Активный ток – Активный ток — Большая Энциклопедия Нефти и Газа, статья, страница 1

Активный ток — Большая Энциклопедия Нефти и Газа, статья, страница 1

Активный ток

Cтраница 1

Активный ток сопровождается переносом активной энергии, которая преобразуется потребителем в механическую и тепловую. Реактивный ток возникает при передаче реактивной энергии, которая, хотя и не превращается потребителем в полезную работу, все же необходима для создания магнитного поля, без которого ни трансформаторы, ни электродвигатели работать не могут. Происходит обмен реактивной энергией между потребителем и генератором.  [1]

Активный ток при компенсации остается без изменения.  [3]

Активный ток, совпадающий по фазе с напряжением, откладываем также в направлении положительной оси, а реактивный ток, который отстает по фазе на 90 от напряжения, откладываем вниз.  [4]

Активный ток / о не превышает 6 % указанного значения тока / с. Таким образом, основная составляющая тока замыкания на землю — это емкостный ток сети, значение которого определяется суммарной емкостью сети и сопротивлением R.  [6]

Активный ток не превышает 6 % указанного значения емкостного тока. Таким образом, основная составляющая тока замыкания на землю — это емкостный ток сети, значение которого определяется суммарной емкостью сети и сопротивлением R.  [8]

Активные токи замыкания на землю обычно составляют в среднем около 5 % емкостного тока замыкания на землю. Небольшой остаточный активный ток сети высокого напряжения требует весьма высокой чувствительности реле при больших коэффициентах трансформации трансформаторов тока. Чувствительные реле требуются и при использовании трансформаторов тока на вводах и трансформатора Ферранти кабельной линии. С успехом были использованы магнитные материалы с большой проницаемостью.  [10]

Активный ток неразветвленной части цепи равен арифметической сумме активных токов ветвей, а реактивный — алгебраической сумме реактивных токов ветвей.  [11]

Как активные токи в первичной и вторичной обмотках сдвинуты на электрический угол, равный примерно 180, так и намагничивающий ток З й гармоники сдвинут на электрический угол 180 при питании трансформатора со стороны треугольника и звезды.  [12]

Но активный ток двигателя пропорционален его механической нагрузке. Таким образом, с увеличением нагрузки двигателя относительное значение реактивного тока быстро убывает, a cos PJ увеличивается. С увеличением нагрузки он быстро возрастает и достигает максимального значения ( 0 7 — 0 9) при нагрузке, близкой к номинальной. Таким образом, даже у полностью загруженного двигателя реактивный ток составляет 70 — 40 % тока статора.  [13]

Прибавляя найденные активные токи / lc, / Blc, IAtc, / B2c к токам Ли.  [14]

Датчик активного тока автоматически учитывает потерю напряжения в токоподводе электробура.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

О природе реактивной энергии / Habr

Вокруг реактивной энергии сложилось немало легенд, активно способствовала развитию околонаучного фольклора любовь нашего человека к халяве и разнообразным теориям глобального заговора.

В рунете можно найти множество success story о том как простой мужичок из глубинки годами эксплуатирует халявную реактивную энергию (

которую бытовой счетчик электроэнергии не регистрирует) и живет себе, не зная бед. Так же можно найти заметки людей, призывающих бросить бесполезное занятие поиска источника халявы в халявной реактивной энергии. Для того чтобы окончательно раставить точки над ‘i’ в этом вопросе, я решил написать этот пост, не мудрствуя лукаво.

Как известно, потребляемая от источника переменного тока энергия складывается из двух составляющих:

  1. Активной энергии
  2. Реактивной энергии

1. Активная энергия — та часть потребляемой энергии, которая целиком и безвозвратно преобразуется приемником в другие виды энергии.

Пример: Протекая через резистор, ток совершает активную работу, что выражается в увеличении тепловой энергии резистора. Вне зависимости от фазы протекающего тока, резистор преобразует его энергию в тепловую. Резистору не важно в каком направлении течет по нему ток, важна лишь его величина: чем он больше, тем больше тепла высвободится на резисторе (

количество выделенного тепла равно произведению квадрата тока и сопротивления резистора).

2. Реактивная энергия — та часть потребляемой энергии, которая в следующую четверть периода будет целиком отдана обратно источнику.

Пример: Представим себе, что к источнику переменного тока подключен конденсатор. Начальный заряд на обкладках конденсатора равен нулю, начальная фаза напряжения источника так же равна нулю. Одно полное колебание состоит из четырех четвертьпериодов:

  1. Напряжение источника растет от 0 до максимального мгновенного значения (при действующем значении U источника 230V оно равно 230 * 1,4142 = 325V) При этом конденсатор потребляет ток, необходимый для его полного заряда
  2. Напряжение источника стремительно уменьшается (движется к нулю), при этом, напряжение на заряженном конденсаторе оказывается выше чем на источнике, что вызывает течение тока в обратную сторону
    (ведь ток течет от большего потенциала к меньшему)
    , то есть конденсатор разряжается, отдавая накопленную энергию обратно источнику!
  3. Для следующих двух четвертьпериодов вышеописанная история повторяется с тем лишь различием, что токи заряда и разряда емкости потекут в противоположных направлениях.

    В случае включения вместо конденсатора катушки индуктивности, суть процесса не изменится.

    В этом и состоит главный фокус реактивной энергии — в момент ‘прилива’ мы заполняем свои цистерны, в момент отлива же, мы сливаем их содержимое обратно. Как можно заметить из этой простой аналогии, мы просто туда-сюда переливаем жидкость (или ток в электроцепях). Если же мы соблазнимся слить хоть немного жидкости ‘налево’ (включить последовательно с реактивным конденсатором активный резистор), то мы станем брать ‘несколько больше’ чем возвращать, а это ‘несколько больше’

    уже является активной энергией по определению (ведь мы эту часть не возвращаем обратно, не так ли?), за которую как известно, приходится платить.

    Или иной пример: предположим, что мы берем у кредитора некоторую сумму денег взаймы и сразу же возвращаем ему взятый только что кредит. Если мы отдадим ровно столько, сколько взяли (чистая реактивность) — мы придем к исходному состоянию и никто никому не будет ничего должен. В случае же, если мы потратим часть кредита на какую ни будь покупку и вернем то, что осталось от кредита после совершения покупки (добавим в цепь активную нагрузку и часть энергии уйдет из системы) — мы будем все еще должны. Эта потраченная часть является активной составляющей взятого нами кредита.

    Теперь у вас может возникнуть один весьма резонный вопрос — если все так просто, и для того чтобы энергия считалась реактивной, ее просто нужно полностью вернуть обратно источнику, почему предприятия вынуждены платить за потребляемую

    (и полностью возвращаемую) реактивную энергию?

    Все дело в том, что в случае чисто реактивной нагрузки, момент максимально потребляемого тока (реактивного) приходится на момент минимального значения напряжения, и наоборот, в момент максимума напряжения на клеммах нагрузки, протекающий через нее ток равен нулю.

    Протекающий реактивный ток греет питающие проводники — но это активные потери, вызванные протеканием реактивного тока по проводникам с ограниченной проводимостью, что эквивалентно последовательно включенным с реактивной нагрузкой активным резистором. Так же, поскольку в момент максимума реактивного тока напряжение на полюсах реактивного элемента переходит через ноль, активная мощность подводимая к нему в этот момент (произведение тока и напряжения) равна нулю. Вывод — реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы. Следует заметить, что эти потери так-же является активными и будут засчитываться бытовым счетчиком активной энергии.

    Большие предприятия сопсобны генерировать достаточно большие реактивные токи, которые отрицательно сказываются на функционировании энергосистемы. По этой причине, для них проводится учет как активной, так и реактивной составляющей потребленной энергии. Для уменьшения генерации реактивных токов (вызывающих вполне реальные активные потери), на предприятиях размещают установки компенсации реактивной мощности.

habr.com

О компенсации реактивной мощности электродвигателей переменного тока

Активные и реактивные токи в электродвигателе переменного тока. Концепция компенсации реактивной мощности с использованием векторного анализа.

Компенсация реактивной мощности необходима для любых индуктивных (и емкостных) нагрузок с токами, синусоида которых смещена относительно синусоиды напряжения на углы до π радиан(или до 180°), а в основе коррекции коэффициента мощности лежит принцип компенсации реактивных токов, который наиболее легко понять на примере физических (электрических) процессов, протекающих в электродвигателях переменного тока.

Активные и реактивные токи в электродвигателе переменного тока

Работа электродвигателя переменного тока невозможна без превентивного создания магнитных полей обмоток ротора и статора, взаимодействие между которыми заставляет вал вращаться. На создание этих полей идет ток намагничивания (MagnetizingCurrent на рис. ниже), а работу двигателя с нагрузкой обеспечивает ток нагрузки (LoadCurren на рис. ниже), которые условно можно представить, как две логические цепи (линии) ветвления подаваемого на электродвигатель тока (TotalMotorCurrent на рис. ниже).

Важно: Ветвление подаваемого тока представляет логические, а не физические связи в электродвигателе — это не физическое деление цепи, а условная логическая схема для понимания концепции реактивных и активных токов.

Если условно принять, что на холостом ходу вал двигателя вращается без каких-либо потерь энергии на трение, нагрев подвижных частей, нагрев обмотки и пр., то ток намагничивания (MagnetizingCurrent) остается постоянной величиной, зависит только от конструктивных особенностей двигателя и «опаздывает» по отношению к сетевому напряжению на π радиан или 180° — синусоида тока намагничивания смещена относительно синусоиды напряжения на π радиан или 180° вправо.

Кроме того, ток намагничивания условно не связан с присоединяемыми к двигателю нагрузками и по сути не использует энергию – потребляемая в первой половине периода на создание магнитного поля энергия возвращается в сеть во втором полупериоде.

При подключении нагрузки (исполнительного механизма, компрессора и пр.) электродвигатель начинает потреблять из силовой сети ток нагрузки в объемах, пропорциональных силе сопротивления вращению двигателя. Причем ток нагрузки синфазен сетевому напряжению — увеличивается и уменьшается соответственно нагрузке, но в фазе с напряжением.

Поскольку синусоида тока намагничивания смещена относительно синусоиды напряжения на π радиан или 180° вправо, то результирующая синусоида тока намагничивания и синфазного с напряжением тока нагрузки смещена относительно синусоиды напряжения на угол в пределах от 0 до 90° вправо (опаздывает).
При (условно) равных токах намагничивания и нагрузки результирующая синусоида тока двигателя смещена относительно синусоиды напряжения на 45° вправо (рис. ниже слева), при уменьшении тока нагрузки в сравнении с током намагничивания результирующая кривая тока все больше смещается к синусоиде тока намагничивания (рис. ниже справа).

Важно: Коэффициент мощности — косинус угла смещения результирующей синусоиды тока от синусоиды напряжения, а это по факту показывает для краевых условий, что при нулевом смещении (cos 0 = 1) весь получаемый двигателем ток используется для передачи энергии нагрузке (активный ток и активная мощность), а при максимальном смещении в 90° (cos90° = 0) весь получаемый двигателем ток тратится на намагничивание и не делает полезной работы (реактивный ток, реактивная мощность).

Исходя из элементарной логики понятно, что чем меньше реактивного тока будет использоваться на намагничивание и чем больше активного тока – на передачу энергии нагрузке, то тем меньше будет смещенарезультирующая синусоида тока от синусоиды напряжения, тем больше будет коэффициент мощности (косинус угла смещения) и тем эффективнее будет использоваться двигателем потребляемая энергия. Вместе с тем, мощность электродвигателя зависит от сил создаваемых обмотками магнитных полей, что наряду с сопутствующими энергетическими потерями на трение, нагрев и пр. определяет достаточно высокие токи намагничивания (реактивные токи), тем большие, чем больше мощность двигателя и несовершенней его конструкция в плане энергосбережения.

С другой стороны, потребление из силовой сети больших объемов реактивных токов, необходимых для намагничивания, но не выполняющих полезную работу, снижает долю активных токов (активной мощности) или повышает нагрузку на токоподводящие линии с соответствующими негативными последствиями – падение напряжения из-за повышения электросопротивления проводов, нагрев проводки и силовых трансформаторов и т.д. Поэтому предельно необходимыми становятся мероприятия по компенсации реактивных токов (реактивной мощности), как можно ближе к электрической нагрузке.

Важно: Деление тока на активный и реактивный или мощности на активную и реактивную чисто условно — через силовую сеть подается один переменный ток (и одна мощность), который в нагрузке используется для выполнения полезной работы или же формирования условий для работы электрооборудования (намагничивания обмоток двигателя, трансформатора, генератора и т.д.), по сути, необходимых, но приносящих косвенную пользу. Т.е. реактивная мощность (или реактивные токи) для любой индуктивной нагрузки является неизбежным «злом», без которого невозможна работа, причем «мнимая» реактивная мощность в действительности становится мнимой при технически грамотных мероприятиях по компенсации реактивной мощности (см. подробнее о компенсации реактивной мощности установками КРМ, УКРМ).

Концепция компенсации реактивной мощности с использованием векторного анализа.

Если рассмотреть случай сети переменного напряжения с двумя токами, один из которых (А на рис. ниже) опережает напряжение на 45°, а другой (В на рис. ниже) отстает от напряжения на 45°, то в векторном выражении вектор длины действующего (среднеквадратического) значения силы тока А = 0.707 Im будет направлен вверх и вправо относительно центра координат, а вектор длины действующего (среднеквадратического) значения силы тока В= 0.707 Im будет направлен вниз и влево относительно центра координат.

Результирующий ток рассматриваемого выше электродвигателя будет складываться из тока намагничивания и тока нагрузки (действующие или среднеквадратические значения), а угол между векторами результирующей тока и тока нагрузки определяет угол смещения результирующей синусоиды токов относительно синусоиды напряжения.

По аналогии индуктивная нагрузка, потребляющая ток намагничивания с опаздыванием от напряжения на 90°, на графике будет представлена вектором, направленным вниз из центра координат, синфазные с напряжением токи нагрузки — вправо от центра координат, а опережающая напряжение по току на 90° емкостная нагрузка (CapacitiveCurrent) — вверх от центра координат.

Т.е. если в цепи электродвигателя одновременно использовать емкостную нагрузку (конденсаторы) с током, опережающим напряжение на 90°, а значит и ток намагничивания на 180° и равным по мгновенным значениям току намагничивания, то эти нагрузки будут компенсировать (или дополнять) друг друга во время работы двигателя. Т.е. в полупериод потребности обмоток в намагничивании конденсаторный блок будет отдавать ток в цепь, а при разрушении магнитного поля в следующий полупериод — аккумулировать образуемую энергию в виде накапливаемого реактивного тока.

Если перейти от токов к мощности, то активная мощность RealPower (Вт, кВт, МВт) это произведение активного тока (или тока нагрузки) на напряжение, реактивная мощность ReactivePower(VAR, ВАр, кВАр, МВАр) — произведение реактивного тока (или тока намагничивания) на напряжение, полная мощностьApparentPower(вольт-ампер, ВА, кВА, МВА) — корень из суммы квадратов активной и реактивной мощностей (из теоремы Пифагора согласно векторной диаграмме), а коэффициент мощности — косинус угла между полной мощностью и активной мощностью.

Подготовлено компанией «Нюкон»

www.elec.ru

Активный ток — Большая Энциклопедия Нефти и Газа, статья, страница 2

Активный ток

Cтраница 2

Отношение активного тока к емкостному называют тангенсом угла диэлектрических потерь.  [16]

Датчик активного тока автоматически учитывает потерю напряжения в токоподводе электробура. Таким образом, датчик активного тока измеряет величину произведения тока фазы на коэффициент мощности. Эта величина в виде постоянного напряжения между средними точками вторичных обмоток трансформаторов Tpl и Тр2 подается на вход полупроводникового промежуточного усилителя ППУ. Выходное напряжение этого усилителя подается на вход усилителя регулятора РПДЭ-3, который в данном случае обеспечивает режимы управления подачей долота, аналогичные режимам регулятора АВТ1, поддерживая неизменной величину активной составляющей тока двигателя или нагрузки на долото.  [18]

Приставка активного тока статора служит для преобразования сигналов тока и веса и подключается ко входу полупроводникового усилителя.  [19]

При неизменном активном токе ( момент на валу постоянный) изменение / / приводит к изменению реактивной составляющей тока якоря. При недовозбуждении синхронная машина потребляет из сети реактивную мощность.  [20]

СА — активный ток однофазной нагрузки, то линейные токи 1А, 1В и 1С образуют симметричную трехфазную систему.  [21]

Для создания активного тока требуется специальное оборудование ( активное сопротивление и выключатель), что является недостатком данного способа. Поэтому Техническое управление МЭС рекомендует использовать для действия защиты емкостный ток одним из следующих двух способов.  [22]

Схемы компенсации активных токов восходят к начальному предложению Петерсена ( 1919 г.) ввести вспомогательное, действующее генераторное напряжение для покрытия активной составляющей.  [24]

Измерительный орган реактивного и активного тока ИОРиАТ ( см. рис. 48.13) запоминает мгновенные токи генератора в моменты прохождения напряжения через нулевое и амплитудное значения — реактивный / р Im sin ф и активный / а Im cos ф токи соответственно. Они используются для вычисления максимально допустимой потребляемой генератором реактивной мощности и минимально допустимого ( по условию статической устойчивости) тока возбуждения синхронного генератора.  [25]

Проходящий в нем небольшой активный ток служит для покрытия потерь в самом компенсаторе.  [27]

Очень велик и активный ток внешней ионизации воздушной прослойки между изоляцией и стенкой паза машины, устранить влияние которой при испытании обмоток, уже уложенных в пазы машины, практически невозможно.  [29]

Страницы:      1    2    3    4    5

www.ngpedia.ru

формула, как определить — Asutpp

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергийСоотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

ПриборМощность бытовых приборов, Вт/час
Зарядное устройство2
Люминесцентная лампа ДРЛОт 50
Акустическая система30
Электрический чайник1500
Стиральной машины2500
Полуавтоматический инвертор3500
Мойка высокого давления3500

 

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющейГенерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузкиСхема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Расчет трехфазной сетиРасчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

QL = ULI = I2xL

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P2 + Q2, и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряженийДиаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

www.asutpp.ru

Активная и реактивная составляющие тока в асинхронном двигателе

Рис.11.1 Механическая (зависимость от M) и электромеханическая (зависимость от I) характеристики асинхронного двигателя

Уменьшение момента после достижения критического скольжения (Рис.11.1 точка В, соответствует максимальному, критическому моменту при критическом скольжении) объясняется тем, что в создании момента асинхронного двигателя участвует только активная составляющая тока.Активная составляющая тока при уменьшении скорости уменьшается и доходит до минимального значения при остановке ротора .

А реактивная составляющая тока ротора при неподвижном роторе имеет максимальное значение, за счёт того, что индуктивное сопротивление ротора имеетмаксимальное значение

при ,, то есть,когда ротор неподвижен (зачение частоты тока ротораравно частоте тока статора: ).

В однородном магнитном поле на проводник с током действует электромагнитная сила

.

Эта формула справедлива, когда магнитное поле и проводник длинойс токомдвижутся в пространстве с одинаковой скоростью и взаимно неподвижны.

Рассмотрим появление активной и реактивной составляющей тока в асинхронном двигателе[гер 343] .

Если прямолинейный проводник с синусоидальным током

находится в пульсирующем с той же частотоймагнитном поле статора с индукцией

и углом сдвига фаз вектора магнитной индукции и вектора тока равным углу , тогда электромагнитная сила, действующая на проводник с токомдлиной, находящемся в магнитном поле с индукциейпериодически изменяется с двойной частотой:

Постоянная (средняя) составляющая электромагнитной силы :

Постоянная (средняя) составляющая электромагнитной силызависитот временного сдвига по фазе (от угол) синусоидальных токаи магнитной индукции, а также зависит отдействующих значений и.

У электрических переменного тока машин, имеющих большую массу ротора на частоте тока 50 Гц за один полупериод изменения силыприращение импульса ротора имеет очень малое значение по сравнению с импульсом при установившейся номинальной скорости. Поэтому при рассмотрении установившихся режимов работы электропривода составляющейможно пренебречь и учитывать только постоянную составляющую силыпрямопропорциональную.

В случае асинхронного двигателя, в обмотке ротора вращающееся магнитное поле статора наводит электродвижущюю силу Э.Д.С. и под действием Э.Д.С.по проводникам ротора протекает синусоидальный ток.

Мгновенное значение Э.Д.С. обмотки ротора асинхронного двигателя пропорционально магнитной индукции, длине проводника и скорости относительного перемещения проводника и магнитного поля .

В электрических машинах переменного тока Э.Д.С. обмотки ротора совпадает по фазе с магнитной индукцией поля статора. Поэтому угол сдвига фаз между Э.Д.С.и током обмотки ротораравен углу, углу сдвига фаз магнитной индукции и тока.

Следовательно, в формуле произведение определяет значение проекции векторана вектор, другими словами является активной составляющей тока ротора.

Из вышеизложенного следует, что постоянная (средняя) составляющая электромагнитной силы , действующая на проводник с синусоидальным током, находящимся в пульсирующем с той же частотоймагнитном поле статора асинхронного двигателя,пропорциональна активной составляющей тока ротора =

= .

Моментасинхронного двигателя, как и любой электрической машины,пропорционален магнитному потоку Ф и активной составляющей тока. Активная составляющая тока ротора пропорциональна косинусу угла, углу между вектором Э.Д.С. ротора и вектором тока ротора [чил 80].

где : конструктивная постояннаяасинхронного двигателя;

угол сдвига фаз между Э.Д.С. () и током обмотки ротора.

Непропорциональность между моментом асинхронного двигателя и током при пуске (пусковой момент меньше максимального момента несмотря на то, что пусковой токе достигает максимального значения рис.11.1) объясняется значительным снижением магнитного потока двигателя, а также уменьшением коэффициента мощности цепи ротора при пуске, за счёт максимального значения индуктивного сопротивления ротора[чил 80].

При изменении нагрузки на валу двигателя [гер392] от нуля до номинальной значения скольжения постепенно увеличиваются до значения . При этом сохраняется неравенство

<< и= ,

т.е. активная составляющая тока ротора пропорциональна скольжению при значениях скольжения меньших0.05 (при ) [гер393].

При увеличении нагрузки скольжение так же возрастает и растёт ЭДС ротора =, а также растёт ток роторав соответствии с , асимптотически стремясь к некоторому предельному значению. А с ростомуменьшается (причём на рабочем участке механической характеристикиуменьшается очень мало, рис.11.1 участокDB), асимптотически стремясь к нулю при скольжении, стремящемся к бесконечности .

Магнитный поток двигателя также уменьшается при возрастании тока из-за падения напряжения на сопротивлениях обмотки статора [чил81]. Все эти процессы и обуславливают отсутствие пропорциональности между током и моментом двигателя.

А реактивная составляющая тока ротора

с двойной частотой и ротор, имея большую инерцию не успевает проворачиваться два раза при частоте 50Гц. Двойная частота 100Гц. Если бы ротор был тонким проводником он бы успевал проворачиваться [гер344]. Поэтому при анализе установившихся режимов нужно учитывать толькопостоянную (средную) составляющую электромагнитной силы .

studfile.net

чем реактивная мощность отличается от активной

В зависимости от своего поведения на переменном токе, нагрузки (потребители электроэнергии) можно классифицировать так: 1. Реактивная нагрузка. Это такая нагрузка, в которой сначала, в течение некоторого периода времени, запасается энергия, получаемая от источника. А затем запасённая энергия, в течение другого периода времени отдаётся обратно в источник. Такие нагрузки известны — это конденсаторы и катушки индуктивности. Если в цепи переменного тока есть реактивная нагрузка, то происходит перекачивание энергии в нагрузку и обратно. При этом форма тока через нагрузку в точности повторяет форму напряжения на нагрузке, но между напряжением и током существует сдвиг фаз на 90 градусов. Поскольку задачей электроснабжения является передача энергии от производителя к потребителю, а не перекачивание её туда-сюда, то реактивная нагрузка считается вредной. Мощность, потребляемая такой нагрузкой (и отдаваемая назад! ) называется реактивной. 2. Активная нагрузка. Это такая, в которой вся полученная энергия поглащается полностью и переходит в тепло. Обратно к источнику ничего не возвращается. При этом форма тока через нагрузку в точности повторяет форму напряжения на нагрузке. Сдвига фаз между напряжением и током нет. Мощность, потребляемая такой нагрузкой называется активной. Пример такой нагрузки — утюг, электроплита.

Друзья, уменьшая реактивку, вы уменьшаете и активку, это факт! Счётчик это тоже покажет! Вспомните элементарную физику! Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула: S = U \ I, где U – это напряжение сети, а I – это сила тока сети. Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда: S = U * I * cos φ Детали здесь : <a rel=»nofollow» href=»https://www.youtube.com/watch?v=tiHlOypGOSM&amp;feature=youtu.be» target=»_blank»>https://www.youtube.com/watch?v=tiHlOypGOSM&amp;feature=youtu.be</a> Так что берите клещи, измеряйте реактивку, если меньше 0,9, ставьте кондёры подходящего номинала и будет вам счастье!

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *