Не включается ресивер — ремонт блока питания ресивера спутникового телевидения своими руками
Спутниковое телевидение занимает не последнее место в сфере развлечений. И этому способствуют — недорогая цена на оборудование и обширный список каналов. Но вся радость может снизойти на «нет», если не включается ресивер спутникового телевидения.
Все бы хорошо, да есть один неприятный момент. Китайские ресиверы часто выходят из строя. Основная причина отказа оборудования — поломка блока питания. Происходит это из-за грозы, перепадов напряжения, да и просто некачественных компонентов этого блока. В отличие от него, другие модули ресивера практически не ломаются. Именно про эту распространенную поломку и поговорим и узнаем, как выполнить ремонт блока питания ресивера своими руками.
В этой статье будут приведены простые и практические способы, позволяющие определить неисправную деталь в блоке питания тюнера. Хоть методы и простые, но их использование в большинстве случаев позволяет выполнить ремонт блока питания ресивера спутникового телевидения своими руками.
Итак, если у вас перестал работать ресивер спутникового телевидения модели: Gione, Cosmo Sat и тому подобные, то не спешите волноваться, возможно, все не так уж плохо. Попробуйте найти причину сами без помощи специалистов.
Что может понадобиться? Мультиметр, прозвонка, паяльник и немного терпения.
Снимаем крышку устройства, и видим отдельно стоящий модуль. Это есть импульсный блок питания. Для начала поиска неисправности снимаем его, открутив винты, и отсоединив разъем на системной плате. Теперь плата перед нами.
Первое, что нужно сделать с платой — это визуально определить: есть ли поврежденные (вздутые) конденсаторы и другие элементы схемы. Нередко именно по этой причине не включается ресивер спутникового телевидения.
Если повреждений не видно, то необходимо проверить на целостность шнур и предохранитель. Накидываем на концы предохранителя прозвонку, и по реакции прибора определяем его целостность.
Если предохранитель исправен — это хорошо. А если нет, то не стоит торопиться его менять, так как с ним может произойти то же самое, что и с первым. Лучше на его место впаять патрон с лампой накаливания. Лампа мощностью 60 ватт, и на напряжение 220 вольт.Теперь, если в цепи, при включении, будет короткое замыкание, то лампа просто загорится во весь накал, не причиняя схеме никакого вреда. Если же при включении лампа не горит, берем мультиметр и измеряем напряжение на большом конденсаторе 47 мкФ * 400 вольт.
Мультиметр нужно поставить в режим «измерение постоянного напряжения». На контактах конденсатора при нормальной работе, должно быть напряжение около 300 вольт. Если такового нет, значит звоним по цепочке, — от предохранителя до диодного моста. В случае присутствия переменного напряжения на входе моста, все указывает на пробой диодов, и это также одна из частых поломок, при которых не включается ресивер спутникового телевидения. Чтобы определить какой диод вышел из строя, необходимо выпаять один конец каждого.
Затем, набросив попеременно на каждый диод прозвонку, и меняя местами концы, определяем их целостность. Рабочий диод должен пропускать ток в одну сторону. Если диод прозванивается в двух положениях одинаково, значит он пробит. Чаще всего из строя выходит пара диодов. Поэтому, если есть возможность, то лучше поменять все четыре сразу, так как после подобных поломок, даже те, что остались рабочие, изменяют свои параметры. В итоге частичная замена диодов может рассматриваться, как неполноценный ремонт блока питания ресивера. А это значит, что велика вероятность того, что в один прекрасный момент Вы снова можете столкнуться с ситуацией, когда потребуется устранение данной неисправности, в результате которой перестал работать ресивер спутникового телевидения.
Диоды заменены, теперь снова включаем и меряем постоянное напряжение на том же конденсаторе. Оно должно быть, как уже говорилось выше, около 300 вольт. Если так и есть, то следующим этапом диагностики является замер переменного напряжения на одной из первичных обмоток трансформатора. Как это делать, видно на фото ниже.
Прибор должен показывать около 150 вольт, и напряжение должно как бы «плавать», то есть меняться. Если этого не происходит, значит скорее всего вышла из строя микросхема. Можно заменить микросхему и еще раз повторить замеры.
Когда прибор показывает наличие пульсирующего переменного напряжения на первичной обмотке, необходимо сразу замерять постоянное напряжение на выходе блока.
Для этого ставим мультиметр в режим «замер постоянного напряжения» и минусовой (черный) щуп присоединяем ко второй прорези на разъеме. Это общий (минусовой) контакт. Вторым концом прибора, поочередно замеряем напряжения на прорезях разъема.
Если повернуть штекер прорезями к себе, и замерять слева -направо, то напряжения должны быть такие:
- 24В
- общий
- 12В
- общий
- 5В
- 3,3В
Если напряжения нет, то делаем такую же операцию с диодами вторичной цепи, как описано выше. Выявив неисправный, заменяем его. Обратите внимание на диод большего размера. Он имеет маркировку SR-360 и тому подобную. Он чаще всего выходит из строя. Заменив его, можно и решить проблему, когда не включается ресивер спутникового телевидения. Снова меряем напряжения на выводах.
Если такой способ ничего не дал, то скорее всего «вылетела» микросхема в первичной цепи, выполняющая роль генератора переменного напряжения высокой частоты. Но, как показывает практика, это подобное случается редко.
Вот и все, что хотелось рассказать про ремонт блока питания ресивера спутникового телевидения. Успешного ремонта.
71,696 просмотров всего, 7 просмотров сегодня
smogem-sami.ru
Схемы блоков питания и не только.
Утилиты и справочники.
cables.zip — Разводка кабелей — Справочник в формате .chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.
Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).
Transistors.rar — База данных по транзисторам в формате Access.
Блоки питания.
Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:
Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов
Конт | Обозн | Цвет | Описание | |
---|---|---|---|---|
1 | 3.3V | Оранжевый | +3.3 VDC | |
2 | 3.3V | Оранжевый | +3.3 VDC | |
3 | COM | Черный | Земля | |
4 | 5V | Красный | +5 VDC | |
5 | COM | Черный | Земля | |
6 | 5V | Красный | +5 VDC | |
7 | COM | Черный | Земля | |
8 | PWR_OK | Серый | Power Ok — Все напряжения в пределах нормы. Это сигнал формируется при включении БП и используется для сброса системной платы. | |
9 | Фиолетовый | +5 VDC Дежурное напряжение | ||
10 | 12V | Желтый | +12 VDC | |
11 | 12V | Желтый | +12 VDC | |
12 | 3.3V | Оранжевый | +3.3 VDC | |
13 | 3.3V | Оранжевый | +3.3 VDC | |
14 | -12V | Синий | -12 VDC | |
15 | COM | Черный | Земля | |
16 | /PS_ON | Зеленый | Power Supply On. Для включения блока питания нужно закоротить этот контакт на землю ( с проводом черного цвета). | |
17 | COM | Черный | Земля | |
18 | COM | Черный | ||
19 | COM | Черный | Земля | |
20 | -5V | Белый | -5 VDC (это напряжение используется очень редко, в основном, для питания старых плат расширения.) | |
21 | +5V | Красный | +5 VDC | |
22 | +5V | Красный | +5 VDC | |
23 | +5V | Красный | +5 VDC | |
24 | COM | Черный | Земля |
typical-450.gif — типовая схема блока питания на 450W с реализацией active power factor correction (PFC) современных компьютеров.
ATX 300w .png — типовая схема блока питания на 300W с пометками о функциональном назначении отдельных частей схемы.
ATX-450P-DNSS.zip — Схема блока питания API3PCD2-Y01 450w производства ACBEL ELECTRONIC (DONGGUAN) CO. LTD.
AcBel_400w.zip — Схема блока питания API4PC01-000 400w производства Acbel Politech Ink.
Alim ATX 250W (.png) — Схема блока питания Alim ATX 250Watt SMEV J.M. 2002.
atx-300p4-pfc.png — Схема блока питания ATX-300P4-PFC ( ATX-310T 2.03 ).
ATX-P6.gif — Схема блока питания ATX-P6.
ATXPower.rar — Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.
GPS-350EB-101A.pdf — Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350EB-101A.
GPS-350FB-101A.pdf — Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350FB-101A.
ctg-350-500.png — Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P
ctg-350-500.pdf — Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P
cft-370_430_460.pdf — Схема блоков питания Chieftec CFT-370-P12S, CFT-430-P12S, CFT-460-P12S
gpa-400.png — Схема блоков питания Chieftec 400W iArena GPA-400S8
GPS-500AB-A.pdf — Схема БП Chieftec 500W GPS-500AB-A.
GPA500S.pdf — Схема БП CHIEFTEC TECHNOLOGY GPA500S 500W Model GPAxY-ZZ SERIES.
cft500-cft560-cft620.pdf — Схема блоков питания Chieftec CFT-500A-12S, CFT-560A-12S, CFT-620A-12S
aps-550s.png — Схема блоков питания Chieftec 550W APS-550S
gps-650_cft-650.pdf — Схема блоков питания Chieftec 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B
ctb-650.pdf — Схема блоков питания Chieftec 650W CTB-650S
ctb-650_no720.pdf — Схема блоков питания Chieftec 650W CTB-650S Маркировка платы: NO-720A REV-A1
aps-750.pdf — Схема блоков питания Chieftec 750W APS-750C
ctg-750.pdf — Схема блоков питания Chieftec 750W CTG-750C
cft-600_850.pdf — Схема блоков питания Chieftec CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS
cft-850g.pdf — Схема блока питания Chieftec 850W CFT-850G-DF
cft-1000_cft-1200.pdf — Схема блоков питания Chieftec 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF
colors_it_330u_sg6105.gif — Схема БП NUITEK (COLORS iT) 330U (sg6105).
330U (.png) — Схема БП NUITEK (COLORS iT) 330U на микросхеме SG6105 .
350U.pdf — Схема БП NUITEK (COLORS iT) 350U SCH .
350T.pdf — Схема БП NUITEK (COLORS iT) 350T .
400U.pdf — Схема БП NUITEK (COLORS iT) 400U .
500T.pdf — Схема БП NUITEK (COLORS iT) 500T .
600T.pdf — Схема БП NUITEK (COLORS iT) ATX12V-13 600T (COLORS-IT — 600T — PSU, 720W, SILENT, ATX)
codegen_250.djvu — Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.
codegen_300x.gif — Схема БП Codegen 300w mod. 300X.
PUh500W.pdf — Схема БП CWT Model PUh500W .
Dell-145W-SA145-3436.png — Схема блока питания Dell 145W SA145-3436
Dell-160W-PS-5161-7DS.pdf — Схема блока питания Dell 160W PS-5161-7DS
Dell_PS-5231-2DS-LF.pdf — Схема блока питания Dell 230W PS-5231-2DS-LF (Liteon Electronics L230N-00)
Dell_PS-5251-2DFS.pdf — Схема блока питания Dell 250W PS-5251-2DFS
Dell_PS-5281-5DF-LF.pdf — Схема блока питания Dell 280W PS-5281-5DF-LF модель L280P-01
Dell_PS-6311-2DF2-LF.pdf — Схема блока питания Dell 305W PS-6311-2DF2-LF модель L305-00
Dell_L350P-00.pdf — Схема блока питания Dell 350W PS-6351-1DFS модель L350P-00
Dell_L350P-00_Parts_List.pdf — Перечень деталей блока питания Dell 350W PS-6351-1DFS модель L350P-00
deltadps260.ARJ — Схема БП Delta Electronics Inc. модель DPS-260-2A.
delta-450AA-101A.pdf — Схема блока питания Delta 450W GPS-450AA-101A
delta500w.zip — Схема блока питания Delta DPS-470 AB A 500W
DTK-PTP-1358.pdf — Схема блока питания DTK PTP-1358.
DTK-PTP-1503.pdf — Схема блока питания DTK PTP-1503 150W
DTK-PTP-1508.pdf — Схема блока питания DTK PTP-1508 150W
DTK-PTP-1568.pdf — Схема БП DTK PTP-1568 .
DTK-PTP-2001.pdf — Схема БП DTK PTP-2001 200W.
DTK-PTP-2005.pdf — Схема БП DTK PTP-2005 200W.
DTK PTP-2007 .png — Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)
DTK-PTP-2007.pdf — Схема БП DTK PTP-2007 200W.
DTK-PTP-2008.pdf — Схема БП DTK PTP-2008 200W.
DTK-PTP-2028.pdf — Схема БП DTK PTP-2028 230W.
DTK_PTP_2038.gif — Схема БП DTK PTP-2038 200W.
DTK-PTP-2068.pdf — Схема блока питания DTK PTP-2068 200W
DTK-PTP-3518.pdf — Схема БП DTK Computer model 3518 200W.
DTK-PTP-3018.pdf — Схема БП DTK DTK PTP-3018 230W.
DTK-PTP-2538.pdf — Схема блока питания DTK PTP-2538 250W
DTK-PTP-2518.pdf — Схема блока питания DTK PTP-2518 250W
DTK-PTP-2508.pdf — Схема блока питания DTK PTP-2508 250W
DTK-PTP-2505.pdf — Схема блока питания DTK PTP-2505 250W
EC mod 200x (.png) — Схема БП EC model 200X.
FSP145-60SP.GIF — Схема БП FSP Group Inc. модель FSP145-60SP.
fsp_atx-300gtf_dezhurka.gif — Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.
fsp_600_epsilon_fx600gln_dezhurka.png — Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.
green_tech_300.gif — Схема БП Green Tech. модель MAV-300W-P4.
HIPER_HPU-4K580.zip — Схемы блока питания HIPER HPU-4K580 . В архиве — файл в формате SPL (для программы sPlan) и 3 файла в формате GIF — упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы .spl , используйте схемы в виде рисунков в формате .gif — они одинаковые.
iwp300a2.gif — Схемы блока питания INWIN IW-P300A2-0 R1.2.
IW-ISP300AX.gif —
Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены
выше — выход из строя схемы формирования дежурного напряжения +5VSB ( дежурки ).
Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и
защитного стабилитрона D14 (6-6.3 V ). В худшем случае, к неисправным элементам
добавляются R54, R9, R37, микросхема U3 ( SG6105 или IW1688 (полный аналог SG6105) )
Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ — возможно, это повысит надежность работы дежурки.
IP-P550DJ2-0.pdf — схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов ).
JNC_LC-B250ATX.gif — JNC Computer Co. LTD LC-B250ATX
JNC_SY-300ATX.pdf — JNC Computer Co. LTD. Схема блока питания SY-300ATX
JNC_SY-300ATX.rar — предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.
KME_pm-230.GIF — Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W
L & C A250ATX (.png) — Схемы блока питания L & C Technology Co. модель LC-A250ATX
LiteOn_PE-5161-1.pdf — Схема блоков питания LiteOn PE-5161-1 135W.
LiteOn-PA-1201-1.pdf — Схема блоков питания LiteOn PA-1201-1 200W (полный комплект документации к БП)
LiteOn_model_PS-5281-7VW.pdf — Схема блоков питания LiteOn PS-5281-7VW 280W (полный комплект документации к БП)
LiteOn_model_PS-5281-7VR1.pdf — Схема блоков питания LiteOn PS-5281-7VR1 280W (полный комплект документации к БП)
LiteOn_model_PS-5281-7VR.pdf — Схема блоков питания LiteOn PS-5281-7VR 280W (полный комплект документации к БП)
LWT2005 (.png) — Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N
M-tech SG6105 (.png) — Схема БП M-tech KOB AP4450XA.
Macrom Power ATX 9912 .png — Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)
Maxpower 230W (.png) — Схема БП Maxpower PX-300W
MaxpowerPX-300W.GIF — Схема БП Maxpower PC ATX SMPS PX-230W ver.2.03
PowerLink LP-J2-18 (.png) — Схемы блока питания PowerLink модель LP-J2-18 300W.
Power_Master_LP-8_AP5E.gif — Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).
Power_Master_FA_5_2_v3-2.gif — Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.
microlab350w.pdf — Схема БП Microlab 350W
microlab_400w.pdf — Схема БП Microlab 400W
linkworld_LPJ2-18.GIF — Схема БП Powerlink LPJ2-18 300W
Linkword_LPK_LPQ.gif — Схема БП Powerlink LPK, LPQ
PE-050187 — Схема БП Power Efficiency Electronic Co LTD модель PE-050187
ATX-230.pdf — Схема БП Rolsen ATX-230
SevenTeam_ST-200HRK.gif — Схема БП SevenTeam ST-200HRK
SevenTeam_ST-230WHF (.png) — Схема БП SevenTeam ST-230WHF 230Watt
SevenTeam ATX2 V2 на TL494 (.png) — Схема БП SevenTeam ATX2 V2
hpc-360-302.zip — Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0 заархивированный документ в формате .PDF
hpc-420-302.pdf — Схема блока питания Sirtec HighPower HPC-420-302 420W
HP-500-G14C.pdf — Схема БП Sirtec HighPower HP-500-G14C 500W
cft-850g-df_141.pdf — Схема БП SIRTEC INTERNATIONAL CO. LTD. NO-672S. 850W. Блоки питания линейки Sirtec HighPower RockSolid продавались под маркой CHIEFTEC CFT-850G-DF.
SHIDO_ATX-250.gif — Схемы блока питания SHIDO модель LP-6100 250W.
SUNNY_ATX-230.png — Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230
s_atx06f.png — Схема блока питания Utiek ATX12V-13 600T
Wintech 235w (.png) — Схема блока питания Wintech PC ATX SMPS модель Win-235PE ver.2.03
Схемы блоков питания для ноутбуков.
EWAD70W_LD7552.png — Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на микросхеме LD7552.
KM60-8M_UC3843.png — Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843.
ADP-36EH_DAP6A_DAS001.png — Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A на микросхеме DAP6A и DAS001.
LSE0202A2090_L6561_NCP1203_TSM101.png — Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A на микросхеме NCP1203 и TSM101, АККМ на L6561.
ADP-30JH_DAP018B_TL431.png — Схема блока питания ADP-30JH 30W для ноутбуков 19V 1.58A на микросхеме DAP018B и TL431.
ADP-40PH_2PIN.jpg — Схема блока питания Delta ADP-40PH ABW
Delta-ADP-40MH-BDA-OUT-20V-2A.pdf — Ещё один вариант схемы блока питания Delta ADP-40MH BDA на чипах DAS01A и DAP8A.
PPP009H-DC359A_3842_358_431.png — Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A на микросхемах UC3842 и LM358.
NB-90B19-AAA.jpg — Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A на TEA1750.
PA-1121-04.jpg — Схема блока питания LiteOn PA-1121-04CP на микросхеме LTA702.
Delta_ADP-40MH_BDA.jpg — Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04) на микросхеме DAS01A, DAP008ADR2G.
LiteOn_LTA301P_Acer.jpg — Схема блока питания LiteOn 19V 4.74A на LTA301P, 103AI, PFC на микросхемах TDA4863G/FAN7530/L6561D/L6562D.
ADP-90SB_BB_230512_v3.jpg — Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на микросхеме DAP6A, DSA001 или TSM103A
Delta-ADP-90FB-EK-rev.01.pdf — Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A на микросхеме L6561D013TR, DAP002TR и DAS01A.
PA-1211-1.pdf — Схема блока питания LiteOn PA-1211-1 на LM339N, L6561, UC3845BN, LM358N.
Li-Shin-LSE0202A2090.pdf — Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на микросхемах L6561, NCP1203-60 и TSM101.
GEMBIRD-model-NPA-AC1.pdf — Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W на микросхеме LD7575 и полевом транзисторе MDF9N60.
ADP-60DP-19V-3.16A.pdf — Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A на микросхеме TSM103W (он же M103A) и I6561D.
Delta-ADP-40PH-BB-19V-2.1A.jpg — Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.
Asus_SADP-65KB_B.jpg — Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).
Asus_PA-1900-36_19V_4.74A.jpg — Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A на микросхеме LTA804N и LTA806N.
Asus_ADP-90CD_DB.jpg — Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на микросхеме DAP013D и полевике 11N65C3.
PA-1211-1.pdf — Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).
LiteOn-PA-1900-05.pdf — Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.
LiteOn-PA-1121-04.pdf — Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.
Прочее оборудование.
monpsu1.gif — типовая схема блоков питания мониторов SVGA с диагональю 14-15 дюймов.
sch_A10x.pdf — Схема планшетного компьютера («планшетника») Acer Iconia Tab A100 (A101).
HDD SAMSUNG.rar — архив с обширной подборкой документации к HDD Samsung
HDD SAMSUNG M40S — документация к HDD Samsung серии M40S на английскомязыке.
sonyps3.jpg — схема блока питания к Sony Playstation 3.
APC_Smart-UPS_450-1500_Back-UPS_250-600.pdf — инструкции по ремонту источников бесперебойного питания производства APC на русском языке. Принципиальные схемы многих моделей Smart и Back UPS.
Silcon_DP300E.zip — эксплуатационная документация на UPS Silcon DP300E производства компании APC
symmetra-re.pdf — руководство по эксплуатации UPS Symmetra RM компании APC.
symmetrar.pdf — общие сведения и руководство по монтажу UPS Symmetra RM компании APC (на русском языке).
manuals_symmetra80.pdf — эксплуатационная документация на Symmetra RM UPS 80KW, высокоэффективную систему бесперебойного питания блочной конфигурации, конструкция которой обеспечивает питание серверов высокой готовности и другого ответственного электронного оборудования.
APC-Symmetra.zip — архив с эксплуатационной документацией на Symmetra Power Array компании APC
Smart Power Pro 2000.pdf — схема ИБП Smart Power Pro 2000.
BNT-400A500A600A.pdf — Схема UPS Powercom BNT-400A/500A/600A.
ml-1630.zip — Документация к принтеру Samsung ML-1630
splitter.arj — 2 принципиальные схемы ADSL — сплиттеров.
KS3A.djvu — Документация и схемы для 29″ телевизоров на шасси KS3A.
Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой «Поделиться»
В начало страницы     |     На главную страницу
ab57.ru
Cхемы компьютерных блоков питания ATX
Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.
Cхемы компьютерных блоков питания ATX
Схема JNC LC-250ATX
Схема JNC LC-B250ATX
Схема JNC SY-300ATX
Схема JNC LC-B250ATX
Схема FSP145-60SP
Схема Enlight HPC-250 и HPC-350
Схема Linkworld 200W, 250W и 300W
Схема Green Tech MAV-300W-P4
Схема AcBel API3PCD2 ATX-450P-DNSS 450W
Схема AcBel API4PC01 400W
Схема Maxpower PX-300W
Схема PowerLink LPJ2-18 300W
Схема Shido LP-6100 ATX-250W
Схема Sunny ATX-230
Схема KME PM-230W
Схема Delta Electronics DPS-260-2A
Схема Delta Electronics DPS-200PB-59
Схема InWin IW-P300A2-0
Схема SevenTeam ST-200HRK
Схема SevenTeam ST-230WHF
Схема DTK PTP-2038
Схема PowerMaster LP-8
Схема PowerMaster FA-5-2
Схема Codegen 200XA1 250XA1 CG-07A CG-11
Схема Codegen 300X 300W
Схема ISO-450PP
Схема PowerMan IP-P550DJ2-0
Схема LWT 2005
Схема Microlab 350w
Схема Sparkman SM-400W (STM-50CP)
Схема GEMBIRD 350W (ShenZhon 350W)
Схема блока питания FSP250-50PLA (FSP500PNR)
Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105
Схема блока NT-200ATX (KA3844B+LM339)
Вконтакте
Одноклассники
comments powered by HyperCommentsdiodnik.com
GS-8300 схема спутникового ресивера триколор ТВ
Источник питания Ferex R&D FP09T001 Rev.2 ресиверов собран по схеме импульсного обратноходового преобразователя напряжений, представленной на рис. 12. Входное сетевое переменное напряжение 190…240 В частотой 50 или 60 Гц через плавкую вставку F1, помехоподавляющий фильтр C1LF1, препятствующий проникновению помех от источника в сеть, токоограничивающий резистор RT1 и диодный мост D1—D4 поступает на сглаживающий конденсатор С5.
Последовательный резистор RT1 ограничивает пусковой ток через диодный мост D1—D4 во время зарядки конденсатора С5. Варистор RV1 защищает источник от перенапряжения. При превышении питающим напряжением допустимого значения сопротивление варистора уменьшается, ток, протекающий через него, увеличивается и плавкая вставка F1 перегорает.
Выпрямленное постоянное напряжение проходит через узел управления на первичную обмотку трансформатора Т1. Оно коммутируется мощным полевым транзистором Q1, управляемым ШИ-контроллером U5. Накопленная в трансформаторе энергия передаётся во вторичные обмотки и выпрямляется диодами D5. D7—D9.
Для запуска источника питания при включении в сеть используется выпрямленное напряжение, приходящее через токоограничивающие резисторы R4, R5 на вывод 5 микросхемы U5. После запуска появляется напряжение на вторичных обмотках трансформатора Т1, и микросхема U5 питается напряжением, выпрямленным диодом D5, через ограничивающий ток резистор R19.
Стабилизация выходных напряжений источника питания обеспечивается элементами U2 (оптопара, гальванически развязывающая первичные и вторичные цепи источника) и U3 (стабилизатор напряжения). Номинальные значения выходных напряжений устанавливают делителем R25R26. При их увеличении в процессе работы открывается транзистор в оптопаре U2, а ШИ-контроллер U5 уменьшает длительность импульсов, открывающих транзистор Q1.
В результате энергия, передаваемая во вторичные цепи, уменьшается и, следовательно, уменьшаются выходные напряжения. На мощном полевом транзисторе Q2 и микросхеме U4 собран линейный стабилизатор напряжения +5 В. Его номинальное выходное напряжение устанавливают делителем R35R38. Внешний вид источника питания показан на рис. 13.
www.radiochipi.ru
Схема блока питания на 24 В 9 А, datasheet БП
Давно поглядывал на блок питания 24 Вольта. Читал ранее обзор уважаемого kirich на похожий БП только 6 заявленных Ампер, но моя хотелка требовала брать сразу помощнее. Поэтому выбор пал на более мощный.Упаковка — коробка из простого коричневого картона, заклеенная обычным скотчем. Внутри блок питания в запаянном антистатическом пакете.
Осмотр платы явных косяков не выявил. Ну кроме обычных для китайцев разводов от плохо смытого флюса.
Сначала думал, что входного электролита в 100 мкФ маловато, но тесты показали, что хватает.
Межобмоточный конденсатор Y-типа. Термистор в наличии 5D-11.
ШИМ-контроллер аккуратно затерли. Транзистор, как и в менее мощной серии, аналогичен — 20N60C3. Конденсатор питания ШИМ-контроллера стоял 22 мкФ, поменял на 47 мкФ. Если я ошибся с этим действием, то буду рад, если поправите.
На выходе стоят запараллеленные диодные сборки 20200CT 20A 200V.
Суммарная емкость выходных электролитов (измерял без выпаивания) составила около 3260 мкФ.
И теперь немного отчета по тестам.
Напряжение холостого хода 24.05 В. Пульсации порядка 70 мВ.
Нагрузка 14.5 Ом кучкой цементных двадцативатников. Напряжение 24.05 В. Пульсации больше 60 мВ амплитудой не заметил.
Нагрузка 7.2 Ом кучкой цементных двадцативатников. Ток 3.3 А. Напряжение 24.05 В. Пульсации не больше 60 мВ.
Тест удалось поддерживать минут 5, гроздь резисторов слишком сильно разогрелась и я отключил БП. Оба радиатора были температурой 40-45 градусов.
Специально притащил из гаража нихромовую спираль из проволоки диаметром 1 мм.
Использовал часть спирали, сопротивление при комнатной составило 3.2 Ом. Ток 7.5 А. Напряжение 23.98 В. Пульсации достигли размаха 180 мВ.
Под такой нагрузкой держал максимум секунд 30. Несмотря на вентилятор, раскалялась достаточно быстро и чуть не проплавила мне коврик, на фотографии есть след. Может кто подскажет, после отключения БП, секунд через 10, я замерил сопротивление на клеммах и увидел 2.5 Ом, которое потихоньку росло. Вроде бы с прогревом нихром увеличивает сопротивление или я что-то не догоняю?
Учитывая, что нагружать я его планирую не больше 100 Вт, то думаю есть заявка на долговременную работу без выхода из строя.
Товар куплен за свои кровные, так что простите за то, что не так усердно старался его спалить )))
Update 06.02.2018
Нарыл схемку в инете
mysku.ru
Ремонт спутникового ресивера DRS-5003. Не включается. нетипичная несиправность. Часть 4.
Начало статьи читайте в первой части.
При прозвоне напряжения, идущего с блока питания, выяснилось, что напряжение 1.8 В присутствует в схеме питания этих буферных каскадов (нижний на изображении выше).
Чтобы понять, за что оно отвечает в схеме этих каскадов, пришлось по печатной плате срисовать схему данных буферных каскадов.
Собрана она на двух транзисторах. Соответственно, на вход подается входной сигнал. На выходе мы должны получить тот сигнал, который непосредственно подается на видеовыход и на «RGB» выходы разъема SCART.
Это напряжение 1.8 В идет как питание этого каскада. Но, для данного каскада это очень маленькое напряжение. Потому что размах выходного видеосигнала стандартно составляет 1 В. Плюс падение напряжения на переходе «коллектор-эмиттер» у нас составляет примерно 0.7 В. То есть, мы уже подбираемся к крайнему значению напряжения питания.
Маловероятно, что схема должна запитываться таким маленьким напряжением. Для нормальной работы такого каскада напряжение его питания должно быть от 3 до 5 В.
Следующим шаг. По номеру на самой плате (вверху платы) блока питания находим его схему.
По ней можно узнать, какое напряжение должно быть на этом выводе. На этом ресивере стоит блок питания модель «FP06M024».
Исходя из данных схемы, выходными напряжениями для нашего блока питания являются напряжения +5 В, +30 В, +22 В, +3.3 В и + 12 В. Как видим, в выходных напряжениях данного блока питания отсутствует напряжение 1.8 В.
Если проследить по схеме самого блока питания, что та линия, на которой у нас имеется 1.8 В, на самом деле должна иметь 5 В.
Далее разбираемся, как формируется данное напряжение. Видим, что в данном блоке питания, стабилизация осуществляется по линии 3.3 В. Отсюда берется сигнал для задающего делителя микросхемы U3 TL431. Это у нас управляемый стабилитрон, который непосредственно управляет оптопарой и за счет этого происходит стабилизация выходного напряжения.
12 В – стабилизация идет с помощью линейного стабилизатора 1117 на 12 В.
22 В – жестко не стабилизированы. Стабилизация этого напряжения происходит за счет индуктивной связи обмоток 3.3 В и 22 В. То есть, когда у нас напряжение будет просаживаться, оно будет одинаково просаживаться как на линии 3.3 в, так и на остальных линиях.
Но, линия 3.3 В заведена в цепь управления оптопарой, поэтому, если будет стабилизация по линии 3.3 В, то автоматически будет стабилизация и по остальным напряжениям.
То же самое для напряжения 30 В.
А напряжение 5 В стабилизируется отдельным стабилизатором, который собран на полевом транзисторе U5 и такой же микросхеме, как и в цепи обратной связи, управляемом стабилитроне TL431.
Данный стабилитрон изменяет свое сопротивление между анодом и катодом таким образом, чтобы на управляющем выводе 1 у нас поддерживалось напряжение 2.5 В.
Здесь у нас имеется резистивный делитель. Номиналы сопротивления одинаковые. Поэтому, если на выходе будет 5 В, то в точке деления будет половина этого напряжения.
Соответственно, если выходное напряжение нужно сделать больше, чем 5 В, то сопротивление верхнего резистора нужно увеличивать.
При необходимости получить напряжение меньше 5 В, сопротивление верхнего резистора нужно уменьшать.
Ссылка на видеоинструкцию:
tvsat38.ru
Ремонт сетевого адаптера питания. Его устройство и схема.
Простой ремонт сетевых блоков питания от маломощной электроники
Сетевые адаптеры питания – миниатюрные блоки питания различной электронной бытовой аппаратуры. Применяются для питания антенных усилителей, радиотелефонов, зарядных устройств. Несмотря на активное внедрение импульсных блоков питания, трансформаторные ещё активно используются и находят применение в быту пользователя.
Нередки случаи, что данные трансформаторные блоки выходят из строя.
При поломке адаптера можно его заменить новым, стоимость их невелика. Но зачем отдавать кровные, если в большинстве случаев можно устранить неисправность самому в течение 15–30 минут и избавить себя от поисков замены и траты денег?
Состав обычного маломощного блока питания и его ремонт
На стол ремонта попал адаптер на 12V и ток 0,1A от антенного усилителя.
На фото адаптер после произведённого ремонта.
Из каких частей состоит обычный трансформаторный адаптер?
Если разобрать адаптер питания, то внутри мы обнаружим трансформатор (1) и небольшую электронную схему (2).
Трансформатор (1) служит для понижения переменного сетевого напряжения 220V до уровня 13–15 В.
Электронная схема служит для выпрямления переменного напряжения (превращение его в постоянное напряжение) и его стабилизации на уровне 12V.
Как видим, классический блок питания на основе трансформатора устроен довольно просто. Что же может сломаться в таком простом устройстве?
Взглянем на принципиальную схему.
На принципиальной схеме T1 – это понижающий трансформатор. Типичными неисправностями трансформатора являются перегорание или обрыв провода первичной (Ⅰ), и, реже, вторичной (Ⅱ) обмотки. Как правило, неисправна первичная, сетевая обмотка (Ⅰ).
Причиной обрыва или перегорания служит тонкий провод, который не выдерживает сетевых всплесков напряжения и перегрузок. Скажем спасибо китайцам, они экономные ребята, потолще провод не хотят мотать…
Проверить исправность трансформатора довольно просто. Необходимо измерить сопротивление первичной и вторичной обмоток. Сопротивление первичной обмотки должно составлять несколько единиц килоом (1кОм = 1000 Ом), вторичной – несколько десятков Ом.
При проверке трансформатора сопротивление первичной обмотки оказалось равно 1,8 кОм, что свидетельствует о её целостности. Никакого обрыва нет.
Для вторичной обмотки сопротивление составило 25,5 Ом, что тоже нормально. Трансформатор оказался исправен.
Чтобы получить правильные показания сопротивлений обмоток необходимо придерживаться следующих правил:
При измерении касаться контактных выводов только щупами мультиметра. Браться обеими руками за токоведущие части щупов и проводить измерения недопустимо, так как показания мультиметра будут неверные! Подробно о том, как правильно измерять сопротивление мультиметром, я уже рассказывал.
Помните, человеческое тело тоже обладает сопротивлением и может шунтировать то сопротивление, которое вы замеряете. В данном случае – это сопротивление обмоток. Данное правило справедливо при измерении любых сопротивлений.
Необходимо исключить влияние сопротивлений других деталей. Что это значит? Это значит, что деталь должна быть изолирована от других частей схемы, т.е. выпаяна из платы, отключена.
В случае ремонта адаптера рекомендуется перед замером сопротивления вторичной обмотки отпаять выводы, идущие к электронной схеме. Это поможет исключить влияние сопротивления электронной схемы на замеряемое сопротивление.
Диодный мост на дискретных диодах VD1-VD4 служит для выпрямления переменного тока вторичной обмотки. Распространённая неисправность диодного моста, это «пробой» одного или нескольких диодов, из которых он состоит. При такой неисправности диод превращается в обычный проводник. Проверяются диоды довольно просто, можно даже не выпаивать их из платы, а замерить сопротивление каждого из диодов по отдельности. Если диод пробит, то мультиметр покажет очень низкое сопротивление (0 или единицы Ом).
Чтобы другие элементы схемы не вносили путаницы в показания мультиметра, один из выводов диода лучше выпаять из схемы. После проверки не забываем запаять его обратно.
Конденсаторы С1 и С2 служат для фильтрации напряжения и являются вспомогательными элементами стабилизатора 78L12. Интегральный стабилизатор 78L12 обеспечивает на выходе блока питания стабилизированное напряжение 12V.
Цепь, состоящая из резистора R1 и светодиода VD5, служит для индикации работы устройства. Если какая-либо часть схемы неисправна, например, трансформатор или стабилизатор на микросхеме 78L12, то на выходе блока питания никакого напряжения не будет и светодиод VD5 не засветится. По его свечению, можно сразу определить в чём проблема. Если светится, то вероятнее всего перебит соединительный провод. Ну, а если нет, то, возможно, неисправна электронная начинка блока питания.
Наиболее часто трансформаторные блоки питания для активных антенн выходят из строя по причине выгорания стабилизатора на микросхеме 78L12.
При ремонте блока питания следует придерживаться следующей последовательности действий:
При наличии индикации (светодиод светится) следует искать неисправность в проводах, по которым напряжение поступает на питаемый прибор. Достаточно “прозвонить” провода мультиметром.
При отсутствии индикации следует замерить сопротивление первичной обмотки трансформатора. Сделать это легко, можно даже не разбирать блок питания, а замерить сопротивление обмотки через контакты сетевой вилки.
Разбираем блок питания, производим внешний осмотр. Обращаем внимание на потемневшие участки вокруг радиодеталей, сколы и трещины на корпусах стабилизатора питания (78L12 или аналога), вздутия конденсаторов фильтра.
В процессе ремонта адаптера питания для активной антенны выяснилось, что неисправна микросхема-стабилизатор 78L12. Был также заменён электролитический конденсатор C1 (100мкФ * 16В) на конденсатор с большей ёмкостью – 470 мкФ (25В). При замене конденсатора следует учитывать полярность его включения в схему.
Знать цоколёвку (расположение и назначение) выводов стабилизатора 78L12 не обязательно. Но, необходимо запомнить, зарисовать или сфотографировать расположение неисправной микросхемы на печатной плате. В таком случае, если забудете, как была впаяна микросхема в печатную плату, то у вас уже будет рисунок или фото, по которому легко определить правильную установку элемента в схему.
Главная » Мастерская » Текущая страница
Также Вам будет интересно узнать:
go-radio.ru