Что является источником светового излучения: Округ Ланское | Информационная система «Официальный сайт муниципального образования»

Содержание

Светотехнические параметры и понятия. Часть 1. Справочная информация

Профессиональные светотехники и специалисты, работающие в области освещения, постоянно употребляют разные термины и определения, которые мало о чем говорят простому обывателю, но нужны для правильного описания цветового фона.

Чтобы было проще понимать, о чем идет речь, и что обозначают эти слова, мы подготовили список, объясняющий основные светотехнические термины и характеристики. Его не нужно учить наизусть, можно просто заходить на нужную страницу и освежать в памяти забытый параметр. Говорить «на одном языке» всегда проще.

Светотехнические параметры и понятия.

1 — Видимое и оптическое излучение

Весь окружающий нас мир образуется видимым и оптическим излучением, сосредоточенным в полосе электромагнитных волн от 380 до 760 нм. К ней с одной стороны добавляется ультрафиолетовое излучение (УФ), а с другой инфракрасное (ИК).

УФ-лучи оказывают биологическое воздействия и применяются для уничтожения бактерий. Дозировано они используются для лечебного и оздоровительного эффектов.

ИК-лучи используются для нагрева и сушки в установках, так как в основном производят тепловое воздействие.

2 — Световой поток (Ф)

Световой поток характеризует мощность видимого излучения по воздействию на человеческое зрение. Измеряется в люменах (лм). Величина не зависит от направления. Световой поток — это самая важная характеристика источников света.

Например, лампа накаливания Е27 75 Вт имеет световой поток 935 лм, галогенная G9 на 75 Вт — 1100 лм, люминесцентная Т5 на 35 Вт — 3300 лм, металлогалогенная G12 на 70 Вт (теплая) — 5300 лм, светодиодная Е27 9,5 Вт (теплая) — 800 лм.

3 — Люмен

Люмен (лм) — это световой поток от источника света (лампы) при окружающей температуре 25°, измеренной при эталонных условиях.

 

4 — Освещенность (Е)

Освещенность — это отношение светового потока, подающего на элемент поверхности, к площади этого элемента. Е=Ф/А, где, А -площадь. Единица освещенности —

люкс (лк).

Чаще всего нормируется горизонтальная освещенность (на горизонтальной плоскости).

Средние диапазоны освещенности: на улице при искусственном освещении от 0 до 20 лк, в помещении от 20 до 5000 лк, 0,2 лк в полнолуние в природных условиях, 5000 -10000 лк днем при облачности и до 100 000 лк в ясный день.

На картинке представлены: а — средняя освещенность на площади А, б — общая формула для расчета освещенности.

5 — Сила света (I)

Сила света — это пространственная плотность светового потока, ограниченного телесным углом. Т. е. отношение светового потока, исходящего от источника света и распространяющегося внутри малого телесного угла, содержащего рассматриваемое направление.

I=Ф/ω Единица измерения силы света — кандела (кд).

Средняя сила света лампы накаливания в 100 Вт составляет около 100 кд.

КСС (кривая силы света) — распределение силы света в пространстве, это одна из важнейших характеристик светотехнических приборов, необходимая для расчета освещения.

 

6 — Яркость (L)

Яркость (плотность света) — это отношение светового потока, переносимого в элементарном пучке лучей и распространяющемся в телесном угле, к площади сечения данного пучка.

L=I/A (L=I/Cosα) Единица измерения яркости — кд/м2.

Яркость связана с уровнем зрительного ощущения; распространение яркости в поле зрения (в помещении/интерьере) характеризует качество (зрительный комфорт) освещения.

В полной темноте человек реагирует на яркость в одну миллионную долю кд/м2.

Полностью светящийся потолок яркостью боле 500 кд/м2 вызывает у человека дискомфорт.

Яркость солнца примерно миллиард кд/м2, а люминесцентной лампы 5000–11000 кд/м2.

7 — Световая отдача (H)

Световая отдача источника света — это отношение светового потока лампы к ее мощности.

Η=Ф/Р Единица измерения светоотдачи — лм/Вт.

Это характеристика энергоэкономичности источника света. Лампы с высокой световой отдачей обеспечивают экономию электроэнергии. Заменяя лампу накаливания со светоотдачей 7–22 лм/Вт на люминесцентные (50–90 лм/Вт), расход электроэнергии уменьшится в 5–6 раз, а уровень освещенности останется тот же.

 

8 — Цветовая температура (Тц)

Цветовая температура определяет цветность источников света и цветовую тональность освещаемого пространства. При изменении температуры источника света, тональность излучаемого света меняется от красного к синему. Цветовая температура равна температуре нагретого тела (излучатель Планка, черное тело), одинакового по цвету с заданным источником света.

Единица измерения Кельвин (К) по шкале Кельвина: Т — (градусы Цельсия + 273) К.

 

Пламя свечи — 1900 К

Лампа накаливания — 2500–3000 К

Люминесцентные лампы — 2700 — 6500 К

Солнце — 5000–6000 К

Облачное небо — 6000–7000 К

Ясный день — 10 000 — 20 000 К.

9 — Индекс цветопередачи (Ra или CRI)

Индекс цветопередачи характеризует степень воспроизведения цветов различных материалов при их освещении источником света (лампой) при сравнении с эталонным источником.

Максимальное значение индекса цветопередачи Ra =100.

 

Показатели цветопередачи:

Ra = 90 и более — очень хорошая (степень цветопередачи 1А)

Ra = 80–89 — очень хорошая (степень цветопередачи 1В)

Ra = 70–79 — хорошая (степень цветопередачи 2А)

Ra = 60–69 — удовлетворительная (степень цветопередачи 2В)

Ra = 40–59 — достаточная (степень цветопередачи 3)

Ra = менее 39 — низкая (степень цветопередачи 3)

 

Ra он же CRI — color rendering index был разработан для сравнения источников света непрерывного спектра, индекс цветопередачи которых был выше 90, поскольку ниже 90 можно иметь два источника света с одинаковым индексом цветопередачи, но с сильно различающейся передачей цвета.

Комфортное для глаза человека значение CRI = 80–100 Ra

Читайте также:

Термины и определения

Подробности
Категория: Информация RU


Основные термины и определения: *

СВЕТ, электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (4,01014-7,51014 Гц). Длина волн от 760 нм (красный) до 380 нм (фиолетовый). В широком смысле — то же, что и оптическое излучение.

СВЕТОВАЯ ВОЛНА, электромагнитная волна видимого диапазона длин волн. Частота световой волны (или набор частот) определяет «цвет». Энергия, переносимая световой волной, пропорциональна квадрату ее амплитуды.

ОСВЕЩЕНИЕ, создание освещенности поверхностей предметов, обеспечивающее возможность зрительного восприятия этих предметов или их регистрации светочувствительными веществами или устройствами.

ОСВЕТИТЕЛЬНЫЕ УСТАНОВКИ, создают необходимые условия освещения, которые обеспечивают зрительное восприятие (видение), дающее около 90% информации, получа-емой человеком от окружающего его предметного мира.

СВЕТОВЫЕ ВЕЛИЧИНЫ, величины, характеризующие процессы излучения и распространения света, которые могут быть оценены по зрительному ощущению: световой поток, светимость, освещенность , сила света, яркость.

СВЕТОВОЙ ПОТОК, мощность лучистой энергии, оцениваемая по производимому ею зрительному ощущению или по ее действию на селективный приемник света. В СИ измеряется в люменах (лм).

ЛЮМЕН (от лат . lumen — свет), единица светового потока; обозначается лм. 1 лм — световой поток, испускаемый точечным источником в

телесном угле 1 ср при силе света 1 кандела .

ТЕЛЕСНЫЙ УГОЛ, часть пространства, ограниченная некоторой конической поверхностью. Ед. измерения телесного угла называют стерадианом .

СТЕРАДИАН (от греч . stereos — телесный, пространственный и радиан), телесный угол, вершина которого расположена в центре сферы и который вырезает на поверхности сферы площадь, равновеликую площади квадрата со стороной, равной радиусу сферы. ср. Полная сфера образует телесный угол, равный 4 ср. Стерадиан имеет лишь теоретическое и расчетное значение. Например, телесному углу в 1стер соответствует плоский угол между образующими конуса в 65°32′.

СВЕТИМОСТЬ, величина полного светового потока, испускаемого единицей поверхности источника света. В СИ измеряется в

лм/м2 .

ОСВЕЩЕННОСТЬ, величина светового потока, падающего на единицу поверхности, измеряется в люксах .

ЛЮКС (от лат . lux — свет), единица освещенности СИ; обозначается лк. 1 лк — освещенности поверхности пл. 1 м2 при падающем на нее световом потоке, равном 1 лм.

ЛЮКСМЕТР (от лат . lux — свет и …метр), прибор для измерения освещенности, один из видов фотометров. Простейший люксметр состоит из фотоэлемента и микроамперметра, проградуированного в люксах.

СИЛА СВЕТА, световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица измерения в системе СИ — кандела (кд).

КАНДЕЛА (от лат . candela — свеча), единица силы света (светового потока на единицу телесного угла).Кд — сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 · 1012 Гц, энергетическая сила которого в этом направлении составляет 1/683 Вт/ср.

ЯРКОСТЬ, характеристика светящихся тел, равная отношению силы света в каком-либо направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. В системе СИ измеряется в канделах на м2 .

СВЕТОВАЯ ОТДАЧА источника света, световой поток, получаемый на единицу затраченной мощности. В СИ измеряется в лм/Вт.

СВЕТЛОТА, безразмерная величина, используемая для количественной оценки различия между зрительными (световыми) ощущениями, вызываемыми 2 смежными одноцветными поверхностями.

СВЕТОТЕХНИКА, область науки и техники, предмет которой — исследование принципов и разработка способов генерирования, пространственного перераспределения, измерения характеристик оптического излучения(света) и преобразования энергии света в др. виды энергии.

С . охватывает также вопросы конструкторской и технологические разработки источников света ( ИС ), осветительных, облучающих и светосигнальных приборов и устройств, систем управления ИС , вопросы нормирования, проектирования, устройства и эксплуатации светотехнических установок.

ЛЮМИНЕСЦЕНЦИЯ (от лат . lumen,) свечение веществ при данной температуре и возбужденное какими-либо источниками энергии. Возникает под действием света, электрического поля, радиоактивного и рентгеновского излучений при химических реакциях, при механических воздействиях.

ЛАМПА НАКАЛИВАНИЯ, источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно W), накаливаемой электрическим током до температуры 2500-3300 К. Световая отдача лампы накаливания 10-35 лм/Вт; срок службы от 5 до 1000ч. Изобретена в 1872 А. Н. Лодыгиным, усовершенствована Т. А. Эдисоном в 1879.

ЛЮМИНЕСЦЕНТНАЯ ЛАМПА, газоразрядный источник света низкого давления, световой поток которого определяется в, основном, свечением люминофоров под воздействием ультрафиолетового излучения электрического разряда. Световая отдача до 85 лм/Вт, срок службы до 10-15 тыс. ч. Применяются ЛЛ , главным образом, для общего и местного освещения.

ГАЛОГЕННАЯ ЛАМПА, лампа накаливания, в состав газовой смеси которой, кроме инертного газа, входят галогены металлов(обычно йод или бром). При одинаковой с обычной лампой накаливания мощности, имеет меньшие размеры, большую световую отдачу, срок службы и лучшую стабильность светового потока.

ГАЗОРАЗРЯДНЫЕ ИСТОЧНИКИ СВЕТА, газоразрядные приборы, в которых электрическая энергия преобразуется в энергию оптического излучения при прохождении электрического тока через газы (чаще всего инертные), пары веществ (напр., пары ртути) или их смеси. В соответствии с непосредственным источником излучения различают газосветные (неоновые, ртутные, натриевые, металлогалогенные, ксеноновые), люминесцентные и др. Применяют ГИС главным образом для освещения, облучения и сигнализации.

ЦВЕТОВАЯ ТЕМПЕРАТУРА, эффективная величина, равная температуре абсолютно черного тела, при которой отношение энергетических яркостей для двух длин волн его спектра равно отношению этих же величин для спектра исследуемого источника света. Цвет излучения ощутимо влияет на т.н. цветовое впечатление освещённого объекта и ЦТ является одной из его характеристик. Наиболее часто встречающиеся ЦТ для ламп: тепло-белый (~2700-3000К), холодно-белый(~4000-4200К), дневной(~6000-6500К). Шкала коррелированной ЦТ позволяет определить градации спектрального распределения для разных ИС в сравнении с цветом стальной заготовки, раскалённой до определённой температуры.Чем выше температура (К), тем более преобладающим становится в светчении холодный, белый оттенок. Такое распределение оттенков выражается в градусах Кельвина. С некоторой степенью достоверности для описания спектрального распределения света предлагаем таблицу.

ИНДЕКС ЦВЕТОПЕРЕДАЧИ ( Ra ), показатель, также характеризующий цветовое впечатление, от цветопередающих свойств источника света. ИЦ завитсит от величины прерывистости спектра излучаемого света и тем выше, чем он непрерывнее. Этот показатель выше у ламп накаливания и ниже у газоразрядных. Максимальное значение ИЦ равно 100 и соответствует прекрасной цветопередаче. Не следует путать ИЦ с цветовой температурой, это разные параметры. В практике используется 3 квалитета ИЦ :
удовлетворительный
Ra < 80 ;
хороший, нормальный
– 80 <= Ra <= 90;
отличный
-90 <=Ra <= 100.

Люмен, люкс, кандела, ватт, мощность светового потока. Как в этом разобраться?

Люмен, люкс, кандела, Ватт, мощность, световой поток, сила света. Не всегда легко разобраться, что означают эти значения. Мы поможем вам с этим, ниже вы найдете статью, в которой простым языком написано в каких случаях все эти значения взаимосвязаны.

Люмен (лм, lm) — единица измерения светового потока в СИ. Где СИ — система единиц физических величин, (фр. Le Syst?me International d’Unit?s, SI).

Один люмен равен световому потоку, испускаемому точечным изотропным источником c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд ? ср). Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4? люменам.

Обычная лампа накаливания мощностью 100 Вт создаёт световой поток, равный примерно 1300 лм. Компактная люминисцентная лампа дневного света мощностью 26 Вт создаёт световой поток, равный примерно 1600 лм. Световой поток Солнца равен 3,63·10 в 28 степени лм.

Люмен — полный световой поток от источника. Однако, это измерение обычно не принимает во внимание сосредотачивающую эффективность отражателя или линзы и поэтому не является прямым параметром оценки яркости или полезной производительности луча фонаря. У широкого светового луча может быть тот же самый показатель люмен, как и у узкосфокусированного. Люмены не могут использоваться, чтобы определить интенсивность луча, потому что оценка в люменах включает в себя весь рассеянный бесполезный свет.

Люкс (лк, lx) — единица измерения освещённости в системе СИ.

Люкс равен освещённости поверхности площадью 1 кв м при световом потоке падающего на неё излучения, равном 1 люмен .

100 люменов собрали и спроецировали на 1-метровую квадратную область. Освещенность области составит 100 люкс. Те же самые 100 люменов, направленные на 10 квадратных метров, дадут освещенность 10 люкс.

Кандела (кд, cd) — одна из семи основных единиц измерения системы СИ, равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·10 в 12 степени Гц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср. Стерадиа?н (русское обозначение: ср, международное: sr) — единица измерения телесных углов.

Выбранная частота соответствует зелёному цвету. Человеческий глаз обладает наибольшей чувствительностью в этой области спектра. Если излучение имеет другую частоту, то для достижения той же силы света требуется бо’льшая энергетическая интенсивность.

Ранее кандела определялась как сила света, излучаемого чёрным телом перпендикулярно поверхности площадью 1/60 кв см при температуре плавления платины (2042,5 К). В современном определении коэффициент 1/683 выбран таким образом, чтобы новое определение соответствовало старому.

Сила света, излучаемая свечой, примерно равна одной канделе (лат. candela — свеча), поэтому раньше эта единица измерения называлась «свечой», сейчас это название является устаревшим и не используется.

Сила света типовых источников:

 ИсточникМощность, ВтПримерная сила света, кд
Свеча1
Современная (2016 г) лампа накаливания100100
Обычный светодиод0,0155 мкд
Сверхъяркий светодиод125
Сверхъяркий светодиод с коллиматором11500
Современная (2016 г) люминесцентная лампа20100

Black Diamond – фирма-законодатель мирового профессионального альпинистского и скалолазного снаряжения. Бренд выпускает высококачественные налобные и подвесные фонари, которые можно использовать даже на глубине одного метра под водой в течение получаса. BD предлагает туристические осветительные приборы с показателями светового потока до 200 люмен при сравнительно небольшом весе. Многие фонари наделены несколькими режимами освещения для удобства работы на альпинистском маршруте и в быту. Яркие, легкие, аккуратные и практичные, фонари БлекДиамонд не подведут даже в самой экстремальной ситуации.

Световой поток фонарей (лм)

big LED-high, big LED-med, big LED-low, 5 MM — High, 5 MM — medium, 5 MM — low

 Фонарь Black Diamond (BD)Световой поток, (лм)
Icon200
Spot new200
Cosmo new90
Wiz new30
Ion80
Ember Power Light150
Orbit Lantern105
Voyager Lantern140
 Фонарь PetzlСветовой поток (лм)
Tikka XP180
MYO XP140

Все фонари Black Diamond

Световые величины и единицы

Световой поток — мощность светового излучения, т. е. видимого излучения, оцениваемого по световому ощущению, которое оно производит на глаз человека. Световой поток измеряется в люменах.

Например лампа накаливания (100 Вт) излучает световой поток, равный 1350 лм, а люминесцентная лампа ЛБ40 — 3200.

Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света равной одной канделе, в телесный угол, величиной в один стерадиан (1 лм = 1 кд·ср).

Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен люменам.

Существует и другое определение: единицей светового потока является люмен (лм), равный потоку, излучаемому абсолютно черным телом с площади 0,5305 мм2 при температуре затвердевания платины (1773° С), или 1 свеча·1 стерадиан.

Сила света — пространственная плотность светового потока, равная отношению светового потока к величине телесного угла, в котором равномерно распределено излучение. Единицей силы света является кандела.

Освещенность — поверхностная плотность светового потока, падающего на поверхность, равная отношению светового потока к величине освещаемой поверхности, по которой он равномерно распределен.

Единицей освещенности является люкс (лк), равный освещенности, создаваемой световым потоком в 1 лм, равномерно распределенным на площади в 1 м2, т. е. равный 1 лм/1 м2.

Яркость — поверхностная плотность силы света в заданном направлении, равная отношению силы света к площади проекции светящейся поверхности на плоскость, перпендикулярную тому же направлению.

Единица яркости — кандела на квадратный метр (кд/м2).

Светимость (светность) — поверхностная плотность светового потока, испускаемого поверхностью, равная отношению светового потока к площади светящейся поверхности.

Единицей светимости является 1 лм/м2.

Единицы световых величин в международной системе единиц СИ (SI)

Наименование величины Наименование единицы Выражение
через единицы СИ (SI)
Обозначение единицы
русское между-
народное
Сила света кандела кд кд cd
Световой поток люмен кд·ср лм lm
Световая энергия люмен-секунда кд·ср·с лм·с lm·s
Освещенность люкс кд·ср/м2 лк lx
Светимость люмен на квадратный метр кд·ср/м2 лм·м2 lm/m2
Яркость кандела на квадратный метр кд/м2 кд/м2 cd/m2
Световая экспозиция люкс-секунда кд·ср·с/м2 лк·с lx·s
Энергия излучения джоуль кг·м22 Дж J
Поток излучения, мощность излучения ватт кг·м23 Вт W
Световой эквивалент потока излучения люмен на ватт
кд·ср·с3
кг·м2
лм/Вт lm/W
Поверхностная плотность потока излучения ватт на квадратный метр кг/с3 Вт/м2 W/m2
Энергетическая сила света (сила излучения) ватт на стерадиан кг·м2/(с3·ср) Вт/ср W/sr
Энергетическая яркость ватт на стерадиан-квадратный метр кг/(с3·ср) Вт/(ср·м2) W/(sr·m2)
Энергетическая освещенность (облученность) ватт на квадратный метр кг/с3 Вт/м2 W/m2
Энергетическая светимость (излучаемость) ватт на квадратный метр кг/с3 Вт/м2 W/m2


Примеры:

Тип лампы Мощность, Вт Световой
поток, лм
Примерная
сила света, кд
Свеча     1
Лампа накаливания Б235-245-100 100 1380 100
Лампа люминесцентная ЛБ 40 40 2800  
Ртутная лампа высокого давления ДРЛ 250 250 13000  
Обычный светодиод 0,015   0,001
Сверхяркий светодиод 5   3


ЭЛЕКТРОТЕХНИЧЕСКИЙ СПРАВОЧНИК»
Под общей ред. профессоров МЭИ В.Г. Герасимова и др.
М.: Издательство МЭИ, 1998

Вернуться к списку

Устройство светодиода принцип работы светодиода преимущества

Светодиод: устройство, принцип работы, преимущества

Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее.

Светодиоды излучают не только уникальный по своим характеристикам свет, но и завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.

Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?

Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

Рис. 1. Конструкция светодиода Luxeon фирмы Lumileds lighting.

3. Как работает светодиод?

Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?

Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?

Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2-3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?

Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.

В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.

К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?

Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?

Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)

У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.

Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но… проблему не удавалось решить до конца 80-х годов.

Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош…» — и работы Панкова не поддержали.

Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.

Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирующий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.

Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.

Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10-20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электроннодырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?

Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?

У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?

Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?

Как видно из рисунка 2, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Рис. 2. Зависимость силы тока от напряжения питания светодиода.

16. Для чего светодиоду требуется конвертор?

Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20-50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?

Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?

Об этом лучше всех расскажет профессор Юнович.

Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.

В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.

Одновременно специалисты из группы Бориса Ферапонтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!

Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.

Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?

Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.

Рис. 3. Схематическое представления светодиода.

За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это технология, требующая высокой культуры.

Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к n- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 мм2/.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

23. Кто в мире сегодня производит светодиоды?

Чтобы делать качественные светодиоды в нужном количестве, понадобилось слияние двух отраслей — электронной и светотехнической. Все западные гиганты, производящие светодиоды для светотехники по полному циклу, начиная с производства чипов и заканчивая различными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с производителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, дочерней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductors компании Osram Sylvania, специализирующемуся на устройствах LED, производители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.

Впрочем, существуют компании, специализирующиеся только на производстве чипов. Это предприятия радиоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Corporation.

24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?

Чипы и отдельные светодиоды производят компании Nichia Corporation, Сгее, LumiLeds Lighting, Opto Technology, Osram Opto Semiconductors, GEL Core. Массовое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.

В России светодиоды производят компании Корвет Лайт, Светлана Оптоэлектроника, Оптэл, Оптоника. По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным, специалисты перечисленных компаний имеют соответствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы — например, эпитаксиальная установка имеется в Санкт-Петербургском физтехе, — но для промышленного производства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.

25. Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

26. Возможности и применение

Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку — относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.

Светодиоды, за счет их малой потребности в электроэнергии, — оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.

Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.

27. Преимущества

Экономично…

Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения — максимальный срок работы неоновых и люминесцентных ламп составляет 10 тыс. часов.

За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!

Удобно…

Светодиодный модуль — многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.

Надежно…

Есть надежность совершенно особого рода — та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах.

Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, — 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.

Красиво…

Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.

Представительно…

Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

Источники света

Искусственные источники света — технические устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.).

Источники света, наиболее часто применяемые для искусственного освещения, делят на три группы — газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

В системах производственного освещения предпочтение отдается газоразрядным лампам. Использование ламп накаливания допускается в случае невозможности или экономической нецелесообразности применения газоразрядных.

Основные характеристики источников света:

·         номинальное напряжение питающей сети U, B;

·         электрическая мощность W, Вт;

·         световой поток Ф, лм;

·         световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;

·         срок службы t, ч;

·         Цветовая температура Tc, К.

Лампы накаливания

Лампа накаливания — источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом — цветом и формой колбы. Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов. Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.

Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму «грибка». Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки — для подсветки зеркал в стенных шкафах, ванных комнатах и т. д. Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп. Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение «перегревается».

Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.

Галогенные лампы накаливания

 Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).

Лампы бывают двух форм: трубчатые — c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные — с компактным телом накала.

 Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.

 Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно «передаются» цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.

 Галогенные лампы применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.

Люминесцентные лампы

 Люминесцентные лампы (ЛЛ) — разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Разрядные лампы высокого давления

 Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.

Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — металлогалогенные лампы (МГЛ), отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются натриевые лампы. На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

Светодиоды

Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.

Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.

 

Преимущества:

·         Высокий КПД.

·         Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

·         Длительный срок службы.

·         Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

·         Малый угол излучения — также может быть как достоинством, так и недостатком.

·         Безопасность — не требуются высокие напряжения.

·         Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

·         Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

·         Недостаток — высокая цена.

·         Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.

3.13. Радиационный контроль при работе с техногеннымиисточниками излучения 

3.13.1. Радиационный контроль при работе с техногенными источниками излучения является составной частью производственного контроля и должен осуществляться за всеми основными показателями, определяющими уровни облучения персонала и населения. На каждом радиационном объекте система радиационного контроля должна предусматривать конкретный перечень видов контроля, типов используемой радиометрической и дозиметрической аппаратуры и точек измерения с указанием периодичности каждого вида контроля.

Радиационный контроль должен включать индивидуальный дозиметрический контроль персонала и контроль радиационной обстановки.

3.13.2. Индивидуальный дозиметрический контроль проводится с целью определения годовых доз персонала и является обязательным для персонала группы А.

Индивидуальный дозиметрический контроль за облучением персонала группы А в зависимости от характера проводимых работ включает:

— контроль за характером, динамикой и уровнями поступления радионуклидов в организм с использованием методов прямой и/или косвенной радиометрии;

— контроль за эффективной дозой внешнего облучения персонала;

— контроль за эквивалентными дозами облучения хрусталиков глаз, кожи, кистей и стоп персонала с использованием индивидуальных дозиметров или расчетным способом.

По результатам индивидуального дозиметрического контроля должны быть получены значения эффективных доз персонала и определены при необходимости значения эквивалентных доз облучения в коже, хрусталике глаза, кистях и стопах.

3.13.3. Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

— измерение мощности дозы рентгеновского, гамма- и нейтронного излучений, плотности потоков частиц ионизирующего излучения на рабочих местах, в смежных помещениях, на территории радиационного объекта в санитарно-защитной зоне и зоне наблюдения;

— измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;

— определение объемной активности газов и аэрозолей в воздухе рабочих помещений, их нуклидного состава, дисперсности и типа при ингаляции;

— измерение или оценку активности выбросов и сбросов радиоактивных веществ;

— определение уровней радиоактивного загрязнения объектов окружающей среды в санитарно-защитной зоне и зоне наблюдения.

3.13.4. Система контроля радиационной обстановки объектов I и II категорий должна использовать следующие технические средства:

— непрерывного контроля на основе стационарных автоматизированных технических средств;

— оперативного контроля на основе носимых и передвижных технических средств;

— лабораторного анализа на основе стационарной лабораторной аппаратуры, средств отбора и подготовки проб для анализа.

Автоматизированные системы должны обеспечивать контроль, регистрацию, отображение, сбор, обработку, хранение и выдачу информации.

3.13.5. В помещениях, где ведутся работы с делящимися материалами в количествах, при которых возможно возникновение цепной ядерной реакции деления, а также на ядерных реакторах, критических сборках и при работах I класса, где радиационная обстановка при проведении работ может существенно изменяться, необходимо устанавливать приборы радиационного контроля со звуковыми и световыми сигнализирующими устройствами, а персонал должен быть обеспечен аварийными дозиметрами.

3.13.6. Результаты индивидуального контроля доз облучения персонала должны храниться в течение 50 лет. При проведении индивидуального контроля необходимо вести учет годовых эффективной и эквивалентных доз, эффективной дозы за 5 последовательных лет, а также суммарной накопленной дозы за весь период профессиональной работы.

3.13.7. Индивидуальная доза облучения должна регистрироваться в журнале с последующим внесением в индивидуальную карточку, а также в машинный носитель для создания базы данных на радиационных объектах в ЕСКИД. Копия индивидуальной карточки работника в случае его перехода в другую организацию, где проводится работа с источниками излучения, должна передаваться на новое место работы; оригинал должен храниться на прежнем месте работы.

3.13.8. Лицам, командируемым для работ с источниками излучения, должна выдаваться заполненная копия индивидуальной карточки о полученных дозах облучения. Данные о дозах облучения прикомандированных лиц должны включаться в их индивидуальные карточки.

3.13.9. В организациях, проводящих работы с техногенными источниками излучения, должны устанавливаться контрольные уровни.

Перечень и числовые значения контрольных уровней определяются в соответствии с условиями работы и согласовываются с органом, осуществляющим федеральный государственный санитарно-эпидемиологический надзор.

(в ред. Изменений N 1, утв. Постановлением Главного государственного санитарного врача РФ от 16.09.2013 N 43)

(см. текст в предыдущей редакции)

3.13.10. При установлении контрольных уровней следует исходить из принципа оптимизации с учетом:

— неравномерности радиационного воздействия во времени;

— целесообразности сохранения уже достигнутого уровня радиационного воздействия на данном объекте ниже допустимого;

— эффективности мероприятий по улучшению радиационной обстановки.

При изменении характера работ перечень и числовые значения контрольных уровней подлежат уточнению.

При установлении контрольных уровней объемной и удельной активности радионуклидов в атмосферном воздухе и в воде водоемов следует учитывать возможное поступление их по пищевым цепочкам и внешнее излучение радионуклидов, накопившихся на местности.

3.13.11. Результаты радиационного контроля сопоставляются со значениями пределов доз и контрольными уровнями. Превышения контрольных уровней должны анализироваться администрацией объекта. О случаях превышения годовых пределов эффективных доз для персонала, установленных НРБ-99/2009, годовых пределов эквивалентных доз облучения персонала или квот облучения населения администрация должна информировать органы исполнительной власти, уполномоченные осуществлять федеральный государственный санитарно-эпидемиологический надзор.(в ред. Изменений N 1, утв. Постановлением Главного государственного санитарного врача РФ от 16.09.2013 N 43)

(см. текст в предыдущей редакции)

Источники видимого света — Введение

Видимый свет составляет лишь крошечную часть всего спектра электромагнитного излучения, однако он содержит единственную область частот, на которую будут реагировать палочки и колбочки человеческого глаза. Длины волн, которые люди обычно могут визуализировать, лежат в очень узком диапазоне от примерно 400 до 700 нанометров. Люди могут наблюдать и реагировать на раздражители, создаваемые видимым светом, потому что глаза содержат специализированные нервные окончания, чувствительные к этому диапазону частот.Однако остальная часть электромагнитного спектра невидима.

За излучение электромагнитного излучения отвечает широкий спектр источников, которые, как правило, классифицируются в соответствии с конкретным спектром длин волн, генерируемых источником. Относительно длинные радиоволны производятся электрическим током, протекающим через огромные широковещательные антенны, в то время как гораздо более короткие волны видимого света производятся колебаниями энергетического состояния отрицательно заряженных электронов внутри атомов.Самая короткая форма электромагнитного излучения, гамма-волны, возникает в результате распада ядерных компонентов в центре атома. Видимый свет, который люди могут видеть (спектр показан на рисунке 1), обычно представляет собой смесь длин волн, чей изменяющийся состав зависит от источника света.

В повседневной жизни мы подвергаемся бомбардировке огромным спектром электромагнитного излучения, только часть которого мы действительно можем «видеть» как видимый свет. Когда вы выходите на улицу, подавляющее большинство видимого людям света испускается солнцем, которое также производит множество других частот излучения, не попадающих в видимый диапазон.Внутри мы видим видимый свет, исходящий от искусственных источников, в основном люминесцентных и ламп накаливания вольфрамовых приборов.

Ночью естественный свет излучается небесными телами, такими как луна, планеты и звезды, в дополнение к периодическому северному сиянию (северное сияние) и случайным кометам или метеорам («падающая звезда»). Другие источники естественного света включают метеорологические молнии, вулканы, лесные пожары, а также некоторые биохимические источники видимого света ( биолюминесценция ).Биологические источники света включают знакомых молниеносных насекомых («светлячков») и более экзотическое свечение моря, включая биолюминесцентные виды бактерий, водоросли, динофлагелляты, медузы, гребневики (гребневики) и некоторые виды рыб.

Длина волны видимого света и воспринимаемый цвет
400-430
Диапазон длин волн
(нанометров)
Воспринимаемый цвет
340-400 Ближний ультрафиолет (УФ; Невидимый)7832
Фиолетовый
430-500 Синий
500-570 Зеленый
570-620 570-620 9000 От желтого до оранжевого
620-670 Ярко-красный
670-750 Темно-красный
Более 750 Ближний инфракрасный (ИК; Невидимый)
Таблица 1

Таблица 1 содержит список видимых цветов r распределение, воспринимаемое людьми для ряда узких диапазонов длин волн в спектре видимого света.Связывание определенных цветов с областью длин волн позволяет различать разные тона, оттенки и оттенки. Многие различные спектральные распределения могут вызывать идентичные цветовые ощущения (явление, известное как метамеров ). Например, ощущение желтого цвета может быть вызвано светом с одной длиной волны, например 590 нм, или может быть результатом просмотра двух равных количеств света с отдельными длинами волн, например 580 и 600 нм.Также можно рассматривать желтый цвет как узкое распределение, охватывающее все длины волн от 580 до 600 нанометров. Что касается зрительной системы человека, то тот же аргумент справедлив для всех цветов видимого спектра. Однако недавние исследования показывают, что некоторые виды (в первую очередь птицы) могут различать цвета, воспринимаемые людьми как метамеры.

Источники света накаливания

Ранние люди не имели надежного источника света в течение долгих ночей, но они могли иногда находить и собирать горящие дрова от лесных пожаров, а затем поддерживать пламя в костре в течение короткого периода времени. время.По мере развития знаний человек обнаружил, что искры, а затем и огонь, могут возникать при ударе определенных камней вместе (например, кремень и железный колчедан) или при агрессивном трении дерева о дерево. Как только эти техники были освоены, человек мог разводить огонь, когда он пожелал.

Когда горит огонь, выделяется химическая энергия в виде тепла и света. Горящее топливо, будь то трава, дерево, масло или какой-либо другой горючий материал, испускает газы, которые нагреваются огромной химической энергией, генерируемой во время сгорания, заставляя атомы в газе светиться или накаливать .Электроны в атомах газа продвигаются на более высокие уровни энергии за счет тепла, и свет высвобождается в форме фотонов, когда электроны релаксируют в свое основное состояние. Цвет пламени указывает на температуру и количество выделяемой энергии. Тускло-желтое пламя намного холоднее ярко-синего пламени, но даже самое холодное пламя все равно очень горячее (не менее 350 градусов Цельсия).

Хотя смола и тряпки использовались для изготовления первых факелов, первый практический шаг в борьбе с огнем произошел, когда была изобретена масляная лампа.Были обнаружены первые лампы возрастом более 15 000 лет (рис. 2), сделанные из камней и ракушек, которые сжигали животный жир и растительные масла. До изобретения газового освещения животный жир пользовался огромным спросом. Основным источником этого масла был жир , полученный путем варки жировых тканей, полученных от морских животных, таких как киты и тюлени. Масляные лампы в конечном итоге превратились в свечи, которые были сформированы путем заливки затвердевшего жира или пчелиного воска, как показано на рисунке 2. Ранние свечи генерировали довольно много дыма, но не так много света.В конце концов было обнаружено, что парафиновый воск при правильном отливке с тканевым фитилем, пропитанным пропиткой, дает относительно яркое пламя без значительного количества дыма.

В 19 веке освещение на природном газе получило широкое распространение во многих крупных городах Европы, Азии и США. Ранние газовые фонари работали, создавая струю горящего газа (довольно опасная ситуация), в то время как более поздние модели были оснащены мантией или тонкой сеткой из химически обработанной ткани, которая рассеивает пламя и излучает гораздо более яркий свет.

Молния: естественный конденсатор

Изучите накопление статических электрических зарядов между грозовыми облаками и влажной землей во время грозы с помощью этого учебного пособия, которое имитирует разряды молнии, подобные конденсатору, — одному из природных источников света.

Ранние микроскописты полагались на свечи, масляные лампы и естественный солнечный свет для освещения относительно грубых оптических систем в своих микроскопах. Эти примитивные источники света страдали от мерцания, неравномерного освещения, бликов и часто представляли потенциальную опасность возгорания.Сегодня лампы накаливания высокой интенсивности на основе вольфрама являются основным источником света, используемым в современных микроскопах и большинстве бытовых осветительных систем.

На рисунке 3 представлены кривые спектрального распределения, демонстрирующие относительное количество энергии в зависимости от длины волны для нескольких различных источников белого света (состоящего из смеси, содержащей все или большинство цветов видимого спектра). Красная кривая представляет относительную энергию вольфрамового света во всем видимом спектре.Как видно из рисунка, энергия вольфрамового света увеличивается с увеличением длины волны. Этот эффект существенно влияет на среднюю цветовую температуру получаемого света, особенно по сравнению с естественным солнечным светом и флуоресцентным светом (ртутная лампа). Спектр, представленный желтой кривой, представляет собой распределение видимого света из спектра естественного солнечного света, взятого в полдень. В нормальных условиях солнечный свет содержит наибольшее количество энергии, но все кривые, показанные на рисунке 3, были нормализованы к спектру вольфрама, чтобы облегчить сравнение.Темно-синяя спектральная кривая характерна для ртутной дуговой лампы и демонстрирует некоторые заметные отличия от спектров вольфрама и естественного солнечного света. В спектре газоразрядной лампы присутствует несколько энергетических пиков, которые возникают в результате наложения отдельных линейчатых спектров, происходящих от паров ртути.

Спектр видимого света, создаваемый белым светоизлучающим диодом ( LED ), представлен зеленой кривой на рисунке 3. Светоизлучающие диоды по своей сути являются монохроматическими устройствами, цвет которых определяется шириной запрещенной зоны между различными используемыми полупроводниковыми материалами. в диодной конструкции.Красные, зеленые, желтые и синие диоды являются обычными и широко используются в качестве индикаторов для компьютеров и других устройств бытовой электроники, таких как радиотюнеры, телевизионные приемники, проигрыватели компакт-дисков, видеомагнитофоны и цифровые проигрыватели видеодисков. Светодиоды белого света изготавливаются из синих диодов из нитрида галлия путем покрытия полупроводниковой матрицы люминофором, который излучает широкий диапазон видимых длин волн при возбуждении светом, излучаемым синим диодом. Спектры лазеров, получаемых от диодов или газовых лазеров, обычно очень узкие, часто включают только одну или несколько определенных длин волн.Пример показан на рисунке 3 (голубая кривая) для слаботочного полупроводникового диодного лазера, который полезен для множества приложений, включая считывание штрих-кодов и отслеживание данных на оптических дисках.

Вольфрамовые источники света обычно называют лампами накаливания , потому что они излучают свет при нагревании электрической энергией. Нити современных лампочек (или ламп) обычно состоят из вольфрама, металла, который в некоторой степени эффективно излучает свет при резистивном нагреве электрическим током.Современные лампы накаливания произошли от угольных дуговых ламп, изобретенных сэром Хамфри Дэви, которые излучают свет за счет разрядной дуги, образованной между двумя угольными стержнями (или электродами накаливания), когда на электроды подается электрический потенциал. В конце концов, угольные дуговые лампы уступили место первым лампам, в которых использовались углеродные нити, заключенные в вакуумированный стеклянный колпак. Вольфрамовые нити, впервые примененные в 1910 году Уильямом Дэвидом Кулиджем, испаряются намного медленнее, чем углеродные волокна, полученные из хлопка, при нагревании в вакууме стеклянной оболочки.Нить накала действует как простой резистор и излучает значительное количество света в дополнение к теплу, выделяемому током.

Светоизлучающие диоды

Узнайте, как два разнородных легированных полупроводника можно объединить в диод и получить свет при приложении напряжения к области соединения между материалами.

Вольфрамовые лампы накаливания — это тепловые излучатели, которые излучают непрерывный спектр света, простирающийся от примерно 300 нанометров в ультрафиолетовой области до примерно 1400 нанометров в ближней инфракрасной области.Их конструкция, конструкция и работа очень просты, и большое количество этих ламп использовалось в качестве источников света накаливания. Типичные лампы состоят из герметичной стеклянной колбы (см. Рисунок 4), откачанной или заполненной инертным газом, и содержащей вольфрамовую проволочную нить накаливания, питаемую постоянным или переменным током. Лампы излучают огромное количество света и тепла, но на свет приходится всего 5-10 процентов их общей выходной энергии.

Вольфрамовые лампы имеют несколько недостатков, таких как снижение интенсивности с течением времени и почернение внутренней поверхности оболочки из-за медленного осаждения испаренного вольфрама на стекле.Цветовая температура и яркость вольфрамовых ламп меняются в зависимости от приложенного напряжения, но средние значения цветовой температуры находятся в диапазоне от примерно 2200 K до 3400 K. Температура поверхности активной вольфрамовой нити очень высока, обычно в среднем составляет 2550 градусов Цельсия для стандартных 100 градусов Цельсия. -ваттная коммерческая лампочка. В некоторых случаях оболочки вольфрамовых ламп заполнены благородными газами криптоном или ксеноном (инертный газ , заполненный газом ) в качестве альтернативы созданию вакуума для защиты горячей вольфрамовой нити.Эти газы повышают эффективность ламп накаливания, поскольку они уменьшают количество испаренного вольфрама, который осаждается внутри окружающего стеклянного сосуда.

Галогенные лампы, высокоэффективная версия вольфрамовой лампы накаливания, обычно содержат следы йода или брома в заполняющем газе, которые возвращают испарившийся вольфрам в нить накала гораздо более эффективно, чем лампы, изготовленные с использованием других газов. Вольфрамово-галогенные лампы, впервые разработанные General Electric в 1950-х годах для освещения кончиков сверхзвуковых реактивных крыльев, способны производить очень однородный яркий свет на протяжении всего срока службы лампы.Кроме того, галогенные лампы намного меньше и эффективнее вольфрамовых ламп сопоставимой мощности. Срок службы вольфрамово-галогенной лампы в идеальных условиях может достигать 10 лет.

Нити накаливания вольфрамово-галогенных ламп часто представляют собой очень компактные спиральные сборки, помещенные в оболочку из боросиликатно-галогенидного стекла (часто называемого плавленым кварцем ). Высокие рабочие температуры ограничивают использование вольфрамово-галогенных ламп только хорошо вентилируемыми лампами с веерообразными радиаторами, которые устраняют огромное количество тепла, выделяемого этими лампами.Многие бытовые лампы оснащены вольфрамово-галогенными лампами мощностью 300-500 Вт и излучают значительное количество света, который заполняет комнату намного лучше, чем их вольфрамовые аналоги с более слабым излучением. В сочетании с волоконно-оптическими световодами и абсорбционными или дихроматическими фильтрами вольфрамово-галогенные лампы обеспечивают освещение высокой интенсивности для широкого спектра применений в оптической микроскопии, но, как главный недостаток, выделяют значительное количество инфракрасного света в виде лучистого тепла, которое может легко разрушить образец.

Флуоресцентные источники света

Существует большое количество источников видимого света без накаливания, которые используются для внутреннего и наружного освещения, помимо важных приложений в оптической микроскопии. Большинство этих источников света основаны на электрическом разряде через газ, такой как ртуть, или благородные газы неон, аргон и ксенон. Генерация видимого света в газоразрядных лампах основана на столкновениях между атомами и ионами в газе с электрическим током, который проходит между парой электродов, размещенных на концах оболочки колбы.

Стеклянная трубка обычной люминесцентной лампы покрыта люминофором на внутренней поверхности стекла, а трубка заполнена парами ртути под очень низким давлением (см. Рисунок 5). Электрический ток подается между электродами на концах трубки, создавая поток электронов, который течет от одного электрода к другому. Когда электроны из потока сталкиваются с атомами ртути, они переводят электроны внутри атомов в более высокое энергетическое состояние. Эта энергия высвобождается в виде ультрафиолетового излучения, когда электроны в атомах ртути возвращаются в основное состояние.Ультрафиолетовое излучение впоследствии возбуждает внутреннее люминофорное покрытие, заставляя его излучать яркий белый свет, который мы наблюдаем от люминесцентных ламп. Люминесцентные лампы примерно в два-четыре раза эффективнее излучают видимый свет, производят меньше отходящего тепла и обычно служат в десять-двадцать раз дольше, чем лампы накаливания.

Уникальной особенностью флуоресцентных источников света является то, что они генерируют серию длин волн, которые часто концентрируются в узких полосах, называемых линейчатыми спектрами .Как следствие, эти источники не создают непрерывного спектра освещения, характерного для источников накаливания. Хорошим примером (почти исключительно) одночастотного источника видимого света без накаливания являются натриевые лампы, обычно используемые в уличном освещении. Эти лампы излучают очень интенсивный желтый свет, при этом более 95 процентов излучения состоит из 589-нанометрового света, и практически никакие другие длины волн на выходе практически отсутствуют. Можно разработать газоразрядные лампы, которые будут излучать почти непрерывный спектр в дополнение к линейчатым спектрам, присущим большинству этих ламп.Наиболее распространенный метод — покрытие внутренней поверхности трубки частицами люминофора, которые будут поглощать излучение, испускаемое светящимся газом, и преобразовывать его в широкий спектр видимого света от синего до красного.

В нормальных условиях большинство людей не в состоянии различить разницу между линейчатым спектром и спектром непрерывных длин волн. Однако некоторые объекты отражают необычные цвета в свете прерывистого источника, особенно при флуоресцентном освещении.Вот почему одежда или другие ярко окрашенные предметы, приобретенные в магазине, освещенные флуоресцентным светом, часто выглядят немного другого цвета при естественном солнечном свете или постоянном вольфрамовом освещении.

Цветовая температура

Узнайте, как медленно нагревание виртуального излучателя черного тела смещает цветовой спектр света, излучаемого излучателем, с более длинных на более короткие средние длины волн при повышении температуры.

В стереомикроскопии отраженного света, особенно при исследовании термочувствительных образцов, люминесцентные лампы предпочтительнее вольфрамовых ламп из-за их высокой эффективности и низкого тепловыделения.Современные люминесцентные лампы могут быть сконфигурированы для линейных ламповых или кольцевых осветителей, чтобы обеспечить микроскописта интенсивным рассеянным светом. Этот источник искусственного белого света не уступает солнечному свету (без сопутствующего тепла) по цветовой температуре и устраняет характеристики мерцания, типичные для люминесцентных ламп потребительского класса. По сравнению с вольфрамовыми, вольфрамово-галогенными или дуговыми лампами осветители микроскопов с люминесцентными лампами могут обеспечить относительно длительные периоды (примерно 7000 часов) высококачественного обслуживания.В качестве источника рассеянного света люминесцентные лампы создают равномерно освещенное поле зрения без раздражающих горячих точек или бликов. Новая технология освещения с холодным катодом является многообещающей в качестве специализированного источника света в оптической микроскопии, особенно для короткоживущих событий, усиленных возбуждением флуоресценции, а также для приложений, где избыточное тепло или время нагрева в источнике света может мешать образцу или наблюдаемое событие.

Специализированный метод фотографирования движущихся образцов, особенно полезный при освещении темнопольной микроскопии, был разработан с использованием электронных фотовспышек.Электронные вспышки работают за счет ионизации в заполненной ксеноновым газом стеклянной оболочке, приводимой в действие разрядом большого конденсатора. Короткоживущий высоковольтный импульс от трансформатора вызывает ионизацию газообразного ксенона, позволяя конденсатору разряжаться через проводящий теперь газ. Излучается внезапная вспышка яркого света, после чего газообразный ксенон быстро возвращается в непроводящее состояние, и конденсатор перезаряжается. Фотовспышки обеспечивают мгновенную вспышку освещенности 5500 K, что позволяет уловить значительное количество деталей объекта для получения впечатляющих результатов в фотографии, цифровой обработке изображений и микрофотографии.

Дуговые газоразрядные лампы, наполненные газами, такими как пары ртути и ксенон, являются предпочтительными источниками освещения для некоторых специализированных форм флуоресцентной микроскопии. Типичная дуговая лампа в 10-100 раз ярче, чем аналоги на основе вольфрама, и может обеспечить яркое монохроматическое освещение в сочетании с дихроматическими интерференционными фильтрами со специальным покрытием. В отличие от вольфрамовых и вольфрамово-галогенных ламп, дуговые лампы не содержат нити накала, а, скорее, зависят от ионизации газообразного пара посредством дугового разряда высокой энергии между двумя электродами для получения интенсивного света.Обычно дуговые лампы имеют средний срок службы около 100-200 часов, и большинство внешних источников питания оснащены таймером, который позволяет микроскописту отслеживать, сколько времени прошло. Ртутные дуговые лампы (часто называемые горелками ; см. Ртутные и ксеноновые лампы, показанные на рисунке 6) имеют мощность от 50 до 200 Вт и обычно состоят из двух электродов, герметизированных под высоким давлением паров ртути в корпусе из кварцевого стекла.

Ртутные и ксеноновые дуговые лампы не обеспечивают равномерной освещенности во всем спектре длин волн от ближнего ультрафиолетового до инфракрасного.Большая часть интенсивности ртутной дуговой лампы расходуется в ближнем ультрафиолетовом и синем спектре, при этом большинство пиков высокой интенсивности приходится на диапазон 300-450 нанометров, за исключением нескольких пиков с более высокой длиной волны в зеленой области спектра. . Напротив, ксеноновые дуговые лампы имеют более широкий и более равномерный выход по интенсивности в видимом спектре и не демонстрируют пиков очень высокой спектральной интенсивности, характерных для ртутных ламп. Однако ксеноновым лампам не хватает ультрафиолета, и они расходуют большую часть своей интенсивности в инфракрасном диапазоне, что требует осторожности при контроле и устранении избыточного тепла при использовании этих ламп.

Эра использования светодиодов в качестве практического источника освещения наступила в двадцать первом веке, и диод является идеальным дополнением к объединению полупроводниковой технологии и оптической микроскопии. Относительно низкое энергопотребление (от 1 до 3 вольт при 10 до 100 миллиампер) и длительный срок службы светодиодов делают эти устройства идеальными источниками света, когда требуются уровни белого света от низкой до средней. Микроскопы, подключенные к компьютерам, подключенным через порт универсальной последовательной шины ( USB ) или работающие от батарей, могут использовать светодиод в качестве небольшого, низкотемпературного, маломощного и недорогого внутреннего источника света для визуального наблюдения и цифрового захват изображения.В некоторых учебных и исследовательских микроскопах начального уровня в настоящее время используется внутренний высокоинтенсивный белый светоизлучающий диод, который служит основным источником света.

Хотя характеристики проецирования света эпоксидной оболочкой все еще исследуются, светоизлучающие диоды в настоящее время тестируются и продаются для широкого спектра применений, таких как светофоры, знаки, фонарики и внешние кольцевые осветители для микроскопии. Свет, излучаемый белыми светодиодами, имеет спектр цветовой температуры, аналогичный спектру ртутной лампы, которая относится к категории дневного освещения .Изучая спектр излучения белого светодиода, представленный на рисунке 3, пик пропускания при 460 нм обусловлен синим светом, излучаемым полупроводниковым диодом из нитрида галлия, в то время как широкий диапазон высокого пропускания, расположенный между 550 и 650 нм, является результатом вторичного света, излучаемого люминофорное покрытие внутри полимерной оболочки. Комбинация длин волн дает «белый» свет с относительно высокой цветовой температурой, который является подходящим диапазоном длин волн для визуализации и наблюдения в оптической микроскопии.

Источники лазерного света

Еще одним источником видимого света, который становится все более важным в нашей повседневной жизни, является лазерное освещение. Аббревиатура LASER является аббревиатурой от L ight A , усиленного миссией S timulated E от R . Одной из уникальных особенностей лазеров является то, что они излучают непрерывный луч света, состоящий из одной дискретной длины волны (или иногда нескольких длин волн), который выходит из устройства в одной выровненной фазе, обычно называемой когерентным светом .Длина волны света, излучаемого лазером, зависит от материала, из которого состоит лазерный кристалл, диод или газ. Лазеры производятся самых разных форм и размеров, от крошечных диодных лазеров, достаточно маленьких, чтобы пройти сквозь игольное ушко, до огромных военных и исследовательских инструментов, заполняющих все здание.

Лазеры используются в качестве источников света в ряде приложений, от считывателей компакт-дисков до измерительных инструментов и хирургических инструментов. Знакомый красный свет гелий-неонового лазера (часто сокращенно He-Ne ) сканирует покупки потребителей с помощью оптических штрих-кодов, но также играет важную роль во многих системах лазерной сканирующей конфокальной микроскопии.Применение лазеров в оптической микроскопии также приобретает все большее значение, как в качестве единственного источника света, так и в сочетании с флуоресцентными и / или лампами накаливания. Несмотря на относительно высокую стоимость, лазеры находят особенно широкое применение во флуоресценции, монохроматическом светлом поле и в быстрорастущих областях конфокального лазерного сканирования, полного внутреннего отражения, резонансного переноса энергии флуоресценции и многофотонной микроскопии.

Газовые аргоно-ионные лазеры

Изучите, как газоразрядная трубка аргон-ионного лазера работает с ионизированным газом, создавая непрерывную волну световой энергии через выходное зеркало.В учебном пособии показано медленное накопление световой энергии внутри трубки до установления устойчивого состояния лазерного разряда.

Лазеры на ионах аргона (рис. 8) производят мощное спектральное излучение на 488 и 514 нм, тогда как газовые лазеры на криптоне демонстрируют большие пики на длинах волн 647,1 и 752,5 нм. Оба этих лазера часто используются в качестве источников возбуждения в лазерной сканирующей конфокальной микроскопии. Импульсные лазеры с синхронизацией мод на легированном титаном сапфировом кристалле используются в качестве источников для многофотонного возбуждения из-за их высокой пиковой интенсивности, но они также обладают низкой средней мощностью и короткими рабочими циклами.В качестве предпочтительных источников света для многофотонной микроскопии импульсные лазеры значительно дороже и сложнее в эксплуатации, чем небольшие лазеры с воздушным охлаждением, используемые в конфокальной микроскопии.

В новой лазерной технологии используются лазерные диоды на основе полупроводников и отдельные лазеры на кристалле, которые уменьшают размер и требования к мощности для источников света. Лазерные диоды, такие как неодим: фторид иттрия-лития (Nd: YLF) и неодим: ванадат иттрия (Nd: YVO (4)), обычно намного быстрее реагируют, чем светодиоды, но также относительно малы и потребляют мало энергии.К недостаткам использования лазеров в микроскопии относятся дополнительные затраты на источник света, риск дорогостоящего повреждения оптики, повышенные затраты, связанные с покрытием линз и зеркал, разрушение образцов и возможное повреждение сетчатки глаза микроскописта, если не соблюдаются безопасные методы обращения и работы. .

Из этого обсуждения становится очевидным, что, хотя существует большое количество доступных источников освещения, в повседневной жизни мы обычно полагаемся только на некоторые из них.В дневное время солнце служит нашим основным источником освещения на открытом воздухе, в то время как мы обычно полагаемся на флуоресцентное и вольфрамовое освещение в помещении и в вечерние часы. Как обсуждалось выше, все эти три основных источника освещения имеют разные свойства и спектральные характеристики, но их максимальная интенсивность попадает в диапазон видимого света. Человеческий мозг автоматически приспосабливается к различным источникам света, и мы интерпретируем цвета большинства объектов вокруг нас как почти не меняющиеся, когда они рассматриваются в различных условиях освещения.

Соавторы

Кеннет Р. Спринг — научный консультант, Ласби, Мэриленд, 20657.

Майкл У. Дэвидсон — Национальная лаборатория сильного магнитного поля, 1800 г. Ист. , Florida, 32310.

Молекулярные выражения: наука, оптика и вы: свет и цвет


Источники видимого света

Видимый свет составляет лишь небольшую часть всего электромагнитного спектра излучения.Длины волн, которые человеческий глаз обычно может визуализировать, лежат в диапазоне от 400 до 700 нанометров, как показано на рисунке 1. Однако, вместо того, чтобы отображать одну длину волны, видимый свет обычно представляет собой смесь длин волн, чей изменяющийся состав зависит от света. источник, из которого он испускается.

В повседневной жизни большинство людей сталкивается с небольшим количеством видимых источников света. Например, когда вы выходите на улицу, подавляющее большинство видимого света исходит от солнца, которое также излучает многие другие частоты излучения, не попадающие в видимый диапазон.Однако внутри видимый свет в основном исходит от искусственных источников, чаще всего от флуоресцентных или вольфрамовых устройств.

Длина волны видимого света и воспринимаемый цвет
Диапазон длин волн
(нанометры)
Воспринимаемый цвет
340-400 Ближний ультрафиолет (УФ; невидимый)
400-430 Фиолетовый
430-500 Синий
500-560 Зеленый
560-620 От желтого до оранжевого
620-700 От оранжевого до красного
Более 700 Ближний инфракрасный (ИК; невидимый)

Таблица 1

Для каждого набора длин волн в видимом спектре люди воспринимают определенные цвета, распределение которых показано в таблице 1.Количественная оценка цвета полезна, поскольку она упрощает различение различных оттенков и оттенков. Однако возможно, что многие различные спектральные распределения будут давать идентичные цветовые ощущения. Ощущение желтого цвета может быть вызвано светом с одной длиной волны, например 590 нм, или результатом просмотра двух длин волн, например 590 и 600 нм. Также можно рассматривать желтый цвет как узкое распределение, охватывающее все длины волн от 590 до 600 нанометров.Такой же набор возможностей существует для всех цветов видимого спектра.

Белый свет, однако, не фигурирует в Таблице 1, потому что он состоит из смеси, содержащей все или большинство цветов видимого спектра. Белый свет излучается различными источниками, такими как вольфрамовые лампы, которые часто обозначаются накаливания , потому что они излучают свет при нагревании с помощью электрической энергии. Белый свет также может исходить от флуоресцентного источника , в котором свет генерируется в результате электрического тока, проходящего через заряженный газ.Однако самым большим источником белого света является солнце.

Кривые спектрального распределения, демонстрирующие относительное количество энергии в зависимости от длины волны для трех наиболее распространенных источников белого света, показаны на рисунке 2. Красный спектр представляет собой относительную энергию вольфрамового света в видимом спектре. Очевидно, что энергия вольфрамового света увеличивается с увеличением длины волны, что резко влияет на среднюю цветовую температуру получаемого света, особенно по сравнению с естественным солнечным светом и флуоресцентным светом.Желтый спектр представляет то, что люди видят с естественным спектром солнечного света, взятым в полдень. В нормальных условиях солнечный свет имел бы наибольшее количество энергии, но спектр был нормализован, чтобы сравнить его с двумя другими. Синий спектр иллюстрирует то, что видно при флуоресцентном свете, и содержит некоторые заметные отличия от спектров вольфрама и естественного солнечного света. В спектре флуоресцентного света присутствует несколько пиков энергии, которые являются результатом наложения линейчатого спектра паров ртути в люминесцентной лампе.

Интерактивное учебное пособие по Java

Поскольку разные источники света обладают разными характеристиками, решение о том, какой тип освещения следует использовать, обычно зависит от области применения. Например, различные источники видимого света без накаливания используются для микроскопии, внутреннего и наружного освещения. Большинство из них основаны на электронном разряде в газе, таком как ртуть или благородные газы, неон, аргон и ксенон.Генерация видимого света в этих устройствах основана на столкновении атомов и ионов в газе с током, который отводится от электродов на концах лампочек. Эта концепция проиллюстрирована на рисунке 3 с помощью обычной люминесцентной лампы.

В этом примере стеклянная трубка люминесцентной лампы покрыта изнутри люминофором, а трубка заполнена парами ртути при очень низком давлении. Электрический ток подается на электроды на концах трубки, создавая поток электронов.Когда электроны сталкиваются с атомами ртути, они переводят электроны в атомах в более высокие энергетические состояния. Эта энергия затем выделяется в виде ультрафиолетового излучения, когда атомы ртути возвращаются в основное состояние. Ультрафиолетовое излучение возбуждает внутреннее люминофорное покрытие, заставляя его излучать яркий белый свет, характерный для люминесцентных ламп.

Уникальной особенностью источников видимого света без накаливания является то, что длины волн, которые они генерируют, часто сосредоточены в узких полосах, называемых линейчатыми спектрами .Хотя они не производят непрерывный спектр, они все же полезны в определенных приложениях. Например, натриевые лампы, используемые в уличном освещении, представляют собой почти исключительно источник видимого света без накаливания с одной длиной волны. Эти лампы излучают очень интенсивный желтый свет, более 95 процентов которого составляют свет с длиной волны 589 нм.

Однако можно разработать газоразрядные лампы, которые будут излучать умеренно непрерывный спектр в дополнение к линейчатым спектрам, присущим большинству этих ламп.Наиболее распространенный метод — покрытие внутренней поверхности трубки частицами люминофора, как в примере с обычной люминесцентной лампой. Частицы люминофора поглощают излучение светящегося газа и преобразуют его в свет от красного до синего.

В нормальных условиях большинство людей не в состоянии различить смесь линейчатого и непрерывного спектров. Однако некоторые объекты в такой среде отражают необычные цвета, особенно при флуоресцентном освещении.Вот почему одежда, приобретенная в магазине, освещенная флуоресцентным светом, часто имеет немного другой цвет при естественном солнечном свете или постоянном вольфрамовом освещении.

Лазер — еще один важный источник видимого света, который становится все более популярным для различных целей. В настоящее время лазеры используются в самых разных приложениях, от устройств чтения компакт-дисков до измерительных и хирургических устройств. Слово лазер — это аббревиатура, обозначающая L ight A , усиление S timulated E миссия R .Таким образом, как следует из их названия, лазеры на самом деле не генерируют свет, а усиливают его.

Лазеры

уникальны тем, что они излучают непрерывный луч света, состоящий из одной длины волны, который выходит в одной фазе, обычно называемый когерентным светом . Длина волны света, излучаемого лазером, зависит от материала, из которого состоит лазерный кристалл или газ. Лазер, изображенный на рисунке 4, представляет собой рубиновый лазер, который излучает красный свет, когда атомы в кристалле возбуждаются импульсной трубкой.Свет, производимый в газовой смеси, отражается взад и вперед между двумя зеркальными поверхностями на концах лазерной трубки, постоянно увеличивая энергию. Когда достигается критический порог, свет излучается слегка прозрачным зеркалом на одном конце лазерной трубки.

Интерактивное учебное пособие по Java

В заключение, существует большое разнообразие источников освещения, но люди обычно полагаются только на несколько в своей повседневной жизни.В дневное время солнце служит основным источником освещения на открытом воздухе, в то время как люминесцентное и вольфрамовое освещение обычно используется в помещении и в вечерние часы. Все эти три основных источника освещения имеют разные свойства и спектральные характеристики, но их максимальная интенсивность попадает в диапазон видимого света. Чрезвычайно приспосабливаемый человеческий мозг способен автоматически приспосабливаться к различным источникам света, поэтому цвета большинства объектов кажутся почти идентичными при просмотре при любом типе освещения.

Соавторы

Мортимер Абрамовиц — Olympus America, Inc., Two Corporate Center Drive., Мелвилл, Нью-Йорк, 11747.

Шеннон Х. Нивс и Майкл У. Дэвидсон — Национальная лаборатория сильного магнитного поля, 1800 Ист. Пол Дирак, доктор, Университет штата Флорида, Таллахасси, Флорида, 32310.


НАЗАД К СВЕТУ И ЦВЕТУ

Вопросы или комментарии? Отправить нам письмо.
© 1998-2021, автор — Майкл В. Дэвидсон и Государственный университет Флориды. Все права защищены. Никакие изображения, графика, сценарии или апплеты не могут быть воспроизведены или использованы каким-либо образом без разрешения правообладателей. Использование этого веб-сайта означает, что вы соглашаетесь со всеми юридическими положениями и условиями, изложенными владельцами.
Этот веб-сайт поддерживается нашей командой

по графике и веб-программированию
в сотрудничестве с оптической микроскопией в Национальной лаборатории сильного магнитного поля
.
Последнее изменение: пятница, 13 ноября 2015 г., 14:18.
Количество обращений с 10 марта 2003 г .: 130012
Посетите сайты наших партнеров в сфере образования:

Источники света и излучения | Хамамацу Фотоникс

Этот веб-сайт или его сторонние инструменты используют файлы cookie, которые необходимы для его функционирования и необходимы для достижения целей, проиллюстрированных в этой политике использования файлов cookie. Закрыв баннер с предупреждением о файлах cookie, прокручивая страницу, щелкая ссылку или продолжая просмотр иным образом, вы соглашаетесь на использование файлов cookie.

Hamamatsu использует файлы cookie, чтобы сделать ваше пребывание на нашем веб-сайте более удобным и обеспечить его функционирование.

Вы можете посетить эту страницу в любое время, чтобы узнать больше о файлах cookie, получить самую последнюю информацию о том, как мы используем файлы cookie, и управлять настройками файлов cookie. Мы не будем использовать файлы cookie для каких-либо целей, кроме указанных, но обратите внимание, что мы оставляем за собой право обновлять наши файлы cookie.

Чтобы современные веб-сайты работали в соответствии с ожиданиями посетителей, им необходимо собрать определенную базовую информацию о посетителях.Для этого сайт создает небольшие текстовые файлы, которые размещаются на устройствах посетителей (компьютерных или мобильных) — эти файлы известны как файлы cookie, когда вы заходите на сайт. Файлы cookie используются для обеспечения нормальной и эффективной работы веб-сайтов. Файлы cookie уникально назначаются каждому посетителю и могут быть прочитаны только веб-сервером в домене, который отправил файл cookie посетителю. Файлы cookie не могут использоваться для запуска программ или доставки вирусов на устройство посетителя.

Файлы cookie

выполняют различные функции, которые делают работу в Интернете более удобной и интерактивной.Например, файлы cookie используются для запоминания предпочтений посетителей на сайтах, которые они часто посещают, для запоминания языковых предпочтений и для более эффективной навигации между страницами. Большая часть, хотя и не все, собранные данные являются анонимными, хотя некоторые из них предназначены для выявления шаблонов просмотра и приблизительного географического местоположения, чтобы улучшить впечатления посетителей.

Для определенных типов файлов cookie может потребоваться согласие субъекта данных перед их сохранением на компьютере.

2.Какие бывают типы файлов cookie?

Этот веб-сайт использует два типа файлов cookie:

  1. Основные файлы cookie. Для нашего веб-сайта основные файлы cookie контролируются и обслуживаются Hamamatsu. Никакие другие стороны не имеют доступа к этим файлам cookie.
  2. Сторонние файлы cookie. Эти файлы cookie реализуются организациями за пределами Хамамацу. У нас нет доступа к данным в этих файлах cookie, но мы используем эти файлы cookie, чтобы улучшить общее впечатление от веб-сайта.

3. Как мы используем файлы cookie?

Этот веб-сайт использует файлы cookie для следующих целей:

  1. Для работы нашего веб-сайта необходимы определенные файлы cookie. Это строго необходимые файлы cookie, которые необходимы для обеспечения доступа к веб-сайту, поддержки навигации или предоставления соответствующего контента. Эти файлы cookie направляют вас в нужную страну и поддерживают безопасность и электронную торговлю. Строго необходимые файлы cookie также обеспечивают соблюдение ваших настроек конфиденциальности.Без этих строго необходимых файлов cookie большая часть нашего веб-сайта не будет работать.
  2. Аналитические файлы cookie используются для отслеживания использования веб-сайта. Эти данные позволяют нам улучшить удобство использования, производительность и администрирование нашего веб-сайта. В наших аналитических файлах cookie мы не храним никакой личной идентифицирующей информации.
  3. Функциональные файлы cookie. Они используются, чтобы узнать вас, когда вы вернетесь на наш сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона).
  4. Эти файлы cookie записывают ваше посещение нашего веб-сайта, страницы, которые вы посетили, и ссылки, по которым вы переходили. Мы будем использовать эту информацию, чтобы наш веб-сайт и отображаемая на нем реклама соответствовали вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.

Файлы cookie помогают нам помочь вам. С помощью файлов cookie мы узнаем, что важно для наших посетителей, а также разрабатываем и улучшаем контент и функции веб-сайта, чтобы обеспечить вам удобство использования.Доступ к большей части нашего веб-сайта можно получить, если файлы cookie отключены, однако некоторые функции веб-сайта могут не работать. И мы считаем, что ваши текущие и будущие посещения будут улучшены, если будут включены файлы cookie.

4. Какие файлы cookie мы используем?

Есть два способа управлять настройками файлов cookie.

  1. Вы можете настроить файлы cookie на своем устройстве или в браузере.
  2. Вы можете установить свои предпочтения в отношении файлов cookie на уровне веб-сайта.

Если вы не хотите получать файлы cookie, вы можете изменить свой браузер так, чтобы он уведомлял вас об отправке файлов cookie, или вы можете полностью отказаться от файлов cookie. Вы также можете удалить уже установленные файлы cookie.

Если вы хотите ограничить или заблокировать файлы cookie веб-браузера, установленные на вашем устройстве, вы можете сделать это в настройках своего браузера; функция справки в вашем браузере должна подсказать вам, как это сделать. Вы также можете посетить сайт www.aboutcookies.org, который содержит исчерпывающую информацию о том, как это сделать в самых разных браузерах настольных компьютеров.

5. Что такое Интернет-теги и как мы используем их с файлами cookie?

Иногда мы можем использовать интернет-теги (также известные как теги действий, однопиксельные GIF-файлы, прозрачные GIF-файлы, невидимые GIF-файлы и GIF-файлы размером 1 на 1) на этом сайте и можем размещать эти теги / файлы cookie через стороннего рекламного партнера. или партнер по веб-аналитике, который может находиться и хранить соответствующую информацию (включая ваш IP-адрес) в другой стране.Эти теги / файлы cookie размещаются как в онлайн-рекламе, которая приводит пользователей на этот сайт, так и на разных страницах этого сайта. Мы используем эту технологию для измерения откликов посетителей на наши сайты и эффективности наших рекламных кампаний (в том числе, сколько раз открывается страница и с какой информацией обращаются), а также для оценки использования вами этого веб-сайта. Сторонний партнер или партнер службы веб-аналитики может собирать данные о посетителях нашего и других сайтов с помощью этих интернет-тегов / файлов cookie, может составлять для нас отчеты о деятельности веб-сайта и может предоставлять дополнительные услуги, связанные с использование веб-сайта и Интернета.Они могут предоставлять такую ​​информацию другим сторонам, если это требуется по закону или если они нанимают другие стороны для обработки информации от их имени.

Если вы хотите получить дополнительную информацию о веб-тегах и файлах cookie, связанных с онлайн-рекламой, или отказаться от сбора этой информации третьими сторонами, посетите веб-сайт Network Advertising Initiative http://www.networkadvertising.org.

6. Аналитические и рекламные файлы cookie

Мы используем сторонние файлы cookie (например, Google Analytics) для отслеживания посетителей нашего веб-сайта, получения отчетов о том, как посетители используют веб-сайт, а также для информирования, оптимизации и показа рекламы на основе чьих-либо прошлых посещений нашего веб-сайта.

Вы можете отказаться от файлов cookie Google Analytics на веб-сайтах, предоставленных Google:

https://tools.google.com/dlpage/gaoptout?hl=en

Как предусмотрено в настоящей Политике конфиденциальности (статья 5), вы можете узнать больше о файлах cookie отказа на веб-сайте Network Advertising Initiative:

http://www.networkadvertising.org

Сообщаем вам, что в этом случае вы не сможете полностью использовать все функции нашего веб-сайта.

Что такое источник света? — Источники света.org

Источники света, входящие в состав сайта lightsources.org, представляют собой ускорители, которые производят исключительно интенсивные пучки рентгеновских лучей, ультрафиолетового и инфракрасного света, что делает возможными как фундаментальные, так и прикладные исследования в различных областях, от физики до биологии и технологий, которые не являются возможно с более традиционным оборудованием.

«Свет» относится к широте электромагнитного спектра, который включает видимый свет, но также включает свет с длинами волн, которые мы не можем видеть, например: радиоволны, микроволны, инфракрасные, ультрафиолетовые, рентгеновские и гамма-лучи.Однако эти разные типы света используются в повседневной жизни. Например, сканеры в аэропорту используют рентгеновские лучи для проверки содержимого вашего чемодана. Точно так же правильный вид света и правильное оборудование могут помочь нам увидеть вещи в гораздо более мелких деталях, чем может различить человеческий глаз. Эта способность является ключом к ответу на некоторые фундаментальные вопросы об окружающем нас мире, например: из чего сделана наша планета? Какие процессы поддерживают жизнь? Как мы можем победить вирусы?

   Фиг.1  Электромагнитный спектр охватывает диапазон от радиоволн на длинных волнах до гамма-лучей на коротких волнах. (Предоставлено: Advanced Light Source)  

На эти вопросы можно ответить только на молекулярном уровне; на уровне атомов и электронов. Источники света предоставляют инструмент для ответа на эти вопросы. Их можно сравнить с «супермикроскопом», поскольку они излучают очень яркие формы рентгеновского, инфракрасного и ультрафиолетового света, что позволяет исследовать мельчайшие детали образцов.Каждый диапазон света подходит для конкретной работы. Чтобы «увидеть» атомы, нам нужно использовать свет с более короткой длиной волны, чем видимый свет. Как правило, коротковолновое (жесткое) рентгеновское излучение наиболее полезно для исследования атомной структуры. Опять же, как правило, длинноволновое (мягкое) рентгеновское излучение и ультрафиолетовое излучение являются хорошим выбором для изучения химических реакций. Инфракрасное излучение идеально подходит для изучения колебаний атомов в молекулах и твердых телах, а на его очень длинной длине волны (терагерцовые волны) оно также полезно для определенных типов экспериментов с электронной структурой.Идентификация элементов в образцах — прерогатива рентгеновских лучей.

Этот диапазон электромагнитного спектра известен как «синхротронный свет», поскольку он производится специальной синхротронной машиной. Источник синхротронного света обычно начинается с электронной пушки, содержащей искусственный материал, к которому прикладывается электрический и тепловой ток. Это приводит к тому, что электроны «взлетают» и начинают свой путь, будучи опущенными на линейный ускоритель (линейный ускоритель). Затем они попадают в бустерное кольцо круглой формы, где они разгоняются до релятивистских скоростей.Наконец, они попадают в другое кольцо, часто называемое «накопительным кольцом», где они циркулируют часами. Электроны будут двигаться по прямой линии, поэтому в точках вокруг кольца специальные «изгибающие» магниты помогают им придерживаться кругового пути. Когда электроны циркулируют, мощные магниты удерживают их вместе и фокусируют.

Синхротронный свет излучается, когда электроны меняют направление по кольцу. В синхротронах это происходит, когда ими манипулируют изгибающие магниты или когда они проходят через вводные устройства.В точках, где электроны меняют направление, они испускают веер излучения (известный как синхротронный свет). Это излучение ответвляется от накопительного кольца и попадает в лаборатории, или «каналы пучка». Здесь он уточняется с помощью таких устройств, как монохроматоры и зеркала, прежде чем светить на образец, что позволяет исследователям получить подробные данные о структуре и поведении образца.

Лазеры на свободных электронах представляют собой дополнительный источник света, который излучается по-разному.

Таким образом, источник света по своей сути представляет собой набор ускорителей частиц, которые генерируют синхротронный свет.Используя эти интенсивные лучи света, ученые могут проводить различные экспериментальные методы в широком диапазоне дисциплин, от химии до энергетики, от культурного наследия до инженерии.

Синхротрон CHESS (Нью-Йорк / США, Северная Америка) создал видео, объясняющее, как работает источник света, с помощью самых популярных английских слов March 10.000. Это было частью конкурса #TenHundredWords 2020:

.

EBME и статей о клинической инженерии

Свет — это электромагнитное излучение, в частности излучение с длиной волны, видимой человеческим глазом (около 400-700 нм) или, возможно, 380-750 нм.В физике термин свет иногда относится к электромагнитному излучению любой длины волны, будь то видимое или невидимое. Три основных свойства света:

  • Интенсивность
  • Частота или длина волны
  • Поляризация

Свет, который существует в крошечных «пакетах», называемых фотонами, проявляет свойства как волн, так и частиц. Это свойство называется дуальностью волна-частица. Изучение света, известное как оптика, является важной областью исследований современной физики.

Источники света

Есть много источников света. Наиболее распространенными источниками света являются тепловые: тело при заданной температуре испускает характерный спектр излучения черного тела. Примеры включают солнечный свет (излучение, излучаемое хромосферой Солнца с пиками около 6000 К в видимой области электромагнитного спектра), лампы накаливания (которые излучают только около 10% своей энергии в виде видимого света, а остальную часть — в инфракрасном) , и светящиеся твердые частицы в огне.Пик спектра черного тела находится в инфракрасном диапазоне для относительно холодных объектов, таких как люди. При повышении температуры пик смещается в сторону более коротких волн, создавая сначала красное свечение, затем белое и, наконец, синий цвет, когда пик перемещается из видимой части спектра в ультрафиолет. Эти цвета можно увидеть, когда металл нагревается до «докрасна» или «раскаленного добела». Синее тепловое излучение наблюдается нечасто. Обычно видимый синий цвет в газовом пламени или горелке сварщика на самом деле связан с молекулярной эмиссией, особенно радикалами CH (излучающими полосу длин волн около 425 нм).

Атомы излучают и поглощают свет с характеристической энергией. Это создает «эмиссионные линии» в спектре каждого атома. Излучение может быть спонтанным, как в светодиодах, газоразрядных лампах (таких как неоновые лампы и неоновые вывески, ртутные лампы и т. Д.) И пламени (свет от самого горячего газа — например, натрий в газовое пламя излучает характерный желтый свет). Излучение также можно стимулировать, как в лазере или микроволновом мазере.

Замедление свободной заряженной частицы, такой как электрон, может вызвать видимое излучение: циклотронное излучение, синхротронное излучение и тормозное излучение — все это примеры этого.Частицы, движущиеся в среде со скоростью, превышающей скорость света в этой среде, могут производить видимое черенковское излучение.

Некоторые химические вещества производят видимое излучение за счет хемолюминесценции. У живых существ этот процесс называется биолюминесценцией. Например, светлячки излучают таким образом свет, а лодки, движущиеся по воде, могут беспокоить планктон, создавая светящийся след.

Некоторые вещества излучают свет, когда они освещаются более энергичным излучением, этот процесс известен как флуоресценция.Некоторые вещества медленно излучают свет после возбуждения более энергичным излучением. Это известно как фосфоресценция.

Фосфоресцентные материалы также можно возбуждать, бомбардируя их субатомными частицами. Катодолюминесценция — один из примеров этого. Этот механизм используется в телевизорах с электронно-лучевой трубкой.

Некоторые другие механизмы могут излучать свет:

  • сцинтилляция
  • электролюминесценция
  • сонолюминесценция
  • триболюминесценция
  • Черенковское излучение

Когда концепция света предназначена для включения фотонов очень высоких энергий (гамма-лучей), дополнительные механизмы генерации включают:

  • Радиоактивный распад
  • Аннигиляция частиц с античастицами

Источники холодного света

Свет высокой интенсивности используется в сочетании с эндоскопами, жесткими прицелами, фарами, операционными микроскопами и т. Д.

Физиология: Источники холодного света обычно используются для освещения определенной рабочей зоны во время хирургических операций или медицинских осмотров. Важно, чтобы цвет света был максимально приближен к естественному, чтобы врачи могли обнаружить аномальный цвет кожи и тканей. Также важно, чтобы свет не нагревал ткани.

Как это работает:

Источник света высокой интенсивности состоит из блока питания, охлаждающего вентилятора, регуляторов яркости, индикатора срока службы лампы и запасной лампы, позволяющей завершить процедуры в случае выхода из строя основной лампы.Фильтры также используются для уменьшения передачи чрезмерного тепла к рабочему месту. Вот почему он называется «Холодный свет». Используются два основных типа ламп — ксеноновая дуговая и галогенная. Срок службы некоторых ксеноновых ламп составляет всего 500 часов. Внутри ксеноновой лампы очень высокое атмосферное давление, рекомендуется, чтобы при замене ксеноновой лампы технический персонал никогда не касался лампы без перчаток и маски, а также не давил на лампу (во избежание риска взрыва). Свет направляется в нужную область через гибкий волоконно-оптический световод, сделанный из плотно связанных стекловолокон.Это концентрирует свет и позволяет легко направлять свет туда, где он требуется.

Источники:

http://som.flinders.edu.au/FUSA/BME/Clin/BasicEquipment/ColdLightSource.htm

http://www.endoscopy4you.com/catalogs/operational_instruction_xenon.pdf

http://en.wikipedia.org/wiki/Light_source#Light_sources


Составлено и отредактировано Джоном Сэндхэмом IEng MIET MIHEEM

09 июня

Источники световой энергии

«Энергия света — единственная видимая форма энергии»

Свет — это форма энергии, которую может обнаружить наше зрение.Он сделан из электромагнитного излучения и движется по прямой траектории. В повседневной жизни мы используем слово «свет» не менее 10 раз в день !! Вы когда-нибудь задумывались об энергии, которую мы получаем от света? Свет повсюду вокруг нас. Он обладает способностью загорать или сжигать нашу кожу, его можно использовать для плавления металлов или нагрева пищи. До 1950-х годов световая энергия представляла собой серьезную проблему для ученых.

Для наших целей мы будем использовать свет для обозначения всех частот излучения, известных как электромагнитный спектр или EMS.Свет всегда находится в движении и не может быть сохранен, поэтому это кинетический тип энергии.

Можно сказать, что свет — это, по сути, «чистая» энергия, поскольку теоретически он не имеет массы. Свет — это одновременно волна и частица. Чем выше частота, тем больше энергии содержится в световом или электромагнитном излучении. Чем выше частота, тем больше энергии каждая частица, называемая фотоном. Световая энергия поступает из разных источников . Ниже рассматриваются различные источники световой энергии.

Источники световой энергии

В общем, объекты, которые излучают собственный свет, называются светящимися, в то время как объекты, которые не излучают свет, но могут отражать свет от других источников, называются несветящимися объектами. Существует множество источников световой энергии, некоторые из которых были получены от природы, а другие созданы искусственно или могут быть получены из других форм энергии. Ниже приведены некоторые источники световой энергии.

Солнце: Это естественный источник, который считается старейшим источником световой энергии.Солнечный свет является важным источником многих естественных процессов, таких как круговорот воды, фотосинтез, стерилизация, санитария и т. Д. Энергия солнца генерируется за счет синтеза водорода. Свет от Солнца достигает планет и других тел, включая Землю.

Электрические лампочки: Они являются важным искусственным источником света. Когда электрический ток течет через металлическую вольфрамовую нить накала, находящуюся внутри колбы, она светится из-за сопротивления. Нить накала нагревается и излучает свет.

Пламя: При сжигании топлива возникает пламя, излучающее свет. Раньше это использовалось в ночное время для зрения до изобретения электрической лампочки. Примеры — фонари.

Взрывы: Во время взрыва мощной бомбы вместе с испусканием света выделяется тепло. Во время испытаний атомных бомб вся территория будет освещена ярким светом.

Источники, рассмотренные выше, включают другую форму энергии, такую ​​как реакция деления, электричество, тепло и т. Д.преобразуется в световую энергию.

Другие источники световой энергии

Некоторые из важных и интересных источников световой энергии перечислены ниже,

Накаливание — Источник световой энергии Светящиеся объекты излучают свет при высоких температурах. Процесс излучения света при высоких температурах называется накаливанием. Но он не считается эффективным источником света, поскольку большая часть входящей энергии становится тепловой.

Фосфоресценция — Источник световой энергии Процесс, при котором материалы излучают свет в течение определенного периода времени, получая энергию от другого источника, называется фосфоресценцией.В этом процессе материалы накапливают энергию, а затем постепенно излучают световую энергию. Примеры: циферблаты и часы, покрытые фосфоресцирующими материалами, светятся в темноте в отсутствие света.

Электрический разряд — источник световой энергии Частицы газа излучают свет, когда через них проходит электричество, и этот процесс называется электрическим разрядом. Примерами могут служить молнии, которые встречаются в природе. Другими примерами являются неоновый газ, который излучает оранжевый / красный цвет, натриевая лампа излучает желтый цвет и т. Д.

Флуоресценция — источник световой энергии Процесс, при котором излучение света происходит за счет получения энергии от другого источника, называется флуоресценцией. Вещества, которые поглощают свет или другое электромагнитное излучение и излучают свет с большей длиной волны с низкой энергией, называются флуоресцентными веществами. Примеры — люминесцентные лампы.

Хемилюминесценция — источник световой энергии Хемилюминесценция — это испускание света в результате химической реакции.В этом процессе химическая энергия преобразуется в энергию света практически без изменения температуры. Примерами являются аварийные огни и холодные огни.

Биолюминесценция — Источник световой энергии Процесс, при котором производство и излучение света происходит живым организмом в результате химической реакции, происходящей внутри его тела. Примеры — светлячки, светлячки, некоторые грибы, а также морские позвоночные и беспозвоночные.

BBC — Земля — ​​Из чего сделан луч света?

Свет — это то, что позволяет нам понять мир, в котором мы живем.Наш язык отражает это: ощупью в темноте мы видим свет и рассветы понимания.

Однако свет — одна из тех вещей, которые мы не склонны понимать. Если бы вы увеличили изображение луча света, что бы вы увидели? Конечно, свет движется невероятно быстро, но что же движет им? Многим из нас было бы трудно объяснить.

Так не должно быть. Свет определенно озадачивал величайшие умы на протяжении веков, но знаменательные открытия, сделанные за последние 150 лет, лишили свет его тайны.На самом деле мы более или менее знаем, что это такое.

Сегодняшние физики не только понимают природу света, но и учатся управлять им с еще большей точностью, а это означает, что вскоре свет может быть использован удивительными новыми способами. Это одна из причин, по которым Организация Объединенных Наций провозгласила 2015 год Международным годом света.

Есть много способов описать свет. Но это может помочь начать с этого: свет — это форма излучения .

Только в конце девятнадцатого века ученые открыли точную идентичность светового излучения

Надеюсь, это имеет некоторый смысл.Все мы знаем, что слишком много солнечного света может вызвать рак кожи. Мы также знаем, что радиационное облучение может повысить риск развития некоторых форм рака, поэтому совместить их несложно.

Но не все формы излучения одинаковы. Только в конце девятнадцатого века ученые открыли точную идентичность светового излучения.

Странно то, что это открытие произошло не в результате изучения света. Вместо этого он возник в результате десятилетий работы над природой электричества и магнетизма.

Электричество и магнетизм кажутся совершенно разными вещами. Но такие ученые, как Ганс Кристиан Эрстед и Майкл Фарадей, установили, что они глубоко связаны.

Эрстед обнаружил, что электрический ток, проходящий через провод, отклоняет стрелку магнитного компаса. Тем временем Фарадей обнаружил, что перемещение магнита рядом с проводом может генерировать электрический ток в проводе.

Максвелл показал, что электрические и магнитные поля распространяются как волны.

Математики того времени начали использовать эти наблюдения для создания теории, описывающей это странное новое явление, которое они назвали «электромагнетизмом».Но полная картина возникла только после того, как Джеймс Клерк Максвелл взглянул на проблему.

Вклад Максвелла в науку огромен. Альберт Эйнштейн, которого вдохновил Максвелл, сказал, что он навсегда изменил мир. Среди прочего, его расчеты помогли объяснить, что такое свет.

Максвелл показал, что электрические и магнитные поля распространяются как волны, и что эти волны движутся по существу со скоростью света. Это позволило Максвеллу предсказать, что сам свет переносится электромагнитными волнами — это означает, что свет является формой электромагнитного излучения .

В конце 1880-х годов, через несколько лет после смерти Максвелла, немецкий физик Генрих Герц стал первым, кто официально продемонстрировал правильность теоретической концепции Максвелла об электромагнитной волне.

В 1861 году он представил первую долговечную цветную фотографию

«Я убежден, что, если бы Максвелл и Герц дожили до эры Нобелевской премии, они наверняка разделили бы одну», — говорит Грэм Холл из Университета Абердина. Великобритания — где Максвелл работал в конце 1850-х годов.

Максвелл занимает место в анналах световой науки по другой, более практической причине. В 1861 году он представил первую долговечную цветную фотографию, созданную с использованием системы трехцветных фильтров, которая до сих пор составляет основу многих форм цветной фотографии.

Тем не менее, идея о том, что свет — это форма электромагнитного излучения, не может иметь большого значения. Но эта идея помогает объяснить то, что мы все понимаем: свет — это спектр цветов .

Это наблюдение восходит к работе Исаака Ньютона.Мы видим этот цветовой спектр во всей красе всякий раз, когда радуга висит в небе — и эти цвета напрямую связаны с концепцией Максвелла об электромагнитных волнах.

Многие животные действительно могут видеть ультрафиолет, и некоторые люди тоже

Красный свет вдоль одного края радуги — это электромагнитное излучение с длиной волны от 620 до 750 нанометров; фиолетовый свет вдоль противоположного края — это излучение с длиной волны от 380 до 450 нм.

Но электромагнитное излучение — это гораздо больше, чем эти видимые цвета.Свет с длиной волны немного длиннее, чем видимый нами красный свет, называется инфракрасным. Свет с длиной волны немного короче фиолетового называется ультрафиолетовым.

Многие животные действительно могут видеть ультрафиолет, и некоторые люди тоже, говорит Элефтериос Гулиельмакис из Института квантовой оптики Макса Планка в Гархинге, Германия. В некоторых случаях люди могут видеть даже инфракрасное излучение. Возможно, поэтому нередко и ультрафиолет, и инфракрасный свет описываются как формы света.

Любопытно, однако, что мы переходим к еще более длинным или более коротким длинам электромагнитных волн, и мы перестаем использовать слово «свет».

За пределами ультрафиолета длины электромагнитных волн могут быть короче 100 нм. Это область рентгеновских и гамма-лучей. Вы не часто слышите, как рентгеновские лучи описывают как форму света.

Нет реальной физической разницы между радиоволнами и видимым светом

«Ученый не сказал бы:« Я направляю рентгеновский свет на цель ». Он сказал бы:« Я использую рентгеновские лучи. ‘, — говорит Гулиелмакис.

Между тем, выходя за рамки инфракрасного и электромагнитного излучения, длина волны простирается до 1 см и даже до тысяч километров.Эти электромагнитные волны получили знакомые названия, такие как микроволны и радиоволны. Может показаться странным думать о радиоволнах, используемых в радиовещании, как о свете.

«С точки зрения физики нет реальной физической разницы между радиоволнами и видимым светом», — говорит Гулиельмакис. «Вы бы описали их точно такими же уравнениями и математикой». Только наш повседневный язык рассматривает их как разные.

Итак, у нас есть другое определение света.Наши глаза действительно могут видеть очень узкий диапазон электромагнитного излучения. Другими словами, свет — это субъективный ярлык, который мы используем только потому, что наши чувства ограничены .

Чтобы получить больше доказательств того, насколько субъективно наше представление о свете, вспомните радугу.

Большинство людей узнают, что спектр света состоит из семи основных цветов: красного, оранжевого, желтого, зеленого, синего, индиго и фиолетового. Нам даже даются удобные мнемоники и песни, чтобы запомнить их.

Посмотрите на яркую радугу, и вы, вероятно, сможете убедить себя, что здесь представлены все семь цветов. Однако сам Ньютон изо всех сил пытался увидеть их все.

Фактически, теперь исследователи подозревают, что он разделил радугу только на семь цветов, потому что число семь было очень важным в древнем мире: например, в музыкальной шкале семь нот и семь дней в неделе.

Работа Максвелла по электромагнетизму позволила нам пройти мимо всего этого и показать, что видимый свет является частью более широкого спектра излучения.Это также, казалось, наконец объяснило природу света.

На протяжении веков ученые пытались определить реальную форму, которую принимает свет в фундаментальном масштабе, когда он проходит от источника света к нашим глазам.

Ньютон понял, что лучи света подчиняются очень строгим геометрическим правилам.

Некоторые думали, что свет распространяется в форме волн или ряби через воздух или более туманный «эфир». Другие считали эту волновую модель неправильной и представляли свет как поток крошечных частиц.

Ньютон предпочел второй вариант, особенно после серии экспериментов, которые он провел с использованием света и зеркал.

Он понял, что лучи света подчиняются очень строгим геометрическим правилам. Посветите лучом в зеркало, и он отразится точно так же, как если бы мяч был брошен в зеркало. Он рассуждал, что волны не обязательно движутся по таким предсказуемым прямым линиям, поэтому свет должен переноситься крошечными невесомыми частицами.

Проблема в том, что не менее убедительные доказательства того, что свет — это волна, были.

Одна из самых известных демонстраций этого произошла в 1801 году. «Эксперимент с двумя щелями» Томаса Янга — это эксперимент, который каждый может повторить дома.

Возьмите лист толстой открытки и осторожно проделайте в нем два тонких вертикальных разреза. Затем возьмите «когерентный» источник света, который излучает свет только определенной длины волны: лазер подойдет. Теперь направьте свет через две щели на другую поверхность.

На этой второй поверхности можно было ожидать увидеть две яркие вертикальные линии, где часть света прошла через две щели.Но когда Янг провел эксперимент, он увидел последовательность светлых и темных линий, напоминающих штрих-код.

Когда свет проходит через тонкие щели, он ведет себя так же, как волны воды, проходящие через узкое отверстие: они дифрагируют и распространяются в виде полусферической ряби.

Там, где «светлая рябь» от двух щелей сталкивается друг с другом не в фазе, они нейтрализуются, образуя темные полосы. Если рябь соприкасается друг с другом синхронно, они складываются в яркие вертикальные линии.

Эксперимент Юнга убедительно доказал наличие волновой модели, и работа Максвелла поставила эту идею на прочную математическую основу. Свет — волна .

Но затем произошла квантовая революция.

Во второй половине девятнадцатого века физики пытались понять, как и почему одни материалы поглощают и излучают электромагнитное излучение лучше, чем другие.

В 1900 году Макс Планк решил проблему.

Это может показаться немного нишевым, но в то время развивалась электрическая легкая промышленность, поэтому материалы, которые могли излучать свет, были очень популярны.

К концу девятнадцатого века ученые обнаружили, что количество электромагнитного излучения, испускаемого объектом, изменяется в зависимости от его температуры, и измерили эти изменения. Но никто не знал, почему это произошло.

В 1900 году Макс Планк решил проблему. Он обнаружил, что расчеты могут объяснить эти изменения, но только если предположить, что электромагнитное излучение содержится в крошечных дискретных пакетах. Планк назвал эти «кванты» множественным числом от «квант».

Несколько лет спустя Эйнштейн использовал эту идею для объяснения еще одного загадочного эксперимента.

Физики обнаружили, что кусок металла становится положительно заряженным, когда он находится в видимом или ультрафиолетовом свете. Они назвали это «фотоэлектрическим эффектом».

Это не имеет особого смысла, если свет — это просто волна

Объяснение состояло в том, что атомы в металле теряли отрицательно заряженные электроны. Судя по всему, свет доставил металлу достаточно энергии, чтобы некоторые из них вырвались наружу.

Но детали того, что делают электроны, были странными. Их можно заставить переносить больше энергии, просто изменив цвет света. В частности, электроны, выпущенные из металла, залитого фиолетовым светом, несут больше энергии, чем электроны, выпущенные металлом, залитым красным светом.

Это не имеет особого смысла, если свет — это просто волна.

Вы обычно изменяете количество энергии в волне, делая ее выше — подумайте о разрушительной силе высокого цунами — а не делая саму волну длиннее или короче.

Каждый квант упаковывает дискретный энергетический удар

В более широком смысле, лучший способ увеличить энергию, передаваемую светом электронам, — это сделать световые волны выше, то есть сделать свет ярче. Изменение длины волны и, следовательно, цвета не должно иметь большого значения.

Эйнштейн понял, что фотоэлектрический эффект легче понять, если рассматривать свет в терминах квантов Планка.

Он предположил, что свет переносится в крошечных квантовых пакетах.Каждый квант упаковывает дискретный энергетический удар, который зависит от длины волны: чем короче длина волны, тем плотнее энергетический удар. Это могло бы объяснить, почему пакеты фиолетового света с относительно короткой длиной волны несут больше энергии, чем пакеты красного света, с относительно более длинной.

Это также объяснило, почему простое увеличение яркости света оказывает меньшее влияние.

Более яркий источник света доставляет на металл больше световых пакетов, но не меняет количество энергии, которое содержит каждый световой пакет.Грубо говоря, один пакет фиолетового света может передать больше энергии одному электрону, чем любое количество пакетов красного света.

Ученые решили, что свет одновременно ведет себя как волна и как частица.

Эйнштейн назвал эти энергетические пакеты фотонами, и теперь они признаны фундаментальными частицами. Видимый свет переносится фотонами, как и все другие виды электромагнитного излучения, такие как рентгеновские лучи, микроволны и радиоволны.Другими словами, свет — это частица .

На этом физики решили положить конец спорам о том, ведет себя свет как волна или как частица. Обе модели были настолько убедительны, что ни одна из них не могла быть отвергнута.

К замешательству многих нефизиков, ученые решили, что свет одновременно ведет себя как волна и как частица. Другими словами, свет — это парадокс .

Однако у физиков нет проблем с расщепленной идентичностью света.Во всяком случае, это делает свет вдвойне полезным. Сегодня, опираясь на работу светил — буквально «светоносцев» — таких как Максвелл и Эйнштейн, мы выживаем из света еще больше.

Оказывается, уравнения, используемые для описания света как волны и света как частицы, работают одинаково хорошо, но в некоторых случаях использовать одно проще, чем другое. Таким образом, физики переключаются между ними, как мы используем метры для описания нашей собственной высоты, но переключаемся на километры, чтобы описать поездку на велосипеде.

Запутанные частицы могут использоваться для передачи информации

Некоторые физики пытаются использовать свет для создания зашифрованных каналов связи: например, для денежных переводов. Для них имеет смысл думать о свете как о частицах.

Это из-за еще одной странной особенности квантовой физики. Две фундаментальные частицы, как и пара фотонов, могут быть «запутаны». Это означает, что они имеют общие свойства независимо от того, насколько далеко они друг от друга, поэтому их можно использовать для передачи информации между двумя точками на Земле.

Другая особенность этой запутанности состоит в том, что квантовое состояние фотонов изменяется при их считывании. Это означает, что если кто-то попытается подслушать канал, зашифрованный с использованием квантовых свойств света, он теоретически немедленно выдаст свое присутствие.

Другие, например Гулиельмакис, используют свет в электронике. Для них гораздо полезнее думать о свете как о серии волн, которые можно приручить и контролировать.

Современные устройства, называемые «синтезаторами светового поля», могут загонять световые волны в идеальную синхронизацию друг с другом.В результате они создают световые импульсы, которые намного более интенсивны, непродолжительны и направлены, чем свет от обычной лампочки.

Они буквально сфотографировали движущиеся световые волны

За последние 15 лет эти устройства использовались для необычайного приручения света.

В 2004 году Гулиельмакису и его коллегам удалось получить невероятно короткие импульсы рентгеновского излучения. Каждый импульс длился всего 250 аттосекунд, или 250 квинтиллионтов секунды.

Используя эти крошечные импульсы, подобные вспышке камеры, им удалось захватить изображения отдельных волн видимого света, которые колеблются гораздо медленнее. Они буквально сфотографировали движущиеся световые волны.

«Со времен Максвелла мы знали, что свет представляет собой колеблющееся электромагнитное поле, но никто и не мечтал, что мы сможем уловить этот колебательный свет», — говорит Гулиельмакис.

Наблюдение за этими отдельными световыми волнами — первый шаг к их контролю и моделированию, говорит он, во многом так же, как мы уже лепим гораздо более длинные электромагнитные волны, такие как радиоволны, несущие радио- и телевизионные сигналы.

Столетие назад фотоэлектрический эффект показал, что видимый свет влияет на электроны в металле. Гулиелмакис говорит, что должна быть возможность точно манипулировать этими электронами, используя видимые световые волны, которые были созданы для взаимодействия с металлами точно определенным образом. «Мы можем управлять светом, и через него мы можем управлять материей», — говорит он.

Человеческие глаза — это детекторы фотонов, которые используют видимый свет для изучения окружающего мира.

Это может произвести революцию в электронике, что приведет к появлению новых поколений оптических компьютеров, которые меньше и быстрее тех, что есть у нас сегодня.«Речь идет о приведении электронов в движение так, как мы хотим, о создании электрических токов внутри твердых тел, используя свет, а не обычную электронику».

Итак, есть еще один способ описания света: свет — это инструмент .

В этом нет ничего нового. Жизнь использует свет с тех пор, как первые примитивные организмы развили светочувствительные ткани. Человеческие глаза — это детекторы фотонов, которые используют видимый свет для изучения окружающего мира.

Современные технологии просто развивают эту идею.В 2014 году Нобелевская премия по химии была присуждена исследователям, которые построили световой микроскоп настолько мощный, что он считался физически невозможным. Оказалось, что при небольшом уговоре свет покажет нам то, что, как мы думали, мы никогда не увидим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *