Атх блок питания: Как выбрать блок питания для компьютера | Блоки питания компьютера | Блог

Содержание

Как выбрать блок питания для компьютера | Блоки питания компьютера | Блог

Любой гайд по выбору БП начинается с утверждения, что блок питания — одна из важнейших комплектующих, экономить на ней нельзя, в противном случае весь компьютер сгорит к японской бабушке, и даже ваш домашний любимец суслик Федор может погибнуть страшной и мучительной смертью.


Онлайн-калькуляторы для определения мощности ПК — теория и практика


Это несколько преувеличено. Сейчас не 2000-е годы, и откровенно некачественных и опасных для эксплуатации блоков в продаже, как в те времена, почти нет. Вариант со сгоревшими от БП комплектующими очень маловероятен. Даже в простеньких стоят различные защиты, реализовать их с развитием схемотехники стало гораздо проще и дешевле. При нехватке мощности компьютер при нагрузке будет просто отключаться.

Эти высказывания — не призыв покупать самые дешевые блоки. Все-таки, лучше купить один надежный БП и забыть вообще про этот вид комплектующих на несколько лет.

В данном гайде не будет конкретных рекомендаций, какой блок купить. Рынок очень изменчив, и подобные советы пришлось бы переписывать каждый месяц. Попытаемся определиться с терминологией и разобраться, что же вообще бывает внутри этих железных коробочек с хвостами и как выбрать себе надежный БП.

Основные параметры блоков питания

Форм-фактор

Выбор форм-фактора блока питания определяется корпусом, в котором вы предполагаете разместить комплектующие. Основной форм-фактор для персональных компьютеров — АТХ.

Стандарт АТХ четко оговаривает два габаритных размера для БП — высота 86 мм и ширина 150 мм. В длину блоки могут быть различны.

Этот параметр нужно также учитывать при покупке. Производители корпусов обычно пишут, какой максимальной длины БП можно установить в их корпус.

В продаже есть блоки других форм-факторов — FlexATX, SFX, TFX и даже внешние блоки питания.

Мощность

Общая мощность блока питания — это суммарная мощность по всем линиям. В современном компьютере основная нагрузка приходится на 12 В канал, по остальным линиям стандартный компьютер потребляет не более 50 Вт. Поэтому именно на мощность по каналу 12 В надо обращать основное внимание. В качественных блоках она близка или даже равна общей мощности.

Разъемы

Основной 24-контактный разъем.

Наличествует во всех блоках. Чаще всего представлен в виде разделяющегося на 20-контактный и дополнительные 4 контакта. Это было сделано для совместимости со старыми платами с 20-контактным разъемом. Правда, это платы очень древние, и сейчас таких немного, поэтому постепенно производители блоков переходят к цельному разъему в 24 контакта.

То есть, разъем 20+4 и 24 — одно и тоже.

В разъеме отсутствует один пин. Это не брак. Напряжение -5 В было исключено за ненужностью, а пустой контакт в разъеме остался.

Разъем питания процессора

Бывает 4-контактным и 8-контактным (который часто разделяется на два разъема по 4 контакта).

Изначально питание процессора на платах обеспечивалось с помощью 4-контактного разъема, но с ростом энергопотребления процессоров, выросли токи, поэтому применили 8-контактный разъем. На бюджетных платах иногда до сих пор ставят 4-контактный.

Разъемы для питания видеокарты

Бывают двух типов — 6-контактный и 8-контактный.

8-контактный чаще всего представлен в виде разбирающегося разъема 6+2 контакта.

Через 6-контактный разъем можно обеспечить мощность до 75 Вт, через 8-контактный — до 150 Вт. Еще 75 Вт мощности обеспечивает разъем расширения PCIe x16.

SATA

15-контактный разъем для питания HDD, SSD и прочего.

Molex

4-контактный разъем. Ранее применялся для питания HDD, приводов оптических дисков и прочего. В современном компьютере используется достаточно редко, в основном для питания вентиляторов, реобасов и т. д.

Floppy

Предназначался для питания накопителей на гибких магнитных дисках. Сейчас используется очень редко, поэтому частенько представлен в виде переходника Molex-Floppy.

Кабели

Бывают блоки с отстегивающимися кабелями (модульная конструкция) или жестко закрепленными.

Отстегивающиеся кабели удобны тем, что неиспользуемые можно убрать, чтобы они не захламляли внутреннее пространство корпуса и не мешали охлаждению. Полностью модульные БП удобны еще при снятии блока для чистки, например.

Не нужно для этого вытаскивать проведенные под поддоном корпуса кабели.

К минусам модульной системы относят вероятность плохого контакта в разъемах. Пайка действительно в данном случае надежнее. Впрочем, какого-то массового выгорания контактов у модульных БП так до сих пор и не случилось, хотя единичные случаи есть.

Система охлаждения

Бывает трех видов:

1) Активная. Во время работы блока вентилятор вращается постоянно.

2) Полупассивная. При низких нагрузках вентилятор не работает.

3) Пассивная. Вентилятора нет.

Блоки питания с пассивным охлаждением редки и очень дороги. Наиболее оптимальны блоки с полупассивным охлаждением. Во-первых, это положительно сказывается на ресурсе вентилятора. Во-вторых, даже в корпусе с противопылевыми фильтрами пыль есть, а при работе вентилятор засасывает ее внутрь блока, где она оседает на радиаторах и деталях, ухудшая охлаждение.

В вентиляторы ставят подшипники скольжения, качения и гидродинамические. Для использования в блоках питания предпочтительнее последние — они более долговечны, и именно поэтому в топовых БП стоят вентиляторы с гидродинамическими подшипниками.

Вентиляторы в основном встречаются типоразмера 120 или 140 мм. Маленькие, размером 80 мм, которые встраивались в переднюю или заднюю стенку, ушли в прошлое, сейчас встретить такой блок в продаже трудно.

Также в вентиляторы в последнее время стали встраивать подсветку.

Корректор мощности

Мощность бывает активная и реактивная. Активная — полезная, передаваемая в нагрузку, а реактивная — бесполезная, которая впустую нагревает провода.

В Европе и многих других странах запрещено продавать БП без коррекции мощности, поэтому установка схем PFC — не инициатива производителей блоков. Как любая дополнительная схема, она потребляет энергию, уменьшает КПД, усложняет и удорожает конструкцию.

Для компенсации реактивной мощности в БП существуют две схемы: активная (APFC) и пассивная.

Пассивная это банальный дроссель огромных размеров. Таким образом часто дорабатывались БП, в которых корректор изначально не был предусмотрен.

Активная более сложна в реализации, но более эффективна. Во всех современных блоках используется только APFC.

У нас в России бытовые счетчики считают только активную мощность, поэтому обычному пользователю никаких плюсов от наличия корректора нет, разве что нетребовательность к уровню входного напряжения. Блоки с активным корректором могут работать в широком диапазоне — от 90 до 250 В, что приятно, если у вас нестабильное напряжение в сети.

С другой стороны, блоки с APFC могут конфликтовать с UPS. Поэтому к подбору источника бесперебойного питания надо подходить с особой тщательностью.

Сертификат 80 Plus

Данный сертификат характеризует энергоэффективность блоков питания или его КПД (отношение полезной энергии к общему количеству потраченной).

Известный миф: Если заявленная мощность блока 500 Вт, а его КПД — 80%, то он может выдать лишь 500*0,8=400 Вт. Неверно — блок выдаст все 500 Вт, а потребление от сети составит 625 Вт. То есть, 125 Вт будет потреблять сам БП.

Сертификация 80 Plus классифицируется по уровням. Начальный уровень — просто 80 Plus. Блок с таким сертификатом имеет на корпусе значок белого цвета.

Далее в порядке возрастания идут Bronze, Silver, Gold, Platinum, Titanium.

Список сертифицированных блоков можно найти тут.

Сертификация блока процедура недешевая, поэтому для бюджетных моделей частенько ей пренебрегают. Иногда даже придумывают собственные значки, внешне похожие на официальные.

Отсутствие какого-либо сертификата говорит либо о низком КПД (то есть, безнадежно устаревшей схемотехнике блока), либо о бережливости производителя. Вы четко должны понимать, что в таком случае покупаете продукт на котором жестко экономили, и ладно, если только на сертификации.

Поэтому, лучше обращать внимание на БП, имеющие хотя бы бронзовый сертификат.

Чем выше сертификат блока, тем выше его КПД, меньше энергопотребление (и ваши счета за электроэнергию), меньше нагрев и, с очень большой вероятностью — шум.

Итак, как выбрать БП?

Первый шаг

Определиться с мощностью.

Сделать это можно несколькими путями:

1) Посчитать мощность с помощью онлайн-калькуляторов (раз, два). Они почти не врут, разве что имеют тенденцию к незначительному ее завышению, что некритично.

2) Посчитать мощность самому, сложив заявленные производителем характеристики комплектующих. Не самый верный путь, ибо производители вместо реальной потребляемой мощности часто указывают TDP (требования по теплоотводу), а они могут сильно отличаться от реальности.

3) Поискать в интернете обзоры на компьютеры со сходной комплектацией, в которых есть измерение общей потребляемой мощности. Не обязательно искать точно такую же конфигурацию компьютера, как у вас. Основные потребители в современном ПК — процессор и видеокарта.

Брать БП с избыточной мощностью незачем. Это просто лишняя трата денег.

Второй шаг

Определиться с количеством разъемов и необходимой длиной кабелей.

В просторных корпусах необходимо учитывать, что вам могут понадобиться кабели большой длины , особенно для подключения питания к материнской плате. При покупке бюджетной модели надо обращать особое внимание на этот параметр, ибо у них часто нигде это вообще не указано. Большинство корпусов имеют нижнее расположение БП, что требует довольно большой длины кабелей, особенно основного и для питания процессора. Тут уж, как говорится, десять раз измерь (если корпус у вас уже есть) и десять раз спроси на форумах.

Если у вас в компьютере игровая видеокарта (ну, или вы так считаете), то необходимо иметь как минимум два разъема на 6+2 контакта. Даже если на видеокарте у вас всего один. Ибо видеокарта в компьютере все же апгрейдится чаще, чем БП. Можно использовать переходники, но рекомендовать такое сложно. В электронике каждое соединение — потенциальный источник проблем.

Третий шаг.

Определиться с количеством денег, которые вы готовы потратить на покупку данного устройства.

Допустим, у нас уже есть блок питания, мощностью 500-600 Вт, с наличием любого сертификата, начиная от 80 Plus Bronze (как сказано выше, лучше выбирать из блоков с наличием сертификата 80 Plus).

Рассмотрите дополнительные параметры, такие как подсветка (бывает одноцветной, или многоцветной с различными эффектами), система охлаждения (активная, полупассивная, пассивная).

Обращайте внимание на срок гарантийного обслуживания. Гарантия в 7-12 лет чаще всего дается для очень качественно сделанных БП.

Вы уже имеете ценовую вилку для ориентировки, и нам осталось только поставить ограничение в ценах и выбрать из оставшихся одного единственного.

Если выбирать из представленных блоков самостоятельно, то основной совет — не сильно обращать внимание на отзывы, лучше читать обзоры.

Напоследок ответы на частые вопросы пользователей при выборе БП.

Как поменять вентилятор в БП?

Обычно делать это не рекомендуется, тем более если имеется действующая гарантия от производителя. БП — это не процессор, где куча термодатчиков и защит от превышения температуры. В большинстве БП всего один термодатчик (термистор), и тот всего лишь стоит в схеме управления вентилятором, то есть при нагреве выдает сигнал на «интеллектуальную схему управлением скоростью вентилятора», состоящую из менее чем десятка деталей, которая повышает напряжение питания вентилятора. При замене вентилятора на модель с меньшим потоком и скоростью вращения, БП может сгореть.

Что делать, если БП свистит?

Существует такое явление, как магнитострикция. Суть его в том, что при изменении магнитного поля размеры тела тоже изменяются. В электронике этому наиболее подвержены дроссели и трансформаторы. При протекании тока сердечник в таких конструкциях вибрирует с частотой, кратной частоте тока, и издает звуки. Обычно преобразователи в БП специально рассчитывают на частоты выше верхнего диапазона слышимости. Но частенько бывает, что из-за некачественных деталей или брака при сборке такой свист появляется.

Солидные производители при подтверждении данной проблемы в СЦ обычно меняют такие блоки по гарантии. Хотя, чаще всего такой блок может без проблем работать со свистом несколько лет без всякого ущерба для комплектующих. Добиться его замены от малоизвестного производителя может быть затруднительно, ибо подобный шум никак не регламентируется, а выходные параметры напряжений у блока, как сказано выше, могут быть в рамках стандарта.

Что такое АТХ 12V, EPS 12V и прочие стандарты?

Стандарт АТХ 12V — часть стандарта АТХ, относящаяся к блокам питания. Разработан компанией Intel. Заменил стандарт АТ, использовавшийся до начала ХХI века.

С ростом мощности процессоров понадобилось усилить их линию питания, поэтому многие материнские платы получили 8-контактный разъем питания из серверного стандарта EPS 12V. Следовательно, поддержка EPS 12V означает лишь наличие 8-контактного разъема питания процессора.

Существует еще поддержка технологий энергосбережения С6 и С7, согласно которым БП должны поддерживать очень маленький ток по линии 12 В — 50 мА. В то время, как в спецификации АТХ 12V версии 2.3 заявлен минимальный ток 0,5 А. Большинство блоков, даже не сертифицированных для этого, поддерживают такие значения тока. В крайнем случае, можно выключить эти режимы энергосбережения.

Нужно ли гнаться за последней версией стандарта?

Нет. Изменения в стандартах в последние несколько лет незначительны и никак на потребительских свойствах не сказываются.

Имеет ли смысл покупать блоки питания от фирмы, которая сама производит и разрабатывает их?

Есть несколько производителей блоков, самые известные из них: CWT, Seasonic, НЕС, Enermax, FSP, InWin, Delta Electronics. На самом деле, неплохих производителей гораздо больше.

Так стоит ли гнаться за блоками именно этих производителей и под родной маркировкой? Нет.:

1) БП с другой наклейкой на корпусе может стоить существенно меньше при том же качестве.

2) Некоторые фирмы выпускают измененные (и часто в лучшую сторону) модели ОЕМ-производителей.

Надо ли обращать внимание на наличие защит в БП?

На их заявленное производителем наличие обращать внимание не стоит.

Основные защиты оговорены в стандарте АТХ12V. Теоретически, если блок соответствует стандарту, они в нем должны быть. Практически — в дешевых блоках на них часто экономят. Да и сами защиты представляют собой немного не то, что думает об этом рядовой пользователь.

Пара примеров:

ОТР — защита от превышения температуры.

Чаще всего реализована с помощью датчика, который установлен в одном, самом удобном с точки проектировщика, месте.

Но дело в том, что конструкция блока питания предполагает множество греющихся элементов, которые рассредоточены по всей плате. Таким образом, при локальном перегреве в точке, где нет датчика, блок сгорит.

OVP/UVP — защиты от пониженного и повышенного напряжения.

Обычный пользователь думает, что если выходные напряжения выйдут за пределы стандарта, то блок питания выключится, защищая подключенное оборудование. В реальности чаще всего за это отвечает микросхема супервизора (английское слово supervisor правильнее произносить как супервайзер, но у нас прижилось упрощенное произношение в отношении подобных микросхем).

Давайте посмотрим документацию на довольно часто используемую микросхему PS113. Порог срабатывания защиты от превышения напряжения по 12 В каналу: типовое значение — 13,8 В, максимальное — 14,4 В. Стандарт АТХ12V предусматривает отклонение не более 5% (12,6 В).

Это, скорее, защита самого БП при возникновении неисправностей от его полного выхода из строя, а никак не защита ваших комплектующих от повышенного напряжения. Аналогично с пониженным.

Несмотря на наличие кучи надписей на коробке о защитах, есть ли они реально и насколько грамотно реализованы, никто вам не скажет.

Наиболее необходимая — защита от короткого замыкания. И она должна быть на всех выходных линиях. В крайнем случае, можно закрыть глаза на ее отсутствие на линии 3,3 В, так как на доступных пользователю контактах ее почти нет (она только в основном 24-контактном разъеме есть).

У какой фирмы самые лучшие блоки питания?

Нет такой фирмы. У каждой есть как удачные модели, так и неудачные, так что ориентироваться на конкретного производителя не стоит.

Текст обновлен автором Sancheas

Стандарт АТХ блока питания

Блок питания, ATX стандарт. При выборе блока питания основными параметрами являются: версия стандарта АТХ, необходимая для работы компьютера мощность блока питания и совместимость блока питания с ИБП (источником бесперебойного питания).
Стандарт форм-фактора АТХ определяет размер, конструкцию и другие характеристики блока питания, а также допустимые отклонения напряжений при нагрузке. Этот стандарт мы и будет рассматривать.
На данный момент существуют такие версий стандарта АТХ:

  1. ATX 1.3
  2. ATX 2.0
  3. ATX 2.2
  4. ATX 2.3

Основные различия версий стандартов АТХ заключаются во введении более новых разъемов и новых линий питания. В первой серии в основном использовалась линия +5 В, а во второй +12 В.

Подробно о версиях ATX блока питания

Одним из главных разработчик форм-фактора ATX является компания Intel. Вся документация расположена на официальном сайте www.formfactors.org, в них описаны требования к производителям материнских плат, блоков питания и корпусов. Требования и рекомендации к блокам питания регламентирует документ под названием ATX12V Power Supply Design Guide (PSDG).

Стандарт ATX12V был выпущен при переходе на новую архитектуру NetBurst. Главное нововведение в ATX12V, при сравнению с ATX 1.3, стала смена питания процессора от +12В, а не от +5В и добавление нового разъема питания 4-pin +12В (разъема не должно быть, если максимальный возможный ток по +12В меньше 10А).

 


Версии ATX 1.1, была представлена в августе 2000 года. О версиях 1.0, 1.2 упоминаний на официальном сайте нет, однако информацию о них можно прочитать на других ресурсах.

Разъемы блока питания стандарта ATX 1.1

Версия ATX 1.3 вышла в апреле 2003 года. Если сравнивать с предыдущей версией 1.1, то были введены новые требования по токам, убрано напряжение в -5В, добавлены требования к обработке сигнала PS_ON#, а также добавлено упоминание кабеля питания для SATA.

Разъемы блока питания стандарта ATX 1.3


Версия ATX 2.0
, по сравнению с версией ATX 1.3, была значительно изменена. В первую очередь по токам — было увеличено энергопотребления по +12В и уменьшено по +3.3 и +5В. Была введена стандартизация блоков питания 350W и 400W (если мощность блока питания выше 300W, то рекомендовано 16 AWG провода). Был заменен кабель питания ATX на 24-pin вместо 20-pin, а также добавлены +3.3, +5, +12В, COM («земля»), питание для PCI Express устройств и кабель питания для SATA.
Разъем 24-pin ATX полностью совместим с 20-pin ATX как механически, так и электрически.

В версиях ATX 2.01 и ATX 2.2 была введна стандартизация блока питания мощностью 450W; упрощены требования к токам по линиям +3.3В, +5В, +12В; повышены требования к КПД по +5В stand by.

Разъемы блока питания стандарта ATX 2.x

Самыми основными потребителя электроэнергии являются процессоры и видеокарты, питания которых проходит по линии в +12 В. Если установить, казалось бы, обычную конфигурацию процессора и видеокарты (к примеру: AMD Athlon 3000+ и GeForce 7600 GT), и обеспечить их питанием от блока мощностью 400 W, то «получим перекос» напряжений. Линия питания +12 В просядет, а линия +5 В перевесится. И как следствие – самостоятельная перезагрузка компьютера (или при запуске или при нагрузке), синие экраны смерти, выключение компьютера и т.д. Проблема в том, что старых блоков питания главной линией является +5 В, а для процессора и видеокарты нужна линия на +12 В, которая оказалась полностью перегруженной.

24-pin и 20-pin разъемы питания

 

 

Переделка компьютерного блока питания — Блоки питания — Источники питания

Подробное описание.

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.

Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 9-10 вольт (используется для дежурного питания ТЛ-ки).

Мы и будем использовать для постоянного питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.

На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.

На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме

pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?

Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»

 

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.


Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 50 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Вернее даже не желательно, а необходимо, для того, чтобы остался небольшой запас для регулировки ШИМ, то есть для стабилизации напряжения и тока.
Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (30-40 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;


Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 

Лабораторный БП из компьютерного БП формата АТХ — Блоки питания — Источники питания

Евгений Князев

Привет всем!!! Решил описать вкратце переделку БП от компьютера формата АТХ. Может кому-то будет интересно.

За основу был взят БП CODEGEN — 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494…). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD Wh2602(…), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт «Кот», который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения…
Определились. Делаем разметку для «окна» ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это. 

 

 

 Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или…
Или… припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку — отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться — оставил 3 шт.
 


Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

 

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.
 

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS — ON.
Оставляем только всё, что касается +12 V и дежурного питания +5V SB .
Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт — удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

 

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) — по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 — 40А, Uобр=100В.
 

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры
 


Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора — двухцветный светодиод.
 


Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.
 


Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!
 

 

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.
 

Наладка схемы.
 

1.Все наладки блока питания проводить только через лампу накаливания 60 — 150 Вт, включенную в разрыв сетевого кабеля, а ещё лучше и через разделительный трансформатор.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) — выставляется выходной ток (правильность показаний индикатора) по образцовому А — метру.
Uizm (U14) — выставляется выходное напряжение (правильность показаний индикатора), по образцовому В — метру.
Uset_max (U16) — выставляется МАХ выходное напряжение
 

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494
.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

 

 

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор — цвет LED зеленый, теплый — оранжевый, горячий — красный). Справа — индикатор включения БП.

 

 

Установил выключатель. Основа — стеклотекстолит, обклеен самоклейкой «оракл».

Финал. То, что получилось в домашних условиях.

 

 


А теперь пробуем работу всех узлов собранного блока, так сказать в условиях приближенных к реальным, то есть нагружаем и испытываем собранный блок питания.
БП под нагрузкой, в качестве нагрузки используются лампы «галогенки» на 12В, 35 и 50Вт.

 

Скачать архив с прошивкой, схемой, платами.

Архив для статьи.

Если возникнут какие то вопросы по статье, задавайте их здесь, обсудим.

 

Страничка эмбеддера » Лабораторный блок питания из ATX БП

Я немного увлекся гальванопластикой (про это еще расскажу), и для нее мне понадобился новый блок питания. Требования к нему примерно такие – 10А выходного тока при максимальном напряжении порядка 5В. Конечно-же, взгляд сразу упал на кучу ненужных компьютерных блоков питания.

Конечно, идея переделать компьютерный блок питания в лабораторный не нова. В интернетах я нашел несколько конструкций, но решил, что еще одна – не помешает. В процессе переделки, я сделал просто дофига ошибок, поэтому, если решитесь сделать и себе такой блок питания, учитывайте их, и у вас получится лучше!

Внимание! Несмотря на то, что складывается впечатление, что этот проект — для новичков, ничего подобного – проект довольно сложный! Имейте ввиду.

 

Конструкция

Мощность того блока питания, который я вытащил из-под кровати – 250Вт. Если я сделаю БП 5В/10А, то пропадает драгоценная моща! Не дело! Подымем напряжение до 25В, может сгодится, к примеру, для зарядки аккумуляторов – там нужно напряжение порядка 15В.

Для дальнейших действий нужно сначала найти схему на исходный блок. В принципе, все схемы БП известны и гуглятся. Что именно нужно гуглить – написано на плате.

 

 

Мне мою схему подкинул друг. Вот она. (Откроется в новом окне)

Да-да, нам придется лазить во всех этих кишках. В этом нам поможет даташит на TL494

 

Итак, первое, что нам нужно сделать – проверить, какое максимальное напряжение может выдать блок питания по шинам +12 и +5 вольт. Для этого удаляем предусмотрительно помещенную производителем перемычку обратной связи.

 

Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И, вуаля, у нас на выходе – максимальное напряжение.

Пытаемся стартовать блок питания. Ага, без компьютера не стартует. Дело в том, что его нужно включить, соединив вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать. А вот непонятную схему на Q10, Q9 и Q8 отключим – она использует выходные напряжение и, после их вырезания не даст нашему БП запуститься. Мягкий старт у нас будет работать на резисторах R59, R60 и конденсаторе C28.

 

Итак, бп запустился. Появились выходные максимальные напряжения.

Внимание! Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Я хотел поменять конденсаторы, поэтому мне их было не жалко, а вот глаза не поменяешь. Аккуратно!

Итак, подучилось по +12В – 24В, а по +5В – 9.6В. Похоже, запас по напряжению ровно в 2 раза. Ну и прекрасно! Ограничим выходное напряжение нашего БП на уровне 20В, а выходной ток – на уровне 10А. Таким образом, получаем максимум 200Вт мощи.

С параметрами, вроде бы, определились.

Теперь нужно сделать управляющую электронику. Жестяной корпус БП меня не удовлетворил(и, как оказалось, зря) – он так и норовит поцарапать что-то, да еще и соединен с землей (это помешает мерить ток дешевыми операционниками).

В качестве корпуса, я выбрал Z-2W, конторы Maszczyk

 

Я измерил излучаемый блоком питания шум – он оказался вполне небольшим, так что, вполне можно использовать пластиковый корпус.

После корпуса я сел за Corel Draw и прикинул, как должна выглядеть передняя панель:

 

 

 

Электроника

Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.

В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы — и блок питания подгрузят и напряжение с током покажут.

Фальш-панель:

На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.

 

 

 

Управляющая электроника – тут все слегка посложнее.

В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.

 

 

 

Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

U2B – компаратор напряжения.

U3A, U3B – повторители с переменников. Дело в том, что переменники относительно высокоомные, да еще и сопротивление их меняется. Это значительно усложнит компенсацию обратной связи. А вот если их привести к одному сопротивлению, то все становится значительно проще.

С контроллером все понятно – это банальная атмега8, да еще и в дипе, которая лежала в загашнике. Прошивка относительно простая, и сделана между паяниями левой лапой. Но, нем не менее, рабочая.

Контроллер работает на 8МГц от RC генератора (нужно поставить соответствующие фюзы)

По хорошему, измерение тока нужно перенести на “высокую сторону”, тогда можно будет мереть напряжение непосредственно на нагрузке. В этой схеме при больших токах в измеренном напряжении будет ошибка до 200мВ. Я слажал и каюсь. Надеюсь, вы не повторите моих ошибок.

 

Переделка выходной части

Выбрасываем все лишнее. Схема получается такой (кликабельно):

Синфазный дроссель я немного переделал – соединил последовательно обмотку которая для 12В и две обмотки для 5в, в итоге получилось около 100мкГн, что дофига. Еще я заменил конденсатор тремя включенными параллельно 1000мкФ/25В

После модификации, выход выглядит так:

 

Настройка

Запускаем. Офигиваем от количества шума!

 

 

300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС

Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.

Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов

А теперь – с Y конденсатором:

 

Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!

Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.

 

 

Обратная связь.

Про нее я написал отдельную статейку, читайте

 

Охлаждение

Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.

В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.

Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.

Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.

Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!

Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.

Результаты

Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!

Потроха:

 

Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!

Лучший блок питания atx для пк — отличные предложения по блоку питания atx для пк от global atx power supply для пк продавцов

Отличные новости !!! Вы находитесь в нужном месте для блока питания atx для ПК. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший блок питания atx для ПК в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели блок питания atx для ПК на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в блоке питания atx для ПК и думаете о выборе аналогичного продукта, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести atx power supply for pc по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

вещей с меткой «Блок питания ATX»

Каркас блока питания Lab ATX автор: james_III 4 марта 2015 г. 1615 2511 57 Идеальный шкаф блока питания ATX Lab по Паулцигакис 18 сен 2020 539 774 39 Настольный блок питания ATX от robertguy 24 июля 2017 г. 391 663 23 Крепление блока питания ATX по 3dwkl 2 апреля 2017 г. 360 563 3 Преобразовательная башня CR10S ATX автор: TheGrind24 ПЕРЕКЛЮЧАТЕЛЬ ПИТАНИЯ J

ATX Приобретите SPS из лаборатории.Как преобразовать компьютерный блок питания ATX в лабораторный блок питания от 1,0 В до 15 В и от 0,15 А до 15 А (20 А) от Роберто Кирио

2008-2013

Dopo l’alimentatore Switches di un TV, l’alimentatore ATX sicuramente il prodotto elettronico импульсный источник питания, pi diffuso al mondo, negli ultimi 10 Анни не производят миллионы произведений искусства.

Ла durata media di un PC non supera i 3-5 anni, quindi sono molti i PC che vengono rottamati o agiornati, e un component che spesso viene sostituito anche se funziona ancora proprio l’alimentatore ATX, sostituito da un modello pi Potente.

Приходи Блок питания ATX не обслуживает преобразователь энергии 220V alternata в Corrente Continua, separata dalla rete e di basso valore приходит 3,3V 5V e 12 В, напряжение, необходимое для работы с микропроцессором.

за uso da labratorio di elettronica il pi delle volte needario avere dei valori di tense regolabili in непрерывно, для всех эффектов Докажи дель казо.Un alimentatore con tali caratteristiche costoso, Specialmente se in grado di erogare anche 20A.

Con релятивная явная возможность изменения ATX для различных вариантов Напряжение в uscita e anche limitare e regolare la corrente.

Diciamo subito che la parte di ingresso a 220V non deve essere toccata e modificata. Le modifiche vanno fatte solamente sul circuito secondario Come da indicazioni.Aprendo il coperchio dell ‘ATX non bisogna mai avere la rete 220V collegata, e prima di ricollegarla semper rimettere e avvitare il Coperchio Metallico.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *