Чем отличается импульсный блок питания от обычного: Импульсный блок питания или линейный

Содержание

Импульсный блок питания или линейный

13-01-2013

Импульсный блок питания или линейный. История вопроса

Наверно ни для кого не секрет, что большинство специалистов, радиолюбителей и просто технически грамотных покупателей источников питания с опаской относятся к импульсным блокам питания, отдавая предпочтение линейным.

Причина проста и понятна. Репутация импульсных блоков питания серьезно подорвана еще в 80-х годах, во времена массовых отказов отечественных цветных телевизоров, низкокачественной импортной видеотехники, оснащенных первыми импульсными блоками питания.

Что мы имеем на сегодняшний день? Практически во всех современных телевизорах, видеоаппаратуре, бытовой технике, компьютерах используются импульсные блоки питания. Все меньше и меньше сфер применения линейных (аналоговых, параметрических) источников.

Линейный источник электропитания сегодня в бытовой аппаратуре практически не найдёшь. А стереотип остался. И это не консерватизм, несмотря на бурный прогресс электроники, преодоление стереотипов происходит очень медленно.

Давайте попробуем объективно посмотреть на сегодняшнее положение и попробуем изменить мнение специалистов. Рассмотрим «стереотипные» и присущие импульсным блокам питания недостатки: сложность, ненадёжность, помехи.

Импульсный блок питания.  Стереотип «сложность»

Да, импульсные блоки питания сложные, точнее сказать сложнее аналоговых, но намного проще компьютера или телевизора. Вам не нужно разбираться в их схемотехнике, так же как и в схемотехнике цветного телевизора. Оставьте это профессионалам. Для профессионалов там нет ничего сложного.

Импульсный блок питания. Стереотип «ненадёжность»

Элементная база импульсного блока питания не стоит на месте. Современная комплектация, применяемая в импульсных блоках питания, позволяет сегодня с уверенностью сказать: ненадёжность – это миф.

В основном надежность импульсного блока питания, как и любого другого оборудования, зависит от качества применяемой элементной базы. Чем дороже импульсный блок питания, тем дороже элементная база в нем. Высокая интеграция позволяет реализовать большое количество встроенных защит, которые порой недоступны в линейных источниках.

Импульсный блок питания. Стереотип «помехи»

В схемотехнике импульсных блоков питания заложено формирование мощных импульсов и затухающих колебаний в обмотках трансформатора. Эти коммутационные процессы предопределяют широкий спектр паразитного излучения.
Поэтому корпус и соединительные провода источника могут стать антенной для излучения радиопомех. Но если конструкция импульсного блока питания тщательно проработана, о помехах можно забыть. Кроме этого, благодаря современным технологиям импульсные блоки питания позволяют существенно сгладить пульсации сетевого напряжения.

А какие достоинства импульсного блока питания?

Импульсный блок питания.

Высокий КПД

Высокий КПД (до 98%) импульсного блока питания связан с особенностью схемотехники. Основные потери в аналоговом источнике это сетевой трансформатор и аналоговый стабилизатор (регулятор). В импульсном блоке питания  нет ни того ни другого. Вместо сетевого трансформатора используется высокочастотный, а вместо стабилизатора — ключевой элемент. Поскольку основную часть времени ключевые элементы либо включены, либо выключены, потери энергии в импульсном блоке питания минимальны. КПД аналогового источника может быть порядка 50 %, то есть половина его энергии (и ваших денег) уходит на нагрев окружающего воздуха, проще говоря, улетают на ветер.

Импульсный блок питания. Небольшой вес

Импульсный блок питания имеет меньший вес за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса импульсного блока питания в разы меньше аналогового.

Импульсный блок питания. Меньшая стоимость

Спрос рождает предложение.

Благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности сегодня мы имеем низкие цены силовой базы импульсных блоков питания. Чем больше выходная мощность, тем дешевле стоит источник по сравнению со стоимостью аналогичного линейного источника. Кроме того, главные компоненты аналогового источника (медь, железо трансформатора, радиаторы из алюминия) постоянно дорожают.

Импульсный блок питания. Надёжность

Вы не ослышались, надежность. На сегодняшний момент импульсные блоки питания надёжнее линейных за счет наличия в современных блоках питаниях встроенных цепей защиты от различных непредвиденных ситуаций, например, от короткого замыкания, перегрузки, скачков напряжения, переполюсовки выходных цепей. Высокий КПД обуславливает меньшие теплопотери, что в свою очередь обуславливает меньший перегрев элементной базы импульсного блока питания, что так же является показателем надёжности.

Импульсный блок питания.

Требования к сетевому напряжению

Что творится в отечественных электросетях, вы наверно знаете не понаслышке. 220 Вольт в розетке скорее редкость, чем норма. А импульсные блоки питания допускают широчайший диапазон питающего напряжения, недостижимого для линейного. Типовой нижний порог сетевого напряжения для импульсного блока питания — 90…110 В, любой аналоговый источник при таком напряжении в лучшем случае «сорвется в пульсации» или просто отключится.

Итак, импульсный или линейный? Выбор в любом случае за вами, мы лишь хотели помочь вам объективно взглянуть на импульсные блоки питания и сделать правильный выбор. Только не забывайте, что качественный источник – это источник сделанный профессионально, на базе качественных комплектующих. А качество это всегда цена. Бесплатный сыр только в мышеловке. Впрочем последняя фраза в равной мере относится  к любому источнику, и к импульсному и к аналоговому.

Читайте также по теме

Чем отличается импульсный блок питания от обычного: особенности и отличия

Обновлено: 12.

07.2020 18:18:04

Эксперт: Лев Сагалович

Подавляющее большинство современной электроники работает на постоянном токе с малыми значениями силы и напряжения. Например, роутеры потребляют 12 вольт и 5 ампер, а смартфоны в большинстве случаев – 5 вольт и 2 ампера. Вот только в бытовой сети распространяется совершенно другой ток – переменный, с частотой 60 Гц, напряжением 220 вольт и (обычно) силой до 6 ампер.

Соответственно, для использования электронных приборов в бытовой сети этот ток надо как-то преобразовать. Для этих целей и используются блоки питания. Их задача – трансформация тока для придания ему определённых параметров напряжения, силы, а также частоты (превращения переменного в постоянный).

И если требуется выбрать подходящий блок питания либо соорудить самостоятельно, то чаще всего можно встретить два варианта – обычный, он же трансформаторный, и импульсный. И в чём разница, кроме конструкционной сложности, не всегда понятно. Поэтому в этой статье мы разберёмся, чем отличается импульсный блок питания от обычного, рассмотрим их особенности и отличия.

Ассортимент датчиков контроля сыпучих веществ

Трансформаторные БП.

Особенность блоков питания такого типа заключается в использовании силового трансформатора для изменения напряжения в сети. Устройства понижают амплитуду синусоидальной гармоники и направляют ее в выпрямитель, состоящий из силовых диодов. Сглаживание происходит за счет параллельно подключенной емкости. Окончательная стабилизация питающего напряжения осуществляется в полупроводниковой схеме с резисторами.

Трансформаторные преобразователи до недавнего времени были единственными в своем роде, но имели недостатки:

  • большой вес и крупные габариты;
  • высокую стоимость, зачастую многократно превосходящую цену остальных компонентов сети.

Импульсные БП.

В конструкции устройства нет понижающего трансформатора. Почти во всей современной аппаратуре установлены именно импульсные блоки питания как наиболее компактные и эффективные.

Для чего?

В общем и целом мы определились с задачами блока питания. Но почему он так же важен для пользователя, как и другие составляющие системы? Его качество и параметры напрямую влияют на работоспособность ПК. Замечая какие-то неполадки, пользователь может винить в этом материнку или элементы на ней. Но часто проблема именно в БП. Что это значит? Возможно, ваш блок питания не вытягивает необходимую мощность системы.

Этот вариант может быть вызван тем, что вы добавили на плату, например, дополнительную планку оперативной памяти. А есть и вариант, что модель БП изначально была некачественной, а мощности её было недостаточно. Отсюда и разного рода торможения системы, а иногда и выход из строя компонентов.



Преимущества и недостатки импульсных блоков питания

Основные преимущества ИБП:

  • Малый вес и компактные размеры.
    Уменьшение габаритов устройств обусловлено переходом от использования тяжелых силовых трансформаторов. В ИБП нет линейных управляющих систем, которые требуют установки больших охлаждающих радиаторов. Повышение частоты обрабатываемых сигналов также позволило уменьшить размеры конденсаторов.
  • Высокий КПД.
    Низкочастотные трансформаторы характеризуются значительными потерями энергии в виде тепла, которое образуется в результате электромагнитных преобразований. В ИБП максимальные потери происходят в каскаде силовых ключей во время переходных процессов, а все остальное время транзисторы устойчивы. Потери энергии сведены к минимуму. КПД устройств достигает 98 %.
  • Широкий диапазон входных напряжений.
    Область применения устройств значительно расширена. Импульсные технологии позволяют использовать блоки питания в сетях с различными стандартами электроэнергии.
  • Встроенные системы защиты.

    Большинство моделей имеют автоматическую защиту от токов короткого кроткого замыкания, системы аварийного отключения нагрузок и т. д. Защитные устройства надежно встраиваются в конструкцию блоков благодаря применению миниатюрных цифровых полупроводниковых модулей.
  • Доступная стоимость.
    Элементная база ИБП постоянно унифицируется. Снижается стоимость на основные компоненты устройств, которые выпускаются серийно на автоматических станках. Дополнительное сокращение затрат достигается за счет использования менее мощных полупроводников.

Недостатками ИБП являются:

  • Ограничения по мощности.
    Существуют противопоказания, как при высоких, так и при низких нагрузках. Если в выходной цепи ток упадет ниже критического значения, то блок начинает генерировать напряжение с искаженными характеристиками, либо полностью отказывает схема запуска.
  • Наличие высокочастотных помех.
    Блоки вырабатывают их в любом исполнении. Высокочастотные помехи транслируются в окружающую среду, поэтому необходимо дополнительно решать вопрос об их подавлении. В некоторых видах чувствительной цифровой аппаратуры использование ИБП по этой причине невозможно.

Характеристики ИБП

В продаже представлен огромный выбор вариантов ИБП любых цветов, размеров и разной стоимости. Чем же они отличаются, кроме внешнего вида? Есть ряд основных характеристик, по которым возможны различия:

  1. Эффективная выходная мощность
    . Самое важное свойство, характеризующее агрегат бесперебойного питания. Оно определяет, для использования с какими электроприборами подходит устройство, измеряется в вольт-амперах.
  2. Напряжение, генерируемое устройством на выходе
    . Может быть 1-фазным (для стандартных бытовых приборов на 220 В) и 3-фазным (когда нужна высокая мощность до 380 В).
  3. Автономность
    . Указывает на время работы ИБП с полной нагрузкой, зависит от емкости аккумулятора и измеряется в минутах.
  4. Скорость переключения на работу от батареи
    . Измеряется в миллисекундах, в идеале должна составлять около 5 мс.
  5. Время полной зарядки, срок службы аккумулятора, наличие предохранителей, уровень шума
    – также важные показатели, на которые стоит обратить внимание при выборе устройства.

Принцип работы импульсного источника питания

Устройство работает по принципу инвертора. Сначала переменное напряжение в блоке преобразуется в постоянное, а затем снова в переменное, но уже с необходимой частотой.

Схематически устройство можно представить как совокупность трех цепей:

  • ШИМ-контроллера, который регулирует преобразование широтно-импульсной модуляции;
  • каскада силовых ключей, подключенных по мостовой, полумостовой схеме или по схеме со средней точкой;
  • импульсного трансформатора.

Взаимодействие элементов импульсного БП происходит по следующей схеме:

  • напряжение 220В поступает на выпрямитель. Амплитуда сглаживается за счет работы конденсаторов емкостного фильтра;
  • проходящие синусоиды выпрямляются диодным мостом;
  • транзисторная схема преобразует ток в импульсы прямоугольной формы и высокой частоты.

Преобразование синусоид в импульсы может выполняться с гальваническим отделением питающей сети от выходных сетей или без нее.

Трансформаторный


Линейный блок питания


Схема простейшего трансформаторного источника питания без стабилизации с двухполупериодным выпрямителем
Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора, у которого первичная обмотка рассчитана на сетевое напряжение. Затем устанавливается выпрямитель, преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр, сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от короткого замыкания (КЗ), стабилизаторы напряжения и тока.

Габариты трансформатора

Из 3-го уравнения Максвелла r o t E → = − ∂ B → ∂ t , {\displaystyle \mathrm {rot} \,{\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},} являющегося математической записью закона электромагнитной индукции Фарадея следует, что ЭДС E 1 {\displaystyle E_{1}} , наводимая в одном витке обмотки, охватывающем изменяющийся во времени магнитный поток Φ {\displaystyle \Phi } равна:

E 1 = d Φ d t . {\displaystyle E_{1}={\frac {d\Phi }{dt}}.}

При синусоидальном изменении Φ {\displaystyle \Phi } вида:

Φ ( t ) = Φ 0 ⋅ s i n ( ω t ) , {\displaystyle \Phi (t)=\Phi _{0}\cdot sin(\omega t),} где Φ 0 {\displaystyle \Phi _{0}} — амплитудное (максимальное) значение Φ , {\displaystyle \Phi ,} ω {\displaystyle \omega } — угловая частота, t {\displaystyle t} — время,

следует:

E 1 ( t ) = Φ 0 ⋅ ω ⋅ s i n ( ω t ) , {\displaystyle E_{1}(t)=\Phi _{0}\cdot \omega \cdot sin(\omega t),}

Магнитный поток связан с магнитной индукцией B {\displaystyle B} [2] формулой:

Φ = B ⋅ S , {\displaystyle \Phi =B\cdot S,} где S {\displaystyle S} — площадь витка.

При практически важном в трансформаторах синусоидальном изменении B ( t ) {\displaystyle B(t)} по закону:

B ( t ) = B 0 ⋅ s i n ( ω t ) , {\displaystyle B(t)=B_{0}\cdot sin(\omega t),} где B 0 {\displaystyle B_{0}} — амплитудное (максимальное) значение индукции в сердечнике (магнитопроводе) трансформатора.

Поэтому ЭДС одного витка вторичной обмотки в трансформаторах, первичная обмотка которых питается синусоидальным током и ферромагнитный магнитопровод которых не заходит в магнитное насыщение выражается формулой:

E 1 ( t ) = B 0 ⋅ S ⋅ ω ⋅ s i n ( ω t ) . {\displaystyle E_{1}(t)=B_{0}\cdot S\cdot \omega \cdot sin(\omega t).}

На практике и при расчетах трансформаторов применяется не амплитудное, а среднеквадратическое (эффективное) значение ЭДС или напряжения, которое в случае синусоидального изменения связано с амплитудным значением ЭДС выражением:

E e f f = 2 2 E 0 . {\displaystyle E_{eff}={\frac {\sqrt {2}}{2}}E_{0}.}

Подставляя последнюю формулу в выражение ЭДС для одного витка и учитывая, что

ω = 2 ⋅ π ⋅ f , {\displaystyle \omega =2\cdot \pi \cdot f,} f {\displaystyle f} — частота, имеем основную формулу для расчета числа витков обмоток трансформатора так как ЭДС обмотки прямо пропорционально числу витков в обмотке:

E e f f 1 = 2 ⋅ π ⋅ B 0 ⋅ S ⋅ f ≈ 4 , 43 ⋅ B 0 ⋅ S ⋅ f , {\displaystyle E_{eff1}={\sqrt {2}}\cdot \pi \cdot B_{0}\cdot S\cdot f\approx 4,43\cdot B_{0}\cdot S\cdot f,}

где E e f f 1 {\displaystyle E_{eff1}} — эффективная ЭДС одного витка.

Мощность P {\displaystyle P} , отдаваемая вторичной обмоткой трансформатора:

P = U ⋅ I , {\displaystyle P=U\cdot I,} где U {\displaystyle U} — напряжение обмотки под нагрузкой, I {\displaystyle I} — ток обмотки.

Так как максимальный ток обмотки ограничен предельной плотностью тока в проводниках обмотки при заданном их сечении и U ∼ E e f f 1 {\displaystyle U\sim E_{eff1}} , отсюда следует, что для повышения мощности трансформатора без изменения его размеров следует повышать B 0 {\displaystyle B_{0}} и/или f {\displaystyle f} .

Существенному повышению B 0 {\displaystyle B_{0}} препятствует явление магнитного насыщения сердечника. При насыщении, которое наступает в экстремумах тока первичной обмотки в течение периода, во-первых, падает реактивное сопротивление первичной обмотки, что вызывает увеличение тока холостого хода и увеличение нагрева обмотки за счет омического сопротивления, и, во-вторых, увеличиваются потери на гистерезис, вызванные перемагничиванием магнитопровода, так как увеличивается площадь петли гистерезиса, что вызывает повышение потерь на тепло в магнитопроводе.

С точки зрения потерь в магнитопроводе следует как можно больше снижать максимальную индукцию в магнитопроводе ( B m {\displaystyle B_{m}} ), но такой подход экономически нецелесообразен, так как при прочих равных увеличивает габариты и материалоёмкость трансформатора. Поэтому B m {\displaystyle B_{m}} в магнитопроводе выбирают исходя из разумного компромисса. Причем для трансформаторов малой мощности B m {\displaystyle B_{m}} увеличивают, а для мощных трансформаторов — уменьшают. Это обусловлено тем, что магнитопровод у малогабаритного трансформатора охлаждается эффективнее, чем у крупных трансформаторов. Для электротехнических сталей в трансформаторах промышленной частоты B m {\displaystyle B_{m}} выбирают в пределах 1,1—1,35 в трансформаторах мощностью до сотен и от 0,7 до 1,0 Тл для мощных трансформаторов распределительных подстанций.

Исходя из B m {\displaystyle B_{m}} применяется практическая формула, полученная подстановкой в теоретическое значение ЭДС витка заданного значения B m {\displaystyle B_{m}} и частоты 50 :

E e f f 1 = S 33…70 , {\displaystyle E_{eff1}={\frac {S}{33…70}},}

Здесь S {\displaystyle S} выражено в см2, E e f f 1 {\displaystyle E_{eff1}} — в вольтах. Меньшие значения знаменателя выбирают для маломощных трансформаторов, большие — для мощных.

Другой путь повышения мощности трансформатора — повышение рабочей частоты. Приблизительно можно считать, что при заданных размерах трансформатора его мощность прямо пропорциональна рабочей частоте. Поэтому увеличение частоты в k {\displaystyle k} раз при неизменной мощности позволяет уменьшить размеры трансформатора в ∼ k {\displaystyle \sim {\sqrt {k}}} раз (площадь сечения магнитопровода уменьшается в ∼ k {\displaystyle \sim k} раз), или, соответственно, его массу в ∼ k 3 / 2 {\displaystyle \sim {\sqrt[{3/2}]{k}}} раз.

В частности, в том числе и этими соображениями, в силовых бортовых сетях летательных аппаратов и судов обычно применяется частота 400 Гц с напряжением 115 В.

Но повышение частоты ухудшает магнитные свойства магнитопроводов, в основном из-за увеличения потерь на гистерезис, поэтому при рабочих частотах свыше единиц кГц применяют ферродиэлектрические магнитопроводы трансформаторов, например, ферритовые или изготовленные из карбонильного железа.

Современные источники вторичного электропитания различной бытовой техники, компьютеров, принтеров и др. сейчас практически полностью выполняются по схемам импульсных источников и практически полностью вытеснили классические трансформаторы. В таких источниках гальваническое разделение питаемой цепи и питающей сети, получение набора необходимых вторичных напряжений, производится посредством высокочастотных трансформаторов с ферритовыми сердечниками. Источником высокочастотного напряжения являются импульсные ключевые схемы с полупроводниковыми ключами, обычно транзисторными. Применение таких устройств, часто называемых инверторами позволяет многократно снизить массу и габариты устройства, а также, дополнительно — повысить качество и надёжность электропитания, так как импульсные источники менее критичны к качеству электропитания в первичной сети, — они менее чувствительны к всплескам и провалам сетевого напряжения, изменениям его частоты.

Достоинства и недостатки

Достоинства трансформаторных БП.

  • Простота конструкции.
  • Надёжность.
  • Доступность элементной базы.
  • Отсутствие создаваемых радиопомех[прим 1] (в отличие от импульсных, создающих помехи за счёт гармонических составляющих[3]).

Недостатки трансформаторных БП.

  • Большой вес и габариты, пропорционально мощности.
  • Металлоёмкость.
  • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

Виды импульсных блоков питания

С гальванической развязкой.

Высокочастотные сигналы поступают на трансформатор, ответственный за гальваническую развязку цепей. Устройства такого типа имеют более компактный магнитопровод и характеризуются повышенной эффективностью использования. Чаще всего сердечник трансформатора изготавливают из ферромагнетиков, а не из электротехнических сталей, что также позволяет уменьшить размеры элементов.

Без гальванической развязки.

В схеме импульсного БП отсутствует высокочастотный разделительный трансформатор. Питающий сигнал поступает на фильтр нижних частот.

Взаимосвязь

Можно считать, что в системе БП – это как завершающий штрих, который не менее важен, чем остальные составляющие. Проведя анализ собранной системы, вы будете понимать, какая модель вам нужна. Так, глядя на материнскую плату, вам необходимо будет разобраться с разъемом. Он может быть на 20 или 24 пина, либо же быть сборным 20+4 пина. Для современных моделей нужен провод для питания процессора, поэтому могут понадобиться дополнительные кабели на 6 или 8 пинов.

Необходимо будет и синхронизироваться с жестким диском и дисководом. Тут тоже стоит посмотреть на модель ЖД, чтобы понять, какие кабели и разъемы необходимы: либо molex, либо SATA. К видеокарте тоже нужно выбрать подход в зависимости от наличия отдельных разъемов. Есть выход из «лап» несовместимости – это переходники. Они чаще всего спасут вас, если вы что-то недоглядели.

Принципиальная схема импульсного блока питания

Основные элементы импульсных блоков питания:

  • сетевой выпрямитель;
  • накопительная фильтрующая емкость;
  • силовой транзистор;
  • генератор;
  • транзисторная схема обратной связи;
  • оптопара;
  • импульсный источник питания;
  • выходной диодный выпрямитель;
  • цепи управления выходного напряжения;
  • фильтрующие конденсаторы;
  • дроссели, предназначенные для диагностики и коррекции напряжения;
  • выходные разъемы.

Если в устройстве используется преобразователь постоянного напряжения, то первые два компонента становятся не нужными. Сигнал проходит непосредственно на ШИМ (широтно-импульсный модулятор). Этот элемент является самым сложным в конструкции ИБП. Его основные функции:

  • генерация импульсов высокой частоты;
  • контроль и коррекция частотной последовательности с учетом данных обратной связи;
  • защита от перегрузок.

С ШИМ-модуля сигнал поступает на ключевые транзисторы. Их силовые выводы нагружены на первичную обмотку высокочастотного трансформатора. В конструкции ИБП вместо обычных биполярных транзисторов используют элементы MOSFET или IGBT, которые характеризуются минимальным падением напряжения и быстродействием.

Со вторичной обмотки импульсного трансформатора (таких элементов может быть несколько в цепи) напряжение подается на выходные диоды с повышенной рабочей частотой. Чаще всего в конструкциях используют диоды Шоттки.

Функция выходного фильтра – уменьшение пульсаций выпрямленного напряжения.

Рейтинг ИБП

Какие же устройства получили популярность у пользователей? Вот самые удачные модели каждого из типов:

  1. Powercom WOW-850 U
    . Источник бесперебойного питания резервного типа. При очень компактных размерах выполняет свои функции без нареканий. Оснащен тремя розетками с защитой от попадания сторонних предметов и USB-портом. Подключает батарею после звукового сигнала при мощности сети в 165 Вт и ниже.
  2. APC by Schneider Electric Smart-UPS 1500VA LCD 230V
    . За разумную цену обладает превосходными параметрами. Оснащен мощными батареями емкостью в 17 Ач, отличной системой охлаждения и информативным дисплеем с системой настройки. Рассчитан максимум на 8 устройств.
  3. APC by Schneider Electric Smart-UPS RT 10000VA 230V
    . Дорогое серьезное устройство, обладающее максимальной надежностью и давно завоевавшее любовь пользователей. Способно работать от генератора, легко настраивается и управляется.

Сферы применения импульсных блоков питания

Малогабаритные ИБП на интегральных микросхемах применяются в конструкции зарядных устройств для электронных гаджетов: планшетов, телефонов, электронных книг. Элементы такого типа востребованы также в производстве телевизоров, усилителей, медицинских приборов, низковольтных осветительных установок.

Выбирайте и заказывайте блоки питания в каталоге . Мы предлагаем широкий модельный ряд, выгодные цены, предоставляем грамотные консультации по характеристикам устройств. Для связи со специалистами позвоните по телефонам +375 (17) 513-99-92

или
+375 (17) 513-99-93
.

Разнообразие

В зависимости от ваших целей и всей собираемой системы, нужно обращать внимание и на покупку блока питания. У них есть несколько разновидностей, хотя самым популярным все равно считается форм-фактор ATX. Он уже имеет установленные и стандартизированные характеристики. Хотя есть и модификации от отдельных производителей с несколько видоизмененными габаритами и параметрами. Поэтому, если вы увидели, что в спецификациях указан форм-фактор ATX, это еще не значит, что перед вами подходящая модель.

Конечно, сборку системы не стоит начинать конкретно с покупки БП. Изначально стараются все строить на материнской плате, а потом, в соответствии с требованиями напряжений компонентов на материнке, и выбирают блок питания.

Литература

  • Вересов Г. П.
    Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — С. 5. — 128 с. — 60 000 экз. (недоступная ссылка)
  • Китаев В. В. и др.
    Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз. (недоступная ссылка)
  • Битюков В.К. Симачков Д.С.
    Источники вторичного электропитания. М.. — Инфра-Инженерия, 2017. — 326 с. — ISBN 978-5-9729-0171-5.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А.
    Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.

Отличие импульсного блока питания от трансформаторного

Автор Евгения На чтение 26 мин. Опубликовано

Отличие импульсного блока питания от трансформаторного

Что такое импульсный блок питания и чем он отличается от обычного аналогового

Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

Для этого создаются дополнительные элементы: блоки питания, преобразующие напряжение одного вида в другой. Они могут быть:

встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;

или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

2. импульсных блоках питания.

Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

Трансформаторные блоки питания

Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

Импульсные блоки питания (ИБП)

Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

доступностью комплектования распространенной элементной базой;

надежностью в исполнении;

возможностями расширения рабочего диапазона выходных напряжений.

Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

В состав основных деталей источников питания входят:

сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;

накопительная фильтрующая емкость;

ключевой силовой транзистор;

схема обратной связи, выполненная на транзисторах;

импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;

выпрямительные диоды выходной схемы;

цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;

силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;

Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

Как работает импульсный блок питания

Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

Входной диодный мост выпрямляет проходящие через него синусоиды, которые затем преобразуются транзисторной схемой в импульсы высокой частоты и прямоугольной формы с определенной скважностью. Они могут преобразовываться:

1. с гальваническим отделением сети питания от выходных цепей;

2. без выполнения подобной развязки.

Импульсный блок питания с гальванической развязкой

В этом случае высокочастотные сигналы направляются на импульсный трансформатор, осуществляющий гальваническую развязку цепей. За счет повышенной частоты увеличивается эффективность использования трансформатора, снижаются габариты его магнитопровода и вес. Чаще всего для материала подобного сердечника применяют ферромагнетики, а электротехнические стали в этих устройствах практически не используются. Это также позволяет минимизировать общую конструкцию.

Один из вариантов исполнения схемы импульсного блока питания с трансформаторной развязкой цепей показан на картинке.

В таких устройствах работают три взаимосвязанных цепочки:

2. каскад из силовых ключей;

3. импульсный трансформатор.

Как работает ШИМ-контроллер

Контроллером называют устройство, которое управляет каким-либо технологическим процессом. В рассматриваемых нами блоке питания им выступает процесс преобразования широтно-импульсной модуляции. В его основу заложен принцип выработки импульсов одинаковой частоты, но с разной длительностью включения.

Подача импульса соответствует обозначению логической единицы, а отсутствие — нуля. При этом они все равны по величине амплитуды и частоте (имеют одинаковый период колебаний Т). Продолжительность включенного состояния единицы и его отношение к периоду меняются и позволяют управлять работой электронных схем.

Типовые изменения ШИП-последовательностей показаны на графике.

Контроллеры обычно создают подобные импульсы с частотой 30÷60 кГц.

В качестве примера можно привести контроллер, выполненный на микросхеме TL494. Для настройки частоты выработки его импульсов используется схема, состоящая из резисторов с конденсаторами.

Работа каскада из силовых ключей

Он состоит из мощных транзисторов, которые подбираются из биполярных, полевых или IGBT-моделей. Для них может быть создана индивидуальная система управления на других маломощных транзисторах либо интегральных драйверах.

Силовые ключи могут быть включены по различным схемам:

со средней точкой.

Импульсный трансформатор

Первичная и вторичная обмотки, смонтированные вокруг г магнитопровода из феррита или альсифера, способны надежно передавать высокочастотные импульсы с частотой вплоть до 100 кГц.

Их работу дополняют цепочки из фильтров, стабилизаторов, диодов и других компонентов.

Импульсные блоки питания без гальванической развязки

В импульсных блоках питания, разработанных по алгоритмам, исключающим гальваническое разделение, высокочастотный разделительный трансформатор не используется, а сигнал поступает сразу на фильтр нижних частот. Подобный принцип работы схемы показан ниже.

Особенности стабилизации выходного напряжения

Все импульсные блоки питания имеют в своем составе элементы, осуществляющие отрицательную обратную связь с выходными параметрами. За счет этого они обладают хорошей стабилизацией выходного напряжения при изменяющихся нагрузках и колебаниях питающей сети.

Способы реализации обратной связи зависят от применяемой схемы для работы блока питания. Она может осуществляться у блоков, работающих с гальванической развязкой за счет:

1. промежуточного воздействия выходного напряжения на одну из обмоток высокочастотного импульсного трансформатора;

2. применения оптрона.

В обоих случаях эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера.

При использовании схемы без гальванической развязки обратная связь обычно создается за счет подключения резистивного делителя напряжения.

Преимущества импульсных блоков питания над обычными аналоговыми

При сравнении конструкций блоков с равными показателями выходных мощностей импульсные блоки питания обладают следующими достоинствами:

1. уменьшенный вес;

2. повышенный КПД;

3. меньшая стоимость;

4. расширенный диапазон питающих напряжений;

5. наличие встроенных защит.

1. Пониженный вес и габариты импульсных блоков питания объясняются переходом от преобразований низкочастотной энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на больших радиаторах охлаждения и работающими в постоянном линейном режиме, к технологиям импульсного преобразования и регулирования.

За счет повышения частоты обрабатываемого сигнала сокращается емкость конденсаторов у фильтров напряжения и, соответственно, их габариты. Также упрощается их схема выпрямления вплоть до перехода к самой простой — однополупериодной.

2. У низкочастотных трансформаторов значительная доля потерь энергии создается за счет выделения и рассеивания тепла при выполнении электромагнитных преобразований.

В импульсных блоках наибольшие потери энергии создаются во время возникновения переходных процессов при коммутациях каскадов силовых ключей. А в остальное время транзисторы находятся в устойчивом положении: открыты или закрыты. При таком их состоянии создаются все условия для минимальной потери электроэнергии, когда КПД может составлять 90÷98%.

3. Цена на импульсные блоки питания постепенно снижается за счет постоянно проводимой унификации элементной базы, которая производится широким ассортиментом на полностью механизированных предприятиях со станками-роботами. К тому же режим работы силовых элементов на основе управляемых ключей позволяет использовать менее мощные полупроводниковые детали.

4. Импульсные технологии позволяют запитывать блоки питания от источников напряжения с разной частотой и амплитудой. Это расширяет область их применения в условиях эксплуатации с различными стандартами электрической энергии.

5. Благодаря использованию малогабаритных полупроводниковых модулей, работающих по цифровым технологиям, в конструкцию импульсных блоков удается надежно встраивать защиты, контролирующие возникновение токов коротких замыканий, отключения нагрузок на выходе прибора и другие аварийные режимы.

У обычных трансформаторных блоков питания такие защиты создавались на старой электромеханической, релейной, полупроводниковой базе. Применять сейчас для них цифровые технологии в большинстве схем не имеет смысла. Исключение составляют случаи питания:

маломощных цепей управления сложной бытовой техники;

слаботочных устройств управления высокой точности, например, используемых в измерительной технике или метрологических целях (цифровые счетчики электроэнергии, вольтметры).

Недостатки импульсных блоков питания

В/ч помехи

Поскольку импульсные блоки питания работают по принципу преобразования высокочастотных импульсов, то они в любом исполнении вырабатывают помехи, транслируемые в окружающую среду. Это создает необходимость их подавления различными способами.

В отдельных случаях помехоподавление может быть неэффективным, что исключает использование импульсных блоков питания для отдельных типов точной цифровой аппаратуры.

Ограничения по мощности

Импульсные блоки питания имеют противопоказание к работе не только на повышенных, но и пониженных нагрузках. Если в выходной цепи произойдет резкое снижение тока за предел минимального критического значения, то схема запуска может отказать или блок станет выдавать напряжение с искаженными техническими характеристиками, не укладывающимися в рабочий диапазон.

Искусственный интеллект нашего сайта решил, что эти статьи вам будут особенно полезны:

Отличия импульсного блока питания от обычного

Отличия импульсного блока питания от обычного

Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.

Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

Трансформаторные блоки питания

Самым распространенным блоком питания считается конструкция, в составе которого имеется понижающий трансформатор, его определенная обязанность – понижать входное напряжение. Его первичная обмотка намотана с учетом работы с сетевым напряжением. Кроме понижающего трансформатора в таком БП установлен еще выпрямитель собранный на диодах, как правило применяется две пары выпрямительных диодов (диодный мост) и конденсаторах фильтра. Такое устройство служит для преобразования однонаправленного пульсирующего переменного напряжение в постоянное. Не редко применяются и другие конструктивно выполненные устройства, например, выполняющий в выпрямителях функцию удвоения напряжения. Кроме сглаживающих пульсации фильтров, там же могут быть элементы фильтра помех высокой частоты и всплесков, схема защиты от короткого замыкания, полупроводниковые приборы для стабилизации напряжения и тока.


Схема простейшего трансформаторного БП c двухполупериодным выпрямителем

Достоинства трансформаторных блоков питания

● Простота в конструировании
● Высокая надежность
● Доступность составляющих компонентов
● Отсутствие паразитных радио-волновых помех (Отличия блоков питания от импульсных блоков питания, которые создают помехи в виде напряжений и токов синусоидальной формы, которые во много раз выше частоты электросети)
● Имеющиеся недостатки трансформаторных блоков питания
● Солидный вес и размеры, особенно высокомощные
● Для изготовления требуется много железа
● Компромиссное решение относительно уменьшения КПД и высокой стабильностью напряжения на выходе: для получения стабильного напряжения необходим стабилизатор, с применением которого появляются дополнительные потери.

Импульсные блоки питания

Отличия импульсного блока питания от обычного – импульсные источники питания это инверторное устройство и является составляющей частью аппаратов бесперебойного электрического питания. В импульсных блоках переменное напряжение на входе вначале выпрямляется, а потом формирует импульсы определенной частоты. Преобразованное выходное постоянное напряжение имеет импульсы прямоугольной формы высокой частоты поступающее на трансформатор или сразу на выходной фильтр нижних частот. В импульсных блоках питания часто используются небольшие по размерам трансформаторы — это вызвано тем, что при возрастании частоты увеличивается эффективность работы устройства, тем самым становятся меньше требования к размерам магнитопровода, необходимого для отдачи равнозначной мощности. В основном такой магнитопровод изготавливается из ферромагнитных материалов служащих проводниками магнитного потока. Отличия источников питания в частности от сердечника трансформатора низкой частоты, для изготовления которых применяется электротехническая сталь.

Отличия импульсного блока питания от обычного – происходящая в импульсных источниках питания стабилизация напряжения возникает за счет цепи отрицательной обратной связи. ООС дает возможность обеспечивать выходное напряжение на достаточно устойчивом уровне не взирая на периодические скачки входящего напряжения и значение сопротивления нагрузки. Отрицательную обратную связь также можно создать иными способами. Относительно импульсных источников питания имеющих гальваническую развязку от электрической сети, наиболее применяемый в таких случаях способ – это образование связи с помощью выходной обмотки трансформатора либо воспользоваться оптроном. С учетом значения величины сигнала отрицательной обратной связи, которое зависит от напряжения на выходе, меняется скважность импульсных сигналов на выходном выводе ШИМ-контроллера. Если можно обойтись без гальванической развязки то, в таком случае, применяется обычный делитель напряжения собранный на постоянных резисторах. В конечном итоге, источник питания обеспечивает выходное напряжение стабильного характера.

Принципиальная схема простейшего однотактного импульсного БП

Достоинства импульсных блоков питания

● Если сравнивать относительно выходной мощности линейный стабилизатор и импульсный, то последний имеет некоторые достоинства:
● Относительно небольшой вес, получившийся в следствии того, что с увеличением частоты можно применять трансформаторы малых габаритов имея аналогичную выдаваемую выходную мощность.
● Большой вес линейного стабилизатора получается за счет использования массивных силовых трансформаторов, а также тяжелых теплоотводов силовых компонентов.
● Высокий КПД, который составляет около 98% полученный в следствии того, что штатные потери происходящие в импульсных стабилизирующих устройствах зависят от переходных процессов на стадии переключения ключа.
● Поскольку больший отрезок времени ключи находятся в стабильном либо включенном или выключенном состоянии, то соответственно и энергетические потери ничтожны;
● Относительно небольшая стоимость, образовавшаяся в следствии выпуска большого количества необходимых электронных элементов, в частности появление на рынке электронных товаров высокомощных транзисторных ключей. ● Помимо всего этого необходимо заметить существенно малую стоимость импульсных трансформаторов при аналогичной отдаваемой в нагрузку мощности.
● Имеющиеся в подавляющем большинстве блоках питания установленных схем защиты от всевозможных нештатных ситуаций, таких как защита от короткого замыкания или если не подключена нагрузка на выходе устройства.

Лабораторный блок питания: импульсный или линейный какой выбрать? Устройство, схемы и их сравнение.

Лабораторный блок питания представляет собой востребованное среди профессионалов оборудование, которое активно используется инженерами, занимающимися разработкой и ремонтом различных электронных устройств. В настоящий момент существует огромное количество лабораторных источников питания. Число самых разных вариаций столь велико, что новичку будет непросто сориентироваться в таком многообразии оборудование. Чтобы выбрать оптимальный источник питания для определенных целей, рекомендуется разобраться в особенностях различных типов блоков, а уже после принимать решение о покупке.

Классификация лабораторных источников питания

Лабораторные источники питания можно классифицировать по самым разным параметрам. Наиболее популярный метод классификации – по принципу действия, в соответствии с которым все источники питания можно разделить на импульсные и линейные. Последние также называют трансформаторными.

Каждый из типов блоков имеет свои преимущества. Так, к примеру, импульсный блок питания характеризуется высоким коэффициентом полезного действия и значительно большей мощностью по сравнению с трансформаторными агрегатами. В тоже время линейный источник питания обладает такими достоинствами как простота и надежность конструкции, а также низкая стоимость ремонта и ценовая доступность запчастей.

Линейный блок питания

Традиционным блоком питания является линейный блок. Его конструкция состоит из автотрансформатора и понижающего трансформатора. Также имеется выпрямитель, который преобразует переменное напряжение в постоянное. Преимущественное большинство моделей укомплектовано выпрямителем, состоящим из одного или четырёх диодов, составляющих так называемые диодный мост. При этом есть и другие конструкционные схемы, но они используются гораздо реже. В некоторых моделях после выпрямителя может быть инсталлирован специальный фильтр, который стабилизирует колебания в сети. Как правило, эту функцию выполняет высокоемкостный конденсатор. В некоторых моделях предусмотрены фильтры высокочастотных помех, стабилизаторы тока и напряжения и многое другое. Простейший линейный блок питания, возможно, сделать своими руками, при этом, основным и самым дорогим компонентом является понижающий трансформатор – Т1.

Схема линейного блока питания

Среди мастеров, которые специализируются на ремонте и обслуживании электроники и радиотехники, самым востребованным линейным блоком питания считается модель с выходными характеристиками напряжения в регулируемом диапазоне 0-30 В и тока в диапазоне 0-5А, например – источник питания постоянного тока YIHUA-305D. Этот блок представляет собой высокоточный агрегат, с помощью которого можно легко и тонко настраивать параметры переменного тока и напряжения в установленных номинальных рамках. Оборудование функционирует в двойном режиме – цифровой индикатор одновременно показывает актуальные показатели напряжение и выходного тока. Кроме того, данная модель имеет режим защиты от короткого замыкания (кз), перегрузки по току и функцию самовосстановления.

Импульсный блок питания

В наши дни преимущественное большинство используемых блоков питания – это агрегаты импульсного типа. Эти блоки представляют собой фактически инверторную систему. Принцип их работы прост – происходит предварительное выпрямление входного напряжения, после чего оно преобразуется в импульсы с увеличенной частотой и необходимыми параметрами скважности. В импульсных блоках питания используются небольшие трансформаторы, которых более чем достаточно, поскольку увеличение частоты повышает эффективность трансформатора, а значит нет необходимости в больших габаритах. Нередко сердечник трансформатора изготавливается из ферромагнитных материалов, что, помимо всего прочего, существенно облегчает конструкцию.

Что же обеспечивает стабилизацию напряжения? Эту функцию берёт на себя отрицательная обратная связь, которая поддерживает выходное напряжение на одном уровне. При этом не учитывается величина нагрузки и колебания входного напряжения. Импульсный блок питания, также возможно сделать, своими руками, но в этом случае основными компонентами являются, линейный регулятор – LM7809, либо ШИМ контроллер TL494, а также импульсный трансформатор Т1.

Схема простого импульсного блока питания

Наиболее востребованным среди профессионалов импульсным агрегатом, который пользуется спросом и среди любителей, и среди профессионалов, считается импульсный блок питания MAISHENG MS305D – эталон компактности и удобства. Этот лабораторный источник импульсного типа идеально подходит для стабильной работы самых разных электронных схем и устройств. Конструкцией предусмотрена возможность настраивать параметры переменного тока в диапазоне от 0 до 5 А и напряжения от 0 до 30 В, защита от кз, перегрева и перегрузки по току. Данная модель укомплектована плавными регуляторами, которые облегчают точный подбор напряжения и тока. Прибор оснащен удобным цифровым дисплеем, на котором в реальном времени отображаются параметры напряжения и переменного тока.

Что же выбрать? Преимущества и недостатки линейных и импульсных блоков питания.

К достоинствам импульсных агрегатов нужно отнести:
• Высокий коэффициент стабилизации;
• Высокий коэффициент полезного действия;
• Более широкий диапазон входных напряжений;
• Более высокая мощность по сравнению с линейными устройствами.
• Отсутствие чувствительности к качеству электропитания и частоте входного напряжения;
• Небольшие габариты и достойная транспортабельность;
• Доступная цена.

К явным недостаткам импульсных источников питания стоит отнести:
• Наличие импульсных помех;
• Сложность схем, что негативно сказывается на надежности;
• Ремонт далеко не всегда удается произвести своими руками.

Трансформаторные блоки питания также имеют ряд плюсов, среди которых:
• Простота и надежность конструкции;
• Высокая ремонтопригодность и дешевизна запчастей;
• Отсутствие радиопомех;

Как вы понимаете, у трансформаторных блоков питания есть и недостатки, среди которых:
• Большой вес и габариты, что часто делает транспортировку очень неудобной;
• Обратная зависимость между КПД и стабильностью выходного напряжения;
• Металлоемкость конструкции.

Лабораторные блоки питания на сегодняшний день представлены огромным ассортиментом агрегатов. Спросом пользуются и импульсные, и трансформаторные блоки. Удачный выбор оборудования напрямую зависит от того, какие цели вы преследуете, приобретая блок питания. Если вы хотите всегда иметь под рукой надежный агрегат с отсутствием радиопомех, который редко ломается и легко поддается ремонту, тогда стоит обратить внимание на трансформаторные блоки питания. Если же для вас важна мощность и коэффициент полезного действия, тогда вам стоит подробнее изучить импульсные устройства.

Наиболее мощные лабораторный блоки питания представлены импульсными моделями:

Отличие импульсного блока питания от трансформаторного

НЕСТАБИЛИЗИРОВАННЫЕ блоки питания – самые распространенные трансформаторные блоки питания. Обеспечивают выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор и выпрямитель. В нестабилизированных блоках питания выходное напряжение соответствует номинальному только при номинальном сетевом напряжении (220V) и номинальном токе нагрузки.

Эти блоки пригодны для питания осветительных и нагревательных приборов, электромоторов и любых устройств со встроенным стабилизатором напряжения (например, большинство радиотелефонов и автоответчиков).

Такие блоки питания как правило имеют значительный уровень пульсаций сетевого напряжения и не пригодны для питания звуковой техники (радиоприемников, плееров, музыкальных синтезаторов). Для этих устройств следует применять стабилизированные блоки питания.

СТАБИЛИЗИРОВАННЫЕ блоки питания. Обеспечивают СТАБИЛИЗИРОВАННОЕ выходное напряжение ПОСТОЯННОГО ТОКА. Такой блок питания содержит сетевой трансформатор, выпрямитель и стабилизатор. СТАБИЛИЗИРОВАННЫЙ – означает, что выходное напряжение не зависит (или почти не зависит) от изменения сетевого напряжения (в разумных пределах) и от изменения тока нагрузки. В отличие от нестабилизированных блоков питания в стабилизированных выходное напряжение будет одинаковым как на холостом ходу так и при номинальной нагрузке. Кроме того, в таких блоках питания как правило достаточно малы пульсации напряжения переменного тока на выходе.

Стабилизированный блок питания практически всегда может заменить нестабилизированный (но разумеется не наоборот). Поэтому, если Вы не знаете, какой блок питания постоянного тока нужен для Вашей бытовой аппаратуры – стабилизированный или нестабилизированный, то используйте СТАБИЛИЗИРОВАННЫЙ или ИМПУЛЬСНЫЙ блок питания.

ИМПУЛЬСНЫЕ блоки питания также обеспечивают на выходе СТАБИЛИЗИРОВАННОЕ напряжение постоянного тока. При этом ИМПУЛЬСНЫЕ блоки питания имеют следующие преимущества по сравнению с трансформаторными:

  • Большой КПД
  • Незначительный нагрев
  • Малый вес и габариты
  • Как правило бОльший допустимый диапазон сетевого напряжения
  • Как правило имеют встроенную защиту от перегрузки и замыканий на выходе

Преимущества импульсных блоков питания растут с увеличением мощности т.е. для самой маломощной бытовой аппаратуры их применение может быть экономически не оправдано, а блоки питания мощностью от 50Вт уже существенно дешевле в импульсном варианте.

ИМПУЛЬСНЫЕ блоки питания получают все большее распространение т.к. сейчас затраты на изготовление даже сложной электронной начинки ниже чем на массивный сетевой трансформатор из меди и железа. Стоимость импульсных блоков питания даже малой мощности (около 5Вт) для такой бытовой техники как, например, радиотелефоны и автоответчики, вплотную приближается к стоимости трансформаторных. Следует также учитывать экономию на транспортных расходах при доставке – импульсные блоки питания легче трансформаторных.

Некоторые люди имет предубеждение против применения импульсных блоков питания. С чем оно может быть связано?

  1. Импульсные блоки питания схемотехнически сложнее трансформаторных. Самостоятельный ремонт их пользователем вряд ли возможен;
  2. Блоки питания самодельщиков и мелких кооперативов 90-х годов прошлого века отличались малой надежностью. Сейчас это не так – по нашему опыту процент отказов (по различным причинам, в т.ч и из-за перегрузок и перепадов сетевого напряжения) у импульсных блоков питания не превышает этого показателя у трансформаторных .

Уже несколько десятилетий ряд приборов традиционно поставляются с импульсными блоками питания – это в первую очередь все компьютеры, ноутбуки, практически все современные телевизоры. Страшно представить их с классическими трансформаторными блоками питания – их размеры и вес возрасли бы вдвое!

Современные ИМПУЛЬСНЫЕ блоки питания достаточно надежны. Например, на все блоки питания Robiton® дается гарантия 1 год.

ЗАРЯДНЫЕ УСТРОЙСТВА – под зарядными устройствами будем понимать устройства, предназначенные исключительно для заряда аккумуляторов различных типов. При этом аккумуляторы могут в процессе заряда располагаться как внутри зарядного устройства так и снаружи. Однако, например, сетевые адаптеры для радиотелефонов, ноутбуков будем относить к БЛОКАМ ПИТАНИЯ т.к. во-первых аккумуляторы при этом подключаются к устройству заряда не напрямую, а через базу радиотелефона или ноутбук, а во-вторых кроме заряда аккумуляторов такой блок питания как правило обеспечивает и работу от сети данного бытового прибора.

Таким образом, будем относить к ЗАРЯДНЫМ УСТРОЙСТВАМ, например, устройство заряда аккумуляторов для фотоаппарата, если аккумуляторы при этом вынимаются из него и вставляются в зарядное устройство. А сетевой адаптер, подключаемый к фотоаппарату (и при этом также обеспечивающий заряд аккумуляторов, но уже внутри него) отнесем к БЛОКАМ ПИТАНИЯ.

Импульсный трансформатор

Импульсный трансформатор (ИТ) — это трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Особенностью работы импульсных трансформаторов является то, что на их первичную обмотку поступают однополярные импульсы, которые содержат постоянную составляющую тока, поэтому сердечник работает с постоянным подмагничиванием.

Импульсные трансформаторы применяются в устройствах связи, автоматики, вычислительной техники, при работе короткими импульсами, для изменения их амплитуды и полярности, исключения постоянной.

Импульсный трансформатор в чем основные отличие от обычного

У импульсного трансформатора (ИП) в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

  1. Размер — импульсного трансформатора обратно пропорционален его рабочей частоте.
  2. Работает трансформатор импульсный от обычного в другой частоте входного напряжения.

В настоящее время большинство блоков питания выполняют на импульсных трансформаторах. Здесь снижение затрат на производство, удешевление стоимости изделия, экономия размеров и веса.

Наиболее важной функцией импульсников является стабилизация напряжения выхода в рабочем режиме.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Особенности конструкций

Основной особенностью конструкции импульсных трансформаторов является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые. См. Виды магнитопроводов

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

Виды обмоток импульсных трансформаторов

Спиральные

Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.

Конические

Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.

Цилиндрические

Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.

Потери энергии

Важной проблемой при создании конструкции импульсных трансформаторов является снижение потерь энергии и повышение его КПД.

Потери складываются из:

  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.
Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Система обозначений и маркировки импульсных трансформаторов включает в себя следующие элементы:

  • Первый – буква – Т,
  • Второй – буква И (импульсный) или сочетание букв ИМ. Буква И соответствует трансформаторам с длительностью входного импульса от 0,5 до 100 мкс, а ИМ – от 0,02 до 100 мкс.
  • Третий – число порядковый номер разработки.

Например: обозначение ТИ-5 – трансформатор импульсный с длительностью входного импульса от 0,5 до 100 мкс, номер разработки 5

Видео: Импульсный трансформатор

Импульсный трансформатор принцип работы

Принцип работы импульсных трансформаторов заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

  • Ψ – параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

Здесь:

  • L – перепад индукции;
  • µа – магнитная проницаемость сердечника;
  • W1 – число витков первичной обмотки;
  • S – площадь сечения сердечника;
  • l – длинна (периметр) сердечника (магнитопровода)
  • Вr – величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm – Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Видео: Как работает импульсный трансформатор / трансформатор своими руками / демонстрация

Ремонт импульсного блока питания энергосберегающей лампочки

Техническая информация: → Из сгоревшей энергосберегающей лампы изготовить блок питания
 

В этой публикации размещен материал для ремонта или изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить за короткое. На изготовление 100-ваттного блока питания может понадобится до нескольких часов.

Построить блок питания будет несложно, умеющим паять. И несомненно, это сделать несложно, чем найти низкочастотный подходящий для изготовления трансформатор нужной мощности и перемотать его вторичные обмотки под нужное напряжение.

Оглавление

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностью 20 Ватт.
  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

Вступление.

В последнее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку приходится выбрасывать.

Однако электронный балласт такой лампочки, это практически готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В последнее же время, радиолюбители порой испытывают трудности при поиске силовых трансформаторов для питания своих самодельных конструкций. Если даже трансформатор найден, то его перемотка требует использования необходимый по диаметру медные провода, да и массо - габаритные параметры изделий, собранных на основе силовых трансформаторов не особо радует. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит определенную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Наверх

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания необходимо установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно будет удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.


Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, при его использовании.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя из состава блока лампы.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.


Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

 

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.
Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

 

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

 

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

 

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.
Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

 

На картинке действующая модель БП.
Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Наверх

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.
Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.
Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.
Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75ºC.
Площадь радиаторов каждого транзистора – 27см².
Температура дросселя TV1 – 45ºC.
TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Наверх

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.
Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.
100 / 5 * 0,4 = 8(Ватт)
Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.
100 / 5 * 0,8 * 2 = 32(Ватт).
Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.


 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Наверх

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.
При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.
Наверх

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.
Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.
Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.
Если сильно греются транзисторы, то нужно установить их на радиаторы.
Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.
Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.
Наверх

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.
VD1… VD4 – мостовой выпрямитель.
L0, C0 – фильтр питания.
R1, C1, VD2, VD8 – цепь запуска преобразователя.
Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.
R2, C11, C8 – облегчают запуск преобразователя.
R7, R8 – улучшают запирание транзисторов.
R5, R6 – ограничивают ток баз транзисторов.
R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.
VD7, VD6 – защищают транзисторы от обратного напряжения.
TV1 – трансформатор обратной связи.
L5 – балластный дроссель.
C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.
TV2 – импульсный трансформатор.
VD14, VD15 – импульсные диоды.
C9, C10 – конденсаторы фильтра.
Наверх

Материал с сайта oldoctober.com/ru/

Импульсные блоки питания

Блоки питания (БП) предназначены для реализации вторичной мощности в электрических цепях, а также для преобразования напряжения до необходимых значений. Элементы могут быть встроены в оборудование или подключаться самостоятельным звеном.

Виды блоков питания

Существует два принципа преобразования электроэнергии в устройствах: на основе аналогового трансформатора и на импульсных блоках питания (ИБП).

Трансформаторные БП. Особенность блоков питания такого типа заключается в использовании силового трансформатора для изменения напряжения в сети. Устройства понижают амплитуду синусоидальной гармоники и направляют ее в выпрямитель, состоящий из силовых диодов. Сглаживание происходит за счет параллельно подключенной емкости. Окончательная стабилизация питающего напряжения осуществляется в полупроводниковой схеме с резисторами.

Трансформаторные преобразователи до недавнего времени были единственными в своем роде, но имели недостатки:

  • большой вес и крупные габариты;
  • высокую стоимость, зачастую многократно превосходящую цену остальных компонентов сети.

Импульсные БП. В конструкции устройства нет понижающего трансформатора. Почти во всей современной аппаратуре установлены именно импульсные блоки питания как наиболее компактные и эффективные.

Преимущества и недостатки импульсных блоков питания

Основные преимущества ИБП:

  • Малый вес и компактные размеры. Уменьшение габаритов устройств обусловлено переходом от использования тяжелых силовых трансформаторов. В ИБП нет линейных управляющих систем, которые требуют установки больших охлаждающих радиаторов. Повышение частоты обрабатываемых сигналов также позволило уменьшить размеры конденсаторов.
  • Высокий КПД. Низкочастотные трансформаторы характеризуются значительными потерями энергии в виде тепла, которое образуется в результате электромагнитных преобразований. В ИБП максимальные потери происходят в каскаде силовых ключей во время переходных процессов, а все остальное время транзисторы устойчивы. Потери энергии сведены к минимуму. КПД устройств достигает 98 %.
  • Широкий диапазон входных напряжений. Область применения устройств значительно расширена. Импульсные технологии позволяют использовать блоки питания в сетях с различными стандартами электроэнергии.
  • Встроенные системы защиты. Большинство моделей имеют автоматическую защиту от токов короткого кроткого замыкания, системы аварийного отключения нагрузок и т. д. Защитные устройства надежно встраиваются в конструкцию блоков благодаря применению миниатюрных цифровых полупроводниковых модулей.
  • Доступная стоимость. Элементная база ИБП постоянно унифицируется. Снижается стоимость на основные компоненты устройств, которые выпускаются серийно на автоматических станках. Дополнительное сокращение затрат достигается за счет использования менее мощных полупроводников.

Недостатками ИБП являются:

  • Ограничения по мощности. Существуют противопоказания, как при высоких, так и при низких нагрузках. Если в выходной цепи ток упадет ниже критического значения, то блок начинает генерировать напряжение с искаженными характеристиками, либо полностью отказывает схема запуска.
  • Наличие высокочастотных помех. Блоки вырабатывают их в любом исполнении. Высокочастотные помехи транслируются в окружающую среду, поэтому необходимо дополнительно решать вопрос об их подавлении. В некоторых видах чувствительной цифровой аппаратуры использование ИБП по этой причине невозможно.

Принцип работы импульсного источника питания

Устройство работает по принципу инвертора. Сначала переменное напряжение в блоке преобразуется в постоянное, а затем снова в переменное, но уже с необходимой частотой.

Схематически устройство можно представить как совокупность трех цепей:

  • ШИМ-контроллера, который регулирует преобразование широтно-импульсной модуляции;
  • каскада силовых ключей, подключенных по мостовой, полумостовой схеме или по схеме со средней точкой;
  • импульсного трансформатора.

Взаимодействие элементов импульсного БП происходит по следующей схеме:

  • напряжение 220В поступает на выпрямитель. Амплитуда сглаживается за счет работы конденсаторов емкостного фильтра;
  • проходящие синусоиды выпрямляются диодным мостом;
  • транзисторная схема преобразует ток в импульсы прямоугольной формы и высокой частоты.

Преобразование синусоид в импульсы может выполняться с гальваническим отделением питающей сети от выходных сетей или без нее.

Виды импульсных блоков питания

С гальванической развязкой. Высокочастотные сигналы поступают на трансформатор, ответственный за гальваническую развязку цепей. Устройства такого типа имеют более компактный магнитопровод и характеризуются повышенной эффективностью использования. Чаще всего сердечник трансформатора изготавливают из ферромагнетиков, а не из электротехнических сталей, что также позволяет уменьшить размеры элементов.

Без гальванической развязки. В схеме импульсного БП отсутствует высокочастотный разделительный трансформатор. Питающий сигнал поступает на фильтр нижних частот.

Принципиальная схема импульсного блока питания

Основные элементы импульсных блоков питания:

  • сетевой выпрямитель;
  • накопительная фильтрующая емкость;
  • силовой транзистор;
  • генератор;
  • транзисторная схема обратной связи;
  • оптопара;
  • импульсный источник питания;
  • выходной диодный выпрямитель;
  • цепи управления выходного напряжения;
  • фильтрующие конденсаторы;
  • дроссели, предназначенные для диагностики и коррекции напряжения;
  • выходные разъемы.

Если в устройстве используется преобразователь постоянного напряжения, то первые два компонента становятся не нужными. Сигнал проходит непосредственно на ШИМ (широтно-импульсный модулятор). Этот элемент является самым сложным в конструкции ИБП. Его основные функции:

  • генерация импульсов высокой частоты;
  • контроль и коррекция частотной последовательности с учетом данных обратной связи;
  • защита от перегрузок.

С ШИМ-модуля сигнал поступает на ключевые транзисторы. Их силовые выводы нагружены на первичную обмотку высокочастотного трансформатора. В конструкции ИБП вместо обычных биполярных транзисторов используют элементы MOSFET или IGBT, которые характеризуются минимальным падением напряжения и быстродействием.

Со вторичной обмотки импульсного трансформатора (таких элементов может быть несколько в цепи) напряжение подается на выходные диоды с повышенной рабочей частотой. Чаще всего в конструкциях используют диоды Шоттки.

Функция выходного фильтра – уменьшение пульсаций выпрямленного напряжения.

Сферы применения импульсных блоков питания

Малогабаритные ИБП на интегральных микросхемах применяются в конструкции зарядных устройств для электронных гаджетов: планшетов, телефонов, электронных книг. Элементы такого типа востребованы также в производстве телевизоров, усилителей, медицинских приборов, низковольтных осветительных установок.

Выбирайте и заказывайте блоки питания в каталоге компании «ПРОМАИР». Мы предлагаем широкий модельный ряд, выгодные цены, предоставляем грамотные консультации по характеристикам устройств. Для связи со специалистами позвоните по телефонам +375 (17) 513-99-92 или +375 (17) 513-99-93.

Что такое импульсный блок питания и чем он отличается от обычного аналогового. Импульсный блок питания

В отличие от традиционных линейных ИП, предполагающих гашение излишнего нестабилизированного напряжения на проходном линейном элементе, импульсные ИП используют иные методы и физические явления для генерации стабилизированного напряжения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение. Существует три типовых схемы построения импульсных ИП: повышающая (выходное напряжение выше входного) рис. 1,


Рис. 1. Повышающий импульсный источник питания (Uвых>Uвх).

понижающая (выходное напряжение ниже входного)


Рис. 2. Понижающий импульсный источник питания (Uвых

Понижающий импульсный источник питания (Uвых

Рис. 3. Инвертирующий импульсный источник питания (Uвых

Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикладывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток. протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. -апасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

В отличие от традиционных линейных ИП, предполагающих гашение излишнего нестабилизированного напряжения на проходном линейном элементе, импульсные ИП используют иные методы и физические явления для генерации стабилизированного напряжения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение. Существует три типовых схемы построения импульсных ИП (см. рис. 3.4-1): повышающая (выходное напряжение выше входного), понижающая (выходное напряжение ниже входного) и инвертирующая (выходное напряжение имеет противоположную по отношению к входному полярность). Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.2 на каждом импульсе. Запасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

3.4.1 Эффективный импульсный стабилизатор низкого уровня сложности

На элементной базе, аналогичной применявшейся в описанном выше (рис. 3.3-3) линейном стабилизаторе, можно построить импульсный стабилизатор напряжения. При таких же характеристиках он будет обладать значительно меньшими габаритами и лучшим тепловым режимом. Принципиальная схема такого стабилизатора приведена на рис. 3.4-2. Стабилизатор собран по типовой схеме с понижением напряжения (рис. 3.4-1а).

При первом включении, когда конденсатор С4 разряжен и к выходу подключена достаточно мощная нагрузка, ток протекает через ИС линейного стабилизатора DA1. Вызванное этим током падение напряжения на R1 отпирает ключевой транзистор VT1, который тут-же входит в режим насыщения, так как индуктивное сопротивление L1 велико и через транзистор протекает достаточно большой ток. Падение напряжения на R5 открывает основной ключевой элемент - транзистор VT2. Ток. нарастающий в L1, заряжает С4, при этом через обратную связь на R8 происходит запи-


рание стабилизатора и ключевого транзистора. Энергия, запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Цикл повторяется с частотой 20-30 кГц.

Цепь R3. R4, С2 задаст уровень выходного напряжения. Его можно плавно регулировать в небольших пределах, от Ucт DA1 до Uвх. Однако если Uвых поднять близко к Uвх, появляется некото рая нестабильность при максимальной нагрузке и повышенный уровень пульсации. Для подавления высокочастотных пульсации на выходе стабилизатора включен фильтр L2, С5.

Схема достаточно проста и максимально эффективна для данного уровня сложности. Все силовые элементы VT1, VT2, VD1, DA1 снабжаются небольшими радиаторами. Входное напряжение нс должно превышать 30 В. что является максимальным для стабилизаторов КР142ЕН8. Выпрямительные диоды применять на ток не менее 3 А.

3.4.2 Устройство бесперебойного питания на основе импульсного стабилизатора

На рис. 3.4-3 предлагается к рассмотрению устройство для бесперебойного питания систем охраны и видеонаблюдения на основе импульсного стабилизатора, совмещенного с зарядным устройством. В стабилизатор введены системы защиты от перегрузки, перегрева, бросков напряжения на выходе, короткого замыкания.

Стабилизатор имеет следующие параметры:

Входное напряжение, Uвx - 20-30 В:

Выходное стабилизированное напряжение, Uвыx-12B:

Номинальный ток нагрузки, Iнагр ном -5А;

Ток срабатывания системы защиты от перегрузки, Iзащ - 7А;.

Напряжение срабатывания системы защиты от перенапряжения, Uвых защ - 13 В;

Максимальный ток зарядки АКБ, Iзар акб макс - 0,7 А;

Уровень пульсации. Uпульс - 100 мВ,

Температура срабатывания системы защиты от перегрева, Тзащ - 120 С;

Скорость переключения на питание от АКБ, tперекл - 10мс (реле РЭС-б РФО.452.112).

Принцип работы импульсного стабилизатора в описываемом устройстве такой же, как и у стабилизатора, представленного выше.

Устройство дополнено зарядным устройством, выполненным на элементах DA2,R7, R8, R9, R10, VD2, С7. ИС стабилизатора напряжения DA2 с делителем тока на R7. R8 ограничивает максимальный начальный ток заряда, делитель R9, R10 задает выходное напряжение заряда, диод VD2 защищает АКБ от саморазряда при отсутствии напряжения питания.

Защита от перегрева использует в качестве датчика температуры терморезистор R16. При срабатывании защиты включается звуковой сигнализатор, собранный на ИС DD 1 и, одновременно, нагрузка отключается от стабилизатора, переходя на питание от АКБ. Терморезистор монтируют на радиаторе транзистора VT1. Точная подстройка уровня срабатывания температурной защиты осуществляется сопротивлением R18.

Датчик напряжения собран на делителе R13,R15. сопротивлением R15 устанавливают точный уровень срабатывания защиты от перенапряжения (13 В). При превышении напряжения на выходе стабилизатора (в случае выхода последнего из строя) реле S1 отключает нагрузку от стабилизатора и подключает ее к АКБ. В случае отключения питающего напряжения, реле S1 переходит в состояние "по умолчанию"- т.е. подключает нагрузку на АКБ.

Приведенная здесь схема не имеет электронной защиты от короткого замыкания для АКБ. эту роль выполняет плавкий предохранитель в цепи питания нагрузки, рассчитанный на максимальный потребляемый ток.


3.4.3 Источники питания на основе высокочастотного импульсного преобразователя

Достаточно часто при конструировании устройств возникают жесткие требования к размерам источника питания. В этом случае единственным выходом является применение ИП на основе высоковольтных высокочастотных импульсных преобразователей. которые подключаются к сети ~220 В без применения габаритного низкочастотного понижающего трансформатора и могут обеспечить большую мощность при малых размерах и теплоотдаче.

Структурная схема типового импульсного преобразователя с питанием от промышленной сети представлена на рис 34-4.

Входной фильтр предназначен для предотвращения проникновения импульсных помех в сеть. Силовые ключи обеспечивают подачу импульсов высокого напряжения на первичную обмотку высокочастотного трансформатора (могут применяться одно- и


двухтактные схемы). Частота и длительность импульсов задаются управляемым генератором (обычно применяется управление шириной импульсов, реже - частотой). В отличие от трансформаторов синусоидального сигнала низкой частоты, в импульсных ИП применяются широкополосные устройства, обеспечивающие эффективную передачу мощности на сигналах с быстрыми фронтами. Это накладывает существенные требования на тип применяемого магнитопровода и конструкцию трансформатора. С другой стороны, с увеличением частоты требуемые размеры трансформатора (с сохранением передаваемой мощности) уменьшаются (современные материалы позволяют строить мощные трансформаторы с приемлемым КПД на частоты до 100-400 кГц). Особенностью выходного выпрямителя является применение в нем не обычных силовых диодов, а быстродействующих диодов Шоттки, что обусловлено высокой частотой выпрямляемого напряжения. Выходной фильтр сглаживает пульсации выходного напряжения. Напряжение обратной связи сравнивается с опорным напряжением и затем управляет генератором. Обратите внимание на наличие гальванической развязки в цепи обратной связи, что необходимо, если мы хотим обеспечить развязку выходного напряжения с сетью.

При изготовлении таких ИП возникают серьезные требования к применяемым компонентам (что повышает их стоимость по сравнению с традиционными). Во-первых, это касается рабочего напряжения диодов выпрямителя, конденсаторов фильтра и ключевых транзисторов, которое не должно быть менее 350 В во избежание пробоев. Во-вторых, должны применяться высокочастотные ключевые транзисторы (рабочая частота 20-100 кГц) и специальные керамические конденсаторы (обычные оксидные электролиты на высоких частотах будут перегреваться ввиду их высокой индук-


тивности). И. в-третьих, частота насыщения высокочастотного трансформатора, определяемая типом применяемого магнитопро вода (как правило, используются тороидальные сердечники) должна быть значительно выше рабочей частоты преобразователя.

На рис. 3.4-5 приведена принципиальная схема классического ИП на основе высокочастотного преобразователя. Фильтр, состоящий из емкостей С1, С2, СЗ и дросселей L1, L2, служит для зашиты питающей сети от высокочастотных помех со стороны преобразователя. Генератор построен по автоколебательной схеме и совмещен с ключевым каскадом. Ключевые транзисторы VT1 и VT2 работают в противофазе, открываясь и закрываясь по очереди. Запуск генератора и надежную работу обеспечивает транзистор VT3, работающий в режиме лавинного пробоя. При нарастании напряжения на С6 через R3 транзистор открывается и конденсатор разряжается на базу VT2, запуская работу генератора. Напряжение обратной связи снимается с дополнительной (III) обмотки силового трансформатора Tpl.

Транзисторы VT1.2. Данные дросселей и трансформаторов:L1-1. L2 наматывают на кольцах из феррита 2000НМ К12х8х3 в два провода проводом ПЭЛШО 0,25: 20 витков. ТР1 - на двух кольцах, сложенных вместе, феррит 2000НН КЗ 1х18.5х7;

обмотка 1 - 82 витка проводом ПЭВ-2 0,5: обмотка II - 25+25 витков проводом ПЭВ-2 1,0: обмотка III - 2 витка проводом ПЭВ-2 0.3. ТР2 наматывают на кольце из феррита 2000НН К10х6х5. все обмотки выполнены проводом ПЭВ-2 0.3: обмотка 1 - 10 витков:

обмотки II и III - по 6 витков, обе обмотки (II и III) намотаны так, что занимают на кольце по 50% площади не касаясь и не перекрывая друг друга, обмотка I намотана равномерно по всему кольцу и изолирована слоем лакоткани. Катушки фильтра выпрямителя L3, L4 наматывают на феррите 2000НМ К 12х8х3 проводом ПЭВ-2 1,0 , количество витков - 30. В качестве ключевых транзисторов VT1, VT2 могут применяться КТ809А. КТ812, КТ841.

Номиналы элементов и намоточные данные трансформаторов приведены для выходного напряжения 35 В. В случае, когда требуются иные рабочие значения параметров, следует соответству ющим образом изменить количество витков в обмотке 2 Тр1.

Описанная схема имеет существенные недостатки, обусловленные стремлением предельно уменьшить количество применяемых компонентов Это и низкий "уровень стабилизации выходного напряжения, и нестабильная ненадежная работа, и низкий выходной ток. Однако она вполне пригодна для питания простейших конструкций разной мощности (при применении соответствующих компонентов), таких как: калькуляторы. АОНы. осветительные приборы и т.п.


Еще одна схема ИП на основе высокочастотного импульсного преобразователя приведена на рис. 3.4-6. Основным отличием этой схемы от стандартной структуры, представленной на рис. 3 .4-4 является отсутствие цепи обратной связи. В связи с этим, стабильность напряжения на выходных обмотках ВЧ трансформатора Тр2 достаточно низкая и требуется применение вторичных стабилизаторов (в схеме используются универсальные интегральные стабилизаторы на ИС серии КР142).

3.4.4 Импульсным стабилизатор с ключевым МДП-транзистором со считыванием тока.

Миниатюризации и повышению КПД при разработке и конструировании импульсных источников питания способствует применение нового класса полупроводниковых инверторов - МДП-транзисторов, а также: мощных диодов с быстрым обратным восстановлением, диодов Шоттки, сверхбыстродействующих диодов, полевых транзисторов с изолированным затвором, интегральных схем управления ключевыми элементами. Все эти элементы доступны на отечественном рынке и могут использоваться в конструировании высокоэффективных источников питания, преобразователей, систем зажигания двигателей внутреннего сгорания (ДВС), систем запуска ламп дневного света (ЛДС). Большой интерес у разработчиков также может вызвать класс силовых приборов под названием HEXSense - МДП-транзисторы со считыванием тока. Они являются идеальными переключающими элементами для импульсных источников питания с готовым управлением. Возможность считывать ток ключевого транзистора может быть использована в импульсных ИП для обратной связи по току, требуемой для контроллера широтно-импульсной модуляции. Этим достигается упрощение конструкции источника питания - исключение из него токовых резисторов и трансформаторов.

На рис. 3.4-7 приведена схема импульсного источника питания мощностью 230 Вт. Его основные рабочие характеристики следующие:

Входное напряжение:-110 В 60Гц:

Выходное напряжение: 48 В постоянное:

Ток нагрузки: 4.8 А:

Частота переключения: 110 кГц:

КПДпри полной нагрузке: 78%;

КПД при нагрузке 1/3: 83%.


Схема построена на базе широтно-импульсного модулятора (ШИМ) с высокочастотным преобразователем на выходе. Принцип работы состоит в следующем.

Сигнал управления ключевым транзистором поступает с выхода 6 ШИМ контроллера DA1, коэффициент заполнения ограничивается 50% резистором R4, R4 и СЗ являются времязадающи ми элементами генератора. Питание DA1 обеспечивается цепочкой VD5, С5, С6, R6. Резистор R6 предназначен для подачи питающего напряжения во время запуска генератора, в последующем задей ствуется обратная связь по напряжению через LI, VD5. Эта обратная связь получается от дополнительной обмотки выходного дросселя, которая работает в режиме обратного хода. Помимо питания генератора, напряжение обратной связи через цепочку VD4, Cl, Rl, R2 подается на вход обратной связи по напряжению DA1 (выв.2). Через R3 и С2 обеспечивается компенсация, которая гарантирует стабильность петли обратной связи.

На базе данной схемы возможно построение импульсных стабилизаторов и с другими выходными параметрами.

Импульсный источник питания - это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.

Импульсные трансформаторы изготавливаются по такому же принципу, как и низкочастотные трансформаторы, только в качестве сердечника используется не сталь (стальные пластины), а феромагнитные материалы - ферритовые сердечники.

Рис. Как работает импульсный источник питания.

Выходное напряжение импульсного источника питания стабилизировано , это осуществляется посредством отрицательной обратной связи, что позволяет удерживать выходное напряжение на одном уровне даже при изменении входного напряжения и нагрузочной мощности на выходе блока.

Обратная отрицательная связь может быть реализована при помощи одной из дополнительных обмоток в импульсном трансформаторе, или же при помощи оптрона, который подключается к выходным цепям источника питания. Использование оптрона или же одной из обмоток трансформатора позволяет реализовать гальваническую развязку от сети переменного напряжения.

Основные плюсы импульсных источников питания (ИИП):

  • малый вес конструкции;
  • небольшие размеры;
  • большая мощность;
  • высокий КПД;
  • низкая себестоимость;
  • высокая стабильность работы;
  • широкий диапазон питающих напряжений;
  • множество готовых компонентных решений.

К недостаткам ИИП можно отнести то что такие блоки питания являются источниками помех, это связано с принципом работы схемы преобразователя. Для частичного устранения этого недостатка используют экранировку схемы. Также из-за этого недостатка в некоторых устройствах применение данного типа источников питания является невозможным.

Импульсные источники питания стали фактически непременным атрибутом любой современной бытовой техники, потребляющей от сети мощность свыше 100 Вт. В эту категорию попадают компьютеры, телевизоры, мониторы.

Для создания импульсных источников питания, примеры конкретного воплощения которых будут приведены ниже, применяются специальные схемные решения.

Так, для исключения сквозных токов через выходные транзисторы некоторых импульсных источников питания используют специальную форму импульсов, а именно, биполярные импульсы прямоугольной формы, имеющие между собой промежуток во времени.

Продолжительность этого промежутка должна быть больше времени рассасывания неосновных носителей в базе выходных транзисторов, иначе эти транзисторы будут повреждены. Ширина управляющих импульсов с целью стабилизации выходного напряжения может изменяться с помощью обратной связи.

Обычно для обеспечения надежности в импульсных источниках питания используют высоковольтные транзисторы, которые в силу технологических особенностей не отличаются в лучшую сторону (имеют низкие частоты переключения, малые коэффициенты передачи по току, значительные токи утечки, большие падения напряжения на коллекторном переходе в открытом состоянии).

Особенно это касается устаревших ныне моделей отечественных транзисторов типа КТ809, КТ812, КТ826, КТ828 и многих других. Стоит сказать, что в последние годы появилась достойная замена биполярным транзисторам, традиционно используемых в выходных каскадах импульсных источников питания.

Это специальные высоковольтные полевые транзисторы отечественного, и, главным образом, зарубежного производства. Кроме того, существуют многочисленные микросхемы для импульсных источников питания.

Схема генератора импульсов регулируемой ширины

Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания. На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2.

Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.

Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.

На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, СЗ, VD5) подаются прямоугольные импульсы.

Заряд конденсаторов С2, СЗ происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или СЗ достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.

Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.

Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, СЗ) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.

Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.

При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.

В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.

Схема испульсного источника питания

Импульсный источник питания (рис. 2) состоит из выпрямителей сетевого напряжения, задающего генератора, формирователя прямоугольных импульсов регулируемой длительности, двухкаскадного усилителя мощности, выходных выпрямителей и схемы стабилизации выходного напряжения.

Задающий генератор выполнен на микросхеме типа К555ЛАЗ (элементы DDI .1, DDI .2) и вырабатывает прямоугольные импульсы частотой 150 кГц. На элементах DD1.3, DD1.4 собран RS-триггер, на выходе которого частота вдвое меньше — 75 кГц. Узел управления длительностью коммутирующих импульсов реализован на микросхеме типа К555ЛИ1 (элементы DD2.1, DD2.2), а регулировка длительности осуществляется с помощью оптрона U1.

Выходной каскад формирователя коммутирующих импульсов собран на элементах DD2.3, DD2.4. Максимальная мощность на выходе формирователя импульсов достигает 40 мВт. Предварительный усилитель мощности выполнен на транзисторах VT1, VT2 типа КТ645А, а оконечный — на транзисторах VT3, VT4 типа КТ828 или более современных. Выходная мощность каскадов — 2 и 60…65 Вт, соответственно.

На транзисторах VT5, VT6 и оптроне U1 собрана схема стабилизации выходного напряжения. Если напряжение на выходе источника питания ниже нормы (12 В), стабилитроны VD19, VD20 {КС182+КС139) закрыты, транзистор VT5 закрыт, транзистор VT6 открыт, через светодиод (U1.2) оптрона протекает ток, ограниченный сопротивлением R14; сопротивление фотодиода (U1.1) оптрона минимально.

Сигнал, снимаемый с выхода элемента DD2.1 и поступающий на входы схемы совпадения DD2.2 напрямую и через регулируемый элемент задержки (R3 — R5, С4, VD2, U1.1), в силу его малой постоянной времени поступает практически одновременно на входы схемы совпадения (элемент DD2.2).

На выходе этого элемента формируются широкие управляющие импульсы. На первичной обмотке трансформатора Т1 (выходах элементов DD2.3, DD2.4) формируются двухполярные импульсы регулируемой длительности.

Рис. 2. Схема импульсного источника питания.

Если по какой-либо причине напряжение на выходе источника питания будет увеличиваться сверх нормы, через стабилитроны VD19, VD20 начнет протекать ток, транзистор VT5 приоткроется, VT6 — закроется, уменьшая ток через светодиод оптрона U1.2.

При этом возрастает сопротивление фотодиода оптрона U1.1. Длительность управляющих импульсов уменьшается, и происходит уменьшение выходного напряжения (мощности). При коротком замыкании нагрузки светодиод оптрона гаснет, сопротивление фотодиода оптрона максимально, а длительность управляющих импульсов — минимальна.2, вторичная обмотка имеет 3×6 витков провода ПЭВ-2 1,28 мм (параллельное включение). При подключении обмоток трансформаторов необходимо правильно их фазировать. Начала обмоток показаны на рисунке звездочками.

Источник питания работоспособен в диапазоне изменения сетевого напряжения 130…250 В. Максимальная выходная мощность при симметричной нагрузке достигает 60…65 Вт (стабилизированное напряжение положительной и отрицательной полярности 12 S и стабилизированное напряжение переменного тока частотой 75 кГц, снимаемые,со вторичной обмотки трансформатора Т3). Напряжение пульсаций на выходе источника питания не превышает 0,6 В.

При налаживании источника питания сетевое напряжение на него подают через разделительный трансформатор или фер-рорезонансный стабилизатор с изолированным от сети выходом. Все перепайки в источнике допустимо производить только при полном отключении устройства от сети.

Последовательно с выходным каскадом на время налаживания устройства рекомендуется включить лампу накаливания 60 Вт на 220 В. Эта лампа защитит выходные транзисторы в случае ошибок в монтаже. Оптрон U1 должен иметь напряжение пробоя изоляции не менее 400 В. Работа устройства без нагрузки не допускается.

Сетевой импульсный источник питания

Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.

Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения.

Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц.

Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.

Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.

Рис. 3. Схема сетевого импульсного источника питания.

Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.

Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.

Высоковольтный источник постоянного напряжения

Для создания высокого напряжения (30…35 кВ при токе нагрузки до 1 мА) для питания электроэффлювиальной люстры (люстры А. Л. Чижевского) предназначен источник питания постоянного тока на основе специализированной микросхемы типа К1182ГГЗ .

Источник питания состоит из выпрямителя сетевого напряжения на диодном мосте VD1, конденсатора фильтра С1 и высоковольтного полумостового автогенератора на микросхеме DA1 типа К1182ГГЗ. Микросхема DA1 совместно с трансформатором Т1 преобразует постоянное выпрямленное сетевое напряжение в высокочастотное (30…50 кГц) импульсное.

Выпрямленное сетевое напряжение поступает на микросхему DA1, а стартовая цепочка R2, С2 запускает автогенератор микросхемы. Цепочки R3, СЗ и R4, С4 задают частоту генератора. Резисторы R3 и R4 стабилизируют длительность полупериодов генерируемых импульсов. Выходное напряжение повышается обмоткой L4 трансформатора и подается на умножитель напряжения на диодах VD2 — VD7 и конденсаторах С7 — С12. Выпрямленное напряжение подается на нагрузку через ограничительный резистор R5.

Конденсатор сетевого фильтра С1 рассчитан на рабочее напряжение 450 В (К50-29), С2 — любого типа на напряжение 30 В. Конденсаторы С5, С6 выбирают в пределах 0,022…0,22 мкФ на напряжение не менее 250 В (К71-7, К73-17). Конденсаторы умножителя С7 — С12 типа КВИ-3 на напряжение 10 кВ. Возможна замена на конденсаторы типов К15-4, К73-4, ПОВ и другие на рабочее напряжение 10кB или выше.

Рис. 4. Схема высоковольтного источника питания постоянного тока.

Высоковольтные диоды VD2 — VD7 типа КЦ106Г (КЦ105Д). Ограничительный резистор R5 типа КЭВ-1. Его можно заменить тремя резисторами типа МЛТ-2 по 10 МОм.

В качестве трансформатора используется телевизионный строчный трансформатор, например, ТВС-110ЛА. ВЬюоковольтную обмотку оставляют, остальные удаляют и на их месте размещают новые обмотки. Обмотки L1, L3 содержат по 7 витков провода ПЭЛ 0,2 мм, а обмотка L2 — 90 витков такого же провода.

Цепочку резисторов R5, ограничивающих ток короткого замыкания, рекомендуется включить в «минусовой» провод, который подводится к люстре. Этот провод должен иметь вьюоко-вольтную изоляцию.

Корректор коэффициента мощности

Устройство, именуемое корректором коэффициента мощности (рис. 5), собрано на основе специализированной микросхемы TOP202YA3 (фирма Power Integration) и обеспечивает коэффициент мощности не менее 0,95 при мощности нагрузки 65 Вт. Корректор приближает форму тока, потребляемую нагрузкой, к синусоидальной.

Рис. 5. Схема корректора коэффициента мощности на микросхеме TOP202YA3.

Максимальное напряжение на входе — 265 В. Средняя частота преобразователя — 100 кГц. КПД корректора — 0,95.

Импульсный источник питания с микросхемой

Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.

Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.

Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.

Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.

Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.

Простой и высокоэффективный преобразователь напряжения

На основе одной из микросхем ТОР200/204/214 фирмы Power Integration может быть собран простой и высокоэффективный преобразователь напряжения (рис. 7) с выходной мощностью до 100 Вт.

Рис. 7. Схема импульсного Buck-Boost преобразователя на микросхеме ТОР200/204/214.

Преобразователь содержит сетевой фильтр (С1, L1, L2), мостовой выпрямитель (VD1 — VD4), собственно сам преобразователь U1, схему стабилизации выходного напряжения, выпрямители и выходной LC-фильтр.

Входной фильтр L1, L2 намотан в два провода на феррито-вом кольце М2000 (2×8 витков). Индуктивность полученной катушки — 18…40 мГн. Трансформатор Т1 выполнен на ферритовом сердечнике со стандартным каркасом ETD34 фирмы Siemens или Matsushita, хотя можно использовать и иные импортные сердечники типа ЕР, ЕС, EF или отечественные Ш-образные ферритовые сердечники М2000.

Обмотка I имеет 4×90 витков ПЭВ-2 0,15 мм; II — 3×6 того же провода; III — 2×21 витков ПЭВ-2 0,35 мм. Все обмотки наматывают виток к витку. Между слоями должна быть обеспечена надежная изоляция.

Во многих электрических приборах уже давно применяется принцип реализации вторичной мощности за счет использования дополнительных устройств, на которые возложены функции обеспечения электроэнергией схем, нуждающихся в питании от отдельных типов напряжений, частоты, тока…

Для этого создаются дополнительные элементы: , преобразующие напряжение одного вида в другой. Они могут быть:

    встроены внутрь корпуса потребителя, как на многих микропроцессорных приборах;

    или изготовлены отдельными модулями с соединительными проводами по образцу обычного зарядного устройства у мобильного телефона.

В современной электротехнике успешно уживаются два принципа преобразования энергии для электрических потребителей, основанные на:

1. использовании аналоговых трансформаторных устройств для передачи мощности во вторичную схему;

2. импульсных блоках питания.

Они имеют принципиальные отличия в своей конструкции, работают по разным технологиям.

Трансформаторные блоки питания

Первоначально создавались только такие конструкции. Они изменяют структуру напряжения за счет работы силового трансформатора, питающегося от бытовой сети 220 вольт, в котором происходит понижение амплитуды синусоидальной гармоники, направляемой далее на выпрямительное устройство, состоящее из силовых диодов, включенных, как правило, по схеме моста.

После этого пульсирующее напряжение сглаживается параллельно подключенной емкостью, подобранной по величине допустимой мощности, и стабилизируется полупроводниковой схемой с силовыми транзисторами.

За счет изменения положения подстроечных резисторов в схеме стабилизации удается регулировать величину напряжения на выходных клеммах.

Импульсные блоки питания (ИБП)

Подобные конструктивные разработки массово появились несколько десятилетий назад и стали пользоваться все большей популярностью в электротехнических приборах благодаря:

    доступностью комплектования распространенной элементной базой;

    надежностью в исполнении;

    возможностями расширения рабочего диапазона выходных напряжений.

Практически все источники импульсного питания незначительно отличаются по конструкции и работают по одной, типичной для других устройств схеме.

В состав основных деталей источников питания входят:

    сетевой выпрямитель, собранный из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, сетевого предохранителя и диодного моста;

    накопительная фильтрующая емкость;

    ключевой силовой транзистор;

    задающий генератор;

    схема обратной связи, выполненная на транзисторах;

    оптопара;

    импульсный источник питания, со вторичной обмотки которого исходит напряжение для преобразования в силовую цепь;

    выпрямительные диоды выходной схемы;

    цепи управления выходного напряжения, например, на 12 вольт с подстройкой, изготовленной на оптопаре и транзисторах;

    фильтрующие конденсаторы;

    силовые дроссели, выполняющие роль коррекции напряжения и его диагностики в сети;

    выходные разъемы.

Пример электронной платы подобного импульсного блока питания с кратким обозначением элементной базы показан на картинке.

Как работает импульсный блок питания

Импульсный блок питания выдает стабилизированное питающее напряжение за счет использования принципов взаимодействия элементов инверторной схемы.

Напряжение сети 220 вольт поступает по подключенным проводам на выпрямитель. Его амплитуда сглаживается емкостным фильтром за счет использования конденсаторов, выдерживающих пики порядка 300 вольт, и отделяется фильтром помех.

СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ
ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

СТАТЬЯ ПОДГОТОВЛЕНА НА ОСНОВЕ КНИГИ А. В. ГОЛОВКОВА и В. Б ЛЮБИЦКОГО "БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" ИЗДАТЕЛЬСТВА «ЛАД и Н»

Схема стабилизации выходных напряжений в рассматриваемом классе ИБП представляет собой замкнутую петлю автоматического регулирования (рис. 31). Эта петля включает в себя:
схему управления 8;
согласующий предусилительный каскад 9;
управляющий трансформатор DT;
силовой каскад 2;
силовой импульсный трансформатор РТ;
выпрямительный блок 3;
дроссель межканальной связи 4;
блок фильтров 5;
делитель напряжения обратной связи 6;
делитель опорного напряжения 7.
В составе схемы управления 8 имеются следующие функциональные узлы:
усилитель сигнала рассогласования 8.1 с цепью коррекции Zk;
ШИМ-компаратор (модулятор) 8.2;
генератор пилообразного напряжения (осциллятор) 8.3;
источник опорного стабилизированного напряжения Uref 8.4.
В процессе работы усилитель сигнала рассогласования 8.1 сравнивает выходной сигнал делителя напряжения б с опорным напряжением делителя 7. Усиленный сигнал рассогласования поступает на широтно-импульсный модулятор 8.2, управляющий предоконечным каскадом усилителя мощности 9, который, в свою очередь, подает модулированный управляющий сигнал на силовой каскад преобразователя 2 через управляющий трансформатор DT. Питание силового каскада производится по бестрансформаторной схеме. Переменное напряжение питающей сети выпрямляется сетевым выпрямителем 1 и подается на силовой каскад, где сглаживается конденсаторами емкостной стойки. Часть выходного напряжения стабилизатора сравнивается с постоянным опорным напряжением и затем осуществляется усиление полученной разности (сигнала рассогласования) с введением соответствующей компенсации. Широтно-импульсный модулятор 8.2 преобразует аналоговый сигнал управления в широтно-модулированный сигнал с переменным коэффициентом заполнения импульса. В рассматриваемом классе ИБП схема модулятора осуществляет сравнение сигнала, поступающего с выхода усилителя сигнала рассогласования с напряжением пилообразной формы, которое получается от специального генератора 8.3.

Рисунок 31. Контур регулирования типового импульсного блока питания на основе управляющей микросхемы TL494.


Рисунок 32. Регулировка уровня выходных напряжений ИБП PS-200B.


Рисунок 33. Регулировка уровня выходных напряжений ИБП LPS-02-150XT.


Рисунок 34. Регулировка уровня выходных напряжений ИБП "Appis".


Рисунок 35. Регулировка уровня выходных напряжений ИБП GT-200W.

Однако наиболее распространенным является случай, когда регулировка, позволяющая воздействовать на выходные напряжения блока, отсутствует. В этом случае напряжение на любом из входов 1 или 2 выбирается произвольным в пределах от +2,5 до +5 В, а напряжение на оставшемся входе подбирается с помощью высокоом-ного шунтирующего резистора таким, чтобы блок выдавал оговоренные в паспорте выходные напряжения в номинальном нагрузочном режиме. Рис. 35 иллюстрирует случай подбора уровня опорного напряжения, рис. 34 - показывает случай подбора уровня сигнала обратной связи. Ранее было отмечено, что значение нестабильности выходного напряжения при воздействии любых дестабилизирующих факторов (изменение тока нагрузки, напряжения питающей сети и температуры окружающей среды) можно было бы уменьшить, увеличивая коэффициент усиления цепи обратной связи (коэффициент усиления усилителя DA3).
Однако максимальное значение коэффициента усиления DA3 ограничивается условием обеспечения устойчивости. Поскольку как ИБП, так и нагрузка содержат реактивные элементы (индуктивность или емкость), накапливающие энергию, то в переходных режимах происходит перераспределение энергии между этими элементами. Это обстоятельство может привести к тому, что при определенных параметрах элементов переходный процесс установления выходных напряжений ИБП примет характер незатухающие колебаний, или же величина перерегулирования в переходном режиме будет достигать недопустимых значений.


Рисунок 36. Переходные процессы (колебательный и апериодический) выходного напряжения ИБП при скачкообразном изменении тока нагрузки (а) и входного напряжения (б).

На рис. 36 изображены переходные процессы выходного напряжения при скачкообразном изменении тока нагрузки и входного напряжения. ИБП работает устойчиво, если выходное напряжение вновь принимает установившееся значение после прекращения действия возмущения, выведшего его из первоначального состояния (рис. 37,а).


Рисунок 37. Переходные процессы выходного напряжения ИБП в устойчивой (а) и неустойчивой (б) системах.

Если это условие не соблюдается, то система является неустойчивой (рис.37,6). Обеспечение устойчивости импульсного блока питания является необходимым условием его нормального функционирования. Переходный процесс в зависимости от параметров ИБП носит колебательный или апериодический характер, при этом выходное напряжение ИБП имеет определенное значение перерегулирования и время переходного процесса. Отклонение выходного напряжения от номинального значения выявляется в измерительном элементе цепи обратной связи (в рассматриваемых ИБП в качестве измерительного элемента используется резистивный делитель, подключаемый к шине выходного напряжения +5В). Из-за инерционности петли регулирования номинальное значение выходного напряжения устанавливается с определенным запаздыванием. При этом схема управления по инерции некоторое время еще будет продолжать свое воздействие в том же направлении. В результате этого имеет место перерегулирование, т.е. отклонение выходного напряжения от его номинального значения в направлении, противоположном первоначальному отклонению. Схема управления вновь изменяет выходное напряжение в противоположную сторону и т.д. Для того чтобы обеспечить устойчивость петли регулирования выходных напряжений ИБП при минимальной длительности переходного процесса, амплитудно-частотная характеристика усилителя ошибки DA3 подвергается коррекции. Это делается с помощью RC-цепочек, включаемых как цепи отрицательной обратной связи, охватывающей усилитель DA3. Примеры таких корректирующих цепочек показаны на рис. 38.


Рисунок 38. Примеры конфигурвции корректирующих RC-цепочек для усилителя ошибки по напряжению DA3.

Для уменьшения уровня помехообразования на вторичной стороне импульсного блока питания устанавливаются апериодические RC-цепочки. Остановимся подробнее на принципе их действия.
Переходный процесс тока через диоды выпрямителя в моменты коммутации происходит в виде ударного возбуждения (рис. 39,а).


Рисунок 39. Временные диаграммы напряжения на диоде восстановления обратного сопротивления:
а) - без RC-цепочки; б) - при наличии RC-цепочки.

ОСНОВНЫЕ ПАРАМЕТРЫ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ ДЛЯ IBM Рассматриваются основные параметры импульсных блоков питания, приведена цоколевка разъема, принцип работы от напряжения сети 110 и 220 вольт,
Подробно расписана микросхема TL494, схема включения и варианты использования для управления силовыми ключами импульсных блоков питания.
УПРАВЛЕНИЕ СИЛОВЫМИ КЛЮЧАМИ ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ ПРИ ПОМОЩИ TL494 Описаны основные способы управления базовыми цепями силовых транзисторов импульсных блоков питания, варианты построения выпрямителей вторичного питания.
СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ Описаны варианты использования усилителей ошибки TL494 для стабилизации выходных напряжений, описан принцип работы дросселя групповой стабилизации.
СХЕМЫ ЗАЩИТЫ Описаны несколько вариантов построения систем защиты импульсных болков питания от перегрузки
СХЕМА "МЕДЛЕННОГО ПУСКА" Описаны принципы формирования мягкого старта и выработки напряжения POWER GOOD
ПРИМЕР ПОСТРОЕНИЯ ОДНОГО ИЗ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ Полное описание принципиальной схемы и ее работы импульсного блока питания

Особенности блоков питания — что нужно знать?

Импульсный блок питания — это что?

Обычный блок питания заметно больше и тяжелее чем импульсный. Размеры отличаются из-за разной частоты преобразования энергии. Обычный блок питания преобразует энергию с частотой сети — 50 Гц , тогда как импульсный с частотой примерно 30 000 Гц. Количество порций энергии, которая преобразовывается каждую секунду, больше, поэтому размеры основного компонента — трансформатора уменьшаются.

Функционально импульсный блок питания отличается защитой от короткого замыкания и перегрузки, стабилизацией выходного напряжения. Эти функции могут присутствовать и в обычном блоке питания, но в импульсном они достаются почти даром, т.к. все их может взять на себя одна и та же микросхема, которую и без того нужно устанавливать для контроля процесса преобразования.


Преимущества импульсного блока питания
— широкий диапазон входного напряжения
— нечувствителен к качеству входного напряжения
— меньше габариты и масса

Недостатки
— импульсные помехи при работе, которые свойственны для дешевых блоков питания
— меньше надежность недорогих блоков питания, что обусловлено сложностью конструкции

 

Основные характеристики

Входное напряжение
Напряжение сети, к которой подключают блок питания. В электрошкафах наиболее популярны промышленные блоки питания с входным напряжением 220 В, 50 Гц. Импульсные блоки питания работают нормально как при повышенном, так и пониженном напряжении, поэтому входное напряжение указывают диапазоном, например 85…265 В, 50…60 Гц. Некоторые модели могут работать как от переменного, так и от постоянного напряжения.

Выходное напряжение
Напряжение на выходе блока питания. Применительно к электрошкафам распространены блоки питания с выходом 24 В постоянного тока — напряжение питания промышленной автоматики и цепей управления.

Выходной ток
Ток, при котором обеспечивается нормальная работа блока питания. Потребляемый нагрузкой ток должен быть равен или меньше выходного тока блока питания. Если же потребляемый ток нагрузки больше выходного тока блока питания, то это приведет к срабатыванию защиты или просадкам напряжения. Если выходной ток неизвестен, но известна мощность, то значения можно пересчитать.

Мощность
Отражает количество и мощность нагрузок, которые блок питания может обеспечить энергией. Суммарная мощность подключенных нагрузок должна быть меньше или равной мощности блока питания.

Для выбора необязательно знать и ток, и мощность, т.к. они взаимосвязаны. При необходимости их можно пересчитать:


где:
Pнагр — мощность нагрузки, Вт;
Uвых — выходное напряжение блока питания, в нашем случае 24 В. 

Если к блоку питания нет дополнительных требований, то знания этих характеристик достаточно.

 

Дополнительные функции

Регулятор напряжения
Подстроечный резистор на панели блока питания корректирует напряжение на выходе. У БП на 24 В пределы регулировки обычно составляют 22…28 В. Применяется для питания нагрузок с нестандартным рабочим напряжением и компенсации падения напряжения на длинных линиях.

Контакт DC OK
Нормально разомкнутый контакт срабатывает, если выходное напряжение стабилизировано, т.е. в нормальном режиме работы. Контакт используется для удаленного контроля работы БП, а также для управления нагрузкой, чувствительной к перепадам напряжения.

Кратковременная перегрузка
Иногда пишут Dynamic Boost, намеренно «забывая» перевести. Например, в ассортименте нашего магазина есть блоки питания Phoenix Contact серии КВНТ, которые допускают перегрузку 50 % в течении 5 секунд, а блоки QUINT допускают 100 % перегрузку в течениие тех же 5 секунд.

Постоянная перегрузка по мощности
Она же Static Boost. Производитель намеренно занижает номинальную мощность блока, чтобы обеспечить резерв. Например, блоки питания Phoenix Contact серии QUINT допускают постоянную перегрузку в 25%.

Функция селективного отключения
Блок питания, обладая значительным кратковременным запасом мощности, позволяет обеспечить срабатывание подключенных к нему автоматических выключателей. Таким образом, отключается только неисправная нагрузка, а остальные остаются в работе.

Например, блоки питания QUINT с одноимённой функцией «Selective Fuse Breaking» (SFB). Довольно редкая функция, но встречается не только у Phoenix Contact, например, у блоков питания PROtop производства Weidmuller с функцией «DCL».

Weidmuller эту функцию описывают так: «Технология DCL гарантирует надежное срабатывание автоматов, благодаря повышению выходного тока по крайней мере на 600 % в течении 20 мс. Кроме того, повышенная перегрузочная способность обеспечивает запуск мощного двигателя». Функция реализуется только при подключении нагрузки через автоматический выключатель или плавкий предохранитель.

На примере Phoenix Contact, мы сделали сводную таблицу характеристик чтобы понять разницу в стоимости, отражающих функционал и надёжность.

Сравнение блоков питания Phoenix Contact, мощностью 240 Вт

Серия

ESSENTIAL

UNO

КВНТ

QUINT

Артикул

2910587

2904372

1032386

2904601

Цена в магазине

8 411 ₽

9 653 ₽

12 283 ₽

14 207 ₽

Входное напряжение, АС

85... 264 В

85... 264 В

85...264 В

85...264 В

Входное напряжение, DC

99…275 В

90…350 В

Точность стабилизации выходного напряжения

±2 %

±2 %

±1 %

±1 %

КПД

88%

90%

90%

93%

Среднее время наработки на отказ

700 000 ч

641 000 ч

1 000 000 ч

783 000 ч

Регулятор напряжения

Параллельная работа

Контакт DC OK

Кратковременная перегрузка

1,5 х Iном в течении 5с

2 х Iном в течении 5с

Постоянная перегрузка по мощности

1,25 х Iном

Функция селективного отключения


 

Аксессуары

Модули резервирования —
Резервный модуль позволяет добиться бесперебойной подачи питания на нагрузку от двух независимых блоков. Контролирует распределение мощности и формирует сигнал аварии в случае отказа одного из блоков питания. В обычном режиме он равномерно распределяет нагрузку между блоками питания по 50% на каждый. В случае поломки одного из блоков питания, вся нагрузка ложится на исправный, загружая его на все 100%.

Автоматические выключатели и плавкие вставки —
Защищают блок питания от перегрузки и короткого замыкания. В случае короткого замыкания в нагрузке автоматический выключатель отключит её, а блок питания не «уйдёт в защиту» и продолжить питать исправные нагрузки.

Наиболее интересны многоканальные электронные автоматические выключатели. Они содержат в одном корпусе несколько автоматических выключателей, уставка срабатывания каждого выключателя или канала регулируется, а на входе встроена защита от повышенного и пониженного напряжения.

Например, выключатель СВМ производства Phoenix Contact подключатся к выходу блока питания, а уже к выходным клеммам автомата подключают нагрузку согласно схеме:


Схема подключения автомата CBM

В зависимости от исполнения, CBM рассчитаны на подключение 4 или 8 нагрузок. Уставки по току перегрузки регулируются в пределах 0,5…10 А отдельно для каждой нагрузки. Защитное отключение одной нагрузки не влияет на работу остальных. Кроме защиты от токов, CBM контролирует уровень напряжения. Если напряжение выходит за пределы, то автомат отключает все подключенные устройства. Кроме электронного выключателя CBM, для защиты нагрузок применяются автоматические выключатели постоянного тока или плавкие предохранители, подобранные в соответствии с номинальными токами нагрузки.

 

Что дальше?

Конечно, это не всё, но достаточно, чтобы определиться с выбором. По мере знакомства с блоками питания вы узнаете еще больше характеристик и функций: защита от кратковременных перенапряжений, фильтры помех, дополнительные релейные выходы и другое. Главное — не терять любопытство!

Блоки питания в нашем каталоге
https://shop.idelectro.ru/catalog/bloki_pitaniya_i_transformatory/

Как выбрать блок питания

Руководство покупателя питания: общие сведения об источниках питания

Есть старая поговорка: «Используйте правильный инструмент для работы!» Но иногда для работы существует несколько «правильных инструментов», так как же узнать, какой из них использовать? Чтобы правильно выбрать источник питания, необходимо понять некоторые важные основы.

Линия электропитания Jameco Electronics включает широкий выбор источников питания. Они обеспечивают все ваши потребности в источниках питания от настенных адаптеров и настольные блоки питания для открытым/ закрытые источники питания переменного тока в постоянный и преобразователи постоянного тока в постоянный / инверторы постоянного тока.Какой бы инструмент вы ни выбрали в качестве источника питания, вы можете быть уверены, что получите продукцию отличного качества, подходящую для вашей работы.

Условия подачи питания

Прежде всего, давайте проясним некоторые термины, которые часто сбивают с толку людей, но которые важны при выборе правильного источника питания для настенного адаптера. «Импульсные» источники питания переменного тока в постоянный по сравнению с «линейными» источниками питания часто вводят в заблуждение тех, кто с ними не знаком.

Линейные источники питания принимают входной сигнал переменного тока (обычно 120 или 240 В переменного тока), понижают напряжение с помощью трансформатора, затем выпрямляют и фильтруют входной сигнал в выход постоянного тока.

Импульсный источник питания принимает входной переменный ток, но сначала выпрямляет и фильтрует в постоянный ток, затем преобразует обратно в переменный ток на некоторой высокой частоте переключения, понижает напряжение с помощью трансформатора, затем выпрямляется и фильтруется в выход постоянного тока.

Разница между линейным и коммутационным процессами заключается в том, что они позволяют использовать разные компоненты. Линейный источник питания обычно менее эффективен, использует более крупный и тяжелый трансформатор, а также более крупные компоненты фильтра.Импульсный источник питания подразумевает более высокий КПД из-за высокой частоты переключения, что позволяет использовать более компактный и менее дорогой высокочастотный трансформатор, а также более легкие и менее дорогие компоненты фильтра. Импульсные источники питания содержат больше общих компонентов, поэтому, как правило, они дороже.

Примечание:
Существует разница между «переключением» на стороне входа и «переключением» на стороне выхода. То, что мы только что обсудили, относится к переключению на выходной стороне.Говоря о стороне входа, существует 2 типа «переключаемых» источников питания:

1) Переключение - автоматически переключает между входами переменного тока и частотами, или
2) Переключаемый - на источнике питания есть ручной переключатель, который меняет диапазон и частота входного переменного тока.

Суммирование, хотя линейный процесс кажется более эффективным из-за более короткого процесса, импульсный источник питания на самом деле более эффективен.


Astec ACV15N4,5 - Линейный источник питания 15 В, 4,5 А
Размер: 7.0 "Д x 4,8" Ш x 2,7 "В
Mean Well PS-65-15 - Импульсный источник питания 15 В, 4,2 А
Размер: 5,0" Д x 3,0 "Ш x 1,7" В

При разговоре о " регулируемые источники питания в сравнении с нерегулируемыми. Эти термины относятся к схеме управления источником питания.

В нерегулируемом источнике питания переключающий транзистор работает с постоянным рабочим циклом, поэтому нет ничего, что могло бы управлять выходом. Выходы не имеют определенного значения; вместо этого они немного колеблются при приложении различных нагрузок.Только очень низкое напряжение приведет к отключению источника питания.

В регулируемом источнике питания выходная мощность поддерживается очень близкой к ее номинальной выходной мощности за счет изменения рабочего цикла для компенсации изменений нагрузки. Это обеспечивает лучшую защиту ваших устройств и более точные выходные данные.

Основные отличия регулируемых источников питания от нерегулируемых - это защита и цена. Регулируемые источники питания обеспечивают лучшую эффективность и защиту, но нерегулируемые источники питания значительно дешевле по стоимости.


Jameco ReliaPro 12V, 1A Регулируемый линейный настенный адаптер
1-Unit Price: $ 14.95
Jameco ReliaPro 12V, 1A Нерегулируемый линейный настенный адаптер
1-Unit Price: $ 9.95
Теперь, когда вы знаете, что искать, убедитесь, что у вас есть все необходимые детали. Если по какой-то причине вы не можете найти то, что вам нужно, просто напишите нам, и мы сделаем все возможное, чтобы найти это для вас.

Есть еще вопросы? Напишите нам на [адрес электронной почты защищен]

Вернуться в центр энергоресурсов >>

Конструкция источника питания: Switch-Mode vs.Линейный

Источники питания постоянного тока

доступны как в импульсном (также называемом импульсным), так и в линейном исполнении. Хотя оба типа обеспечивают питание постоянного тока, методы, используемые для получения этой мощности, различаются. В зависимости от области применения каждый тип источника питания имеет преимущества перед другим. Давайте посмотрим на различия между этими двумя технологиями, а также на соответствующие преимущества и недостатки каждой конструкции.

Импульсный источник питания преобразует мощность сети переменного тока непосредственно в напряжение постоянного тока без трансформатора, и это исходное напряжение постоянного тока затем преобразуется в сигнал переменного тока более высокой частоты, который используется в схеме регулятора для получения желаемого напряжения и тока. .В результате получается гораздо более компактный и легкий трансформатор для повышения или понижения напряжения, чем то, что было бы необходимо при частоте сети переменного тока 60 Гц. Эти меньшие трансформаторы также значительно более эффективны, чем трансформаторы на 60 Гц, поэтому коэффициент преобразования мощности выше.

Линейный источник питания подает напряжение сети переменного тока на силовой трансформатор для повышения или понижения напряжения перед подачей на схему регулятора. Поскольку размер трансформатора косвенно пропорционален рабочей частоте, это приводит к более мощному и тяжелому источнику питания.

У каждого типа работы блока питания есть свои достоинства и недостатки. Импульсный источник питания на 80% меньше и легче соответствующего линейного источника питания, но он генерирует высокочастотный шум, который может мешать работе чувствительного электронного оборудования. В отличие от линейных источников питания, импульсные источники питания способны выдерживать небольшие потери переменного тока в диапазоне 10-20 мс, не влияя на выходы.

Линейный источник питания требует более крупных полупроводниковых устройств для регулирования выходного напряжения и, следовательно, выделяет больше тепла, что приводит к снижению энергоэффективности.Линейный источник питания обычно работает с КПД около 60% для выходов 24 В, тогда как импульсный источник питания работает с 80% или более. Линейные источники питания имеют время отклика до 100 раз быстрее, чем их аналоги, работающие в режиме переключения, что важно в некоторых специализированных областях.

В общем, импульсный источник питания лучше всего подходит для портативного оборудования, поскольку он легче и компактнее. Поскольку электрический шум ниже и его легче сдерживать, линейный источник питания лучше подходит для питания чувствительных аналоговых цепей.

Импульсные источники питания

Начиная с 27,95 $

Компактный, легкий и эффективный. Купить сейчас>

Линейные источники питания

Начиная с 49,00 $

Низкая пульсация и шум, высокая надежность. Купить сейчас>

В чем разница между линейными и импульсными источниками питания?

Номинальная температура окружающей среды относится к соотношению между номинальной мощностью, указанной на этикетке, рабочей температурой окружающей среды в приложении и фактической мощностью после требуемого снижения номинальных характеристик, если это необходимо.Многие производители указывают номинальные характеристики блоков питания для температуры окружающей среды 40 ° C. Это означает, что номинальная мощность, указанная на паспортной табличке (т. Е. 60 Вт), применима только в том случае, если устройство эксплуатируется в среде с окружающей температурой не выше 40 ° C. Если агрегат эксплуатируется при температуре выше 40 ° C, мощность агрегата должна быть значительно снижена, при этом полное снижение номинальных характеристик обычно происходит при 50 ° C. В этом примере конструкция 60 Вт при 40 ° C будет переоценена на 30 Вт при температуре окружающей среды 45 ° C и неработоспособна при 50 ° C. Однако блоки питания Micron рассчитаны на работу при температуре до 60 ° C и имеют паспортную табличку.Конструкция Micron все еще может работать при температурах выше 60 ° C, но ее необходимо постепенно снижать по мере приближения температуры окружающей среды к 70 ° C. Это важно в двух отношениях. Во-первых, технический специалист должен согласовать рабочую температуру окружающей среды с подходящей конструкцией источника питания, чтобы избежать перегрузки источника питания. Во-вторых, покупатель источника питания должен обращать внимание на различия в номинальных рабочих температурах, чтобы принять разумное решение о покупке, поскольку различия в производительности между конструкциями 40⁰ и 60⁰ значительны, следовательно, более низкая стоимость единицы для меньшей конструкции.

Также важно понимать разницу между «рабочим диапазоном» и «рабочим диапазоном мощности». Многие производители указывают «рабочий диапазон» для своих источников питания от -20 до 70 ° C, хотя конструкция с 40 ° C не обеспечивает мощность выше 49 ° C. Если возникают какие-либо вопросы относительно пригодности конкретной конструкции источника питания в отношении ожидаемых рабочих температур окружающей среды, пользователь должен запросить график кривой зависимости температуры / мощности, который должен отображать точку и диапазон требуемого снижения мощности для устройства.

В чем разница между линейными и импульсными источниками питания?

Существует два основных исполнения источников питания постоянного тока: линейные источники питания постоянного тока и импульсные источники питания постоянного тока. Традиционные линейные источники питания обычно тяжелые, долговечные и имеют низкий уровень шума на низких и высоких частотах. По этой причине они в основном подходят для приложений с низким энергопотреблением, где вес не представляет проблемы. Импульсные источники питания намного легче, эффективнее, долговечнее и имеют ограниченный высокочастотный шум благодаря конструкции.По этой причине импульсные источники питания не подходят для высокочастотных аудиоприложений, но отлично подходят для приложений с высокой мощностью. Помимо этого, эти два типа в значительной степени взаимозаменяемы для различных приложений, и их изготовление примерно одинаково. Импульсные источники питания в настоящее время используются более широко, чем линейные источники питания, мы видели, как некоторые онлайн-продавцы говорили, что импульсные источники питания не подходят для гальваники (гальваники) или ионизации, это вводит в заблуждение и не соответствует действительности.

Если вы хотите узнать больше о линейных источниках питания постоянного тока и импульсных источниках питания постоянного тока, прочтите более подробное введение ниже.

Линейный источник питания постоянного тока

Линейные источники питания постоянного тока были основой преобразования энергии до конца 1970-х годов. С развитием технологии импульсных источников питания линейные источники питания сегодня менее популярны, но по-прежнему незаменимы в приложениях, требующих очень низких пульсаций и шума.Линейный источник питания использует большой трансформатор для понижения напряжения с линии переменного тока до гораздо более низкого переменного напряжения, а затем использует ряд выпрямительных схем и процесс фильтрации для получения очень чистого постоянного напряжения. Это низкое напряжение постоянного тока затем регулируется до желаемого уровня путем уменьшения разницы в напряжении на транзисторе или IC (шунтирующем стабилизаторе). Типичные области применения линейных источников питания постоянного тока включают, но не ограничиваются:

  • студийный микшер / аудиоусилитель

  • малошумящие усилители

  • обработка сигналов

  • сбор данных - включая датчики, мультиплексоры, аналого-цифровые преобразователи и схемы выборки и хранения.

  • автоматическое испытательное оборудование

  • лабораторное испытательное оборудование

  • цепи управления

  • везде, где требуется отличное регулирование и / или низкая пульсация

В течение трех десятилетий Mastech производила регулируемые линейные источники питания с исключительно низкой пульсацией и шумом за небольшую плату от известных брендов. Наш успех привлек множество подражателей с похожими продуктами.За последние три года мы внедрили новые конструкции, которые выводят надежность и отказоустойчивость линейных источников питания постоянного тока на новый уровень. После трех лет испытаний мы рады подтвердить, что новая линейка линейных источников питания постоянного тока Volteq оправдала все наши ожидания в отношении регулирования напряжения и тока, шума и надежности и является предпочтительным линейным источником питания постоянного тока для большинство наших клиентов.

Если у вас есть аудиоприложение, вам следует придерживаться оригинальной конструкции линейных источников питания постоянного тока Mastech для работы без вентилятора.

Для всех других применений мы рекомендуем линейные блоки питания постоянного тока Volteq из-за повышенной надежности благодаря защите от перенапряжения и обратного напряжения.

Есть технический вопрос? посетите наш форум поддержки .

Нужна помощь в поиске подходящего продукта? Ознакомьтесь с нашим руководством по выбору .

Импульсный источник питания постоянного тока

Импульсные источники питания постоянного тока были впервые представлены в конце 1970-х годов, сегодня они являются самой популярной формой источников питания постоянного тока на рынке благодаря их исключительной энергоэффективности и отличным общим характеристикам.Импульсный источник питания постоянного тока (также известный как импульсный источник питания) регулирует выходное напряжение с помощью процесса, называемого широтно-импульсной модуляцией (ШИМ). Процесс ШИМ генерирует некоторый высокочастотный шум, но позволяет создавать импульсные источники питания с очень высокой энергоэффективностью и малым форм-фактором. Импульсный источник питания с хорошей конструкцией может иметь отличную стабилизацию нагрузки и линии. Типичные области применения импульсных источников питания постоянного тока:

  • универсальное использование, включая НИОКР, производство и испытания
  • приложения с высокой мощностью / высоким током
  • системы связи, мобильные станции, сетевое оборудование и т. д.
  • гальваника, анодирование, гальванопластика, электрофорез и др.
  • Зарядка и выравнивание литий-ионных аккумуляторов, авиационных, морских и автомобильных аккумуляторов
  • электролиз, обработка отходов, водородный генератор, топливные элементы и т. д.
  • Двигатели постоянного тока, игровые автоматы, авиационные и морские приложения и т. Д.

В течение трех десятилетий Mastech создавал регулируемые импульсные источники питания с наименьшими шумами и колебаниями в отрасли.Наши импульсные источники питания широко используются в исследованиях и разработках и в лабораторных условиях из-за их исключительных шумовых характеристик. Выбор конструкции для минимизации шума имеет ряд недостатков: более медленный отклик и повышенная чувствительность к обратной ЭДС от нагрузки. В результате импульсные источники питания Mastech не подходят для зарядки аккумуляторов, анодирования, светодиодных применений, гальваники (использование в качестве выпрямителей для гальванических покрытий) и анодирования, электролиза, гальванопластики, производства водорода и любых электрохимических применений.

Признавая недостатки, мы запустили в 2012 году новую линейку импульсных источников питания под брендом Volteq для удовлетворения растущих потребностей клиентов в области зарядки аккумуляторов, светодиодных приложений, двигателей постоянного тока, гальваники и анодирования, электролиза и производства водорода, игровых автоматов. , автомобильная, авиационная и морская промышленность. Импульсные источники питания Volteq , , со встроенной защитой от перенапряжения и обратного напряжения, прочны как скала, но при этом обеспечивают отличные характеристики шума и пульсаций благодаря использованию самых современных технологий.

Есть технический вопрос? посетите наш форум поддержки .

Нужна помощь в поиске подходящего продукта? Ознакомьтесь с нашим руководством по выбору .

Линейно-регулируемый источник питания в сравнении с импульсным | ОРЕЛ

Для повседневных электронных устройств, особенно с интегральными схемами, требуется надежный источник постоянного напряжения, который может обеспечивать питание в любое время без каких-либо сбоев. В этом блоге мы рассмотрим две топологии источников питания, которые следует рассмотреть для вашего следующего проекта: источники питания с линейным стабилизатором и импульсные источники питания.Выбор источника питания зависит от ваших требований к эффективности, занимаемому пространству, регулировке выходной мощности, переходному времени отклика и стоимости.

Источник питания с линейной регулировкой

Линейные регуляторы были предпочтительными источниками питания до 1970-х годов для преобразования переменного тока (AC) в установившийся постоянный ток (DC) для электронных устройств. Хотя сегодня этот тип источника питания не используется так широко, он по-прежнему является лучшим выбором для приложений, требующих минимального шума и пульсаций.

Они могут быть громоздкими, но источники питания с линейным регулированием бесшумны. (Источник изображения)

Как они работают

Основным компонентом, обеспечивающим работу линейного регулятора, является стальной или чугунный трансформатор. Этот трансформатор выполняет две функции:

  • Он действует как барьер для разделения входа высокого напряжения переменного тока от входа низкого напряжения постоянного тока, который также отфильтровывает любой шум, попадающий в выходное напряжение.
  • Снижает входное напряжение переменного тока с 115/230 В до примерно 30 В, которое затем может быть преобразовано в постоянное напряжение постоянного тока.

Напряжение переменного тока сначала понижается трансформатором, а затем выпрямляется несколькими диодами. Затем оно сглаживается до низкого постоянного напряжения парой больших электролитических конденсаторов. Это низкое постоянное напряжение затем регулируется как стабильное выходное напряжение с помощью транзистора или интегральной схемы.

Вот блок питания с линейным регулятором. (Источник изображения)

Регулятор напряжения в линейном источнике питания действует как переменный резистор. Это позволяет изменять значение выходного сопротивления в соответствии с требованиями к выходной мощности.Поскольку регулятор напряжения постоянно сопротивляется току для поддержания напряжения, он также действует как устройство рассеивания мощности. Это означает, что полезная мощность постоянно теряется в виде тепла, чтобы поддерживать постоянный уровень напряжения.

Трансформатор - это уже крупный компонент, который нужно разместить на печатной плате (PCB). Из-за постоянной мощности и рассеивания тепла для источника питания линейного регулятора потребуется радиатор. Сами по себе эти два компонента делают устройство очень тяжелым и громоздким по сравнению с малым форм-фактором импульсного источника питания.

Предпочтительные приложения

Линейные регуляторы

известны своим низким КПД и большими размерами, но они обеспечивают бесшумное выходное напряжение. Это делает их идеальными для любого устройства, которому требуется высокая частота и низкий уровень шума, например:

  • Цепи управления
  • Малошумящие усилители
  • Сигнальные процессоры
  • Автоматизированное и лабораторное испытательное оборудование
  • Датчики и схемы сбора данных

Преимущества и недостатки

Источники питания с линейной стабилизацией могут быть громоздкими и неэффективными, но их низкий уровень шума идеально подходит для приложений, чувствительных к шуму.Некоторые преимущества и недостатки, которые следует учитывать для этой топологии, включают:

Преимущества

  • Простое приложение . Линейные регуляторы могут быть реализованы как единый корпус и добавлены в схему всего двумя дополнительными фильтрующими конденсаторами. Это позволяет инженерам любого уровня подготовки легко планировать и проектировать с нуля.
  • Низкая стоимость . Если вашему устройству требуется выходная мощность менее 10 Вт, то стоимость компонентов и производства намного ниже по сравнению с импульсными источниками питания.
  • Низкий уровень шума / пульсаций . Линейные регуляторы имеют очень низкие пульсации выходного напряжения и широкую полосу пропускания. Это делает их идеальными для любых чувствительных к шуму приложений, включая устройства связи и радио.

Недостатки

  • Ограниченная гибкость . Линейные регуляторы можно использовать только для понижения напряжения. Для источника питания переменного и постоянного тока трансформатор с выпрямлением и фильтрацией необходимо будет разместить перед линейным источником питания, что увеличит общие затраты и усилия.
  • Ограниченная продукция . Источники питания с линейной стабилизацией обеспечивают только одно выходное напряжение. Если вам нужно больше, вам нужно будет добавить отдельный линейный регулятор напряжения для каждого требуемого выхода.
  • Низкая эффективность . Среднее устройство с линейным регулированием достигает КПД от 30% до 60% за счет рассеивания тепла. Это также требует добавления радиатора, который увеличивает размер и вес устройства.

В наше время энергоэффективных устройств низкий КПД линейно регулируемого источника питания может стать убийцей.Нормальный источник питания с линейной регулировкой будет работать с КПД около 60% при выходном напряжении 24 В. Когда вы рассматриваете входную мощность 100 Вт, вы получаете 40 Вт потери мощности.

Прежде чем рассматривать возможность использования источника питания с линейной стабилизацией, мы настоятельно рекомендуем учитывать потери мощности, которые вы получите от входа к выходу. Вы можете быстро оценить эффективность линейного регулятора по следующей формуле:

Импульсный источник питания (SMPS)

Импульсные источники питания

были представлены в 1970-х годах и быстро стали самым популярным способом подачи постоянного тока на электронные устройства.Что делает их такими замечательными? По сравнению с линейными регуляторами выделяются их высокий КПД и производительность.

В стандартный адаптер переменного тока входит импульсный блок питания. (Источник изображения)

Как они работают

Импульсный источник питания регулирует выходное напряжение с широтно-импульсной модуляцией (ШИМ). Этот процесс создает высокочастотный шум, но обеспечивает высокую эффективность при небольшом форм-факторе. При подключении к сети переменного тока напряжение 115 В или 230 В переменного тока сначала выпрямляется и сглаживается набором диодов и конденсаторов, которые обеспечивают высокое напряжение постоянного тока.Это высокое постоянное напряжение затем понижается с помощью небольшого ферритового трансформатора и набора транзисторов. В процессе понижения сохраняется высокая частота переключения от 200 кГц до 500 кГц.

Низкое постоянное напряжение, наконец, преобразуется в устойчивый выход постоянного тока с помощью другого набора диодов, конденсаторов и катушек индуктивности. Любое регулирование, необходимое для поддержания постоянного выходного напряжения, осуществляется путем регулировки ширины импульса высокочастотного сигнала. Этот процесс регулирования работает через цепь обратной связи, которая постоянно контролирует выходное напряжение и при необходимости регулирует соотношение включения-выключения сигнала ШИМ.

Вот импульсный источник питания, в котором на тонну больше деталей, чем с линейным регулированием. (Источник изображения)

Предпочтительные приложения

Чаще всего импульсные блоки питания используются в приложениях, где важны время автономной работы и температура, например:

  • Электролиз, обработка отходов или применение топливных элементов
  • Двигатели постоянного тока, игровые автоматы, авиация и морское применение
  • Научно-исследовательское, производственное и испытательное оборудование
  • Зарядка литий-ионных аккумуляторов, используемых в авиации и транспортных средствах
  • Процессы гальваники, анодирования и гальванопластики

Преимущества и недостатки

Импульсные источники питания

могут иметь более высокий КПД, чем линейные регуляторы, но их шум делает их плохим выбором для приложений радиосвязи и связи.Некоторые преимущества и недостатки, которые следует учитывать для этой топологии, включают:

Преимущества

  • Малый форм-фактор . Понижающий трансформатор в ИИП работает на высокой частоте, что, в свою очередь, уменьшает его объем и вес. Это позволяет импульсному источнику питания иметь гораздо меньший форм-фактор, чем линейные регуляторы.
  • Высокая эффективность . Регулировка напряжения в импульсном источнике питания осуществляется без чрезмерного рассеивания тепла.КПД SMPS может достигать 85% -90%.
  • Гибкие приложения . К импульсному источнику питания можно добавить дополнительные обмотки, чтобы обеспечить более одного выходного напряжения. ИИП с трансформаторной развязкой может также обеспечивать выходное напряжение, не зависящее от входного напряжения.

Недостатки

  • Сложная конструкция . По сравнению с линейными регуляторами планирование и проектирование импульсных источников питания обычно предназначено для специалистов по энергетике.Это не лучший источник питания, если вы планируете разработать свой собственный без тщательного изучения или опыта.
  • Высокочастотный шум . Операция переключения полевого МОП-транзистора в импульсном источнике питания обеспечивает высокочастотный шум в выходном напряжении. Это часто требует использования радиочастотного экранирования и фильтров электромагнитных помех в чувствительных к шуму устройствах.
  • Более высокая стоимость . Для более низкой выходной мощности 10 Вт или менее дешевле использовать линейно регулируемый источник питания.

Импульсные блоки питания никуда не денутся и станут лучшим выбором для приложений, не чувствительных к шуму. Сюда входят такие устройства, как зарядные устройства для мобильных телефонов, двигатели постоянного тока и многое другое.

Линейный стабилизатор

и ИИП в сравнении с

Теперь мы рассмотрим заключительное сравнение между линейно регулируемыми и импульсными источниками питания при параллельном сравнении. Некоторые из наиболее важных требований, которые необходимо учитывать, включая размер / вес, диапазон входного напряжения, рейтинг эффективности и уровень шума среди других факторов.Вот как он распадается:

Как спроектировать свой собственный Это выходит за рамки этого блога, чтобы объяснить, как разработать линейно регулируемый или импульсный источник питания. Однако есть несколько руководств, которыми мы хотели бы поделиться. Имейте в виду, что конструкция SMPS требует высокого уровня сложности и не рекомендуется новичку в проектировании электроники. Руководства по проектированию линейно регулируемых источников питания

Руководства по проектированию импульсных источников питания

Power On Большинство электронных устройств в наши дни должны преобразовывать сеть переменного тока в постоянное выходное напряжение.Для этой цели необходимо рассмотреть две топологии: источники питания с линейным регулированием и импульсные источники питания. Линейное регулирование идеально подходит для приложений, требующих низкого уровня шума, тогда как импульсные источники питания лучше подходят для портативных устройств, где важны срок службы батареи и эффективность. Решая, какую топологию выбрать, всегда учитывайте требуемый рейтинг эффективности, форм-фактор, выходную регулировку и требования к шуму. Готовы разработать свой первый линейный регулируемый или импульсный источник питания? Попробуйте Autodesk EAGLE бесплатно сегодня!

Источники питания с линейной регулировкой Импульсные источники питания
Размер Линейный блок питания мощностью 50 Вт обычно 3 x 5 x 5.5 ” Импульсный блок питания мощностью 50 Вт, обычно 3 x 5 x 1 дюйм
Вес Линейный источник питания 50 Вт - 4 фунта Импульсный блок питания 50 Вт - 0,62 фунта
Диапазон входного напряжения 105 - 125 В переменного тока и / или

210–250 В перем. Тока

90 - 132 В переменного тока или 180 - 264 В переменного тока без PFC

90 - 264 В переменного тока с PFC

КПД Обычно 40% -60% Обычно 70% -85%
EMI Низкий Высокая
Утечка Низкий Высокая
Схема проектирования Средней сложности, можно проектировать с помощью направляющих Высокая сложность, требует специальных знаний
Регулировка нагрузки 0.От 005% до 0,2% от 0,05% до 0,5%
Линейный регламент от 0,005% до 0,05% от 0,05% до 0,2%
Количество деталей Низкий, требуется только регулятор и фильтрация ввода / вывода Высокий, требуется переключатель, демпфер, трансформатор, конденсаторы, сеть обратной связи и т. Д.

Импульсный источник питания: преимущества использования и принцип работы | Статья

.

СТАТЬЯ ОБРАЗОВАНИЯ


Получайте ценные ресурсы прямо на свой почтовый ящик - рассылается раз в месяц

Мы ценим вашу конфиденциальность

Что такое блок питания?

Источник питания - это электрическое устройство, которое преобразует электрический ток, исходящий от источника питания, в значение напряжения, необходимое для питания нагрузки, такой как двигатель или электронное устройство.

Существует два основных исполнения источников питания: линейный источник питания и импульсный источник питания.

  • Линейный: В линейных источниках питания используется трансформатор для понижения входного напряжения. Затем напряжение выпрямляется и превращается в напряжение постоянного тока, которое затем фильтруется для улучшения качества формы сигнала. В линейных источниках питания используются линейные регуляторы для поддержания постоянного напряжения на выходе. Эти линейные регуляторы рассеивают лишнюю энергию в виде тепла.
  • Коммутация: Импульсный источник питания - это новая методология, разработанная для решения многих проблем, связанных с конструкцией линейного источника питания, включая размер трансформатора и регулировку напряжения. В схемах импульсных источников питания входное напряжение больше не снижается; вместо этого он исправляется и фильтруется на входе. Затем напряжение проходит через прерыватель, который преобразует его в серию высокочастотных импульсов. Прежде чем напряжение достигнет выхода, оно снова фильтруется и выпрямляется.

Как работает импульсный источник питания?

В течение многих лет линейные источники питания переменного / постоянного тока преобразуют мощность переменного тока из электросети в напряжение постоянного тока для работы бытовой техники или освещения. Потребность в источниках меньшего размера для мощных приложений означает, что линейные источники питания стали использоваться в конкретных промышленных и медицинских целях, где они все еще необходимы из-за их низкого уровня шума. Но на смену пришли импульсные источники питания, потому что они меньше, эффективнее и способны выдерживать большую мощность. На рисунке 1 показано общее преобразование переменного тока (AC) в постоянный ток (DC) в импульсном источнике питания.

Рисунок 1: Изолированный импульсный источник питания переменного / постоянного тока

Входное исправление

Выпрямление - это процесс преобразования переменного напряжения в постоянное. Выпрямление входного сигнала - это первый шаг в импульсных источниках питания переменного / постоянного тока.

Принято считать, что постоянное напряжение - это прямая, непоколебимая линия постоянного напряжения, подобная той, которая выходит из батареи.Однако то, что определяет постоянный ток (DC), - это однонаправленный поток электрического заряда. Это означает, что напряжение течет в одном направлении, но не обязательно постоянно.

Синусоидальная волна представляет собой наиболее типичную форму волны переменного тока, которая является положительной для первого полупериода, но отрицательной для остальной части цикла. Если отрицательный полупериод реверсируется или устраняется, то ток перестает меняться и становится постоянным. Этого можно добиться с помощью процесса, называемого исправлением.

Выпрямление может быть достигнуто с помощью пассивного полумостового выпрямителя для устранения отрицательной половины синусоидальной волны с помощью диода (см. Рисунок 2) . Диод позволяет току течь через него во время положительной половины волны, но блокирует ток, когда он течет в противоположном направлении.

Рисунок 2: Полумостовой выпрямитель

После выпрямления результирующая синусоида будет иметь низкую среднюю мощность и не сможет эффективно обеспечивать питание устройств.Гораздо более эффективным методом было бы изменить полярность отрицательной полуволны и сделать ее положительной. Этот метод называется двухполупериодным выпрямлением, и для него требуется только четыре диода в конфигурации моста (см. Рисунок 3) . Такая конструкция поддерживает стабильное направление тока независимо от полярности входного напряжения.

Рисунок 3: Мостовой выпрямитель

Полностью выпрямленная волна имеет более высокое среднее выходное напряжение, чем напряжение, создаваемое полумостовым выпрямителем, но это все еще очень далеко от постоянной формы волны постоянного тока, необходимой для питания электронных устройств.Хотя это волна постоянного тока, ее использование для питания устройства было бы неэффективным из-за формы волны напряжения, которая очень быстро и очень часто меняет значение. Это периодическое изменение напряжения постоянного тока называется пульсацией - уменьшение или устранение пульсаций имеет решающее значение для эффективного источника питания.

Самым простым и наиболее часто используемым методом уменьшения пульсаций является использование большого конденсатора на выходе выпрямителя, называемого накопительным конденсатором или сглаживающим фильтром (см. Рисунок 4) .

Конденсатор накапливает напряжение во время пика волны, а затем снабжает нагрузку током до тех пор, пока его напряжение не станет меньше, чем сейчас нарастающая волна выпрямленного напряжения. Результирующая форма волны намного ближе к желаемой форме и может считаться постоянным напряжением без составляющей переменного тока. Этот окончательный сигнал напряжения теперь можно использовать для питания устройств постоянного тока.

Рисунок 4: Полномостовой выпрямитель со сглаживающим фильтром

Пассивное выпрямление использует полупроводниковые диоды в качестве неуправляемых переключателей и является самым простым методом выпрямления волны переменного тока, но не самым эффективным.

Диоды - относительно эффективные переключатели; они могут быстро включаться и выключаться с минимальными потерями энергии. Единственная проблема с полупроводниковыми диодами заключается в том, что они имеют падение напряжения прямого смещения от 0,5 В до 1 В, что снижает эффективность.

Активное выпрямление заменяет диоды управляемыми переключателями, такими как полевые МОП-транзисторы или биполярные транзисторы (см. Рисунок 5) . У этого есть два преимущества: во-первых, выпрямители на основе транзисторов устраняют фиксированное падение напряжения от 0,5 В до 1 В, связанное с полупроводниковыми диодами, поскольку их сопротивление может быть произвольно малым и, следовательно, иметь небольшое падение напряжения.Во-вторых, транзисторы представляют собой управляемые переключатели, что означает, что частоту переключения можно контролировать и, следовательно, оптимизировать.

Обратной стороной является то, что активные выпрямители требуют более сложных схем управления для достижения своей цели, что требует дополнительных компонентов и, следовательно, делает их более дорогими.

Рисунок 5: Полномостовой активный выпрямитель

Коррекция коэффициента мощности (PFC)

Второй этап в разработке импульсного источника питания - это коррекция коэффициента мощности (PFC).

Цепи

PFC имеют мало общего с фактическим преобразованием мощности переменного тока в мощность постоянного тока, но являются важным компонентом большинства коммерческих источников питания.

Рисунок 6: Осциллограммы напряжения и тока на выходе выпрямителя

Если вы понаблюдаете за формой волны тока накопительного конденсатора выпрямителя (см. Рисунок 6) , вы увидите, что зарядный ток течет через конденсатор в течение очень короткого промежутка времени, а именно с точки, где напряжение на входе конденсатор больше, чем заряд конденсатора до пика выпрямленного сигнала.Это вызывает серию коротких всплесков тока в конденсаторе, что создает значительную проблему не только для источника питания, но и для всей электросети из-за большого количества гармоник, которые эти всплески тока вводят в сеть. Гармоники могут создавать искажения, которые могут повлиять на другие источники питания и устройства, подключенные к сети.

В схеме импульсного источника питания цель схемы коррекции коэффициента мощности - минимизировать эти гармоники путем их фильтрации.Для этого есть два варианта: активная и пассивная коррекция коэффициента мощности.

  • Пассивные схемы PFC состоят из пассивных фильтров нижних частот, которые пытаются устранить высокочастотные гармоники. Однако источники питания, особенно в приложениях с большой мощностью, не могут соответствовать международным нормам по гармоническому шуму с использованием только пассивной коррекции коэффициента мощности. Вместо этого они должны применять коррекцию активной мощности.
  • Active PFC изменяет форму кривой тока и заставляет ее следовать за напряжением.Гармоники перемещаются на гораздо более высокие частоты, что упрощает их фильтрацию. Наиболее широко используемой схемой для этих случаев является повышающий преобразователь, также называемый повышающим преобразователем.

Изоляция: изолированные и неизолированные импульсные источники питания

Независимо от того, присутствует ли схема PFC, последний этап преобразования энергии - это понижение выпрямленного постоянного напряжения до нужной величины для предполагаемого применения.

Поскольку форма входного сигнала переменного тока была выпрямлена на входе, выходное напряжение постоянного тока будет высоким: если нет PFC, выходное напряжение постоянного тока от выпрямителя будет около 320 В.Если есть активная схема коррекции коэффициента мощности, на выходе повышающего преобразователя будет постоянное постоянное напряжение 400 В или более.

Оба сценария чрезвычайно опасны и бесполезны для большинства приложений, которые обычно требуют значительно более низких напряжений. В таблице 1 показаны некоторые аспекты преобразователя и приложения, которые следует учитывать при выборе правильной топологии изоляции.

Изолированные источники питания переменного / постоянного тока Неизолированные источники питания переменного / постоянного тока
Топология Обратный преобразователь Понижающий преобразователь
Безопасность Гальваническая развязка обеспечивает повышенную безопасность пользователя Возможные утечки тока могут причинить значительный вред пользователям или нагрузкам
Размер и эффективность Трансформаторы увеличивают размер и вес Требуется только один индуктор, схема гораздо меньшего размера
КПД Потери в трансформаторной стали и меди влияют на КПД Один индуктор намного эффективнее, чем целый трансформатор
Сложность Схема управления необходима как для

Таблица 1: Изолированные vs.Неизолированные источники питания переменного / постоянного тока

Основная проблема при выборе метода понижения - безопасность.

Источник питания подключается к сети переменного тока на входе, что означает, что в случае утечки тока на выходе электрический ток такой степени может серьезно повредить или вызвать смерть, а также повредить любое устройство, подключенное к выходу.

Безопасность может быть достигнута за счет магнитной изоляции входных и выходных цепей источника питания переменного / постоянного тока, подключенного к сети.Наиболее широко используемые цепи в изолированных источниках питания переменного / постоянного тока - это обратноходовые преобразователи и резонансные LLC-преобразователи, поскольку они включают гальваническую или магнитную изоляцию (см. Рисунок 7) .

Рисунок 7: Обратный преобразователь (слева) и LLC-резонансный преобразователь (справа)

Использование трансформатора означает, что сигнал не может быть постоянным напряжением. Вместо этого должно быть изменение напряжения и, следовательно, изменяющийся ток, чтобы передавать энергию от одной стороны трансформатора к другой через индуктивную связь.Следовательно, как обратный преобразователь, так и LLC-преобразователи «прерывают» входное постоянное напряжение в виде прямоугольной волны, которая может быть понижена с помощью трансформатора. Затем выходная волна должна быть снова выпрямлена перед выходом.

Обратные преобразователи в основном используются для приложений с низким энергопотреблением. Обратный преобразователь представляет собой изолированный повышающий-понижающий преобразователь, что означает, что выходное напряжение может быть как выше, так и ниже входного напряжения, в зависимости от соотношения витков трансформатора между первичной и вторичной обмотками.

Обратный преобразователь работает аналогично повышающему преобразователю.

Когда переключатель замкнут, первичная катушка заряжается входом, создавая магнитное поле. Когда переключатель разомкнут, заряд в первичной катушке индуктивности передается на вторичную обмотку, которая вводит ток в цепь, питающую нагрузку.

Обратные преобразователи

относительно просты в проектировании и требуют меньшего количества компонентов, чем другие преобразователи, но не очень эффективны из-за значительных потерь из-за жесткого переключения при принудительном включении и выключении транзистора произвольно (см. Рисунок 8).Это очень вредно для жизненного цикла транзистора и приводит к значительным потерям мощности, особенно в приложениях с высокой мощностью, поэтому обратноходовые преобразователи лучше подходят для приложений с низким энергопотреблением, обычно до 100 Вт.

Резонансные LLC-преобразователи чаще используются в приложениях с высокой мощностью. Эти цепи также имеют магнитную изоляцию через трансформатор. Преобразователи LLC основаны на явлении резонанса, которое представляет собой усиление определенной частоты, когда она совпадает с собственной частотой фильтра.В этом случае резонансная частота LLC-преобразователя определяется последовательно включенными катушкой индуктивности и конденсатором (LC-фильтр) с дополнительным эффектом первичной катушки индуктивности трансформатора (L), отсюда и название LLC-преобразователь.

Резонансные преобразователи

LLC предпочтительны для приложений большой мощности, поскольку они могут производить переключение при нулевом токе, также известное как мягкое переключение (см. Рисунок 8) . Этот метод переключения включает и выключает переключатель, когда ток в цепи приближается к нулю, сводя к минимуму потери переключения транзистора, что, в свою очередь, снижает электромагнитные помехи и повышает эффективность.К сожалению, за это улучшение рабочих характеристик приходится платить: сложно спроектировать LLC-резонансный преобразователь, который может обеспечить плавное переключение для широкого диапазона нагрузок. С этой целью MPS разработала специальный инструмент для проектирования LLC, который помогает убедиться, что преобразователь работает точно в правильном резонансном состоянии для оптимальной эффективности переключения.

Рисунок 8: Жесткое переключение (слева) в сравнении с потерями при мягком переключении (справа)

Ранее в этой статье мы обсуждали, почему одним из ограничений источников питания переменного / постоянного тока являются размер и вес входного трансформатора, который из-за низкой рабочей частоты (50 Гц) требует больших катушек индуктивности и магнитных сердечников, чтобы избежать насыщения. .

В импульсных источниках питания частота колебаний напряжения значительно выше (как минимум выше 20 кГц). Это означает, что понижающий трансформатор может быть меньше, потому что высокочастотные сигналы генерируют меньше магнитных потерь в линейных трансформаторах. Уменьшение размеров входных трансформаторов позволяет миниатюризировать систему до такой степени, что весь блок питания помещается в корпус размером с зарядные устройства для мобильных телефонов, которые мы используем сегодня.

Существуют устройства постоянного тока, которым не требуется изоляция трансформатора.Это обычно наблюдается в устройствах, к которым не нужно напрямую прикасаться пользователю, таких как освещение, датчики, IoT и т. Д., Потому что любые манипуляции с параметрами устройства выполняются с отдельного устройства, такого как мобильный телефон, планшет или компьютер.

Это дает большие преимущества с точки зрения веса, размера и производительности. Эти преобразователи снижают уровни выходного напряжения с помощью понижающего преобразователя высокого напряжения, также называемого понижающим преобразователем. Эту схему можно описать как инверсию повышающего преобразователя, описанного ранее.В этом случае, когда транзисторный ключ закрыт, ток, протекающий через катушку индуктивности, создает напряжение на катушке индуктивности, которое противодействует напряжению от источника питания, уменьшая напряжение на выходе. Когда переключатель размыкается, катушка индуктивности выпускает ток, который течет через нагрузку, поддерживая значение напряжения на нагрузке, в то время как цепь отключена от источника питания.

В импульсных источниках питания переменного / постоянного тока используется высоковольтный понижающий преобразователь, поскольку полевой МОП-транзистор, который действует как переключатель, должен выдерживать большие изменения напряжения (см. Рисунок 9) .Когда переключатель замкнут, напряжение на полевом МОП-транзисторе близко к 0 В; но когда он открывается, это напряжение возрастает до 400 В для однофазных приложений или до 800 В для трехфазных преобразователей. Эти большие резкие изменения напряжения могут легко повредить нормальный транзистор, поэтому используются специальные высоковольтные полевые МОП-транзисторы.

Рисунок 9: Неизолированный импульсный источник питания переменного / постоянного тока с активным PFC

Понижающие преобразователи

гораздо проще интегрировать, чем трансформаторы, поскольку требуется только один индуктор.Они также намного более эффективны при понижении напряжения с нормальным КПД выше 95%. Такой уровень эффективности возможен, потому что транзисторы и диоды почти не имеют потерь мощности при переключении, поэтому единственные потери происходят от катушки индуктивности.

Одним из примеров неизолированного выходного стабилизатора переменного / постоянного тока является семейство MPS MP17xA. Это семейство может управлять множеством различных топологий преобразователей, таких как понижающий, повышающий, понижающий-повышающий или обратноходовой. Его можно использовать для напряжений до 700 В, то есть он предназначен для однофазных источников питания.У него также есть опция зеленого режима, в котором частота переключения и пиковый ток уменьшаются пропорционально нагрузке, повышая общую эффективность источника питания. На рисунке 10 показана типичная прикладная схема MP173A, в которой он регулирует понижающий преобразователь, состоящий из катушки индуктивности (L1), диода (D1) и конденсатора (C4). Резисторы (R1 и R2) образуют делитель напряжения, который обеспечивает напряжение обратной связи (вывод FB), замыкая контур управления.

Рисунок 10: Типовая прикладная схема MP173A

Импульсные блоки питания переменного / постоянного тока

предлагают повышенную производительность при небольшом размере, что и сделало их такими популярными.Обратной стороной является то, что их схемы значительно сложнее, и они требуют более точных схем управления и фильтров шумоподавления. Несмотря на дополнительную сложность, MPS предлагает простые и эффективные решения, облегчающие разработку вашего источника питания переменного / постоянного тока.

Сводка

Импульсные блоки питания

AC / DC в настоящее время являются наиболее эффективным способом преобразования мощности переменного тока в мощность постоянного тока. Преобразование мощности происходит в три этапа:

  1. Входное выпрямление: в этом процессе напряжение сети переменного тока преобразуется в выпрямленную волну постоянного тока с помощью диодного моста.На выходе моста добавлен конденсатор для уменьшения напряжения пульсаций.
  2. Коррекция коэффициента мощности (PFC): из-за нелинейного тока в выпрямителе гармоническая составляющая тока довольно велика. Есть два способа решить эту проблему. Первый - это пассивная коррекция коэффициента мощности, использующая фильтр для ослабления влияния гармоник, но он не очень эффективен. Второй вариант, называемый активным PFC, использует импульсный повышающий преобразователь, чтобы форма волны тока соответствовала форме входного напряжения.Активная коррекция коэффициента мощности - единственный метод проектирования преобразователя мощности, отвечающий современным стандартам размера и эффективности.
  3. Изоляция: Импульсные источники питания могут быть изолированными или неизолированными. Устройство изолируется, когда вход и выход источника питания физически не соединены. Изоляция осуществляется с помощью трансформаторов, которые гальванически изолируют две половины цепи. Однако трансформаторы могут передавать электроэнергию только при изменении тока, поэтому выпрямленное постоянное напряжение преобразуется в высокочастотную прямоугольную волну, которая затем передается во вторичную цепь, где снова выпрямляется и, наконец, передается на выход.

При проектировании импульсного источника питания необходимо учитывать множество различных аспектов, особенно связанных с безопасностью, производительностью, размером, весом и т. Д. Цепи управления для импульсных источников питания также более сложны, чем в линейных источниках питания, поэтому многие Разработчики считают полезным использование интегрированных модулей в своих источниках питания.

MPS предлагает широкий спектр модулей, которые могут упростить проектирование импульсных источников питания, таких как преобразователи мощности, контроллеры, выпрямители и т. Д.

_________________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик - рассылайте их раз в месяц!

AN-140: Основные понятия линейного регулятора и импульсных источников питания

Аннотация

В этой статье объясняются основные концепции линейных регуляторов и импульсных источников питания (ИИП). Он предназначен для системных инженеров, которые могут не очень хорошо разбираться в конструкции и выборе источников питания. Объясняются основные принципы работы линейных регуляторов и SMPS, а также обсуждаются преимущества и недостатки каждого решения.Понижающий понижающий преобразователь используется в качестве примера для дальнейшего объяснения конструктивных особенностей импульсного регулятора.

Введение

Современные конструкции требуют все большего количества шин питания и решений для электропитания в электронных системах с нагрузками от нескольких мА для резервных источников питания до более 100 А для стабилизаторов напряжения ASIC. Важно выбрать подходящее решение для целевого приложения и удовлетворить заданные требования к производительности, такие как высокая эффективность, ограниченное пространство на печатной плате (PCB), точное регулирование выходной мощности, быстрая переходная характеристика, низкая стоимость решения и т. Д.Проектирование управления питанием становится все более частой и сложной задачей для проектировщиков систем, многие из которых могут не иметь серьезного опыта в области питания.

Преобразователь мощности генерирует выходное напряжение и ток для нагрузки от заданного источника входного питания. Он должен соответствовать требованиям регулирования напряжения или тока нагрузки в установившихся и переходных режимах. Он также должен защищать нагрузку и систему в случае отказа какого-либо компонента. В зависимости от конкретного приложения разработчик может выбрать либо линейный регулятор (LR), либо импульсный источник питания (SMPS).Чтобы сделать лучший выбор решения, дизайнерам важно знать достоинства, недостатки и конструктивные особенности каждого подхода.

Эта статья посвящена приложениям с неизолированными источниками питания и дает представление об их работе и основах проектирования.

Линейные регуляторы

Как работает линейный регулятор

Начнем с простого примера. Во встроенной системе от внешнего источника питания доступна шина 12 В. На системной плате 3.Напряжение 3 В необходимо для питания операционного усилителя (ОУ). Самый простой способ генерировать 3,3 В - использовать резисторный делитель от шины 12 В, как показано на рисунке 1. Хорошо ли он работает? Обычно ответ отрицательный. Ток на выводах V CC операционного усилителя может изменяться в зависимости от условий эксплуатации. Если используется делитель с постоянным резистором, напряжение IC V CC зависит от нагрузки. Кроме того, вход шины 12 В может плохо регулироваться. В той же системе может быть много других нагрузок, использующих шину 12 В.Из-за импеданса шины напряжение на шине 12 В меняется в зависимости от условий нагрузки на шину. В результате резисторный делитель не может подавать стабилизированное напряжение 3,3 В на операционный усилитель, чтобы гарантировать его правильную работу. Следовательно, необходим специальный контур регулирования напряжения. Как показано на рисунке 2, контур обратной связи должен регулировать значение верхнего резистора R1, чтобы динамически регулировать 3,3 В на V CC .

Рисунок 1. Резисторный делитель вырабатывает 3,3 В постоянного тока от входа шины 12 В

Рисунок 2.Контур обратной связи регулирует значение последовательного резистора R1 для регулирования 3,3 В

Этот тип переменного резистора может быть реализован с помощью линейного регулятора, как показано на рисунке 3. Линейный регулятор работает с биполярным или полевым силовым транзистором (FET) в его линейном режиме. Таким образом, транзистор работает как переменный резистор последовательно с выходной нагрузкой. Концептуально для создания контура обратной связи усилитель ошибки измеряет выходное напряжение постоянного тока через цепь резисторов выборки R A и R B , а затем сравнивает напряжение обратной связи V FB с опорным напряжением V REF .Выходное напряжение усилителя ошибки управляет базой последовательного силового транзистора через усилитель тока. Когда либо входное напряжение V BUS уменьшается, либо увеличивается ток нагрузки, выходное напряжение V CC падает. Напряжение обратной связи V FB также уменьшается. В результате усилитель ошибки обратной связи и усилитель тока генерируют больший ток в базе транзистора Q1. Это уменьшает падение напряжения V CE и, следовательно, возвращает выходное напряжение V CC , так что V FB равно V REF .С другой стороны, если выходное напряжение V CC повышается, аналогичным образом цепь отрицательной обратной связи увеличивает V CE , чтобы обеспечить точное регулирование выхода 3,3 В. Таким образом, любое изменение V O поглощается напряжением V CE транзистора линейного стабилизатора. Таким образом, выходное напряжение V CC всегда постоянно и хорошо регулируется.

Рис. 3. В линейном регуляторе реализован переменный резистор для регулирования выходного напряжения

Зачем нужны линейные регуляторы?

Линейный регулятор уже очень давно широко используется в промышленности.Это было основой для отрасли электроснабжения до тех пор, пока импульсные источники питания не стали преобладать после 1960-х годов. Даже сегодня линейные регуляторы по-прежнему широко используются в широком спектре приложений.

Помимо простоты использования, линейные регуляторы имеют и другие преимущества в производительности. Поставщики систем управления питанием разработали множество интегрированных линейных регуляторов. Типичный интегрированный линейный регулятор требует только V IN , V OUT , FB и дополнительные контакты GND. На рисунке 4 показан типичный трехконтактный линейный стабилизатор LT1083, разработанный более 20 лет назад.Для установки выходного напряжения требуется только входной конденсатор, выходной конденсатор и два резистора обратной связи. Практически любой инженер-электрик может спроектировать источник питания с этими простыми линейными регуляторами.

Рис. 4. Пример встроенного линейного регулятора: линейный регулятор 7,5 А только с тремя контактами

Один недостаток - линейный регулятор может сжечь много энергии

Основным недостатком использования линейных регуляторов может быть чрезмерное рассеивание мощности последовательного транзистора Q1, работающего в линейном режиме.Как объяснялось ранее, транзистор линейного регулятора концептуально представляет собой переменный резистор. Поскольку весь ток нагрузки должен проходить через последовательный транзистор, его рассеиваемая мощность равна P Потери = (V IN - V O ) • I O . В этом случае эффективность линейного регулятора можно быстро оценить по:

Итак, в примере на Рисунке 1, когда на входе 12 В и на выходе 3,3 В, эффективность линейного регулятора составляет всего 27,5%. В этом случае 72,5% входной мощности просто теряется и выделяет тепло в регуляторе.Это означает, что транзистор должен иметь тепловую способность, чтобы справиться с рассеянием мощности / тепла в худшем случае при максимальном напряжении IN и полной нагрузке. Таким образом, размер линейного регулятора и его радиатора могут быть большими, особенно когда V O намного меньше, чем V IN . Рисунок 5 показывает, что максимальная эффективность линейного регулятора пропорциональна соотношению V O / V IN .

Рисунок 5. Максимальный КПД линейного регулятора в зависимости от соотношения V O / V IN

С другой стороны, линейный регулятор может быть очень эффективным, если V O близок к V IN .Однако линейный регулятор (LR) имеет другое ограничение, а именно минимальную разницу напряжений между V IN и V O . Транзистор в LR должен работать в линейном режиме. Таким образом, требуется определенное минимальное падение напряжения на коллекторе до эмиттера биполярного транзистора или от стока до истока полевого транзистора. Когда V O слишком близко к V IN , LR больше не может регулировать выходное напряжение. Линейные регуляторы, которые могут работать с малым запасом мощности (V IN - V O ), называются регуляторами с малым падением напряжения (LDO).

Также ясно, что линейный стабилизатор или LDO может обеспечить только понижающее преобразование DC / DC. В приложениях, которые требуют, чтобы напряжение V O было выше, чем напряжение V IN или требуется отрицательное напряжение V O от положительного напряжения V IN , линейные регуляторы, очевидно, не работают.

Линейный регулятор с разделением тока для высокой мощности [8]

Для приложений, требующих большей мощности, регулятор должен быть установлен отдельно на радиаторе для отвода тепла.В системах для поверхностного монтажа это не вариант, поэтому ограничение рассеиваемой мощности (например, 1 Вт) ограничивает выходной ток. К сожалению, непросто установить прямое параллельное соединение линейных регуляторов для распределения выделяемого тепла.

Замена источника опорного напряжения, показанного на рисунке 3, на прецизионный источник тока, позволяет подключать линейный регулятор напрямую, чтобы распределять токовую нагрузку и, таким образом, рассеивать рассеиваемое тепло между ИС. Это делает возможным использование линейных регуляторов при высоком выходном токе, в приложениях для поверхностного монтажа, где только ограниченное количество тепла может рассеиваться в любом месте на плате.LT3080 - первый регулируемый линейный стабилизатор, который можно использовать параллельно для увеличения тока. Как показано на рисунке 6, он имеет внутренний источник тока с прецизионным нулевым TC 10 мкА, подключенный к неинвертирующему входу операционного усилителя. С помощью внешнего единственного резистора установки напряжения R SET выходное напряжение линейного регулятора можно регулировать от 0 В до (V IN - V DROPOUT ).

Рисунок 6. Настройка одиночного резистора LDO LT3080 с прецизионным источником тока Ссылка

На рис. 7 показано, как легко подключить LT3080 к параллельному распределению тока.Просто свяжите контакты SET LT3080 вместе, два регулятора имеют одинаковое опорное напряжение. Поскольку операционные усилители точно настроены, напряжение смещения между регулировочным штифтом и выходом составляет менее 2 мВ. В этом случае требуется только балластное сопротивление 10 мОм, которое может быть суммой небольшого внешнего резистора и сопротивления проводов печатной платы, чтобы сбалансировать ток нагрузки с более чем 80% выравниваемым распределением. Нужна еще больше мощности? Разумно даже параллельное подключение 5-10 устройств.

Рис. 7. Параллельное подключение двух линейных регуляторов LT3080 для более высокого выходного тока

Области применения, где предпочтительны линейные регуляторы

Существует множество приложений, в которых линейные регуляторы или LDO обеспечивают превосходные решения для переключения источников питания, в том числе:

  1. Простые / недорогие решения. Решения с линейным стабилизатором или LDO просты и удобны в использовании, особенно для приложений с низким энергопотреблением и низким выходным током, где тепловая нагрузка не критична.Внешний силовой индуктор не требуется.
  2. Применения с низким уровнем шума / малой пульсации. Для чувствительных к шуму приложений, таких как устройства связи и радио, минимизация шума источника питания очень важна. Линейные регуляторы имеют очень низкую пульсацию выходного напряжения, потому что нет элементов, которые часто включаются и выключаются, а линейные регуляторы могут иметь очень широкую полосу пропускания. Так что есть небольшая проблема с EMI. Некоторые специальные LDO-стабилизаторы, такие как семейство LDO Analog Devices LT1761, имеют на выходе всего 20 мкВ RMS шумовое напряжение на выходе.Для SMPS практически невозможно достичь такого низкого уровня шума. SMPS обычно имеет выходную пульсацию в мВ даже с конденсаторами с очень низким ESR.
  3. Быстрые переходные приложения. Контур обратной связи линейного регулятора обычно является внутренним, поэтому никакой внешней компенсации не требуется. Как правило, линейные регуляторы имеют более широкую полосу пропускания контура управления и более быстрый переходный отклик, чем у SMPS.
  4. Приложения с низким отсевом. Для приложений, где выходное напряжение близко к входному, LDO могут быть более эффективными, чем SMPS.Существуют LDO с очень низким падением напряжения (VLDO), такие как Analog Devices LTC1844, LT3020 и LTC3025, с выпадающим напряжением от 20 до 90 мВ и током до 150 мА. Минимальное входное напряжение может составлять всего 0,9 В. Поскольку в LR отсутствуют коммутационные потери переменного тока, эффективность при малой нагрузке LR или LDO аналогична его эффективности при полной нагрузке. SMPS обычно имеет более низкую эффективность при малой нагрузке из-за потерь на переключение переменного тока. В приложениях с батарейным питанием, в которых эффективность малой нагрузки также имеет решающее значение, LDO может предоставить лучшее решение, чем SMPS.

Таким образом, разработчики используют линейные регуляторы или LDO, потому что они просты, имеют низкий уровень шума, низкую стоимость, просты в использовании и обеспечивают быстрый переходный отклик. Если V O близок к V IN , LDO может быть более эффективным, чем SMPS.

Основы импульсного источника питания

Зачем нужен импульсный источник питания?

Быстрый ответ - высокая эффективность. В ИИП транзисторы работают в режиме переключения, а не в линейном режиме. Это означает, что когда транзистор включен и проводит ток, падение напряжения на его пути питания минимально.Когда транзистор выключен и блокирует высокое напряжение, ток через его путь питания почти отсутствует. Так что полупроводниковый транзистор похож на идеальный переключатель. Таким образом, потери мощности в транзисторе сводятся к минимуму. Высокая эффективность, низкое рассеивание мощности и высокая плотность мощности (малый размер) являются основными причинами, по которым разработчики используют SMPS вместо линейных регуляторов или LDO, особенно в сильноточных приложениях. Например, в настоящее время синхронный понижающий понижающий источник питания 12 В IN , 3,3 В OUT в режиме переключения обычно может достигать КПД> 90% против менее 27.5% от линейного регулятора. Это означает потерю мощности или уменьшение размеров как минимум в восемь раз.

Самый популярный импульсный блок питания - понижающий преобразователь

На рис. 8 показан простейший и наиболее популярный импульсный стабилизатор - понижающий преобразователь постоянного тока в постоянный. Он имеет два режима работы, в зависимости от того, включен или выключен транзистор Q1. Чтобы упростить обсуждение, все силовые устройства считаются идеальными. Когда переключатель (транзистор) Q1 включен, напряжение коммутационного узла V SW = V IN и ток L индуктора заряжается на (V IN - V O ).На рисунке 8 (а) показана эквивалентная схема в этом режиме зарядки индуктора. Когда переключатель Q1 выключен, ток катушки индуктивности проходит через диод свободного хода D1, как показано на рисунке 8 (b). Напряжение коммутационного узла V SW = 0 В и ток L индуктивности разряжается нагрузкой V O . Поскольку идеальная катушка индуктивности не может иметь постоянного напряжения в установившемся состоянии, среднее выходное напряжение V O может быть задано как:

, где T ON - временной интервал включения в пределах периода TS переключения.Если соотношение T ON / T S определяется как рабочий цикл D, выходное напряжение V O составляет:

Когда значения катушки индуктивности L фильтра и выходного конденсатора C O достаточно высоки, выходное напряжение V O является постоянным напряжением с пульсацией всего в мВ. В этом случае для входного понижающего источника 12 В концептуально рабочий цикл 27,5% обеспечивает выходное напряжение 3,3 В.

Рис. 8. Режимы работы понижающего преобразователя и типичные формы сигналов

Помимо описанного выше подхода к усреднению, есть другой способ вывести уравнение рабочего цикла.Идеальная катушка индуктивности не может иметь постоянное напряжение в устойчивом состоянии. Таким образом, он должен поддерживать вольт-секундный баланс катушки индуктивности в течение периода переключения. Согласно форме кривой напряжения индуктора на рисунке 8 для баланса вольт-секунд требуется:

Уравнение (5) совпадает с уравнением (3). Такой же подход балансировки вольт-секунд может использоваться для других топологий постоянного / постоянного тока для получения рабочего цикла по уравнениям V IN и V O .

Потери мощности в понижающем преобразователе

Потери проводимости постоянного тока

С идеальными компонентами (нулевое падение напряжения во включенном состоянии и нулевые потери при переключении) идеальный понижающий преобразователь имеет 100% КПД.На самом деле рассеивание мощности всегда связано с каждым силовым компонентом. В ИИП есть два типа потерь: потери проводимости постоянного тока и потери переключения переменного тока.

Потери проводимости понижающего преобразователя в основном возникают из-за падений напряжения на транзисторе Q1, диоде D1 и катушке индуктивности L, когда они проводят ток. Чтобы упростить обсуждение, пульсации переменного тока тока катушки индуктивности не учитываются в следующем расчете потерь проводимости. Если MOSFET используется в качестве силового транзистора, потери проводимости MOSFET равны I O 2 • R DS (ON) • D, где R DS (ON) - сопротивление MOSFET в открытом состоянии. Q1.Потери мощности проводимости диода равны I O • V D • (1 - D), где V D - прямое падение напряжения на диоде D1. Потери проводимости индуктора равны I O 2 • R DCR , где R DCR - сопротивление меди обмотки индуктора. Следовательно, потери проводимости понижающего преобразователя примерно равны:

Например, вход 12 В, 3,3 В / 10 А, выходной понижающий источник питания MAX может использовать следующие компоненты: полевой МОП-транзистор R DS (ВКЛ) = 10 мОм, индуктор R DCR = 2 мОм, прямое напряжение диода В D = 0.5В. Следовательно, потеря проводимости при полной нагрузке составляет:

Учитывая только потери проводимости, КПД преобразователя составляет:

Приведенный выше анализ показывает, что диод свободного хода потребляет 3,62 Вт потерь мощности, что намного выше, чем потери проводимости полевого МОП-транзистора Q1 и катушки индуктивности L. Для дальнейшего повышения эффективности диод D1 можно заменить на полевой МОП-транзистор Q2, как показано на Рисунок 9. Этот преобразователь называется синхронным понижающим преобразователем. Строб Q2 требует сигналов, дополнительных к затвору Q1, т.е.е., Q2 горит только тогда, когда Q1 выключен. Потери проводимости синхронного понижающего преобразователя:

Если полевой МОП-транзистор R DS (ON) 10 мОм также используется для Q2, потери проводимости и эффективность синхронного понижающего преобразователя будут:

Приведенный выше пример показывает, что синхронный понижающий преобразователь более эффективен, чем традиционный понижающий преобразователь, особенно для приложений с низким выходным напряжением, где рабочий цикл невелик, а время проводимости диода D1 велико.

Рисунок 9.Синхронный понижающий преобразователь и его транзисторные сигналы затвора

Потери при переключении переменного тока

В дополнение к потерям проводимости постоянного тока существуют другие потери мощности, связанные с переменным током / переключением, из-за неидеальных компонентов питания:

  1. Коммутационные потери MOSFET. Настоящему транзистору требуется время для включения или выключения. Таким образом, во время переходных процессов при включении и выключении возникают перекрытия по напряжению и току, что приводит к коммутационным потерям переменного тока. На рисунке 10 показаны типичные формы сигналов переключения полевого МОП-транзистора Q1 в синхронном понижающем преобразователе.Зарядка и разрядка паразитного конденсатора C GD верхнего полевого транзистора Q1 с зарядом Q GD определяют большую часть времени переключения Q1 и связанных потерь. В синхронном понижающем преобразователе потери переключения нижнего полевого транзистора Q2 малы, потому что Q2 всегда включается после того, как его основной диод становится проводящим, и выключается до того, как его основной диод становится проводящим, в то время как падение напряжения на основном диоде невелико. Однако заряд обратного восстановления основного диода Q2 может также увеличить коммутационные потери верхнего полевого транзистора Q1 и может вызвать звон напряжения переключения и шум электромагнитных помех.Уравнение (12) показывает, что потери переключения управляющего полевого транзистора Q1 пропорциональны частоте переключения преобразователя f S . Точный расчет потерь энергии E ON и E OFF для Q1 непрост, но его можно найти в примечаниях к применению поставщиков MOSFET.
  2. Потери в сердечнике индуктора P SW_CORE . Настоящая катушка индуктивности также имеет потери переменного тока, которые зависят от частоты коммутации. Потери переменного тока в индукторе в основном связаны с потерями в магнитном сердечнике. В высокочастотном ИИП материалом сердечника может быть железный порошок или феррит.Как правило, сердечники из порошкового железа насыщаются мягко, но имеют высокие потери в сердечнике, тогда как ферритовый материал насыщается более резко, но имеет меньшие потери в сердечнике. Ферриты - это керамические ферромагнитные материалы, которые имеют кристаллическую структуру, состоящую из смесей оксида железа с оксидом марганца или цинка. Потери в сердечнике в основном связаны с потерями на магнитный гистерезис. Производитель сердечника или катушки индуктивности обычно предоставляет данные о потерях в сердечнике разработчикам источников питания для оценки потерь в катушке индуктивности переменного тока.
  3. Прочие потери, связанные с кондиционированием воздуха.Другие потери, связанные с переменным током, включают потери драйвера затвора P SW_GATE , что равно V DRV • Q G • f S , и мертвое время (когда оба верхнего полевого транзистора Q1 и нижний полевой транзистор Q2 выключены) основной диод потери проводимости, равные (ΔT ON + ΔT OFF ) • V D (Q2) • f S . Таким образом, потери, связанные с переключением, включают: Расчет потерь, связанных с переключением, обычно непросто. Потери, связанные с переключением, пропорциональны частоте переключения f S .В синхронном понижающем преобразователе 12 В IN , 3,3 В O / 10A MAX потери переменного тока вызывают потерю эффективности от 2% до 5% при частоте переключения 200–500 кГц. Таким образом, общий КПД составляет около 93% при полной нагрузке, что намного лучше, чем у источников LR или LDO. Нагревание или уменьшение размера могут быть близки к 10x.

Рис. 10. Типичная форма сигнала переключения и потери в верхнем полевом транзисторе Q1 понижающего преобразователя

Конструктивные особенности компонентов коммутируемой мощности

Оптимизация частоты коммутации

Как правило, более высокая частота переключения означает меньшие размеры компонентов выходного фильтра L и C O .В результате размер и стоимость блока питания могут быть уменьшены. Более широкая полоса пропускания также может улучшить переходные характеристики нагрузки. Однако более высокая частота переключения также означает более высокие потери мощности, связанные с переменным током, что требует большего пространства на плате или радиатора для ограничения теплового напряжения. В настоящее время для приложений с выходным током ≥10A большинство понижающих источников работают в диапазоне от 100 кГц до 1 МГц ~ 2 МГц. При токе нагрузки <10 А частота переключения может достигать нескольких МГц. Оптимальная частота для каждой конструкции является результатом тщательного компромисса по размеру, стоимости, эффективности и другим параметрам производительности.

Выбор выходного индуктора

В синхронном понижающем преобразователе пиковый ток пульсации катушки индуктивности можно рассчитать как:

При заданной частоте переключения низкая индуктивность дает большие пульсации тока и приводит к большим выходным пульсациям напряжения. Большой ток пульсации также увеличивает среднеквадратичный ток полевого МОП-транзистора и потери проводимости. С другой стороны, высокая индуктивность означает большой размер индуктора и возможные высокие DCR индуктивности и потери проводимости. Как правило, при выборе катушки индуктивности выбирается 10% ~ 60% пульсаций размаха пульсаций по отношению к максимальному коэффициенту постоянного тока.Поставщики индукторов обычно указывают номинальные значения DCR, RMS (нагрева) и тока насыщения. Важно рассчитать максимальный постоянный ток и пиковый ток катушки индуктивности в пределах максимальных характеристик производителя.

Выбор силового полевого МОП-транзистора

При выборе полевого МОП-транзистора для понижающего преобразователя сначала убедитесь, что его максимальное значение V DS выше, чем напряжение питания V IN (MAX) с достаточным запасом. Однако не выбирайте полевой транзистор с чрезмерно высоким номинальным напряжением.Например, для источника питания 16V IN (MAX) хорошо подойдет полевой транзистор с номинальным напряжением 25 или 30 В. Номинальное напряжение полевого транзистора 60 В может быть чрезмерным, поскольку сопротивление полевого транзистора в открытом состоянии обычно увеличивается с увеличением номинального напряжения. Далее, двумя наиболее важными параметрами являются сопротивление в открытом состоянии полевого транзистора R DS (ON) и заряд затвора Q G (или Q GD ). Обычно существует компромисс между зарядом затвора Q G и сопротивлением в открытом состоянии R DS (ON) . Как правило, полевой транзистор с небольшим кремниевым кристаллом имеет низкий Q G , но высокое сопротивление в открытом состоянии R DS (ON) , в то время как полевой транзистор с большим кремниевым кристаллом имеет низкий R DS (ON) , но большой Q . G .В понижающем преобразователе верхний полевой МОП-транзистор Q1 принимает как потери проводимости, так и потери переключения переменного тока. Полевой транзистор Q G FET обычно необходим для Q1, особенно в приложениях с низким выходным напряжением и малым рабочим циклом. Синхронный полевой транзистор Q2 на нижней стороне имеет небольшие потери переменного тока, потому что он обычно включается или выключается, когда его напряжение V DS близко к нулю. В этом случае низкий уровень R DS (ON) более важен, чем Q G для синхронного полевого транзистора Q2. Когда один полевой транзистор не может справиться с полной мощностью, несколько полевых МОП-транзисторов могут использоваться параллельно.

Выбор входного и выходного конденсатора

Во-первых, следует выбирать конденсаторы с достаточным снижением номинального напряжения.

Входной конденсатор понижающего преобразователя имеет пульсирующий ток переключения с большой пульсацией. Следовательно, входной конденсатор следует выбирать с достаточным среднеквадратичным значением пульсационного тока, чтобы обеспечить его срок службы. Обычно на входе параллельно используются алюминиевые электролитические конденсаторы и керамические конденсаторы с низким ESR.

Выходной конденсатор определяет не только пульсации выходного напряжения, но и переходные характеристики нагрузки.Пульсации выходного напряжения можно рассчитать по уравнению (15). Для высокопроизводительных приложений важны как ESR, так и общая емкость, чтобы минимизировать пульсации выходного напряжения и оптимизировать переходные характеристики нагрузки. Обычно хорошим выбором являются танталовые конденсаторы с низким ESR, полимерные конденсаторы с низким ESR и многослойные керамические конденсаторы (MLCC).

Замкнуть контур регулирования обратной связи

Есть еще один важный этап проектирования импульсного источника питания - замыкание регулирующего контура с помощью схемы управления с отрицательной обратной связью.Обычно это гораздо более сложная задача, чем использование LR или LDO. Это требует хорошего понимания поведения контура и конструкции компенсации, чтобы оптимизировать динамические характеристики с помощью стабильного контура.

Малосигнальная модель понижающего преобразователя

Как объяснено выше, переключающий преобразователь меняет свой рабочий режим в зависимости от состояния переключателя ON или OFF. Это дискретная и нелинейная система. Для анализа контура обратной связи с помощью линейного метода управления необходимо линейное моделирование малых сигналов [1] [3].Из-за выходного фильтра L-C линейная передаточная функция малого сигнала от рабочего цикла D до выхода V O фактически является системой второго порядка с двумя полюсами и одним нулем, как показано в уравнении (16). На резонансной частоте выходной катушки индуктивности и конденсатора расположены двойные полюса. Есть ноль, определяемый выходной емкостью и ESR конденсатора.

Управление в режиме напряжения и управление в режиме тока

Выходное напряжение может регулироваться замкнутой системой, показанной на рисунке 11.Например, когда выходное напряжение увеличивается, напряжение обратной связи V FB увеличивается, а выходной сигнал усилителя ошибки отрицательной обратной связи уменьшается. Так рабочий цикл уменьшается. В результате выходное напряжение снижается до V FB = V REF . Схема компенсации ошибок операционного усилителя может быть схемой усилителя с обратной связью типа I, типа II или типа III [3] [4]. Есть только один контур управления для регулирования выхода. Эта схема называется режимом управления напряжением.Analog Devices LTC3775 и LTC3861 являются типичными понижающими контроллерами в режиме напряжения.

Рис. 11. Блок-схема понижающего преобразователя с управлением по напряжению

На рисунке 12 показан синхронный понижающий источник питания от 5 до 26 В на входе и на выходе 1,2 В / 15 А с использованием понижающего контроллера режима напряжения LTC3775. Благодаря передовой архитектуре ШИМ-модуляции LTC3775 и очень низкому (30 нс) минимальному времени включения, источник питания хорошо работает для приложений, которые преобразуют высоковольтный автомобильный или промышленный источник питания до уровня 1.Низкое напряжение 2 В, необходимое для современных микропроцессоров и программируемых логических микросхем. Для приложений высокой мощности требуются многофазные понижающие преобразователи с разделением тока. При управлении в режиме напряжения требуется дополнительная петля распределения тока для балансировки тока между параллельными понижающими каналами. Типичным методом разделения тока для управления режимом напряжения является метод ведущего ведомого устройства. LTC3861 является таким контроллером режима напряжения PolyPhase ® . Его очень низкое (± 1,25 мВ) смещение считывания тока делает распределение тока между параллельно включенными фазами очень точным, чтобы сбалансировать тепловую нагрузку.[10]

Рис. 12. Синхронный понижающий источник питания LTC3775 в режиме напряжения обеспечивает высокий коэффициент понижения

Управление в режиме тока использует два контура обратной связи: внешний контур напряжения, аналогичный контуру управления преобразователей, управляемых режимом напряжения, и внутренний контур тока, который возвращает сигнал тока в контур управления. На рисунке 13 показана концептуальная блок-схема понижающего преобразователя с управлением в режиме пикового тока, который непосредственно измеряет выходной ток катушки индуктивности. В режиме управления по току ток катушки индуктивности определяется ошибочным выходным напряжением операционного усилителя.Катушка индуктивности становится источником тока. Следовательно, передаточная функция от выхода операционного усилителя V C к подаче выходного напряжения V O становится однополюсной системой. Это значительно упрощает компенсацию петли. Компенсация контура управления меньше зависит от нуля ESR выходного конденсатора, поэтому можно использовать все керамические выходные конденсаторы.

Рис. 13. Блок-схема понижающего преобразователя с управлением по току

Есть много других преимуществ от текущего управления режимом.Как показано на рисунке 13, поскольку пиковый ток индуктора ограничивается операционным усилителем V C по циклу, система с контролем режима тока обеспечивает более точное и быстрое ограничение тока в условиях перегрузки. Пусковой ток индуктора также хорошо контролируется во время запуска. Кроме того, ток катушки индуктивности не изменяется быстро при изменении входного напряжения, поэтому источник питания имеет хорошие характеристики переходных процессов в линии. Когда несколько преобразователей подключены параллельно, с контролем режима тока, также очень легко распределять ток между источниками, что важно для надежных приложений с высоким током, использующих понижающие преобразователи PolyPhase.В общем, преобразователь, управляемый режимом тока, более надежен, чем преобразователь, управляемый режимом напряжения.

Решение схемы управления текущим режимом должно точно определять ток. Сигнал измерения тока обычно представляет собой слабый сигнал с уровнем в несколько десятков милливольт, чувствительный к шуму переключения. Следовательно, необходима правильная и тщательная разводка печатной платы. Токовая петля может быть замкнута путем измерения тока катушки индуктивности через чувствительный резистор, падения напряжения DCR на катушке индуктивности или падения напряжения проводимости полевого МОП-транзистора.Типичные контроллеры текущего режима включают в себя Analog Devices LTC3851A, LTC3855, LTC3774 и LTC3875.

Постоянная частота в сравнении с постоянным контролем времени

Типовые схемы режима напряжения и режима тока в разделе «Управление в режиме напряжения по сравнению с управлением в режиме тока» имеют постоянную частоту переключения, генерируемую внутренними часами контроллера. Эти контроллеры с постоянной частотой коммутации можно легко синхронизировать, что является важной особенностью понижающих контроллеров PolyPhase с высоким током. Однако, если переходный процесс повышения нагрузки происходит сразу после выключения затвора Q1 управляющего полевого транзистора, преобразователь должен ждать все время выключения Q1 до следующего цикла, чтобы отреагировать на переходный процесс.В приложениях с небольшими рабочими циклами задержка в наихудшем случае близка к одному циклу переключения.

В таких приложениях с малым рабочим циклом управление режимом постоянного тока впадины по времени имеет более короткую задержку, чтобы реагировать на переходные процессы повышения нагрузки. В установившемся режиме частота переключения понижающих преобразователей с постоянным временем включения практически постоянна. В случае переходного процесса частота переключения может быстро измениться, чтобы ускорить переходный процесс. В результате источник питания имеет улучшенные переходные характеристики и выходную емкость, а связанные с этим затраты могут быть снижены.

Однако при постоянном контроле по времени частота коммутации может изменяться в зависимости от линии или нагрузки. LTC3833 - это понижающий контроллер в режиме минимального тока с более сложной архитектурой с контролируемым включением по времени - вариант архитектуры управления с постоянным включением с той разницей, что время включения регулируется таким образом, что частота переключения остается постоянной в течение стабильного этапа. условия в линии и под нагрузкой. С этой архитектурой контроллер LTC3833 имеет минимальное время включения 20 нс и позволяет понижать приложения с 38V IN до 0.6В О . Контроллер можно синхронизировать с внешними часами в диапазоне частот от 200 кГц до 2 МГц. На рисунке 14 показан типичный блок питания LTC3833 с входным напряжением от 4,5 В до 14 В и выходом 1,5 В / 20 А. [11] На рис. 15 показано, что источник питания может быстро реагировать на внезапные переходные процессы нагрузки с высокой скоростью нарастания напряжения. Во время переходного процесса при повышении нагрузки частота переключения увеличивается, чтобы обеспечить более быстрый переходный процесс. Во время переходного процесса понижения нагрузки рабочий цикл падает до нуля. Поэтому только выходная катушка индуктивности ограничивает скорость нарастания тока.В дополнение к LTC3833, для нескольких выходов или приложений PolyPhase, контроллеры LTC3838 и LTC3839 обеспечивают быстрые переходные многофазные решения.

Рис. 14. Быстродействующий источник питания с контролируемым включением тока с использованием LTC3833

Рис. 15. Блок питания LTC3833 обеспечивает быстрое реагирование во время переходных процессов с быстрым скачком нагрузки

Ширина полосы пропускания и стабильность контура

Хорошо спроектированный SMPS бесшумен как в электрическом, так и в акустическом отношении. Это не относится к недокомпенсированной системе, которая обычно нестабильна.Типичные симптомы недокомпенсированного источника питания включают: слышимый шум от магнитных компонентов или керамических конденсаторов, дрожание формы волны переключения, колебания выходного напряжения и т. Д. Сверхкомпенсированная система может быть очень стабильной и тихой, но за счет медленного переходного отклика. Такая система имеет частоту кроссовера контура на очень низких частотах, обычно ниже 10 кГц. Конструкции с медленными переходными процессами требуют чрезмерной выходной емкости для соответствия требованиям регулирования переходных процессов, что увеличивает общую стоимость и размер источника питания.Оптимальная конструкция компенсации контура является стабильной и бесшумной, но без чрезмерной компенсации, поэтому она также имеет быструю реакцию для минимизации выходной емкости. В статье Analog Devices AN149 подробно объясняются концепции и методы моделирования силовых цепей и контуров контуров [3]. Моделирование слабых сигналов и разработка компенсации контура могут быть трудными для неопытных разработчиков источников питания. Инструмент проектирования LTpowerCAD компании Analog Devices обрабатывает сложные уравнения и делает проектирование источника питания, особенно компенсации контура, гораздо более простой задачей [5] [6].Инструмент моделирования LTspice ® объединяет все модели деталей Analog Devices и обеспечивает дополнительное моделирование во временной области для оптимизации конструкции. Однако стендовые испытания / проверка стабильности контура и переходных характеристик обычно необходимы на стадии прототипа.

Как правило, производительность замкнутого контура регулирования напряжения оценивается двумя важными значениями: шириной полосы контура и запасом устойчивости контура. Полоса пропускания контура количественно определяется частотой кроссовера f C , при которой коэффициент усиления контура T (s) равен единице (0 дБ).Запас устойчивости контура обычно количественно определяется запасом по фазе или запасом по усилению. Запас по фазе контура Φ м определяется как разница между общей фазовой задержкой T (s) и –180 ° на частоте кроссовера. Запас усиления определяется разницей между усилением T (s) и 0 дБ на частоте, где общая фаза T (s) равна –180 °. Для понижающего преобразователя обычно считается достаточным запас по фазе 45 градусов и запас усиления 10 дБ. На рисунке 16 показан типичный график Боде коэффициента усиления контура для трехфазного понижающего преобразователя LTC3829 12V IN в 1V O / 60A.В этом примере частота кроссовера составляет 45 кГц, а запас по фазе - 64 градуса. Запас усиления близок к 20 дБ.

Рис. 16. Средство проектирования LTpowerCAD обеспечивает простой способ оптимизации компенсации контура и переходной характеристики нагрузки (трехфазный понижающий преобразователь LTC3829 с одним выходом).

Понижающий преобразователь PolyPhase для сильноточных приложений

По мере того, как системы обработки данных становятся быстрее и крупнее, их процессорам и модулям памяти требуется больше тока при постоянно уменьшающемся напряжении.При таких высоких токах требования к источникам питания увеличиваются. В последние годы синхронные понижающие преобразователи PolyPhase (многофазные) широко используются для источников питания высокого тока и низкого напряжения благодаря их высокой эффективности и равномерному распределению тепла. Кроме того, с чередованием нескольких фаз понижающего преобразователя можно значительно снизить ток пульсаций как на входе, так и на выходе, что приведет к сокращению входных и выходных конденсаторов, а также к уменьшению пространства на плате и стоимости.

В понижающих преобразователях PolyPhase чрезвычайно важны точное определение и разделение тока.Хорошее распределение тока обеспечивает равномерное распределение тепла и высокую надежность системы. Из-за присущей им способности распределения тока в установившемся состоянии и во время переходных процессов обычно предпочтительны баксы с регулируемым режимом тока. Analog Devices LTC3856 и LTC3829 - типичные понижающие контроллеры PolyPhase с точным измерением и распределением тока. Несколько контроллеров могут быть подключены последовательно для 2-, 3-, 4-, 6- и 12-фазных систем с выходным током от 20A до более 200A.

Рисунок 17.Трехфазный, одиночный V O Сильноточный понижающий преобразователь с использованием LTC3829

Другие требования к высокопроизводительному контроллеру

От высокопроизводительного понижающего контроллера требуется множество других важных функций. Плавный пуск обычно необходим для управления пусковым током во время пуска. Ограничение перегрузки по току и фиксация короткого замыкания могут защитить источник питания, когда выход перегружен или закорочен. Защита от перенапряжения защищает дорогостоящие нагрузочные устройства в системе.Чтобы минимизировать системные электромагнитные помехи, иногда контроллер необходимо синхронизировать с внешним тактовым сигналом. Для низковольтных и сильноточных приложений дистанционное измерение дифференциального напряжения компенсирует падение напряжения на сопротивлении печатной платы и точно регулирует выходное напряжение на удаленной нагрузке. В сложной системе с множеством шин выходного напряжения также необходимы последовательность и отслеживание различных шин напряжения.

Схема расположения печатной платы

Выбор компонентов и схематическое проектирование - это только половина процесса проектирования поставки.Правильная разводка печатной платы импульсного источника питания всегда имеет решающее значение. На самом деле его важность невозможно переоценить. Хорошая компоновка оптимизирует эффективность питания, снижает тепловую нагрузку и, что наиболее важно, сводит к минимуму шум и взаимодействие между дорожками и компонентами. Чтобы добиться этого, разработчику важно понимать пути прохождения тока и потоки сигналов в импульсном источнике питания. Обычно для получения необходимого опыта требуются значительные усилия. См. Примечания по применению 136 и 139 Analog Devices для подробного обсуждения.[7] [9]

Выбор различных решений - дискретные, монолитные и интегрированные

На уровне интеграции системные инженеры могут решить, выбрать ли решение для дискретного, монолитного или полностью интегрированного модуля питания. На рисунке 18 показаны примеры решений для дискретных модулей и модулей питания для типичных приложений с питанием от точки нагрузки. Дискретное решение использует микросхему контроллера, внешние полевые МОП-транзисторы и пассивные компоненты для создания источника питания на системной плате. Основной причиной выбора дискретного решения является низкая стоимость спецификации компонентов.Однако это требует хороших навыков проектирования источников питания и относительно длительного времени разработки. В монолитном решении используется ИС со встроенными силовыми полевыми МОП-транзисторами, чтобы еще больше уменьшить размер решения и количество компонентов. Это требует аналогичных дизайнерских навыков и времени. Полностью интегрированное решение с силовым модулем может значительно сократить затраты на проектирование, время разработки, размер решения и риски, связанные с проектированием, но обычно это связано с более высокой стоимостью спецификации компонентов.

Рисунок 18. Примеры (а) дискретного входа 12 В IN до 3.Питание 3V / 10A LTC3778; (b) Полностью интегрированный 16V IN , двойной 13A или одиночный 26A LTM4620 µModule ® понижающий регулятор

Другие основные неизолированные топологии ИИП постоянного / постоянного тока

В этом документе используются понижающие преобразователи в качестве простого примера, демонстрирующего особенности проектирования SMPS. Однако существует как минимум пять других базовых топологий неизолированных преобразователей (повышающие, понижающие / повышающие, преобразователи Cuk, SEPIC и Zeta) и как минимум пять основных топологий изолированных преобразователей (обратный ход, прямой, двухтактный, полумостовой и полный мост. ), которые не рассматриваются в этом примечании к применению.Каждая топология имеет уникальные свойства, которые делают ее пригодной для конкретных приложений. На рисунке 19 показаны упрощенные схемы для других неизолированных топологий SMPS.

Рисунок 19. Другие основные топологии неизолированных преобразователей постоянного тока в постоянный

Существуют и другие неизолированные топологии SMPS, которые представляют собой комбинации базовых топологий. Например, на рисунке 20 показан высокоэффективный синхронный повышающий / понижающий преобразователь с 4 переключателями на основе контроллера режима тока LTC3789. Он может работать с входными напряжениями ниже, равными или выше выходного напряжения.Например, вход может быть в диапазоне от 5 В до 36 В, а выход может быть регулируемым 12 В. Эта топология представляет собой комбинацию синхронного понижающего преобразователя и синхронного повышающего преобразователя с общей катушкой индуктивности. Когда V IN > V OUT , переключатели A и B работают как активный синхронный понижающий преобразователь, в то время как переключатель C всегда выключен, а переключатель D всегда включен. Когда V IN OUT , переключатели C и D работают как активный синхронный повышающий преобразователь, в то время как переключатель A всегда включен, а переключатель B всегда выключен.Когда V IN близок к V OUT , все четыре переключателя работают активно. В результате этот преобразователь может быть очень эффективным, с КПД до 98% для типичного приложения с выходом 12 В. [12] Контроллер LT8705 расширяет диапазон входного напряжения до 80 В. Чтобы упростить конструкцию и увеличить удельную мощность, LTM4605 / 4607/4609 дополнительно интегрирует сложный понижающий / повышающий преобразователь в простой в использовании силовой модуль высокой плотности. [13] Их можно легко использовать параллельно с распределением нагрузки для приложений с высокой мощностью.

Рис. 20. Высокоэффективный понижающий-повышающий преобразователь с 4 переключателями работает при входном напряжении ниже, равном или выше выходного напряжения

Сводка

Таким образом, линейные регуляторы просты и удобны в использовании. Поскольку их транзисторы последовательного регулирования работают в линейном режиме, эффективность питания обычно низкая, когда выходное напряжение намного ниже входного. Как правило, линейные регуляторы (или LDO) имеют низкие пульсации напряжения и быструю переходную характеристику. С другой стороны, SMPS работают с транзистором как с переключателем и поэтому обычно намного эффективнее линейных регуляторов.Однако проектирование и оптимизация SMPS более сложны и требуют больше знаний и опыта. Каждое решение имеет свои преимущества и недостатки для конкретных приложений.

использованная литература

[1] В. Ворпериан, «Упрощенный анализ преобразователей ШИМ с использованием модели переключателя ШИМ: части I и II», IEEE Transactions on Aerospace and Electronic Systems, март 1990 г., Vol. 26, №2.

[2] Р.Б. Ридли, Б. Х. Чо, Ф. К. Ли, «Анализ и интерпретация коэффициентов усиления контуров коммутационных регуляторов с многоконтурным управлением», IEEE Transactions on Power Electronics, стр. 489-498, октябрь 1988 г.

[3] Х. Чжан, «Моделирование и конструкция с компенсацией контура импульсных источников питания», Примечания по применению линейной технологии AN149, 2015.

[4] Х. Дин Венейбл, «Оптимальная конструкция усилителя обратной связи для систем управления», Технический документ Венейбл.

[5] Х. Чжан, «Проектирование источников питания за пять простых шагов с помощью LTpowerCAD Design Tool», Примечания по применению линейных технологий AN158, 2015.

[6] Инструмент проектирования LTpowerCAD на сайте www.linear.com/LTpowerCAD.

[7] Х. Чжан, «Рекомендации по компоновке печатной платы для неизолированных импульсных источников питания», Примечание по применению 136, Linear Technology Corp., 2012.

[8] Р. Доббкин, «Регулятор с малым падением напряжения может быть напрямую подключен к источнику тепла», LT Journal of Analog Innovation, октябрь 2007 г.

[9] К. Куек, «Схема источника питания и электромагнитные помехи», Примечания по применению линейной технологии AN139, 2013.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *