического провода, прикрепленный к радиоприемнику. Первое радио, которое я когда-либо построил, когда мне было 11 или 12, было на кристалле с длинной петлей из медного провода, выступающей в качестве антенны. Я проложил антенну прямо вокруг потолка моей спальни, так что в целом она должна была быть около 20–30 метров (60–100 футов) в длину!

Фото: Антенны, которые используют связь прямой видимости, должны быть установлены на высоких башнях, как это.Вы можете увидеть тонкие диполи антенны, торчащие из верхней части, но большая часть того, что вы видите здесь, — это просто башня, которая держит антенну высоко в воздухе. Фото Пьера-Этьена Куртежуа любезно предоставлено Армией США.

Большинство современных транзисторных радиоприемников имеют как минимум две антенны. Один из них — длинный блестящий телескопический стержень, который вынимается из корпуса и поворачивается для приема сигналов FM (частотной модуляции). Другой — это антенна внутри корпуса, обычно прикрепленная к основной плате, и она принимает сигналы AM (амплитудной модуляции).(Если вы не уверены в разнице между FM и AM, обратитесь к нашей статье о радио.)

Зачем в радиоприемнике две антенны? Сигналы в этих разных диапазонах волн передаются радиоволнами разной частоты и длины волны. Типичные радиосигналы AM имеют частоту 1000 кГц (килогерц), тогда как типичные сигналы FM имеют частоту около 100 МГц (мегагерц), поэтому они вибрируют примерно в сто раз быстрее. Поскольку все радиоволны распространяются с одинаковой скоростью (скорость света, которая составляет 300 000 км / с или 186 000 миль в секунду), сигналы AM имеют длины волн примерно в сто раз больше, чем сигналы FM.Вам нужны две антенны, потому что одна антенна не может улавливать столь сильно различающиеся диапазоны длин волн. Длина (или частота, если хотите) радиоволн, которые вы пытаетесь обнаружить, определяет длину антенны, которую вам нужно использовать. Вообще говоря, длина антенны должна составлять примерно половину длины волны радиоволн, которую вы пытаетесь принять (также можно сделать антенны, длина которых составляет четверть длины волны, хотя мы не будем здесь вдаваться в подробности). .

Основы антенны »Примечания по электронике

Радиоантенны или антенны необходимы для работы любой радиосистемы — понимание того, как они работают, и базовая теория являются ключом к установке, оптимизации и проектированию антенн.


Учебное пособие по базовой теории антенны Включает:
Базовая теория антенны Поляризация Резонанс и полоса пропускания Усиление и направленность Сопротивление подачи


Радиоантенны — ключевой элемент любой системы радиовещания или беспроводной связи. Для излучения и приема сигналов требуется антенна, поэтому их характеристики являются ключевыми для работы всей радиосистемы.

Если производительность радиоантенны низка, это ограничит производительность всей системы радиосвязи или любой другой беспроводной системы, которая ее использует.Таким образом, очень важно добиться максимальной эффективности антенны. Понимание основ теории радиоантенн поможет получить максимум от любой воздушной системы.

Углубленная теория антенн может стать довольно сложной, но качественное и упрощенное теоретическое объяснение помогает понять, что на самом деле происходит, как работают радиоантенны и как их можно оптимизировать. Это может быть ключевым моментом при настройке системы радиосвязи или канала связи.

Как работает антенна

Назначение радиоантенны — преобразование мощности, подаваемой на нее в виде радиочастотного сигнала переменного тока, в электромагнитную волну.

Эта электромагнитная волна может проходить через пространство между передающей радиоантенной и приемной антенной. На приемном конце электромагнитная волна преобразуется из электромагнитной волны обратно в радиочастотный сигнал, который может подаваться на вход радиоприемника.

Таким образом, к радиоантенне может подаваться питание, от которого запускается сигнал в виде электромагнитной волны. Точно так же, когда электромагнитная волна падает на антенну, она преобразуется из электромагнитной волны в радиочастотный сигнал, который может передаваться на вход приемного оборудования.

Основная теория работы антенн может быть объяснена с помощью уравнений Максвелла. Они подробно описывают способ, которым ток или заряды движутся по антенне, создавая электромагнитные волны.

Глядя на то, как работает антенна, с более качественного подхода, можно визуализировать точечный заряд, который колеблется в соответствии с радиочастотным сигналом.

В результате колебаний заряда результирующее электрическое поле также изменится, и это изменяющееся электрическое поле будет генерировать ток смещения.

В свою очередь, в результате закона Ампера этот ток будет генерировать магнитное поле.

Ввиду того факта, что колебания заряда создают переменное электрическое поле, а затем магнитное поле, все они изменяются вместе.

Применяя закон Фарадея, изменяющееся магнитное поле создает электрическое поле. В свою очередь, это электрическое поле снова создаст магнитное поле, и процесс повторяется. Эти волны электрического и магнитного полей составляют электромагнитные волны, которые распространяются наружу от исходного точечного заряда.

Энергия исходного колеблющегося точечного заряда преобразуется в энергию электромагнитной волны — другими словами, энергия, поступающая в антенну, преобразуется в энергию электромагнитных волн.

Также видно, что именно текущая составляющая сигнала на антенне вызывает излучаемые электромагнитные волны.

Передатчик и приемник взаимности

Одним из ключевых аспектов любой радиоантенны является то, будет ли она принимать и передавать одинаковым образом.Любая пассивная антенна, то есть та, которая не использует встроенную электронную схему, такую ​​как активная антенна, будет работать таким же образом, как передача и прием.

Он будет иметь одинаковое усиление, одинаковую диаграмму направленности, поляризацию, одинаковый импеданс и другие аспекты как для передачи, так и для приема.

Часто легче визуализировать такие факторы, как усиление и диаграмму направленности, используя изображение передаваемого сигнала, но антенна будет иметь такое же усиление, диаграмму направленности и т. Д. При приеме.

Ключевые темы теории антенн

Есть несколько основных тем, которые являются общими для всех типов радиоантенн и составляют часть базовой теории антенн.

  • Поляризация: Радиоантенны чувствительны к поляризации. Антенны могут быть поляризованы точно так же, как электромагнитные волны. Можно видеть, что некоторые антенны имеют свои элементы вертикально, а другие — горизонтально. Это необходимо для приема вертикальных и горизонтально поляризованных электромагнитных волн.

    Антенны с вертикальной и горизонтальной поляризацией принимают электромагнитные волны одинаковой поляризации — поляризация электромагнитного карниза определяется плоскостью, в которой находится электрическое поле. Если поляризация волны не совмещена, уровень сигнала будет уменьшен — антенны с кросс-поляризацией не будут принимать сигналы, передаваемые другой. Поэтому важно обеспечить одинаковую поляризацию антенн в системе радиосвязи.

    Помимо линейной поляризации, электромагнитные волны также могут быть поляризованы по кругу — очевидно, есть два направления, то есть по часовой стрелке и против часовой стрелки. Подобно линейной поляризации, антенны с круговой поляризацией должны иметь одинаковое направление поляризации для приема сигналов, передаваемых другой.


  • Резонанс и полоса пропускания: Резонанс и полоса пропускания являются ключевыми вопросами теории антенн.По сути, полоса пропускания антенны — это диапазон частот, в котором антенна будет работать в соответствии со своими техническими характеристиками. Хотя это определение может показаться расплывчатым, на самом деле оно является наиболее полезным, поскольку для разных антенн в разных сценариях часто используются разные критерии.

    Два аспекта характеристик антенны могут ограничивать полосу пропускания. Один — это отраженная мощность, а другой — коэффициент усиления.

    Поскольку многие антенны работают как резонансные, существует только ограниченный диапазон, в котором они могут работать.Вне этих пределов уровень отраженной мощности увеличивается, и они могут не работать так же эффективно.

    Другое распространенное ограничение — это усиление. Многие антенны, такие как Yagi, обычно используются в качестве телевизионной антенны. Эти антенны хорошо работают в пределах заданной полосы пропускания. В противном случае направление движения изменится, и они будут не столь эффективны.

    Ширина полосы частот антенн может иметь значение. Для некоторых приложений требуется очень широкая полоса пропускания. Например, телевизионные антенны часто должны иметь широкую полосу пропускания — не только передачи занимают достаточно широкую полосу пропускания, но, что более важно, различные телевизионные сигналы могут быть разнесены по широкой полосе частот, и антенна должна быть способна принимать их.Для других приложений, например различных беспроводных систем, система может работать на одной частоте с использованием узкополосной передачи, и для этих приложений полоса пропускания антенны может быть узкой.


  • Усиление и направленность: Антенны не излучают одинаково во всех направлениях — только изотропный источник излучает одинаково во всех направлениях, и это только теоретическая сущность. В некоторых направлениях практические антенны демонстрируют усиление, когда доступная мощность сосредоточена в определенном направлении, и они имеют диаграмму направленности.Теория антенн для направленности и усиления важна во многих областях, будь то для различных беспроводных систем, радиосвязи или радиовещания.

  • Сопротивление фидера и согласование: Входное соединение антенны представляет собой импеданс фидера, к которому она подключена. Для оптимальной передачи мощности источник и нагрузка должны быть согласованы. Соответственно, теория антенны, связанная с импедансом питания, важна для оптимальной работы антенны.

    Есть много факторов, связанных с импедансом фидера, и существуют различные методы обеспечения хорошего фидера и согласования для любой конкретной антенны, чтобы гарантировать, что ее характеристики оптимизированы.


Хотя теория радиоантенн может показаться сложной, рабочее понимание того, как работают антенны, и некоторых ключевых концепций очень полезно. Это может быть бесценным при настройке системы радиосвязи или канала связи или даже при установке приемных антенн для радиовещания или радиоантенн для любого из множества приложений.

Еще темы об антеннах и распространении:
ЭМ волны Распространение радио Ионосферное распространение Земная волна Рассеивание метеорита Тропосферное распространение Кубический четырехугольник Диполь Дискон Ферритовый стержень Логопериодическая антенна Антенна с параболическим рефлектором Вертикальные антенны Яги Заземление антенны Коаксиальный кабель Волновод КСВН Балуны для антенн MIMO
Вернуться в меню «Антенны и распространение».. .

Как работает антенна?

11 октября, 2019

Антенны широко используются в области телекоммуникаций, и мы знаем много приложения для них. Антенны принимают электромагнитную волну и преобразовать его в электрический сигнал или получить электрический сигнал и излучать его как электромагнитный волна. В этой статье мы собираемся взглянуть на науку, лежащую в основе антенн.

Разница между колеблющимся и излучающим электромагнитным полем

У нас есть электрический сигнал, как нам преобразовать его в электромагнитную волну? Ты можешь иметь в уме простой ответ.То есть использовать закрытый проводник, а с помощью принцип электромагнитной индукции вы сможете создавать колеблющееся магнитное поле и электрическое поле вокруг него, как показано на рис. 1A. Однако это флуктуирующее поле вокруг источника бесполезно при передаче сигналов. Электромагнитное поле здесь не распространяется; вместо этого он просто колеблется вокруг источника. В антенне электромагнитные волны необходимо отделить от источник, и они должны распространяться (Рис: 1B).Прежде чем посмотреть, как делается антенна, давайте понять физику разделения волн.

Рис. 1A Колеблющееся электромагнитное поле при электромагнитной индукции Рис. 1B Излучающее электромагнитное поле в гипотетической антенне

Физика колеблющегося диполя и излучения

Рассмотрим один положительный и один отрицательный заряды, расположенные на некотором расстоянии друг от друга. Это расположение известный как диполь, и они, очевидно, создают электрическое поле, как показано на рисунке 2A.Теперь предположим, что эти заряды колеблются, как показано на рис. 2В. В середине их пути скорость будет на уровне максимум и на концах их траекторий скорость будет равна нулю. Заряженные частицы претерпевают непрерывное ускорение и замедление из-за этого изменения скорости.

Рис. 2A Силовые линии электрического поля электрического диполя вытянуты на
от положительного до отрицательного заряда. Рис: 2B Ускорение и замедление заряженных частиц

1.Силовая линия электрического поля при t = 0

Теперь задача состоит в том, чтобы выяснить, как электрическое поле изменяется из-за этого движения. Давайте сконцентрируйтесь только на одной силовой линии электрического поля (рис. 3).

Рис. 3 Электрическое поле показано при t = 0

2. Силовая линия электрического поля при t = T / 8

Волновой фронт, сформированный в нулевой момент времени, расширяется и имеет вид деформируется, как показано, через одну восьмую периода времени (рис. 4A). Это удивительно; Ты можешь иметь ожидается простое электрическое поле, как показано в этом месте.Почему растянулось электрическое поле и образовали такое поле? как показано на рис. 4B. Это связано с тем, что ускоряющие или замедляющие заряды производят электрическое поле с некоторыми эффектами памяти. Старое электрическое поле нелегко приспособиться к новое состояние. Нам нужно потратить некоторое время, чтобы понять этот эффект памяти электрического генерация поля или излома ускоряющих или замедляющих зарядов.

Рис. 4A. При t = T / 8 ожидаемая форма электрического поля Рис. 4B При t = T / 8 действительная форма электрического поля

3.Силовая линия электрического поля при t = T / 4

Если мы продолжим наш анализ таким же образом, мы сможем видите, что через четверть периода времени концы волнового фронта встречаются в одной точке (рис. 5).

Рис. 5 При t = T / 4 концы электрического поля встречаются в одной точке, и происходит разделение и распространение

После этого происходит разделение и распространение волнового фронта. Если нарисовать напряженность электрического поля В зависимости от расстояния можно увидеть, что распространение волны носит синусоидальный характер (рис. 6).это Интересно отметить, что длина волны распространения, создаваемого таким образом, ровно вдвое больше, чем у длина диполя. Мы вернемся к этому вопросу позже. Обратите внимание, что это различное электрическое поле автоматически создает переменное магнитное поле, перпендикулярное ему. Это именно то, что нам нужно в антенне. Короче говоря, мы можем сделать антенну, если сможем сделать устройство для колебания положительных и отрицательных зарядов.

Рис: 6 Электромагнитное излучение в диполе

Как происходит излучение в антеннах?

На практике создать такой колеблющийся заряд очень просто.Возьмите токопроводящий стержень с изгиб в его центре и подайте сигнал напряжения в центре (7A). Предположим, это сигнал, который у вас есть приложен изменяющийся во времени сигнал напряжения. Рассмотрим случай в нулевой момент времени. Из-за эффекта напряжения, электроны будут смещены справа от диполя и будут накапливаться на слева. Это означает, что другой конец, который потерял электроны, автоматически становится положительно заряженным (7B). Это расположение создало тот же эффект, что и предыдущий случай дипольного заряда, т.е.е. положительные и отрицательные заряды на конце провода. При изменении напряжения во времени положительные и отрицательные заряды будут курсировать туда и сюда.

Рис: 7A Длинный прямой провод с переменным током Источник в центре
представляет собой дипольную антенну, излучающую электромагнитные волны Рис. 7B При подаче изменяющегося во времени сигнала напряжения количество электронов составляет
. накопленный на одном конце и создавал положительные заряды на другом конце

Простая дипольная антенна также производит происходит то же явление, которое мы видели в предыдущем разделе, и происходит распространение волн.У нас есть теперь видно, как антенна работает как передатчик. Частота передаваемого сигнала будет быть такой же, как частота подаваемого сигнала напряжения. Поскольку распространение происходит в скорость света, мы можем легко вычислить длину волны распространения (рис: 8). Для идеального передачи, длина антенны должна составлять половину длины волны.

ƒ антенна = ƒ вход

C = ƒ антенна x ƛ антенна

Рис. 8 Антенна излучает электромагнитные волны со скоростью света

Как антенны принимают сигналы?

Антенна работает обратимо, и она может работать как приемник, если на нее попадает распространяющееся электромагнитное поле.Давайте посмотрим на это явление подробнее.

Возьмите ту же антенну снова и приложите электрическое поле. В этот момент электроны будут накапливаются на одном конце стержня. Это то же самое, что и электрический диполь. В качестве примененного электрического поле меняется, положительные и отрицательные заряды накапливаются на других концах. Различная плата накопление означает, что в центре антенны вырабатывается сигнал переменного электрического напряжения. Этот сигнал напряжения является выходом, когда антенна работает как приемник, как показано на рисунке 9.Частота сигнал выходного напряжения совпадает с частотой принимаемой электромагнитной волны. Это ясно из конфигурация электрического поля, при которой для идеального приема размер антенны должен составлять половину длина волны. Во всех этих обсуждениях мы видели, что антенна представляет собой разомкнутую цепь.

Рис. 9 Антенна может работать как приемник, если на нее попадает распространяющееся электромагнитное поле

Конструкция и работа нескольких антенн

Теперь давайте посмотрим на несколько практических антенн и их работу.

1. Антенна Яги Уда

Раньше для приема ТВ использовались дипольные антенны. Цветная полоса действует как диполь и принимает сигнал, как показано на рисунке. Диполь является его основным ведомым элементом. В такой антенне также необходимы рефлектор и директор для фокусировки сигнал на диполе. Отражательный элемент всегда длиннее, а направляющий элемент всегда короче ведомого. Эта полная структура известна как антенна Яги-Уда (рис. 10А).Антенна яги уда была изобретена двумя японскими учеными Хидэцугу Яги и Синтаро Уда. Это направленная антенна, используемая для связи точка-точка. Управляемый элемент или дипольная антенна преобразовывала полученный сигнал в электрические сигналы, и эти электрические сигналы передавались по коаксиальному кабелю на телевизионный блок (рис. 10B).

Рис. 10A Антенна Яги уда состоит из диполя, директоров и отражателей. Рис. 10B Антенна яги уда преобразует принятые сигналы в электрические сигналы
, и эти сигналы передаются по коаксиальному кабелю на телевизионный блок.

2.Деталь спутниковая антенна

В настоящее время мы перешли на спутниковые телевизионные антенны. Они состоят из двух основных компонентов: параболический отражатель и понижающий преобразователь блока с низким уровнем шума. Параболическая тарелка получает электромагнитные сигналы со спутника и фокусирует их на LNBF, как показано на рисунке 11. Форма параболическая конструкция разработана очень точно и точно.

Рис. 11 В спутниковой тарелке входящий сигнал фокусируется на LNBF через параболический отражатель.

LNBF состоит из рупора, волновода, печатной платы и зонда (12A).Поступающие сигналы фокусируются на зонд через рупор и волновод. На датчике индуцируется напряжение, как мы видели в случае простого диполя. Сигнал напряжения так сгенерированный подается на печатную плату для обработки сигнала, такой как фильтрация, преобразование из высокого в низкий частота и усиление. После обработки сигнала эти электрические сигналы передаются на телевизионный блок через коаксиальный кабель (рис. 12Б).

Рис. 12A Подробная структура малошумящего рупора с блокирующим сигналом (LNBF) Рис. 12B Спутниковая тарелка преобразует принятые электромагнитные сигналы
в электрические сигналы, которые передаются по коаксиальному кабелю на телевизионный блок.

Если вы откроете LNB, вы, скорее всего, найдете 2 щупа вместо одного, причем второй щуп перпендикулярен первому.2-х зондовый аранжировка означает, что доступный спектр можно использовать дважды, посылая волны либо горизонтальная или вертикальная поляризация. Один зонд обнаруживает горизонтально поляризованный сигнал и другой сигнал с вертикальной поляризацией, как показано на рис. 13.

Рис. 13 Горизонтальный и вертикальный зонд обнаруживает горизонтально поляризованный сигнал и вертикально поляризованный сигнал соответственно.

3. Микрополосковая антенна или патч-антенна

В мобильном телефоне в вашей руке используется антенна совершенно другого типа, называемая патчем. антенна (рис: 14А).Эти типы антенн недороги и легко устанавливаются на печатную плату. Патч-антенна представляет собой металлическую пластину или полосу, помещенную на заземляющую поверхность с кусок диэлектрического материала между ними. Здесь металлическая накладка действует как излучающий элемент. В длина металлической накладки должна составлять половину длины волны для правильной передачи и прием (рис: 14Б). Обратите внимание, что описание патч-антенны, которое мы здесь объяснили, очень простое.

Рис. 14A Плоская перевернутая F-антенна, тип патч-антенны, используемой в современных сотовых телефонах.Рис. 14B Схема простой патч-антенны

ОБ АВТОРЕ

Эта статья написана Прерна Гупта , аспирантом в области управления и КИПиА. В настоящее время она работает в Lesics Engineers Pvt.Ltd руководителем группы по визуальному образованию. Сферы ее интересов — телекоммуникации, полупроводниковые материалы и устройства, встроенные системы и дизайн. Чтобы узнать больше об авторе, перейдите по этой ссылке


Как работают антенны • RFI Americas

Мы их не видим, но радио- и телевизионные волны — это просто еще одна форма света.Они имеют гораздо большую длину волны, чем видимый свет, но оба являются электромагнитным излучением.

Для генерации радио- и телевизионных волн мы обычно заставляем электроны колебаться вверх и вниз на антенне. Это делается путем подачи на антенну переменного напряжения или переменного тока. Антенны обычно делают из металлов, а металлы действуют как контейнеры, заполненные жидкостью, состоящей из электронов. Атомы металлов имеют один или несколько слабо удерживаемых электронов во внешних оболочках, которые могут «плавать» от атома к атому.

Рисунок 1. Электрическое поле вокруг положительного заряда
Когда отрицательно заряженный электрон движется, он оставляет после себя то, что обычно называют положительно заряженной дыркой. Дырка — это просто атом с большим количеством положительных протонов, чем отрицательных электронов. Электрические поля для двух типов зарядов показаны на рисунках 1 и 2.Это лучевые диаграммы. Стрелки показывают направление силы, которая будет действовать на единицу положительного заряда.

В отличие от векторной диаграммы, длина луча не указывает величину силы. Вместо этого пространство между лучами указывает величину. Обе диаграммы на рисунках 1 и 2 показывают, что величина поля уменьшается с увеличением расстояния от заряда, потому что расстояние между лучами увеличивается.

Рисунок 2. Электрическое поле вокруг отрицательного заряда

Мы можем использовать простую аналогию, чтобы понять, как электромагнитные волны создаются движущимися зарядами. Представьте на минуту, что лучи или силовые линии электрического поля, показанные на рисунках 1 и 2, похожи на очень длинные пружины, прикрепленные к круглой раме с зарядом в центре, почти как батут. Если заряд отскакивает вверх и вниз, волны будут распространяться наружу вдоль пружин.Да, мир электромагнитного излучения намного сложнее, чем наша простая аналогия, но, надеюсь, он дает вам некоторое представление о том, как движущийся заряд может создавать волну.

Волны и изменение электрического поля составляют «электрическую» часть термина «электромагнитные волны». Движущийся заряд — это, по сути, ток, а токи создают круговые магнитные поля. На рисунке 3 положительный заряд, движущийся прямо со страницы, будет создавать магнитное поле, представленное синей пунктирной линией.Направление поля можно определить с помощью правила для большого пальца правой руки. Большой палец направлен в сторону течения, а пальцы правой руки сжаты в свободный кулак. Пальцы указывают в направлении магнитного поля.

Обратите внимание, что силовые линии магнитного поля перпендикулярны силовым линиям электрического поля. Это одна из самых известных характеристик электромагнитных волн.

Рисунок 3. Магнитное поле (показано синим), создаваемое положительным зарядом, движущимся прямо из плоскости страницы

Хорошо, вы, наверное, задаетесь вопросом, почему мы используем пример положительного заряда, когда только что закончили говорить, что движутся электроны. Оказывается, все условности электричества и магнетизма созданы для положительных зарядов. Многое из этого можно проследить до работ Бенджамина Франклина.К сожалению, во времена Франклина электрон даже не был открыт.

Когда мы говорим о токе, мы делаем вид, что положительные дырки на самом деле движутся в направлении, противоположном направлению электронов. Это может показаться довольно глупым, но это работает как концепция, и поэтому мы придерживаемся традиции.

Если приложить переменное напряжение, оно пошлет электрическую волну вверх по антенне. Свободные электроны в антенне действуют как среда для распространения волны. Ситуация аналогична продольным звуковым волнам, распространяющимся в металлическом стержне.Звуковая волна переносится через чередующиеся области растяжения и сжатия. В сжатых областях молекулы стержня немного сближены. В областях напряжения они раздвинуты немного дальше. Хотя молекулы практически не двигаются, звуковая волна может передаваться на большие расстояния.

Очень легкого движения электронов вверх и вниз по антенне достаточно, чтобы электромагнитные волны излучались по сторонам антенны с той же частотой, что и переменное напряжение, приложенное к ней.Они используются для передачи радио- и телевизионных сигналов, а также для других форм беспроводной связи.

Как и звук, когда электрические волны определенной частоты достигают конца антенны, они отражаются назад и образуют стоячую волну в антенне. Антенные волны движутся со скоростью света (3 x 10 8 м / с), поэтому время прохождения от одного конца антенны до другого довольно короткое.

Электрические волны, создаваемые антеннами, обычно имеют фиксированную длину волны.Если длина антенны выбрана с умом, можно заставить ее резонировать. Свободный конец антенны действует как разомкнутая цепь. Падение напряжения максимально при разомкнутой цепи и нулевое при коротком замыкании. Следовательно, конец антенны образует противоузел или область максимального напряжения или напряженности электронного поля. Узел — это точка с нулевым электронным полем. Расстояние между антиузлом и узлом составляет четверть длины волны.

Длина волны электромагнитной волны рассчитывается следующим образом:

л =
Где
l = длина волны
C = скорость света (3 x 10 8 м / с)
f = частота
На рисунке 4 показана дипольная антенна, которая обычно считается самой простой формой антенны.В этом случае каждая половина антенны имеет длину примерно 1/4 длины волны с антенной, питаемой из ее центра. Следовательно, общая длина антенны составляет 1/2 длины волны. Концы антенны соответствуют антиузлам, а центр — узлам. Эта конфигурация вызывает резонанс антенны. Антенна все равно будет передавать, даже если длина не идеальна для резонанса. Однако меньшая мощность, потребляемая передатчиком, будет фактически отображаться как полезный выходной сигнал. Другими словами, эффективность системы будет значительно ниже.
Рисунок 4. Дипольная антенна

Дипольные антенны считаются уравновешивающими устройствами, поскольку они симметричны и лучше всего работают при питании от симметричного тока. Другими словами, сила тока на обеих половинах должна быть одинаковой. Обычно это достигается с помощью балуна, когда антенна питается от коаксиального кабеля.Коаксиальный кабель считается несимметричным, поэтому слово «балун» состоит из частей слов «БАЛАНСНЫЙ» и «Несбалансированный». Балун — это в основном небольшой трансформатор.

Оптимальный размер дипольной антенны немного отличается от ожидаемого, исходя только из длины волны. Это связано с взаимодействием балуна и антенны. Однако прогнозируемая длина резонанса обычно очень близка к длине для оптимальной эффективности трансляции.

Электромагнитные волны, излучаемые антенной, обычно моделируются как поперечные волны.Поскольку волны имеют как электрические, так и магнитные компоненты поля и излучаются в трехмерном пространстве, модель поперечных волн, нарисованная в учебниках, немного упрощена, но полную картину нарисовать практически невозможно.

Волны, излучаемые простыми монопольными и дипольными антеннами, имеют тенденцию к поляризации. Другими словами, если излучающая антенна расположена вертикально, приемная антенна также должна быть вертикальной для лучшего приема. Если приемная антенна расположена горизонтально, принимаемый ею сигнал будет значительно ослаблен.

Антенна конструкция очень сложна и требует много времени и изучения, чтобы освоить ее. Однако любая антенна должна будет генерировать колебания заряженных частиц, чтобы передавать радиосигналы, и будет иметь тенденцию делать это лучше всего, если антенна резонирует.

Первоисточник

Опубликовано автором admin .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *