Частота напряжения в сети – Частота сети Википедия

Содержание

Частота сети Википедия

У этого термина существуют и другие значения, см. Напряжение.

Сетевое напряжение — среднеквадратичное (действующее) значение напряжения в электрической сети переменного тока, доступной конечным потребителям.

Среднее значение и частота[ | ]

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

Параметры сетевого напряжения в России[ | ]

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных

ru-wiki.ru

Напряжение в сети в России и странах мира стандартное (Таблица)

В справочной таблице дано стандартное напряжение в сети

в России и различных странах мира для питания однофазных и трехфазных потребителей. Таблица будет полезна инженерам работающим с оборудованием импортируемым из за рубежа, а также судовым электромеханикам для синхронизации судовой эл. установки с береговыми сетями, туристам.

Стандартное напряжение в сети в России и странах мира таблица

Согласно ГОСТ 29322-2014 (IEC 60038:2009) в России стандартное напряжение в сети состовляет 230 В ±10 % при частоте 50 ±0,2 Гц, но все еще встречается напряжение 220/380 В.

Страна стандарта

Напряжение в сети

Частота, Гц

Однофазное напряжение, В

Трехфазное напряжение, В

Австралия / Australia

50

240

415

Австрия / Austria

50

230

400

Бельгия / Belgium

50

230

400

Болгария / Bulgaria

50

220

380

Англия/ England

50

240

415

Венгрия / Hungary

50

220

380

Вьетнам / Vietnam

50

220

380

Германия / Germany

50

230

400

Греция / Greek

50

230

400

Гонконг / Hong Kong

50

200/220

346/380

Дания / Denmark

50

230

400

США/United States

60

115/230

230

Сингапур / Singapore

50

230

400

Индонезия / Indonesia

50

220

380

Индия / India

50

230

240/415

Испания / Spain

50

127/220

220/380

Италия / Italy

50

220

380

Канада / Canada

60

120/347

208/240/600

Китай / China

50

220

380

Люксембург / Luxembourg

50

230

400

Малазия / Malaysia

50

240

415

Мьянма / Myanmar

50

230

230/400

Нидерланды/ Netherlands

50

230

400

Норвегия / Norway

50

220/230

380

Польша / Poland

50

220

380

Португалия / Portugal

50

230

400/480

Россия / Russia

50

230 (±10%)

400

Румыния / Romania

50

220

380

Таиланд / Thailand

50

220

220/380

Тайвань / Taiwan

60

110/220

220/380

веция / Sweden

50

230/400

400/690

Швейцария / Switzerland

50

230

400

Филиппины / Philippines

60

115/230

240/480

Финляндия / Finland

50

230

400

Франция / France

50

230

400

Южная Корея / South Korea

60

110/220

200/220/380

Япония / Japan

50/60

100/200

200

 


infotables.ru

Стандарты напряжения в России. | Статьи

04.05.2018

Каким должно быть напряжение в розетке в России

«Каким должно быть напряжение в розетке домашней электросети?» – на этот вопрос большинство ошибочно ответит: «220 Вольт». Не многие знают, что введённый в 2015 году ГОСТ 29322-2014 (IEC 60038:2009) устанавливает на территории Российской Федерации величину стандартного бытового напряжения не 220 В, а 230 В. В данной статье мы сделаем небольшой экскурс в историю электрического напряжения в России и выясним с чем связан переход к новой норме.

В СССР вплоть до 60-х годов XX века эталоном бытового напряжения считались 127 В. Это значение обязано своим появлением талантливому инженеру русско-польского происхождения Михаилу Доливо-Добровоольскому, разработавшему в конце XIX века трёхфазную систему передачи и распределения переменного тока, отличную от ранее предложенной Николой Тесла – двухфазной. Изначально в трехфазной системе Добровольского линейное напряжение (между двумя фазными проводниками) составляло 220 В. Фазное напряжение (между нейтральным и фазным проводником), которое мы используем в бытовых целях, меньше линейного на «корень из трёх» – соответственно для данного случая получаем указанные 127 В:

formula.jpg

Дальнейшие развитие электротехники и появление новых электроизоляционных материалов привели к повышению указанных значений: сначала в Германии, а затем и во всей Европе был принят стандарт 380 В – для линейного напряжения и 220 В – для фазного (бытового). Сделано это было с целью экономии – при росте напряжения (с сохранением установленной мощности) в цепи снижается сила тока, что позволило использовать проводники с меньшей площадью сечения и сократить потери в кабельных линиях.

В Советском Союзе, несмотря на наличие прогрессивного стандарта 220/380 В, при реализации плана массовой электрификации, строили сети переменного тока преимущественно по устаревшей методике – на 127/220 В. Первые попытки перейти на напряжение европейского образца были предприняты в нашей стране ещё в 30-х годах XX века. Однако массовый переход был начат лишь в послевоенное время, его причиной стала возрастающая нагрузка на энергосистему, которая поставила инженеров перед выбором – либо увеличивать толщину кабельных линий, либо повышать номинальное напряжение. В итоге остановились на втором варианте. Определённую роль в этом сыграл не только фактор экономии материалов, но и привлечение к работе немецких специалистов, имевших прикладной опыт использования электрической энергии с напряжением 220/380 В.

Переход растянулся на десятилетия: новые подстанции строили уже под номинал 220/380 В, а большинство старых переводили лишь после плановой замены отслуживших свой срок трансформаторов. Поэтому в СССР долгое время параллельно сосуществовали два стандарта для сетей общего пользования – 127/220 В и 220/380 В. Окончательное переключение на 220 В некоторых однофазных потребителей, по свидетельствам очевидцев, произошло только в конце 80-х - начале 90-х годов.

Потребление электрического тока постоянно росло и в конце ХХ века в Европе было принято решение о дальнейшем увеличении номинальных напряжений в трехфазной системе переменного тока: линейного с 380 В до 400 В и, как следствие, фазного с 220 В до 230 В. Это позволило повысить пропускную способность существующих цепей питания и избежать массовой прокладки новых кабельных линий.

В целях унификации параметров электрических сетей новые общеевропейские стандарты были предложены Международной электротехнической комиссией и другим странам мира. Российская Федерация согласилась их принять и разработала ГОСТ 29322-92, предписывающий электроснабжающим организациям перейти на 230 В к 2003 году. ГОСТ 29322-2014, как уже выше упоминалось, устанавливает значение номинального напряжения между фазой и нейтралью в трехфазной четырехпроводной или трехпроводной системе равным 230 В, однако допускает применение и систем с 220 В.

Стоит отметить, что не все страны перешли на общий стандарт напряжения. Например, в США установленное напряжение однофазной бытовой сети – 120 В, при этом к большинству жилых домов подводятся не фаза и нейтраль, а нейтраль и две фазы, позволяющие в случае необходимости запитать мощных потребителей линейным напряжением. Кроме того, в Соединённых Штатах отлична и частота – 60 Гц, в то время как общеевропейский стандарт – 50 Гц.

Вернёмся к отечественным электросетям. Пятипроцентное изменение их номинала не должно сказаться на функционировании привычных бытовых электроприборов, так как они имеют определённый диапазон допустимых значений питающего напряжения. Обе величины – 220 и 230 В, в большинстве случаев, входят в этот диапазон. Однако определённые трудности при переходе на европейские стандарты всё-таки могут возникнуть. Они, в первую очередь, коснутся работы осветительного оборудования с лампами накаливания, рассчитанными на 220 В. Увеличение входного напряжения вызовет перенакал вольфрамовой нити, что негативно скажется на её долговечности – такие лампы будут чаще перегорать. Поэтому покупателям следует быть внимательнее и выбирать электролампы, допускающие включение в сеть 230 В (номинальное напряжение обычно указывается в маркировке прибора).

В заключение следует сказать, что различные нештатные ситуации, возникающие в отечественных электросетях (резкие перепады напряжения или прекращение подачи электричества), представляют для электрооборудования намного большую опасность, чем плановый переход на европейские стандарты электропитания. Кроме того, энергоснабжающие компании часто не соблюдают требования к качеству электроэнергии, допуская сильные отклонения от установленных номинальных значений.

Защитить современную технику от пагубных влияний различных сетевых колебаний могут специальные устройства – стабилизаторы напряжения и источники бесперебойного питания. Группа компаний «Штиль» выпускает данное оборудование с различными значения выходного напряжения: 220 В, 230 В или 240 В.

Подробнее о стабилизаторах напряжения «Штиль»:

Инверторные стабилизаторы напряжения «Штиль». Модельный ряд.

www.shtyl.ru

Сетевое напряжение — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Напряжение. Карта сетевого напряжения и частоты переменного тока в мире

Сетевое напряжение — среднеквадратичное (действующее) значение напряжения в электрической сети переменного тока, доступной конечным потребителям.

Среднее значение и частота

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

Видео по теме

Параметры сетевого напряжения в России

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц[1] (межфазное напряжение 400 В, напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.

В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220, но фактически напряжение в сети почти всегда выше этого значения и достигает 230—240 В, варьируясь от 190 до 250 В.

Номинальные напряжения бытовых сетей (низкого напряжения): Россия (СССР, СНГ)

До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов. Начиная с 1926 года стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.

Переменный ток 50 Гц с разделённой фазой или постоянный ток,

двух-/трёхпроводные линии

Трёхфазный переменный ток, 50 Гц
110/220 В 220/440 В 3×120 В[р 1]

(треугольник)

127/220 В 220/380 В 230/400 В[р 2]
Временные правила ИРТО, 1891[2] широко используется запрещен[р 3] разрешён запрещен[р 3] запрещен[р 3] запрещен[р 3]
Дополнение к временным правилам ИРТО от 1898[3] широко используется разрешён широко используется разрешён разрешён -
ГОЭЛРО I очередь (1920)[4] предпочтителен[р 4]
ОСТ 569 (1928)[5] предпочтителен предпочтителен разрешён - предпочтителен[р 5] -
ОСТ 5155 (1932) разрешён разрешён разрешён[р 6][р 7] - разрешён
ГОСТ 721-41[6][7] разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен[р 8] -
ГОСТ 5651-51[8][р 9] разрешён разрешён -[р 10] разрешён[р 10] разрешён -
ГОСТ 721-62 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен -
ГОСТ 5651-64[9][р 9] - разрешён - разрешён разрешён -
ГОСТ 721-74 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 21128-75[10] разрешён разрешён - для ранее разработанного оборудования[р 11] предпочтителен -
ГОСТ 23366-78 разрешён разрешён - для ранее разработанного оборудования предпочтителен -
ГОСТ 21128-83 разрешён разрешён - для ранее разработанного оборудования предпочтителен разрешён
ГОСТ 5651-89[р 9] - разрешён - - разрешён -
ГОСТ 29322-92 (МЭК 38-83) - - - - разрешён до 2003 года предпочтителен
ГОСТ 29322-2014 (IEC 60038:2009) - - - - в текст стандарта внесено примечание: «Однако … до сих пор продолжают применять.» предпочтителен
Примечания «Р»
  1. ↑ «Акционерное Общество Электрического Освещения 1886 года» использовало этот номинал (напряжение на зажимах трансформатора 133 В), что и было отражено в ОСТ 569. В результате гармонизации с рекомендациями МЭК в шкале стандартных напряжений ГОСТ 721 он был заменён на номинал 3×127 В, но допускалось сохранение существующих установок 3×120 В. Фактически, сети тех крупных городов, которые его использовали, уже переходили на «звезду» с номиналами 127/220 В и 220/380 В.
  2. ↑ Номинал трёхфазного переменного тока 230/400 В, начиная c ОСТ 569, 1928 года, являлся предпочтительным для источников тока (генераторов и трансформаторов).
  3. 1 2 3 4 Использование тока высокого напряжения выше ±225 В или выше ∼110 В было запрещено в бытовых сетях, не требующих квалифицированного персонала.
  4. ↑ Первоначально, в I очереди плана ГОЭЛРО было намечено строительство сетей 120/210 В, исходя из того, что в сетях некоторых крупных городов использовалось 3×120 В (треугольник), однако, при реализации, строили сети 127/220 В.
  5. ↑ 1928-1931 гг. Витебск, Вязьма, Бобруйск, Рыльск, Россошь, Златоуст, Камышин, Камень, Красноярск, Чита, Острогожск, Старобельск, Чугуев, Красноград, Хмельник, Купянск, Проскуров, Червоное … и др. См.: Гейлер Л.Б. 110 или 220 V в распределительных сетях населённых мест // Электричество. — 1933. — № 9. — С. 39.
    Впоследствии все крупные новые электросети СССР создавались на 220/380 В.
  6. ↑ 1932-40 гг., Ленэнерго, переход старых сетей 3×120 В на 127/220 В. См.: Айзенберг Б.Л., Мануйлов Р.Е. Заземление нейтрали городской кабельной сети низкого напряжения // Электричество. — 1940. — № 11. — С. 54.
  7. ↑ 1936-47 гг., Мосэнерго, переход избранных районов старых сетей 3×120 В на 127/220 В. См.: Плюснин К.Л. Низковольтная замкнутая сетка в Московской кабельной электросети // Электричество. — 1937. — № 22. — С. 7., и Куликовский А.А. Система городских распределительных сетей низкого напряжения с искусственными нейтральными точками // Электричество. — 1947. — № 9. — С. 45.
  8. ↑ В других стандартах, связанных с промышленным применением, например, ГОСТ 185-41, номинал 127/220 В остался недоступен для новых изделий.
  9. 1 2 3 Стандарты ГОСТ 5651 — «Аппаратура радиоприёмная бытовая», в частности, определяли номиналы напряжения питания радиоприёмников.
  10. 1 2 1950 г., начало перевода низковольтной сети со 127 В на 220/127 В и применения напряжения 380/220 В для электроснабжения новых жилых районов Москвы. См.: Зуев Э.Н.. Московских окон негасимый свет.
  11. ↑ 1970-79 гг., Киев, Ленинград и Харьков, в основном, перешли на 280/380 В. Хотя отдельные дома, в которых переход не завершился, встречались и позднее.

Розетки и штепсели

В разных регионах используются розетки и штепсели разных типов.

Качество электрической энергии

Качество электрической энергии — её электрическое напряжение и частота должны строго соблюдаться.

Примечания

  1. ↑ ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
  2. Грищенко А.И., Зиноватный П.С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 118.
  3. Грищенко А.И., Зиноватный П.С. Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 13.
  4. ↑ План электрификации РСФСР. — 2-е изд. — М.: Госполитиздат, 1955. — С. 213,355,356,361. — 660 с.
  5. ↑ Производство пара, паровые машины, пароме турбины, двигатели внутреннего сгорания, газовые турбины, ветряные двигатели, водяные двигатели, насосы и компрессоры, теплосиловое хозяйство, электротехника, освещение // Hütte Справочник для инженеров, техников и студентов. — М.-Л.: ОНТИ, 1936. — Т. 3. — С. 950.
  6. ↑ Проект общесоюзного стандарта "Номинальные напряжения стационарных установок сильного тока" (Взамен ОСТ 4760 и ОСТ 5155)(2-я редакция, Октябрь 1938 г.) // Электричество. — 1939. — № 1. — С. 30.
  7. ↑ Основные напряжения ГОСТ 721-41.
  8. Левитин Е. Государственный общесоюзный стандарт на радиовещательные приемники // Радио. — 1951. — № 9. — С. 11-13.
  9. Левитин Е.А., Левитин Л.Е. Радиовещательные приемники. — Издание второе, переработанное и дополненное. — М.: Энергия, 1967. — С. 349.
  10. ↑ Основные напряжения ГОСТ 21128-75.

См. также

Ссылки

wiki2.red

«220 В» или «230 В» — стандартное напряжение в России?

Какое напряжение должно быть в сети 220В или 230В

И так вопрос: «Какое напряжение должно быть в нашей сети 220В или 230В?» На первый взгляд, очень простой вопрос. И очень простой ответ: «В сети должно быть 220В». Действительно, мы с детства знаем, что в розетке 220 Вольт и это опасно для жизни. На заводе, фабрике и в офисе на каждой розетке должна быть надпись «220В». На двери трансформаторной будки: «Не влезай — Убьет! 220В/380В».

Однако это не совсем верный ответ. В настоящее время в России стандартным напряжением в сети является напряжение 230В, но для поставщиков электроэнергии действует 220В. Действительно, ранее в Советском союзе стандартным напряжением было 220В, однако в последствии были приняты решения о переходе на общеевропейский стандарт — 230В. Согласно требований межгосударственного стандарту ГОСТ 29322-92 сетевое напряжение должно составлять 230В при частоте 50 Гц. Переход на этот стандарт напряжения должен был завершиться в 2003 году. В ГОСТ 30804.4.30-2013 так же есть упоминание о необходимости проведения измерений при стандартном напряжении 230В. ГОСТ 29322-2014 определяет стандартное напряжение 230В с возможностью использовать 220В. Электросети поставляют электроэнергию согласно действующего на сегодняшний день ГОСТ 32144-2013, устанавливающего напряжение 220В.

Изменение стандартного значения напряжения было проведено для получения полного соответствия европейским стандартам качества электроэнергии. Из всех бывших республик СССР к стандарту «230В» перешли Россия, Украина, страны Балтии.

При этом следует понимать, что электрическое оборудование, выпускаемое в России и для России должно нормально работать и при напряжении 220В, и при напряжении 230В. Для приборов, как правило, закладывается диапазон по напряжению от -15 % до +10 % от номинального.

География стран со стандартными напряжениями: 100В, 110В, 115В, 120В, 127В, 220В, 230В, 240В

В разных странах мира приняты различные стандарты сетевого напряжения. Можно встретить следующие стандарты: 

  • 100В в Японии
  • 110В в Ямайке, Гаити, Гондурасе, Кубе
  • 115В в Барбадосе, Сальвадоре,Тринидаде
  • 120В в США, Канаде, Венесуэле, Эквадоре
  • 127В в Бонайре, Мексике,
  • 220В во многих странах Азии и Африки
  • 230В во многих странах Европы и части стран Азии
  • 240В в Афганистане, Гайане, Гибралтаре, Катаре, Кении, Кувейте, Ливане, Нигерии, Фиджи.
География стран, в которых приняты напряжения 220В и 230В

Наибольшее распространение получили стандарты 220В и 230В, эти стандарты приняты более чем в 150 странах мира. Ниже приводится таблица стран, в которых приняты стандарты напряжения 220В и 230В. В левой колонке находятся страны, в которых стандартное сетевое напряжение 220В, в правой колонке — страны, где напряжение 230В.

Таблица стран, в которых принято напряжение 220В и 230В

Страна Напряжение Страна Напряжение
Азербайджан 220В Австралия 230В
Азорские острова 220В Австрия 230В
Албания 220В Алжир 230В
Ангола 220В Андорра 230В
Аргентина 220В Антигуа 230В
Балеарские острова 220В Армения 230В
Бангладеш 220В Бахрейн 230В
Бенин 220В Белоруссия 230В (ранее 220В)
Босния 220В Бельгия 230В
Буркина-Фасо 220В Ботсвана 230В
Бурунди 220В Бутан 230В
Восточный Тимор 220В Вануату 230В
Вьетнам 220В Великобритания 230В
Габон 220В Венгрия 230В
Гвинея 220В Гамбия 230В
Гвинея-Бисау 220В Гана 230В
Гонконг 220В Гваделупа 230В
Гренландия 220В Германия 230В
Грузия 220В Гренада 230В
Вжибути 220В Греция 230В
Египет 220В Дания 230В
Зимбабве 220В Доминика 230В
Индонезия 220В Замбия 230В
Иран 220В Западное Самоа 230В
Кабо-Верде 220В Израиль 230В
Казахстан 220В Индия 230В
Камерун 220В Иордания 230В
Канарские острова 220В Ирак 230В
Киргизия 220В Ирландия 230В
Китай 220В Исландия 230В
Коморы 220В Испания 230В
Конго 220В Италия 230В
Корфу 220В Камбоджа 230В
Лесото 220В Лаос 230В
Литва 220В Латвия 230В (ранее 220В)
Мавритания 220В Лихтенштейн 230В
Мадейра 220В Люксембург 230В
Макао 220В Маврикий 230В
Македония 220В Малави 230В
Мартиника 220В Мальдивские острова 230В
Мозамбик 220В Мальта 230В
Нигер 220В Молдавия 230В (ранее 220В)
Новая Каледония 220В Монголия 230В
ОАЭ 220В Мьянма 230В
Парагвай 220В Непал 230В
Перу 220В Нидерланды 230В
Португалия 220В Новая Зеландия 230В
Реюньон 220В Норвегия 230В
Сан-Томе 220В Пакистан 230В
Северная Корея 220В Польша 230В
Сербия 220В Россия 230В (220В)
Сирия 220В Румыния 230В
Сомали 220В Сенегал 230В
Таджикистан 220В Сингапур 230В
Таиланд 220В Словакия 230В
Тенерифе 220В Словения 230В
Того 220В Судан 230В
Туркменистан 220В Сьерра-Леоне 230В
Узбекистан 220В Танзания 230В
Фарерские острова 220В Тунис 230В
Филиппины 220В Турция 230В
Французская Гвиана 220В Украина 230В (ранее 220В)
Чад 220В Уругвай 230В (ранее 220В)
Черногория 220В Финляндия 230В
Чили 220В Франция 230В
Экваториальная Гвинея 220В Хорватия 230В
Эфиопия 220В Чехия 230В
ЮАР 220В Швейцария 230В
Южная Корея 220В Швеция 230В
    Шри Ланка 230В
    Эритрея 230В
    Эстония 230В

Примечание: при составлении таблицы использованы данные энциклопедии «Википедия»

Какое напряжение походит для электроприборов 220В или 230В

Нам удалось выяснить, что стандартным напряжением в России сегодня является напряжение 230В. На практике конечно напряжение в сети постоянно изменяется и зависит от многих факторов. Какое же напряжение является удовлетворительным для электроприборов, применяемых в нашем доме? Однозначного ответа на этот вопрос нет. Диапазон допустимых напряжений для каждого прибора определяется техническими данными паспорта изделия. Часто допустимый диапазон напряжений указывается на тыльной стороне изделия или на электрической вилке прибора. Так современные компьютеры могут работать при напряжении от 140 до 240 Вольт, зарядное устройство для телефона от 110 Вольт до 250 Вольт. Наиболее требовательны к качеству электропитания приборы, имеющие электродвигатели (холодильники, кондиционеры, стиральные машины, котлы отопления, насосы).
Ясно, что для любых приборов, используемых в России и напряжение 220В и напряжение 230В является хорошим.

Какие бывают отклонения в качестве электроэнергии

Хорошо известно, что в наших сетях часто бывают значительные отклонения от стандартов качества электроэнергии. И напряжение может быть значительно ниже 220В или значительно выше 230В. Причины этого явления тоже известны: старение действующих электрических сетей, плохое обслуживание сетей, высокий износ сетевого оборудования, ошибки в планирование сетей, большой рост потребления электроэнергии. К проблемам в сетях можно отнести: низкое и пониженное напряжение, высокое и повышенное напряжение, скачки напряжения. провалы напряжения, перенапряжение, изменение частоты тока.

Купить по выгодной цене стабилизаторы напряжения можно в нашем магазине с бесплатной доставкой в города: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Самара, Казань, Омск, Челябинск, Ростов-на-Дону, Уфа, Волгоград, Красноярск, Пермь, Воронеж, Саратов, Краснодар, Тольятти, Ижевск, Барнаул, Ульяновск, Тюмень, Иркутск, Владивосток, Ярославль, Хабаровск, Махачкала, Оренбург, Новокузнецк, Томск, Кемерово, Рязань, Астрахань, Пенза, Набережные Челны, Липецк, Тула, Киров, Чебоксары, Калининград, Курск, Брянск, Улан-Удэ, Магнитогорск, Иваново, Тверь, Ставрополь, Белгород, Сочи, Нижний Тагил, Архангельск, Владимир, Смоленск, Курган, Волжский, Чита, Калуга, Орёл, Сургут, Череповец, Владикавказ, Мурманск, Вологда, Саранск, Тамбов, Якутск, Грозный, Стерлитамак, Кострома, Петрозаводск, Нижневартовск, Комсомольск-на-Амуре, Таганрог, Йошкар-Ола, Новороссийск, Братск, Дзержинск, Нальчик, Сыктывкар, Шахты, Орск, Нижнекамск, Ангарск, Балашиха, Старый Оскол, Великий Новгород, Благовещенск, Химки, Прокопьевск, Бийск, Энгельс, Псков, Рыбинск, Балаково, Подольск, Северодвинск, Армавир, Королёв, Южно-Сахалинск, Петропавловск-Камчатский, Сызрань, Норильск, Люберцы, Мытищи, Златоуст, Каменск-Уральский, Новочеркасск, Волгодонск, Абакан, Уссурийск, Находка, Электросталь, Березники, Салават, Миасс, Альметьевск, Рубцовск, Коломна, Ковров, Майкоп, Пятигорск, Одинцово, Копейск, Железнодорожный, Хасавюрт, Новомосковск, Кисловодск, Черкесск, Серпухов, Первоуральск, Нефтеюганск, Новочебоксарск, Нефтекамск, Красногорск, Димитровград, Орехово-Зуево, Дербент, Камышин, Невинномысск, Муром, Батайск, Кызыл, Новый Уренгой, Октябрьский, Сергиев Посад, Новошахтинск, Щёлково, Северск, Ноябрьск, Ачинск, Новокуйбышевск, Елец, Арзамас, Жуковский, Обнинск, Элиста, Пушкино, Артём, Каспийск, Ногинск, Междуреченск, Сарапул, Ессентуки, Домодедово, Ленинск-Кузнецкий, Назрань, Бердск, Анжеро-Судженск, Белово, Великие Луки, Воркута, Воткинск, Глазов, Зеленодольск, Канск, Кинешма, Киселёвск, Магадан, Мичуринск, Новотроицк, Серов, Соликамск, Тобольск, Усолье-Сибирское, Усть-Илимск, Тимашевск, Тихорецк, Ухта, Севастополь, Симферополь, Ялта, Судак, Саки, Феодосия, Старый Крым, Алупка, Алушта.



Подробнее об этих проблемах читайте также в статьях:

skat-ups.ru

Сетевое напряжение Википедия

У этого термина существуют и другие значения, см. Напряжение.

Сетевое напряжение — среднеквадратичное (действующее) значение напряжения в электрической сети переменного тока, доступной конечным потребителям.

Среднее значение и частота[ | ]

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

Параметры сетевого напряжения в России[ | ]

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных

ru-wiki.ru

Допустимое отклонение напряжения по ГОСТ: допустимые значения

При проектировании электроприборов, в том числе и бытовой техники, учитываются номинальные характеристики сети, от которой они будут работать. Но в системах электроснабжения могут происходить процессы, вызывающие отклонения от номинальных параметров. Допустимое отклонение напряжения в сети, частоты, а также других характеристик, регулируется требованиями ГОСТ 13109-97 (международный стандарт, принятый в России, Республике Беларусь, Украине и в большинстве других стран СНГ). Приведем информацию о допустимых нормах отклонений и вызывающих их причинах.

Нормы напряжения в электросети по ГОСТу

В нормативном документе определено несколько показателей, позволяющих характеризовать качество электроэнергии в точках присоединения (ввод в сети потребителей). Перечислим наиболее значимые параметры и приведем допустимые диапазоны отклонений для каждого из них:

  • Для установившегося отклонения напряжения не более 5,0% от номинала (допустимая норма) при длительном временном промежутке и до 10% для краткосрочной аномалии (предельно допустимая норма). Заметим, что данные показатели должны быть прописаны в договоре о предоставлении услуг, при этом указанные нормы должны отвечать действующим нормам. Например, для бытовых сетей (220 В) быть в пределах 198,0-220,0 В, а для трехфазных (0,40 кВ) – не менее 360,0 В и не более 440 Вольт.
  • Перепады напряжения, такие отклонения характеризуются амплитудой, длительностью и частотой интервалов. Нормально допустимый размах амплитуды не должен превышать 10,0% от нормы. К перепадам также относят дозу фликера (мерцание света в следствии перепадов напряжения, вызывают усталость), это параметр измеряется специальным прибором (фликометром). Допустимая краткосрочная доза – 1,38, длительная – 1. Пример устоявшегося отклонения и колебания напряженияПример устоявшегося отклонения и колебания напряжения
  • Броски и провалы. К первым относятся краткосрочные увеличения амплитуды напряжения, превышающие 1,10 номинала. Под вторым явлением подразумевается уменьшение амплитуды на величину более 0,9 от нормы, с последующим возвращением к нормальным параметрам. Ввиду особенностей природы процессов данные отклонения не нормируются. При частом проявлении рекомендуется установить ограничитель напряжения (для защиты от бросков) и ИБП (при частых провалах).
  • Перенапряжение электрической сети, под данным определением подразумевается превышение номинала на величину более 10% длящееся свыше 10-ти миллисекунд. Примеры перенапряжения и провала (А), бросков (В)Примеры перенапряжения и провала (А), бросков (В)
  • Несимметрия напряжения. Допустимое отклонение коэффициента несимметрии от нормы – 2,0%, предельное – 4,0%.
  • Несинусоидальность напряжения. Определяется путем расчета коэффициента искажения, после чего полученное значение сравнивают с нормативными значениями. Пример нарушения синусоидальности напряженияПример нарушения синусоидальности напряжения
  • Отклонения частоты. Согласно действующим требованиям нормально допустимое отклонение этого параметра 0,20 Гц, предельно допустимое – 0,40 Гц.

Основные причины возникновения отклонения напряжения в сети

Теперь рассмотрим, что могло вызвать изменение характеристик сети:

  • Установившиеся отклонения напряжения связывают со следующими причинами:
  1. Увеличение величины нагрузки из-за подключения одного или нескольких мощных потребителей. Характерный пример – сезонное увеличение нагрузки на энергосистемы ввиду подключения обогревательного оборудования, а также суточные пики.
  2. Увеличение числа потребителей без модернизации энергосистемы.
  3. Обрыв или недостаточное качество контакта нулевого кабеля в трехфазных системах.

При ситуациях, описанных в первом пункте, поставщик нормализует напряжение, используя специальные средства регулирования. В остальных случаях производятся ремонтные работы.

  • Причина перепадов напряжения связана с потребителями электрической энергии, с резко изменяющейся нагрузкой (как правило, при этом изменяется и реактивная мощность). В качестве примера можно привести металлургические предприятия, оборудованные дуговыми печами. Подобный эффект можно наблюдать при работе сварочного электрооборудования или поршневых компрессорных установок.
  • Причины минимального напряжения (провалы) в большинстве случаев связаны с КЗ, которые могут возникнуть в сети дома, на линиях ввода или ЛЭП. Длительность провалов варьируется от миллисекунд до секунд, при этом напряжение может уменьшаться до 90% от нормы. Наиболее чувствительна к таким изменениям электроника, нормализовать ее работу можно при помощи ИБП.
  • Возникновение импульсных напряжений может быть вызвано коммутационными процессами, ударом молнии в ВЛ, а также другими причинами. При этом величина импульса может многократно превышать стандартное напряжение в квартире по ГОСТу. Естественно, что существенное увеличение максимальных значений этого параметра приведет к выходу из строя подключенного к сети оборудования, чтобы не допустить этого, следует использовать ограничитель перенапряжения. Принцип работы этого защитного устройства и схему установки можно найти на нашем сайте. Конструкция ограничителя перенапряжения (ОПН)Конструкция ограничителя перенапряжения (ОПН)
  • При кратковременных перенапряжениях уровень отклонений значительно ниже, чем при бросках, но, тем не менее, это может стать причиной выхода из строя оборудования, включенного в розетки. ОПН в этом случае не спасет, но поможет реле напряжения, которое произведет защитное отключение и после нормализации ситуации восстановит подключение. Пределы изменения срабатывания (диапазон регулирования) можно задать самостоятельно или использовать настройки по умолчанию. Что касается причин, вызывающих перенапряжение, то они связаны с коммутационными процессами и КЗ.
  • Несимметрия происходит вследствие перекоса нагрузки между фазами. Ситуация исправляется путем транспозиции питающих линий.
  • Нарушение синусоидальности возникает в тех случаях, когда к энергосистеме подключается мощное оборудование, для которого характерна нелинейная ВАХ. В качестве такового можно привести промышленные преобразователи напряжения с тиристорными элементами.
  • Частота сети напрямую связана с равновесием активных мощностей источника и потребителя. Если происходит дисбаланс, связанный с недостаточной мощностью генераторов, наблюдается снижение частоты в энергосистеме до тех пор, пока не будет установлено новое равновесие. Соответственно, при избыточных мощностях, происходит обратный процесс, вызывающий повышение частоты.

Последствия отклонения от стандартов

Отклонение от номинальных напряжений может вызвать много нежелательных последствий, начиная от сбоев в работе бытовой техники и заканчивая нарушениями производственных техпроцессов и созданием аварийных ситуаций. Приведем несколько примеров:

  • Долгосрочные отклонения напряжения сверх установленной нормы приводят к снижению срока эксплуатации электрооборудования.
  • Броски с большой вероятностью могут вывести из строя электронные приборы и другую технику, подключенную к сети.
  • При провалах происходят сбои в работе вычислительных мощностей, что увеличивает риски потери информации.
  • Перекос фаз приводит к критическому повышению напряжения, что вызовет, в лучшем случае, срабатывание защиты в оборудовании, а в худшем – полностью выведет его из строя.
  • Изменение частоты моментально отразится на скорости вращения асинхронных двигателей, а также приведет к снижению активной мощности. Помимо отклонения приведут к изменению ЭДС генераторов, что вызовет лавинный процесс.

Мы привели только несколько примеров, но и их вполне достаточно, чтобы стало понятно насколько важно придерживаться норм, указанных в настоящих стандартах и ПУЭ.

www.asutpp.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о