Чем симистор отличается от тиристора: Отличия тиристорных стабилизаторов от симисторных

Содержание

Отличия тиристорных стабилизаторов от симисторных


В этой статье мы расскажем вам об основном отличии тиристорных стабилизаторов от симисторных, о деталях и нюансах этих двух типов электронных стабилизаторов напряжения.

Тиристорный и симисторный стабилизатор

 

Все стабилизаторы переменного напряжения моделей Ампер и Герц производства ЧП «НПФ «Элекс» по принципу действия относятся к типу ступенчатых автотрансформаторных стабилизаторов с коммутацией отводов трансформатора с помощью электронных ключей (реализованных на основе высоконадежных мощных полупроводниковых приборов – тиристоров или симисторов), управляемых высокоскоростным микроконтроллером. Во всех однофазных стабилизаторах Ампер и Герц в диапазоне до 40А включительно применены симисторы BTA41-600B производства STMicroelectronics (максимальное напряжение пробоя 600В, постоянный ток нагрузки 40А, ударный не повторяющийся ток в открытом состоянии равен 400А).

 

Во всех однофазных стабилизаторах Ампер и Герц в диапазоне от 50А, а также во всех трехфазных стабилизаторах, силовые электронные ключи реализованы на тиристорах производства Ixys Semiconductor GmbH.

Фактически, симистор – это «симметричный тиристор», он проводит ток в двух направлениях, и состоит из двух тиристоров в одном корпусе. 

симистор BTA41-600B
производства STMicroelectronics

Соответственно, для реализации электронного переключающего ключа достаточно всего одного симистора. Поскольку тиристор проводит ток только в одном направлении, то для работы в цепях переменного тока применяется встречно-параллельное соединение двух тиристоров.

Следовательно, один ключ, подключающий часть обмотки трансформатора, будет состоять уже не из одного, а двух тиристоров. Предотвратить возможный выход из строя стабилизатора из-за перегрева полупроводниковых приборов в процессе интенсивной работы и обеспечить качественный отвод тепла с применением системы принудительного охлаждения проще в случае ключа на двух корпусных тиристорах, чем на одном симисторе.

Применение тиристоров обеспечивает еще более высокую кратковременную перегрузочную способность по току, что повышает надежность при коммутации таких нагрузок, как асинхронные электродвигатели, которым свойственны большие пусковые токи.

Электронные ключи однофазного стабилизатора Элекс Герц V3.0

Конструктивно все однофазные симисторные стабилизаторы «Элекс» (до 40А включительно) собраны на одной печатной плате, а все однофазные тиристорные (от 50А) – на 3-ёх печатных платах (плата входных ключей, плата выходных ключей и плата управления). Т.е., при более высокой себестоимости полупроводниковых приборов и их большем количестве и, соответственно, большей прайсовой цене тиристорные стабилизаторы обладают более высокой кратковременной перегрузочной способностью по току по сравнению с симисторными стабилизаторами при прочих равных условиях. Каких-либо принципиальных эксплуатационных отличий между симисторными и тиристорными стабилизаторами торговой марки Элекс Engineering нет.

Однофазный стабилизатор напряжения Элекс Ампер 16-1/25А в разобранном виде

Пульсар Лимитед – Энергия для Лучшей Жизни!

 

 


схема включения и способы управления

Тиристор представляет собой электронный силовой частично управляемый ключ. Этот прибор, с помощью сигнала управления может находиться только в проводящем состоянии, то есть быть включенным. Для того, чтобы его выключить, нужно проводить специальные мероприятия, которые обеспечивают падение прямого тока до нулевого значения. Принцип работы тиристора заключается в односторонней проводимости, в закрытом состоянии может выдержать не только прямое, но и обратное напряжение.

Свойства тиристоров

По своим качествам, тиристоры относятся к полупроводниковым приборам. В их полупроводниковой пластине присутствуют смежные слои, обладающие различными типами проводимости. Таким образом, каждый тиристор представляет собой прибор, имеющий четырехслойную структуру р-п-р-п.

К крайней области р-структуры производится подключение положительного полюса источника напряжения. Поэтому, данная область получила название анода. Противоположная область п-типа, куда подключается отрицательный полюс, называется катодом. Вывод из внутренней области осуществляется с помощью р-управляющего электрода.

Классическая модель тиристора состоит из двух , имеющих разную степень проводимости. В соответствии с данной схемой, производится соединение базы и коллектора обоих транзисторов. В результате такого соединения, питание базы каждого транзистора осуществляется с помощью коллекторного тока другого транзистора. Таким образом, получается цепь с положительной обратной связью.

Если ток отсутствует в управляющем электроде, то транзисторы находятся в закрытом положении. Течение тока через нагрузку не происходит, и тиристор остается закрытым. При подаче тока выше определенного уровня, в действие вступает положительная обратная связь. Процесс становится лавинообразным, после чего происходит открытие обоих транзисторов. В конечном итоге, после открытия тиристора, наступает его стабильное состояние, даже в случае прекращения подачи тока.

Работа тиристора при постоянном токе

Рассматривая электронный тиристор принцип работы которого основан на одностороннем движении тока, следует отметить его работу при постоянном токе.

Обычный тиристор включается путем подачи импульса тока в цепь управления. Эта подача осуществляется со стороны положительной полярности, противоположной, относительно катода.

Во время включения, продолжительность переходного процесса обусловлена характером нагрузки, амплитудой и скоростью, с которой нарастает импульс тока управления. Кроме того, этот процесс зависит от температуры внутренней структуры тиристора, тока нагрузки и приложенного напряжения. В цепи, где установлен тиристор, не должно быть недопустимой скорости роста напряжения, которое может привести к его самопроизвольному включению.

Тиристор – это полупроводниковый ключ, конструкция которого представляет собой четыре слоя. Они обладают способностью переходить из одного состояния в другое – из закрытого в открытое и наоборот.

Информация, представленная в данной статье, поможет дать исчерпывающий ответ на вопрос об этом аппарате.

Принцип функционирования тиристора

В специализированной литературе этот прибор также носит название однооперационного тиристора. Это название обусловлено тем, что устройство является не полностью управляемым

. Другими словами, при получении сигнала от управляющего объекта он может только перейти в режим включенного состояния. Для того чтобы выключить прибор, человеку придется выполнить дополнительные действия, которые и приведут к падению уровня напряжения до нулевой отметки.

Работа этого прибора основывается на использовании силового электрического поля. Для его переключения из одного состояния в другое применяется технология управления, передающая определенные сигналы. При этом ток по тиристору может двигаться только в одном направлении. В выключенном состоянии этот прибор обладает способностью выдерживать как прямой, так и обратное напряжение.

Способы включения и выключения тиристора

Переход в рабочее состояние стандартного этого типа аппарата осуществляет путем поучения импульса токового напряжения в определенной полярности. На скорость включения и на то, как он впоследствии будет работать,

влияют следующие факторы:

Выключение тиристора может быть осуществлено некоторыми способами:

  1. Естественное выключение. В технической литературе также встречается такое понятие, как естественная коммутация – оно аналогично естественному выключению.
  2. Принудительное выключение (принудительная коммутация).

Естественное выключение этого аппарата осуществляется в процессе его функционирования в цепях с переменным током, когда происходит понижение уровня тока до нулевой отметки.

Принудительное выключение включает в себя большое количество самых разнообразных способов. Самым распространенным из них является следующий метод.

Конденсатор, обозначаемый латинской буквой C, соединяется с ключом. Он должен обозначаться маркеровкой S. При этом конденсатор перед замыканием должен быть заряжен.

Основные типы тиристоров

В настоящее время существует немалое количество тиристоров, которые различаются между собой своими техническими характеристиками – скоростью функционирования, способами и процессами управления, направлениями тока при нахождении в проводящем состоянии и др.

Наиболее распространенные типы

  1. Тиристор-диод. Такой прибор аналогичен устройству, которое имеет встречно-параллельный диод во включенном режиме.
  2. Диодный тиристор. Другое название – динистор. Отличительной характеристикой этого устройства является то, что переход в проводящий режим осуществляется в момент, когда уровень тока превышен.
  3. Запираемый тиристор.
  4. Симметричный. Он также носит название симистора. Конструкция этого прибора аналогична двум устройствам со встречно-параллельным диодами при нахождении в режиме работы.
  5. Быстродействующий или инверторный. Этот тип устройства обладает способностью переходить в нерабочее состояние за рекордно короткое время – от 5 до 50 микросекунд.
  6. Оптотиристор. Его работа осуществляется при помощи светового потока.
  7. Тиристор под полевым управлением по ведущему электроду.

Обеспечение защиты

Тиристоры входят в перечень приборов, которые критично влияют на изменение скорости увеличения прямого тока. Как и для диодов, так и для тиристоров характерен процесс протекания обратного тока восстановления. Резкое изменение его скорости и падение до нулевой отметки приводит к повышенному риску возникновения перенапряжения.

Кроме того, перенапряжение в конструкции этого прибора может возникать вследствие полного исчезновении напряжения в разнообразных составных частях системы, например, в малых индуктивностях монтажа.

По вышеуказанным причинам в подавляющем большинстве случаев для обеспечения надежной защиты этих приборов применяют разнообразные схемы ЦФТП. Данные схемы при нахождении в динамическом режиме помогают защищать устройство от возникновения недопустимых значений напряжения.

Надежным средством защиты также является применение варистора . Это устройство подключается к местам вывода индуктивной нагрузки.

В самом общем виде применение такого прибора, как тиристор, можно разделить на следующие группы:

Ограничения тиристора

При работе с любым типом этого прибора следует соблюдать определенные правила техники безопасности, а также помнить о некоторых необходимых ограничениях.

Например, в случае с индуктивной нагрузкой при функционировании такой разновидности прибора, как симистор. В данной ситуации ограничения касаются скорости изменения уровня напряжения между двумя основными элементами – его анодами и рабочим током. Для ограничения влияния тока и перегрузки применяется RC-цепочка .

Чтобы понять как работает схема, необходимо знать действие и назначение каждого из элементов. В этой статье рассмотрим принцип работы тиристора, разные виды и режимы работы, характеристики и виды. Постараемся объяснить все максимально доступно, чтобы было понятно даже для начинающих.

Тиристор — полупроводниковый элемент, имеющий только два состояния: «открыто» (ток проходит) и «закрыто» (тока нет). Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях. Само переключение происходит очень быстро, хоть и не мгновенно.

По способу действия его можно сравнить с переключателем или ключом. Вот только переключается тиристор при помощи напряжения, а отключается пропаданием тока или снятием нагрузки. Так что принцип работы тиристора понять несложно. Можно представлять его как ключ с электрическим управлением. Так, да не совсем.

Тиристор, как правило, имеет три выхода. Один управляющий и два, через которые протекает ток. Можно попробовать коротко описать принцип работы. При подаче напряжения на управляющий выход, коммутируется цепь через анод-коллектор. То есть, он сравним с транзистором. Только с той разницей, что у транзистора величина пропускаемого тока зависит от поданного на управляющий вывод напряжения. А тиристор либо полностью открыт, либо полностью закрыт.

Внешний вид

Внешний вид тиристора зависит от даты его производства. Элементы времен Советского Союза — металлические, в виде «летающей тарелки» с тремя выводами. Два вывода — катод и управляющий электрод — находятся на «дне» или «крышке» (это с какой стороны смотреть). Причем электрод управления меньше по размерам. Анод может находиться с противоположной стороны от катода, или торчать вбок из-под шайбы, которая есть на корпусе.

Два вида тиристоров — современные и советские, обозначение на схемах

Современные тиристоры выглядят по-другому. Это небольшой пластиковый прямоугольник с металлической пластиной сверху и тремя выводами-ножками снизу. В современном варианте есть одно неудобство: надо смотреть в описании какой из выводов анод, где катод и управляющий электрод. Как правило, первый — анод, затем катод и крайний правый — это электрод. Но это как правило, то есть, не всегда.

Принцип работы

По принципу действия, тиристор можно еще сравнить с диодом. Пропускать ток он будет в одном направлении — от анода к катоду, но происходить это будет только в состоянии «открыто». На схемах тиристор похож на диод. Также имеется анод и катод, но есть еще дополнительный элемент — управляющий электрод. Понятное дело, есть отличия и в выходном напряжении (если сравнивать с диодом).

В схемах переменного напряжения тиристор будет пропускать только одну полуволну — верхнюю. Когда приходит нижняя полуволна, он сбрасывается в состояние «закрыто».

Принцип работы тиристора простыми словами

Рассмотрим принцип работы тиристора. Стартовое состояние элемента — закрыто. «Сигналом» к переходу в состояние «открыто» является появление напряжения между анодом и управляющим выводом. Вернуть тиристор в состояние «закрыто» можно двумя способами:

  • снять нагрузку;
  • уменьшить ток ниже тока удержания (одна из технических характеристик).

В схемах с переменным напряжением, как правило, сбрасывается тиристор по второму варианту. Переменный ток в бытовой сети имеет синусоидальную форму, когда его значение приближается к нулю и происходит сброс. В схемах, питающихся от источников постоянного тока, надо либо принудительно убирать питание, либо снимать нагрузку.

То есть, работает тиристор в схемах с постоянным и переменным напряжением по-разному. В схеме постоянного напряжения, после кратковременного появления напряжения между анодом и управляющим выводом, элемент переходит в состояние «открыто». Далее может быть два варианта развития событий:

  • Состояние «открыто» держится даже после того, как напряжение анод-выход управления пропало. Такое возможно если напряжение, поданное на анод-управляющий вывод, выше чем неотпирающее напряжение (эти данные есть в технических характеристиках). Прекращается прохождение тока через тиристор, фактически только разрывом цепи или выключением источника питания. Причем выключение/обрыв цепи могут быть очень кратковременными. После восстановления цепи, ток не течет до тех пор, пока на анод-управляющий вывод снова не подадут напряжение.
  • После снятия напряжения (оно меньше чем отпирающее) тиристор сразу переходит в состояние «закрыто».

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без. Но чаще применяют по первому типу — когда он остается открытым.

Принцип работы тиристора в схемах переменного напряжения отличается. Там возвращение в запертое состояние происходит «автоматически» — при падении силы тока ниже порога удержания. Если напряжение на анод-катод подавать постоянно, на выходе тиристора получаем импульсы тока, которые идут с определенной частотой. Именно так построены импульсные блоки питания. При помощи тиристора они преобразуют синусоиду в импульсы.

Проверка работоспособности

Проверить тиристор можно либо при помощи мультиметра, либо создав простенькую проверочную схему. Если при прозвонке иметь перед глазами технические характеристики, можно заодно проверить сопротивление переходов.

Прозвонка мультиметром

Для начала разберем прозвонку мультиметром. Переводим прибор в режим прозвонки.

Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Если хотите проверить и сопротивление переходов, посмотрите в технических характеристиках.

На рисунке представлены схемы испытаний. Крайний справа рисунок — усовершенствованный вариант с кнопкой, которую устанавливают между катодом и управляющим выводом. Для того чтобы мультиметр зафиксировал протекающий по цепи ток, кратковременно нажимаем на кнопку.

При помощи лампочки и источника постоянного тока (батарейка тоже пойдет)

Если мультиметра нет, можно проверить тиристор при помощи лампочки и источника питания. Подойдет даже обычная батарейка или любой другой источник постоянного напряжения. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Потребуется еще сопротивление или обычный кусок проволоки. Из этих элементов собирается простая схема:

  • Плюс от источника питания подаем на анод.
  • К катоду подключаем лампочку, второй ее вывод подключаем к минусу источника питания. Лампочка не горит, так как термистор заперт.
  • Кратковременно (при помощи куска проволоки или сопротивления) соединяем анод и управляющий вывод.
  • Лампочка загорается и продолжает гореть, хотя перемычка убрана. Термистор остается в открытом состоянии.
  • Если выкрутить лампочку или выключить источник питания, то лампочка, естественно, погаснет.
  • Если восстановить цепь/питание, она не загорится.

Заодно с проверкой, эта схема позволяет понять принцип работы тиристора. Ведь картинка получается очень наглядной и понятной.

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Характеристики и их значение

Некоторые тиристоры могут коммутировать очень большие токи, в этом случае их называют силовыми тиристорами. Они изготавливаются в металлическом корпусе — для лучшего отвода тепла. Небольшие модели с пластиковым корпусом — это обычно маломощные варианты, которые используют в малоточных схемах. Но, всегда есть исключения. Так что для каждой конкретной цели подбирают требуемый вариант. Подбирают, понятное дело, по параметрам. Вот основные:


Есть еще динамический параметр — время перехода из закрытого в открытое состояние. В некоторых схемах это важно. Может еще указываться тип быстродействия: по времени отпирания или по времени запирания.

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Отличие симистора от транзистора — Мастер Фломастер

Тиристором называется управляемый полупроводниковый переключатель, обладающий односторонней проводимостью. В открытом состоянии он ведет себя подобно диоду, а принцип управления тиристором отличается от транзистора, хотя и тот и другой имеют по три вывода и обладают способностью усиливать ток.

Выводы тиристора — это анод, катод и управляющий электрод.

Анод и катод — это электроды электронной лампы или полупроводникового диода. Их лучше запомнить по изображению диода на принципиальных электрических схемах. Представьте, что электроны выходят из катода расходящимся пучком в виде треугольника и приходят на анод, тогда вывод от вершины треугольника — катод с отрицательным зарядом, а противоположный вывод — анод с положительным зарядом.

Подав на управляющий электрод определенное напряжение относительно катода, можно перевести тиристор в проводящее состояние. А для того чтобы тиристор вновь запереть, необходимо сделать его рабочий ток меньшим, чем ток удержания данного тиристора.

Тиристор, как полупроводниковый электронный компонент, состоит из четырех слоев полупроводника (кремния) p и n-типа. На рисунке верхний вывод — это анод — область p-типа, снизу — катод — область n-типа, сбоку выведен управляющий электрод — область p-типа. К катоду присоединяется минусовая клемма источника питания, а в цепь анода включается нагрузка, питанием которой следует управлять.

Воздействуя на управляющий электрод сигналом определенной длительности, можно очень легко управлять нагрузкой в цепи переменного тока, отпирая тиристор на определенной фазе периода сетевой синусоиды, тогда закрытие тиристора будет происходить автоматически при переходе синусоидального тока через ноль. Это несложный и весьма популярный способ регулирования мощности активной нагрузки.

В соответствии с внутренним устройством тиристора, в запертом состоянии его можно представить цепочкой из трех диодов, соединенных последовательно, как показано на рисунке. Видно, что в запертом состоянии данная схема не пропустит ток ни в одном, ни в другом направлении. Теперь представим тиристор схемой замещения на транзисторах.

Видно, что достаточный базовый ток нижнего n-p-n-транзистора приведет к возрастанию его коллекторного тока, который тут же явится базовым током верхнего p-n-p-транзистора.

Верхний p-n-p-транзистор теперь отпирается, и его коллекторный ток складывается с базовым током нижнего транзистора, и тот поддерживается в открытом состоянии благодаря наличию в данной схеме положительной обратной связи. И если сейчас перестать подавать напряжение на управляющий электрод, открытое состояние все равно останется таковым.

Чтобы запереть эту цепочку, придется как-то прервать общий коллекторный ток данных транзисторов. Разные способы отключения (механические и электронные) показаны на рисунке.

Симистор, в отличие от тиристора, имеет шесть слоев кремния, и в проводящем состоянии он проводит ток не в одном, а в обоих направлениях, словно замкнутый выключатель. По схеме замещения его можно представить как два тиристора, включенных встречно-параллельно, только управляющий электрод остается один общий на двоих. А после открытия симистора, чтобы ему закрыться, полярность напряжения на рабочих выводах должна измениться на противоположную или рабочий ток должен стать меньше чем ток удержания симистора.

Если симистор установлен для управления питанием нагрузки в цепи переменного или постоянного тока, то в зависимости от текущей полярности и направления тока управляющего электрода, более предпочтительными окажутся определенные способы управления для каждой ситуации. Все возможные сочетания полярностей (на управляющем электроде и в рабочей цепи) можно представить в виде четырех квадрантов.

Стоит отметить, что квадранты 1 и 3 соответствуют обычным схемам управления мощностью активной нагрузки в цепях переменного тока, когда полярности на управляющем электроде и на электроде А2 в каждом полупериоде совпадают, в таких ситуациях управляющий электрод симистора достаточно чувствителен.

В 1963 году у многочисленного семейства тринисторов появился еще один «родственник» — симистор. Чем же он отличается от своих «собратьев» — тринисторов (тиристоров)? Вспомните о свойствах этих приборов. Их работу часто сравнивают с действием обычной двери: прибор заперт — ток в цепи отсутствует (дверь закрыта — прохода нет), прибор открыт — в цепи возникает электрический ток (дверь отворилась — входите). Но у них есть общий недостаток. Тиристоры пропускают ток только в прямом направлении — так обычная дверь легко открывается «от себя», но сколько ни тяни ее на себя — в противоположную сторону, все усилия окажутся бесполезными.

Увеличив число полупроводниковых слоев тиристора с четырех до пяти и снабдив его управляющим электродом, ученые обнаружили, что прибор с такой структурой (названный впоследствии симистором) способен пропускать электрический ток как в прямом, так и в обратном направлениях.

Посмотрите на рисунок 1, изображающий строение полупроводниковых слоев симистора. Внешне они напоминают транзисторную структуру р- n -р типа, но отличаются тем, что имеют три дополнительные области с n -проводимостью. И вот что интересно: оказывается, две из них, расположенные у катода и анода, выполняют функции только одного полупроводникового слоя — четвертого. Пятый образует область с n -проводимостью, лежащая около управляющего электрода.

Ясно, что работа такого прибора основана на более сложных физических процессах, чем у других типов тиристоров. Чтобы лучше разобраться в принципе действия симистора, воспользуемся его тиристорным аналогом. Почему именно тиристорным? Дело в том, что разделение четвертого полупроводникового слоя симистора не случайно. Благодаря такой структуре при прямом направлении тока, протекающего через прибор, анод и катод выполняют свои основные функции, а при обратном они как бы меняются местами — анод становится катодом, а катод, наоборот, анодом, то есть симистор можно рассматривать как два встречно-параллельно включенных тиристора (рис. 2).

Тринисторный аналог симистора

Представим, что на управляющий электрод подан отпирающий сигнал. Когда на аноде прибора напряжение положительной полярности, а на катоде — отрицательной, электрический ток потечет через левый по схеме тринистор. Если полярность напряжения на силовых электродах поменять на противоположную, включится правый по схеме тринистор. Пятый полупроводниковый слой, подобно регулировщику, руководящему движением автомобилей на перекрестке, направляет отпирающий сигнал, зависимости от фазы тока на один из тринисторов. При отсутствии отпирающего сигнала симистор закрыт.

В целом его действие можно сравнить, например, с вращающейся дверью на станции метро — в какую сторону ни толкни ее, она обязательно откроется. Действительно, подадим отпирающее напряжение на управляющий электрод симистора — «подтолкнем» его, и электроны, словно спешащие на посадку или выход пассажиры, потекут через прибор в направлении, диктуемом полярностью включения анода и катода.

Этот вывод подтверждается и вольтамперной характеристикой прибора (рис. 3). Она состоит из двух одинаковых кривых, повернутых относительно друг друга на 180°. Их форма соответствует вольтамперной характеристике динистора, а области непроводящего состояния, как и у тринистора, легко преодолеваются, если на управляющий электрод подать отпирающее напряжение (изменяющиеся участки кривых показаны штриховыми линиями).

Благодаря симметричности вольтамперной характеристики новый полупроводниковый прибор был назван симметричным тиристором (сокращенно — симистор). Иногда его называют триаком (термин, пришедший из английского языка).

Симистор унаследовал от своего предшественника — тиристора все его лучшие свойства. Но самое главное достоинство новинки в том, что в ее корпусе расположили сразу два полупроводниковых прибора. Судите сами. Для управления цепью постоянного тока необходим один тиристор, для цепи переменного тока приборов должно быть два (включены встречно-параллельно). А если учесть, что для каждого из них нужен отдельный источник отпирающего напряжения, который к тому же должен включать прибор точно в момент изменения фазы тока, становится ясно, каким сложным будет такой управляющий узел. Для симистора же род тока не имеет значения. Достаточно лишь одного такого прибора с источником отпирающего напряжения, и универсальное управляющее устройство готово. Его можно использовать в силовой цепи постоянного или переменного тока.

Близкое родство тиристора и симистора привело к тому, что у этих приборов оказалось много общего. Так электрические свойства симистора характеризуются теми же параметрами, что и у тиристора. Маркируются они тоже одинаково — буквами КУ, трехзначным числом и буквенным индексом в конце обозначения. Иногда симисторы обозначают несколько иначе — буквами ТС, что означает «тиристор симметричный».

Условное графическое обозначение симисторов на принципиальных схемах показано на рисунке 4.

Для практического знакомства с симисторами выберем приборы серии КУ208 — триодные симметричные тиристоры п-р-п-р типа. На разновидности приборов указывают буквенные индексы в их обозначении — А, Б, В или Г. Постоянное напряжение, которое выдерживает в закрытом состоянии симистор с индексом А, составляет 100 В, Б — 200 В, В — 300 В и Г — 400 В. Остальные параметры у этих приборов идентичные: максимальный постоянный ток в открытом состоянии — 5 А, импульсный —10 А, ток утечки в закрытом состоянии — 5 мА, напряжение между катодом и анодом в проводящем состоянии — -2 В, величина отпирающего напряжения на управляющем электроде равна 5 В при токе 160 мА, рассеиваемая корпусом прибора мощность— 10 Вт, предельная рабочая частота — 400 Гц.

А теперь обратимся к электроосветительным приборам. Нет ничего проще управлять работой любого из них. Нажал, к примеру, клавишу выключателя — ив комнате загорелась люстра, нажал еще раз — погасла. Иногда, правда, это достоинство неожиданно превращается в недостаток, особенно если вы хотите сделать свою комнату уютной, создать ощущение комфорта, а для этого так важно удачно подобрать освещение. Вот если бы свечение ламп менялось плавно.

Оказывается, в этом нет ничего невозможного. Нужно только вместо обычного выключателя подсоединить электронное устройство, управляющее яркостью светильника. Функции регулятора, «командующего» лампами, в таком приборе выполняет полупроводниковый симистор.

Построить простое регулирующее устройство, которое поможет управлять яркостью свечения настольной лампы или люстры, изменять температуру электроплитки или жала паяльника, вы сможете, воспользовавшись схемой, представленной на рисунке 5.

Рис. 5. Принципиальная схема регулятора

Трансформатор Т1 преобразует сетевое напряжение 220 В в 12 — 25 В. Оно выпрямляется диодным блоком VD1—VD4 и подается на управляющий электрод симистора VS1. Резистор R1 ограничивает ток управляющего электрода, а переменным резистором R2 регулируют величину управляющего напряжения.

Рис. 6. Временные диаграммы напряжения: а — в сети; б — на управляющем электроде симистора, в — на нагрузке.

Чтобы легче было разобраться в работе прибора, построим три временные диаграммы напряжений: сетевого, на управляющем электроде симистора и на нагрузке (рис. 6). После включения устройства в сеть на его вход поступает переменное напряжение 220 В (рис. 6а). Одновременно на управляющий электрод симистора VS1 подается отрицательное напряжение синусоидальной формы (рис. 66). В момент, когда его величина превысит напряжение включения, прибор откроется и сетевой ток потечет через нагрузку. После того как величина управляющего напряжения станет ниже пороговой, симистор остается открытым за счет того, что ток нагрузки превышает ток удержания прибора. В тот момент, когда напряжение на входе регулятора меняет свою полярность, симистор закрывается. Далее процесс повторяется. Таким образом, напряжение на нагрузке будет иметь пилообразную форму (рис. 6в)

Чем больше амплитуда управляющего напряжения, тем раньше включится симистор, а следовательно, больше будет и длительность импульса тока в нагрузке. И наоборот, чем меньше амплитуда управляющего сигнала, тем меньше будет длительность этого импульса. При крайнем левом по схеме положении движка переменного резистора R2 нагрузка станет поглощать полные «порции» мощности. Если регулятор R2 повернуть в противоположную сторону, амплитуда управляющего сигнала окажется ниже порогового значения, симистор останется в закрытом состоянии и ток через нагрузку не потечет.

Нетрудно догадаться, что наш прибор регулирует мощность, потребляемую нагрузкой, изменяя тем самым яркость свечения лампы или температуру нагревательного элемента.

В устройстве можно применить следующие элементы. Симистор КУ208 с буквой В или Г. Диодный блок КЦ405 или КЦ407 с любым буквенным индексом, подойдут также четыре полупроводниковых диода серий Д226, Д237. Постоянный резистор — МЛТ-0,25, переменный — СПО-2 или любой другой мощностью не менее 1 Вт. ХР1 — стандартная сетевая вилка, XS1 — розетка. Трансформатор Т1 рассчитан на напряжение вторичной обмотки 12—25 В.

Если подходящего трансформатора нет, изготовьте его самостоятельно. Сердечник из пластин Ш16, толщина набора 20 мм, обмотка I содержит 3300 витков провода ПЭЛ-1 0,1, а обмотка II — 300 витков ПЭЛ-1 0,3.

Тумблер — любой сетевой, предохранитель должен быть рассчитан на максимальный ток нагрузки.

Регулятор собирается в пластмассовом корпусе. На верхней панели крепятся тумблер, переменный резистор, держатель предохранителя и розетка. Трансформатор, диодный блок и симистор устанавливаются на дне корпуса. Симистор необходимо снабдить теплорассеивающим радиатором толщиной 1 — 2 мм и площадью не менее 14 см2. В одной из боковых стенок корпуса просверлите отверстие для сетевого шнура.

Устройство не нуждается в налаживании и при правильном монтаже и исправных деталях начинает работать сразу после включения в сеть.

ПОЛЬЗУЯСЬ РЕГУЛЯТОРОМ, НЕ ЗАБЫВАЙТЕ О МЕРАХ БЕЗОПАСНОСТИ. ВСКРЫВАТЬ КОРПУС МОЖНО, ТОЛЬКО ОТКЛЮЧИВ ПРИБОР ОТ СЕТИ!

Справочные данные популярных отечественные симисторов и зарубежных
триаков. Простейшие схемы симисторных регуляторов мощности.

Ну что ж! На предыдущей странице мы достаточно плотно обсудили свойства и характеристики полупроводникового прибора под названием тиристор, неуважительно обозвали его «довольно архаичным», пришло время выдвигать внятную альтернативу.
Симистор пришёл на смену рабочей лошадке-тиристору и практически полностью заменил его в электроцепях переменного тока.
История создания симистора также не нова и приходится на 1960-е годы, причём изобретён и запатентован он был в СССР группой товарищей из Мордовского радиотехнического института.

Итак:
Симистор, он же триак, он же симметричный триодный тиристор — это полупроводниковый прибор, являющийся разновидностью тиристора, но, в отличие от него, способный пропускать ток в двух направлениях и используемый для коммутации нагрузки в цепях переменного тока.

На Рис.1 слева направо приведены: топологическая структура симистора, далее расхожая, но весьма условная, эквивалентная схема, выполненная на двух тиристорах и, наконец, изображение симистора на принципиальных схемах.
МТ1 и МТ2 — это силовые выводы, которые могут обозначаться, как Т1&Т2; ТЕ1&ТЕ2; А1&А2; катод&анод. Управляющий электрод, как правило, обозначается латинской G либо русской У.

Глядя на эквивалентную схему, может возникнуть иллюзия, что симистор относительно горизонтальной оси является элементом абсолютно симметричным, что даёт возможность как угодно крутить его вокруг управляющего электрода. Это не верно.
Точно так же, как у тиристора, напряжение на управляющий электрод симистора должно подаваться относительно условного катода (МТ1, Т1, ТЕ1, А1).
Иногда производитель может обозначать цифрой 1 «анодный» вывод, цифрой 2 — «катодный», поэтому всегда важно придерживаться обозначений, приведённых в паспортных характеристиках на прибор.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Приведём вольт-амперную характеристику тиристора и схему, реализующую самый простой способ управления симисторами — подачу на управляющий электрод прибора постоянного тока с величиной, необходимой для его включения (Рис.2).


Рис.2

Огромным плюсом симистора перед тиристором является возможность в штатном режиме работать с разнополярными полупериодами сетевого напряжения. Вольт-амперная характеристика является симметричной, надобности в выпрямительном мосте — никакой, схема получается проще, но главное — исключается элемент (выпрямитель), на котором вхолостую рассеивается около 50% мощности.

Давайте рассмотрим работу симистора при подаче на его управляющий вход постоянного тока отрицательной полярности (Рис.2 справа), ведь мы помним, что именно такая полярность открывающего напряжения является универсальной и для положительных, и для отрицательных полупериодов напряжения сети. На самом деле, всё происходит абсолютно аналогично описанной на предыдущей странице работе тиристора.
Повторим пройденный материал.

1. Для начала рассмотрим случай, когда управляющий электрод симистора отключен (S1 на схеме разомкнут, Iу на ВАХ равен 0). Тока через нагрузку нет (участки III на ВАХ), симистор закрыт, и для того, чтобы его открыть, необходимо поднять напряжение на «аноде» симистора настолько, чтобы возник лавинный пробой p-n-переходов полупроводника.
Оговоримся — зафиксировать нам этот процесс не удастся, потому что величина этого напряжения составляет несколько сотен вольт и, как правило, превышает амплитудное значение напряжения сети.
Тем не менее — при достижении этого уровня напряжения (точки II на ВАХ) симистор отпирается, падение напряжения между силовыми выводами падает до единиц вольт, нагрузка подключается к сети — наступает рабочий режим открытого симистора (участки I на ВАХ).
Чтобы закрыть симистор, нужно снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже тока удержания.

2. Для того чтобы снизить величину напряжения включения симистора, следует замкнуть S1 и, тем самым, подать на управляющий электрод ток, задаваемый значением переменного резистора R1. Чем больше ток Iу, тем при меньшем анодном напряжении происходит переключение симистора в проводящее состояние.
А при какой-то величине тока управляющего электрода, называемой током спрямления (на ВАХ не показано), горба на характеристике вообще не будет, и напряжение открывания симистора составит незначительную величину, исчисляемую единицами вольт.
Абсолютно так же, как и в прошлом пункте, чтобы закрыть симистор, необходимо снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.

То бишь — всё полностью аналогично тиристору. Для открывания симистора следует подать на управляющий электрод прибора постоянный ток с величиной, необходимой для его включения, для закрывания — снизить протекающий через нагрузку ток (или напряжение на «аноде») ниже значения тока удержания.
Т.е. в нашем случае, представленном на Рис.2 — симистор будет открываться при замыкании S1 в каждый момент превышения «анодным» напряжением некоторого значения, зависящего от номинала R1, а закрываться с каждым полупериодом сетевого напряжения в момент приближения его уровня к нулевому значению.

Описанный выше способ управления симистором посредством подачи на управляющий электрод постоянного напряжения обладает существенным недостатком — требуется довольно большой ток (а соответственно и мощность) управляющего сигнала (по паспорту — до 250мА для КУ208). Поэтому в большинстве случаев для управления симисторами используется импульсный метод, либо метод, при котором открытый симистор шунтирует цепь управления, не допуская бесполезного рассеивания мощности на её элементах.

В качестве примера рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности, позволяющего работать с нагрузками вплоть до 2000 Вт.


Рис.3

Как можно увидеть, на схеме помимо симистора VS2 присутствует малопонятный элемент VS1 — динистор. Для интересующихся отмечу — на странице ссылка на страницу мы подробно обсудили принцип работы, свойства и характеристики приборов данного типа.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.3 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.3 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

А под занавес приведём основные характеристики отечественных симисторов и зарубежных триаков.

ТипU макс, ВI max, АIу отп, мА
КУ208Г4005
BT 131-6006001
BT 134-5005004
BT 134-6006004
BT 134-600D6004
BT 136-500Е5004
BT 136-600Е6004
BT 137-600Е6008
BT 138-60060012
BT 138-80080012
BT 139-50050016
BT 139-60060016
BT 139-80080016
BTA 140-60060025
BTF 140-80080025
BT 151-650R65012
BT 151-800R80012
BT 169D40012
BTA/BTB 04-600S6004
BTA/BTB 06-600C6006
BTA/BTB 08-600B6008
BTA/BTB 08-600C6008
BTA/BTB 10-600B60010
BTA/BTB 12-600B60012
BTA/BTB 12-600C60012
BTA/BTB 12-800B80012
BTA/BTB 12-800C80012
BTA/BTB 16-600B60016
BTA/BTB 16-600C60016
BTA/BTB 16-600S60016
BTA/BTB 16-800B80016
BTA/BTB 16-800S80016
BTA/BTB 24-600B60025
BTA/BTB 24-600C60025
BTA/BTB 24-800B80025
BTA/BTB 25-600В60025
BTA/BTB 26-600A60025
BTA/BTB 26-600B60025
BTA/BTB 26-700B70025
BTA/BTB 26-800B80025
BTA/BTB 40-600B60040
BTA/BTB 40-800B80040
BTA/BTB 41-600B60041
BTA/BTB 41-800B80041
MAC8M6008
MAC8N8008
MAC9M6009
MAC9N8009
MAC12M60012
MAC12N80012
MAC15M60015
MAC12N80015

Симисторы с обозначение BTA отличаются от других наличием изолированного корпуса.
Падение напряжения на открытом симисторе составляет примерно 1-2 В и мало зависит от протекающего тока.

Чем отличается симистор от транзистора

Чем симистор отличается от тиристора

Тиристором называется управляемый полупроводниковый переключатель, обладающий односторонней проводимостью. В открытом состоянии он ведет себя подобно диоду, а принцип управления тиристором отличается от транзистора, хотя и тот и другой имеют по три вывода и обладают способностью усиливать ток.

Выводы тиристора — это анод, катод и управляющий электрод.

Анод и катод — это электроды электронной лампы или полупроводникового диода. Их лучше запомнить по изображению диода на принципиальных электрических схемах. Представьте, что электроны выходят из катода расходящимся пучком в виде треугольника и приходят на анод, тогда вывод от вершины треугольника — катод с отрицательным зарядом, а противоположный вывод — анод с положительным зарядом.

Подав на управляющий электрод определенное напряжение относительно катода, можно перевести тиристор в проводящее состояние. А для того чтобы тиристор вновь запереть, необходимо сделать его рабочий ток меньшим, чем ток удержания данного тиристора.

Тиристор, как полупроводниковый электронный компонент, состоит из четырех слоев полупроводника (кремния) p и n-типа. На рисунке верхний вывод — это анод — область p-типа, снизу — катод — область n-типа, сбоку выведен управляющий электрод — область p-типа. К катоду присоединяется минусовая клемма источника питания, а в цепь анода включается нагрузка, питанием которой следует управлять.

Воздействуя на управляющий электрод сигналом определенной длительности, можно очень легко управлять нагрузкой в цепи переменного тока, отпирая тиристор на определенной фазе периода сетевой синусоиды, тогда закрытие тиристора будет происходить автоматически при переходе синусоидального тока через ноль. Это несложный и весьма популярный способ регулирования мощности активной нагрузки.

В соответствии с внутренним устройством тиристора, в запертом состоянии его можно представить цепочкой из трех диодов, соединенных последовательно, как показано на рисунке. Видно, что в запертом состоянии данная схема не пропустит ток ни в одном, ни в другом направлении. Теперь представим тиристор схемой замещения на транзисторах.

Видно, что достаточный базовый ток нижнего n-p-n-транзистора приведет к возрастанию его коллекторного тока, который тут же явится базовым током верхнего p-n-p-транзистора.

Верхний p-n-p-транзистор теперь отпирается, и его коллекторный ток складывается с базовым током нижнего транзистора, и тот поддерживается в открытом состоянии благодаря наличию в данной схеме положительной обратной связи. И если сейчас перестать подавать напряжение на управляющий электрод, открытое состояние все равно останется таковым.

Чтобы запереть эту цепочку, придется как-то прервать общий коллекторный ток данных транзисторов. Разные способы отключения (механические и электронные) показаны на рисунке.

Симистор, в отличие от тиристора, имеет шесть слоев кремния, и в проводящем состоянии он проводит ток не в одном, а в обоих направлениях, словно замкнутый выключатель. По схеме замещения его можно представить как два тиристора, включенных встречно-параллельно, только управляющий электрод остается один общий на двоих. А после открытия симистора, чтобы ему закрыться, полярность напряжения на рабочих выводах должна измениться на противоположную или рабочий ток должен стать меньше чем ток удержания симистора.

Если симистор установлен для управления питанием нагрузки в цепи переменного или постоянного тока, то в зависимости от текущей полярности и направления тока управляющего электрода, более предпочтительными окажутся определенные способы управления для каждой ситуации. Все возможные сочетания полярностей (на управляющем электроде и в рабочей цепи) можно представить в виде четырех квадрантов.

Стоит отметить, что квадранты 1 и 3 соответствуют обычным схемам управления мощностью активной нагрузки в цепях переменного тока, когда полярности на управляющем электроде и на электроде А2 в каждом полупериоде совпадают, в таких ситуациях управляющий электрод симистора достаточно чувствителен.

В чем отличие работы тиристора и транзистора?

Транзисторы – распространенные полупроводниковые радиоэлементы. На их основе делают большинство электронных схем, а также микросхем. Главное их свойство – способность усиливать электрические сигналы. Изменяя слабый сигнал на управляющем электроде транзистора, можно управлять усиленным выходным сигналом. Есть еще довольно распространенный вид полупроводниковых радиоэлементов — тиристоры. Они тоже имеют управляющий электрод, но управление выходным сигналом в принципе отличается от транзисторов. В этой небольшой статье путем сравнения рассмотрены эти различия.

За основу возьмем простую схему с лампочкой. Коммутируя малый ток в цепи управляющего электрода будем управлять в разы большим током лампочки.

Вот как выглядит эта схема на транзисторе и на тиристоре:

Рассмотрим, как можно управлять свечением лампочки в схеме на транзисторе. При наличии питания и замыкании выключателя S1 на управляющий электрод транзистора (базу) будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в базе) транзистор откроется, лампочка загорится.

Изменяя величину тока в базе с помощью переменного сопротивления, мы можем открывать транзистор больше или меньше, меняя таким образом яркость свечения лампочки. Последовательно с переменным сопротивлением стоит постоянное для того, чтобы при нулевом сопротивлении переменного сопротивления ток базы не превысил допустимое значение и транзистор не вышел из строя. Выключить лампочку мы можем, разомкнув выключатель S1.

Теперь рассмотрим, как можно управлять свечением лампочки в схеме, выполненной на тиристоре.

При наличии питания и замыкании выключателя S2 на управляющий электрод тиристора будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в цепи управляющего электрода) тиристор откроется, лампочка загорится. А вот теперь главное отличие. Мы не можем изменять яркость лампочки изменяя сопротивление в цепи управляющего электрода. Более того, мы можем вообще разомкнуть выключатель S2 и лампочка будет светиться, но только в том случае, если ток лампочки протекающий через открытый тиристор будет больше определенного значения, называемого током удержания. Он у каждого типа тиристора свой. Чем мощнее тиристор, тем большее значение тока удержания. Погасить лампочку мы можем, только уменьшив ток через анод-катод тиристора до значения меньше тока удержания или разомкнув выключатель S3 (что равносильно току удержания равном 0).

Это главная особенность применения тиристоров и главное их отличие от транзисторов.

Другими словами, тиристор может быть или полностью открыт, или полностью закрыт. Это и достоинство, и недостаток. Достоинство в том, что падение напряжения небольшое и потери ниже, чем, например, у наполовину открытого транзистора. Недостаток в том, что схема управления усложняется.

Тиристоры проще использовать в цепях переменного тока. Мы должны открывать тиристор каждую полуволну при ее нарастании. Когда полуволна спадает, тиристор сам закроется. Задерживая время открывания при приходе полуволны, мы меняем время открытого состояния тиристора и, следовательно, значение тока в нагрузке.

Как пример, рассмотрим питание схемы на тиристоре от источника переменного напряжения.

Теперь, при замыкании выключателя лампочка будет гореть, а при размыкании, гаснуть. Как видно из осциллограммы, каждую полуволну, в ее конце ток приближается к 0. Если выключатель S2 разомкнут, то с приходом новой полуволны тиристор не откроется.

Тиристоры целесообразно использовать в цепях переменного или импульсного напряжения (тока). При этом на управляющий электрод достаточно подать короткий отпирающий импульс. Закроется тиристор сам, после окончания импульса в нагрузке. При приходе следующего импульса в нагрузке на управляющий электрод снова нужно подавать отпирающий импульс и так далее.

Материал статьи продублирован на видео:

Обозначение и принцип действия симистора: объяснение для «чайников»

Полупроводниковые элементы применяются для создания различных устройств и техники. Некоторые из них выполняют функции электронных ключей, например, симисторы. Большинство радиолюбителей сталкивается с ремонтом различной техники, в которой он применяется. Для выполнения качественного ремонта следует получить подробную информацию о детали, выяснить ее структуру и принцип работы.

Общие сведения

Симистор (триак) является одним из видов тиристора и обладает большим количеством переходов p-n-типа. Его целесообразно применять в цепях переменного тока для электронного управления. Чтобы понять принцип работы симистора «чайникам» в этом вопросе, следует рассмотреть его структуру, функцию и сферы применения.

Информация о ключах

Ключи — устройства, которые применяются для коммутации или переключения в электрических цепях. Существует три их вида, и каждый из них обладает своими достоинствами и недостатками. Классифицируются ключи по типу переключения:

  1. Механические.
  2. Электромеханические.
  3. Электронные.

К механическим ключам относятся выключатели и рубильники. Применяются они в случаях необходимости ручной коммутации для замыкания одного или нескольких групп контактов. К виду электромеханических ключей следует отнести реле (контакторы). Электромагнитное реле состоит из магнита, представляющего катушку с подвижным сердечником. При подаче питания на катушку она притягивает сердечник с группой контактов: одни контакты замыкаются, а другие — размыкаются.

Среди достоинств применения электромеханических ключей можно выделить следующие: отсутствие падения напряжения и потери мощности на контактах, а также изолирование цепей нагрузки и коммутации. У этого типа ключей есть и недостатки:

  1. Число переключений ограниченно, поскольку контакты изнашиваются.
  2. При размыкании возникает электрическая дуга, которая приводит к разрушению контактов (электроэрозии). Невозможно применять во взрывоопасных средах.
  3. Очень низкое быстродействие.

Электронные ключи бывают на разной базе полупроводниковых элементов: транзисторах, управляемых диодах (тиристорах) и симметричных управляемых диодах (симисторах). Простейшим электронным ключом является транзистор биполярного типа с коллектором, эмиттером и базой, состоящего из 2 p-n-переходов. По структуре они бывают 2 типов: n-p-n и р-n-p.

Поскольку транзистор состоит из 2 p-n-переходов, то в зависимости от состояния, в которых они находятся, различают 4 режима работы: основной, инверсный, насыщения и отсечки. При активном режиме открыт коллекторный переход, а при инверсном — эмиттерный. При двух открытых переходах транзистор работает в режиме насыщения. При условии, что закрыты оба перехода, он будет работать в режиме отсечки.

Для использования транзистора необходимо всего 2 его состояния. Режим отсечки происходит при отсутствии тока базы, следовательно, при этом ток коллектора равен 0. При подаче достаточного значения тока на базу полупроводниковый прибор будет работать в режиме насыщения, т. е. в открытом состоянии.

Если рассматривать ключи на полевых транзисторах, то появляется возможность менять его проводимость при изменении величины напряжения на затворе, выполняющего функцию управляющего электрода. Управляя его работой при помощи воздействия на затвор, можно получить два состояния: открытое и закрытое. Ключи на полевых транзисторах обладают высоким быстродействием, чем на биполярных.

Электронные ключи, выполненные на тиристорах, обладают некоторыми особенностями. Тиристор является полупроводниковым радиоэлементом с p-n-p-n или n-p-n-p переходам и имеет 3, а иногда и 4 вывода. Состоит он из p-слоя (катода), n-слоя (анода) и управляющего электрода (базы). Его можно заменить 2 транзисторами разной структуры. Он представляет 2 ключа транзисторного типа, которые включены встречно. База одного транзистора подключается к коллектору другого.

При подаче на базу отпирающего тока управляемый диод откроется и останется в этом состоянии, пока величина тока не будет снижена до нулевого значения. При большом значении тока базы тиристор является обыкновенным полупроводниковым диодом, проводящим ток в одном направлении.

Он может функционировать в цепях переменного тока, но только на половину мощности. Для этих целей необходимо применять симистор.

Принцип работы симистора

Основным отличием симистора от тиристора является проводимость сразу в двух направлениях. Симистор можно заменить 2 тиристорами, которые имеют встречно-параллельное подключение на рисунке 1. На нем представлено условное графическое обозначение триака на электрических принципиальных схемах. В некоторой литературе можно встретить и другие названия: триак и симметричный управляемый диод.

Рисунок 1. Симистор (схема включения 2 тиристоров) и его графическое обозначение

Существует простой пример, который позволит понять даже «чайникам», как работает симистор. Дверь в гостинице можно открывать в двух направлениях, причем в нее могут войти и выйти сразу 2 человека. Этот простой пример показывает, что триак может пропускать ток сразу в двух направлениях (прямом и обратном), поскольку он состоит из 5 p-n-переходов. Управление его работой осуществляется при помощи базы.

Слои симисторного ключа, изготовленные из полупроводника, похожи на переход транзистора, но имеют еще 3 дополнительных области n-типа. Четвертый слой находится возле катода и является разделенным, поскольку анод и катод при движении тока выполняют некоторые функции, а при обратном направлении движения — меняются местами. Пятый слой находится возле базы.

При подаче сигнала на управляющий вывод произойдет отпирание симметричного управляющегося диода, поскольку его анод будет иметь положительный потенциал. В этом случае по верхнему тиристору потечет ток. При изменении полярности ток будет течь по нижнему тиристору (рисунок 1). Об этом свидетельствует его вольт-амперная характеристика (ВАХ) на рисунке 2. Она состоит из двух кривых, повернутых на 180 градусов.

Рисунок 2. ВАХ триака

Литерой «А» обозначено его закрытое состояние, а «В» — открытое. Urrm и Udrm — допустимые значения прямого и обратного напряжений. Idrm и Irrm — прямой и обратный токи.

Виды и сферы применения

Поскольку симистор является видом тиристора, то основным их отличием является параметры управляющего электрода (базы). Кроме того, они классифицируются по другим признакам:

  1. Конструкция.
  2. Величина тока, при которой наступает перегрузка.
  3. Характеристики базы.
  4. Значения прямых и обратных токов.
  5. Величина прямого и обратного напряжений.
  6. Тип электрической нагрузки. Бывают силовыми и обычными.
  7. Параметр силы тока, необходимой для открытия затвора.
  8. Коэффициент dv/dt или скорость, с которой происходит переключение.
  9. Производитель.
  10. Мощность.

Благодаря особенности пропускания тока в двух направлениях, их используют в цепях переменного тока, поскольку тиристор не может работать на полную мощность. Симметричные тиристоры получили широкое применение в таких устройствах:

  1. Приборах для регулировки яркости света или диммерах.
  2. Регуляторах оборотов для различного инструмента (лобзики, шуруповерты и т. д.).
  3. Электронной регулировке температур для индукционных плит.
  4. Холодильной аппаратуре для плавного запуска двигателя.
  5. Бытовой технике.
  6. Промышленности для освещения, плавного пуска приводов машин и механизмов.

Среди достоинств симисторов можно выделить незначительную стоимость, надежность и они не генерируют помехи (не используются контакты механического типа), а также длительный срок эксплуатации. К основным недостаткам следует отнести следующие: необходимость в дополнительном теплоотводе, невозможность использования на высоких частотах, а также влияние помех и шумов различного рода.

Для подавления помех следует подсоединить параллельно триаку, между катодом и анодом, цепочку из конденсатора и резистора с номиналами от 0,02 до 0,3 мкФ и от 45 до 500 Ом соответственно. Для применения в какой-либо схеме или устройстве следует знать основные технические характеристики, поскольку владение этой информацией поможет избежать множества трудностей перед начинающим радиолюбителем.

Технические характеристики

У триаков существуют характеристики, позволяющие применять их в какой-либо схеме. Кроме того, они отличаются также и производителем — бывают отечественные и импортные. Основное отличие импортных состоит в том, что нет необходимости подстраивать их работу при помощи дополнительных радиоэлементов, т. е. собирать дополнительную схему управления симистором. У симисторов существуют следующие характеристики:

  1. Величина максимального обратного и импульсного значений напряжений, на которые он рассчитан.
  2. Минимальное и максимальное значения тока, при котором происходит открытие его перехода, а также значение максимального импульсного тока, необходимого для его открытия.
  3. Период включения и выключения.
  4. Коэффициент dv/dt.

Характеристики в основном определяются по маркировке триаков с использованием справочника. В справочной информации имеется информация о том, как он выглядит, и дается его распиновка. При использовании триака следует учитывать такую характеристику, как dv/dt. Она показывает значения коэффициента, при котором не происходит самопроизвольное включение из-за скачков напряжения. Причинами такого включения могут служить помехи импульсного происхождения и падение напряжения при коммутации ключа. Кроме того, чтобы избежать последствий, следует применять RC-цепочку, а также ограничивающие диоды или варистор. Эта цепочка подсоединяется к эмиттеру и коллектору симистора.

При выборе триака следует обратить внимание на все характеристики, поскольку не имеет смысла использовать высоковольтный тип в схемах с низким напряжением. Например, если устройство работает от напряжения 36 В, то зарубежный симистор Zo607 с напряжением 600 В (его аналог — вта41600в) не следует применять.

Кроме того, в некоторых источниках можно встретить понятие бесснабберного симистора. Это тип, который применяется при индуктивных нагрузках. Примером такой модели являются m10lz47, mac12n и tg35c60.

Диагностика в схемах

В некоторых случаях радиолюбитель сталкивается с проверкой симистора, однако не всегда может ее корректно произвести. В случае выхода триака из строя его желательно выпаять из платы и произвести его проверку. Обычный цифровой мультиметр для этой цели не подойдет, поскольку его ток слишком мал, чтобы открыть переход детали. Для этого подойдет обыкновенный стрелочный омметр. Вариантов проверки всего два: использовать стрелочный прибор или собрать спецсхему для этой операции. Для осуществления проверки по первому варианту необходимо руководствоваться следующим алгоритмом:

  1. Включить прибор в режим измерения величины сопротивления.
  2. Подключить щупы тестера к эмиттеру и коллектору. Если прибор показывает бесконечное сопротивление, то деталь исправна. Остальные случаи указывают на ее неисправность.
  3. Соединить базу и вывод Т2. В этом случае сопротивление будет в пределах от 40 до 250 Ом. Если поменять местами щупы, то прибор снова покажет бесконечность. Это свидетельствует об исправности симистора.

Однако первый метод диагностики в некоторых случаях дает не совсем нужные и верные результаты. Очень часто проверенная таким способом деталь в схеме не работает. Это связано с тем, что герметичность ее корпуса нарушена. Недостаток метода — неточная диагностика. Для более точной диагностики следует проверить триак в работе (схема 1). Для этого необходимо использовать лампу накаливания и аккумулятор.

Схема 1. Проверка симметричного тиристора при помощи лампы накаливания и источника питания

В этой схеме симистор будет проверен под нагрузкой. При касании управляющего электрода, лампочка загорится и будет гореть некоторое время, пока не пропадет питание на аноде или ток на базе не будет малой величины. Недостаток метода — простая конструкция, при которой неудобно осуществлять проверку, поскольку следует напаивать провода на выводы триака. После проверки при неисправной детали следует произвести замену.

Таким образом, симисторы используются в управляемых устройствах в качестве электронных ключей, способных пропускать ток в двух направлениях. Их несложно проверить и желательно использовать специальную схему для этой операции.

Что такое симистор (триак), характеристики, схемы

В данной статье мы подробно разберем что такое симистор (триак), рассмотрим его схему и символ на схеме, кривые характеристики триака, а так же фазовый контроль симистора.

Введение

Будучи твердотельным устройством, тиристоры могут использоваться для управления лампами, двигателями или нагревателями и т.д. Однако одна из проблем использования тиристора для управления такими цепями заключается в том, что, подобно диоду, «тиристор» является однонаправленным устройством, что означает, что он пропускает ток только в одном направлении, от анода к катоду .

Для цепей переключения постоянного тока эта «однонаправленная» характеристика переключения может быть приемлемой, поскольку после запуска вся мощность постоянного тока подается прямо на нагрузку. Но в синусоидальных цепях переключения переменного тока это однонаправленное переключение может быть проблемой, поскольку оно проводит только в течение одной половины цикла (например, полуволнового выпрямителя), когда анод является положительным, независимо от того, что делает сигнал затвора. Затем для работы от переменного тока тиристором подается нагрузка только на половину мощности.

Чтобы получить двухволновое управление мощностью, мы могли бы подключить один тиристор внутри двухполупериодного мостового выпрямителя, который срабатывает на каждой положительной полуволне, или соединить два тиристора вместе в обратной параллели (спина к спине), как показано ниже. но это увеличивает как сложность, так и количество компонентов, используемых в схеме переключения.

Тиристорные конфигурации

Существует, однако, другой тип полупроводникового устройства, называемый «Триодный выключатель переменного тока» или «Триак» для краткости. Триаки также являются членами семейства тиристоров, и, как и кремниевые выпрямители, управляемые кремнием, они могут использоваться в качестве полупроводниковых переключателей питания, но что более важно, триаки являются «двунаправленными» устройствами. Другими словами, симистор может быть запущен в проводимость как положительными, так и отрицательными напряжениями, приложенными к его аноду, и положительными и отрицательными импульсами запуска, приложенными к его клемме затвора, что делает его двухквадрантным коммутирующим устройством, управляемым затвором.

Симистор ведет себя так же, как два обычных тиристоров, соединенных вместе в обратной параллельно (спина к спине) по отношению друг к другу и из — за этой конструкции два тиристоры имеют общий терминал Gate все в пределах одного трехтерминальной пакета.

Поскольку триак проводит в обоих направлениях синусоидальной формы волны, концепция анодной клеммы и катодной клеммы, используемая для идентификации главных силовых клемм тиристора, заменена обозначениями: MT 1 для главной клеммы 1 и MT 2 для главной клеммы 2.

В большинстве устройств переключения переменного тока клемма симисторного затвора связана с клеммой MT 1, аналогично взаимосвязи затвор-катод тиристора или взаимосвязи база-эмиттер транзистора. Конструкция, легирование PN и условные обозначения, используемые для обозначения триака, приведены ниже.

Схема и символ симистора

Теперь мы знаем, что «триак» — это четырехслойное PNPN в положительном направлении и NPNP в отрицательном направлении, трехполюсное двунаправленное устройство, которое блокирует ток в своем состоянии «ВЫКЛ», действующее как выключатель разомкнутой цепи, но в отличие от обычного тиристора, симистор может проводить ток в любом направлении при срабатывании одним импульсом затвора. Тогда симистор имеет четыре возможных режима срабатывания следующим образом.

  • Mode + Mode = положительный ток MT 2 (+ ve), положительный ток затвора (+ ve)
  • Mode — Mode = положительный ток MT 2 (+ ve), отрицательный ток затвора (-ve)
  • Mode + Mode = MT 2 отрицательный ток (-ve), положительный ток затвора (+ ve)
  • Mode — Mode = отрицательный ток MT 2 (-ve), отрицательный ток затвора (-ve)

И эти четыре режима, в которых может работать триак, показаны с использованием кривых характеристик триака IV.

Кривые характеристики триака IV

В квадранте tri триак обычно запускается в проводимость положительным током затвора, обозначенным выше как режим Ι +. Но это также может быть вызвано отрицательным током затвора, режим Ι–. Аналогичным образом, в квадранте Использование симистора

Симистор наиболее часто используется в полупроводниковых устройствах для коммутации и управления мощностью систем переменного тока, как симистор может быть включен «ON» либо положительным или отрицательным импульсом Gate, независимо от полярности питания переменного тока в то время. Это делает триак идеальным для управления лампой или нагрузкой двигателя переменного тока с помощью базовой схемы переключения триака, приведенной ниже.

Схема переключения симистора

Приведенная выше схема показывает простую схему переключения симистора с триггером постоянного тока. При разомкнутом переключателе SW1 ток не поступает в затвор симистора, и поэтому лампа выключена. Когда SW1 замкнут, ток затвора подается на триак от батареи V G через резистор R, и триак приводится в полную проводимость, действуя как замкнутый переключатель, и полная мощность потребляется лампой от синусоидального источника питания.

Поскольку батарея подает положительный ток затвора на триак всякий раз, когда переключатель SW1 замкнут, триак постоянно находится в режимах g + и ΙΙΙ + независимо от полярности клеммы MT 2 .

Конечно, проблема с этой простой схемой переключения симистора состоит в том, что нам потребовался бы дополнительный положительный или отрицательный источник питания затвора, чтобы запустить триак в проводимость. Но мы также можем активировать триак, используя фактическое напряжение питания переменного тока в качестве напряжения срабатывания затвора. Рассмотрим схему ниже.

Схема показывает триак, используемый как простой статический выключатель питания переменного тока, обеспечивающий функцию «ВКЛ» — «ВЫКЛ», аналогичную в работе предыдущей схеме постоянного тока. Когда переключатель SW1 разомкнут, триак действует как разомкнутый переключатель, и лампа пропускает нулевой ток. Когда SW1 замкнут, триак отключается от «ВКЛ» через токоограничивающий резистор R и самоблокируется вскоре после начала каждого полупериода, таким образом переключая полную мощность на нагрузку лампы.

Поскольку источник питания является синусоидальным переменным током, триак автоматически отключается в конце каждого полупериода переменного тока в качестве мгновенного напряжения питания, и, таким образом, ток нагрузки кратковременно падает до нуля, но повторно фиксируется снова, используя противоположную половину тиристора в следующем полупериоде, пока выключатель остается замкнутым. Этот тип управления переключением обычно называется двухполупериодным управлением, поскольку контролируются обе половины синусоидальной волны.

Поскольку симистор фактически представляет собой две SCR, подключенные друг к другу, мы можем продолжить эту схему переключения симистора, изменив способ срабатывания затвора, как показано ниже.

Модифицированная цепь переключения симистора

Как и выше, если переключатель SW1 разомкнут в положении A, то ток затвора отсутствует, а лампа выключена. Если переключатель находится в положении B, то ток затвора протекает в каждом полупериоде так же, как и раньше, и лампа получает полную мощность, когда триак работает в режимах Ι + и ΙΙΙ–.

Однако на этот раз, когда переключатель подключен к положению C, диод предотвратит срабатывание затвора, когда MT 2 будет отрицательным, так как диод имеет обратное смещение. Таким образом, симистор работает только в положительных полупериодах, работающих только в режиме I +, и лампа загорается при половине мощности. Затем, в зависимости от положения переключателя, нагрузка выключена при половине мощности или полностью включена .

Фазовый контроль симистора

Другой распространенный тип схемы симистической коммутации использует управление фазой для изменения величины напряжения и, следовательно, мощности, подаваемой на нагрузку, в данном случае на двигатель, как для положительной, так и для отрицательной половин входного сигнала. Этот тип управления скоростью двигателя переменного тока обеспечивает полностью переменное и линейное управление, поскольку напряжение можно регулировать от нуля до полного приложенного напряжения, как показано на рисунке.

Эта базовая схема запуска фазы использует триак последовательно с двигателем через синусоидальный источник переменного тока. Переменный резистор VR1 используется для управления величиной фазового сдвига на затворе симистора, который, в свою очередь, управляет величиной напряжения, подаваемого на двигатель, путем его включения в разное время в течение цикла переменного тока.

Вызывание напряжение симистора является производным от VR1 — C1 комбинации через Диак (Диак является двунаправленным полупроводниковым устройством , которое помогает обеспечить резкий триггер импульс тока, чтобы полностью включение симистора).

В начале каждого цикла C1 заряжается через переменный резистор VR1. Это продолжается до тех пор, пока напряжение на С1 не станет достаточным для запуска диака в проводимость, что, в свою очередь, позволяет конденсатору С1 разрядиться в затвор симистора, включив его.

Как только триак запускается в проводимость и насыщается, он эффективно замыкает цепь управления фазой затвора, подключенную параллельно ему, и триак берет на себя управление оставшейся частью полупериода.

Как мы видели выше, триак автоматически отключается в конце полупериода, и процесс запуска VR1-C1 снова запускается в следующем полупериоде.

Однако, поскольку для триака требуются разные величины тока затвора в каждом режиме переключения, например, Ι + и ΙΙΙ–, поэтому триак является асимметричным, что означает, что он не может запускаться в одной и той же точке для каждого положительного и отрицательного полупериода.

Эта простая схема управления скоростью симистора подходит не только для управления скоростью двигателя переменного тока, но и для диммеров ламп и управления электронагревателем, и на самом деле очень похожа на регулятор симистора, используемый во многих домах. Однако коммерческий симисторный диммер не должен использоваться в качестве регулятора скорости двигателя, так как, как правило, симисторные диммеры предназначены для использования только с резистивными нагрузками, такими как лампы накаливания.

Мы можем закончить эту про симистор, суммировав его основные пункты следующим образом:

  • «Триак» — это еще одно 4-слойное 3-контактное тиристорное устройство, аналогичное SCR.
  • Симистор может быть запущен в любом направлении.
  • Есть четыре возможных режима запуска для симистора, из которых 2 являются предпочтительными.

Управление электрическим переменным током с использованием симисторачрезвычайно эффективно при правильном использовании для управления нагрузками резистивного типа, такими как лампы накаливания, нагреватели или небольшие универсальные двигатели, обычно используемые в переносных электроинструментах и ​​небольших приборах.

Но помните, что эти устройства можно использовать и подключать непосредственно к источнику переменного тока, поэтому проверка цепи должна выполняться, когда устройство управления питанием отключено от источника питания. Пожалуйста, помните о безопасности!

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Симистор

Симметричный тиристор

Если проанализировать путь развития полупроводниковой электроники, то почти сразу становится понятно, что все полупроводниковые приборы созданы на переходах или слоях (n-p, p-n).

Простейший полупроводниковый диод имеет один переход (p-n) и два слоя.

У биполярного транзистора два перехода и три слоя (n-p-n, p-n-p). А что будет, если добавить ещё один слой?

Тогда мы получим четырёхслойный полупроводниковый прибор, который называется тиристор. Два тиристора включенные встречно-параллельно и есть симистор, то есть симметричный тиристор.

В англоязычной технической литературе можно встретить название ТРИАК (TRIAC – triode for alternating current).

Вот таким образом симистор изображается на принципиальных схемах.

У симистора три электрода (вывода). Один из них управляющий. Обозначается он буквой G (от англ. слова gate – «затвор»). Два остальных – это силовые электроды (T1 и T2). На схемах они могут обозначаться и буквой A (A1 и A2).

А это эквивалентная схема симистора выполненного на двух тиристорах.

Следует отметить, что симистор управляется несколько по-другому, нежели эквивалентная тиристорная схема.

Симистор достаточно редкое явление в семье полупроводниковых приборов. По той простой причине, что изобретён и запатентован он был в СССР, а не в США или Европе. К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.


Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка. Величина резистора R1 от 50 до 470 ом, величина конденсатора C1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

В импульсном режиме напряжение точно такое же.

Максимальный ток в открытом состоянии – 5А.

Максимальный ток в импульсном режиме – 10А.

Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

Наименьший импульсный ток – 160 мА.

Открывающее напряжение при токе 300 мА – 2,5 V.

Открывающее напряжение при токе 160 мА – 5 V.

Время включения – 10 мкс.

Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот. Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.).

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.


Оптосимистор MOC3023
Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Симисторы: принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Тиристоры. Виды и устройство. Работа и применение. Особенности

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Работа тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров
  • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток.
  • Прямое напряжение. Это падение напряжения при максимальном токе.
  • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода. Он необходим для включения тиристора.
  • Максимально допустимый ток управления.
  • Максимально допустимая рассеиваемая мощность.
Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

По способу управления разделяют на:
  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.
Триодные тиристоры в свою очередь разделяются:
  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.
Запирание тиристора производится:
  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.
По обратной проводимости тиристоры делятся:
  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Похожие темы:

Симистор — это… Что такое Симистор?

Обозначение на схемах Эквивалентная схема симистора Фото современных симисторов

Симиcтop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. В электронике часто рассматривается как управляемый выключатель (ключ). В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Однако по способу включения относительно управляющего электрода основные выводы симистора различаются, причём имеет место их аналогия с катодом и анодом тринистора. На приведённом рисунке верхний по схеме вывод симистора называется выводом 1 или условным катодом, нижний — выводом 2 или условным анодом, вывод справа — управляющим электродом.

Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях. Другой особенностью симистора, как и других тиристоров, является то, что для его удержания в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзисторa). Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки происходит вблизи моментов времени, когда напряжение на основных электродах симистора меняет полярность (обычно это совпадает по времени со сменой полярности напряжения в сети).

Симистор был изобретен в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. начальником конструкторского бюро Василенко Валентиной Стефановной. Запатентован в СССР с приоритетом от 22 июня 1963 года, на полгода ранее, чем в США[1].

Структура

Симистор имеет пятислойную структуру полупроводника. Упрощённо симистор можно представить в виде эквивалентной схемы (см. рис.) из двух триодных тиристоров (тринисторов), включённых встречно-параллельно. Следует, однако, заметить, что управление симистором отличается от управления двумя встречно-параллельными тринисторами.

Управление

Для отпирания симистора на его управляющий электрод подаётся напряжение относительно условного катода. Полярность управляющего напряжения, как правило, должна быть либо отрицательной, либо должна совпадать с полярностью напряжения на условном аноде. Поэтому часто используется такой метод управления симистором, при котором сигнал на управляющий электрод подаётся с условного анода через токоограничительный резистор и выключатель. Управлять симистором часто удобно, задавая определённую силу тока управляющего электрода, достаточную для отпирания. Некоторые типы симисторов могут отпираться сигналом любой полярности, хотя при этом может потребоваться больший управляющий ток.

Ограничения

При использовании симистора накладываются ограничения, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dU/dt) между основными электродами симистора и скорости изменения рабочего тока di/dt. Превышение скорости изменения напряжения на симисторе (из-за наличия его внутренней ёмкости), а также величины этого напряжения, могут приводить к нежелательному открыванию симистора. Превышение скорости нарастания тока между основными электродами, а также величины этого тока, может привести к повреждению симистора. Существуют и другие параметры, на которые накладываются ограничения в соответствии с предельно-допустимыми режимами эксплуатации. К таким параметрам относятся ток и напряжение управляющего электрода, температура корпуса, рассеиваемая прибором мощность и пр.

Опасность превышения по скорости нарастания тока заключается в следующем. Благодаря глубокой положительной обратной связи переход симистора в открытое состояние происходит лавинообразно, но, несмотря на это, процесс отпирания может длиться до нескольких микросекунд, в течение которых к симистору оказываются приложены одновременно большие значения тока и напряжения. Поэтому, даже несмотря на то, что падение напряжения на полностью открытом симисторе невелико, мгновенная мощность во время открывания симистора может достигнуть большой величины. Это сопровождается выделением тепловой энергии, которая не успевает рассеяться и может привести к перегреву и повреждению кристалла.

Одним из способов защиты симистора от выбросов напряжения при работе с индуктивной нагрузкой является включение варистора параллельно основным выводам симистора. Для защиты симистора от превышения скорости изменения напряжения применяют так называемую снабберную цепочку (RC-цепь), подключаемую аналогично.

Примечания

Ссылки

Литература

  • 1. Э.Кадино «Цветомузыкальные установки» -М.: ДМК Пресс, 2000.
  • 2. Кублановский. Я. С. Тиристорные устройства. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1987. — 112 с.: ил. — (Массовая радиобиблиотека. Вып. 1104).

Тиристоры и Триаки (симисторы) — Десять Золотых Правил — Компоненты и технологии

Промышленный ряд тиристоров и триаков (симисторов) Philips предоставляет широкие возможности для создания устройств управления мощностью. Соблюдение же десяти несложных правил по использованию тиристоров и триаков поможет избежать трудностей и ошибок при проектировании.

Тиристоры

Тиристор — управляемый диод, в котором управление током от анода к катоду происходит за счет малого тока управляющего электрода (затвора).

Открытое состояние тиристора

Тиристор переходит в открытое состояние при подаче на затвор положительного смещения относительно катода. При достижении порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс) пиковое значение порогового напряжения необходимо увеличить.

После достижения тока нагрузки значения IL тиристор будет оставаться в открытом состоянии при отсутствии тока затвора.

Необходимо отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25 °C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре.

Чувствительный затвор тиристоров, таких, как BT150, при увеличении температуры перехода выше Tj max может вызывать ложное срабатывание за счет тока утечки от анода к катоду.

Во избежание ложных срабатываний можно посоветовать следующие рекомендации:

  1. Рабочая температура перехода должна быть меньше значения Tj max.
  2. Использовать тиристоры с меньшей чувствительностью, такие, как BT151, либо уменьшить чувствительность имеющегося тиристора включением резистора номиналом 1 кОм или менее между затвором и катодом.
  3. При невозможности использования менее чувствительного тиристора необходимо приложить небольшое обратное смещение к затвору в фазе закрытого состояния тиристора для увеличения IL. В фазе отрицательного тока затвора необходимо уделить внимание уменьшению мощности рассеивания затвора.

Коммутация тиристора

Для перехода тиристора в закрытое состояние ток нагрузки должен снизиться ниже значения тока удержания IH на время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться. В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.

Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IH достаточное время.

Обратите внимание, что значение IH указывается для температуры перехода 25 °C и, подобно IL, оно уменьшается при повышении температуры. Поэтому для успешной коммутации цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода.

Триаки (симисторы)

Триак представляет собой «двунаправленный тиристор». Особенностью триака является способность проводить ток как от анода к катоду, так и в обратном направлении.

Состояние проводимости

В отличие от тиристоров триак может управляться как положительным, так и отрицательным током между затвором и T1. (Правила для VGT, IGT и IL те же, что для тиристоров, см. «Правило 1».) Это свойство позволяет триаку работать во всех четырех секторах, как показано на рис. 4.

Когда затвор управляется постоянным током или однополярными импульсами с нулевым значением тока нагрузки, в квадрантах (3+,3–) предпочтителен отрицательный ток затвора по нижеследующим причинам. (Внутреннее строение переходов триака характерно тем, что затвор наиболее отдален от области основной проводимости в квадранте 3+.)

  1. При более высоком значении IGT требуется более высокий пиковый IG.
  2. При более длинной задержке между IG и током нагрузки требуется большая продолжительность IG.
  3. Низкое значение dIT/dt может вызывать перегорание затвора при управлении нагрузками, создающими высокий dI/dt (включение холодной лампы накаливания, емкостные нагрузки).
  4. Чем выше IL (это относится и к квадранту 1–), тем большая продолжительность IG будет необходима для малых нагрузок, что позволит току нагрузки с начала полупериода достичь значения выше IL.

В стандартных цепях управления фазой переменного тока, таких, как регуляторы яркости и регуляторы скорости вращения, полярность затвора и T2 всегда одинаковы. Это означает, что управление производится всегда в 1+ и 3– квадрантах, в которых коммутирующие параметры триака одинаковы, а затвор наиболее чувствителен.

Примечание: 1+, 1–, 3– и 3+ это система обозначений четырех квадрантов, использующаяся для краткости: вместо того, чтобы записать «MT2+, G+», пишется 1+ и т. д. Эти данные получены из графика вольт-амперной характеристики триака. Положительному напряжению T2 соответствует положительное значение тока через T2, и наоборот (см. рис. 5). Следовательно, управление осуществляется только в квадрантах 1 и 3. А указатели (+) и (–) относятся к направлению тока затвора.

Ложные срабатывание триака

В ряде случаев возможны нежелательные случаи включения триаков. Некоторые из них не приведут к серьезным последствиям, в то время как другие потенциально разрушительны.

1. Уменьшение шумовых сигналов затвора

В электрически шумных окружающих средах ложное срабатывание может происходить, если шумовое напряжение на затворе превышает VGT, поэтому тока затвора достаточно для включения триака. Первый способ защиты — минимизировать возникающий шум. Лучше всего это может быть достигнуто уменьшением длины проводников, ведущих к затвору, и соединением цепи управления затвором непосредственно с выводом T1 (или катодом для тиристора). В случае, если это невозможно, следует использовать витую пару или экранированный кабель.

Дополнительную шумовую устойчивость можно обеспечить, уменьшив чувствительность затвора с помощью включения резистора до 1 кОм между затвором и T1. Если в качестве высокочастотного шунта используется конденсатор, желательно включить последовательно резистор между ним и затвором, чтобы уменьшить пик тока конденсатора через затвор и минимизировать возможность повреждения затвора от перегрузки.

В качестве решения этих проблем можно использовать триаки ряда «H» из номенклатуры Philips (например BT139-600H). Этот нечувствительный ряд (IGT min = 10 мA) специально разработан для обеспечения высокой шумовой устойчивости.

2. Превышение максимального значения скорости нарастания напряжения коммутации dVCOM/dt

Этот эффект может возникнуть при питании реактивных нагрузок, где есть существенный сдвиг фазы между напряжением и током нагрузки. При выключении триака в то время, когда фаза тока нагрузки проходит через ноль, напряжение не будет нулевым из-за сдвига по фазе (см. рис. 6).

Если при этом скорость изменения напряжения превысит допустимое значение dVCOM/dt, триак может остаться в состоянии проводимости. Это происходит из-за того, что носителям заряда не хватает времени, чтобы освободить переход.

На параметр dVCOM/dt влияют два условия:

  • Скорость уменьшения тока нагрузки при переключении dICOM/dt. Высокое значение dICOM/dt снижает значение dVCOM/dt.
  • Температура перехода Tj. Чем выше Tj, тем ниже значение dVCOM/dt.

Если возможно превышение значения dVCOM/dt триака, то ложного срабатывания можно избежать использованием RC-демпфера между T1-T2. Это ограничит скорость изменения напряжения. Обычно выбирается углеродный резистор 100 Ом и конденсатор 100 нФ.

В качестве альтернативы можно предложить использование триаков Hi-Com (более подробно об этих триаках можно прочесть на сайте www.dectel.ru в разделе «Публикации» или в «КиТ» № 7’2002).

Обратите внимание, что резистор не может быть удален из демпфера, так как он используется в качестве ограничителя тока во избежание возникновения высокого значения dIT/dt в моменты коммутации.

3. Превышение максимального значения скорости нарастания тока коммутации dICOM/dt

Высокое значение dICOM/dt может быть вызвано повышенным током нагрузки, повышенной рабочей частотой (синусоидального тока) или несинусоидальным током нагрузки.

Известный пример — выпрямитель питания для индуктивных нагрузок, где применение стандартных триаков невозможно из-за того, что напряжение питания оказывается ниже напряжения обратной электромагнитной индукции нагрузки и ток триака резко стремится к нулю. Этот эффект проиллюстрирован на рис. 7.

При нулевом токе триака ток нагрузки будет спадать через мостовой выпрямитель. При индуктивных нагрузках возможно такое высокое значение dICOM/dt, при котором триак не может поддерживать даже небольшого значения dV/dt 50-герцовой синусоиды при прохождении нуля. В этом случае не будет эффекта от добавления демпфера.

Решение проблемы в том, что значение dICOM/dt может быть ограничено добавлением дросселя последовательно с нагрузкой. Альтернативное решение — использование Hi-Com-триаков.

4. Превышение максимального значения скорости нарастания напряжения в закрытом состоянии dVD/dt

Высокая скорость изменения напряжения на силовых электродах непроводящего триака (или тиристора с чувствительным затвором) без превышения его VDRM (см. рис. 8), вызывает внутренние емкостные токи. При этом внутреннего тока затвора может быть достаточно, чтобы перевести триак (тиристор) в состояние проводимости. Чувствительность к этому параметру увеличивается с ростом температуры.

Там, где возникает эта проблема, значение dVD/dt должно быть ограничено RC-демпфером между T1 и T2 для триака (или анодом и катодом для тиристора). Использование триаков Hi-Com в таких случаях может снять эти проблемы.

5. Превышение повторяющегося пикового напряжения в закрытом состоянии VDRM

Если напряжение на T2 превышает VDRM (это может происходить во время переходных процессов), то ток утечки T2-T1 достигнет значения, при котором триак может спонтанно перейти в состояние проводимости (рис. 9).

При нагрузке, допускающей выбросы тока, ток чрезвычайно высокой плотности может проходить через узкую открытую область перехода. Это может привести к выгоранию перехода и разрушению кристалла. Это может происходить в схемах управления лампами накаливания, емкостных нагрузках и схемах защиты мощных электронных ключей.

Превышение VDRM или dVD/dt не всегда приводит к потере работоспособности триака, а вот создаваемая dIT/dt скорость нарастания тока It может привести к выходу из строя прибора. Из-за того что требуется некоторое время для распространения проводимости по всему переходу, допустимое значение dIT/dt ниже чем, если бы триак был включен сигналом затвора. Если значение dIT/dt не будет превышать минимального значения, которое дается в его характеристиках, то, скорее всего, триак не выйдет из строя. Эта проблема может быть решена подключением ненасыщающейся индуктивности (без сердечника) последовательно с нагрузкой. Если это решение неприемлемо, то альтернативное решение может быть в том, чтобы обеспечить дополнительную фильтрацию и ограничение выбросов. Это повлечет использование параллельно питанию метал-оксидного варистора (МОВ) для ограничения напряжения и последовательное подключение LС-цепочки перед варистором.

Некоторые изготовители выражают сомнения в надежности схем с использованием MOB, так как они при высоких температурах окружающей среды входят в тепловой пробой и выходят из строя. Это является следствием того, что рабочее напряжение МОВ обладает обратным температурным коэффициентом. Однако при применении МОВ на 275 В (среднеквадратичное значение) для цепей 230 В риск перегорания МОВ минимален. Такие проблемы вероятны, если варистор на 250 В используется при высокой температуре окружающей среды в цепях со среднеквадратичным значением 230 В.

Состояние проводимости, dI

T/dt

Когда триак (тиристор) находится в состоянии проводимости под действием сигнала затвора, проводимость начинается в участке кристалла, смежном с затвором, и затем быстро распространяется на активную область. Эта задержка накладывает ограничение на значение допустимой скорости нарастания тока нагрузки. Высокое значение dIT/dt может быть причиной выгорания прибора, в результате чего произойдет короткое замыкание между T1 и T2.

При работе в квадранте 3+ еще больше снижается разрешенное значение dIT/dt из-за структуры перехода. Это может привести к мгновенному лавинному процессу в затворе и перегоранию во время быстрого нарастания тока. Разрушение триака может произойти не сразу, а при постепенном выгорании перехода Затвор-T1, что приведет к короткому замыканию после нескольких включений. Чувствительные триаки наиболее подвержены этому. Эти проблемы не относятся к Hi-Com триакам, так как они не работают в квадранте 3+.

Значение dIT/dt связано со скоростью нарастания тока затвора (dIG/dt) и максимальным значением IG. Высокие значения dIG/dt и пикового IG (без превышения номинальной мощности затвора) дают более высокое значение dIT/dt.

Самый простой пример нагрузки, создающей высокий начальный бросок тока, — лампа накаливания, которая имеет низкое сопротивление в холодном состоянии. Для резистивных нагрузок этого типа значение dIT/dt достигнет максимального значения при начале перехода в состояние проводимости в пике напряжения сети. Если есть вероятность превышения номинального значения dIT/dt триака, необходимо ограничить это включением катушки индуктивности или терморезистором с обратным температурным коэффициентом последовательно с нагрузкой.

Дроссель не должен насыщаться в течение максимума пика тока. Для ограничения значения dIT/dt необходимо использовать катушку индуктивности без сердечника.

Есть более правильное решение, с помощью которого можно избежать необходимости включения последовательно с нагрузкой токоограничивающих приборов. Оно состоит в том, чтобы использовать режим включения при нулевой разности потенциалов. Это дало бы плавный рост тока с начала полуволны.

Примечание: Важно помнить, что режим включения при нулевой разности потенциалов применим только к резистивным нагрузкам. Использование того же метода для реактивных нагрузок, где есть сдвиг фазы между напряжением и током, может вызвать однополярную проводимость, ведущую к возможному режиму насыщения индуктивных нагрузок, разрушительно высокому току и перегреву. В этом случае требуется более совершенный способ переключения при нулевом токе или схема управления фазой включения.

Отключение

Триаки, использующиеся в цепях переменного тока, коммутируются в конце каждого полупериода тока нагрузки, если не приложен сигнал затвора, чтобы поддержать проводимость с начала следующего полупериода. Правила для IH те же, что и для тиристора (см. «Правило 2»).

Некоторые особенности триаков Hi-Com

Триаки Hi-Com имеют отличную от обычных триаков внутреннюю структуру. Одно из отличий состоит в том, что две половины тиристора лучше изолированы друг от друга, что уменьшает их взаимное влияние. Это дает следующие преимущества:

  1. Увеличение допустимого значения dVCOM/dt. Это позволяет управлять реактивными нагрузками (в большинстве случаев) без использования демпфирующего устройства, без сбоев в коммутации. Это сокращает количество элементов, размер печатной платы, стоимость и устраняет потери на рассеивание энергии демпфирующим устройством.
  2. Увеличение допустимого значения dICOM/dt. Это значительно улучшает работу на более высоких частотах и для несинусоидальных напряжений без необходимости в ограничении dICOM/dt при помощи индуктивности последовательно с нагрузкой.
  3. Увеличение допустимого значения dVD/dt. Триаки очень чувствительны при высоких рабочих температурах. Высокое значение dVD/dt уменьшает тенденцию к самопроизвольному включению из состояния отсутствия проводимости за счет dV/dt при высоких температурах. Это позволяет применять их при высоких температурах для управления резистивными нагрузками в кухонных или нагревательных приборах, где обычные триаки не могут использоваться.

Из-за особой внутренней структуры работа триаков Hi-Com в квадранте 3+ невозможна. В большинстве случаев это не является проблемой, так как это наименее желательный и наименее используемый квадрант. Поэтому замена обычного триака на Hi-Com возможна почти всегда.

Более подробную информацию по триакам Hi-Com можно найти в специальной документации Philips: «Factsheet 013 — Understanding Hi-Com Triacs» и «Factsheet 014 — Using Hi-Com Triacs».

Способы монтажа триаков

При малых нагрузках или коротких импульсных токах нагрузки (меньше 1 с), можно использовать триак без теплоотводящего радиатора. Во всех остальных случаях его применение необходимо.

Существует три основных метода фиксации триака к теплоотводу — крепление зажимом, крепление винтом и клепка. Наиболее распространены первые два способа. Клепка в большинстве случаев не рекомендуется, так как может вызвать повреждение или деформацию кристалла, что приведет к выходу прибора из строя.

Фиксация к теплоотводу зажимом

Это — предпочтительный метод с минимальным тепловым сопротивлением, так как зажим достаточно плотно прижимает корпус прибора к радиатору. Это одинаково подходит как для неизолированных (SOT82 и SOT78), так и для изолированных корпусов (SOT186 F-корпусов и более ранних SOT186A X-корпусов). SOT78 известен еще как TO220AB.

Фиксация к теплоотводу при помощи винта

  1. Набор для монтажа корпуса SOT78 включает прямоугольную шайбу, которая должна быть установлена между головкой винта и контактом без усилий на пластиковый корпус прибора.
  2. Во время установки наконечник отвертки не должен воздействовать на пластиковый корпус триака (тиристора).
  3. Поверхность теплоотвода в месте контакта с электродом должна быть обработана с чистотой до 0,02 мм.
  4. Крутящий момент (с установкой шайбы) должен быть между 0,55–0,8 Н·м.
  5. По возможности следует избегать использования винтов-саморезов, так как это снижает термоконтакт между теплоотводом и прибором.
  6. Прибор должен быть механически зафиксирован перед пайкой выводов. Это минимизирует чрезмерную нагрузку на выводы.

Тепловое сопротивление

Тепловое сопротивление Rth — это сопротивление между корпусом прибора и радиатором. Этот параметр аналогичен электрическому сопротивлению R = V/I, поэтому тепловое сопротивление Rth = T/P, где T — температура в кельвинах, и P — рассеяние энергии в ваттах.

Для прибора, установленного вертикально без радиатора, тепловое сопротивление задается тепловым сопротивлением «переход — окружающая среда» Rth = Rth j–a.

  • Для корпуса SOT82 значение равно 100 К/Вт;
  • Для корпуса SOT78 значение равно 60 К/Вт;
  • Для корпусов F и X значение равно 55 К/Вт.

Для не изолированных приборов, установленных на теплоотвод, тепловое сопротивление является суммой сопротивлений «переход — корпус», «корпус — теплоотвод» и «теплоотвод — окружающая среда».

Для изолированных корпусов нет ссылки на термосопротивление Rth j–mb, так как Rth mb–h принят постоянным и дан с учетом использования термопасты. Поэтому тепловое сопротивление для изолированного корпуса является суммой тепловых сопротивлений «переходтеплоотвод» и «теплоотвод — окружающая среда».

Rth j–mb или Rth j–h фиксированы и даны в документации к каждому прибору. Rth mb–h также даются в инструкциях по установке для некоторых вариантов изолированного и неизолированного монтажа с использованием или без использования термопасты. Rth h–a регулируется размером теплоотвода и степенью воздушного потока через него. Для улучшения теплоотдачи всегда рекомендуется использование термопасты.

Расчет теплового сопротивления

Для вычисления теплового сопротивления теплоотвода для данного триака (тиристора) и данного тока нагрузки необходимо сначала вычислить рассеяние энергии в триаке (тиристоре), используя следующее уравнение:

Vo и Rs получены из «on-state» характеристики триака (тиристора). Если значения не указанны, то они могут быть получены из графика путем вычерчивания касательной к VT max. Точка на оси VT, где ее пересекает касательная, дает Vo, в то время как тангенс угла наклона касательной дает Rs.

Используя уравнение теплового сопротивления, данное выше, получаем:

Максимально допустимая температура перехода будет достигнута, когда Tj достигает Tj max при самой высокой температуре окружающей среды. Это дает нам T.

Полное тепловое сопротивление

Все расчеты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше 1 с. Для импульсных токов или длительных переходных процессов меньше 1 с эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях нагрев перехода зависит от полного теплового сопротивления «переход — корпус прибора» Zth j–mb. Поэтому Zth j–mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 с Zth j–mb увеличивается до значения, соответствующего установившемуся режиму Rth j–mb. Характеристика Zth j–mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 с.

Номенклатура и корпуса

Промышленный ряд тиристоров Philips начинается с 0,8 A в SOT54 (TO92) и заканчивается 25 A в SOT78 (TO220AB).

Промышленный ряд триаков (симисторов) Philips начинается с 0,8 A в SOT223 и заканчивается 25 A в SOT78.

Самый маленький корпус триака (тиристора) для поверхностного монтажа — SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.

Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса позволяет использовать его при более высоких номинальных токах и большей мощности.

На рис. 12 показан наименьший корпус для обычного монтажа — SOT54. В этот корпус ставится кристалл, которым оснащаются SOT223.

SOT78 — самый распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).

На рис. 15 показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1500 В между прибором и теплоотводом.

Один из последних корпусов — SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типами:

  1. Корпус имеет те же размеры, что и корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78 без изменений в монтаже.
  2. Корпус допускает в обычных условиях разность потенциалов 2500 В между прибором и теплоотводом.

Разница между тиристором и TRIAC

Основное различие между тиристором и TRIAC заключается в том, что тиристор является однонаправленным устройством, а в TRIAC — двунаправленным устройством. Теперь давайте проверим информацию о разнице между тиристором и TRIAC, чтобы узнать больше о нем.
  • Тиристор, также называемый SCR, означает кремниевый выпрямитель, а TRIAC — триод для переменного тока.
  • Тиристор имеет четыре терминальных полупроводниковых прибора, а TRIAC — трехконтактный полупроводниковый прибор.
  • Основное различие между SCR и TRIAC состоит в том, что SCR — это однонаправленное устройство, а TRIAC — двунаправленное устройство.
  • Тиристор более надежен, а TRIAC менее надежен.
  • Для тиристора требуется два радиатора, тогда как для TRIAC требуется только один радиатор.
  • Тиристор доступен с большим номиналом, а в TRIAC доступен с меньшим номиналом.
  • Однопереходный транзистор используется для запуска в SCR, но в TRIAC для запуска используется DIAC.
  • Тиристор управляет мощностью постоянного тока, тогда как TRIAC управляет мощностью постоянного и переменного тока.
  • У тиристора возможен только один режим работы, в то время как TRIAC имеет четыре различных режима работы.
  • Тиристор может работать только в одном квадранте V-I характеристик, в то время как TRIAC может работать только в двух квадрантах V-I характеристик.
  • А тиристор может срабатывать только положительным напряжением затвора, симистор может запускаться как положительным, так и отрицательным напряжением затвора.
  • Основным недостатком TRIAC по сравнению с тиристором является то, что он имеет более низкие токи.

Дополнительная информация:

Основное различие между тиристором и TRIAC заключается в том, что тиристор является однонаправленным устройством, а в TRIAC — двунаправленным устройством. Теперь давайте проверим информацию о разнице между тиристором и TRIAC, чтобы узнать больше о нем.
  • Тиристор, также называемый SCR, означает кремниевый выпрямитель, а TRIAC — триод для переменного тока.
  • Тиристор имеет четыре терминальных полупроводниковых прибора, а TRIAC — трехконтактный полупроводниковый прибор.
  • Основное различие между SCR и TRIAC состоит в том, что SCR — это однонаправленное устройство, а TRIAC — двунаправленное устройство.
  • Тиристор более надежен, а TRIAC менее надежен.
  • Для тиристора требуется два радиатора, тогда как для TRIAC требуется только один радиатор.
  • Тиристор доступен с большим номиналом, а в TRIAC доступен с меньшим номиналом.
  • Однопереходный транзистор используется для запуска в SCR, но в TRIAC для запуска используется DIAC.
  • Тиристор управляет мощностью постоянного тока, тогда как TRIAC управляет мощностью постоянного и переменного тока.
  • У тиристора возможен только один режим работы, в то время как TRIAC имеет четыре различных режима работы.
  • Тиристор может работать только в одном квадранте V-I характеристик, в то время как TRIAC может работать только в двух квадрантах V-I характеристик.
  • А тиристор может срабатывать только положительным напряжением затвора, симистор может запускаться как положительным, так и отрицательным напряжением затвора.
  • Основным недостатком TRIAC по сравнению с тиристором является то, что он имеет более низкие токи.

Дополнительная информация:

Тиристор против симистора — celduc® relais

Тиристор и симистор для двух электронных компонентов и полупроводников, используемых для трансформаторов электрических цепей и напряжений.
Релейные статики для переменного тока, использующие тиристоры, связанные с переключением тиристоров или триаком.Mais quelle est la différence entre ces 2 types d’éléments de puissance?


Fonctionnement des Thyristor et des Triacs

Тиристор (или SCR)

Тиристор , également appelé SCR, значительный ремонтный контроль по кремнию.
Il s’agit d’un dispositif de коммутации на полупроводниковый, avec deuxbornes de puissance, appelées Anode (A) et Cathode (K) et une borne de commande appelée Gâchette (G).

En tant que diode, le courant ne peut circuitler que dans un seul sens: анод на катоде.Залейте альтернативный защитный раствор, раствор является не использованным. 2 SCR-соединения tête-bêche :

Распределение тиристора при применении импульса куранта циркулирующего положительного полюса Gâchette по сравнению с катодом.

L’amorçage du Thyristor (Turn ON) après une impulsion de courant sur la Gâchette ne peut se produire que si:
— Натяжение анода-катода положительно
— Анод-катод с положительным напряжением appelée courant d’amorçage .

Dans les conditions ci-dessus, le тиристор reste conducteur même sans courant dans la gâchette (Effet mémoire).

Le desamorçage ne peut être rétabli:
-qu’en faisant chuter le courant anode cathode en dessous d’une suree valeur, appelée courant de maintien.
-ru приложение анод-катод положительное напряжение

Симистор

TRIAC через английский триод переменного тока, значительный триод для переменного тока.
Симистор, диафрагма тиристора, двунаправленная составная часть, пропускная способность, проходящая через двойное сопротивление. Le TRIAC — это полупроводник с тремя электродами (анод 1, анод 2, gâchette).

Тиристоры и симисторы для полупроводниковых приборов

Parce qu’il s’agit de dispositifs semi-conducteurs, ils ne peuvent pas assurer une galvanique lorsqu’ils ne sont pas contrôlés. Ils peuvent Même Avoir un courant de fuite dangereux à l’état OFF.De plus le claquage Conduit souvent à leur laissant passer le courant vers la charge.

C’est un aspect important qui doit être pris en compte pour assurer la sécurité dans la concept du système en cas de panne ou de maintenance: L’utilisateur doit s’assurer de la possibledisoler galvaniquement le relais statique et de Charger Un partie du circuit avec un contacteur ou un disjoncteur.

Применение Quelles для триаков и тиристоров?

Триаки на основе кремния, не содержащие тиристоров, состоящие из двух чистых кремниевых солей.
Cette différence Physique joue un role en Termes de capacity de commutation de courant :
Залейте заряд током 25A, симистор — это простое и достаточное решение.
À partir de 25 A et au-delà, тиристор tête-bêche является лучшей альтернативой для обеспечения высокой мощности коммутации.

Si vous avez des questions, n’hésitez pas à contacter notre équipe method et commerciale.

12 Разница между SCR и TRIAC (со сравнительной таблицей)

Что такое выпрямитель с кремниевым управлением (SCR)?

Контролируемый кремний Выпрямитель представляет собой трехполюсное и четырехслойное полупроводниковое устройство управления током.Он в основном используется в устройствах для управления большой мощностью. Кремний Управляемый выпрямитель также называют диодом SCR, 4-х слойным диодом, 4-х слойным. устройство или тиристор. Он состоит из кремниевого материала, который контролирует высокие мощность и преобразует сильный переменный ток в постоянный (выпрямление).

Выпрямители с кремниевым управлением

используются в управлении мощностью приложения, такие как мощность, подаваемая на электродвигатели, реле управления или индукционные нагревательные элементы, мощность которых должна контролироваться.

Что вам нужно Знайте о SCR

  1. SCR — трехконтактное устройство.
  2. SCR может проводить ток только в одном направлении; Таким образом, его можно охарактеризовать как однонаправленное устройство.
  3. SCR может работать от положительного управляющего напряжения затвора Только.
  4. SCR может работать только в одном режиме.
  5. Он имеет 4 слоя полупроводника.
  6. SCR может управлять только положительным или отрицательным полупериод подачи переменного тока.
  7. SCR управляет только питанием постоянного тока или может управлять полупериод с прямым смещением входного переменного тока в нагрузке.
  8. Надежнее.
  9. Требуется два радиатора.
  10. SCR имеет большие текущие возможности и большинство SCR доступны в больших рейтингах.
  11. Передние характеристики SCR аналогичны к прямым и обратным характеристикам TRIAC.

Что такое триод Для переменного тока (TRIAC)?

A Triac — высокоскоростной твердотельный устройство, которое может переключать и контролировать питание переменного тока в любом направлении при срабатывании триггера.Его формальное название — двунаправленный триодный тиристор или двусторонний триод. тиристор. Большинство TRIAC могут быть активированы подавая на затвор либо положительное, либо отрицательное напряжение. После срабатывания TRIAC продолжают проводить, даже если ток затвора прекращается, до тех пор, пока основной ток падает ниже определенного уровня, называемого Holding Current .

Двунаправленность TRIAC делает их удобными переключатели на переменный ток (AC). Кроме того, применение триггера в контролируемый фазовый угол переменного тока в главной цепи позволяет контролировать средний ток, протекающий в нагрузке (фазовый контроль).

Маломощные TRIAC используются во многих приложениях, таких как свет диммеры, регуляторы скорости для электрических вентиляторов и других электродвигателей, а также в современные компьютеризированные схемы управления многими бытовыми малыми и крупными Техника.

Что вам нужно Знайте о TRIAC

  1. TRIAC — трехконтактное устройство.
  2. TRIAC может вести в обоих направлениях; оно может таким образом можно описать как двунаправленное устройство.
  3. Функция TRIAC положительным или отрицательным напряжение управления затвором.
  4. TRIAC может работать в четырех различных режимах.
  5. Имеет 5 слоев полупроводника.
  6. TRIAC может контролировать как положительные, так и отрицательные полупериоды входного сигнала переменного тока.
  7. TRIAC управляет питанием постоянного и переменного тока.
  8. Менее надежен.
  9. Требуется только один радиатор.
  10. Как правило, большинство TRIAC доступны в рейтингах. менее 40 ампер и при напряжении до 600 вольт.
  11. Прямые и обратные характеристики TRIAC аналогичны прямым характеристикам устройства SCR.

Разница между SCR и TRIAC в табличной форме

ОСНОВА СРАВНЕНИЯ SCR TRIAC
Описание SCR — это трехконтактное устройство. TRIAC — трехконтактное устройство.
Проводимость тока SCR может проводить ток только в одном направлении; таким образом, это может быть описывается как однонаправленное устройство. TRIAC может вести в обоих направлениях; таким образом, его можно описать как двунаправленное устройство.
Напряжение управления затвором SCR может работать только при положительном управляющем напряжении затвора. Функция TRIAC либо положительным, либо отрицательным управляющим напряжением затвора.
Эксплуатация SCR может работать только в одном режиме. TRIAC может работать в четырех различных режимах.
Количество слоев Он имеет 4 слоя полупроводника. Он имеет 5 слоев полупроводника.
Возможность SCR может управлять только положительным или отрицательным полупериодом переменного тока. Вход. TRIAC может управлять как положительными, так и отрицательными полупериодами сигнала переменного тока. Вход.
Питание постоянного тока SCR управляет только мощностью постоянного тока или может контролировать половину с прямым смещением цикл ввода переменного тока в нагрузку. TRIAC управляет как постоянным, так и переменным током.
Надежность Это более надежно. Это менее надежно.
Радиатор Нужен только один радиатор. Нужен только один радиатор.
Текущие возможности SCR имеет большие текущие возможности, и большинство SCR доступны в большие рейтинги. Как правило, большинство TRIAC доступны с номиналами менее 40 ампер и при напряжении до 600 Вольт.
Вперед и назад Характеристики Передние характеристики SCR аналогичны передним и обратные характеристики TRIAC. Прямые и обратные характеристики TRIAC аналогичны характеристикам передовые характеристики устройства SCR.
Предыдущая статья7 Разница между конечной точкой и точкой эквивалентности при титрованииСледующая статья14 Разница между процессом горячей и холодной обработки

DIAC и TRIAC — Работа, различия и их применение

Есть несколько приложений, в которых предпочтительно регулировать мощность, подаваемую на нагрузку.Например: использование электрических методов управления скоростью двигателя или вентилятора. Но эти методы не позволяют дополнительно точно контролировать поток энергии в системе; происходит значительная потеря мощности. В настоящее время разработаны такие устройства, которые позволяют точно контролировать поток больших блоков мощности в системе. Эти устройства работают как управляемые переключатели и могут выполнять функции управляемого выпрямления, регулирования и инвертирования мощности в нагрузке. Основными полупроводниковыми переключающими устройствами являются UJT, SCR, DIAC и TRIAC.Ранее мы изучили основные электрические и электронные компоненты, такие как транзисторы, конденсаторы, диоды и т. Д. Но для понимания переключающих устройств, таких как SCR, DIAC и симистор, мы должны знать о тиристоре. Тиристор — это полупроводниковый прибор одного типа, который включает три или более клемм. Он однонаправлен, как диод, но переключается как транзистор. Тиристоры используются для управления высокими напряжениями и токами в двигателях, системах отопления и освещения.


Разница между Diac и Triac

Различия между DIAC и симистором в основном заключаются в том, что такое DIAC и TRIAC, конструкция TRIAC и DIAC, работа, характеристики и применение.Символы DIAC и TRIAC показаны ниже.

Разница между Diac и Triac

Что такое DIAC и TRIAC?

Мы знаем, что тиристор — это полуволновое устройство, такое как диод, и которое выдает только половину мощности. Симистор состоит из двух тиристоров, которые соединены в противоположном направлении, но параллельно, но управляются одним и тем же затвором. Симистор — это двумерный тиристор, который активируется на обеих половинах цикла переменного тока i / p с помощью импульсов затвора + Ve или -Ve. Три клеммы симистора — MT1; MT2 и терминал ворот (G).Импульсы генерации подаются между MT1 и выводами затвора. Ток «G» для переключения 100А с симистора не превышает 50 мА или около того.

DIAC — это двунаправленный полупроводниковый переключатель, который можно включать в обеих полярностях. Полная форма названия DIAC — диод переменного тока. DIAC подключается вплотную друг к другу с помощью двух стабилитронов, и основное применение этого DIAC заключается в том, что он широко используется для помощи даже в активации TRIAC при использовании в переключателях переменного тока, диммерных приложениях и схемах стартера для люминесцентных ламп.

Строительство и эксплуатация DIAC

В основном, DIAC представляет собой двухполюсное устройство; это комбинация параллельных полупроводниковых слоев, позволяющая активировать в одном направлении. Это устройство используется для активации устройства для симистора. Базовая конструкция DIAC состоит из двух терминалов, а именно MT1 и MT2. Когда вывод MT1 спроектирован как + Ve по отношению к выводу MT2, передача будет происходить в структуру p-n-p-n, которая представляет собой другой четырехслойный диод.DIAC может работать в обоих направлениях. Тогда символ DIAC выглядит как транзистор.

Конструкция DIAC

DIAC — это, по сути, диод, который проводит после «пробоя» напряжения, выбранного VBO, и его превышают. Когда диод превышает напряжение пробоя, он переходит в отрицательное динамическое сопротивление области. Это вызывает уменьшение падения напряжения на диоде с ростом напряжения. Таким образом, есть быстрое увеличение текущего уровня, которым управляет устройство.

Диод остается в состоянии пропускания до тех пор, пока ток через него не упадет ниже, так называемый ток удержания, который обычно выбирается буквами IH. Ток удержания, DIAC возвращается в непроводящее состояние. Его поведение двунаправлено, и поэтому его функция выполняется на обеих половинах переменного цикла.

Характеристики DIAC

V-I характеристики DIAC показаны ниже.

Вольт-амперная характеристика ЦИАП показана на рисунке.Он выглядит как буква Z из-за симметричных характеристик переключения для каждой полярности приложенного напряжения.

Характеристики DIAC

DIAC работает как разомкнутая цепь до тех пор, пока не будет превышено его переключение. В этом положении DIAC работает до тех пор, пока его ток не упадет до нуля. Из-за своей ненормальной конструкции не переключается резко в состояние низкого напряжения при низком уровне тока, как у симистора или тиристора, как только он входит в передачу, диак сохраняет почти непрерывную характеристику сопротивления –Ve, что означает, что напряжение снижается. с увеличением тока.Это означает, что, в отличие от симистора и SCR, DIAC не может поддерживать низкое падение напряжения до тех пор, пока его ток не упадет ниже уровня удерживающего тока.


Строительство и эксплуатация TRIAC

TRIAC — это трехконтактное устройство, а выводы симистора — MT1, MT2 и Gate. Здесь терминал ворот — это терминал управления. Ток в симисторе двунаправленный, что означает, что ток может течь в обоих направлениях. Структура TRIAC показана на рисунке ниже.Здесь, в структуре симистора, два SCR соединены встречно параллельно, и он будет действовать как переключатель для обоих направлений. В приведенной выше структуре терминалы MT1 и затвора расположены рядом друг с другом. Когда клемма затвора разомкнута, симистор будет препятствовать обеим полярностям напряжения на MT1 и MT2.

TRIAC Construction

Чтобы узнать больше о TRIAC, перейдите по ссылке ниже: TRIAC — Определение, применение и работа

Характеристики TRIAC

V-I характеристики TRIAC обсуждаются ниже.

Характеристики симистора

Симистор разработан с двумя тиристорами, которые установлены в кристалле в противоположном направлении. Рабочие характеристики симистора в 1-м и 3-м квадрантах аналогичны, но для направления протекания тока и приложенного напряжения.

Характеристики V-I симистора в первом и третьем квадранте в основном идентичны характеристикам SCR в первом квадранте.

Он может работать с управляющим напряжением затвора + Ve или –Ve, но при типичной работе обычно напряжение затвора составляет + Ve в первом квадранте и -Ve в третьем квадранте.

Напряжение питания симистора для включения зависит от тока затвора. Это позволяет использовать симистор для плавного и постоянного регулирования мощности переменного тока в нагрузке от нуля до полной мощности без потерь в управлении устройством.

Почему DIAC используется с TRIAC?

Основная цель использования DIAC с TRIAC заключается в том, что устройство TRIAC не срабатывает симметрично, поэтому есть небольшая разница между двумя половинами устройства. Несимметричное срабатывание, а также результирующие формы волны могут привести к увеличению генерации ненужных гармоник.Менее симметричная форма волны увеличивает уровень генерации гармоник. Чтобы решить проблемы, возникающие из-за несимметричного процесса, DIAC часто устанавливается последовательно через затвор.

Это устройство DIAC помогает сделать переключение более интенсивным для обеих половин цикла. Так что коммутационная характеристика этого устройства намного больше по сравнению с TRIAC. Поскольку DIAC прекращает подачу тока затвора, когда напряжение срабатывания триггера достигает определенного напряжения в любом направлении, это также приведет к увеличению точки срабатывания TRIAC в обоих направлениях.Таким образом, DIAC могут часто использоваться с терминалом затвора TRIAC.

Это широко используемые компоненты в сочетании с симисторными преобразователями для уравновешивания их коммутационных характеристик. Так, при коммутации сигналы переменного тока уменьшаются. Тогда уровень гармоник будет генерироваться. Хотя для больших приложений обычно используются два тиристора. Но комбинация DIAC / TRIAC чрезвычайно полезна для приложений с низким энергопотреблением, таких как диммеры и многие другие.

Регулятор мощности DIAC / TRIAC

Схема питания DIAC / TRIAC показана ниже.Эта схема начинает работать, когда конденсатор начинает заряжаться в течение полупериода + Ve. Как только конденсатор заряжается до Vc, компонент DIAC начинает проводить. Когда DIAC активируется, он подает импульс к выводу затвора TRIAC из-за того, где TRIAC начинает проводить проводимость, а также подает ток через RL
. В отрицательном полупериоде конденсатор будет заряжаться с противоположной полярностью.

Схема управления мощностью

После того, как зарядка конденсатора завершится до Vc, DIAC начнет проводить импульс для подачи импульса на TRIAC, после чего ток будет подаваться по RL.Мы знаем, что работа DIAC может выполняться на двух полярностях, потому что два соединения двух диодов могут быть выполнены параллельно друг другу, поэтому он проводит на обеих полярностях. Выход DIAC может быть подан на клемму затвора TRIAC, которая используется для включения TRIAC, чтобы лампа, подобная нагрузке, включалась.

Разница между DIAC и TRIAC

Различия между DIAC и TRIAC заключаются в следующем.

DIAC TRIAC
Аббревиатура DIAC — «Диод для переменного тока».

Сокращение от TRIAC — «Триод для переменного тока».

DIAC с двумя клеммами TRIAC включает три клеммы

Это двунаправленное и неуправляемое устройство

Это двунаправленное управляемое устройство.

Это название образовано от комбинации DI + AC, где DI означает 2, а AC означает переменный ток. Это название образовано от комбинации TRI + AC, где TRI означает 3, а AC означает переменный ток.
Он может управлять как положительными, так и отрицательными полупериодами входного сигнала переменного тока. DIAC может быть переключен из выключенного состояния в состояние включения для любой полярности приложенного напряжения.
Конструкция DIAC может быть выполнена либо в NPN, либо в форме PNP Строительство TRIAC может быть выполнено с помощью двух отдельных устройств SCR.
Имеет меньшую грузоподъемность Обладает высокой грузоподъемностью
У него нет угла открытия Угол стрельбы этого устройства колеблется от 0-180 ° и 180 ° -360 °.
Это устройство играет ключевую роль в отключении TRIAC Это устройство используется для управления вентилятором, диммером и т. Д.
Имеет три слоя Имеет пять слоев
Преимущества DIAC в том, что его можно активировать, уменьшив уровень напряжения при его пробивном напряжении.Схема срабатывания с помощью DIAC стоит недорого Преимущества TRIAC: он может работать как через + Ve, так и через -Ve полярности импульсов. Для защиты используется один предохранитель. Безопасная поломка возможна в обоих направлениях.
Недостатки DIAC в том, что это маломощное устройство, в котором отсутствует терминал управления.

Недостатки TRIAC в том, что он ненадежен. По сравнению с SCR у них низкие рейтинги. При работе с этой схемой нужно проявлять осторожность, поскольку она может активироваться в любом направлении.
Применения DIAC в основном включают в себя различные схемы, такие как диммер лампы, управление нагревателем, универсальное управление скоростью двигателя и т. Д. Применения TRIAC в основном включают схемы управления, управление вентиляторами, управление фазой переменного тока, переключение мощных ламп и управление мощностью переменного тока.

Управление напряжением переменного тока через DIAC и TRIAC

Полупроводниковое устройство, такое как TRIAC, используется для управления подачей тока. Его работа аналогична работе двух тиристоров, которые соединены обратно параллельно через соединение затвора.Следовательно, он может быть активирован в проводимость.

Они используются в управлении мощностью, чтобы обеспечить двухполупериодное управление. Он контролирует напряжение между нулем и полную мощность. Во многих отраслях промышленности могут возникать проблемы как с повышенным, так и с пониженным напряжением. Таким образом, это оказывает огромное влияние на производительность. Чтобы преодолеть это, мы должны использовать контроллеры напряжения для управления напряжением. Такое устройство, как TRIAC, обеспечивает широкий диапазон управления в цепи переменного тока без использования внешних компонентов.

Цепь управления напряжением переменного тока

В этой цепи лампа используется в качестве нагрузки.Мы можем наблюдать за изменением света, поменяв переменный резистор. Таким образом, показания лампы, такие как напряжение, а также ток, можно наблюдать на разных этапах. В электронно-лучевом осциллографе мы можем наблюдать форму волны. Изменение фазового угла также можно наблюдать, изменяя потенциометр.

Контроллеры переменного напряжения доступны в двух типах в зависимости от входного питания, подаваемого в цепь, например, однофазный и трехфазный. Однофазные контроллеры могут работать от одного источника напряжения, например 230 В при 50 Гц, тогда как для трех фаз напряжение питания будет 400 В при 50 Гц.Таким образом, разрывное перенапряжение устройства DIAC находится в диапазоне 30 вольт.

Приложения DIAC и TRIAC

Приложения DIAC и TRIAC в основном включают следующее.

  • Основное применение DIAC заключается в том, что его можно использовать в цепи запуска TRIAC, подключив клемму затвора TRIAC. Как только напряжение, приложенное к выводу затвора, упадет ниже фиксированного значения, напряжение на выводе затвора станет нулевым, и, следовательно, TRIAC будет деактивирован.
  • DIAC используется для создания различных схем, таких как регулятор освещения лампы, регулировка нагрева, универсальная схема контроля скорости двигателя и схемы стартера, используемые в люминесцентных лампах.
  • TRIAC используется в цепях управления, таких как управление двигателем, управление скоростью вентилятора, регуляторы света, переключение мощных ламп, управление мощностью переменного тока в бытовых устройствах.

Таким образом, все дело в разнице между DIAC и TRIAC, в работе и ее характеристиках. Наконец, после всего вышеперечисленного мы можем сделать вывод, что DIAC и симистор очень полезны для приложений силовой электроники с целью управления.Мы надеемся, что вы лучше понимаете эту концепцию. Кроме того, любые вопросы относительно этой концепции или проектов в области электротехники и электроники, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже.

В чем разница между тиристором и симистором?

Кремниевый управляемый выпрямитель и симистор — это твердотельные электронные компоненты, которые включают и выключают электрические токи. В отличие от некоторых переключателей, которые возвращаются в стабильное «выключенное» состояние, тиристоры и симисторы «защелкиваются» или выключаются и остаются в этом состоянии до тех пор, пока не изменятся определенные условия.Из-за их коммутационного и фиксирующего действия оба устройства называются тиристорами. Несмотря на то, что они имеют много общего, существуют важные различия между их работой и использованием.

Кремниевый управляемый выпрямитель

SCR — это модифицированный диод, который проводит электричество в одном направлении, не позволяя ему двигаться в обратном направлении. Диод — двухпроводный прибор; выводы называются катодом и анодом. У SCR есть третий вывод, называемый воротами. Обычно устройство не проводит ток, пока не получит напряжение на затворе; затем он остается включенным, пока напряжение на катоде и аноде не упадет выше критической точки.Обычно он переключает большие токи много тысяч раз в секунду.

О симисторе

Как и SCR, симистор имеет три вывода и действует как переключатель тока, но он сложнее, чем SCR, поскольку проводит электричество в двух направлениях. Это делает симистор более полезным в цепях переменного тока, чем SCR, потому что направление тока для переменного тока изменяется 120 раз в секунду.

Симметрия системы

Хотя симистор проводит ток в обоих направлениях, диод проводит несколько неодинаково в каждом направлении.SCR при включении проводит только в одном направлении. Асимметрия проводимости симистора усложняет его использование. Когда цепь переменного тока включает и выключает симистор, положительные и отрицательные циклы результирующей формы волны становятся неравномерными, вызывая резкие электрические помехи и помехи.

Полезные устройства

В оборудовании управления мощностью, например, диммерах ламп и энергосберегающих схемах в приборах, могут использоваться симисторы или тиристоры, в зависимости от конструкции схемы. В мощном промышленном оборудовании используются SCR.Поскольку пара тиристоров может имитировать симистор и с меньшим количеством проблем с симметрией, разработчики предпочитают эти устройства в средах с высоким напряжением и током. Асимметрия переключения в симисторах ограничивает их использование в приложениях с низким энергопотреблением.

Что лучше симистор или тиристор? — Mvorganizing.org

Что лучше симистор или тиристор?

Основное различие между SCR и TRIAC заключается в том, что SCR — это однонаправленное устройство, а TRIAC — двунаправленное устройство. Тиристор более надежен, а TRIAC менее надежен.Тиристор может запускаться только при положительном напряжении затвора, симистор может запускаться как положительным, так и отрицательным напряжением затвора.

В чем преимущество симистора перед SCR?

Преимущества симистора Для него требуется только один радиатор немного большего размера, тогда как для тиристора необходимо два радиатора меньшего размера. Для защиты требуется один предохранитель. Возможен безопасный пробой в любом направлении, но для защиты тиристоров следует использовать параллельный диод.

В чем разница между тиристором и тиристором?

Одно из важнейших различий между диодом и тиристором состоит в том, что диод представляет собой устройство с двумя выводами, используемое для выпрямления и переключения. В отличие от тиристора, это трехконтактное устройство, предназначенное для коммутации… .Сравнительная таблица.

Основа для сравнения Диод Тиристор (SCR)
Масса Легкие Сравнительно тяжелый

Для чего используется симистор?

Симисторы — это электронные компоненты, которые широко используются в системах управления питанием переменного тока.Они могут переключать высокие напряжения и высокие уровни тока и по обеим частям сигнала переменного тока. Это делает схемы симистора идеальными для использования в различных приложениях, где требуется переключение мощности.

Какой пример симистора?

Пояснение: TRIAC (триод переменного тока) — это трехконтактное устройство. Он имеет два тиристора, подключенных параллельно друг другу, но в противоположном направлении, что образует TRIAC (переменный ток триода). Пояснение: BT136 — это пример TRIAC.

Симистор — это транзистор?

Является ли TRIAC транзистором? Нет, транзистор — это трехслойное устройство, ток которого регулируется затвором. Симистор — это 4-х слойное устройство, которое остается включенным после подачи достаточного тока для его запуска. Симисторы используются на переменном токе, поскольку они проводят в обоих направлениях.

Может ли симистор переключать постоянный ток?

TRIAC включит постоянный ток, но тогда у вас возникнет проблема — он не выключится. напряжение и ток на устройстве достаточно низкие.

Что такое полная форма симистора?

TRIAC (триод для переменного тока; также двунаправленный триодный тиристор или двусторонний триодный тиристор) представляет собой трехконтактный электронный компонент, который проводит ток в любом направлении при срабатывании триггера.Термин TRIAC — это обобщенный товарный знак.

Каков принцип работы симистора?

Симистор — это еще один трехконтактный переключатель переменного тока, который переключается на проводимость, когда на его вывод затвора подается сигнал низкой энергии. В отличие от SCR, симистор при включении ведет себя в любом направлении.

Что такое DIAC и его применение?

DIAC — это двунаправленный полупроводниковый переключатель, который может быть включен как в прямой, так и в обратной полярности выше определенного напряжения: он часто используется для обеспечения определенного переключения для симистора.

Что такое симистор, поясняющий схему?

TRIAC: основы Это двунаправленное устройство, которое может пропускать ток как в прямом, так и в обратном смещении, и, следовательно, это устройство управления переменным током. Симистор эквивалентен двум спина к спине SCR, подключенным к одной клемме затвора, как показано на рисунке. TRIAC — это аббревиатура переключателя TRIode AC.

Каковы применения SCR?

Применение кремниевого управляющего выпрямителя (SCR)

  • Кремниевый управляемый выпрямитель (SCR) используется в стабилизаторах переменного напряжения.
  • Кремниевый управляемый выпрямитель (SCR) используется в качестве переключателя.
  • Используется в измельчителях.
  • Кремниевый управляемый выпрямитель (SCR) используется в инверторах.
  • Кремниевый управляемый выпрямитель (SCR) используется для управления мощностью.
  • Используется для выключателя постоянного тока.

Что означает SCR?

Кремниевый управляемый выпрямитель

Как срабатывает SCR?

Чтобы запустить или запустить SCR, необходимо приложить напряжение между затвором и катодом, положительное к затвору и отрицательное к катоду.При тестировании SCR мгновенного соединения между затвором и анодом достаточно по полярности, интенсивности и продолжительности, чтобы запустить его.

Каковы преимущества и недостатки SCR?

Преимущества и недостатки кремниевого управляемого выпрямителя (SCR…

  • Кремниевый управляемый выпрямитель (SCR) может работать с большим напряжением, током и мощностью.
  • Может быть защищен предохранителем.
  • Легко включить.
  • Схема запуска кремниевого управляемого выпрямителя (SCR) проста.
  • Управлять просто.
  • Стоимость невысока.
  • Может управлять мощностью переменного тока.

В чем преимущество SCR?

Контроллеры мощности

SCR более надежны и экономичны, чем другие контроллеры, такие как регулируемые трансформаторы, контакторы или другие механические устройства. Они также обеспечивают более точный контроль и требуют меньшего обслуживания. Некоторые преимущества включают: Бесконечное разрешение.

Каковы преимущества SCR в качестве переключателя?

SCR имеет следующие преимущества перед механическим переключателем или электромеханическим реле: Бесшумная работа благодаря отсутствию движущихся частей.Очень высокая скорость переключения (скажем, 109 операций в секунду). Высокая эффективность.

В чем преимущества и недостатки Игбц?

Преимущества и недостатки биполярного транзистора с изолированным затвором (IGBT)

  • Биполярный транзистор с изолированным затвором (IGBT) легко включать и выключать.
  • Частота коммутации выше, чем у силового BJT.
  • Имеет низкую рассеиваемую мощность во включенном состоянии.
  • Имеет более простую схему драйвера.

Какие преимущества и недостатки Mosfet?

Преимущества и недостатки MOSFET

  • Возможность уменьшения размера.
  • Он имеет низкое энергопотребление, что позволяет разместить больше компонентов на площади поверхности кристалла.
  • MOSFET
  • не имеет затворного диода.
  • Он читает напрямую с очень тонкой активной областью.
  • Имеют высокое сопротивление стока за счет меньшего сопротивления канала.

Почему IGBT очень популярен в наши дни?

Ответ. Благодаря более низкому сопротивлению в открытом состоянии и потерям проводимости, а также его способности переключать высокие напряжения на высоких частотах без повреждений, биполярный транзистор с изолированным затвором идеально подходит для управления индуктивными нагрузками, такими как обмотки катушек, электромагниты и двигатели постоянного тока.

Каковы применения IGBT?

БТИЗ

используются в различных приложениях, таких как приводы двигателей переменного и постоянного тока, нерегулируемые источники питания (ИБП), импульсные источники питания (SMPS), управление тяговыми двигателями и индукционный нагрев, инверторы, используемые для объединения полевых транзисторов с изолированным затвором для управления вход и биполярный силовой транзистор в качестве переключателя в одном устройстве и т. д.

Что означает IGBT?

Биполярный транзистор с изолированным затвором (IGBT) — это трехконтактный силовой полупроводниковый прибор, который в основном используется в качестве электронного переключателя, который, когда он был разработан, сочетал в себе высокую эффективность и быстрое переключение….Биполярный транзистор с изолированным затвором.

Изобретено 1959
Электронный символ
Условное обозначение IGBT

Может ли IGBT преобразовывать переменный ток в постоянный?

Преобразователь переменного тока в постоянный, вырабатывающий регулируемое выходное напряжение постоянного тока из входного переменного напряжения питания, которое преобразуется с помощью выпрямителя, который использует, по крайней мере, в двух своих ветвях устройства IGBT (биполярный транзистор с изолированным затвором), предпочтительно из такие, у которых нет внутренних диодов.

Что означает IGBT?

биполярный транзистор с изолированным затвором

Как запустить IGBT?

IGBT просто переключается в положение «ВКЛ» и «ВЫКЛ» путем срабатывания и отключения клеммы затвора. Постоянный сигнал напряжения + Ve i / p на «G» и «E» будет удерживать устройство в состоянии «ON», в то время как вычитание i / p-сигнала заставит его выключить, как BJT или MOSFET. .

Почему в инверторе используется IGBT?

Биполярный транзистор с изолированным затвором (IGBT) используется в инверторных модулях VFD в качестве предпочтительного электронного переключателя питания по следующим причинам.IGBT имеет высокую скорость переключения. Это сводит к минимуму коммутационные потери и обеспечивает высокие частоты коммутации, что хорошо для снижения гармоник двигателя и снижения шума.

Сколько БТИЗ в ЧРП?

шесть IGBT

Что быстрее Mosfet или IGBT?

По сравнению с IGBT, силовой MOSFET имеет преимущества более высокой скорости коммутации и большей эффективности при работе при низких напряжениях. IGBT сочетает в себе простые характеристики управления затвором, присущие полевому МОП-транзистору, с возможностью высокого тока и низкого напряжения насыщения биполярного транзистора.

Какой БТИЗ используется в инверторе?

Здесь Q1 и Q3 обозначены как IGBT верхнего плеча, а Q2 и Q4 обозначены как IGBT нижнего плеча. Инвертор предназначен для генерации однофазного синусоидального напряжения переменного тока с частотой и напряжением, которые зависят от рыночного применения, для которого предназначен инвертор.

В чем разница между тиристором и симистором? — AnswersToAll

В чем разница между тиристором и симистором?

Разница между тиристором и триаком.Основное различие между тиристором и TRIAC заключается в том, что тиристор является однонаправленным устройством, а в TRIAC — двунаправленным устройством. Тиристор, также называемый SCR, означает кремниевый выпрямитель, а TRIAC — триод для переменного тока.

В чем разница между симистором и транзистором?

Симисторные переключатели превосходно подходят для прямого управления реле и / или катушками стартера в двигателях, используемых в цепях переменного тока. С другой стороны, транзисторные переключатели работают с цепью постоянного напряжения.

В чем основное отличие тиристора от тиристора?

Тиристор — это 4-х слойное устройство, образованное чередующейся комбинацией полупроводниковых материалов p- и n-типа. Это устройство, используемое для выпрямления и переключения. SCR — наиболее часто используемый член семейства тиристоров, и это название обычно используется, когда мы говорим о тиристорах.

Что такое тиристор и его типы?

Тиристор — это четырехслойный прибор с чередующимися полупроводниками P-типа и N-типа (P-N-P-N).В своей основной форме тиристор имеет три вывода: анод (положительный вывод), катод (отрицательный вывод) и затвор (контрольный вывод). Затвор контролирует поток тока между анодом и катодом.

В чем разница между тиристором и IGBT?

Три вывода IGBT известны как эмиттер, коллектор и затвор, тогда как тиристор имеет выводы, известные как анод, катод и затвор. IGBT — это тип транзистора, а тиристор при анализе рассматривается как пара транзисторов с сильной связью.4. IGBT имеет только один PN-переход, а тиристор их три.

Почему SCR называется тиристорным?

Фактически, SCR (Silicon Controlled Rectifier) ​​- это торговое название, данное тиристору компанией General Electric. По сути, SCR — это трехконтактный четырехслойный полупроводниковый прибор, состоящий из чередующихся слоев материала p-типа и n-типа. Следовательно, он имеет три pn-перехода J1, J2 и J3.

Почему используется тиристор?

Тиристоры

в основном используются там, где используются высокие токи и напряжения, и часто используются для управления переменными токами, когда изменение полярности тока вызывает автоматическое отключение устройства, что называется операцией «перехода через ноль».

Как управляется тиристор?

В системе передачи электроэнергии реактор с тиристорным управлением (TCR) представляет собой реактивное сопротивление, подключенное последовательно с двунаправленным тиристорным клапаном. Тиристорный клапан регулируется по фазе, что позволяет регулировать значение отдаваемой реактивной мощности в соответствии с изменяющимися условиями системы.

Может ли SCR преобразовывать переменный ток в постоянный?

SCR преобразует напряжение переменного тока в напряжение постоянного тока. В отличие от диода, который загорается при. 7V проходит через анод и катод, SCR включает в себя вывод затвора, которому требуется триггер для активации состояния включения.

Сколько тиристоров необходимо для полноценного преобразователя?

четыре тиристора

Почему используется SCR?

SCR

в основном используются в устройствах, где требуется управление высокой мощностью, возможно, в сочетании с высоким напряжением. Их работа делает их пригодными для использования в системах управления питанием переменного тока среднего и высокого напряжения, таких как регулировка яркости ламп, регуляторы мощности и управление двигателями.

Что такое DIAC и его применение?

Название DIAC происходит от слова DIode AC switch.DIAC — это электронный компонент, который широко используется для помощи даже в срабатывании TRIAC при использовании в переключателях переменного тока, и в результате они часто встречаются в диммерах, таких как те, которые используются в домашнем освещении.

В чем разница между управляемым и неуправляемым выпрямителем?

1. Неуправляемые выпрямители: обеспечивают фиксированный постоянный ток. выходное напряжение для данного переменного тока питание, где используются только диоды. Управляемые выпрямители: обеспечивают регулируемый постоянный ток. выходное напряжение за счет управления фазой включения устройств, в которых используются тиристоры и диоды.

Каковы области применения симистора?

Приложение TRIAC:

  • Цепи управления, такие как регулировка скорости вращения электровентилятора и средства управления двигателями меньшего размера.
  • Переключение ламп высокой мощности и диммеры.
  • Бытовые приборы контроля мощности переменного тока.

Какова функция симистора BT136?

BT136 TRIAC Обзор BT136 — это TRIAC с максимальным током на клеммах 4A. Пороговое напряжение затвора BT136 также очень мало, поэтому может управляться цифровыми схемами.Поскольку TRIAC являются устройствами двунаправленной коммутации, они обычно используются для коммутации приложений переменного тока.

В чем уникальность симистора?

Симистор определяется как трехконтактный переключатель переменного тока, который отличается от других кремниевых выпрямителей в том смысле, что он может проводить в обоих направлениях, то есть независимо от того, является ли подаваемый сигнал затвора положительным или отрицательным, он будет проводить. Таким образом, это устройство можно использовать для систем переменного тока в качестве выключателя.

Почему мы используем DIAC для запуска симистора?

Форма сигнала проводимости симистора Затем мы увидели, что Diac — очень полезное устройство, которое можно использовать для запуска симистора, и благодаря своим характеристикам отрицательного сопротивления это позволяет ему быстро включаться при достижении определенного уровня приложенного напряжения.

Что означает DIAC?

Департамент иммиграции и гражданства

Какой пример DIAC?

Объяснение: NTE6408 — это пример DIAC. Объяснение: DIAC (диод переменного тока) — это не однонаправленное устройство, это двунаправленное устройство.

Добавить комментарий

Ваш адрес email не будет опубликован.