Что такое активная, реактивная и полная мощность нагрузки стабилизатора?
В отличии от вычисления мощности при постоянном токе, формулы для вычисления мощности в цепях переменного тока достаточно сложны. В общем случае электрическая мощность в этом случае имеет интегральные зависимости.
Для определения полной мощности нагрузки необходимо вычислить активную и реактивную мощность. Полная мощность определяется как векторное сложение этих величин.
Активная мощность — это полезная часть мощности, та часть, которая определяет прямое преобразования электрической энергии в другие необходимые виды энергии. Для каждого электрического прибора вид преобразования энергии свой: в электрической лампочке электроэнергия преобразуется в свет и тепло, в утюге электроэнергия преобразуется в тепло, в электродвигателе электроэнергия преобразуется в механическую энергию. Фактически, активная мощность определяет скорость полезного потребления энергии.
При выборе стабилизатора напряжения необходимо определять полную мощность потребителей. Самый точный способ — найти значение полной мощности прибора в его паспорте. Если такой возможности нет, то для определения полной мощности приборов с большими «пусковыми токами» принято использовать повышающий коэффициент «4».
Следует также учитывать, что номинальная мощность стабилизатора напряжения может указываться разными производителями стабилизаторов и ИБП в различных диапазонах входных параметров тока.
Китайские производители часто завышают реальную мощность устройства в два и более раз.Особое внимание при выборе подходящего стабилизатора напряжения или источника бесперебойного питания следует обратить на возможность использования стабилизатора при реактивной нагрузке. Часто производители указывают, что номинальная мощность стабилизатора или ИБП указана без учета реактивной нагрузки. В паспортных данных стабилизаторов и источников питания можно найти фразу «устройство не может использоваться для реактивной нагрузки».
Для работы с приборами, имеющими большую реактивную мощность мы рекомендуем использовать специальные стабилизаторы напряжения и ИБП компании «Бастион». Эти приборы характеризуются большой перегрузочной мощностью и хорошей защитой от помех в сети по нагрузке.
Подробные ответы вы можете найти в следующих статьях:
Сравнение реальных мощностей стабилизаторов напряжения разных марок
Сравнение стабилизаторов напряжения Ресанта, APC, Voltron, Калибри, Teplocom
Стабилизаторы напряжения для котлов отопления
Преимущества релейных стабилизаторов напряжения «Бастион»
Стабилизатор напряжения для холодильника
Стабилизаторы напряжения для насосов
Стабилизатор напряжения для кондиционера и сплит-системы
активная, реактивная, полная (P, Q, S), коэффициент мощности (PF)
Из письма клиента:
Подскажите, ради Бога, почему мощность ИБП указывается в Вольт-Амперах, а не в привычных для всех киловаттах. Это сильно напрягает. Ведь все уже давно привыкли к киловаттам. Да и мощность всех приборов в основном указана в кВт.
Алексей. 21 июнь 2007
В технических характеристиках любого ИБП указаны полная мощность [кВА] и активная мощность [кВт] – они характеризуют нагрузочную способность ИБП. Пример, см. фотографии ниже:
Мощность не всех приборов указана в Вт, например:
- Мощность трансформаторов указывается в ВА:
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП: см приложение)
http://metz.by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ: см приложение) - Мощность конденсаторов указывается в Варах:
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39: см приложение)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК: см приложение) - Примеры других нагрузок — см. приложения ниже.
Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления – активное сопротивление.
Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления – активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.
Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление – необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) – примеры: лампа накаливания, электронагреватель (параграф 39, Физика 11 класс В.А. Касьянов М.: Дрофа, 2007).
Реактивное сопротивление – попеременно накапливает энергию затем выдаёт её обратно в сеть – примеры: конденсатор, катушка индуктивности (параграф 40,41, Физика 11 класс В. А. Касьянов М.: Дрофа, 2007).
Дальше в любом учебнике по электротехнике Вы можете прочитать, что активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:
- Активная мощность: обозначение P, единица измерения: Ватт
- Реактивная мощность: обозначение Q, единица измерения:
ВАр (Вольт Ампер реактивный) - Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер)
- Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина
Эти параметры связаны соотношениями: S*S=P*P+Q*Q, cosФ=k=P/S
Также cosФ называется коэффициентом мощности (Power Factor – PF)
Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.
Например, электромоторы, лампы (разрядные) — в тех. данных указаны P[кВт] и cosФ:
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР: см. приложение)
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ: см. приложение)
То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока – активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт). См. например параметры ДГУ и ИБП.
Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например погружной насос или мотор в составе станка), люминисцентные балластные лампы и др.
См. учебники по электротехнике, например:
1. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.
2. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.
3. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.
Так же см. AC power, Power factor, Electrical resistance, Reactance http://en.wikipedia.org
(перевод: http://electron287.narod.ru/pages/page1.html)
Приложение
Пример 1: мощность трансформаторов и автотрансформаторов указывается в ВА (Вольт·Амперах)
Трансформаторы питания номинальной выходной мощностью 25-60 ВА
http://www.mstator.ru/products/sonstige/powertransf (трансформаторы ТП)
http://metz. by/download_files/catalog/transform/tsgl__tszgl__tszglf.pdf (трансформаторы ТСГЛ)
АОСН-2-220-82 | |
Латр 1.25 | АОСН-4-220-82 |
Латр 2.5 | АОСН-8-220-82 |
АОСН-20-220 | |
АОМН-40-220 | |
http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)
Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)
http://www. elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)
Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ
Для таких нагрузок как электромоторы, лампы (разрядные), компьютерные блоки питания, комбинированные нагрузки и др. — в технических данных указаны P [кВт] и cosФ (активная мощность и коэффициент мощности) или S [кВА] и cosФ (полная мощность и коэффициент мощности).
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)
http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)
Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www. mscom.ru/katalog.php?num=38 (лампы ДРЛ)
http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)
Дополнение 1
Если нагрузка имеет высокий коэффициент мощности (0.8 … 1.0), то её свойства приближаются к активной нагрузке. Такая нагрузка является идеальной как для сетевой линии, так и для источников электроэнергии, т.к. не порождает реактивных токов и мощностей в системе.
Если нагрузка имеет низкий коэффициент мощности (менее 0.8 … 1.0), то в линии питания циркулируют большие реактивные токи (и мощности). Это паразитное явление приводит к повышению потерь в проводах линии (нагрев и др.), нарушению режима работы источников (генераторов) и трансформаторов сети, а также др. проблемам.
Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.
Дополнение 2
Оборудование однонагрузочное (например, БП ПК) и многосоставное комбинированное (например, фрезерный промышленный станок, имеющий в составе несколько моторов, ПК, освещение и др. ) имеют низкие коэффициенты мощности (менее 0.8) внутренних агрегатов (например, выпрямитель БП ПК или электромотор имеют коэффициент мощности 0.6 .. 0.8). Поэтому в настоящее время большинство оборудования имеет входной блок корректора коэффициента мощности. В этом случае входной коэффициент мощности равен 0.9 … 1.0, что соответствует нормативным стандартам.
Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения
Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.
В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.
Дополнение 4
Наглядные примеры чистой активной и чистой реактивных нагрузок:
- К сети переменного тока 220 VAC подключена лампа накаливания 100 Вт – везде в цепи есть ток проводимости (через проводники проводов и вольфрамовый волосок лампы). Характеристики нагрузки (лампы): мощность S=P~=100 ВА=100 Вт, PF=1 => вся электрическая мощность активная, а значит она целиком поглащается в лампе и превращается в мощность тепла и света.
- К сети переменного тока 220 VAC подключен неполярный конденсатор 7 мкФ – в цепи проводов есть ток проводимости, внутри конденсатора идёт ток смещения (через диэлектрик). Характеристики нагрузки (конденсатора): мощность S=Q~=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5
Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:
+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.
— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.
Дополнение 6
В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.
Дополнительные вопросы
Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?
Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т. д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].
Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:
- Полное сопротивление (импеданс) Z=R+iX
- Полная мощность S=P+iQ
- Диэлектрическая проницаемость e=e’+ie»
- Магнитная проницаемость m=m’+im»
- и др.
Вопрос 2:
На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?
Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.
Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.
Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:
См. дополнительную литературу, например:
[1]. Евдокимов Ф. Е. Теоретические основы электротехники. — М.: Издательский центр «Академия», 2004.
[2]. Немцов М. В. Электротехника и электроника. — М.: Издательский центр «Академия», 2007.
[3]. Частоедов Л. А. Электротехника. — М.: Высшая школа, 1989.
[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)
[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013
[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН
Лидеры в области безбатарейных систем бесперебойного питания с маховиком
Компания Active Power разрабатывает и производит безбатарейные системы бесперебойного питания (ИБП) с маховиком и продукты для хранения энергии для критически важных энергетических приложений по всему миру в своей штаб-квартире и на заводе в Остине, штат Техас.
Active Power является членом группы Piller Power Systems. Перейдите на сайт Piller нажмите здесь
Содержимое по умолчанию
Входящие помехи в подаче электроэнергии могут легко вывести передатчик из эфира, что приведет к застреванию зрителей и потенциальной потере коммерческих доходов. К счастью, доказано, что интегрированная система ИБП на основе маховика, такая как система ИБП CleanSource® от Active Power, защищает передатчики и центральные диспетчерские от дорогостоящих простоев и защищает передатчики от возможного повреждения из-за событий в сети.
ИБП Active Power CleanSource и системы PowerHouse были оптимизированы для развертывания в наиболее распространенных проектах центров обработки данных. Наши системы работают с энергоэффективностью до 98%. Кроме того, системы Active Power были успешно развернуты в более чем 500 центрах обработки данных в США, включая многочисленные установки, сертифицированные Uptime Institute уровня III.
- Системы ИБП
Active Power CleanSource идеально подходят для особых требований в сфере здравоохранения, где прерывание подачи электроэнергии недопустимо. Доказано, что они снижают риск отказа системы на 80 % по сравнению с устаревшими ИБП с батареями, обеспечивая бесценное спокойствие. Частые нарушения качества электроэнергии и микроперебои не являются проблемой для встроенного ИБП с маховиком, а возможность подключения к генератору легко соответствует требованиям NFPA 110.
- Система ИБП
с маховиком обеспечивает значительные преимущества в суровых условиях, таких как промышленные предприятия. Тот факт, что систему можно разместить практически в любом месте и в непосредственной близости от защищаемого ею оборудования, очень привлекателен. Поскольку нет химических батарей, отпадает необходимость в жестком контроле температуры. При КПД 98 процентов можно получить значительные преимущества эффективности, которые со временем снизят общую стоимость владения по сравнению с традиционными системами на основе батарей.
Даже кратковременное отключение электроэнергии может закрыть казино на несколько часов, что обойдется в миллионы долларов дохода и подорвет репутацию среди клиентов. ИБП Active Power и модульные инфраструктурные решения обеспечивают повышенную надежность по сравнению с традиционными решениями, заменяя менее надежные химические батареи предсказуемым накоплением энергии маховика.
Непрерывное электроснабжение имеет решающее значение для бесперебойной работы транспортной инфраструктуры. Продукты Active Power представляют собой компактные, энергоэффективные и надежные решения для таких приложений, как освещение аэропортов и туннелей.
НОВИНКА! POWERHOUSE
Строительство недвижимости стоит слишком дорого, занимает слишком много времени и сопряжено со слишком большим риском. Новый POWERHOUSE 9 от Active Power0042 предлагает до 1,2 МВт (4 x 300 кВт) модульных, готовых к работе, безбатарейных ИБП в одном 40-футовом (12-метровом) контейнере ISO. Это ваш автономный безаккумуляторный ИБП, где бы и когда бы он вам ни понадобился. БЫСТРО! Нужно больше, чем 1,2 МВт? Просто вызовите другой контейнер для масштабирования.
Сервис
Регулярное техническое обслуживание и обслуживание предотвращают превращение потенциальных мелких проблем в проблемы, которые могут привести к дорогостоящему простою. Компания Active Power разработала наши продукты ИБП с учетом простоты обслуживания, чтобы обеспечить максимальную надежность вашей критически важной энергетической инфраструктуры. В отличие от аккумуляторных систем, которые иногда требуют ежемесячных или ежеквартальных проверок для обеспечения надежности, CLEANSOURCE ® ИБП требует простого, неинвазивного ежегодного обслуживания и очень простой периодической замены подшипников. Такой оптимизированный график технического обслуживания восстанавливает ИБП до состояния, близкого к заводскому, и сокращает время простоя в течение всего срока службы, повышая доступность критически важных операций.
29 июля 2022 г.
Отчет о промежуточных сделках материнской компании за 2022 год
19 июля 2022 г.
Демонстрационный тур Active Power POWERHOUSE в Канзас-Сити, штат Миссури, имел оглушительный успех
5 июля 2022 г.
Включение питания POWERHOUSE UPS 2022 Roadshow
Основы проектирования источников питания: Активная коррекция коэффициента мощности
Вот заключение нашей серии «Основы проектирования источников питания»! Сначала мы представили концепцию коэффициента мощности, а затем обсудили коррекцию коэффициента мощности (PFC) и способы реализации пассивной коррекции коэффициента мощности. Здесь мы углубимся в активную PFC и в то, когда вы захотите ее использовать.
Для любой конструкции источника питания мощностью более 100 Вт предпочтительным типом PFC является активная коррекция коэффициента мощности (Active PFC), поскольку она обеспечивает более легкий и эффективный контроль коэффициента мощности. Активная коррекция коэффициента мощности состоит из импульсного регулятора, работающего на высокой частоте коммутации и способного генерировать теоретический коэффициент мощности более 95%. Активная коррекция коэффициента мощности автоматически корректирует входное напряжение переменного тока и может работать в широком диапазоне входного напряжения. Одним из недостатков Active PFC являются дополнительные затраты, связанные с дополнительной сложностью, необходимой для его реализации.
Цепь активной коррекции мощности
На приведенной ниже схеме показаны основные элементы активной цепи коррекции коэффициента мощности. Цепь управления измеряет как входное напряжение (контакт 2 на контроллере), так и ток (RS и контакты 3 и 11 на контроллере) и регулирует время переключения и рабочий цикл, чтобы обеспечить синфазное напряжение и токовую нагрузку на вход.
Базовая схема активной коррекции коэффициента мощностиАктивная коррекция коэффициента мощности, показанная выше, представляет собой повышающий регулятор, поэтому напряжение на нагрузке (R1) должно быть больше, чем максимальное значение пикового напряжения на входе. . Обычно напряжение постоянного тока устанавливается на 10–20 В выше, чем ожидаемое максимальное пиковое входное напряжение. При проектировании источника питания с универсальным входом (87-266 В (среднеквадратичное значение) при 47-63 Гц) выходное напряжение постоянного тока от ККМ на входе в преобразователь постоянного тока будет установлено на уровне от 386 В до 39 В.6В.
Используя активную схему коррекции коэффициента мощности, можно обеспечить любое входное напряжение 87 266 В (среднеквадратичное значение) и относительно легко достичь коэффициента мощности 0,98.
Повышающий регулятор PFC
Ниже представлена базовая блок-схема повышающего регулятора PFC. В отличие от стандартного входа источника питания, непосредственно на мостовом выпрямителе нет удерживающего конденсатора, поэтому нет больших пусковых токов или переходных токов, когда входное напряжение превышает напряжение на конденсаторе. PFC работает, индуцируя ток в катушке индуктивности (L1, см. рис. 1 выше) и заставляя ток отслеживать входное напряжение.
Блок-схема PFCСхема управления измеряет как входное напряжение, так и ток, протекающий по цепи. Управляя временем включения переключателя (Q1), который подключает L1 к выходу выпрямителя, ток в катушке увеличивается по мере увеличения входного напряжения. Переключатель периодически выключается, и напряжение на конце стока увеличивается до тех пор, пока ток в катушке индуктивности не достигнет уровня заряда. Обычно этот уровень устанавливается на несколько вольт выше пикового выходного напряжения мостового выпрямителя. Выходное напряжение повышающего регулятора должно быть выше, чем входное напряжение, чтобы регулятор работал правильно.
Также измеряется выходное постоянное напряжение повышающего стабилизатора, и цикл заряда-разряда катушки индуктивности регулируется для поддержания постоянного выходного напряжения. Существует требование, чтобы скорость переключения повышающего преобразователя была намного выше, чем частота сети, обычно эти преобразователи переключаются со скоростью от 20 кГц до 100 кГц.