Что внутри люминесцентной лампы: Что будет, если разбилась люминесцентная лампа

Содержание

Что будет, если разбилась люминесцентная лампа

Разбит градусник, вся квартира бегает в поисках веника и совка, чтобы собрать ртуть. А она уже превратилась в шарики и убегает то под кровать, то под стол, то ещё куда. А вы все бегаете и бегаете за ней. Но когда вы вкручиваете энергосберегающую лампу в патрон, и она случайно выскальзывает из рук и падает, по непонятным причинам, никто панику не поднимает. А ведь стоило бы переживать из-за лампы больше, чем из-за градусника. Помимо мелких осколков, есть ещё и много вредных и негативных моментов. И самое страшное, это пары ртути. Итак, выдохнули, успокоились, отбросили панику, мы начинаем.

Первое, с чего стоит начать в разговоре про последствия разбитой люминесцентной лампы — это ртуть. Спешу вас обрадовать, что свободной ртути не содержится в энергосберегающей лампе. Для тех, кто вдруг не знает, или просто забыл, свободная ртуть — это жидкий, серебристого цвета металл. В лампе содержится не такая ртуть. Там испарённая ртуть, точнее сказать, пары ртути. Они очень вредны, так как при разбивании лампы попадают прямиком в дыхательные пути и через легкие всасываются в организм.

Теперь глубоко вдохнули. В одной лампе, в зависимости от мощности содержится от 0,1 до 0,5 грамма ртути. Как я ранее уже говорил, содержится она в виде паров. А пары — это самое вредное. Ртуть, которая стала шариками после разбития градусника можно собрать. Удобнее всего использовать обычный широкий скотч или детский пластилин. Но как вы будете собирать пары? Их можно проветрить. Справедливо будет заметить, что это не какая-то фатальная доза ртути, но может быть отравление. Главное не забывать, что у всех разный организм, а, соответственно, у всех отличается иммунитет. И кому-то может ничего не быть, а кто-то отравится. Так что нужно быть аккуратным.

Теперь предлагаю слегка удариться в анатомию и поговорить о воздействии непосредственно на организм.

И, что не менее важно, о последствиях такого воздействия. Последствия могут быть самыми разными. Для начала давайте разберёмся в возможных вариантах отравления.

Самый опасный вариант отравления парами ртути — острое отравление. При этом варианте в организм человека за непродолжительный период попадает большое количество паров ртути. Если происходит отравление, последствия не заставят себя долго ждать. Пара часов и проявятся первичные признаки отравления. И они сильно разнообразны. От боли в животе до поноса с кровью, от воспаления лёгких до опухших дёсен, тошноты и рвоты. Чаще всего температура поднимается до минимум тридцати восьми градусов. В случае особо тяжелого отравления возможен летальный исход. Но не будем о грустном. Это на самом деле не частое явление. Скорее всего, разбившаяся лампочка вас не отравит, но технику безопасности никто не отменял. Меньше всего стоит разбивать горячую энергосберегающую люминесцентную лампу. Самые опасные пары — это горячие, так, только что выключенную лампу разбивать не рекомендуется. По статистике в бытовых условиях крайне редко происходит отравление ртутью, но, повторяю, нужно быть осторожным, чтобы не попасть в печальную статистику.

Следующие два типа отравления вообще не имеют ничего общего с разбитой лампой, но знать об этом полезно. Как минимум, чтобы знать, как действовать в такой ситуации. Первый из них — хроническое отравление парами ртути. Происходит оно в результате длительного воздействия паров с незначительным превышением нормы содержания ртути. Такое воздействие может продолжатся до нескольких лет. И это поражает центральную нервную систему. В зависимости от типа поражения проявляются и симптомы. Это может быть просто быстрая утомляемость, сонливость или апатия. В более тяжёлых формах проявляется воздействие на головной мозг, а это плохо. Может наблюдаться ухудшение памяти и сильная дрожь в конечностях.

Вторая форма — микромеркуриализм. Такое отравление происходит постепенно.

Как правило, на протяжение очень длительного срока на организм постоянно действует мизерная концентрация ртутных паров. Задолго до появления первичных признаков резко сокращается способность чувствовать запахи. Признаками такого отравления служат снижение работоспособности, сонливость, апатия и провалы в памяти. Это общее отравление организма ведёт так же к сокращению иммунитета. Чаще всего, такие отравления появляются у тех, кто работает на производстве, связанном с ртутью, и пренебрегает мерами безопасности. Но причины могут быть разными и в бытовых условиях такое отравление возможно. Особенно в случаях, когда ртуть из разбитого термометра не была тщательно убрана. Она может лежать в складках паркета, испаряться и медленно вас травить.

Теперь, я думаю, всем интересно узнать про меры предосторожности и безопасности. Также, наверное, интересно узнать, что делать, если разбился градусник или лампа. Так что в завершение статьи именно об этом и поговорим. Вы проверяли температуру. Со здоровьем все хорошо. Но, убирая градусник в чехол, он выскочил из рук и … Ну, в общем, разбился он. Ртуть шариками катается по полу, что делать? Для начала не паниковать. Паниковать плохо и, вообще, это удел слабых. Первое, что нужно сделать, это открыть окно и закрыть дверь. Нужно проветрить помещение в течении пары часов, при этом не создавая сквозняка, так как это может разнести пары по всей квартире. Ещё стоит ограничить доступ людей к месту террористической атаки градусника. Ни в коем случае для сбора ртути не используйте веник и пылесос. Будет хуже. В этой ситуации скотч и детский пластилин — это наше все. Они приклеят к себе ртуть, а не будут гонять её из угла в угол.

Теперь про терроризм, который может устроить люминесцентная лампа. Она разбилась, но с ней проще совладать. Во-первых, ртути в лампе в четыре раза меньше. Но минус в том, что в отличие от градусника, в лампе не металл, а уже его пары. Стоит выгнать всех из комнаты, в которой произошла диверсия.

Так же, как и с градусником, ни в коем случае не нужно устраивать сквозняк. В этой ситуации он даже опаснее. Вам, по мере возможности, понадобится банка, желательно с раствором марганцовки. Банка с водой тоже подойдет. В нее нужно собрать все осколки, которые получится собрать руками и отнести на утилизацию. Если такой возможности нет, нужно ее хорошо упаковать и выбросить. Потом пропылесосить или протереть пол мокрой тряпкой. После того, как помещение проветрится, можно будет считать, что опасность миновала.

До новых встреч.

Все о люминесцентных лампах

Люминесцентная лампа — газоразрядный источник света, в котором электрический разряд в парах ртути создаёт ультрафиолетовое излучение, которое преобразуется в видимый свет с помощью люминофора — например, смеси галофосфата кальция с другими элементами.

Люминесцентному освещению в том виде, в каком мы имеем его сегодня, около 80 лет, хотя история становления технологии длилась приблизительно столько же, то есть в целом на путь технологии люминесцентных ламп приходится около 160 лет.

До того как в каждом доме появилась люминесцентная лампа, до появления люминесцентных ламп в уличном освещении, до появления ламп дневного света в офисах, инженерами и учеными был пройден длинный путь от изобретения вакуумной трубки, через эксперименты со свечением инертных газов под высоким напряжением, до разработки цельной технологии с надежным и качественным флуоресцентным покрытием светящихся трубок и подходящей схемой питания люминесцентных ламп.

Справедливости ради стоит начать с Михаила Васильевича Ломоносова, который еще в 18 веке наблюдал свечение заполненного водородом стеклянного шара под действием электрического тока. Ломоносов не ставил перед собой задачу создать источник электрического света, поэтому до изобретения люминесцентной лампы как таковой было еще далеко.

Первая газоразрядная лампа (в виде экспериментальной установки) увидит свет в 1856 году, и это будет трубка Гейслера. Немецкий стеклодув Генрих Гейслер отличался изобретательским талантом, и благодаря вакуумному насосу собственной разработки, Гейслер откачал воздух из стеклянной колбы.

При помощи высоковольтной катушки Гейслеру удалось возбудить в вакуумированной колбе зеленоватое свечение. Заполненная газом, колба меняла оттенок свечения под действием высоковольтных токов. Это изобретение получило название в честь ученого — трубка Гейслера.

Явление электролюминесценции разных веществ чуть позже отметит Александр Эдмон Беккерель. Экспериментируя в 1859 году с трубками Гейслера, он первым предложит покрыть внутреннюю поверхность трубок люминесцирующими веществами.

Благодаря обширному предварительному опыту исследований в области солнечного и искусственного света, именно Беккерель задаст направление по которому дальше пойдет развиваться технология люминесцентного освещения.

Интерес Беккереля был чисто научным, и создавать источники света он не собирался, поэтому на этапе экспериментов было получено не очень яркое свечение, и эксперименты не были продолжены ученым. Хотя идея применения люминофора стала важным технологическим шагом.

В мае 1891 года американский ученый, серб по происхождению, Никола Тесла, проведет в Колумбийском университете яркую демонстрацию с трубками Гейслера, где покажет свечение вакуумированных трубок в электрическом поле высокочастотной катушки.

Тесла отметит зависимость характера свечения от внутреннего покрытия трубок, например иттрий в качестве внутреннего фосфоресцирующего покрытия трубок давал яркий белый свет, интенсивности которого было достаточно для чтения. Тесла использовал электростатическое поле высокой напряженности, и мог разместить трубку без электродов в любом месте комнаты, и она светилась только благодаря индукции.

Позже, а именно 23 июня 1891 года, Тесла получит патент на систему искусственного освещения газоразрядными аргоновыми лампами, питаемыми токами высокого напряжения и высокой частоты (патент №454622). Аргон, кстати, по сей день используется в люминесцентных лампах.

В 1894 году американский инженер электрик и изобретатель Даниель МакФарлан Мур изобрел лампу дневного света, в которой использовались инертные газы диоксид углерода — для белого света, и азот для светло-розового света. Лампа отличалась сложной конструкцией, и лишь начиная с 1904 года, после усовершенствований, именно лампа Мура стала применяться в офисных помещениях и магазинах для искусственного освещения.

Томас Эдисон также предпринял попытку практически развить применяемость трубки Гейслера, и в 1896 году он разработал покрытие из вольфрамата кальция для рентгеновских трубок, позже, в 1907 году, изобретение будет запатентовано как люминесцентная лампа.

Однако для освещения такая лампа не годилась, в итоге Эдисон остановился на продвижении своих ламп накаливания, с которыми он уже тогда добился определенного коммерческого успеха. Хотя, еще в 1893 году сам Эдисон выступил на выставке в Чикаго, где показал люминесцентное свечение (вероятно, желая не отставать от Тесла и Мура).

Уже в 1901 году американский инженер электрик и изобретатель Питер Купер Хьюитт продемонстрировал первую ртутную лампу. Пары ртути давали мягкий сине-зеленый свет, а эффективность превосходила лампочку Эдисона. Тем не менее, сине-зеленый свет не подошел для повсеместного внедрения ламп Хьюитта для искусственного освещения. Хотя, позже именно лампы системы Хьюитта будут всюду на фонарных столбах (с 1930 года).

В 1926 году немецкий изобретатель Эдмунд Гермер вместе с коллегами, занимаясь поисками эффективного искусственного источника ультрафиолетового излучения, обнаружили, что увеличив давление внутри колбы покрытой флуоресцентным порошком, можно получить ровный белый свет, гораздо более яркий, и потому более пригодный для искусственного освещения, чем давали лампы накаливания.

Эдмунд Гермер позже будет по праву назван отцом современных флюоресцентных ламп, ведь именно лампы Гермера более близки к сегодняшним люминесцентным лампам по своему устройству.

В 1934 году компания General Electric выкупит патент Гермера, и исследовательская группа под руководством Джорджа Инмана и Ричарда Тайера начнет усердно доводить до совершенства изобретение Гермера. Эффективность люминесцентных ламп по сравнению с лампами накаливания поразит всех.

Сообщения о 35 люменах на ватт, достигнутых лабораторией General Electric к августу 1934 года, перевернут мир искусственного освещения, и уже в декабре 1934 начнется производство ламп в США. К 1938 году 48 дюймовые трубчатые лампы дневного света на 40 ватт можно будет увидеть в каждом офисе.

На сегодняшний день люминесцентное освещение не спешит сдавать своих позиций, хотя наличие ртути в колбах играет отнюдь не в пользу люминесцентных ламп.

На пятки уже наступают сверхэффективные светодиоды, которые не содержат ртуть, при этом световая отдача достигает 150 люмен на ватт, что в 1,5 раза превосходит средние показатели для ламп люминесцентных, так что закат люминесцентного освещения, пожалуй, близок.

Ранее ЭлектроВести писали, что солнечный дымоход поможет сэкономить до 50% электроэнергии, а также поможет спасти жизнь владельцев дома при пожаре. Разработку представили ученые из Мельбурнского королевского технологического института.

По материалам: electrik.info.

как выбирать и какие плюсы

Люминесцентные лампы – это газоразрядные источники света. В них создается УФ излучение в процессе прохождения электрического заряда через пары ртути. В уловимое для человеческого глаза излучение оно преобразуется за счет специального покрытия на колбе – люминофора. Мощностью данных ламп меньше, чем накаливания, а световая отдача больше. За счет этого они в разы экономней.

Принцип работы и устройство

Лампочка состоит из таких элементов:

  1. Трубка или колба. Этот компонент бывает разным в зависимости от исполнения.
  2. Цоколь. Он может быть 1 или 2.
  3. Нити накаливания, что расположены внутри.
  4. На внутренней поверхности нанесен люминофор – важнейшая деталь.
  5. Внутри содержится в вакуумных условиях инертный газ, пары ртути, под стабильным давлением.
Устройство и принцип работы люминесцентной лампы

Когда лампочка включается, между электродами внутри возникает дуговой тлеющий разряд. Газ проводит ток и провоцирует появление УФ излучения. Люминофор поглощает его и воспроизводит заметный для человеческого зрения свет. В подобных источниках применены энергосберегающие технологии. Разряд внутри поддерживает термоэлектронная эмиссия заряженных частиц с поверхностью катода.

Важно! В зависимости от того какой люминофор нанесен могут быть разные оттенки свечения.

к содержанию ↑

Область применения

За счет незначительного энергопотребления такие лампы часто используются для общественных мест. В торговых центрах и офисах на потолках типа Армстронг монтируются именно ЛЛ линейного типа. Когда появились компактные изделия они стали очень востребованы в быту для освещения квартир и домов. ЛЛ заменили собой стандартные лампы накаливания.

Особенно часто их используют в местах, где есть критические требования к цветопередаче. Конкретней:

  • Больницы.
  • Школы, в том числе для освещения коридоров и классов.
  • Стоматологические клиники.
  • Ювелирные мастерские.
  • Парикмахерские.
  • Магазины.
  • Музеи.
  • Типографии.
  • Покрасочные цехи в автомастерских, текстильных цехах, графических студиях.
Люминесцентное освещение в подземном переходе

Их рационально использовать для основного освещения помещений большого размера. Качество освещения улучшается, а энергопотребление снижается на 50% как минимум. Часто используются в подсветке места работы, исторических строений, световой рекламе.

к содержанию ↑

Классификация

Разновидностей люминесцентных лам существует много, ведь они используются не только для освещения помещений, но и для специфических целей. К примеру, лечебных. Они отличаются по вариантам исполнения, что также влияет на сферу применения.

Варианты исполнения

Изначально такие лампы были исключительно линейными, но с развитием технологий появились и компактные. Оба вида имеют одинаковые свойства, негативные и положительные стороны. Данную группу можно назвать общие, так как, по сути, они отличаются формой колбы и в определенной мере конструкцией.

Линейные лампы

Это ртутная лампа прямого, кольцевого или U-образного исполнения. Такие имеют классификацию по:

  1. Длине.
  2. Диаметру колбы.

При этом чем больше по габаритам лампа, тем она мощнее. Для линейных ламп используется цоколь G13, а диаметр колбы: Т4, Т5, Т8, Т10, Т12. Цифры после «Т» означают диаметр стеклянного элемента, выраженный в дюймах. Указанные выше типоразмеры считаются стандартными.

Линейные лампы разных размеров

Основное отличие подобной конфигурации в том, что она имеет вваренные электроды по краям, которые направлены внутрь изделия. Снаружи установлены цоколи с контактными штырьками для подключения ее в цепь.

Линейные лампы преимущественно используют в офисах, торговых центрах, транспорте, других общественных местах. Все потому что они потребляют не больше 15% электроэнергии, если брать за 100% потребления энергию лампочкой накаливания.

Компактные

Компактные классифицируются по:

  • Форме и размеру колбы.
  • Размеру и типу цоколя.

В основном колба в них изогнутая, и «сложена» в виде спирали или в другую форму. За счет этого они и компактны. Использование в бытовых условиях очень удобное и практичное. Ведь можно найти изделие со стандартным цоколем (е27) и устанавливать в любой бытовой светильник без какой-либо его переделки. Кроме того, цоколи бывают: g-11, g23 и другие.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Как только КЛЛ появились, они практически вытеснили использование ламп накаливания в люстрах, бра, светильниках в различных помещениях, в том числе в детской. В первую очередь за счет своей энергоэффективности.

Компактные люминесцентные лампы

Есть ЛЛ с улучшенной светопередачей. Эта их особенность достигается за счет нанесения нескольких слоев люминофора. Как результат, они качественней ретранслируют цвета. Могут быть как линейного, так и компактного исполнения.

Специальные

Основное отличие их от стандартных люминесцентных ламп дневного света – это спектр излучения. Существуют такие специальные:

  • Лампы дневного света, отвечающие повышенным требованиям по цветопередаче. Используются для типографий, музеев, картинных галерей.
  • Источники света со спектральным излучением близким к солнечному. Часто используются в медицинских целях для проведения светотерапии.
  • Для растений (рассады в том числе) и аквариумов, обозначаются fluora. Для них характерен усиленный спектральный диапазон синего и красного. Он оказывает положительное влияние на фотобиологические процессы. Могут использоваться даже в саду или в собственной теплице.
Люминесцентная лампа для подсветки растений
  • Аквариумные с преобладанием синего спектра и ультрафиолета. Они помогают создать оптимальные условия для роста кораллов. Отдельные виды способны при таком освещении флуоресцировать.
  • Изделия для освещения помещений, в которых содержаться птицы. Их спектр излучения характеризуется присутствием ближнего ультрафиолета. Это способствует созданию оптимальных условий для птиц, очень приближенных к естественным, применять их стараются в домашних условиях в холодное время года, а на фабриках круглогодично.
  • Лампы с разной цветностью: зеленые, синие, фиолетовые, красные, желтые и др. Активно используются для создания световых эффектов, к примеру, в ночных клубах и других развлекательных заведениях. Достигается световой эффект за счет окрашивания колбы или покрытия ее специальным составом люминофора изнутри. Подобные цветные лампы розового оттенка активно используются для подсветки мясных витрин в магазинах. Они делают мясо привлекательным для глаз, а значит, покупатель с большей вероятностью его купит.
  • Лампы для соляриев. Еще одно направление среди специальных люминесцентных осветительных элементов.
  • УФ лампы из черного стекла, переносные. Используются в сфере лабораторных исследований.
  • Лампы для стерилизации и озонирования – ртутно-кварцевые и бактерицидные, гигиенические.

Важно! Разные типы ЛЛ специального назначения активно используются в механике, текстильном, пищевом производстве, криминалистике, сельскохозяйственной сфере.

к содержанию ↑

Маркировка

Разбираться в маркировке люминесцентных ламп просто необходимо, чтобы правильно выбирать источник освещения для своих потребностей. На металлических элементах или колбе могут быть нанесены буквы и цифры, что они значат понять несложно.

Маркировка ЛЛ разных производителей

Первое что удастся обнаружить это буква Л – она расшифровывается, что лампа люминесцентная. Далее, проставляется:

  • Б – означает белый свет или white.
  • Д – дневной.
  • У – универсальный.
  • ХБ – холодный белый или просто cool.
  • ТБ – теплый белый.
  • Е – естественно белый.
  • К, Ж, З, Г, С – соответственно красный, желтый, зеленый, голубой, синий.
  • УФ – ультрафиолетовый.

Следующие обозначение расскажет о диаметре колбы. Считается, что чем он больше, тем дольше будет служить лампа. Чаще всего встречаются изделия с диаметром – 18, 26 и 38 м. Перед цифрой, которая обозначает диаметр, стоит буква «Т».

Следующий важный параметр мощность. Отталкиваясь от этого показателя, удастся определить, какое по размерам помещение удастся осветить. Обозначается W (Ватт), цифра после это мощность. К примеру, 13 W, 18 W, обозначение может быть и таким 9 Вт, 28 Вт.

Следующий параметр в маркировке физическая характеристика цоколя. Варианты обозначения:

  1. FS – один.
  2. FD – двухцокольная или трубчатая.
  3. FB – так подписывается компактная.

Напряжение в сети обозначается в вольтах. Варианты нанесенной маркировки: 127 В или 220 В. И последнее обозначения, которое можно найти на колбе это ее форма. Варианты:

  • U – дуга, подковообразная.
  • 4U – четырехдуговая.
  • S – спиральная.
  • C – свеча.
  • G – шарообразная.
  • R – рефлекторная.
  • T – в виде таблетки.
Форма колбы указывается в маркировке

Важно! Последняя маркировка практически не используется для стандартных ламп дневного света.

Располагаться эти обозначения могут и в другом порядке.

к содержанию ↑

Люминофоры и спектр излучаемого света

Существует мнение, что излучаемый рассматриваемыми лампами свет неприятен для глаз, а предметы имеют искаженный цвет. Это происходит по нескольким причинам:

  • Синие и зеленые линии в спектре.
  • Неправильно подобранного типа ламп, в нем использован не тот, что требуется в конкретных условиях люминофор.

В ЛЛ, которые относятся к недорогим, используется галофосфатный люминофор, его спектр излучения преимущественно желтый и синий, красного и зеленого значительно меньше. Для глаза свет воспринимается как белый, но при отражении от предметов их цвет выглядит искаженным. Но у таких источников света существенное преимущество – они обеспечивают наивысшую светоотдачу.

Люминесцентные лампы с разным люминофором

В более дорогих лампах наноситься трехполосный и пятиполосный люминофор. Он обеспечивает более равномерное распределение излучения в части видимого спектра. Как результат, предметы, от которых он отбивается, выглядят более естественными.

Совет! Чтобы в домашних условиях оценить спектр лампы можно использовать обычные компакт-диски. На источник света следует посмотреть в отражении диска. В дифракционной линии удастся рассмотреть спектральные линии люминофора.

к содержанию ↑

Преимущества и недостатки

Основные достоинства подробно:

  1. Высокий КПД и большая светоотдача, если сравнивать с лампами накаливания, что позволяет экономить энергию.
  2. Разные цвета и оттенки – существенный плюс в современных условиях.
  3. Спектр излучения ближе к солнечному.
  4. Рассеивание света, поток идет по всей колбе, а не только по нити накала.
  5. Продолжительный срок службы – производитель гарантирует до 20 тыс. часов. Такой показатель удастся достичь только при условии достаточного качества электропитания и соблюдения количества включений/выключений. То есть, сколько она реально прослужит, зависит от правильности использования.
  6. Слабый нагрев, то есть они не будут перегревать плафон, то есть она отвечает нормам пожарной безопасности. Светиться при этом лучше лампы накала.
  7. Питание от сети 220В.
  8. Подходят для стандартных бытовых осветительных приборов, которые используются в спальне, гостиной, кухне. Установка компактных ламп не требует какой-либо переделки.
  9. Небольшой вес лампы, то есть и вся люстра не будет много весить.
Люминесцентные лампы очень экономны

Недостатки:

  • Необходимость специальной утилизации –главный минус.
  • Мигание, от чего устают глаза. Меньше мигать она будет, если используется балласт.
  • Необходимость подключения пускорегулирующего оборудования.
  • Лампы достаточно хрупкие.
  • Люминофор изнашивается, что приводит к изменению спектра.
  • Возможность использование при нормальной температуре. Работать она может только в диапазоне от -40 до + 50 градусов.
  • Чувствительность к повышенной влажности.
  • Задержка включения – необходимо время для разогрева. То есть они не сразу запускаются и дают тот свет, который способны, через пару минут он становиться ярче.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Одними из самых качественных считаются лампы от торговых брендов Philips (Филипс) и Osram (Осрам). Цены лампочек этих марок вполне доступны.

к содержанию ↑

Безопасность и утилизация

Когда люминесцентная лампа исправна (нет трещин и других повреждений на колбе) ее использование абсолютно безопасно для человека, животных, растений. Но с ними следует обращаться предельно аккуратно, ведь внутри содержатся пары ртути. Даже в тех небольших количествах, они способны принести вред человеку.

Люминесцентные лампы нельзя выбрасывать с обычным бытовым мусором после отработки срока эксплуатации. При попадании в почву способны загрязнять огромные площади. Если пары ртути проникнут в воду она будет медленно отравлять все живое. Функционируют пункты приема таких ламп, в которых бесплатно можно сдать опасный бытовой мусор подобного типа.

Контейнеры для утилизации люминесцентных ламп

Важно! Если лампа, новая или старая, имеет следы повреждения, трещины, пробои использовать ее нельзя ни при каких условиях. При покупке каждую лампу следует проверить не только на работоспособность, но и на целостность.

Обращение с довольно хрупкими лампами должно быть аккуратным. Ремонт их своим силами, в том числе разборка, запрещена. Еще один важный момент, люминофор, что находится внутри колбы, со временем утратит свойства, поэтому меняется спектр. Как раз по этой причине использовать дольше указанного срока на упаковке такую лампочку нежелательно, даже если она еще не перегорела.

Переработка рассматриваемых ламп в заводских условиях проводится при необходимых условиях безопасности. В таком случае они не вредят экологии. При этом применяются разные методы извлечения опасных паров ртути. Остатки ламп отправляются на вторичную переработку.

к содержанию ↑

Видео сравнения люминесцентных ламп и ламп накаливания

В видео можно ознакомиться с детальным описанием люминесцентных ламп их техническими особенностями.

Вывод

Люминесцентные лампы более практичное решение для освещения дома и общественных мест. Правда, с появлением светодиодных источников света их востребованность несколько снизилась.

Предыдущая

ЛюминесцентныеОсобенности контейнеров для хранения люминесцентных ламп

Следующая

ЛюминесцентныеКакую лампу Т8 выбрать: LED или люминесцентная + простая переделка светильника

Люминесцентные лампы

Линейные люминесцентные лампы — экономичные и доступные источники света.

Люминесцентные лампы многие считают такой же классикой освещения, как и лампы накаливания. С этим тяжело спорить, учитывая, что первая люминесцентная лампа была выпущена аж в 1938 году, а в СССР такие лампы были разработаны в 1951 году. А первая газоразрядная лампа — предок современных люминесцентных ламп — была изобретена в 1956 году.

По сравнению с лампами накаливания линейные люминесцентные лампы дневного света являются более экономичными (примерно в 5 раз) и имеют больший срок службы (в 5-10 раз).

Немного истории

Изобретателем люминесцентной лампы (лампы дневного света) считается Эдмунд Гермер. Он и его команда в 1926 году получили бело-цветной свет от газоразрядной лампы, колба которой внутри была покрыта флуоресцентным порошком. Позже корпорация General Electric купила патент у Гермера и в 1938 году довела лампы дневного света до широкого коммерческого использования. Свет первых ламп напоминал естественный уличный свет в пасмурный день (примерно 6400К): считается, что именно тогда и появилось название «лампа дневного света».

В Советском Союзе массовое производство люминесцентных ламп началось только в 1948 году, за что в 1951 году разработчики первой советской лампы дневного света стали лауреатами Сталинской премии второй степени. 

Советский ГОСТ 6825-64 определял только три типоразмера линейных люминесцентных ламп мощностью 20, 40 и 80 ватт (длиной 600, 1200 и 1500 мм соответственно). Колба имела большой диаметр 38 мм для более легкого зажигания при низких температурах.

Люминесцентные линейные лампы дневного света выпускаются многих видов: разной мощности, длины, с разными диаметрами колб, разными цоколями и разным светом в зависимости от назначения лампы. Более того, этот ассортимент будет еще больше, если учесть, что энергосберегающие лампы также представляют собой лампы дневного света со встроенными пусковыми устройствами.

Сегодня наиболее распространенными трубками линейных ламп дневного света являются Т8 (Ø 26 мм), Т5 (Ø 16 мм) и Т4 (Ø 12,5 мм). Лампы с трубкой Т8 имеют цоколь G13 (13 мм между штырьками), а Т4 и Т5 имеют цоколь G5 (5 мм между штырьками). Лампы дневного света Т8 в настоящее время выпускаются мощностью от 10 до 70 Вт, лампы Т5 — от 6 до 28 Вт, а лампы Т4 — от 6 до 24 Вт. Естественно, что мощность ламп напрямую влияет и на размеры (длину) люминесцентных ламп: соотношения размеров и мощностей стандартизировано. То есть лампа мощностью 18 Вт с трубкой T8 и цоколем G13 любого производителя имеет длину 590 мм. 

Выпускаются люминесцентные лампы с разными цветовыми температурами для разных целей, но наиболее распространены лампы цветности 4000К и 6500К. Подробнее о цветовых температурах и сферах их применения можно посмотреть в нашей статье Энергосберегающие лампы: слухи и мифы (слух №6).

Также люминесцентные лампы по индексу цветопередачи (обозначается Ra или CRI — colour rendering index), то есть возможности точно отображать цвета по сравнению с естественным светом. Так лампы со 100% цветопередачей (Ra=1) отображают все цвета также как и при солнечном дневном свете. Но наиболее распространенными (в силу достаточности и большей доступности) являются лампы с индексом цветопередачи 70 — 89%.

Ниже мы приводим описание и технические характеристики самых часто используемых ламп, как в промышленном и муниципальном (где они наиболее распространены), так и жилом секторе. Приведенные ниже значения светового потока и срока службы являются примерными и могут отличаться в зависимости от производителя.


Стандартные линейные люминесцентные лампы с трубкой Т8 и цоколем G13


Самый распространенный тип линейных люминесцентных ламп. Именно такие лампы мощностью 18 Вт («короткую») или 36 Вт («длинную») вспоминают в первую очередь, когда слышат словосочетание «люминесцентная лампа». И хотя ассортимент таких ламп состоит из моделей мощностью от 10 до 70 Вт, чаще всего используются именно лампы мощностью 18 и 36 Вт, которые взаимозаменяемы с советскими люминесцентными лампами ЛБ/ЛД-20 и ЛБ/ЛД-40 соответственно.

Линейные люминесцентные лампы с трубкой Т8 и цоколем G13 используются в основном в промышленности (склады и производственные цеха), а также в офисах и муниципальных государственных учреждениях (администрации, школы, детские сады). 

Средняя продолжительность работы составляет 10000 часов. Диаметр трубки Т8 составляет 26 мм. Работают, как с электромагнитными дросселями (ЭмПРА) в связке со стартерами, так и с электронными балластами (ЭПРА).

мощностьсветовой потокцветовая температураRa (CRI)длина с цоколем без штырьков
Osram L 18W/640
Philips TL-D 18W/33-640
(ЛБ-20)
18 Вт1200 лм4000 К (холодный белый)60-69%590 мм
Osram L 18W/765
Philips TL-D 18W/54-765
(ЛД-20)
18 Вт1050 лм6500 К (холодный дневной)70-79%590 мм
Osram L 36W/640
Philips TL-D 36W/33-640
(ЛБ-40)
36 Вт2850 лм4000 К (холодный белый)60-69%1200 мм
Osram L 36W/765
Philips TL-D 36W/54-765
(ЛД-40)
36 Вт2850 лм6500 К (холодный дневной)70-79%1200 мм
Osram L 15W/64015 Вт850 лм4000 К (холодный белый)60-69%438 мм
Osram L 15W/76515 Вт740 лм6500 К (холодный дневной)70-79%438 мм
Osram L 30W/64030 Вт2100 лм4000 К (холодный белый)60-69%895 мм
Osram L 30W/76530 Вт1900 лм6500 К (холодный дневной)70-79%895 мм

Osram L 58W/640
(вместо ЛБ-80)

58 Вт4600 лм4000 К (холодный белый)60-69%1500 мм
Osram L 58W/765
(вместо ЛД-80)
58 Вт4000 лм6500 К (холодный дневной)70-79%1500 мм
Osram L 70W/64070 Вт5250 лм4000 К (холодный белый)60-69%1764 мм

Стандартные линейные люминесцентные лампы с трубкой Т5 и цоколем G5

Люминесцентные лампы T5 (в отличие от Т8) наиболее распространены именно в жилом секторе. Они более узкие, и поэтому светильники с ними лучше подходят для подсветки ниш или кухонных столов под шкафами.

Ассортимент люминесцентных линейных ламп с трубкой Т5 состоит из моделей мощностью от 6 до 28 Вт (замена ламп накаливания от 30 до 140 Вт). В основном выпускаются лампы цветностью 4200К и 6400К.

Лампы Т5 имеют цоколь G5 (5 мм между штырьками). 

Средняя продолжительность работы составляет 6000 — 10000 часов (в зависимости от производителя и модели). Диаметр трубки Т5 составляет 16 мм. Используются с электронными балластами (ЭПРА).

мощностьсветовой потокцветовая температурадлина трубки без цоколяобщая длина со штырьками
Uniel EFL-T5-06/4200/G56 Вт380 лм4000 К
(холодный белый)
211 мм225 мм
Uniel EFL-T5-06/6400/G56 Вт350 лм6400 К
(дневной)
211 мм225 мм
Uniel EFL-T5-08/4200/G58 Вт600 лм4000 К
(холодный белый)
288 мм302 мм
Uniel EFL-T5-08/6400/G58 Вт580 лм6400 К
(дневной)
288 мм302 мм
Uniel EFL-T5-13/4200/G513 Вт960 лм4000 К (холодный белый)516 мм530 мм
Uniel EFL-T5-13/6400/G513 Вт940 лм6400 К
(дневной)
516 мм530 мм
Uniel EFL-T5-21/4200/G521 Вт1850 лм4000 К (холодный белый)849 мм864 мм
Uniel EFL-T5-21/6400/G521 Вт1660 лм6400 К
(дневной)
849 мм864 мм
Uniel EFL-T5-28/4200/G528 Вт2470 лм4000 К (холодный белый)1149 мм1161 мм
Uniel EFL-T5-28/6400/G528 Вт2350 лм6400 К
(дневной)
1149 мм1161 мм

Стандартные линейные люминесцентные лампы с трубкой Т4 и цоколем G5

Светильники для люминесцентных линейных ламп с трубкой Т4 получили меньшее распространение, чем светильники для ламп Т5. В основном такие люминесцентные лампы используются для местной подсветки — идеальный мебельный светильник!

Выпускаются линейные люминесцентные лампы с трубкой Т4 мощностью от 6 до 24 Вт (замена ламп накаливания от 30 до 120 Вт), с цветовой температурой света 4200К и 6400К.

Средняя продолжительность работы составляет 6000 — 8000 часов (в зависимости от мощности и производителя). Диаметр трубки составляет 12 мм. Работают с электронными балластами (ЭПРА).

мощностьсветовой потокцветовая температурадлина трубки без цоколяобщая длина со штырьками
Uniel EFL-T4-06/4200/G56 Вт380 лм4000 К
(холодный белый)
206 мм220 мм
Uniel EFL-T4-06/6400/G56 Вт350 лм6400 К
(холодный дневной)
206 мм220 мм
Uniel EFL-T4-08/4200/G58 Вт600 лм4000 К
(холодный белый)
326 мм340 мм
Uniel EFL-T4-08/6400/G58 Вт580 лм6500 К (холодный дневной)326 мм340 мм
Uniel EFL-T4-12/4200/G512 Вт940 лм4000 К (холодный белый)354 мм368 мм
Uniel EFL-T4-12/6400/G512 Вт920 лм6500 К (холодный дневной)354 мм368 мм
Uniel EFL-T4-16/4200/G516 Вт1210 лм4000 К (холодный белый)454 мм467 мм
Uniel EFL-T4-16/6400/G516 Вт1195 лм6500 К (холодный дневной)454 мм467 мм
Uniel EFL-T4-20/4200/G520 Вт1700 лм4000 К (холодный белый)553 мм567 мм
Uniel EFL-T4-20/6400/G520 Вт1680 лм6500 К (холодный дневной)553 мм567 мм
Uniel EFL-T4-24/4200/G524 Вт2020 лм4000 К (холодный белый)641 мм655 мм
Uniel EFL-T4-24/6400/G524 Вт2010 лм6500 К (холодный дневной)641 мм655 мм

Специальные люминесцентные лампы для растений и аквариумов Osram Fluora, Camelion Bio


Главной отличительной особенностью ламп для растений и аквариумов является акцент в красной и синей областях спектра. Применение Osram Fluora значительно улучшает протекание фотобиологических процессов в растениях: они при таком свете лучше растут и меньше болеют в условиях недостатка солнечного и тем более отсутствия дневного света!

Также компания Osram Fluora рекомендует использовать специальные лампы для растений и аквариумов в общественных зданиях, где мало естественного дневного света: в офисах, торговых центрах, магазинах и ресторанах.

Специальные линейные люминесцентные лампы Osram Fluora для аквариумов и растений выпускаются с трубкой Т8 (Ø 26 мм), цоколем G13 и мощностью от 15 до 58 Вт.

мощностьсветовой потокдлина с цоколем без штырьков

Osram Fluora L 18W/77

18 Вт550 лм590 мм

Osram Fluora L 36W/77

36 Вт1400 лм1200 мм

Osram Fluora L 15W/77

15 Вт400 лм438 мм
Osram Fluora L 30W/7730 Вт1000 лм895 мм
Osram Fluora L 58W/7758 Вт2250 лм1500 мм

Специальные люминесцентные лампы для освещения продуктов питания Osram Natura

Специальный люминофор ламп Osram Natura придает пищевым продуктам натуральный вид свежих и аппетитных продуктов! Рекомендуется использовать лампы в продуктовых магазинах, супермаркетах и рынках. Особенно актуален правильный свет для мясных магазинов и хлебобулочных отделов. 

Лампы Osram Natura благодаря специально подобранному световому спектру (цветность 76) придадут мясным, колбасным, булочным изделиям, овощам и фруктам более привлекательный и аппетитный вид.

Замену таких ламп рекомендуется проводить каждые 10000 часов. Диаметр трубки Т8 составляет 26 мм, цоколь G13.

мощностьсветовой потокRa (CRI)длина с цоколем без штырьков
Osram Natura L 18W/7618 Вт750 лм70-79%590 мм
Osram Natura L 36W/7636 Вт1800 лм70-79%1200 мм
Osram Natura L 15W/7615 Вт500 лм70-79%438 мм
Osram Natura L 30W/7630 Вт1300 лм70-79%895 мм
Osram Natura L 58W/7658 Вт2850 лм70-79%1500 мм

Что такое люминесцентная лампа и как она устроена ?

Люминесцентные лампы — тип ламп, которые используют электроэнергию для возбуждения паров ртути.

 

Когда газ достигает определенного уровня энергии, он начинает выделять фотоны на определенных длинах волн, которые вызывают производимый в лампе видимый свет. По сравнению с традиционными лампами накаливания, люминесцентные лампы являются более дорогостоящими, чтобы купить, но используют электроэнергию более эффективно.

Это может показаться удивительным, но у люминесцентных ламп есть история, которая почти такая же, как у лампы накаливания. На самом деле, даже Томас Эдисон, изобретатель лампы накаливания, запатентовал раннее люминесцентную лампу. Тем не менее, люминесцентные ламп, как мы знаем не существовали на рынке до конца 1930-х годов, что гораздо позже ламп накаливания, которые широко использовались на тот момент.

Химические и электрические принципы, по которым люминесцентные лампы работают довольно сложны, но общая идея достаточно проста. Внутри люминесцентной лампы –газообразная смесь при очень низком давлении, которая содержит пары ртути. Когда электрон сталкивается с атомом газа, атом временно повышается в более высокое энергетическое состояние.

Это новое состояние энергии является неустойчивым, хотя, атом возвращается в своё нормальное состояние, он в процессе испускает фотон высокой энергии. Это фотон сталкивается с атомом в внутреннем люминесцентном покрытии лампы, в результате чего вызывает реакцию подобную вспышке, но на этот раз фотон имеет меньшую энергию, и их можно увидеть человеческим глазом. Многие такие взаимодействия происходят одновременно, заставляя лампу испускать большое количество света.

Люминесцентные лампы в конечном итоге «выгорают», когда ртуть поглощается внутренними частицами, и когда другие химические остатки внутри лампы распадаются. Срок службы таких ламп, гораздо дольше, хотя, они используют гораздо меньше энергии, чем лампы накаливания, что бы произвести такое же количество света. Эта эффективность привела к заинтересованности в люминесцентных лампах в качестве замены для старых типов. В последние годы, эта замена — в виде компактных люминесцентных лампочек — вызывает все большую популярность среди потребителей.

Компактные люминесцентные лампы (КЛЛ) предназначены для имитации лампами накаливания, и имеют примерно такой же размер. Они стоят гораздо дороже, чем традиционные лампочки, но, по оценкам, помогают сэкономить до 300 Квт электроэнергии в течении всего срока службы. Современные КЛЛ был изобретены в 1970-х годах, но массовое ихнее производство началось с 2000-х годов.

Люминесцентная лампа

Люминесцентная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов.

Различные виды люминесцентных ламп

Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя.
Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Коридор, освещенный люминесцентными лампами

Область применения

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту.

Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет ещё более улучшить характеристики люминесцентных ламп — избавиться
от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000 — 20000 часов против 1000 часов).
В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.
Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида.
В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение.
В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово — белый свет. Эта лампа имела умеренный успех.
В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синезелёного
цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность, чем лампы Гайсслера и Эллинойса.
В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой в более однородно белоцветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света.
General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работы

При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах
лампы возникает электрический разряд. Лампа заполнена парами ртути, и проходящий ток приводит к появлению УФ излучения.
Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

 Особенности подключения

С точки зрения электротехники, люминесцентная лампа — устройство с отрицательным сопротивлением (чем больший ток через неё проходит — тем больше падает её сопротивление).
Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта может применяться реактивное сопротивление (конденсатор или катушка индуктивности). В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Произведённый в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы.


Электромагнитный балласт

Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер.

Преимуществами такого типа балласта является его простота и дешевизна.
Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом.

стартер

Дроссель также может издавать низкочастотный гул.
Помимо вышеперечисленных недостатков, можно отметить ещё один.
При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования.
Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

электронный балласт


Электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу.
Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом.
При использовании электронного балласта, можно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт).
Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами.

Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты.

подключение 58-ваттных ламп классическим способом в рекламном щите

Пускатель включается параллельно лампе. В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю.

Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом.

Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе, что и вызывает зажигание лампы.

К этому моменту электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного.

 В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя.

В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы.

 В некоторых случаях при изменении характеристик пускателя или лампы возможно возникновение ситуации, когда стартер начинает срабатывать циклически.

Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного балласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам.

Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего — переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов).

В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать, например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы.

 Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе, в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы.

Как правило, это ведет и к росту тока подогрева катодов, поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно высокого напряжения между катодами лампа легко зажигается.

После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается, и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии.

Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого, приложив достаточно высокое напряжение к катодам, что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути, этот метод аналогичен технологиям, применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей, поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов, которые не могут быть запущены обычными методами из-за невозможности подогрева катодов.

В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминесцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить, невзирая на перегорание спиралей подогрева, и ее срок службы будет ограничен только временем до полного распыления электродов.

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы.

Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп.

Электроды лампы постоянно разогреваются, и в конце концов, одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы.

После этого на минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам.

Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится.

Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе.

Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит.

Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.


Люминофоры и спектр излучаемого света

Многие люди считают свет, излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

  

Типичный спектр люминесцентной лампы.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет,
в то время как красного и зелёного излучается меньше.

Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета.
Однако такие лампы, как правило, имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор.
Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы, как правило, имеют более низкую световую отдачу.

Также существуют люминесцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Советская люминесцентная лампа мощностью 20 Вт( «ЛБ-20» ). Современный европейский аналог этой

лампы — T8 1

Колбные лампы представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:
T5 ((диаметр 5/8 дюйма=1.59 см),
T8 (диаметр 8/8 дюйма=2.54 см),
T10 (диаметр 10/8 дюйма=3.17 см)
и T12 (диаметр 12/8 дюйма=3.80 см)).

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах и т. д.

 Компактные лампы представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на (G23,G24Q1,G24Q2, G24Q3). Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания.

Преимуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

 G23

Универсальная лампа Osram для всех типов цоколей G24

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт.

Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

 G24

Лампы G24Q1, G24Q2 и G24Q3 также имеют встроенный стартер, их мощность, как правило, от 13 до 36 Ватт.

Применяются как в промышленных, так и в бытовых светильниках.

Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью.

По истечении срока службы в России лампу, как правило, выбрасывают куда попало.

На проблемы утилизации этой продукции в России не обращают внимания ни потребители, ни производители, хотя существует несколько занимающихся ею фирм.

Александр Гореславец
Компания «Додэка Электрик».

Материал из Википедии — свободной энциклопедии

Самая экологичная и безопасная лампочка: какую выбрать?

Энергосбережение и экологически чистые технологии являются тенденцией мирового масштаба. Сейчас самое время внедрять их везде, где есть возможность, учитывая высокий уровень загрязнения окружающей среды. Даже лампы нужно выбирать так, чтобы и природе не навредить, и себя обезопасить. Расскажем, как разные типы источников освещения влияют на окружающую среду и наше с вами здоровье.

В быту чаще всего применяют 4 вида ламп:

  • Старые добрые лампы накаливания с вольфрамовой спиралью внутри.
  • Галогенные.
  • Люминесцентные.
  • Светодиодные.

Не будем вдаваться в технические особенности каждого типа ламп – нас интересует только то, как они действуют на природу и здоровье.

Разные виды ламп

Лампы и экология

В этой категории безусловным аутсайдером будут устаревшие лампы накаливания. Во-первых, их сложно и дорого правильно утилизировать, во-вторых, у них очень низкая энергоэффективность. Только 4-5 % потребляемой энергии идет непосредственно на освещение. Остальные 95-96 % расходуются на разогрев вольфрамовой нити. В США давно обратили на это внимание и не производят лампы накаливания, хотя их импорт в страну не запрещен. У нас тоже заметно снизился спрос на устаревшие «лампочки Ильича» в пользу более энергоэффективных ламп. Единственная причина, почему их еще покупают – низкая цена.

Галогенные лампы тоже вредят экологии. Пары брома, которыми наполнены колбы, разрушают озоновый слой. Утилизация таких ламп – долгий и дорогой процесс, который нереально внедрить повсеместно. Поэтому с 2018 года они запрещены в странах Евросоюза.

Галогенные лампы запрещены в Европе

Следующие на очереди люминесцентные лампы. Несмотря на то, что технологически они сложнее и дороже предыдущих видов, в плане экологичности они тоже несовершенны. В колбах таких ламп содержатся пары ртути. Их меньше, чем в том же бытовом термометре, но разбитая лампа тоже представляет опасность. Согласно подписанной еще в 2014 году Минаматской конвенции, во многих странах мира, в том числе и в России, запрещены малогабаритные люминесцентные лампы с содержанием ртути в колбе более 5 мг. Те изделия, которые представлены сейчас на полках магазинов, содержат 3–5 мг ртути. Это допустимая норма, но все равно при повреждении колбы помещение придется долго проветривать и обрабатывать раствором марганца. Впрочем, чтобы разбить люминесцентную лампу, нужно приложить усилия. Конструкцией лампы предусмотрена силиконовая прокладка, которая защищает колбу при случайном падении лампы.

Люминесцентная лампа

Утилизация люминесцентных ламп развита лучше, чем галогенных. Во всех крупных городах России есть пункты приема отработавших свое источников света. В маленькие города и села приезжают экомобили – передвижные утилизационные пункты.

Наиболее экологичными считаются светодиодные лампы, где нет ртути и других ядовитых газов. Вместо газовых колб в них установлены светодиоды – сложные полупроводниковые приборы, преобразующие электрический ток в световое излучение. В плане рационального потребления энергии светодиодные лампы тоже лидируют. Такие источники света относятся к классу энергоэффективности «А», самому высокому из общепринятых. А еще светодиодные лампы очень долговечны, в отличие от других типов. Ресурса одного изделия хватит на 100 тыс. часов работы, что составляет около 15 лет эксплуатации. Поэтому объемы утилизации светодиодных источников света гораздо ниже.

Светодиодная лампа

Лампы и наше здоровье

Этот аспект неотделим от экологического, так как мы живем не в вакууме и загрязнение окружающей среды ударит по здоровью если не сейчас, то потом. Но с целью максимально объективного сравнения рассмотрим, как разные виды ламп могут навредить нам здесь и сейчас.

Самыми опасными для здоровья считаются люминесцентные лампы. Ни в коем случае не допускайте того, чтобы они разбились, не выбрасывайте в мусорные контейнеры или просто на улицу. Мы уже говорили про ртуть, пары которой очень опасны не только для окружающей среды, но и для человека. Нет забывайте сдавать отработавшие свое лампы в пункты сбора.

Вторая опасность таких ламп – невидимая пульсация, которая вредит зрению и снижает работоспособность. Многие замечали, что в помещении, освещенном люминесцентными лампами, возникает чувство необъяснимой усталости.

Люминесцентные лампы провоцируют усталость

Единственный минус галогеновых ламп, если не считать загрязнение окружающей среды парами брома, – в процессе работы их поверхность сильно греется, повышая общую температуру. Для помещений с хорошей вентиляцией это несущественно. Такой же недостаток наблюдается и у ламп накаливания.

Безопасность светодиодных ламп для здоровья сейчас вызывает больше всего споров. В одних статьях можно прочесть, что они абсолютно безвредны, в других им приписываются несуществующие минусы вроде ожога сетчатки глаза (мы слабо представляем, как нужно смотреть на лампу, чтобы такое произошло). Истина посередине. Влияние светодиодных ламп на здоровье напрямую зависит от их качества. Хорошие изделия отличаются низким коэффициентом пульсации и малой интенсивностью излучения в синем и голубом спектрах, которые наиболее вредны для зрения. Качество светодиодной лампы напрямую зависит от модуля преобразователя напряжения в световое излучение. В низкокачественных изделиях стоят самые дешевые модули, которые не в состоянии обеспечить нужный коэффициент пульсаций. Поэтому покупать светодиодные лампы по цене галогенных – не лучшее решение.

Мы работаем с самыми лучшими поставщиками ламп. И тут уже неважно, какую вы выбираете. Компании заранее позаботились о вашем здоровье. Только не забудьте потом правильно их утилизировать, чтобы не навредить окружающей среде.

Читайте также:

Что находится внутри люминесцентной лампы?

Введение

Иногда мы настолько знакомы с обычным оборудованием или простой машиной, что почти не знаем или не беспокоимся об их работе. Возьмем, к примеру, принцип работы дверного звонка или простой ламповый светильник, который есть в каждом доме и также известен под названием люминесцентная лампа. Я уверен, что вряд ли найдется душа, которая не слышала или не пользовалась ламповым светом. Но действительно ли вы понимаете принцип работы ламповой лампы или задумывались ли вы, что находится внутри люминесцентной лампы, которая заставляет ее светиться? Если нет, то вы попали в нужное место, и мы подробно рассмотрим это в следующих разделах

.

Справочная информация

Прежде чем вы сможете понять, что скрывается за трубчатой ​​структурой, излучающей белый молочный свет, вам необходимо знать некоторые базовые концепции физики.В противном случае вы не сможете полностью оценить то, что я говорю. Конечно, у нас не будет подробного учебника по физике, а будет только широкий обзор.

Я уверен, что вы слышали, что свет — это форма энергии, и согласно квантовой физике он может быть разбит на конечные фрагменты, известные как фотоны, и в этой форме он перемещается. Так откуда же берутся эти фотоны? Они высвобождаются, когда электроны прыгают с более высокого энергетического уровня на более низкий энергетический уровень. Вы можете прочитать об уровнях и диапазонах энергии в других статьях этого канала.

Итак, если есть способ заставить электроны проходить через эти энергетические уровни по мере необходимости, они будут непрерывно прыгать вверх и вниз и продолжать испускать фотоны. Именно это происходит не только с люминесцентными лампами, но даже с обычными лампочками. Разница лишь в том, как заставить эти электроны перескакивать через энергетические барьеры.

Что внутри люминесцентной лампы?

Возвращаясь к этому простому вопросу на миллион долларов; Проще говоря, люминесцентная лампа или обычный ламповый светильник представляет собой цилиндрическую стеклянную оболочку, которая имеет определенное расположение, при котором электроны материала внутри трубки искусственно возбуждаются и заставляются испускать световые фотоны в видимом спектре.Различные компоненты, которые присутствуют внутри, следующие.

  • Инертный газ — обычно это газообразный аргон, который используется для создания инертной атмосферы внутри трубчатого корпуса

  • Электроды — используются для подачи электронов, ионизирующих инертный газ

  • Ртуть — используется для излучения ультрафиолетового излучения

  • Люминофор — поглощает ультрафиолетовую энергию, создаваемую внутри трубки, и доставляет энергию видимого света, которая используется для освещения окружающего света трубки.

  • Стартер — используется в старых ламповых светильниках для обеспечения пути с меньшим сопротивлением до тех пор, пока ламповый свет не загорится.

  • Дроссель / балласт — используется для обеспечения необходимого напряжения для работы люминесцентной лампы

Обратите внимание на один важный момент: хотя я написал, что эти компоненты находятся внутри люминесцентной лампы, не все из вышеперечисленного физически расположены внутри стеклянной трубки лампового светильника, но многие из них, такие как дроссель, стартер и соответствующие провода находятся за пределами корпуса из стеклянной трубки. В то же время они составляют важную часть общего стартового устройства, и труба не может работать без этих компонентов.

Лучшее освещение и обзор

Одним из самых больших преимуществ использования люминесцентной лампы по сравнению с обычной лампой накаливания является то, что она излучает белый свет, который приятен, а также хорошее освещение, тогда как лампа дает желтоватый свет и потребляет больше электроэнергии. Типичный ламповый светильник в несколько раз более энергоэффективен, чем обычная лампочка.

Мы изучим реальную работу этих компонентов в нашей следующей статье

% PDF-1.5 % 34 0 объект > эндобдж xref 34 82 0000000015 00000 н. 0000001985 00000 н. 0000002384 00000 н. 0000003288 00000 н. 0000003445 00000 н. 0000004837 00000 н. 0000006369 00000 п. 0000007826 00000 н. 0000011633 00000 п. 0000013105 00000 п. 0000013849 00000 п. 0000013895 00000 п. 0000014005 00000 п. 0000014283 00000 п. 0000015646 00000 п. 0000016712 00000 п. 0000016758 00000 п. 0000016858 00000 п. 0000017134 00000 п. 0000018607 00000 п. 0000020155 00000 п. 0000021556 00000 п. 0000029465 00000 п. 0000030925 00000 п. 0000032584 00000 п. 0000033105 00000 п. 0000033151 00000 п. 0000033245 00000 п. 0000033547 00000 п. 0000035042 00000 п. 0000036706 00000 п. 0000038139 00000 п. 0000038393 00000 п. 0000038439 00000 п. 0000038524 00000 п. 0000041606 00000 п. 0000043157 00000 п. 0000044669 00000 п. 0000045227 00000 п. 0000045275 00000 п. 0000045745 00000 п. 0000046689 00000 п. 0000046737 00000 п. 0000047191 00000 п. 0000048778 00000 п. 0000049488 00000 п. 0000049747 00000 п. 0000051234 00000 п. 0000052583 00000 п. 0000053995 00000 п. 0000055382 00000 п. 0000056165 00000 п. 0000056211 00000 п. 0000056321 00000 п. 0000056583 00000 п. 0000057945 00000 п. 0000058527 00000 п. 0000059840 00000 п. 0000061296 00000 п. 0000062709 00000 п. 0000064066 00000 п. 0000065045 00000 п. 0000065091 00000 п. 0000065201 00000 п. $ США (-O P | Yg (> CqԒ} jvdӽ? Ǣ ~ ‘R = конечный поток эндобдж 36 0 объект > / ColorSpace> / ProcSet [/ PDF / Text / ImageB / ImageC] / Font >>> / TrimBox [0 0 612 792] / Содержание 114 0 руб. / MediaBox [0 0 612 792] >> эндобдж 37 0 объект > транслировать конечный поток эндобдж 38 0 объект > транслировать

В чем разница люминесцентного и неонового света?

Неоновый свет используется в рекламных вывесках.Эти знаки сделаны из длинных узких стеклянных трубок, которые часто изгибаются всевозможных форм. Например, неоновая лампа может произносить слова. Эти трубки излучают свет разных цветов.

Люминесцентный свет, напротив, чаще всего представляет собой длинную прямую трубку, излучающую белый свет. Вы видите люминесцентные лампы в офисах, магазинах и некоторых домашних светильниках.

Идея неонового светильника проста. Внутри стеклянной трубки находится газ, такой как неон, аргон или криптон, под низким давлением.На обоих концах трубки расположены металлические электроды. Когда вы прикладываете высокое напряжение к электродам, газ неон ионизируется, и электроны проходят через газ. Эти электроны возбуждают атомы неона и заставляют их излучать свет, который мы можем видеть. При таком включении неон излучает красный свет. Другие газы имеют другой цвет.

Люминесцентный свет работает по аналогичной идее, но имеет дополнительный шаг. Внутри люминесцентного светильника находится ртутный пар низкого давления. При ионизации пары ртути излучают ультрафиолетовый свет.Человеческие глаза нечувствительны к ультрафиолетовому свету (хотя человеческая кожа чувствительна — см. Как работают солнечные ожоги и загар!). Поэтому внутренняя часть люминесцентной лампы покрыта люминофором . Люминофор — это вещество, которое может принимать энергию в одной форме (например, энергию от высокоскоростного электрона, как в телевизионной трубке — см. Как работает телевидение) и излучать энергию в виде видимого света. В люминесцентной лампе люминофор принимает энергию ультрафиолетовых фотонов и излучает видимые фотоны.

Свет, который мы видим из люминесцентной лампы, — это свет, излучаемый люминофором, который покрывает внутреннюю часть трубки (люминофор флуоресцирует при включении, отсюда и название). Свет неоновой трубки — это цветной свет, который излучают непосредственно атомы неона.

Опасны ли компактные люминесцентные лампы?

Лампочки постоянно ломаются. Так почему же одна сломанная лампочка в доме в штате Мэн заставила Департамент охраны окружающей среды штата направить домовладельца к специалисту по дезинфекции?

Ответ кроется в типе сломанной лампочки — компактной люминесцентной лампе — и в том, что было внутри этой лампочки.Компактные флуоресцентные лампы, как и их трубчатые флуоресцентные предшественники, содержат небольшое количество ртути — обычно около пяти миллиграммов. Ртуть важна для способности люминесцентной лампы излучать свет; ни один другой элемент не оказался столь же эффективным.

Ртуть, которую иногда называют ртутью, не менее эффективна для включения белого света, но также очень токсична. Это особенно вредно для мозга как плода, так и детей. Вот почему чиновники сократили или запретили его использование в приложениях от термометров до автомобильных и термостатов.(Один переключатель термостата, который по-прежнему широко распространен во многих домах, может содержать 3000 миллиграммов (0,1 унции) ртути или до 600 компактных флуоресцентных ламп.)

Проблема возникает, когда лампочка ломается. Ртуть выделяется в виде пара, который можно вдыхать, и в виде мелкого порошка, который может оседать на ковре и других тканях. По крайней мере, один случай отравления ртутью был связан с флуоресцентными лампами: статья 1987 года в журнале Pediatrics описывает 23-месячного ребенка, который потерял в весе и сильно высыпал после упаковки восьмифутовой (2.4-х метровые) трубчатые лампочки сломались в игровой зоне.

Государственные и федеральные правительственные агентства говорят, что поломки, хотя и заслуживают осторожности, обычно можно недорого устранить с помощью хозяйственных товаров. (В случае штата Мэн штат подтверждает предоставление направления, но настаивает на том, что домовладельца проинформировали о том, что в таком шаге нет необходимости.)

Джим Берлоу, директор отдела минимизации и управления опасными отходами Агентства по охране окружающей среды США (EPA), рекомендует начать с открытия окон и выйти на улицу.«Любые проблемы часто решаются по большей части за счет быстрого проветривания помещения», — говорит он. «Выведите всех людей и домашних животных из комнаты на 15 минут и дайте комнате проветриться. Если у вас есть система центрального отопления или система HVAC [отопления, вентиляции и кондиционирования], вы не хотите, чтобы она всасывала вокруг дым, так что выключи это «.

Главное — не касаться хэви-метала. После проветривания комнаты большие части лампы следует зачерпнуть с твердых поверхностей жесткой бумагой или картоном или снять с коврового покрытия в перчатках, чтобы избежать контакта.Используйте липкую ленту или изоленту, чтобы собрать более мелкие фрагменты; затем на твердых поверхностях протрите участок влажной бумажной салфеткой или влажной салфеткой. Все материалы следует поместить в герметичный полиэтиленовый пакет или, что еще лучше, в стеклянную банку с металлической крышкой.

«Если он попадет в банку, это неплохая защита», — заявляет Берлоу. «Мы обнаружили, что пластиковые пакеты на самом деле не содержат паров ртути, поэтому, безусловно, если у вас есть пластиковый пакет, выньте его на улицу, когда закончите». Как правило, следует избегать использования пылесосов или веников, поскольку они могут распространить ртуть в другие части дома.

Утилизировать неповрежденные луковицы тоже может быть головной болью. Во многих регионах незаконно выбрасывать флуоресцентные лампы вместе с обычным мусором, но ближайший пункт переработки или возврата может находиться за много миль. (И, учитывая количество бутылок и банок, которые попадают на свалки, несмотря на широкое распространение программ рециркуляции обочины, кажется вероятным, что любой барьер для рециркуляции приведет к относительно низким темпам утилизации; в 2004 году Ассоциация переработчиков освещения и ртути оценила уровень рециркуляции ртутных ламп в жилых домах составляет 2 процента.) Многие предприятия по переработке бытовых отходов и некоторые продавцы принимают флуоресцентные лампы; EPA и Earth 911 поддерживают онлайн-каталоги мест сбора. Среди крупных продавцов люминесцентных ламп IKEA предлагает бесплатно забрать компактные люминесцентные лампы в свои магазины.

«Мы в первую очередь предпочитаем не бросать их на свалки», — говорит Берлоу. «Переработка действительно замыкает круг в этом вопросе, насколько это возможно прямо сейчас. Но, с другой стороны, мы также не видим огромных рисков, связанных с их попаданием на свалки.«

А компактные люминесцентные лампы фактически уменьшают загрязнение ртутью из единственного крупнейшего источника в США: угольных электростанций.« Вероятно, самое важное, что нужно людям для подключения к компактным люминесцентным лампам, — это то, что они экономят значительное количество энергии », — говорит Берлоу. — добавляет: «Мы говорим о сокращении от двух третей до трех четвертей энергии, связанной с освещением».

Джеймс Дакин, старший инженер-консультант GE Lighting в Кливленде, говорит, что замена освещения без использования ртути может быть в разработке. : светодиоды (LED) быстро развиваются.«Светодиоды, возможно, являются наиболее многообещающей альтернативой, не содержащей ртути, — говорит он, — но в настоящее время им не хватает общего компромисса между эффективностью / цветом / стоимостью».

Но пока правят флуоресцентные лампы, не ищите постепенного отказа от ртути. «Было исследовано множество других атомов и молекул, — объясняет Дакин, — но никто не нашел ничего более практичного и эффективного, чем ртуть».

NEWMOA — Использование ртути в освещении

«Использование ртути в освещении» обобщает использование ртути в осветительных приборах, таких как люминесцентные лампы, автомобильные фары и неоновые вывески. Этот информационный бюллетень охватывает все типы ламп, которые содержат ртуть в отдельных устройствах; общее количество ртути во всех устройствах, которые были проданы в США как новые в 2001 и 2004 годах; переработка / утилизация ртутных ламп; и безртутные альтернативы.

Информация в этом информационном бюллетене основана на данных, представленных государственным членам Межгосударственного информационного центра по образованию и сокращению выбросов ртути (IMERC) 1 , включая Коннектикут, Луизиану, Мэн, Массачусетс, Нью-Гэмпшир, Нью-Йорк, Род-Айленд и Вермонт .Эти данные доступны в Интернете через базу данных IMERC Mercury-Added Products. 2

При рассмотрении данных, обобщенных в этом информационном бюллетене, необходимо учитывать ряд важных предостережений:

  • Информация может не отражать всю совокупность ртутьсодержащих ламп, продаваемых в США Страны-члены IMERC постоянно получают новую информацию от производителей продуктов с добавлением ртути, и данные, представленные в этом Информационном бюллетене, могут занижать общее количество ртуть продается в этой товарной категории.
  • Эта информация обобщает использование ртути в освещении, продаваемом по всей стране с 2001 года. Она не включает лампы с добавлением ртути, проданные до 1 января 2001 года или экспортированные за пределы США.
  • Представленные данные включают только ртуть, которая используется в продукте, и не включает ртуть, выделяемую во время добычи, производства или других этапов жизненного цикла продуктов.

Типы ртутных ламп

Ртуть используется в различных лампах накаливания.Ртуть полезна в освещении, потому что она способствует эффективной работе лампочек и увеличению срока их службы. Флуоресцентные и другие лампы с добавлением ртути обычно более энергоэффективны и служат дольше, чем лампы накаливания и другие эквивалентные формы освещения. Пока лампы используются, ртуть в них не представляет опасности для здоровья.

Люминесцентные лампы 3 работают при очень низком давлении газа. Они излучают свет, когда электрический ток проходит между двумя электродами (также называемыми катодами) в трубке, заполненной парами ртути низкого давления и инертными газами, такими как аргон и криптон.Электрический ток возбуждает пары ртути в трубке, генерируя лучистую энергию, в основном в ультрафиолетовом (УФ) диапазоне. Энергия заставляет люминофорное покрытие на внутренней стороне трубки «флуоресцировать», преобразовывая ультрафиолетовый свет в видимый свет. Изменение состава порошка люминофора внутри люминесцентных ламп изменяет спектр производимого света. Ртуть присутствует в лампе как в порошке люминофора, так и в парах.

Рисунок 1: Иллюстрация компонентов люминесцентной лампы и их работы
Источник фото: Northeast Lamp Recycling, Inc.

Для люминесцентных ламп требуется балласт, который представляет собой устройство, используемое для обеспечения и регулирования напряжения в лампе, а также стабилизации тока в цепи. Люминесцентные лампы более энергоэффективны, чем лампы накаливания эквивалентной яркости, потому что большая часть потребляемой энергии преобразуется в полезный свет, а меньшая — в тепло. У них также более длительный срок службы лампы.

В зависимости от типа люминесцентной лампы они могут содержать ртуть в широком диапазоне от более 0 до 100 миллиграммов (мг).По данным Национальной ассоциации производителей электрооборудования (NEMA), около половины люминесцентных ламп, производимых их членами и продаваемых в США, содержат от 5 до 10 мг ртути; в то время как четверть содержат от 10 до 50 мг.

Типичные типы люминесцентных ламп включают: линейные (прямые), U-образные (изогнутые) и круглые (круглые) люминесцентные лампы / лампы; запперы от насекомых; лампы для загара; черные огни; бактерицидные лампы; лампы повышенной мощности; люминесцентные лампы с холодным катодом; и компактные люминесцентные лампы, как описано ниже:

Линейные люминесцентные, U-образные лампы и лампы Circline используются для общего освещения. Они широко используются в коммерческих зданиях, школах, промышленных предприятиях и больницах.

Bug zappers содержат люминесцентную лампу, излучающую ультрафиолетовый свет, привлекающий нежелательных насекомых.

U-образные и круглые лампы
Источник фото: Northeast Lamp Recycling, Inc

В лампах для загара используется люминофорная композиция, излучающая в основном ультрафиолетовый свет, тип A (невидимый свет, который может вызвать повреждение кожи), с небольшим количеством ультрафиолетового света, тип B.

Черный свет использует состав люминофора, который преобразует коротковолновое УФ-излучение внутри трубки в длинноволновое УФ-излучение, а не в видимый свет. Их часто используют в судебно-медицинских исследованиях.

Лампы для загара
Источник фото: Northeast Lamp Recycling, Inc.,
Бактерицидные лампы не используют люминофорный порошок, а их трубки изготовлены из плавленого кварца, прозрачного для коротковолнового УФ-света.Излучаемый ультрафиолетовый свет убивает микробы и ионизирует кислород до озона. Эти лампы часто используются для стерилизации воздуха или воды.
Бактерицидная лампа
Источник фото: Northeast Lamp Recycling, Inc.,

Люминесцентные лампы высокой мощности (HO) используются на складах, промышленных объектах и ​​в складских помещениях, где необходимо яркое освещение. Лампы с высокой выходной мощностью также используются для наружного освещения из-за их более низкой начальной температуры и в качестве ламп для выращивания растений.Они работают так же, как люминесцентные лампы, но рассчитаны на дуги с гораздо большим током. Излучаемый свет намного ярче, чем у традиционных люминесцентных ламп. Однако они менее энергоэффективны, поскольку требуют более высокого электрического тока.

Лампы с холодным катодом представляют собой люминесцентные лампы небольшого диаметра, которые используются для подсветки жидкокристаллических дисплеев (ЖКД) на широком спектре электронного оборудования, включая компьютеры, телевизоры с плоским экраном, фотоаппараты, видеокамеры, кассовые аппараты, цифровые проекторы, копировальные аппараты и факсы.Они также используются для подсветки приборных панелей и развлекательных систем в автомобилях. Люминесцентные лампы с холодным катодом работают при гораздо более высоком напряжении, чем обычные люминесцентные лампы, что устраняет необходимость нагревания электродов и увеличивает эффективность лампы на 10–30 процентов. Они могут быть разных цветов, иметь высокую яркость и долговечность.

Компактные люминесцентные лампы (КЛЛ) используют ту же базовую технологию, что и линейные люминесцентные лампы, но складываются или скручиваются по спирали, чтобы приблизиться к физическому объему лампы накаливания.В КЛЛ с винтовым креплением обычно используются люминофоры «премиум» для получения хорошего цвета, они поставляются со встроенным балластом и могут быть установлены практически в любую настольную лампу или осветительную арматуру, в которую можно установить лампу накаливания. КЛЛ на штифтовой основе не используют интегральные балласты и предназначены для использования в светильниках с отдельным балластом. Как винтовые, так и штифтовые КЛЛ используются в коммерческих зданиях. Использование этих типов ламп в жилых помещениях растет из-за их энергоэффективности и длительного срока службы.

Индивидуальные КЛЛ обычно содержат менее 10 мг ртути, при этом значительная часть (две трети) содержит менее 5 мг.Небольшой процент КЛЛ содержит от 10 до 50 мг ртути.

Примеры ламп компактных люминесцентных
Источники фото: Osram Sylvania и GE Lighting

Разряд высокой интенсивности (HID) 4 — термин, обычно используемый для нескольких типов ламп, включая металлогалогенные, натриевые лампы высокого давления и лампы на парах ртути. Лампы HID работают аналогично люминесцентным лампам. Между двумя электродами в газонаполненной трубке возникает дуга, в результате чего металлический пар производит лучистую энергию. Однако для HID-ламп не требуется люминофорный порошок, поскольку сочетание факторов смещает большую часть производимой энергии в видимый диапазон. Кроме того, электроды расположены гораздо ближе друг к другу, чем в большинстве люминесцентных ламп; а в рабочих условиях общее давление газа в лампе относительно высокое. Это вызывает чрезвычайно высокие температуры в трубке, в результате чего металлические элементы и другие химические вещества в лампе испаряются и генерируют видимую лучистую энергию.

Лампы

HID имеют очень долгий срок службы. Некоторые из них излучают намного больше люмен на прибор, чем обычные люминесцентные лампы. Как и люминесцентные лампы, источники HID работают от балластов, специально разработанных для используемых ламп и мощности. Кроме того, HID-лампам требуется период прогрева для достижения полной светоотдачи. Даже кратковременное отключение питания может привести к повторному срабатыванию системы и ее повторному прогреву — процесс, который может занять несколько минут.

Названия ламп HID (т.(например, галогенид металла, натрий высокого давления и пары ртути) относятся к элементам, которые добавляются к газам, которые обычно представляют собой ксенон или аргон и ртуть в потоке дуги. Каждый тип элемента приводит к тому, что лампа имеет несколько разные цветовые характеристики и общую эффективность лампы, как описано ниже:

Металлогалогенные лампы (MH) используют галогениды металлов, такие как йодид натрия, в дуговых трубках, которые излучают свет в большинстве областей спектра. Они обеспечивают высокую эффективность, отличную цветопередачу, длительный срок службы и хороший световой поток, и обычно используются на стадионах, складах и в любых промышленных помещениях, где важно различать цвета. Они также используются для ярких голубых автомобильных фар и для освещения аквариумов. Доступны маломощные лампы MH, которые стали популярными в универмагах, продуктовых магазинах и во многих других сферах, где важно качество света. Из всех ртутных ламп лампы MH следует рассматривать как полную систему, состоящую из лампы, балласта, воспламенителя, приспособления и органов управления.
Металлогалогенная лампа
Источник фото: Northeast Lamp Recycling, Inc.
Количество ртути, используемой в отдельных лампах MH, колеблется от более 10 мг до 1000 мг, в зависимости от уровня мощности. По данным NEMA, около одной трети этих ламп, продаваемых в США, содержат от 100 до 1000 мг ртути.

Металлогалогенные керамические лампы (CMH) были недавно представлены как высококачественная, энергоэффективная альтернатива лампам накаливания и галогенным источникам света. Многие из них оптически эквивалентны источникам галогенов, для замены которых они были разработаны.Они используются для акцентного освещения, освещения магазинов и полезны в помещениях с большим объемом, с высотой потолка 14-30 футов. Дуговая трубка изготовлена ​​из керамики. Лампы CMH обеспечивают лучшее качество света, лучшее сохранение светового потока и лучшую однородность цвета, чем лампы MH, при более низкой стоимости.

Лампы

CMH содержат меньше ртути, чем лампы MH. Большинство из них содержат от более 5 до 50 мг ртути.

Натриевые лампы высокого давления (HPS) — высокоэффективные источники света, но они имеют тенденцию выглядеть желтыми и плохо передают цвета.Лампы HPS были разработаны в 1968 году как энергоэффективные источники для наружного, охранного и промышленного освещения и особенно широко используются в уличном освещении. Стандартные лампы HPS при достижении полной яркости излучают золотой (желтый / оранжевый) белый свет. Из-за плохой цветопередачи их использование ограничено наружными и промышленными применениями, где приоритетом являются высокая эффективность и долгий срок службы.

Лампы

HPS обычно содержат от 10 до 50 мг ртути. Небольшой процент содержит более 50 мг ртути.

Натриевые лампы высокого давления
Источник фото: Osram Sylvania

Освещение на парах ртути — самая старая технология HID. Ртутная дуга дает голубоватый свет, который плохо передает цвета. Поэтому большинство ламп на парах ртути имеют люминофорное покрытие, которое изменяет цвет и в некоторой степени улучшает цветопередачу.Лампы на парах ртути имеют меньшую светоотдачу и являются наименее эффективными членами семейства HID. Они были разработаны для решения проблем с люминесцентными лампами для наружного использования, но менее энергоэффективны, чем люминесцентные. Лампы на ртутных парах в основном используются в промышленности и наружном освещении (например, оборудование для обеспечения безопасности, дороги и спортивные арены) из-за их низкой стоимости и длительного срока службы (от 16 000 до 24 000 часов).
Ртутные лампы
Источник фото: Osram Sylvania

NEMA отмечает, что рынок этих ламп сокращается, и их использование будет продолжать сокращаться, поскольку их балласты запрещены в соответствии с Законом об энергетической политике 2005 года (EPACT).

Согласно NEMA, ртутные лампы обычно содержат от 10 до 100 мг ртути. Небольшая часть содержит более 100 мг ртути.

Ртутные лампы с короткой дугой — это кварцевые лампы сферической или слегка продолговатой формы с двумя электродами, глубоко проникающими в колбу, так что они находятся на расстоянии всего нескольких миллиметров друг от друга. Колба заполнена парами аргона и ртути при низком давлении. Мощность может варьироваться от сотни до нескольких киловатт.Благодаря небольшому размеру дуги и высокой мощности дуга получается чрезвычайно интенсивной. Ртутные лампы с короткой дугой используются для специальных применений, таких как прожекторы, специализированное медицинское оборудование, фотохимия, УФ-отверждение и спектроскопия.

Ртутные лампы с короткой дугой содержат относительно большее количество ртути, обычно от 100 до 1000 мг. Почти четверть этих ламп содержит более 1000 мг ртути.

Металлогалогенная лампа с короткой дугой ртутная
Источник фото: Northeast Lamp Recycling, Inc.

Ксеноновые ртутные лампы с короткой дугой работают аналогично ртутным лампам с короткой дугой, за исключением того, что они содержат смесь ксенона и паров ртути. Однако они не требуют такого длительного периода прогрева, как обычные ртутные лампы с короткой дугой, и имеют лучшую цветопередачу. Они используются в основном в промышленных приложениях.
Ртутные ксеноновые лампы с короткой дугой
Источник фото: Northeast Lamp Recycling, Inc.

Ртутные ксеноновые лампы с короткой дугой могут содержать от 50 до 1000 мг ртути. Небольшой процент этих ламп содержит более 1000 мг ртути.

Ртутные капиллярные лампы обеспечивают интенсивный источник лучистой энергии от ультрафиолета до ближнего инфракрасного диапазона. Эти лампы не требуют периода прогрева для запуска или повторного запуска и достигают почти полной яркости за секунды.Они бывают различной длины дуги, мощности излучения и способов монтажа и используются в промышленных условиях (например, для печатных плат), для УФ-отверждения и в полиграфии. УФ-отверждение широко используется в шелкографии, печати и тиражировании CD / DVD, производстве медицинских изделий, декорировании бутылок / чашек и обработке / нанесении покрытий.

Эти специальные лампы содержат от 100 до 1000 мг ртути.

Капиллярные лампы ртутные
Источник фото: Northeast Lamp Recycling, Inc.

Неоновые лампы — это газоразрядные лампы, которые обычно содержат газы неон, криптон и аргон (также называемые благородными газами) при низком давлении. Подобно люминесцентным лампам, каждый конец неонового света содержит металлические электроды. Электрический ток, проходящий через электроды, ионизирует неон и другие газы, заставляя их излучать видимый свет. Неон излучает красный свет; другие газы излучают другие цвета. Например, аргон излучает сиреневый цвет, а гелий излучает оранжево-белый цвет.Цвет «неонового света» зависит от смеси газов, цвета стекла и других характеристик лампочек.

Хотя термин «неоновый свет» относится ко всем газоразрядным лампам, использующим благородные газы, независимо от цвета лампы, только красные лампы являются настоящими неоновыми огнями (т.е. используют неон). Красные неоновые лампы не содержат ртути. Почти в каждом другом цвете «неонового света» помимо других благородных газов используются аргон, ртуть и люминофор.

Неоновая легкая промышленность — это надомная промышленность. Ремесленники изготавливают каждую лампу индивидуально в небольших мастерских. Огромное количество производителей неонового света затрудняет их идентификацию IMERC. В результате страны-участницы IMERC до сих пор не получали Уведомлений от большинства производителей неонового света.

Неоновые лампы содержат от 250 до 600 мг ртути на лампу, в зависимости от предпочтений производителя.

Количество ртути в отдельных лампах

Таблица 1 суммирует диапазон количества ртути в ртутных лампах каждого типа, которые производятся и продаются как новые в США.S. Производители, импортеры и дистрибьюторы продуктов с добавлением ртути указывают количество использованной ртути в виде точного числа или диапазона. Эти данные были переданы странам-членам IMERC компаниями-членами Национальной ассоциации производителей электрооборудования (NEMA) за 2004 календарный год.

Таблица 1: Использование ртути в лампах, проданных компаниями NEMA в 2004 г.
Тип лампы Количество ртути в лампе (мг) Процент ламп с указанным количеством ртути
Флуоресцентный 0–5
> 5–10
> 10–50
> 50–100
12
48.5
27
12,5
CFL 0–5
> 5–10
> 10–50
66
30
4
галогенид металла (MH) > 10–50
> 50–100
> 100–1000
24
40
35
Керамический галогенид металла 0–5
> 5–10
> 10–50
17. 6
46,8
35,6
Натрий высокого давления > 10–50 97
Пары ртути > 10–50
> 50–100
> 100–1000
58
29
12
Меркурий с короткой дугой > 100–1000
> 1 000
65
23
Капилляр ртути > 100–1000 100

По данным производителей ламп, примерно 60 процентов всех типов люминесцентных ламп, продаваемых в США.С. в 2004 г. содержал 10 мг ртути и менее. Остальные 40 процентов содержали более 10 мг и до 100 мг ртути. Лампы, используемые в оборудовании для загара, содержат в среднем 17 мг ртути на лампу, при высоком уровне 20 мг и низком уровне 5,5 мг. Сообщалось, что бактерицидные лампы содержат в среднем 7,6 мг ртути на лампу, при этом максимальное значение составляет 70 мг, а минимальное — 5,5 мг. По сообщениям, все четырехфутовые линейные люминесцентные лампы содержали в среднем 13,3 мг, максимальное — 70 мг, минимальное — 2.5 мг. Четырехфутовые люминесцентные лампы, прошедшие испытание на определение характеристики токсичности выщелачивания (TCLP) 5 , содержали в среднем 5,3 мг ртути, максимальное значение — 20 мг, минимальное — 1,4 мг.

Компактные люминесцентные лампы содержали наименьшее количество ртути на лампу в 2004 году. Две трети этих ламп содержали 5 мг или меньше ртути, а 96 процентов содержали 10 мг или меньше.

Лампы

HID как класс содержали относительно большее количество ртути в отдельных лампах, проданных в 2004 году. Из всех ламп HID лампы MH содержат наибольшее количество ртути. Почти три четверти ламп MH, проданных в 2004 году компаниями-членами NEMA, содержали от более 50 до 1000 мг ртути.

Ртутные короткодуговые и ртутные капиллярные лампы содержат относительно большое количество ртути. Две трети ртутных ламп с короткой дугой содержат от 100 до 1000 мг ртути, а еще 23 процента содержат более 1000 мг ртути. Все ртутные капиллярные лампы содержат от более 100 до 1000 мг ртути.

Общее использование ртути в лампах

В таблице 2 представлено общее количество ртути в лампах, проданных в США в 2001 и 2004 календарных годах для всех производителей ламп, подотчетных IMERC, и только для компаний, представленных NEMA.

Производители ламп, входящие в NEMA, включают General Electric, Osram Sylvania, Philips, Eye Lighting, Halco, Light Sources, Panasonic, Ruud Lighting, SLI, Ushio, Venture Lighting и Westinghouse. Полный список всех производителей ламп, отчитывающихся перед государствами-членами IMERC, доступен в отчете Тенденции использования ртути в продуктах: сводка базы данных IMERC по продуктам с добавлением ртути , июнь 2008 г. 6

Таблица 2: Общее количество ртути в лампах, продаваемых в США (фунты)
Тип лампы 2001 Total Mercury
(все компании)
2001 Всего ртути
(NEMA)
2004 Всего Меркурия
(все компании)
2004 Всего ртути
(NEMA)
Флуоресцентный 16,657 12,207 14 372 12,207
КЛЛ 877 600 1,479 651
Скрытый *
— галогенид металла
— Керамический галогенид металла
— Натрий высокого давления
— Пар ртути

Всего скрытых ламп


— 2 145 90 151 — Н / Д
— 401
— 203

2,749


2,139
N / A
399
188

2 727


2,426
31
453
213

3 156


2,420
31
452
213

3 085

Ртуть с короткой дугой 10 НЕТ 17 13
Неон 1,103 НЕТ 1,070 НЕТ
Разное ** 42 НЕТ 24 НЕТ
ИТОГО 21 438 15,534 20,118 15 956

* Данные за 2001 год не разбивают лампы HID по конкретным типам; несколько производителей предоставили эту информацию.
** В эту категорию входят некоторые лампы HID. Невозможно было отделить их от других ламп в категории.

N / A = не применимо

В 2001 году все производители ламп, подотчетные государствам-членам IMERC, продали около 21 438 фунтов или около 10,7 тонны ртути в ртутных лампах. В 2004 году этот показатель снизился на 0,6 тонны, или на 6 процентов. Использование ртути в люминесцентных лампах снизилось на 14 процентов, тогда как использование ртути в лампах HID увеличилось примерно на 15 процентов.Уменьшение общего содержания ртути в люминесцентных лампах, вероятно, связано с усилиями производителей по сокращению дозировки ртути на лампу, в то время как более высокие продажи, вероятно, объясняют увеличение общего содержания ртути в лампах HID.

Наибольшее изменение между двумя отчетными годами касается общего количества ртути, используемой в компактных люминесцентных лампах, увеличившись почти на 70 процентов, что связано с увеличением продаж. Хотя ртутные лампы с короткой дугой содержат больше ртути в каждом блоке, чем люминесцентные лампы, общее количество для всех блоков было низким, поскольку в США было продано лишь несколько штук.С.

Из общего количества ртути в 2001 году, показанного в таблице 2, 72 процента было продано в лампах, произведенных компаниями-членами NEMA. Ртуть в лампах, продаваемых членами NEMA, в 2004 году немного увеличилась до 79 процентов от общего объема ртути, проданной в лампах.

С 2004 года значительно увеличилось количество электроники, в которой используются люминесцентные лампы с холодным катодом, часто в серии, используемой для освещения дисплеев. Автономные ЖК-мониторы теперь входят в стандартную комплектацию многих новых компьютеров, а в большом разнообразии домашнего и офисного оборудования теперь используются ЖК-экраны, включая телевизоры, устройства глобальной системы позиционирования (GPS), портативные системы связи и развлечения, а также цифровые камеры.Использование ламп с добавлением ртути в автомобилях и транспортных средствах для отдыха также значительно увеличилось за последние несколько лет. В дополнение к HID-фарам многие автомобили теперь оснащены развлекательными системами, навигационными системами и приборными панелями, в которых используются ЖК-экраны или подсветка с ртутными лампами. Многие автомобили для отдыха также предлагают пакеты опций, которые включают плоские телевизоры с люминесцентными лампами и линейные люминесцентные лампы.

В последние годы государственные учреждения, компании и экологические организации активно продвигали использование энергоэффективных лайнеров и компактных люминесцентных ламп.Стоимость КЛЛ резко снизилась, поэтому они стали более доступными для потребителей. Эти усилия и рост продаж продукции с ЖК-экранами, вероятно, увеличат общее использование ртути в лампах в трехлетнем отчетном 2007 году.

Вторичная переработка и утилизация ртутных ламп

Согласно EPA, люминесцентные и другие ртутные лампы должны обрабатываться как опасные отходы в соответствии с Правилом об универсальных отходах 7 , если только лампа не соответствует требованиям TCLP. Все государства-члены IMERC, Калифорния, Коннектикут, Иллинойс, Луизиана, Мэн, Массачусетс, Миннесота, Нью-Гэмпшир, Нью-Джерси, Нью-Йорк, Северная Каролина, Род-Айленд, Вермонт и Вашингтон приняли Правило универсальных отходов.Эти государства требуют, чтобы предприятия и другие нежилые организации перерабатывали ртутьсодержащие лампы или утилизировали их как универсальные или опасные отходы. В большинстве случаев эти правила не распространяются на жилые домохозяйства. Однако в некоторых штатах, включая Мэн, Массачусетс, Миннесоту и Вермонт, домашние хозяйства должны надлежащим образом утилизировать или утилизировать все ртутьсодержащие лампы, включая КЛЛ.

Существует значительное количество компаний, государственных программ и неправительственных организаций, занимающихся сбором и переработкой отработанных ламп с добавлением ртути. 8 Штаты Нью-Гэмпшир и Вермонт успешно работают с местными хозяйственными магазинами по сбору и переработке отработанных люминесцентных ламп. Недавно Home Depot запустила национальную кампанию по сбору и переработке КЛЛ у потребителей. 9 Бесплатная программа позволяет потребителям сдавать отработанные люминесцентные лампы на переработку почти в 2 000 магазинов. Другие независимые хозяйственные магазины и сети хозяйственных магазинов, включая Ace и TrueValue, могут принимать КЛЛ и / или другие люминесцентные лампы для сбора и переработки в некоторых магазинах.Программы по обращению с опасными бытовыми отходами (HHW) также будут принимать и перерабатывать КЛЛ и другие люминесцентные лампы во многих сообществах.

Sylvania предлагает потребителям удобную программу возврата использованных КЛЛ на переработку. 10 Потребители могут заказать «Mini RecyclePak» за 15 долларов США через Интернет. Комплект предварительно промаркирован и поставляется со всеми необходимыми упаковочными материалами, поэтому потребители просто возвращают комплект с использованными лампочками в любое почтовое отделение США или центр сбора почты.Компания Sylvania также предлагает комплекты для переработки для предприятий и дистрибьюторов, которые подходят для люминесцентных ламп других размеров.

Для получения дополнительной информации о государственных требованиях к переработке и утилизации ламп посетите следующие веб-сайты: http://www.newmoa.org/prevention/mercury/lamprecycle/requirements.cfm и / или http://www.almr.org/ . Домовладельцы и предприятия могут также позвонить в бюро по обращению с опасными отходами своих государственных природоохранных органов для получения дополнительной информации.

Департамент охраны окружающей среды штата Мэн (Maine DEP) недавно завершил исследование выбросов ртути при разрыве КЛЛ. 11 Исследование показало, что концентрация ртути в сломанной лампе может быть выше безопасного уровня в воздухе помещения. В результате Департамент окружающей среды штата Мэн пересмотрел свои рекомендации по очистке неисправных КЛЛ. Агентство по охране окружающей среды США (EPA) и многие государственные природоохранные агентства рассмотрели отчет штата Мэн и обновили свои рекомендации по очистке сломанных КЛЛ. EPA постоянно обновляет это руководство для потребителей и планирует провести дополнительные исследования по надлежащей очистке сломанных КЛЛ.

Для получения дополнительной информации об очистке от пролитой ртути флуоресцентной лампы посетите: http://www.epa.gov/mercury/spills/index.htm#fluorescent

Перечислены дополнительные ссылки на руководство по очистке CFL стран-членов IMERC:

Как указано выше, ртуть содержится в порошковой форме и в виде пара в люминесцентных лампах, и со временем она прилипает к стеклянным стенкам ламп. Для получения дополнительной информации о возможных выбросах ртути из ламп в окружающую среду посетите: http: // www.newmoa.org/prevention/mercury/landfillfactsheet.cfm.

Альтернативы без ртути

В настоящее время недоступна технология для производства энергосберегающих ламп общего назначения без содержания ртути, хотя лампы без содержания ртути были недавно разработаны для конкретных целей, таких как автомобильные фары или освещение витрин. Поэтому лампы с добавлением ртути будут по-прежнему использоваться, но с ними следует обращаться как с опасными отходами и утилизировать по окончании срока их полезного использования.Как указано выше, в каждом штате есть особые правила для предприятий и домовладельцев в отношении переработки или утилизации ламп с добавлением ртути.

Технология светоизлучающих диодов (LED) — это один из вариантов, который, как ожидается, при расширении исследований и разработок станет жизнеспособной альтернативой ртутьсодержащим лампам в будущем. 12 Светодиод — это полупроводниковый диод, который излучает свет, когда электрический ток проходит в прямом направлении устройства через цепь светодиода. Свет, излучаемый светодиодными лампами, зависит от используемого полупроводникового материала и может иметь синий (более холодный) или белый (теплый) цвет.

Светодиоды

используются в коммерческих целях с 1960-х годов и предлагают энергоэффективность, экономию на обслуживании, ударопрочность, долговечность и другие преимущества. Они значительно более энергоэффективны, чем лампы накаливания и люминесцентные лампы. Сегодняшние светодиоды обычно используются в коммерческих осветительных приборах, таких как дисплеи стадионов, рекламные щиты, светофоры, уличные фонари и, в последнее время, в качестве световых индикаторов в автомобилях и авианосцах. Однако для большинства целей общего освещения светодиоды еще не могут конкурировать с люминесцентными лампами из-за их стоимости — особенно по сравнению с компактными люминесцентными лампами, представленными сегодня на рынке.Необходимы дополнительные исследования для повышения энергоэффективности и снижения стоимости светодиодных технологий.


1 IMERC: http://www.newmoa.org/prevention/mercury/imerc/about.cfm
2 База данных продуктов с добавлением ртути: http://www.newmoa.org/prevention/mercury/imerc/ notification / index.cfm
3 Fluorescent Technology, Osram Sylvania: http://www.sylvania.com/LearnLighting/LightAndColor/FluorescentTechnology
4 HID Technology, Osram Sylvania: http: // www.sylvania.com/LearnLighting/LightAndColor/HIDTechnology/
5 Характеристика токсичности выщелачивания (TCLP) — это метод тестирования Федерального агентства по охране окружающей среды, который используется для определения опасных или неопасных отходов с целью обращения с ними и их утилизации. Тест TCLP измеряет вероятность просачивания или «выщелачивания» ртути в грунтовые воды из отходов, которые могут быть захоронены на свалке. В тесте TCLP лампы измельчаются на мелкие кусочки и смешиваются с кислотным раствором. Затем кислотный раствор отфильтровывают от ламп.Если на литр кислотного контрольного раствора обнаруживается менее 0,2 мг ртути, в соответствии с федеральным законом отходы считаются неопасными. Для получения дополнительной информации: http://www.epa.gov/SW-846/faqs_tclp.htm
6 Тенденции использования ртути в продуктах: сводка базы данных IMERC по продуктам с добавлением ртути: http: //www.newmoa. org /vention / mercury / imerc / pubs / reports.cfm
7 Правило универсальных отходов (UWR) — это постановление Агентства по охране окружающей среды, направленное на оптимизацию требований по сбору некоторых опасных отходов следующих категорий: батареи, пестициды, ртутьсодержащее оборудование (е.ж., термостаты) и лампы (например, люминесцентные лампы). Правило разработано для сокращения количества опасных отходов в потоке твердых бытовых отходов (ТБО) за счет упрощения сборщиками универсальных отходов их сбора и отправки на переработку или надлежащую утилизацию. Для получения дополнительной информации: http://www.epa.gov/epawaste/hazard/wastetypes/universal/
8 Проект по переработке ламп в Нью-Гэмпшире: http://des.nh.gov/organization/commissioner/p2au/pps/ мс / mrpptp / lamp.htm
Проект по переработке ламп в Вермонте: http: // www.mercvt.org/dispose/lamprecycleproject.htm
9 Национальная кампания CFL Home Depot: http://www6.homedepot.com/ecooptions/stage/pdf/cfl_recycle.pdf [PDF]
10 Программа утилизации ламп Sylvania: http://www.sylvania.com/Recycle/CFLandHouseholdlightBulbrecycling/
11 Отчет об исследовании поломки компактных люминесцентных ламп DEP в штате Мэн, февраль 2008 г .: http://maine.gov/dep/rwm/homeowner/cflreport.htm
12 Твердотельное освещение: часто задаваемые вопросы по светодиодной технологии, U.С., Министерство энергетики: http://www.netl.doe.gov/ssl/faqs.htm

Полное руководство по балластам для люминесцентных ламп

Люминесцентная лампа использует электричество, чтобы ртуть испускала ультрафиолетовый (УФ) свет. Когда этот ультрафиолетовый свет (который невидим невооруженным глазом) взаимодействует с покрытием из порошка люминофора внутри трубки, он светится и излучает свет, который мы видим и используем в наших домах.

Но всякий раз, когда мы используем электричество, мы должны контролировать его, иначе мы рискуем разрушить устройство и даже подвергнуть себя опасности.Чтобы регулировать ток, протекающий через люминесцентные лампы, мы используем так называемый балласт.

Что такое балласт в люминесцентном свете?

Балласт (иногда называемый пускорегулирующим аппаратом) — это небольшое устройство, подключенное к электрической цепи светильника, которое ограничивает количество электрического тока, проходящего через него.

Поскольку напряжение в электросети вашего дома выше, чем требуется для работы фонаря, балласт дает свету небольшое повышение напряжения для запуска, а затем достаточное количество питания для безопасной работы.

Зачем нужны балласты?

Процесс, который происходит внутри флуоресцентного света, включает в себя молекулы газообразной ртути, нагретые электричеством и делающие их более проводящими. Без балласта, чтобы контролировать это, свет будет пропускать слишком большой ток, и он перегорит и, возможно, даже загорится.

Как работает балласт люминесцентного света?

В люминесцентных лампах используется электронный или магнитный балласт. В настоящее время магнитные балласты — это довольно устаревшая технология, от которой производители отказываются, и поэтому они обычно используются только в старых типах фонарей.

Магнитные балласты

Они основаны на принципах электромагнетизма: когда электрический ток проходит по проводу, он естественным образом создает вокруг себя магнитную силу.

Магнитный балласт (также называемый дросселем) содержит катушку из медной проволоки. Магнитное поле, создаваемое проволокой, улавливает большую часть тока, поэтому флуоресцентный свет проникает только в нужном количестве. Это количество может колебаться в зависимости от толщины и длины медного провода.Если вы иногда слышите легкое жужжание или видите, как оно мерцает, причиной этого является изменение тока.

Менее совершенная по конструкции, чем электронные модели, некоторые магнитные балласты не могут работать без стартера. Этот небольшой цилиндрический компонент находится за осветительной арматурой и заполнен газом, который при нагревании позволяет свету включиться. Это называется методом предварительного нагрева.

Метод предварительного нагрева
  1. Включен выключатель света.Внутри обоих концов светильника находятся металлические электроды с прикрепленными нитями. Ток входит в нити, но на данный момент слишком слаб, чтобы зажечь свет, хотя его достаточно, чтобы нагреть газ (неон или аргон) внутри стартера.
  2. Нагретый газ заставляет компоненты внутри стартера пропускать полный ток в нити. Это быстро нагревает газообразную ртуть внутри светильника.
  3. По мере того, как стартер остывает, он блокирует путь тока к нитям и заставляет его искать другой путь.Если газообразная ртуть нагревается в достаточной степени, она проводит ток, генерирует свет и затем продолжает гореть. Если он недостаточно горячий, электричество вернется через стартер и снова запустит процесс. Это то, что вызывает мерцание некоторых старых люминесцентных ламп.
  4. Теперь, когда поступает больше электричества, балласт начинает выполнять свою работу по его регулированию.

Поскольку для завершения этого процесса может потребоваться несколько секунд, вы можете увидеть задержку между моментом, когда вы щелкнете переключателем, и тем, когда флуоресцентный свет начнет светиться.

Метод быстрого запуска

Если в вашем осветительном приборе есть две или более люминесцентных лампы, скорее всего, он будет использовать другой метод, известный как быстрый запуск. Этот метод используется в старых пробирках T12 и некоторых T8 и работает без стартера.

  1. В отличие от предварительного нагрева, когда нити получают ток через стартер только для нагрева газообразной ртути, при быстром запуске балласт поддерживает небольшое количество тока, непрерывно протекающего через нити.
  2. Это приводит к ионизации ртутного газа, то есть к заряду, позволяющему проводить электричество.
  3. Поскольку это всего лишь слабый ток, сначала свет будет тускло светиться. Но по мере того, как балласт продолжает проталкивать ток через нити, газ становится все горячее и заряженным, и в результате свет становится ярче. Если ваш фонарь загорается сразу, но для полного его яркости требуется несколько секунд, значит, у него есть пусковой балласт для быстрого запуска.

Одно из преимуществ метода быстрого пуска состоит в том, что, обеспечивая низкий постоянный ток, а не сильный скачок, он продлевает срок службы люминесцентного света.Однако он потребляет больше энергии.

Электронные балласты

Используя более сложные схемы и компоненты, балласты могут управлять током, протекающим через люминесцентные лампы, с большей точностью. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и — благодаря подаче питания на гораздо более высокой частоте — с меньшей вероятностью будут вызывать мерцание или жужжание.

Некоторые старые электронные балласты используют метод быстрого запуска, описанный выше, в то время как новые и более совершенные модели используют то, что известно как мгновенный запуск и запрограммированный запуск.

Метод мгновенного запуска

Эти балласты были разработаны таким образом, чтобы свет можно было включать и работать с максимальной яркостью при первом нажатии переключателя. Вместо предварительного нагрева электродов в балласте используется повышенное высокое напряжение (около 600 вольт) для нагрева и зажигания нитей, а затем ртутного газа. Хотя это делает их энергоэффективными, это также сокращает их жизнь, поскольку скачки напряжения каждый раз, когда они включаются, со временем повреждают их. По этой причине их обычно используют в помещениях, где свет остается включенным на длительное время, например, в офисах, магазинах и на складах.

Метод запрограммированного запуска

Разработанные для областей, в которых освещение постоянно включается и выключается, эти балласты предварительно нагревают электроды контролируемым током перед подачей более высокого напряжения для включения света. Часто это функция освещения, которая активируется датчиками движения (например, в туалетах на рабочих местах или в общественных местах) и позволяет люминесцентному свету длиться долгое время.

Признаки выхода из строя магнитного балласта

Когда ломаются магнитные балласты, в этом часто винят лампочку.Обратите внимание на знаки, указывающие на то, что это ваш балласт:

  • Отложенный старт
  • Жужжание
  • Мерцание
  • Низкая мощность
  • Несоответствие уровней освещения

Вы можете узнать, связана ли проблема с балластом, стартером или лампой, с помощью нашего руководства — Простые решения для медленного запуска, мерцания или неисправных люминесцентных ламп.

Проверка балласта мультиметром / вольт-омметром

Чтобы убедиться, что проблема связана с балластом, вам нужно проверить его с помощью мультиметра.Мультиметр предназначен для измерения электрического тока, напряжения и сопротивления. Они недорогие и их можно найти в большинстве магазинов электроники.

Эти инструкции предназначены только для ознакомления — убедитесь, что вы ссылаетесь на электрические схемы производителя. Если вам не хватает инструкции по эксплуатации, большинство крупных производителей разместят опи на своих сайтах.

Для проверки вашего балласта:

Вам понадобится

Как к

  1. Отключить питание светильника
  2. Снять кожух фары
  3. Снимите лампочки
  4. Снимите балласт с приспособления
  5. Если балласт выглядит сгоревшим, его обязательно нужно заменить
  6. Установите мультиметр на сопротивление
  7. Вставьте первый щуп мультиметра в провод, соединяющий красные провода вместе
  8. Коснитесь вторым щупом зеленого и желтого проводов
  • Если мультиметр не двигается, значит, балласт мертв
  • Если мультиметр все еще работает, стрелка мультиметра должна переместиться вправо

Если проблема не в балласте, возможно, вам потребуется заменить люминесцентную лампу.Вы можете узнать, как это сделать безопасно, из Руководства по безопасной замене и переработке люминесцентных трубок.

Могу ли я сам заменить балласт?

Да, если у вас есть немного технических ноу-хау, хотя, если вы не уверены, лучше всего попросить электрика сделать это за вас, так как это может быть сложной работой. Более дешевые балласты, вероятно, потребуют большего количества переустановок, чем фитинг с фирменным балластом. Стоит потратить немного больше, чтобы сэкономить деньги и силы в будущем.

Фирменные балласты служат долгое время, поэтому, если вы их замените, вам, вероятно, не придется менять его снова в течение 10 или более лет.

Замена магнитных балластов на электронные

Процесс замены магнитных балластов на электронные балласты довольно прост и понятен. Это направление, в котором движется индустрия освещения, так почему бы не поменять их раньше, чем позже, чтобы оптимизировать свое пространство с помощью лучшего и более тихого освещения?

Вам понадобится:

  • Электронный балласт
  • Кусачки
  • Проволочные гайки

Как к

  1. Отключить питание прибора
  2. Открыть приспособление и снять лампу и кожух балласта
  3. С помощью кусачков перережьте оба провода питания (коричневый) и нейтральный (синий), входящие в приспособление.
  4. Закройте провода проволочными гайками.
  5. Используйте кусачки, чтобы отрезать провода, подключенные к розеткам.
  6. Снять магнитный балласт
  7. Вкрутите ЭПРА в приспособление, там же, где был магнитный.
  8. Используйте гайки для соединения проводов розетки.
  9. Подключите силовой и нейтральный провода к соответствующим проводам балласта
  10. Закрепите провода проволочными гайками.
  11. Установить лампу и корпус балласта обратно
  12. Снова включите питание.

При замене балласта существует риск поражения электрическим током, поэтому, если вы не уверены, попросите электрика сделать эту работу за вас.

Нужен ли моей люминесцентной лампе как пускатель, так и балласт?

Отдельные стартеры встречаются только в более старых механизмах управления, поэтому, если приспособлению меньше 15 лет, у него, вероятно, не будет стартера. В более новых лампах процесс, обеспечиваемый стартером, встроен, что делает функцию отдельного стартера избыточной. Если в светильнике есть стартер, это будет очевидно.Вы должны найти маленький серый цилиндр, подключенный к осветительной арматуре.

В чем разница между пусковым переключателем и высокочастотным ПРА?

Высокая частота

Высокочастотный пускорегулирующий аппарат — это современный одиночный балласт, который выполняет функции всех различных компонентов в стандартной пусковой цепи переключателя. Лампы, работающие с высокочастотным балластом, не мерцают, а вместо этого загораются мгновенно из-за того, что частота намного выше.

Переключить пуск

Switch start — это устройство управления, которое используется в промышленности в течение многих лет.Обычно они считаются устаревшими технологиями, и их создают все меньше производителей. Для запуска выключателя требуется дроссель балласта с проволочной обмоткой. Для запуска переключателя можно заменять различные части, а не весь блок, что можно рассматривать как преимущество.

Что такое лампы КЛЛ и где их использовать?

Компактные люминесцентные лампы (лампы CFL) впервые появились на рынке освещения как более энергоэффективная альтернатива лампам накаливания.

Производители уже начали производить линейные люминесцентные лампы, но линейные лампы не подходили к той же розетке, что и лампы накаливания.

CFL так же энергоэффективен, как и линейные люминесцентные лампы, но ввинчивается в то же гнездо, что и лампа накаливания.

Что такое лампы CFL?

Компактные люминесцентные лампы (лампы CFL) — это модификация традиционной люминесцентной технологии. Созданные как более энергоэффективный вариант для обычных ламп накаливания, КЛЛ ввинчиваются в гнездо среднего основания и имеют спиральную конструкцию, а не длинную лампу, что делает их «компактными». Многие КЛЛ также имеют встроенный балласт, в отличие от традиционных люминесцентных ламп.

Как работают компактные люминесцентные лампы?

Поскольку компактные люминесцентные лампы относятся к тому же семейству ламп, что и линейные люминесцентные лампы, мы говорим о той же технологии, которую мы описали в нашей предыдущей публикации. Все, что происходит внутри линейной лампы, по-прежнему происходит внутри компактной люминесцентной лампы.

Хотя линейные флуоресцентные лампы были впервые изобретены в начале 1900-х годов, развитие КЛЛ началось примерно в 1960 году.

Почему понадобилось так много времени, чтобы понять это? Все, что вам нужно было сделать, это взять люминесцентную лампу и скрутить ее в спиральную пружину, верно?

Сделать настоящую люминесцентную лампу меньше по размеру не составило труда. Создание меньшего и более компактного балласта было настоящей проблемой, особенно когда дело дошло до интеграции его с самой лампой.

Что такое балласт? Узнай здесь.

Нужен ли балласт КЛЛ?

Для правильной работы КЛЛ необходимо получать напряжение через балласт.

Есть два типа КЛЛ.

1. Неинтегрированный балласт CFL

Неинтегрированный балласт — это тип технологии CFL, которую мы обычно называем «подключаемым модулем». Это означает, что вы приобретете балласт отдельно от лампы, и балласт будет настроен в приспособлении. Он похож на линейные люминесцентные лампы, но намного меньше линейного балласта.

2. CFL со встроенным или самобалластом

КЛЛ со встроенным балластом созданы для замены ламп накаливания и галогенных ламп.Буквально вынимаем лампу накаливания или галогенную лампу и вставляем в ту же розетку лампочку КЛЛ. НО, нужен ли балласт для ламп накаливания и галогенов? Нет. Итак, для того, чтобы эти КЛЛ работали с обычным винтовым гнездом со средним основанием, в КЛЛ должен быть интегрирован балласт.

Где вы используете лампы CFL?

Самая распространенная причина, по которой люди используют компактные люминесцентные лампы, — это экономия энергии.

Вы, вероятно, не захотите использовать лампочку CFL в винтажной люстре, висящей над обеденным столом.Однако есть и другие применения этих ламп, которые вы видите довольно часто.

1. Банки встраиваемые

Встраиваемые банки используются как в гостиничных, так и в жилых помещениях. Обычно в этих банках довольно часто используются КЛЛ 2700K. Почему? Потому что сама «забавная» лампа не видна миру, но вы по-прежнему экономите энергию и создаете теплую атмосферу.

2. Скрытые светильники

Людям обычно не нравится, как выглядят КЛЛ, поэтому, чтобы смягчить это препятствие, многие управляющие недвижимостью используют КЛЛ в светильниках, которые полностью скрывают лампочку от наших глаз.Многие старые жилые комплексы будут иметь КЛЛ во всей квартире. Будь то облачная чаша на кухне или прямоугольный светильник над зеркалом в ванной, если вы взглянете на него, вы можете быть удивлены — это, вероятно, КЛЛ.

Компактные люминесцентные лампы за и против

Как и все технологии освещения, компактные люминесцентные лампы имеют свои плюсы и минусы. Основываясь на информации, которую мы рассмотрели до сих пор в этом посте, вы можете точно догадаться, что это такое.Давайте нырнем.

CFL профи

  • Энергоэффективность — Просто перейдя с лампы накаливания на компактную люминесцентную, вы увидите 40-процентную экономию на счетах за электроэнергию.
  • Разнообразие цветовых температур — Если вам нужно пространство с действительно холодным освещением, например коридор больницы или терминал аэропорта, флуоресцентные лампы обеспечивают температуру до 6500K по Кельвину.

CFL минусы

  • Сдвиг цвета –КЛЛ, как и линейные флуоресцентные лампы, со временем меняют цвет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *