Что внутри люминесцентной лампы – Принцип работы люминесцентной лампы и ее устройство

Содержание

Принцип работы люминесцентной лампы и ее устройство

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех.

Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

proprovoda.ru

Принцип работы люминесцентной лампы

Категория: Источники освещения

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

simplelight.info

Люминесцентная лампа — подробно о главном

Люминесцентная лампа представляют группу газоразрядных источников света, но используется намного чаще в сравнении с более простыми аналогами. Их популярность обусловлена рядом достоинств. Поэтому, даже относительно высокая стоимость не является помехой приобретению источника света данного вида.

В каких областях применяются?

Раньше основное целевое назначение подобных осветительных приборов сводилось к организации систем освещения административных и общественных зданий (больниц, магазинов, школ, офисных помещений), что было связано с довольно массивной конструкцией. Сегодня люминесцентные лампы характеризуются более совершенным устройством (компактные размеры, электронное пускорегулирующее устройство в качестве замены устаревшего магнитного варианта).

Дополнительно к этому упрощает эксплуатацию и стандартный цоколь, который позволяет устанавливать такие источники света вместо аналога с нитью накаливания.

simplelight.info

Люминесцентная лампа — подробно о главном

Люминесцентная лампа представляют группу газоразрядных источников света, но используется намного чаще в сравнении с более простыми аналогами. Их популярность обусловлена рядом достоинств. Поэтому, даже относительно высокая стоимость не является помехой приобретению источника света данного вида.

В каких областях применяются?

Раньше основное целевое назначение подобных осветительных приборов сводилось к организации систем освещения административных и общественных зданий (больниц, магазинов, школ, офисных помещений), что было связано с довольно массивной конструкцией. Сегодня люминесцентные лампы характеризуются более совершенным устройством (компактные размеры, электронное пускорегулирующее устройство в качестве замены устаревшего магнитного варианта).

Дополнительно к этому упрощает эксплуатацию и стандартный цоколь, который позволяет устанавливать такие источники света вместо аналога с нитью накаливания.

Люминесцентная лампа в современном исполнении широко применяется в быту (освещение частных домов, квартир), рекламе (вывески, щиты). Еще одно направление – фасадная подсветка. Больше прочих разновидностей источников света люминесцентные лампы также подходят для освещения крупных территорий и масштабных объектов.

Строение и принцип работы

Основные конструкционные элементы: трубка или колба (в зависимости от исполнения), один или два цоколя, что также определяется моделью изделия, внутри установлены электроды. Люминесцентная лампа с внутренней стороны покрыта люминофором, без которого было бы невозможно преобразовать затрачиваемую энергию в световое излучение. Внутри колбы/трубки находится инертный газ, ртутные пары.

При подаче электричества между электродами образуется тлеющий разряд. Идеальные условия для такого явления: невысокий уровень давления в колбе наряду с малым значением тока. В результате прохождения электрического тока через газообразную среду возникает ультрафиолетовое излучение.

Для того чтобы люминесцентная лампа обеспечивала видимый глазу свет, используется явление люминесценции. Как раз для этого внутренние стенки трубки или колбы источника света покрываются люминофором.

Принцип действия данного вида лампы описан не полностью, так как для полноценной работы необходимо обеспечить еще и нормальные условия эксплуатации. Речь идет о дополнительной аппаратуре, которая снижает значение тока до нужного уровня, чтобы осветительный прибор не вышел из строя. Раньше для этой цели применялись электромагнитные пускорегулирующие элементы (их еще называют балластом), сегодня более популярны электронные аналоги.

Если подключать люминесцентные лампы при помощи второго из вышеназванных вариантов балласта, в результате можно добиться значительного снижения шумового эффекта (гула) во время работы, а еще источники света в таких условиях перестают мерцать.

Какие бывают разновидности ламп

Существует несколько исполнений, которые отличаются по спектру излучения. Выделяют всего три вида:

  • стандартные;
  • специальные;
  • лампы люминесцентные с улучшенной светопередачей.

Излучение первого варианта характеризуется различными оттенками белого цвета. Это обусловлено тем, что конструкцией предусмотрено однослойное покрытие люминофора. В результате область применения таких источников света несколько сужается. Их обычно используют при организации осветительных систем производственных, административных и общественных объектов (офисы, магазины и прочее).

Различные формы исполнения

Исполнения специального типа характеризуются разным спектром излучения. Их главная задача – обеспечение максимально естественных условий для пребывания в различных помещениях. Например, существуют люминесцентные лампы дневного света, а также варианты конструкций, предназначенные для установки в аквариумах специально для растений или животных.

Существуют еще исполнения, которые используют в помещениях, где разводят птиц. Дополнительно к тому встречаются источники света декоративного целевого назначения. Их главное отличие от прочих вариантов – разноцветное свечение.

Лампы с улучшенной светопередачей имеют одно главное преимущество перед остальными видами, о нем довольно красноречиво говорит название таких источников света – более качественная передача цветов. Это достигается путем нанесения многослойного покрытия (3-5 слоев люминофора) на внутреннюю поверхность колбы/трубки.

Классификация по виду цоколя

Классификация данного вида осветительного прибора осуществляется еще и на основании отличий в конструкциях:

  1. Линейные исполнения.
  2. Компактные люминесцентные лампы.

Первый вариант называется еще трубчатым. А, кроме того, эта разновидность бывает прямой и U-образной конструкции. Линейные источники света подразделяются на группы еще и на основании отличий в размерах (длина и диаметр). Причем наблюдается прямая зависимость между габаритами изделия и его мощностью: чем длиннее лампа, тем выше значение данного параметра. Диаметр колбы также отличается: Т4, Т5, Т8, Т10, Т12. Из обозначения можно узнать размер изделия в дюймах. Тип цоколя для таких источников света – G13.

Подразделяются на исполнения по конструкции колбы

Люминесцентные лампы компактного типа подразделяются на исполнения по конструкции колбы (она может быть изогнута в разных вариантах) и цоколю: E14, E27, E40, а также 2D, G23, G27, G24, G53 и несколько подвидов (G24Q1, G24Q2, G24Q3). Первые три из вышеназванных конструктивных элементов дают возможность устанавливать осветительный прибор вместо исполнений с нитью накаливания.

Обзор плюсов и минусов

Если более подробно изучить характеристики основных вариантов источников света (галогенные, лампы накаливания, люминесцентные и светодиодные аналоги), то можно выделить их сильные и слабые стороны. Например, по интенсивности нагрева из всех существующих конструкций выигрывают лишь светодиодные исполнения, тогда как люминесцентные лампы все же греются, хоть и в несколько меньшей мере, чем источники света с нитью накаливания.

По степени хрупкости газоразрядные приборы уступают варианту на базе диодов. Зато уровень мощности у люминесцентных исполнений и светодиодных источников света находится почти на одном уровне. Для примера, оба исполнения обеспечивают примерно одинаковую интенсивность освещения (700-800 лм) при мощности с разницей всего в 5 Вт. Больше всех потребляют энергию лампы накаливания.

Еще один параметр для сравнения – срок функционирования. Безусловно, лидируют светодиодные исполнения (в среднем до 50 000 часов работы). Однако из всех остальных аналогов люминесцентные лампы выделяются довольно продолжительным периодом эксплуатации (от 4 000 до 20 000 часов), на что оказывают влияние условия работы.

Каким производителям отдать предпочтение?

Одни из наиболее известных марок на сегодняшний день: Philips, Osram, General Electric. Ассортимент осветительной техники очень широк и порой довольно трудно разобраться в том, какой производитель надежнее и ответственнее подходит к работе. Ведь стоимость люминесцентных источников света довольно большая, поэтому важно сразу сделать правильный выбор и купить лампу высокого качества.

Условные обозначения от производителей

Особого доверия заслуживают изделия первых двух из вышеназванных марок, так как они занимаются производством разнотипных источников света, включая и светильники с люминесцентными лампами, и по каждому направлению отмечается высокое качество продукции. Кроме того, все три завода-изготовителя на рынке уже довольно давно.

Эксплуатация

Значительные перепады напряжения в сети оказывают негативное воздействие на такие источники света. Особенно нежелательна перегрузка в большую сторону (выше 240 В). Рекомендуется также включать лампу лишь после ее полного остывания. Допустимые значения температуры окружающей среды для эксплуатации источника света лежат в пределах диапазона: от -15 до +40 градусов.

Маркировка российской продукции

Запрещено использовать люминесцентные лампы наряду со стандартными светорегуляторами (диммерами).

Еще одно ограничение в эксплуатации заключается в том, что данный вид источника света несовместим с электронными коммутирующими устройствами типа датчика движения, освещенности или таймера.

Степень безопасности, утилизация

В полностью исправном состоянии такие лампочки не представляют угрозы жизни и здоровью человека или животного. Но внутри колбы содержатся пары ртути, хоть и в небольших количествах. А, кроме того, встречаются более безопасные исполнения, содержащие амальгамы (ртуть растворяется в металлах), но данный вариант встречается реже.

Сегодня существуют специализированные организации, которые официально занимаются утилизацией токсичных отходов. Поэтому в случае нарушения целостности корпуса лампы в первую очередь необходимо покинуть помещение, затем вызвать соответствующее подразделение.

Таким образом, люминесцентные лампы во многом превосходят более простые аналоги (например, с нитью накаливания). В чем-то данный вид изделий уступает светодиодным источникам освещения. Но важно подбирать лампу на основании соответствия ее основных параметров условиям работы, а не подбирать наиболее популярный вариант.

Оценка статьи:

Загрузка…

Поделиться с друзьями:

proosveschenie.ru

Светильники с люминесцентными лампами: устройство

На фоне постоянного роста цен на электричество населению приходится экономить. Наиболее простой способ сделать это — установить люминесцентные лампы. Они потребляют в 3-4 раза меньше, чем классические, давая практически такой же световой поток. Давайте разберем, чем хорош светильник для люминесцентной лампы, есть ли смысл менять обычные лампочки накаливания на “энергосберегайки” и в чем их основные достоинства.

Введение

Светильники, работающие по принципу люминесцента, были изобретены в середине 30-х годов прошлого века. Их придумали в США. Распространяться по стране они начали в 50-е годы, в 60-е они появились в Европе и СССР. Сегодня люминесцентные светильники находятся на втором месте по распространенности (первое занимают лампы накаливания), но их процентное соотношение постоянно растет. И даже светодиодные лампы не вытесняют люминесцентные с рынка — они занимают нишу обычных ламп накаливания.

Классические люминесцентные линейные лампы старого типа

Использование этих светильников долгое время было ограничено из-за их больших размеров. Если в общественных заведениях их еще можно было разместить, то для дома они не очень подходили. Но в 90-е годы ученым удалось усовершенствовать конструкцию, уменьшить ширину трубки до 12 мм и скрутить ее в спираль, создав аналог обычной лампочки. Это придало люминесцентным лампам новую жизнь.

Устройство светильника

Теперь давайте разберем, из чего состоит люминесцентная лампа (речь идет о компактных вариантах, или КЛЛ):

  1. Колба.
  2. Цоколь.

Колба представляет собой тонкую трубку, завитую в спираль. Внутри трубки расположены электроды из вольфрама, окрашенные оксидами стронция, бария и кальция. Трубка герметично закрыта, в ней находится инертный газ, смешанный с парами ртути. Именно эти пары ионизируются и испускают ультрафиолет. Принцип работы следующий: на вольфрамовые контакты подается напряжение, между ними возникает заряд и происходит запуск светильника. Пары ртути излучают свет в ультрафиолетовом спектре. Чтобы сделать его видимым, на стенки трубки наносят специальное вещество — люминофор. В результате облучения от ультрафиолета он тоже “зажигается” и светится в видимом спектре. При помощи толщины слоя люминофора и его состава можно менять цвет и насыщенность потока. По сути, именно от него зависит, насколько хорошо устройство будет светить.

Внимание: при производстве КЛЛ используются различные редкоземельные элементы, нанесенные в 3-5 слоев в качестве люминофора. Следите за тем, чтобы цоколь не разбился — в нем много вредных веществ. Именно за счет использования более дорогих люминофоров, нанесенных толстым слоем, ученым удалось добиться значительного сокращения длины трубки.

Современные люминесцентные лампы

Изучая устройство светильника с люминесцентными лампами, следует рассказать про вторую часть конструкции — цоколь. Он не только удерживает светильник в патроне, но и содержит внутри ЭПРА (пуско-регулирующую аппаратуру или, в просторечии, стартер/балласт). Они выдают токи с высокими частотами, из-за чего у комнатных ламп полностью отсутствует эффект мерцания, который хорошо заметен у обычных линейных ламп накаливания. Высокочастотные токи образуются в результате работы инвертора, выпрямляющего их и преобразующего в импульсы. Современные ЭПРА также способны усиливать мощностные коэффициенты, что позволяет создавать активные нагрузки и не компенсировать при работе косинус фи.

Внимание: по сути, срок службы лампы зависит от качества балласта. Расчетное время свечения люминофора около 20 тысяч часов, но устройство обычно работает меньше и выходит из строя в результате поломки ЭПРА.

При выборе старайтесь не экономить — дешевые лампы собираются из недорогих комплектующих, которые служат максимум полтора года. Также они крайне чувствительны к скачкам напряжения — при просадке на 10-20% балласт может выйти из строя.

Типы ламп

Все устройства можно разделить на два типа:

  1. Имеющие встроенный ЭПРА.
  2. Имеющие внешний дроссель.

Встроенные ЭПРА, входящие в состав люминесцентной лампы, обычно подключаются к классическому цоколю E27 или E14 — они могут использоваться в любых люстрах и светильниках. Лампы под внешние ЭПРА представляют собой обычную трубку с цоколем под штырьковые крепления. Обычно их используют в настольных светильниках — дроссель находится внутри корпуса, а лампа является расходным материалом.

Цоколь у них может быть рассчитан на подключение к 2 или 4 штырькам. При замене лампы нужно учитывать тип цоколя, чтобы  не перепутать — промышленность выпускает более 10 видов подобных устройств.

Некоторые нюансы

Раньше люминесцентные лампы не очень любили, поскольку они давали “больничный” безжизненный белый свет. Сегодня ситуация изменилась — промышленность выпускает устройства с диапазоном работы от 2700 до 6500 градусов Кельвина, что практически полностью перекрывает возможные диапазоны от “лампового” желтого до практически голубого.

Сгоревший ЭПРА в люминесцентной лампе

Мощность подобных светильников варьируется от 5 до 23 ватт, для жилых помещений используют 9-15 ваттные варианты. Выбирая себе качественную лампу, обязательно спрашивайте у продавца про устройство люминесцентного светильника. Чем качественнее ЭПРА, тем дольше она прослужит. Стандартный срок службы сертифицированных ламп — 10 00 часов, тогда как дешевые китайские подделки служат 1000-3000 часов. Изделия от лидеров рынка, таких как PHILIPS или OSRAM, легко выхаживают по 15 тысяч часов, особенно если в сети нет провалов напряжения.

Внимание: люминесцентные светильники не работают вместе с диммерами. Если вам важен процесс регулировки уровня освещения, то приобретайте классические лампы накаливания.

И еще один совет напоследок. Не гонитесь за дешевыми устройствами — они служат очень мало. Если хотите сэкономить, то покупайте комплекты из 2, 4, 8 светильников — они обходятся значительно дешевле, чем одиночные. Выбирайте лампы от проверенных производителей — они гарантировано проработают весь положенный им срок.

Люди часто спрашивают, какой газ в люминесцентных лампах используют и не вреден ли он. В большинстве устройств используют аргон с парами ртути. Ничего страшного не произойдет, если вы разобьете ее в доме, но лучше все же не допускать подобного и сдавать их в пункты утилизации.

 

Facebook

Twitter

Вконтакте

Одноклассники

Google+

knigaelektrika.ru

Устройство и принцип работы люминесцентной лампы

Люминесцентная лампа (ртутная лампа низкого давления, далее по тексту – ЛЛ) является газоразрядным источником света. Конструктивно она представляет собой стеклянную трубку с нанесенным на внутреннюю поверхность слоем люминофора. В торцах трубки установлены спиральные электроды. Внутри лампы находятся разреженные пары ртути и инертный газ. Под действием электрического напряжения (поля), приложенного к электродам, в лампе возникает газовый разряд. При этом проходящий через пары ртути ток вызывает ультрафиолетовое излучение.

Принцип люминесцентной лампы.

Ультрафиолетовое излучение, воздействуя на люминофор, заставляет его светиться, т.е. люминофор преобразует ультрафиолетовое излучение газового разряда в видимый свет. Стекло, из которого выполнена  ЛЛ, препятствует выходу ультрафиолетовогоизлучения из лампы, тем самым предохраняя наши глаза от вредного для них излучения.

Исключением являются бактерицидные лампы, при их изготовлении применяется увиолевое или кварцевое стекло, пропускающее ультрафиолет. Широкое распространение на сегодня получают ЛЛ с амальгамами  In. Cd  и других элементов.  Более низкое давление паров ртути над амальгамой дает возможность расширить температурный диапазон оптимальных световых отдач до 600C  вместо 18-250C для чистой ртути.

При повышении температуры окружающей среды сверх допустимой нормы  (25оC для чистой ртути и 60оC  для амальгам) возрастает температура стенок и давление паров  ртути, а световой поток снижается.

Устройство компактной люминесцентной лампы.

Еще более заметное уменьшение светового потока наблюдается при понижении температуры, а значит, и давление паров ртути. При этом резко ухудшается и зажигание ламп, что делает затрудненным их использование при температурах ниже -10оC , без утепляющих приспособлений. В связи с этим представляют интерес безртутные ЛЛ, с разрядом низкого давления в инертных газах.

В этом случае люминофор возбуждается излучением с длиной волны от 58.4 до 147 нм. Поскольку давление газа в безртутных ЛЛ практически не зависит от окружающей температуры, неизменными остаются и их световые характеристики.   На сегодняшний день проблема работы ЛЛ при низких температурах решена использованием ЛЛ нового поколения, так называемых ламп Т5 (с диаметром трубки  16 мм), компактных люминесцентных ламп и применением для питания ЛЛ высокочастотных электронных пускорегулирующих аппаратов (ПРА).

Световая отдача ЛЛ повышается при увеличении размеров (длины) за счет снижения доли анодно-катодных потерь в общем световом потоке. Поэтому рациональнее использовать одну лампу на 36 Вт, чем две по18 Вт. Срок службы ЛЛ ограничен дезактивацией и распылением (истощением) катодов. Отрицательно сказываются на срок службы также колебания напряжения питающей сети и частые включения и выключения ламп. При использовании ЭПРА эти факторы сведены к минимуму. Широкое использование ЛЛ связано с тем, что они имеют ряд значительных преимуществ перед классическими лампами накаливания :

  1. Высокая эффективность: КПД — 20-25% (у ламп накаливания около 7% ) и  светоотдача в 10 раз больше .
  2. Длительный срок службы – 15000-20000 ч. (у ламп накаливания — 1000 ч., сильно зависит от напряжения) питания.

Имеют  ЛЛ и некоторые недостатки :

  1. Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом. Балласт, он же пускорегулирующий аппарат (ПРА), — электротехническое устройство, обеспечивающее режимы зажигания и нормальной работы ЛЛ.
  2. Зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 55оC, оптимальной считается 20оC ). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).

Остановимся подробнее на достоинствах и недостатках ЛЛ. Известно, что оптическое излучение (ультрафиолетовое, видимое, инфракрасное ) оказывает на человека (его эндокринную, вегетативную, нервную системы и весь организм в целом ) значительное физиологическое и психологическое воздействие, в основном благотворное.

 

Схема энергосберегающей лампы.

Дневной свет —  самый полезный. Он влияет на многие жизненные процессы, обмен веществ в организме, физическое развитие и здоровье. Но активная деятельность человека продолжается и тогда, когда солнце скрывается за горизонты. На смену дневному свету приходит искусственное освещение. Долгие годы для искусственного освещения жилья использовались ( и используются ) только лампы накаливания – теплый источник света, спектр которого отличается от дневного преобладанием желтого и красного излучения и полным отсутствием ультрафиолета.

Кроме того, лампы накаливания, как уже упоминалось,  неэффективны, их коэффициет полезного действия — 6-8%, а срок службы очень мал – не более 1000 ч. Высокий технический уровень освещения с этими лампами невозможен.

Типичные люминесцентные лампы-трубки.

Вот почему вполне закономерным оказалось появление ЛЛ – разрядного источника света, имеющего 5-10 раз большую световую отдачу, чем лампы накаливания, и в 8-15 раз больший срок службы. Преодолев различные технические трудности, ученые и инженеры создали специальные ЛЛ для жилья – компактные, практически полностью копирующие привычный внешний вид и размеры ламп накаливания и сочетающие при этом ее достоинства (комфортную цветопередачу, простоту обслуживания) с экономичностью стандартных ЛЛ.

В силу своих физических особенностей ЛЛ имеют еще одно очень важное преимущество перед лампами накаливания: возможность создавать свет различного спектрального состава – теплый, естественный, белый, дневной, что может существенно обогатить цветовую палитру домашней обстановки. Не случайно существуют специальные рекомендации по выбору типа ЛЛ (цветности света) для различных областей применения. Наличие контролируемого ультрафиолета в специальных осветительно-облучательных  ЛЛ позволяет решить проблему профилактики «светового голодания» для городских жителей, проводящих до 80% времени в закрытых помещениях.

Так, лампы, выпускаемые фирмой  OSRAM ЛЛ типа BIOLUX, спектр излучения которых приближен к солнечному и насыщен строго дозированным ближним ультрафиолетом, успешно используются одновременно и для освещения, и для облучения жилых, административных, школьных помещений, особенно при недостаточности естественного света.

Схема включения люминесцентной лампы.

Выпускаются также специальные агарные  ЛЛ типа CLEO (PHILIPS), предназначенные для принятия «солнечных» ванн в помещении и для других косметических целей. При использовании этих ламп следует помнить, что для обеспечения безопасности необходимо строго соблюдать инструкции изготовителя облучательного оборудования. А теперь остановимся на недостатках люминесцентного освещения, к которым многие причисляют его пресловутую «вредность для здоровья».

Природа газового разряда такова, что, как уже было сказано выше, любые ЛЛ имеют в спектре небольшую долю ближнего ультрафиолета. Известно, что при передозировке даже естественного солнечного света могут возникнуть неприятные явления, в часности избыточное ультрафиолетовое облучение может привести к заболеваниям кожи, повреждению глаз. Однако, сравнив воздействие на человека в течение жизни естественного солнечного и искусственного люминесцентного излучения,  становится понятно, насколько необоснованно предположение о вреде излучения ЛЛ.

Было доказано, что работа в течение года (240 рабочих дней) при искусственном освещении ЛЛ холодно-белого света с очень высоким уровнем освещенности в 1000 лк (это в 5 раз превышает оптимальный уровень освещенности  в жилье) соответствует пребыванию на открытом воздухе в г. Давос (Швейцария) в течении 12 дней по 1 часу в день (в полдень). Следует заметить, что реальные условия в жилых помещениях бывают в десятки раз более щадящими, чем в приведенном примере.

Следовательно, о вреде обычного люминесцентного освещения говорить не приходится. К аналогичным выводам пришли медики, гигиенисты и светотехники, принявшие участие в проводившейся в Мюнхене развернутой научной дискуссии на тему «Влияние освещения ЛЛ на здоровье человека». Все участники дискуссии были единодушны: строгое соблюдение правил грамотного устройства освещения, которые включают ограничение прямой и отраженной блескости, ограничение пульсации светового потока, обеспечение благоприятного распределения яркости и правильной светопередачи, полностью устранит существующие  жалобы на люминесцентное освещение.

Изменение тока люминесцентной лампы от напряжения сети.

В приведенном выше перечне важное место занимает вопрос ограничения пульсации светового потока. Дело в том, что традиционные линейные трубчатые ЛЛ, подключенные к сети с помощью электромагнитного пускорегулирующего аппарата (чаще всего применяемого в светильниках), создают свет непостоянный во времени, а «микропульсирующий», т .е. при имеющейся в сети частоте переменного тока 50 Гц  пульсация светового потока лампы происходит 100 раз в секунду.

И хотя эта частота выше критической для глаза и, следовательно, мелькающие яркости освещаемых объектов глазом не улавливаются, пульсация освещения при длительном воздействии может отрицательно влиять на человека, вызывая повышенную утомляемость, снижение работоспособности, особенно при выполнении напряженных зрительных работ: чтение, работе за компьютером, рукоделии и т. д.

Вот почему появившиеся достаточно давно светильники с электромагнитным низкочастотным ПРА рекомендуется использовать в так называемых «нерабочих» зонах (подсобных помещениях, повалах, гаражах и т. д.). В светильниках с электронным высокочастотным ПРА  указанная особенность работы ЛЛ полностью устранена, но даже такие светильники с линейными ЛЛ достаточно громоздки и для местного (рабочего) освещения не всегда удобны. Поэтому для традиционного освещения жилья люстрами, настенными, напольными, настольными светильниками целесообразно применять упомянутые выше компактные люминесцентные лампы.

Маркировка и параметры отечественных люминесцентных ламп.

И, наконец, последнее небольшое замечание, связанное с эксплуатацией светильников с ЛЛ. В лампу для ее работы вводится капля ртути – 30-40 мг , а компактных 2-3 мг, Если вас это пугает, вспомните, что в термометре, имеющемся в каждой семье, содержится 2 г этого жидкого металла. Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, – тщательно собрать и удалить ртуть. ЛЛ в жилье – это не только более экономичный, чем лампа накаливания, источник света.

Грамотное освещение ЛЛ имеет множество преимуществ перед традиционным: экономичность, обилие и красочность света, равномерность распределения светового потока, особенно в случаях высвечивания протяженных объектов линейными лампами, меньшая яркость ламп и значительно меньшее выделение тепла.

На сегодняшний день наиболее качественную продукцию и широкий ассортимент на нашем рынке представляют мировые светотехнические брэнды:

  1. Германская фирма OSRAM.
  2. Голландская PHILIPS и ряд других, которые предлагают широчайший выбор высококачественных ЛЛ на любой вкус и цвет.

fazaa.ru

Принцип работы люминесцентной лампы

Содержание:

  1. Как появились люминесцентные лампы
  2. Особенности конструкции
  3. Как работает устройство с люминофором
  4. Дроссель: назначение и устройство
  5. Функции стартера в схеме подключения
  6. Подключение через электронный балласт – ЭПРА
  7. Видео

Среди газоразрядных осветительных приборов широкую известность получили люминесцентные лампы. Они изготавливаются в форме стеклянных цилиндров, на внутреннюю поверхность которых нанесен слой люминофора. Принцип работы люминесцентной лампы состоит в появлении внутри колбы газового разряда в газовой среде, смешанной с разреженными ртутными парами. Далее под влиянием ультрафиолетового излучения начинает светиться люминофор, являющийся источником основного светового потока.

Как появились люминесцентные лампы

Прежде чем рассматривать вопрос, как работает люминесцентная лампа, необходимо хотя бы в общих чертах изучить историю ее появления. Впервые эффект свечения наблюдал известный русский ученый М.В. Ломоносов еще в середине 18 века. В эксперименте был использован стеклянный шар, наполненный водородом. После того как к нему был приложен электрический ток, шар начал испускать видимый свет. Однако это устройство не рассматривалось в качестве источника освещения, а полноценная работа в этой области началась уже в 19 веке.

В 1856 году немецкому стеклодуву Гейслеру удалось откачать воздух из стеклянной колбы с помощью изобретенного им же вакуумного насоса. Используя высоковольтную катушку, он вызвал внутри колбы свечение зеленоватого цвета. Данное устройство получило название трубки Гейслера. Немного позднее, в 1859 году Александр Беккерель осуществил покрытие трубок изнутри веществами, обладающими люминесцирующими свойствами.

Именно с этого момента началось развитие технологий данного типа освещения. Проводимые работы так и остались экспериментами, но сама идея получила дальнейшее развитие на практике.

Первую демонстрацию трубок Гейслера в 1891 году провел американский ученый Никола Тесла. Он на практике показал возможность светиться у трубок с различными покрытиями под действием высокочастотного электрического поля. В этом же году Тесла получил патент на аргоновые газоразрядные лампы, спроектированные для систем освещения.

Первые лампы для светильника на основе ртути удалось получить американцу Питеру Хьюитту. Ртутные пары светились мягким сине-зеленым светом, а по техническим характеристикам эти устройства превосходили лампы Эдисона. Однако полученные цветовые оттенки не нашли широкого применения в искусственном освещении.

Ровное белое свечение было получено в 1926 году немецким изобретателем Эдмундом Гермером. На внутреннюю часть колбы наносился флуоресцентный порошок – люминофор, после чего внутри нее увеличивалось давление. Свет от такого источника был гораздо ярче по сравнению с лампами накаливания. Конструкция этих устройств считается максимально близкой к современным люминесцентным лампам.

С 1934 года компания General Electric приобрела патент и приступила к выпуску осветительных приборов нового типа. Они сразу же приобрели широкую популярность и стали повсеместно использоваться в искусственном освещении вместо обычных лампочек.

Особенности конструкции

Колбы всех ламп, независимо от конфигурации, всегда имеют цилиндрическую форму. Их наружный диаметр составляет 12, 16, 26 и 38 мм. Чаще всего источники света изготавливаются прямыми, но некоторые из них сформированы в кольцо, букву U, спираль и т.д.

Устройство люминесцентной лампы предполагает герметичное соединение торцов со стеклянными ножками, внутри которых установлены зажигательные электроды. Они изготавливаются из вольфрама и закручиваются в спираль, так же как у обычных ламп накаливания. Снаружи электроды соединяются со штырьками цоколя, выполняющими функцию контактов. Устройства прямой и U-образной формы для светильника оборудованы двумя видами цоколей – G5 и G13. В указанной маркировке цифры означают размер зазора между штыревыми контактами в миллиметрах.

Рассматривая вопрос, как устроена лампа, следует помнить, что в одну из стеклянных ножек впаян специальный штенгель, через который производится откачка воздуха изнутри колбы. После этого внутрь закачивается инертный газ с небольшим количеством ртути, примерно 30 мг. Вместо чистой ртути может использоваться амальгама, представляющая собой ее сплавы с такими металлами, как индий, висмут и другие. Вольфрамовые электроды покрываются активирующим веществом. Для этой цели используются оксиды бария, кальция или стронция. В некоторых случаях к ним добавляется торий.

Основной функцией электродов является отдача и прием ионов и электронов, обеспечивающих течение электрического тока в пространстве, где образуется разряд. Чтобы запустить процесс термоэмиссии, они разогреваются до температуры 1100-1200 градусов. Электроны начинают вылетать с поверхности активирующего вещества. В процессе эксплуатации слой этих веществ постепенно уменьшается, происходит его оседание на стеклянных стенках, что делает зависимым от этого общий срок эксплуатации люминесцентной лампы.

Максимальное ультрафиолетовое излучение ртути достигается наиболее эффективным использованием разряда. Для этого внутри колбы должна поддерживаться определенная температура. Ее диаметр определяется именно этим техническим условием.

Работоспособность лампы для светильника во многом зависит от плотности тока. Чтобы найти эту величину, необходимо значение тока разделить на площадь сечения цилиндра. Мощность лампы находится в прямой зависимости с ее длиной, поэтому просто так колбу нельзя сделать короче. В связи с этим, габариты стали уменьшаться за счет измененной конфигурации, при которой общая протяженность изделия остается прежней.

Как работает устройство с люминофором

Принцип работы люминесцентных ламп во многом зависит от ее конструкции. Газ, наполняющий внутреннее пространство колбы, создает электропроводную среду с отрицательным сопротивлением. Его проявление заключается в изменении напряжения между электродами, расположенными с противоположных сторон. Напряжение начинает снижаться при возрастании тока, который требует ограничения.

Включение в работу люминесцентной лампы для светильника осуществляется при помощи электромеханической пускорегулирующей аппаратуры – ЭмПРА. Основными компонентами данной схемы служат дроссель и стартер. Первое устройство создает импульс напряжения с большой величиной, обеспечивающий зажигание. Второй компонент представляет собой лампу тлеющего разряда, внутри которой в газовой среде размещаются два электрода. Один электрод является биметаллической пластиной, а в исходном положении они оба разомкнуты.

Запуск лампы и ее принцип действия происходят в следующей последовательности:

  • В пусковую схему изначально поступает напряжение. Изначально ток не будет проходить через лампу, поскольку он ограничивается высоким сопротивлением внутренней среды. Он попадает на спирали катодов и производит их разогрев. Одновременно ток идет на стартер и дает толчок к образованию внутри него тлеющего разряда.
  • После того как под действием тока контакты дросселя разогреются, наступает замыкание биметаллической пластины. В результате, металл становится проводником и действие разряда прекращается.
  • На следующем этапе происходит остывание биметаллического электрода, что приводит к размыканию контактов. В дросселе под влиянием самоиндукции образуется импульс высокого напряжения, дающий толчок к зажиганию лампы.
  • Ток, проходящий через лампу для светильника, постепенно уменьшается в два раза из-за падения напряжения на дросселе. Его не хватает, чтобы повторно запустить стартер с разомкнутыми контактами, но сама лампа будет продолжать свою работу.

Если в один светильник установлены сразу две светящиеся лампы, схема включения предусматривает для них общий дроссель. Подключение ламп осуществляется последовательно, однако к каждой из них параллельно подключен собственный стартер. При выходе из строя одной из ламп, вторая также отключается. В схеме включения рекомендуется устанавливать только качественные выключатели. У бюджетных моделей возможно залипание контактов под влиянием пусковых токов. Поскольку дроссель и стартер являются основными компонентами пусковой схемы, их работу следует рассмотреть более подробно.

Дроссель: назначение и устройство

Люминесцентные светильники не могут быть включены как обычные лампы, одной лишь подачей электроэнергии. Для того чтобы они заработали и начали светиться, необходимо использовать специальную пускорегулирующую аппаратуру.

Ток, протекающий через электроды требуется ограничить, поэтому в схеме используется сопротивление, называемое балластом. Его функции выполняет дроссель, в котором присутствует реактивное сопротивление, не выделяя при этом лишнего тепла. Он ограничивает ток, тем самым предупреждая его нарастание после подключения к сети.

Помимо включения, дроссель в пусковой схеме выполняет следующие функции:

  • Создает безопасный ток, достаточный для быстрого разогрева электродов в лампе при розжиге.
  • В обмотке образуется импульс высокого напряжения, благодаря которому внутри колбы возникает разряд.
  • Стабилизирует разряд при достижении током номинального значения.
  • Обеспечивает устойчивую работу лампы, несмотря на скачки и перепады сетевого напряжения.

Основным элементом дросселя служит катушка индуктивности, которая состоит из проводов, намотанных на сердечник. Именно она выполняет основную ограничивающую функцию. Вся конструкция залита компаундом – специальной массой, устойчивой к возгоранию. За счет этого обеспечивается дополнительная изоляция проводов. Катушка помещается в корпусе из термоустойчивой пластмассы.

Функции стартера в схеме подключения

Вторым компонентом, входящим в состав пускорегулирующей аппаратуры, является стартер, имеющий довольно простую конструкцию. Продукция разных производителей отличается собственными параметрами и техническими характеристиками, которые необходимо учитывать при покупке ламп. Однако устройство и принцип работы этих приборов одинаковый.

Конструкция стартера выполнена в виде стеклянного баллона, заполненного инертным газом – неоном или смесью водорода с гелием. В цоколь баллона неподвижно впаяны металлические электроды, выведенные наружу. Сама стеклянная конструкция располагается в металлическом или пластмассовом корпусе, покрытом термоизоляционным составом.

Параллельно с электродами подключен конденсатор емкостью 0,003-0,1 мкф, предназначенный для борьбы с радиопомехами, возникающими при контакте электродов. Кроме того, данный элемент принимает участие в запуске лампы и понижает величину импульса напряжения, возникающего во время размыкания электродов. Параллельное включение конденсатора существенно понижает вероятность залипания электродов под действием электрической дуги.

Основной функцией стартера является замыкание и размыкание электрической цепи, запуск механизма розжига инертного газа, закачанного в колбу. При замыкании цепи электроды самой лампы нагреваются, и весь процесс зажигания заметно облегчается. После нагрева цепь разрывается с одновременным образованием импульса повышенного напряжения, пробивающего газовый промежуток колбы. Такой принцип работы каждого стартера.

Несмотря на устойчивую и долговременную работу, схемы ЭмПРА с использованием стартера считается несовершенной. Рабочий процесс нередко сопровождается мерцанием, шумом дросселя и другими неприятными явлениями. Поэтому все современные люминесцентные лампы работают с более совершенной электронной пусковой схемой – ЭПРА.

Подключение через электронный балласт – ЭПРА

Схема ЭПРА с люминесцентными лампами функционирует на основе полупроводниковых элементов, что позволило снизить габариты и повысить качество работы этих устройств. Заметно возросли сроки эксплуатации, повысился КПД, появилась возможность плавной регулировки яркости, увеличился коэффициент мощности.

В состав схемы электронного пускорегулирующего устройства входят следующие компоненты:

  • Устройство для выпрямления тока и напряжения.
  • Фильтр электромагнитных излучений.
  • Корректор для регулировки коэффициента мощности.
  • Фильтр сглаживания напряжения.
  • Инверторная схема.
  • Элемент с функциями дросселя.

Схема ЭПРА может быть мостовой или полумостовой. Первый вариант предназначен для очень мощных ламп, а второй используют все остальные люминесцентные лампы низкого давления.

В основе работы электронного балласта лежат увеличенные частотные характеристики, обеспечивающие равномерное свечение, без каких-либо мерцаний. Современные микросхемы, используемые в конструкции, позволили существенно уменьшить размеры устройства и обеспечить равномерный подогрев электродов. Благодаря ЭПРА, люминесцентная лампа может быть автоматически подстроена под конкретные технические характеристики.

electric-220.ru

Люминесцентные лампы — это какие? Типы люминесцентных ламп

В январе нынешнего года компания General Electric (GE) объявила о прекращении выпуска в США компактных люминесцентных ламп к концу 2016-го. Новая светодиодная технология смела со своего пути успевшую стать привычной люминесцентную, как когда-то она сама свергла «правление» ламп накаливания, изобретённых основателем GE Томасом Эдисоном.

Так что же собой представляет люминесцентная лампа?

Люминесцентные лампы – это ртутные газоразрядные осветительные приборы низкого давления, в которых для излучения видимого света используется флюоресценция. Электрический ток в газе возбуждает пары ртути, которые начинают излучать свет в ультрафиолетовом диапазоне, что вызывает свечение внутреннего фосфорного покрытия.

Различают следующие типы люминесцентных ламп: с холодным катодом, горячего запуска и электролюминесцентные.

Горячий запуск

Наиболее распространёнными являются лампы горячего запуска. Источник света такого типа состоит из стеклянной колбы, наполненной инертным газом (как правило, аргоном) низкого давления. С каждой стороны колбы расположен электрод из вольфрама. Балласт регулирует мощность электродов. В старых лампах для их запуска использовался стартёр. В современных используются электронные пускорегулирующие аппараты.

Они в чём-то напоминают лампы накаливания. Начальное свечение производится разогретой спиралью из вольфрама, но затем электрический разряд в смеси паров ртути и инертных газов вызывает ультрафиолетовое излучение. Особый состав, который покрывает стенки колбы, поглощает ультрафиолет и излучает видимый свет. Называется он люминофором и является смесью соединений на основе фосфора. Благодаря ему световой поток таких ламп превосходит мощность излучения ламп накаливания в несколько раз. Нить накаливания продолжает светиться и по окончании розжига, но только для поддержания разряда.

Для создания электрического разряда необходимо высокое напряжение. Чем холоднее колба, тем выше этот параметр. Но, поскольку высокие показатели опасны, были разработаны средства «разогрева» колбы для снижения напряжения.

Один из методов разогрева заключается в использовании стартера. При подаче напряжения зажигается разрядная лампа, нагревающая биметаллические контакты. Контакты замыкаются, шунтируют её, и электрический ток нагревает вольфрамовые электроды, которые, в свою очередь, нагревают и ионизируют инертный газ. Остыв, биметаллические контакты размыкаются, подавая всё напряжение, а также энергию дросселя на электроды. Если разряда не произойдёт, то процесс повторится снова. После зажигания лампы стартер отключится, так как его сопротивление намного превышает сопротивление плазмы.

В современных системах быстрого старта электроды постоянно подогреваются, а дуга инициируется заземлённым рефлектором или стартовой полосой.

Люминесцентные лампы с холодным катодом

Холоднокатодные люминесцентные лампы – это приборы, температура катода которых не превышает 150 °C по сравнению с 900 °C ламп горячего запуска. Рабочее напряжение – 600-900 В, пусковое — 900-1600 В. Свет излучается ионизированным газом, для создания которого необходимо высокое напряжение. Разряд возникает при пробое пространства между электродами. Газ в лампе в нормальных условиях является диэлектриком, но в электрическом поле ионы и электроны приходят в движение. При подаче высокого напряжения электрическое поле настолько разгоняет заряженные частицы, что они, сталкиваясь с молекулами газа, выбивают из них электроны. Вновь созданные ионы и электроны также задействуются в ионизации: процесс становится лавинообразным.

В лампах горячего пуска разряд является дуговым, а источниках света холодного разряда — тлеющим. Постепенно ртуть переходит из жидкого состояния в газообразное. Электроны, сталкиваясь с атомами ртути, инициируют выделение энергии и интенсивное излучение в ультрафиолетовой области. Свет излучается люминофорным покрытием внутри колбы. Ртуть излучает фотоны, которые возбуждают атомы фосфора, увеличивая энергию его электронов. При возвращении электронов в начальное состояние атомы фосфора излучают световую энергию.

Электролюминесцентные лампы

Излучение света в электролюминесцентных лампах происходит благодаря прохождению электрического тока прямо через фосфоросодержащие материалы с эффектом нетермического преобразования электроэнергии в световую. Данный эффект также используется в светодиодах (LED) и органических светодиодах (OLED). Электролюминесцентные лампы отличаются от светодиодов тем, что в последних свет излучается в p-n переходе – месте соединения двух полупроводников, а у первых свет излучается всем слоем-активатором.

Высоковольтный переменный электрический ток проходит через тонкий слой фосфора или полупроводника, что имеет следствием излучение им света. Два слоя твёрдого вещества, один из которых прозрачен, действуют подобно электродам, а порошкообразный фосфор или проводник между ними светится, когда электроны проходят сквозь него.

Аргументы за

  • Такие осветительные приборы могут служить в десятки раз дольше ламп накаливания при условии стабильного питания без значительных колебаний напряжения и ограничения количества включений. При включении на электродах выгорает и осыпается специальный состав, предохраняющий вольфрамовую нить от перегрева и обеспечивающий стабильность разряда, что уменьшает срок службы источника света. Концы колбы темнеют, и лампа начинает мерцать.
  • Светоотдача люминесцентных ламп на единицу потребляемой мощности примерно в 3-4 раза больше, чем у ламп накаливания.
  • Они разнообразны по цвету, их спектр излучения ближе к солнечному.
  • Рассеянное свечение со всей поверхности колбы, а не вольфрамовой нити.

Минусы

  • Относительно большая стоимость.
  • Люминесцентные лампы – это потенциальный источник опасности, так как каждая колба содержит до 5 мг ртути, которая очень токсична и может нанести вред здоровью и окружающей среде.
  • Газоразрядные лампы чувствительны к пониженным и повышенным температурам. Могут не работать при температуре воздуха ниже -20 °C и выше +50 °C.
  • Чувствительны к влажности.
  • Задержка включения, так как требуется время для разогрева лампы.
  • Непривычный для зрения световой спектр, следствием чего является искажение цветовосприятия. Мерцание с частотой вдвое выше частоты электросети.

Критерии выбора

1. Форма и размеры. Стеклянные колбы и патроны сильно отличаются по этим параметрам. Обычной формой люминесцентных светильников является прямая трубка. Диаметр ее кратен одной восьмой дюйма. Так, размер лампы диаметром в 1 дюйм – T8. Размер варьируется от T2 до T17. Компактные люминесцентные лампы, как правило, имеют форму U-образную и спиралевидную. Конечно, внешний вид не оказывает влияния на работу лампы, но спиральные модели стоят немного дороже, так как их производство сложнее.

2. Старт. Возможен со стартером, электронным или с электромагнитным балластом.

3. Мощность. Колеблется от 3 до 85 Вт. Световой поток ламп накаливания в 3-4 раза ниже, чем у люминесцентных, поэтому выбирать необходимую мощность следует, исходя из требуемой яркости. Люминесцентные лампы, мощность которых равна 25-30 Вт, заменят обычнгые 100-ваттные электроприборы. Для замены 75-ваттной достаточно энергосберегающего источника света в 9 Вт. А люминесцентные лампы, мощность которых составляет 15 Вт, смогут заменить лампу накаливания мощностью 60 Вт.

Таблица отношения светового потока и потребляемой мощности ламп разных типов поможет разобраться во всех нюансах.

Световой поток

Светодиодная лампа

Лампа накаливания

Люминесцентная лампа

люмен

ватт

ватт

ватт

450

4-5

40

9-13

800

6-8

60

13-15

1,100

9-13

75

18-25

1,600

16-20

100

25-30

2,600

25-28

150

30-55

4. Цоколь. Распространены следующие типы:

  • байонет B;
  • винтовой (эдисоновский) цоколь E;
  • односторонние двухконтактные G.

Число после буквы обозначает либо диаметр цоколя типа B или E, либо расстояние между контактами в мм в цоколях типа G.

В основном в люстрах и бра используются компактные люминесцентные лампы с цоколем Е27 диаметром 27 мм и миньоны Е14 диаметром 14 мм.

5. Цветность света. Соответствует температуре чёрного тела, излучающего с определённой хроматичностью. При повышении температуры синяя часть спектра увеличивается, а красная уменьшается. Измеряется в кельвинах. Субъективное ощущение человека, смотрящего на свет определённой цветности, называется цветовым ощущением. Основные цветности света и соответствующее им цветоощущение:

  • 2700 К – сверхтёплый белый;
  • 3000 К – тёплый белый свет;
  • 3500 K – белый свет;
  • 4000 К – холодный белый свет;
  • 5000 К и больше – дневной свет.

6. Цветопередача. Показывает, насколько естественно выглядят окружающие предметы в свете лампы. Измеряется коэффициентом цветопередачи Ra. Источники света с равной цветностью могут иметь разную цветопередачу по причине разного спектра излучаемого света. Для солнечного света коэффициент равен 100.

Маркировка

Производители светильников отмечают изделия по-разному.

В США люминесцентные лампы обычно маркируются по шаблону FxxTy, где F обозначает тип (англ. fluorescent, люминесцентный), первое число xx – либо мощность в ваттах, либо длину в дюймах, T –форму (англ. tubular, трубчатый) и последнее число y – диаметр в 1/8 дюйма (3.175 мм).

Далее следует буквенное обозначение цветности:

  • WW – Warm White, тёплый белый.
  • CW – Cool White, холодный белый.
  • N – Neutral, нейтральный.
  • D – Daylight, дневной свет.
  • WWX – Deluxe Warm White, тёплый белый с высокой цветопередачей.
  • CWX – Deluxe Cool White, холодный белый с высокой цветопередачей.
  • BLB – Blacklight, ультрафиолет.

В самом конце маркировки обозначены особенности устройства:

  • RS – Rapid Start, быстрый старт.
  • IS – Instant Start, мгновенный старт.
  • HO – High Output, высокая эффективность.

Характеристики люминесцентных ламп

Декоративная лампа General Electric Candle T2 мощностью 9 Вт выпускается с цоколями E14 и E27, номинальным световым потоком 405 люмен, тёплой белой и дневной температурой цвета (2700 К и 6500 К), индексом цветопередачи 82 Ra. Применяется в люстрах и других светильниках с видимой колбой в помещениях, коридорах и холлах торговых залов, гостиниц, ресторанов, жилищ.

Продукция Philips

Master TL-D 90 De Luxe – лампа люминесцентная G13, T8, с индексом цветопередачи 93 Ra8, цветовой температурой 65000 К – холодный дневной свет. Выпускается в трёх модификациях:

  • 18W/965 1SL – лампы люминесцентные 18 Вт с номинальным световым потоком 1150 люмен и номинальной световой отдачей 63,9 Лм/Вт;
  • 58W/965 1SL – 58-ваттные источники света с номинальным световым потоком 4550 люмен и номинальной световой отдачей 77,8 Лм/Вт;
  • 36W/965 1SL – лампы люминесцентные 36 Вт с номинальным световым потоком 2800 люмен и номинальной световой отдачей 77,8 Лм/Вт.

Высокий индекс цветопередачи позволяет увидеть богатые, сочные и натуральные цвета, что делает лампу незаменимой в больницах, типографиях, салонах красоты, музеях, кабинетах стоматологии и магазинах. Лампы отличаются люминесцентным покрытием высокого качества с применением трёхполосного фосфора и почти полным отсутствием снижения уровня освещения.

Master TL-D Xtreme 36W/840 1SL – лампа люминесцентная 36-ваттной мощности, двухштыревая, холодного белого цвета с индексом цветопередачи 85 Ra8, номинальным световым потоком 3250 люмен, номинальной светоотдачей 90 Лм/Вт. Её особенностью является повышенный срок службы, достигающий 66 000 часов, что важно для мест, где высока стоимость замены ламп по причине высоты помещения, необходимости прерывания работы, или там, где свет горит постоянно – в тоннелях, буровых установках, в условиях непрерывного производства.

Master PL-C 18W/830/2P 1CT – двухконтактная люминесцентная лампа 18-ваттной мощности с G24d-2-цоколем, тёплого белого цвета 3000 К, с индексом цветопередачи 82 Ra8, номинальным световым потоком 1200 люмен, номинальной светоотдачей 67 Лм/Вт. Предназначена для общего верхнего освещения в заведениях досуга, розничной торговли и офисных зданиях. Лампа люминесцентная Philips Master Pl-C использует оригинальную технология мостового подключения, гарантирующую оптимальную работу, лучшее освещение и высокую эффективнось. Двухконтактная модель имеет извлекаемый цоколь и используется с ЭМПРА.

Энергосберегающие источники света от Osram

Osram выпускает компактные лампы люминесцентные 18 Вт DSST FCY 18 W/825 E27 тёплого цвета 2500 K, с индексом цветопередачи 80, световым потоком 1050 люмен и патроном E27. Прибор способен выдержать очень большое число пусковых циклов – до 1 млн.

Osram Lumilux T9 C – 29-мм кольцеобразный светильник с патроном G10Q, номинальной мощностью 22 Вт, цветовой температурой 2700 К, индексом цветопередачи 80-89, номинальным световым потоком 1350 люмен и номинальной светоотдачей 61 Лм/Вт. Предназначена для общественных зданий, ресторанов, производств, магазинов, супермаркетов, гостиниц. Его отличают экономичность, хорошее качество света, превосходный световой поток, равномерное освещение без теней. Допускается регулировка яркости.

L 36 W/840-1 – 1-метровые линейные лампы, люминесцентные, 36 Вт, с цоколем G13 base, цветовой температурой 4000 К, номинальным световым потоком 3100 люмен, индексом цветопередачи 80 Ra, номинальной светоотдачей 86 Лм/Вт. Предназначены для освещения общественного транспорта.

Endura 70 W/830 – безэлектродный источник света Osram мощностью 70 Вт, номинальным световым потоком 6200 люмен тёплого белого цвета температурой 3000 К, индексом цветопередачи 80-90 Ra и светоотдачей 80 Лм/Вт. Применяется для освещения туннелей, производств, улиц, спортивных площадок. Отличается высоким сроком службы (до 100 000 ч.), экономичностью, высоким световым потоком, мгновенным запуском.

Безэлектродные люминесцентные лампы – это устройства, у которых разряд происходит в высокочастотном электромагнитном поле, создаваемом магнитопроводами на колбе. Магнитопроводы играют роль первичной обмотки трансформатора, а газовый разряд – вторичной. Характеристики люминесцентных ламп этого типа сводятся к следющему: приборы отличаются стабильностью, они долго служат благодаря отсутствию разрушающихся электродов.

DSST SENSOR CL A 15 W/827 E27 – люминесцентная лампа мощностью 15 Вт, номинальным световым потоком 870 люмен, тёплым белым светом температурой 2700 К. Отличается повышенной эффективностью благодаря автоматическому отключению в светлое время суток. Предназначена только для наружного применения.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *