Чередование фаз – Чередование фаз | Заметки электрика

Содержание

Чередование фаз | Заметки электрика

Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».

Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.

У него на объекте работала бригада электромонтажников.

Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.

Вот фото двух секций напряжением 400 (В).

При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло короткое замыкание, при котором сработала защита сразу на двух вводных автоматических выключателях.

Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.

 

Фазоуказатель ФУ-2

Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.

Он состоит из трех обмоток, расположенных на сердечниках, и алюминиевого диска.

Действие прибора аналогично принципу работы асинхронного двигателя.

Если все три обмотки включить в сеть трехфазного напряжения, то они образуют в пространстве вращающееся магнитное поле, которое приводит во вращение алюминиевый диск. Алюминиевый диск имеет фон черно-белого цвета. Направление магнитного поля и алюминиевого диска зависит исключительно от порядка чередования (следования) фаз питающего трехфазного напряжения.

Фазоуказатель ФУ-2 предназначен для включения в сеть трехфазного напряжения от 50 до 500 (В). Время его включения ограничивается временем 5 секунд. При нажатии на кнопку (она находится сбоку) диск начнет вращаться ту или иную сторону.

Рассмотрим работу фазоуказателя ФУ-2 более подробно.

 

Проверка чередования (следования) фаз на стенде

На моем испытательном стенде имеется источник трехфазного напряжения. Порядок чередования фаз мне неизвестен.

Проведем проверку чередования (следования) фаз с помощью фазоуказателя ФУ-2.

Подключаем зажимы А, В и С фазоуказателя ФУ-2 к выводам трехфазного напряжения на стенде.

Подаю напряжение на источник трехфазного напряжения порядка 80 (В).

Нажимаем на кнопку и смотрим куда начал вращаться диск прибора. Диск начал вращаться в обратную сторону — против стрелки. Это значит, что трехфазное напряжение на испытательном стенде имеет обратную последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: СВА, АСВ или ВАС.

Чтобы изменить обратную последовательность фаз на прямую, достаточно поменять местами две любые фазы. Меняю местами две крайние фазы (справа) на стенде и снова провожу измерение.

Теперь диск фазоуказателя начал вращаться в одну сторону со стрелкой. Это значит, что теперь трехфазное напряжение на испытательном стенде имеет прямую последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: 

АВС, ВСА или САВ.

Все вышеописанные действия Вы сможете посмотреть на видео:

 

Зачем необходимо проверять чередование фаз?

Чередование фаз необходимо проверять для правильного подключения трехфазных двигателей. При прямом подключении фаз они будут вращаться в одном направлении, а при обратном — в другом.

Также чередование фаз необходимо учитывать при подключении счетчиков электрической энергии. Особенно, это относится к счетчикам индукционного типа.

Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.

Забыл упомянуть про реле контроля фаз типа ЕЛ-11, которое контролирует и срабатывает при нарушении чередования фаз.

Так в чем же была ошибка электромонтажников?

Внимание!!! С помощью фазоуказателя нельзя определить, где именно находится фаза А, В или С. Им определяется ТОЛЬКО последовательность фаз, т.е. направление вращающегося поля. Вот в этом и была ошибка электромонтажников, у которых на 1 и 2 секциях 400 (В) совпала последовательность фаз, а сами фазы по одноименности не совпали, поэтому при включении на параллельную работу трансформаторов случилось короткое замыкание, т.к. межсекционный автоматический выключатель замкнул разноименные фазы.

Во избежание подобных ошибок фазировку 1 и 2 секций 0,4 (кВ) необходимо было проводить с помощью поверенных указателей напряжения (УНН) или мультиметра, а не с помощью фазоуказателя, который показывает только последовательность фаз питающего напряжения:

  • прямое следование фаз — АВС, ВСА или САВ
  • обратное следование фаз — СВА, АСВ или ВАС

Дополнение: в прошлом году немного обновили «парк» приборов нашей ЭТЛ и теперь вместо ФУ-2 пользуемся указателем TKF-12.

P.S. В следующих статьях мы поговорим о правильности проведения фазировки. Подписывайтесь на новости сайта, чтобы не пропустить выпуски новых статей.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Что такое чередование фаз и фазировка

Нередко при обслуживании электрооборудований необходимо проводить проверку чередования фаз и производить фазировку. Таким чаще всего пользуются  при согласовании работы трансформаторов. В нашей статье мы опишем чередование фаз в 3-х фазной сети, необходимые инструменты и способы правильной фазировки.

Вводная история

Представим себе монтаж двух масляных трансформаторов. Электрики провели успешные пусконаладочные работы трансформаторов, вводных выключателей, шин и секционных разделителей. Но, когда попытались запустить трансформаторы параллельно, произошло короткое замыкание. Электромонтеры говорили, что произвели проверку чередования фаз, и все было в порядке. Но фазировку видимо никто не учел, что привело к такой ошибке. Давайте детально рассмотрим суть проблемы данного случая.

Что такое чередование фаз

Трехфазная сеть имеет три фазы, обозначаемые А, В и С. Если вспомнить физику, то это означает, что синусоиды фаз на 120˚ смещены друг от друга. Всего существует шесть типов порядков чередования, которые в свою очередь можно разделить на две группы – прямые и обратные.  Прямые чередования выглядят как АВС, ВСА и САВ, а обратные – СВА, ВАС и АСВ. Для проверки чередования фаз используют прибор – фазоуказатель.

Что необходимо для проверки фаз

Фазоуказатель (см. рисунок ниже) состоит из трех обмоток и диска, который при проверке будет вращаться. Чтобы удобно было распознавать результат, на диске нанесены черно-белые метки. ФУ работает так же, как и асинхронный двигатель.

Если мы подключим три провода на выводы, то увидим, что диск начнет вращаться. Если он крутится по часовой стрелке, это означает прямое чередование фаз (АВС, ВСА или САВ).Если диск крутится против часовой стрелки, то это означает обратное чередование( СВА, ВАС или АСВ).

Вернемся к нашей истории с электромонтажниками, они проверили чередование фаз, которое в одном и другом случае совпало. Фазировку было выполнить необходимо, а тут не обойтись без фазоуказателя (ФУ). Электромонтажники соединили разноименные фазы при запуске, а для того, чтобы узнать где именно А, В и С надо было использовать мультиметр или осциллограф.

Прибор мультиметр измеряет напряжение между фазами разных источников питания, достижение отметки ноль означает, что фазы одноименные.  В противоположном случае, линейное напряжение будет означать, что фазы разноименные.  Такой способ самый быстрый и простой, но можно также использовать осциллограф, который будет показывать какая фаза отстает от другой на 120˚.

В каких случаях учитывают порядок

Проверка чередования фаз необходима при использовании трехфазных электродвигателей переменного тока. От порядка фаз зависит направление вращения двигателя, это очень важное условие, особенно когда несколько механизмов используют двигатели.

Еще один случай, когда необходимо обратить внимание на чередование фаз, это при работе с электросчетчиком индукционного типа СА4. При обратном порядке иногда случается самопроизвольное вращение диска на счетчике.  Современные счетчики не настолько чувствительны к чередованию фаз, но у них на индикаторе тоже появится  соответствующие данные.

Иногда контроль фазировки можно выполнить и без специальных приборов. Это если подключение трехфазной сети питания выполняется с помощью электрического силового кабеля, купить который можно в компании Югтелекабель. Если жилы внутри кабеля отличаются по цветам, то прозвонка осуществляется гораздо быстрее. Иногда просто нужно снять наружную изоляцию кабеля, чтобы понять, где какая фаза находится (А, В или С). Если на обоих концах жилы одинакового цвета, то они одинаковые.

Не всегда стоит полагаться на цветовую маркировку, не все производители придерживаются таких тенденций, иногда на разных концах кабеля можно встретить  разные цвета. Поэтому лучше воспользоваться прозвонкой жил.

www.yugtelekabel.ru

Проверка Последовательности Чередования Фаз (Фазировка)

ЧТО МЫ ДЕЛАЕМ С ВАШЕЙ ИНФОРМАЦИЕЙ

1. Термин “личная информация”, используемый в настоящем документе, определяется как любая информация, которая идентифицирует или может использоваться для идентификации, связи или поиска человека, к которому такая информация относится. Личная информация, которую мы собираем, будет являться предметом настоящей политики конфиденциальности, с вносимыми время от времени поправками.

2. auditelektro.ru использует собираемую информацию для следующих общих целей: предоставление продукции и услуг, выставление счетов, идентификация и аутентификация, улучшение услуг, контактов и исследований.

3. В рамках покупки и продажи на www.auditelektro.ru, вы получите адреса электронной почты и/или адреса доставки ваших клиентов. Заключая пользовательское соглашение, вы соглашаетесь с тем, что в отношении личной информации других пользователей, которую вы получаете через www.auditelektro.ru, или через связанную с www.auditelektro.ru корреспонденцию, или через транзакции, в которых auditelektro.ru оказывает содействие, auditelektro.ru настоящим предоставляет вам разрешение на использование такой информации только для связанной с www.auditelektro.ru корреспонденции, которая не является нежелательными коммерческими сообщениями. auditelektro.ru не терпит спам. Таким образом, без ограничения вышеизложенного, вы не имеете права, добавлять имя человека, который приобрел у вас товар или услугу, в ваш список рассылки (электронной или обычной почтой) без его согласия.

ЧТО ОЗНАЧАЕТ

При регистрации вы предоставляете личную информацию, которую мы собираем и используем. Для подтверждения заказа мы также собираем данные вашей кредитной карты. Используйте информацию о своих клиентах auditelektro.ru только для связанной с auditelektro.ru корреспонденции, если они не дают вам разрешение на обратное. Не рассылайте никому спам!

БЕЗОПАСНОСТЬ

Безопасность вашей персональной информации очень важна для нас. Когда вы вводите конфиденциальную информацию, например, номер кредитной карты, в наши регистрационные формы, мы шифруем передачу этой информации с помощью технологии Secure Socket Layer (SSL). Данные кредитной карты хранятся в зашифрованном виде с использованием алгоритма шифрования AES-256. Будучи поставщиком услуг, который соответствует уровню 1 PCI-DSS, мы следуем всем требованиям PCI-DSS и следуем дополнительным общепринятым отраслевым стандартам для защиты личной информации, представленной нам, как во время передачи, так и после ее получения. Однако, ни один метод передачи информации через Интернет, или метод электронного хранения, не является на 100% безопасным. Поэтому, хоть мы и стремимся использовать коммерчески приемлемые средства для защиты вашей личной информации, мы не можем гарантировать ее абсолютную безопасность. Если у вас есть какие-либо вопросы о безопасности на нашем веб-сайте, вы можете связаться с нами по

 [email protected]auditelektro.ru

ЧТО ОЗНАЧАЕТ

Мы будем шифровать информацию о ваших кредитных картах и конфиденциальную информацию согласно отраслевым стандартам. Ведь всякое бывает, мы не можем гарантировать 100% безопасности ваших данных. Если у вас есть вопросы, пишите на [email protected]auditelektro.ru

СООБЩАЕМАЯ ИНФОРМАЦИЯ

1. auditelektro.ru может использовать сторонних поставщиков услуг, чтобы предоставить вам определенные услуги, и мы можем передавать личную информацию таким поставщикам услуг. Мы требуем от любой компании, которой мы можем передавать вашу личную информацию, защищать данную информацию в соответствии с настоящей политикой и использовать вышеуказанную личную информацию только в рамках оказания услуг для auditelektro.ru.

2. auditelektro.ru может раскрывать личную информацию в особых случаях, например, в соответствии с постановлением суда, обязывающим нас это делать, или когда ваши действия нарушают условия предоставления услуг.

3. Мы не продаем и не предоставляем личную информацию другим компаниям для сбыта собственной продукции или услуг.

ЧТО ОЗНАЧАЕТ

При определенных обстоятельствах, таких как постановления суда, мы можем раскрыть вашу личную информацию.

ХРАНЕНИЕ ДАННЫХ КЛИЕНТА

auditelektro.ru владеет хранилищами данных, базами данных и всеми правами на использование auditelektro.ru, однако, мы не претендуем на владение вашими данными. Вы сохраняете все права на ваши данные и мы никогда не будем общаться с вашими клиентами напрямую, или использовать ваши данные для нашей собственной коммерческой выгоды, или чтобы конкурировать с вами или торговать с вашими клиентами.

ЧТО ОЗНАЧАЕТ

Вы владеете своими данными и мы это уважаем. Мы не будем пытаться конкурировать с вами или писать вашим клиентам.

COOKIE

Файл cookie — это небольшой объем данных, которые могут включать в себя анонимный уникальный идентификатор. Файлы cookie отсылаются в ваш браузер с веб-сайта и хранятся на жестком диске вашего компьютера. Каждому компьютеру, который обращается к нашему веб-сайту, присваивается нами определенный файл cookie.

Google Analytics и ремаркетинг

Мы используем сервис, предоставляемый Google, под названием Google Analytics (GA). GA позволяет нам охватить людей, которые ранее посещали наш веб-сайт, и показывать им соответствующие рекламные объявления, когда они посещают другие веб-сайты в Интернете в контекстно-медийной сети Google. Это часто называют «ремаркетинг».

Файлы cookie могут использоваться для отслеживания вашей сессии на нашем сайте, чтобы настроить персонализированную рекламу от Google и других сторонних организаций. Когда вы посещаете этот веб-сайт, вы можете просматривать объявления, размещенные компанией Google или другими третьими сторонами. Через собственные и сторонние файлы cookie эти третьи лица могут собирать информацию о вас при посещении данного веб-сайта и других веб-сайтов. Они могут использовать эти данные, чтобы показывать вам рекламу на этой странице и на других ресурсах в сети Интернет на основе предыдущих посещений этого веб-сайта и других Интернет-ресурсов. Мы не собираем эту информацию и не контролируем содержание рекламных объявлений, которые вы увидите.

ОТКАЗ

Вы можете отказаться от объявлений контекстно-медийной сети Google, посетив «Менеджер рекламных предпочтений» ([http://www.google.com/ads/preferences/](http://www.google.com/ads/preferences/)) и страницу расширения браузера для отказа от Google Analytics ([http://www.google.ca/ads/preferences/plugin/](http://www.google.ca/ads/preferences/plugin/)).

Использование вами данного веб-сайта без отказа означает, что вы понимаете и соглашаетесь на сбор данных для предоставления вам ремаркетинга с помощью GA и файлов cookie от других сторонних поставщиков на основе предыдущих посещений этого веб-сайта и других Интернет-ресурсов.

ЧТО ОЗНАЧАЕТ

Для электронной идентификации файл cookie будет храниться на вашем компьютере. У нас есть работающий инструмент «ремаркетинга», который позволяет нам учитывать ваши посещения нашего веб-сайта и показать вам соответствующие объявления как на нашем веб-сайте, так на других ресурсах в Интернете. Вы всегда можете отказаться.

PCI-DSS

Стандарт безопасности данных индустрии платежных карт (PCI-DSS), который представляет собой набор требований по безопасности, управляется Советом по стандартам безопасности индустрии платежных карт совместно с платежными брендами, в числе которых Visa, MasterCard, American Express и Discover. Требования PCI-DSS помогают обеспечить безопасную обработку информации кредитных карт торговцами и поставщиками услуг.

ЧТО ОЗНАЧАЕТ

Мы будем использовать те же отраслевые стандарты в области безопасности, что используются крупными компаниями индустрии кредитных карт, чтобы помочь вам сохранять безопасность учетной записи auditelektro.ru

ИЗМЕНЕНИЯ ДАННОЙ ПОЛИТИКИ КОНФИДЕНЦИАЛЬНОСТИ

Мы оставляем за собой право изменять данное положение о конфиденциальности в любое время, поэтому просматривайте его регулярно. Если мы сделаем существенные изменения в этой политике, мы сообщим вам здесь или посредством уведомления на нашей домашней странице, чтобы вы знали, какую информацию мы собираем, как ее используем и при каких обстоятельствах, если таковые имеются, мы ее раскрываем.

ЧТО ОЗНАЧАЕТ

Мы можем вносить изменения в данное заявление о конфиденциальности. Если это большие изменения, мы будем информировать вас прямо здесь.

ВОПРОСЫ

Какие-либо вопросы по поводу данной политики конфиденциальности следует направлять на [email protected]auditelektro.ru

---

Последнее обновление: 9 января 2018г.

auditelektro.ru

принцип работы, конструкция, схемы подключения

Качественное выполнение тех или иных технологических процессов в современном мире обеспечивается за счет высокоточного и дорогостоящего оборудования. Работа которого напрямую зависит от качества поставляемой электроэнергии и состояния электроснабжающих линий. Увы, далеко не все отечественные сети способны обеспечить безопасный режим работы для них, из-за чего создается угроза поломки. Для предотвращения которой используются специальные защитные устройства – реле контроля фаз (РКФ).

Они позволяют отключить нагрузку в случае каких-либо неисправностей в питающей сети. Все что может нести угрозу для оборудования и влияет на результативность его работы или технологический процесс, воспринимается как сигнал к немедленному обесточиванию и реле контроля переводит коммутирующие элементы в отключенное положение.

Конструкция и принцип работы

Конструктивное исполнение релеРис. 1. Конструктивное исполнение реле на примере устройства CKF-2BT

Конструктивно устройство включает в себя входные и выходные контакты, индикаторы нормального электроснабжения и аварийной ситуации, регуляторы, обозначенные на схеме соответствующими номерами (рисунок 1):

  1. Индикатор аварийной ситуации;
  2. Индикатор подключенного питания нагрузки;
  3. Потенциометр, позволяющий выбирать нужный режим;
  4. Регулятор уровня асимметрии;
  5. Регулятор снижения напряжения;
  6. Потенциометр, позволяющий регулировать временную уставку срабатывания.

Далеко не все модели предоставляют весь комплекс настроек по вышеприведенным параметрам. Они зависят от назначения конкретного реле и сферы применения.

Принципиальная схема работыРис. 2. Принципиальная схема работы

В нормальном режиме к цепи питания от источника ЭДС E1 (рисунок 2) подается напряжение к потребителю, будь то двигатель, станок или другое оборудование. Реле контроля фаз R подключается в отпайку через соответствующие клеммы, обозначенные на схеме, как L1, L2, L3 и нулевым проводом N. Внутри устройства собрана логическая схема на транзисторах, которая посылает сигнал с выходных контактов на разрыв катушки пускателя P для отключения. При необходимости сигнал отключения можно настроить как для обесточивания потребителя, так и отключения внешней электрической сети.

В случае аварийной ситуации – пропадания одной из фаз, короткого замыкания, резкого увеличения токов, изменяется гармоническая составляющая электрических параметров сети. На что реагирует устройство защиты и посылает по цепям питания через клеммы 24 и 21 на катушку контактора соответствующий сигнал на отключение.

После срабатывания силовых контактов в практике электроснабжения потребителей может произойти естественное восстановление параметров питающей сети, при которой произойдет выравнивание фаз. При этом реле возвратит контакты во включенное положение, за счет чего реализуется система АПВ и на обмотки двигателя или другого потребителя возобновится подача напряжения.

За счет кнопок «Пуск» и «Стоп» можно осуществлять ручное управление питанием электрического прибора.

Назначение и функции

Данная технология применяется в сети трехфазных нагрузок. Наиболее востребована для защиты электродвигателя синхронного или асинхронного, трехфазных станков высокой точности, технологичной электроники, насосов. Заметьте, что неправильное чередование фаз приведет к низкой эффективности его работы, перегреву и снижению уровня изоляции, что может привести к пробою.

Применяется для следующих целей:

  • Для коммутации преобразовательного оборудования, которому важно соблюдение последовательности фаз: источников питания, выпрямителей, инверторов и генераторов;
  • Для систем АВР (введения в работу резервных источников питания) или подключения системы аварийного освещения;
  • Для специального оборудования – станков, крановых установок, мощность которых составляет не более 100 кВт;
  • Для электроприводов трехфазных двигателей, имеющих мощность не более 75 кВт.

Для коммутации однофазной нагрузки данное устройство не используется.

В целом реле контроля фаз применяется для различного промышленного и бытового оборудования и является обязательным предохранителем для тех схем управления, в которых требуется постоянный мониторинг величины напряжения и других параметров внешних линий.

В трехфазных сетях осуществляет контроль:

  • уровня напряжения, реализуемая, в преимущественном большинстве, для оборудования такого класса в случаях, когда его величина выходит за установленные пределы;
  • чередования фаз – выполнит коммутацию в случае аварийного слипания фаз или при их неверном расположении  относительно питающих вводов оборудования;
  • пропадания фазы – производит отключение потребителя в случае обрыва фазы и последующего отсутствия напряжения;
  • перекоса фаз – производит коммутацию в случае изменения фазного или линейного напряжения по отношению к номинальному значению.

Преимущества реле контроля фаз

В сравнении с другими устройствами аварийных отключений данные электронные реле отличаются рядом весомых преимуществ:

  • в сравнении с реле контроля напряжения не зависит от влияния ЭДС питающей сети, так как его работа отстраивается от тока;
  • позволяет определять аномальные скачки не только в трехфазной сети питания, но и со стороны нагрузки, что позволяет расширить спектр защищаемых компонентов;
  • в отличии от реле, работающих на изменение тока в электродвигателях, данное оборудование позволяет фиксировать еще и параметр напряжения, обеспечивая контроль по нескольким параметрам;
  • способно определить дисбаланс уровней питающих напряжений из-за неравномерности загрузки отдельных линий, что чревато перегревом двигателя и снижением параметров изоляции;
  • не требует формирования дополнительной трансформации со стороны рабочего напряжения.

В отличии от реле, работающих только по напряжению обеспечивает действующую защиту от регенерированного напряжения, вырабатываемого обратными ЭДС. В случае, когда одно из фазных напряжений пропадает, двигатель продолжает набирать достаточный уровень энергии с остающихся двух. При этом в обесточенной фазе будет генерироваться ЭДС от вращения ротора, который продолжает крутиться от двух фаз в аварийном режиме.

Из-за того, что контакторы электродвигателей не размыкаются от реле при такой работе, возникает риск повреждения электрической машины с ее дальнейшей поломкой. Реле контроля, в свою очередь, способно обнаружить смещение фазового угла, за счет чего обеспечивается полноценная защита.

Такая функция особенно актуальна, когда рабочий режим двигателя, в случае его реверсивного вращения, способен повредить вращаемый элемент или травмировать работника. Как правило, такая ситуация возникает при внесении изменений во время обесточивания электрической машины, смене фазных нагрузок, порядка чередования фаз и прочих.

Технические характеристики

Среди технических параметров, реализуемых реле контроля фаз необходимо выделить:

  • питающее напряжение;
  • диапазон контроля перенапряжения;
  • диапазон снижения уровня напряжения;
  • границы временной задержки для включения после скачка напряжения;
  • границы временной задержки для включения после падения напряжения;
  • время, расходуемое на отключение в случае пропадания фазы;
  • номинальный ток на контактах электромагнитного реле;
  • количество контактов для совершения коммутационных опраций;
  • мощность устройства;
  • климатическое исполнение;
  • механическая и электрическая износоустойчивость.

Схема подключения определяет порядок чередования фаз, поэтому нормальное питание нагрузки возможно при условии их правильного соблюдения на этапе монтажа и настройки.  При этом существует возможность регулировки задержки коммутации для различных режимов работы устройства. Таким образом, для двигателей, в момент пуска можно отстроить время задержки срабатывания от 1 до 3 сек, для выдержки пусковых токов.

То же относиться к возможности отстройки аварийного срабатывания в случае перегрузки фаз, где время до коммутации можно регулировать от 5 до 10 сек.

Обзор популярных реле контроля фаз

  • Реле РНПП-311 украинского производства является одним из наиболее популярных и подходящих для сетей постсоветского пространства. Аббревиатура расшифровывается как реле напряжения, перекоса и последовательности фаз. Современные модификации, в дополнение к стандартным параметрам способны отслеживать еще и частоту напряжения.
  • OMRON K8AB данная модель осуществляет контроль не только за снижением, но и за превышением уровня напряжения, выполняя тем самым функции ограничителя или разрядника, причем, куда более эффективно. Имеет ряд модификаций, отличающихся регулировками порогов срабатывания и техническими параметрами.
  • Carlo Gavazzi DPC01 отличается двумя реле на выходных клеммах устройства. Имеет несколько точек регулировки различных параметров, и переключатель режимов. Предоставляет 7 возможных функций по выставлению задержек, интервалов или цикличных функций.
  • Реле ЕЛ-11 отечественного производства контролирует параметры электрической сети, может применяться как в закрытых отапливаемых, так и в не отапливаемых помещениях. Устанавливается в любом положении, но требует защиты от прямого попадания на них солнечных лучей и атмосферной влаги.

Типичные схемы подключения

В большинстве случаев, на корпусе каждого устройства производителем устанавливаются все необходимые данные о способе подключения конкретного реле. Для примера заберем несколько схем известных производителей:

Схема подключения РНПП-311Схема подключения РКФ РНПП-311

На схеме показано  подключение клеммного ряда к соответствующим фазам линии L1, L2, L3 и нейтрале N. На выходе возможно получить две цепи управления «Выход 1» и «Выход 2», отличающиеся по уровням напряжений.

Схема подключения реле OMRONСхема подключения реле OMRON

Питание осуществляется по вводным каналам L1, L2, L3 и через нейтраль N. На выходе получается два варианта  трехфазная трехпроводная система и трехфазная четырехпроводная, для работы с соответствующим коммутатором.

Схема подключения РКФ Carlo GavazziСхема подключения РКФ Carlo Gavazzi

В отличии от предыдущих вариантов клеммы вводов L1, L2, L3 запитываются через предохранители. Блок регулировки параметров позволяет отстраивать соответствующий режим работы и пределы отключения по ним. Два выхода с возможностью ручной коммутации посылают управленческие сигналы на переключение тех или иных устройств.

Последние две схемы демонстрируют работу вторичных цепей отключения нагрузки с соответствующей временной задержкой по этим клеммам. Как видите, все схемы подключения имеют идентичные компоненты, предназначенные для отслеживания всех параметров сети, способных сигнализировать сбой в электроснабжении трехфазных потребителей.

www.asutpp.ru

что это такое, причины, последствия, защита

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетяхДиаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекосаПример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения  ГОСТ 13109-97Нормы несимметрии напряжения  ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтралиПерекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ)  напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

www.asutpp.ru

Основные понятия и определения | Фазировка оборудования

Страница 2 из 13

Трехфазная система.

Под трехфазной системой ЭДС (напряжений) понимают совокупность трех симметричных ДС, амплитуды, которых равны по значению и сдвинуты (амплитуда каждой ЭДС относительно предшествующей ей амплитуды другой ЭДС) на один и тот же фазный угол. На рис. 1,д приведена схема простейшего синхронного генератора трехфазного тока. Обмотки, в. которых наводятся переменные ЭДС, помещены в пазы статора, смещенные по окружности на 120°. Выводам обмоток присвоены обозначения "начал" АБСа "концов" X, Y, Z соответственно. По обмотке ротора проходит постоянный ток, создавая магнитное поле. При пересечении обмоток статора магнитным полем вращающегося ротора в них наводится симметричная система трех синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе на 120° (рис. 1,6). За один оборот ротора, что соответствует периоду времени Т, в каждой из обмоток происходит полный цикл изменения ЭДС. Когда ось ротора/— / пересекает витки обмотки статора, в них наводится максимальная ЭДС. Но так как для трех обмоток статора это происходит в разные моменты времени, то и максимумы наведенных ЭДС не совпадают по фазе, т. е. их амплитуды Ед, Eg, Ее оказываются сдвинутыми одна относительно другой на 1/3 периода, или на 120°.
Фаза. Угол, характеризующий определенную стадию периодически изменяющегося параметра (в данном случае ЭДС), называют фазовым углом или простой фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся ЭДС одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяют между одинаковыми фазами, например между началами синусоид, как это показано на рис. 1,6, или между амплитудами. При сдвиге двух синусоид по фазе одна из них будет отставать от другой по времени. Чтобы определить, какая из синусоид отстает, находят их начала, т. е. нулевые значения ЭДС при переходе от отрицательных 6 значений к положительным.
Получение трехфазной симметричной системы ЭДС
Рис. 1. Получение трехфазной симметричной системы ЭДС: 1 — статор; 2 — обмотка статора; 3 — ротор; 4 — обмотка ротора

На рис. 1,6 начала обозначены буквами а, Ь, с. Из рисунка видно, что начало одной синусоиды (например, синусоиды, проходящей через точку Ь) расположено правее начала другой (синусоиды, проходящей через точку а ). Это свидетельствует о том, что синусоида с началом в точке b отстает по времени от синусоиды с началом в точке а Еще более отстает синусоида, проходящая через точку с, так как ее начало сдвинуто на (2/3) Т или на 240° от начала координат (момента, когда / = 0). В равной мере можно говорить, что синусоида с началом в точке а опережает синусоиды с началом в точке b на (1/3) Tvi с началом в точке с - на (2/3) Т.
На практике под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.
Фазы обозначают прописными буквами А, В, С. Но навешивать надписи букв на оборудование станций и подстанций не всегда удобно. Поэтому при окраске оборудования (например, сборных и соединительных шин в закрытых РУ), которая применяется с целью защиты от коррозии, используют красители различного цвета. Краску наносят по всей длине шин.
Шины фазы А окрашивают в желтый цвет, фазы В — в зеленый и фазы С — в красный. Поэтому фазы часто называют Ж, 3, К. Для распознавания фаз оборудования на кожухах, арматуре изоляторов, конструкциях и опорах наносят соответствующие цветные метки в виде кружков или полос.
Таким образом, в зависимости от рассматриваемого вопроса фаза — это либо угол, характеризующий состояние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.
Порядок следования фаз. Порядок, в котором ЭДС в фазных обмотках генератора проходят через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы ЭДС могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,с, то фазы будут следовать в порядке А, В, С — это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить на противоположное, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В — это обратный порядок следования фаз.
Иногда вместо термина "порядок следования фаз" говорят "порядок чередования фаз". Во избежание путаницы условимся применять термин "Чередование фаз" только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз.

Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины и т. д.) расположены в пространстве, если обход их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок (ПУЭ) предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при расположении их в вертикальной плоскости: верхняя шина — желтая, средняя — зеленая, нижняя — красная. При расположении шин в горизонтальной плоскости наиболее удаленная шина окрашивается в желтый цвет, а ближайшая к коридору обслуживания — в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза Ж, 8 справа — фаза К, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ — из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя — в зеленый, отдаленная — в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы Ж, справа — фазы К, если смотреть со стороны шин на трансформатор.
Отступление от указанных выше требований порядка чередования окраски шин РУ ПУЭ допускают в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов BЛ.
Совпадение фаз. При фазировке трехфазных цепей могут быть различные варианты чередования обозначений (расцветки) вводов на включающем аппарате и подачи на эти вводы напряжения разных фаз. Для простоты дальнейших рассуждений допустим, что фазируемые напряжения двух систем шин электроустановки имеют одинаковые порядки следования фаз А, В, С и Ах, Bi, С|. При этом условии фазы одноименных напряжений могут совпасть, а порядок чередования обозначений вводов у выключателя может не совпасть (рис- 2, а) или, наоборот, при одном и том же порядке чередования обозначений вводов фазируемые напряжения могут оказаться сдвинутыми по фазе (рис. 2, б). Поворот одноименных векторов напряжений относительно друг друга может быть не только на угол 120°, как это показано на рис. 2,6, но на любой угол, кратный 30е, что Характерно для трансформаторов, имеющих разные группы соединения обмоток. В обоих приведенных случаях включение выключателя неизбежно приводит к КЗ.
В то же время возможен вариант, когда совпадает и то, и другое (рис. 2, в) - Короткое замыкание между соединяемыми частями установки здесь исключено.
Под совпадением фаз при фазировке как раз и понимают именно этот случай, когда на вводах выключателя, расположенных друг против друга и принадлежащих одной фазе, одноименные напряжения двух частей установки совпадают по фазе, а обозначения (расцветка) вводов выключателя согласованы с соответствующими фазами напряжения и имеют один и тот же порядок чередования.
Векторное изображение синусоидально изменяющихся ЭДС (напряжений, токов). Периодически изменяющиеся синусоидальные величины изображают в виде синусоид (рис. 1,6) и вращающимися векторами - направленными отрезками прямой линии (рис. 1,в).
Варианты несовпадения   и совпадения  фаз двух частей электроустановки
Рис. 2. Варианты несовпадения (е. б) и совпадения (в) фаз двух частей электроустановки
Для векторов фазных ЭДС Ej4, Eg. Eq> изображенных на этом рисунке, условно приняты направления от начал обмоток к их концам. Связь между синусоидальной кривой и вращающимися векторами показана на рис. 3. Синусоида получается проектированием вращающегося вектора (равного в заданном масштабе амплитуде изменяющейся ЭДС) на вертикальную ось /-/, перемещаемую по оси абсцисс со скоростью, пропорциональной частоте вращения вектора. Сдвиг фаз между двумя векторами, начала которых совмещены в одной точке, определяется углом V (рис.4). Отставание вектора Eg от вектора Ед показано направлением стрелки угла (против направления вращения векторов).
Следует сказать, что понятие вращающегося вектора ЭДС (напряжения, тока и т.д.) в электротехнике несколько отличается от понятия вектора, скажем, силы или скорости в механике.
Получение синусоидального графика при вращении вектора
Рис. 3. Получение синусоидального графика при вращении вектора
Изображение двух ЭДС синусоидами и векторами при различных углах сдвига
Рис. 4. Изображение двух ЭДС синусоидами и векторами при различных углах сдвига

Если в механике векторы не могут быть определены полностью только по их значениям без указания направления их действия в пространстве, то в электротехнике вращающиеся векторы не определяют действительного направления изображаемых ими величин в пространстве. Однако совокупное расположение вращающихся с одной частотой векторов (например, ЭДС трех фаз) на диаграмме дает представление о происходящем в электрической цепи процессе во времени и позволяет сделать количественную оценку явлений путем проведения элементарных операций над векторами.

Основные Схемы соединений трехфазных цепей.

Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.
При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, в), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными ЭДС и обозначают Ед, Eg, Ее, или просто £ф. Электродвижущие силы между выводами фаз называют линейными tn. Они получаются как разность векторов соответствующих фазных ЭДС генератора, например Ед - Eg = Едд (рис. 5,в).
Соединение обмоток генератора
Рис. 5. Соединение обмоток генератора в звезду (о), векторная диаграмма ЭДС (б), вычитание векторов фазных ЭДС (в)
Соединение обмоток генератора треугольником
Рис. 6. Соединение обмоток генератора треугольником (д) и векторная диаграмма ЭДС (б)
Порядок индексов в обозначении линейных ЭДС не произволен - индексы ставятся в порядке
вычитания векторов: Ев-Ес= Евс\ Ес-Ёл = ЕСА- С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора ЭДС отстающей фазы из вектора ЭДС опережающей. В результате векторы линейных ЭДС всегда опережают уменьшаемые фазные векторы на 30°. Значения линейных ЭДС в \Д или в 1,73, раз больше фазных, в чем легко убедиться измерением векторов на диаграмме.
Соединение обмоток генератора треугольником показано на рис. 6,о. Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными ЭДС промышленной частоты, сдвинутыми относительно друг друга на (1/3) Т, так как в каждый момент времени геометрическая сумма ЭДС, действующих в контуре треугольника, равна нулю. Убедиться в этом можно, рассматривая векторную диаграмму рис."6, б и синусоиды мгновенных значений ЭДС трехфазного генератора (рис. 1, б).
Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов
Рис. 7. Изменение на 180° фазы наведенной ЭДС при перемене обозначений зажимов:
а — фазы ЭДС Ед и Еа совпадают; б — ЭДС Ед и Eg находятся в противофазе

Из рис. 6, а видно, что при соединении треугольником линейные провода отходят непосредственно от начала и конца обмотки каждой фазы, поэтому фазные ЭДС равны линейным и совпадают с ними по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко и только у турбогенераторов одного типа (ТВС-30).
Обмотки трансформаторов, так же как и генераторов, соединяют в звезду и треугольник (схема зигзага встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки среднего (СН) и низшего (НН) напряжений также соединяют в У или Д.
В отличие от генераторов у мощных трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным [lj.
Группы соединений обмоток трансформаторов. Между первичной я вторичной ЭДС трансформатора, включенного под напряжение, может быть угол сдвига, который в общем случае зависит от схемы соединения и направления намотки обмоток, а также от обозначения (маркировки) зажимов.
Число сочетаний схем соединений У и Д может быть не более четырех: У/У, У/Д, Д/Д и Д/У, но, принимая во внимание возможность намотки обмоток на магнитопроводе в разных направлениях, случайное и преднамеренное изменение маркировки зажимов, а также соединение фазных обмоток в треугольник в ином чередовании, число схем включений трансформатора значительно возрастает. Приведем примеры. У каждой обмотки есть начало и конец. Начала обмоток обозначают буквами А, В, С, а, Ь, с, а концы X, ¥, Z, х, у, г соответственно. И хотя эти понятия условны, они имеют прямое отношение к действующей в обмотке ЭДС.

ва варианта схем соединения фазных обмоток НН треугольником
Рис. 8. Два варианта схем соединения фазных обмоток НН треугольником

Если у одной из обмоток поменять обозначения начала а и конца * (рис. 7), то, принимая ориентацию ЭДС по отношению к новому началу прежней (от * к в ), необходимо считать вектор ЭДС Еа повернутым на 180°. К такому же результату приводит и изменение направления намотки обмоток. В обмотках с односторонней намоткой (витки обеих обмоток идут от начал в правую или левую сторону) ЭДС совпадают по направлению, при разносторонней намотке они сдвинуты на 180°.  

Схемы и группы соединения обмоток трансформаторов и автотрансформаторов
Рис. 9. Схемы и группы соединения обмоток трансформаторов и автотрансформаторов :
а — трехфазных двухобмоточных трансформаторов; б — трехфазных трехобмоточнмх трансформаторов; в — трехфазных трехобмоточных автотрансформаторов

Циклическая перемаркировка фаз обмотки в стандартной схеме
Рис. 10. Циклическая перемаркировка фаз обмотки в стандартной схеме. У/У-0
На рис. 8, а показано соединение фазных обмоток треугольником в стандартном порядке: а — у; Ь— z; с — х. Если обмотки соединить в порядке Oi - zt; сх - уЬг - xt (рис. 8,6), то векторы линейных ЭДС НН смещаются по отношению друг к другу на 60° (рис. 8, в) *
Чтобы упорядочить все многообразие схем соединений обмоток трансформаторов, введено понятие о группе соединений, характеризующее угловое смещение векторов линейных ЭДС вторичных обмоток относительно одноименных векторов линейных ЭДС обмотки ВН независимо от того, является трансформатор понижающим или повышающим.
Циклическая перемаркировка фаз при ошибочном монтаже ошиновки
Рис. 11. Циклическая перемаркировка фаз при ошибочном монтаже ошиновки. Обозначение фаз НН, соответствующее группе У/У-О, показано в скобках

Группа соединений обозначается числом, которое при умножении на 30° дает угол отставания вектора ЭДС вторичной обмотки от ЭДС Вектора первичной обмотки. Если, например, схема и группа соединений трансформатора обозначены У/Д-11, то смещение векторов линейных ЭДС равно 330°.
В ГОСТ 11677-75* предусмотрены две группы соединения обмоток трехфазных двухобмоточных трансформаторов: 0 и 11 (рис.9). Практически могут встретиться 12 групп и, кроме того, такие соединения, которые вообще не могут быть отнесены к какой-либо определенной группе. Заметим, что нестандартные группы могут быть получены ошибочно при монтаже и ремонте оборудования без вскрытия трансформатора и пересоединения его обмоток. Для этого достаточно, например, перекрасить шины фаз или перемаркировать обозначения выводов и потом ориентироваться на эти обозначения. Типичными являются следующие случаи. При перемещении обозначений выводов фаз (циклическая перемаркировка фаз), когда по кругу меняются местами надписи на выводах трех фаз на стороне ВН или НН (рис. 10), группа соединений каждый раз изменяется на 4 или 8 угловых единиц. Так, при подсоединении трансформатора зажим фазы b может ошибочно оказаться подсоединенным к сборной шине фазы а, зажим с - к шине фазы Л и т. д. Такое подсоединение равносильно перемаркировке фаз и влечет за собой изменение исходной группы трансформатора на 4 единицы. Действительно, построение и совмещение векторных диаграмм (рис.11) показывает, что векторы повернуты на 120°, или на 4 единицы.

*В построениях векторных диаграмм на рнс. 8 и далее принято направление векторов линейных ЭДС (напряжений) обмоток ВН от В к А и обмоток НН — от Ь к а .

Двойная перемаркировка фаз при ошибочном монтаже ошиновки на стороне ВН и НН
Рис. 12. Двойная перемаркировка фаз при ошибочном монтаже ошиновки на стороне ВН и НН: а - исходная группа У/Д-11; б - перемаркировка одноименных фаз А и С, а и с; в - перемаркировка разноименных фаз А и С.  

Ошибочное обозначение выводов двух фаз b и с на стороне низшего напряжения
Рис. 13. Ошибочное обозначение выводов двух фаз b и с на стороне низшего напряжения
Перестановка обозначений двух фаз на стороне ВН и одновременно НН (двойная перемаркировка) у трансформатора, имеющего нечетную группу соединений, вызывает угловое смещение векторов ЭДС вторичной обмотки относительно их первоначального положения на 60 или 300°. Значение угла зависит от того, какие две фазы на стороне ВН, а также на стороне НН перемещаются - одноименные или разноименные. На рис. 12 показано, что достаточно поменять местами соединительные шины двух фаз А и С на стороне ВН и тех же фаз на стороне НН, как группа 11 перейдет в группу 1, а при перемене мест фаз А и С и. одновременно Ь и с группа 11 превращается в 9.
Наиболее вероятен в эксплуатационной практике случай перекрещивания шин только двух фаз на какой-нибудь одной стороне (ВН или НН), например фаз b и с. При этом изменяется порядок чередования фаз. Вместо а - b -с порядок чередования будете - с - Ь (рис. 13), и углы сдвига фаз одноименных ЭДС обмоток ВН и НН будут неодинаковы: = 0°; ifpb = 120°; \fCc - 240°. Это обстоятельство не позволяет отнести трансформатор к определенной группе соединений.
Одним из основных условий параллельной работы трансформаторов является тождественность групп соединений их обмоток, что устанавливается по паспортным данным или специальными измерениями. Но даже при одинаковых группах перед первым включением в работу (после монтажа или капитального ремонта со сменой обмоток, отсоединением кабелей и пр.) трансформатор фазируют с сетью, так как на зажимах включающего аппарата (выключателя, отделителя, рубильника) может появиться сдвиг фаз в результате неправильного присоединения токоведущих частей к аппаратам и выводам трансформатора, о чем было сказано выше. Здесь следует особо подчеркнуть, что цель фазировки заключается не в определении группы, к которой принадлежит включаемый трансформатор, а в проверке согласованности соединяемых фаз всех элементов трехфазной цепи со стороны как высшего, так и низшего напряжения.

leg.co.ua

порядок чередования фаз - это... Что такое порядок чередования фаз?

 

порядок чередования фаз
-
[Интент]

последовательность фаз

[В.А.Семенов. Англо-русский словарь по релейной защите]

последовательность чередования фаз
чередование фаз

[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

FR

Параллельные тексты EN-RU

phase rotation
—phase rotations refers to the order in which the instantaneous values of the voltages or currents of the system reach their maximum positive values.
Two phase rotations are possible:
A-B-C or A-C-B.

[Schneider Electric]

порядок чередования фаз
– порядок чередования фаз означает порядок, в котором мгновенные значения напряжений или токов системы достигают своих максимальных положительных значений.
Возможны два порядка чередования фаз:
A-B-C и A-C-B.

[Перевод Интент]

465.3.3 В случаях, когда безопасность зависит от направления вращения электродвигателя, следует принять меры по предотвращению изменения направления вращения двигателя, обусловленного, например, потерей фазы или изменением порядка чередования фаз.
[ГОСТ Р 50571.7-94 (МЭК 364-4-46-81)]


3:3.16. В электроагрегатах и электростанциях трехфазного переменного тока порядок чередования фаз на всех выводах, зажимах, соединителях и разъемных контактных соединениях выходных устройств должен быть одинаковым и соответствовать чередованию фаз А, В, С (при вращении диска фазоуказателя по часовой стрелке).

Наименование проверок и испытаний
...
7.18 4. Проверка правильности чередования фаз
[ГОСТ 13822-82]


...
д) дополнительно для трехфазных счетчиков:

порядок чередования фаз должен соответствовать порядку, указанному на схеме включения;

9.20 Испытание влияния порядка чередования фаз (6.10) следует проводить при cos φ = 1, номинальном напряжении, номинальной частоте и токах 50 и 100% номинального и максимальном. Изменение порядка чередования фаз производят путем перестановки любых двух фаз в подключении цепей тока и напряжения счетчика.
При обратном порядке фаз и нагрузке только одного из вращающих элементов счетчиков классов точности 0,5; 1,0; 2,0 испытание следует проводить при cos φ = 1, токе 50 % номинального, номинальных напряжении и частоте.
[ГОСТ 6570-96]


...
c) Присоединение трехфазных розеток должно выполняться таким образом, чтобы сохранялся порядок чередования фаз.

[ГОСТ Р 51321.4-2000 (МЭК 60439-4-90)]


В электрических сетях до 35 кВ рекомендуется производить транспозицию фаз на подстанциях так, чтобы суммарные длины участков с различным чередованием фаз были примерно равны.
[ПУЭ]


7.2.7. После ремонта линии (или трансформатора), при котором могло быть нарушено чередование фаз, необходимо перед включением линии (трансформатора) в работу проверять фазировку.
[РД 153-34.0-20.505-2001]

technical_translator_dictionary.academic.ru

Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/biysk-tv.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 942 Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/biysk-tv.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 975

Отправить ответ

avatar
  Подписаться  
Уведомление о