Диод зачем нужен: Что такое диод и как он работает? | ASUTPP

Содержание

Что такое диод и как он работает? | ASUTPP

Меня несколько раз спрашивали - что такое диод?

Что такое диод и как он работает?

Диод - это электронный компонент, который проводит ток в одном направлении и блокирует ток в другом направлении.

Символ диода выглядит так:

Как подключить диод?

Давайте посмотрим на пример.

Что такое диод и как он работает?

В цепи выше диод подключен в правильном направлении. Это означает, что ток может течь через него, так что светодиод загорается.

Но что произойдет, если мы подключим его наоборот?

Что такое диод и как он работает?

В этой второй цепи диод подключен неправильно. Это означает, что ток не будет течь в цепи, и светодиод будет выключен.

Для чего нужен диод?

Диоды очень часто используются в источниках питания. От электрической розетки в стене вы получаете переменный ток (переменный ток). Многие устройства, которые мы используем, нуждаются в постоянном токе (DC). Чтобы получить постоянный ток от переменного тока, нам нужна схема выпрямителя. Это схема, которая преобразует переменный ток (переменный ток) в постоянный ток (постоянный ток). Диоды являются основными компонентами в выпрямительных цепях.

Как работает диод?

Диод создан из PN-перехода . Вы получите PN-соединение, взяв полупроводниковый материал с отрицательным и положительным добавлением и соединив его.


На пересечении этих двух материалов появляется «область истощения». Эта область истощения действует как изолятор и отказывается пропускать ток.

Когда вы прикладываете положительное напряжение с положительной стороны к отрицательной стороне, «обедненный слой» между этими двумя материалами исчезает, и ток может течь с положительной на отрицательную сторону.

Когда вы прикладываете напряжение в другом направлении, от отрицательной к положительной стороне, область истощения расширяется и сопротивляется любому протекающему току.

Что нужно знать о диодах?

  1. Вы должны приложить достаточное напряжение в «правильном» направлении - от положительного к отрицательному - чтобы диод начал проводить проводку.
    Обычно это напряжение составляет около 0,7 В.
  2. Диод имеет ограничения и не может проводить неограниченное количество тока.
  3. Диоды не являются идеальными компонентами. Если вы подадите напряжение в неправильном направлении, будет течь немного тока. Этот ток называется «током утечки».
  4. Если вы подадите достаточно высокое напряжение в «неправильном» направлении, диод сломается и пропустит ток и в этом направлении.

Типы диодов

Есть много разных типов диодов . Наиболее распространенными являются сигнальные диоды, выпрямительные диоды, стабилитроны и светодиоды (светодиоды) . Сигнальные и выпрямительные диоды - это одно и то же, за исключением того, что выпрямительные диоды рассчитаны на большую мощность.

Стабилитроны - это диоды, которые используют напряжение пробоя при подаче напряжения «неправильным» образом. Они действуют как очень стабильные опорные напряжения.

Поделитесь своими комментариями или вопросами ниже!

Диоды катоды аноды: для чего нужны

Что такое диод? Для того чтобы ответить на этот вопрос, надо копнуть вглубь, в самое начало, а именно, с чего начинается полупроводник.

Вакуумная двухэлектродная лампа

Вступление из теории

Проводник

Попробуем представить себе кусок материала проводника, например, меди. Чем он характеризуется: в нем есть свободные носители заряда – электроны. Причем таких отрицательных частиц в нем очень много.

Если на эту область подать плюс, то все эти отрицательные элементы устремятся к нему, то есть потечет ток через медь. Это известный факт, поэтому в качестве токопроводящих материалов применяют именно медь. К проводникам также относятся такие элементы периодической таблицы Менделеева, как алюминий, железо, золото и многие другие.

Диэлектрик

Диэлектрик – это материал, который свободных носителей заряда не имеет и, следовательно, ток не проводит.

Полупроводник

Полупроводник – это и металл, и неметалл. Материал, который и проводит ток, и не проводит. В нем мало свободных носителей заряда. Типичными полупроводниками являются кремний, германий.

Что такое диод

Кремний является четырехвалентным элементом.

Чтобы его превратить в проводник, к нему подмешивают пятивалентный мышьяк. В результате этого соединения появляются лишние электроны, то есть свободные носители заряда. А если добавить к кремнию трехвалентный индий, в материале появятся позитроны, частицы с нехваткой электрона. Из таких областей и состоит диод.

Полученная структура называется PN элементом или PN-переходом. P – позитивная часть, N – негативная. Одна часть материала обогащена плюсовыми позитронами, другая – минусовыми электронами.

Как работает диод

Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов.

Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод.

Схема подключения электродов к источнику может работать следующим образом:

  • подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов;
  • отсутствие напряжения все возвращает в исходное состояние;
  • смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой.

В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона. Таким образом, центральный участок материала становится диэлектриком. В таком направлении устройство не пропускает ток.

Для информации. Слово происходит от di (double) + -ode.  Определение терминов катод и анод диода, относящихся к контактам, известно каждому человеку. Катод – отрицательный электрод, анод – положительный. Если подать на анод плюс, а на катод – минус, то диод откроется, и электроток по нему потечет.

Таким образом, диод – это устройство, которое имеет два электрода: катод и анод. Простое нелинейное электронное устройство, состоящее из двух разных полупроводников. Как устроен диод, хорошо видно на изображении.

Принцип работы диода

Диоды – это полупроводники, состоящие из областей P и N. Благодаря свойствам PN-перехода диод проводит ток только в одном направлении. Таков принцип действия этих устройств. Для чего нужны они?

Назначение диодов

Диоды бывают различного исполнения: от громоздких советских до миниатюрных современных. Может устройство быть одной и той же мощности, но из-за времени выпуска различаться по габаритам. Диоды на большой ток нуждаются в охлаждении, поэтому производятся с креплением под радиатор. Соответственно, устройства без радиатора рассчитаны на малый ток.

Применение диодов

Устройства диодов могут быть ориентированы на ограничение или приостановление движения тока. Чрезвычайно распространенным приложением является его использование в качестве выпрямителя.

Полупроводниковый диодный ограничитель

Выпрямители

Поскольку диод позволяет току течь лишь в одном направлении, то переменный ток проходит через диод только положительную или отрицательную часть напряжения синусоидальной волны. Это означает, что можно эффективно преобразовывать переменный ток в постоянный ток, применяя диоды, расположенные в виде полноволнового выпрямителя.

Например, имеется источник переменного тока. На выходе из него в цепь поставлен диод, через который подключена нагрузка. Что получится? Если источник дает синусоиду, то на выходе диода пройдет только положительная полуволна. И так до следующей полуволны. Но если развернуть диод другой стороной, то на выходе получится отрицательная полуволна, то есть устройство пропускает ток только в одном направлении.

Если поставить на место диода мост, состоящий из четырех диодов, то на выходе будет сигнал в форме полуволн, напоминающих верблюжий горб. Полуволны будут развернуты все в одном направлении. При установке после диодов дополнительного конденсатора получатся те же полуволны, только сглаженные.

Мостовой выпрямитель

Варикапы

Графический значок варикапа очень напоминает условное изображение полупроводникового диода. Варикап – это и есть обыкновенный диод. Работа устройства основана на зависимости барьерной ёмкости p-n-перехода от обратного напряжения. Если напряжение подается маленькое, емкость получается большая, если подается большое напряжение – емкость становится маленькой. Реально варикапы изменяют свою емкость в несколько раз (до 7 раз).

Стабилитроны

Стабилитрон – это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. Выбирают стабилитрон с большим запасом рассеиваемой мощности, потому что он постоянно работает в режиме пробоя. Основное назначение стабилитронов – стабилизация напряжения.

Основной целью стабилизатора напряжения является поддержание постоянного напряжения на нагрузке, независимо от изменений входного напряжения и тока нагрузки. При изменяющихся условиях тока нагрузки стабилитрон может использоваться для получения стабилизированного выходного напряжения. Это основная причина использования стабилитрона в качестве стабилизатора напряжения.

Диоды Шоттки

Диод Шоттки – это низковольтное устройство, в котором используются в качестве электродов металл и обогащенный электронами полупроводник. Напряжение такого диода составляет примерно 0,2-0,4 В, в сравнение с обычным диодом эта величина в два раза меньше.

Зона применения диода Шоттки ограниченная, поскольку он не может работать без стабилитрона. В основном диоды Шоттки используются в устройствах, работающих в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.

Диодный прибор Шоттки

Светодиоды

Светоизлучающие диоды в настоящее время широко применяются в качестве диодных блоков легких энергосберегающих лампочек. Они становятся незаменимыми для жизни людей, поскольку способствуют снижению возрастающих цен на электроэнергию.

Для информации. Мигающие светодиоды часто применяют в различных сигнальных цепях, для украшения домашнего интерьера. Существуют схемы, с помощью которых можно заставить мигать светодиоды. Сделать мигающие светодиоды – вполне выполнимая задача.

Светодиоды LED

Можно совсем кратко ответить на вопрос, что такое диоды, и зачем они нужны. Именно этот элемент способен остановить свободное движение электронов в определенном направлении.

Видео

Оцените статью:

Что такое диод, зачем он нужен и из чего он состоит?

Диод является одним из самых популярных электронных компонентов, который используется как в простых схемах выпрямителей, так и в сложных электронных системах. А что это такое и зачем он там нужен, спросите вы?

Итак, диод – это полупроводниковый элемент с двумя выводами, один из которых носит название анод (А), а другой катод (К). По типу исполнения различают дискретные диоды в виде отдельного элемента, который заключается в свой собственный корпус и предназначен для монтажа на печатной плате, и интегральные диоды, изготавливаемые вместе с другими элементами схемы на общей полупроводниковой подложке. У интегральных диодов имеется третий вывод. Он необходим для соединения с общей подложкой. Иногда его называют субстратом (S)

, но он не играет важной роли в самом процессе функционирования диода.

Устройство диода

Диоды состоят из электронно-дырочного перехода p-n или перехода металл-полупроводник и носят название диод с p-n переходом или диод Шоттки. Зона n обогащена электронами, а зона p – дырками. Условное графическое представление диода на электрических схемах и его структура показаны на рисунке ниже.

Как правило, зоны диода n и p изготавливаются из кремния. Кроме того, существуют диоды на основе германия. Им свойственно малое прямое падение напряжения, однако они уже устарели. В диодах Шоттки зона p заменена слоем металла, что также приводит к малому прямому падению напряжения, поэтому они довольно часто используются вместо германиевых диодов с p-n переходом.

На практике кремниевые диоды с p-n переходом называют просто диодами. На электрических схемах разные типы диодов отображаются одинаково, за исключением элементов особого типа. Типы диодов различаются по техническим данным и по маркировке на корпусе.

Режимы работы диода

В процессе работы диод может находиться в области проводимости, запирания и пробоя.

Диоды, назначение которых выпрямление напряжения, называют выпрямительными. Они работают в областях проводимости и запирания попеременно. Диоды, которые работают в области пробоя, называют стабилитронами (диоды Зенера). Назначение стабилитронов – стабилизация напряжения.

Еще один, не менее важный класс диодов – варикапы. Они работают в режиме запирания и благодаря зависимости емкости запорного слоя (барьерной емкости) от приложенного напряжения могут быть использованы для настройки колебательных контуров на нужную частоту. Также существует множество других диодов, которые мы рассмотрим в других статьях.  

Для чего нужен диод в электрической цепи: обратный ток

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Диод

В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка – ниппель. Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника – эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой – это заряженный конденсатор, шланг – это провод, катушка индуктивности – это колесо с лопастями

которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент – диод. И в этой статье мы познакомимся с ним поближе.

Что такое диод

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель ;-).

Некоторые диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:

Диод имеет два вывода, как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия – анод и катод ( а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод – плюс, то ток через диод не потечет. Своеобразный ниппель ;-). На схемах простой диод обозначают вот таким образом:

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты – одна из разновидностей диодных сборок.

На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Для чего ставится диод параллельно катушке, обмотке реле в цепи постоянного тока. Как диод может защитить всю схему.

 

 

 

Тема: простая защита электронной схемы с катушками реле от ЭДС индукции.

 

На электронных схемах, где стоит электромагнитное реле, можно заметить, что параллельно его катушке припаян диод. Этот диод подсоединяется к обмотке обратным подключением. То есть, плюс диода (он же анод) будет лежать на минусе источника питания схемы, а минус диода (он же катод), будет находится на плюсе питания. Как известно, при таком способе подключения диода к питанию полупроводник находится в закрытом состоянии, он через себя не проводит электрический ток. Тогда возникает вопрос, а зачем он тогда нужен, если он работает как обычный диэлектрик?

 

А дело всё в том, что любая катушка, намотанная обычный образом (провод мотается в одном направлении) имеет помимо электрического сопротивления и индуктивность. Вокруг катушки при прохождении постоянного тока образуется электромагнитное поле. А в момент снятия напряжения с катушки, та энергия, которая была аккумулирована в этом электромагнитном поле резко преобразуется опять в электрическую. При этом на концах катушки появляется высоких разностный потенциал. То есть, проще говоря, в момент отключения от катушки питания на ней образуется кратковременный электрический всплески напряжения. Причем, этот всплеск ЭДС (электродвижущей силы) может в несколько раз превышать напряжение питания, которое ранее было подано на обмотку.

 

Такие скачки увеличенного напряжения, которые образуются на различных катушках, в том числе и на обмотке реле, способны негативно влиять на чувствительные элементы электронной схемы. Например, этот скачок легко может создать электрический пробой различных маломощных транзисторов, микросхем и т.д. Либо же это кратковременное увеличение напряжения может в момент процессов переключения реле вводить в электронную схему различные искажения, погрешности, плохо влиять на измерительные узлы и т. д. Одним словом явление возникновения подобных импульсов увеличенного напряжения – это плохо для любой электронной схемы.

 

 

 

 

А как же обычный диод может защитить от таких вот ЭДС скачков? Дело в том, что генерация ЭДС индукции имеет противоположную полярность, относительно подаваемого напряжения питания на катушку. Вначале мы на один конец катушки реле подавали плюс, а на второй – минус. При снятии напряжения питания с катушки полюса изменятся. Где был плюс, появится минус, а где был минус, появится плюс. Если наш защитный диод при одной полярности, когда идет питание катушки, находится в закрытом состоянии, работая как диэлектрик, то при другой полярности он уже будет переходить в открытое состояние. Другими словами говоря, при нормальной работе реле диод не будет себя проявлять как функциональный элемент, а при возникновении ЭДС индукции на катушки реле он сразу же станет проводником и замкнет этот импульс увеличенного напряжения на себе.

 

Может возникнуть вопрос. Если диод берет (замыкает) всю энергию ЭДС индукции катушки реле на себя, то не выйдет ли он от этого из строя (не сгорит ли)? Дело в том что у обычных катушек реле не столь большая энергия, что аккумулируется на ней в виде электромагнитного поля. Эта энергия имеет импульсный, одноразовый характер. Причем, при ЭДС индукции опасно именно увеличенное напряжение (относительно напряжения питания), токи же в этом импульсе достаточно малы. Задача диода нейтрализовать именно импульс увеличенного напряжения. Да и самый обычный, распространенный диод, такой как 1N4007 способне выдерживать обратное напряжение аж до 1000 вольт и прямой ток до 1 ампера (ток импульса намного меньше).

 

А какие диоды нужно ставить параллельно катушке реле, чтобы защитить электронную схему от подобный скачков напряжения ЭДС индукции? Как я только что уже сказал, энергия обычного маломощного реле (да и средней мощности) не такая уж и большая. Опасен именно сам увеличенный по напряжению импульс. Если питание катушки было, например, 12 вольт постоянного тока, то этот импульс может быть в несколько раз больше (ну пусть до 150 вольт, не больше). Токи, которые могут быть при этом импульсе могут иметь величину единицы и десятки миллиампер. На ток влияет диаметр провода, и его длина в катушке. Чем тоньше диаметр, и чем больше намотка, тем меньше ток. С напряжением наоборот. Чем больше витков в катушке, тем выше напряжение будет при ЭДС индукции.

 

Если не вдаваться в расчеты, то поставив на катушку обычного маломощного реле кремниевые диоды типа 1N4007 вы не ошибетесь. Их вполне хватит, чтобы надежно защитить электронную схему от подобный ЭДС импульсов, возникающих из-за переключающихся процессов.

 

Видео по этой теме:

 

 

P.S. Порой встречаются схемы (например электронная нагрузка), где в цепи мощных транзисторов стоят низкоомные резисторы. Эти резисторы на малое сопротивление иногда наматываются своими руками. Так вот если их мотать обычным образом (витки всего провода имеют одно направление) то это самодельное сопротивление будет обладать и активным сопротивлением и индуктивностью, которая также будет создавать эти ЭДС импульсы увеличенного напряжения. Но такие самодельные резисторы можно мотать и другим образом. Обмоточный провод складываем вдвое, его концы припаиваем на корпус обычного резистора, а сам сдвоенный провод одновременно наматываем на каркас резистора. В этом случае этот резистор будет иметь только активное сопротивление, индукция у него будет нулевая, что исключить возникновения ЭДС импульса. Дело в том, что электромагнитное поле провода одного направления будет компенсироваться полем другого провода, имеющего обратное направление.

 

Диоды выпрямительные, принцип работы, характеристики, схемы подключения

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр. Этот ток называется прямым Iпр. Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт - для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой - диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв - здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр, которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.

При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн. Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн - все просто - это закон Ома.

Uн=U-Uоткр - см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода.

При включении диода в цепь переменного тока, помимо прочего, на нем периодически возникает обратное напряжение Uобр. Имейте в виду, следует учитывать его амплитудное значение (Для Uпр, кстати, тоже). Например, для бытовой электрической сети привычное всем напряжение 220В является действующим, а его амплитудное значение составляет 380В. Подробнее про это можно посмотреть на этой странице.

Это самое основное, про что надо помнить.

Теперь - несколько схем подключения диодов, часто встречающихся на практике.

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант - условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.

Далее несколько менее очевидных схем (для постоянного тока):

  1. Диоды могут выступать как "развязывающие" элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А, причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы "или".
  2. Защита от переполюсовки (жаргонное - "защита от дураков"). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод "открывается", когда напряжение на нем достигнет Uоткр, то при Uвнеш <Uвн+Uоткр питание осуществляется от внутреннего источника, иначе - подключается внешний.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Возобновляемый источник энергии - солнечная энергия от Гелиос Хаус

Опубликовано 23 мая 2020
Ни для кого не секрет, что, при производстве солнечных батарей, а также при их монтаже, используют диоды. Тем не менее, у большинства пользователей нет четкого понимания о том, какую роль эти диоды выполняют и зачем они вообще нужны.
Мы постараемся пролить свет на этот сложный вопрос и сформулируем основные правила применения диодов при монтаже солнечных электростанций.

По большей части солнечные батареи состоят из некоторого количества солнечных ячеек. Простейшая эквивалентная схема солнечной ячейки выглядит следующим образом:
  
Рис. 1 Эквивалентная схема фотоэлектрической ячейки

Здесь Rп – последовательное сопротивление фотоэлектрической ячейки, Rш – шунтовое (параллельное) сопротивление фотоэлектрической ячейки.
Обычно в солнечной панели все элементы соединяются последовательно, что может приводить к проблеме «черного пятна». Рассмотрим схему солнечной батареи. Нагрузку обозначим как Rн.
  
Рис.2 Схема солнечной батареи

Если затеняется один из элементов, исчезает его ЭДС, а активное сопротивление растет по мере затенения. Нетрудно догадаться, что на затененной ячейке выделится большая часть мощности солнечной батареи, от чего ячейка может перегреться и выйти из строя, а вместе с ней и вся солнечная панель.
Для предотвращения этого нежелательного эффекта каждую фотоэлектрическую ячейку нужно шунтировать диодом.

Рис. 3 Схема фотоэлектрической панели с шунтирующими диодами.

Если солнечная ячейка освещена, шунтирующий диод заперт ЭДС самой ячейки, и ток через него не идет, солнечная батарея работает в обычном режиме. При затенении исчезает ЭДС, диод открывается и весть ток идет мимо ячейки, не повреждая её. Таким образом, фотоэлектрическая ячейка, равно как и вся солнечная батарея, не выходит из строя.

Конечно, шунтировать каждую ячейку очень сложно и дорого, поэтому обычно диоды подключают к некоторой группе ячеек. В зависимости от мощности и конструкции солнечной батареи, в монтажной коробке может быть различное количество шунтирующих диодов.

Теперь, наверняка, понятно, зачем нужны шунтирующие диоды, также совершенно ясно, что ставить их отдельно не нужно, они уже есть внутри солнечных батарей. Могут встречаться солнечные батареи и без шунтирующих диодов, однако это большая редкость.

Блокирующие диоды для солнечных панелей


Помимо шунтирующих диодов широко применяются и блокирующие. Зачем они нужны? Рассмотрим параллельное соединение двух солнечных батарей. Для наглядности изобразим их как диоды.
                   
Рис.4 Параллельное соединение двух солнечных батарей.

При затенении одной из солнечных батарей, даже частичном, возникнет довольно неприятная картина: затененный модуль станет нагрузкой для освещенного, возникнет противоток и дополнительный нагрев. Ситуация усугубляется, если сопротивление нагрузки велико, а это запросто может быть, если аккумулятор заряжен. В предельном случае имеет место просто короткое замыкание освещенной панели через затененную.
Тем не менее, если солнечных батарей две, то все не так страшно, в цепи будет течь ток короткого замыкания одной солнечной батареи, который, как известно, не так велик, чтобы как-то повредить панель.
                
Рис.5 Параллельное соединение трех солнечных батарей.

Другое дело, если параллельно соединено много солнечных батарей, больше двух. Тогда, при затенении, в цепи может протекать сумма нескольких токов короткого замыкания и затененный солнечный модуль запросто может выйти из строя. В данном случае, чтобы исключить противоток, следует установить блокирующий диод для каждой параллельной цепочки, будь это одна солнечная батарея или несколько, соединенных последовательно.

             

Рис. 6 Применение блокирующих диодов при параллельном соединении солнечных батарей.

Итак, мы рассмотрели тот единственный случай, когда действительно нужно дополнительно устанавливать блокирующие диоды.
Подключается диод при помощи МС4 коннекторов. Прелесть в том, что подключить его в неверном направлении просто невозможно, так как МС4 + и – разные и они просто не подойдут, если направление неверное. Диоды характеризуются предельным током, от 5 до 30 А. Больше 30А вряд ли получится встретить, так как это максимальный ток для МС4 коннектора.

Намеренное затенение солнечных батарей


Затенение солнечных батарей является большой проблемой, однако иногда оно создается намеренно. Довольно популярна идея установки солнечных батарей на разные стороны света, допустим, на восток и на запад. Идея, действительна, хорошая. Пожертвовав суммарной дневной выработкой, мы улучшаем распределение этой выработки в течении дня, то есть увеличиваем утреннюю и вечернюю часть. Таким образом, аккумулятор меньше циклируется и живет дольше. Использовать в подобных системах следует два независимых трекера, то есть два солнечных контроллера, что вполне логично, солнечные массивы освещены по-разному и каждый имеет свою рабочую точку.
Пример такой электростанции мы уже разбирали в обзоре "Установка солнечных батарей на разные скаты крыши".
Тем не менее, очень часто, по большей части из экономии, оба солнечных массива подключают к одному контроллеру. Якобы второй контроллер вообще не нужен, а влияние солнечных батарей друг на друга можно исключить при помощи диодов. Применяется даже термин – «развязывающие» диоды. Действительно, блокирующие диоды в данной ситуации просто необходимы, и скорее уже как противопожарная мера. Тем не менее, в течение дня один из солнечных массивов постоянно блокирован диодом, работает только самый освещенный. По сути, солнечные батареи мешают работать друг другу и толку от такой системы совсем не много.
Итак, имея солнечные батареи в разных условиях, это могут быть просто разные солнечные панели, разная ориентация по сторонам света, или разный угол установки - используйте отдельные контроллеры заряда. Диоды вам не помогут сохранить выработку. Вообще, как мы выяснили, диоды нужно ставить лишь в одном случае, когда параллельно соединены три и более солнечных батареи или группы солнечных батарей.

Вам могут быть интересны:
Монтаж солнечной электростанции своими руками
Инвертор для солнечной электростанции. Что внутри?
Защита солнечных батарей. Устройства защиты и предохранители фотоэлектрической системы

Что такое диод, зачем он нужен и из чего он состоит?

Диод является одним из самых популярных схем электронных компонентов, который используется как в простых схемах выпрямителей, так и в электронных системах. А что это такое и зачем он там нужен, спросите вы?

Итак, диод - это полупроводниковый элемент с двумя выводами, один из которых носит название анод (А), а другой катод (К). По типу исполнения различают дискретных диодов в виде отдельного элемента, который является собственным корпусом для монтажа на печатной плате, и интегральные диоды , изготовленные вместе с другими элементами схемы на общей полупроводниковой подложке.У интегральных диодов имеется третий вывод. Он необходим для соединения с общей подложкой. Иногда его называют субстратом (S) , но он не играет роли в процессе функционирования диода.

Устройство диода

Диоды состоят из электронно-дырочного перехода p-n или перехода металл-полупроводник и носят название диод с p-n переходом или диод Шоттки. Зона n обогащена электронами, а зона p - дырками. Условное графическое представление диода на электрические схемах и его структура показана на рисунке ниже.

Как правило, зоны диода и п изготавливаются из кремния. Кроме того, существуют диоды на основе германия. Им свойственно малое прямое падение напряжения, однако они уже устарели. В диодах Шоттки зона p заменена слоем металла, что также приводит к малому прямому падению напряжения, поэтому они часто используются вместо германиевых диодов с p-n. переходом.

На практике кремниевые диоды с p-n переходом называют просто диодами. На электрические типы разных диодов действует схемо, за исключением элементов особого типа. Типы диодов различаются по техническим данным и по маркировке на корпусе.

Режимы работы диода

В процессе работы диод может находиться в области проводимости, запирания и пробоя.

Диоды, назначение которых выпрямление напряжения, называют выпрямительным. Они работают в областях проводимости и запирания поперечно. Диоды, которые работают в области пробоя, называют стабилитронами (диоды Зенера). Назначение стабилитронов - стабилизация напряжения.

Еще один, не менее важный класс диодов - варикапы . Они работает в режиме запирания и благодаря зависимости емкости запорного слоя (барьерная емкость) от приложенного напряжения может быть использованы для настройки колебательных контуров на нужной частоте. Также существует множество других диодов, которые мы рассмотрим в других статьях.

Диод - полупроводниковый элемент. Принцип работы, устройство и разновидности.

Диод (диод - англ. ) - электронный прибор, имеющий 2 электрода , основное высокое сопротивление при передаче тока в одну сторону и при передаче в обратную .

То есть при передаче тока в одну сторону он проходит без проблем , а при передаче в другую , сопротивление многократно увеличивает , не давая току пройти без сильных потерь в мощности.При этом диод довольно сильно нагревается .

Диоды бывают электровакуумные , газоразрядные и самые распространённые - полупроводниковые . Свойства диодов, чаще всего в связках между собой используются для переменного тока электросети в постоянный ток, для нужд полупроводниковых и других приборов.

Конструкция диодов .

Конструктивно, полупроводниковый диод состоит из небольших пластинки полупроводниковых материалов ( кремния или германия ), одна сторона (часть пластинки) обладает электропроводимостью p-типа , то есть принимающая электроны (имеющая искусственно созданных недостатков) электронов дырочная »)), другая обладает электропроводимостью n-типа , то есть есть отдающей электроны (содержащий избыток электронов электронной »)).

Слой между ними называется p-n переходом . Здесь буквы p и n - первые в латинских словах отрицательный - « отрицательный », и положительный - « положительный ». Сторона p-типа , у полупроводникового прибора анодом ( положительным электродом), а область n-типа - катодом ( отрицательным электродом) диода.

Электровакуумные (ламповые) диоды, представьте себя лампу с двумя электродами внутри, один из которых имеет нить накаливания , таким образом подогревая себя и создавая вокруг себя магнитное поле .

При разогреве , электроны отделяются от одного электрода ( катода ) и начинают движение к другому электроду ( аноду ), благодаря электрическому магнитному полю .Если направить ток в обратную сторону (изменение полярности), то электроны практически не будут двигаться к катоду из-за отсутствие нити накаливания в на . Такие диоды, чаще всего применяются в выпрямителя и стабилизатора , где присутствует высоковольтная составляющая.

Диоды на основе германия , более датчиков на открытие при малых токах, поэтому их чаще используют в высокоточной низковольтной технике, чем кремниевые.

Типы диодов :

  • · Смесительный диод - создан для приумножения двух высокочастотных сигналов.
  • · контактный диод - содержит область проводимости между легированными областями. Используется в силовой электронике или как фотодетектор .
  • · Лавинный диод - применение для защиты цепей от перенапряжения .Основан на лавинном пробое обратного участка вольт-амперной характеристики.
  • · Лавинно-пролётный диод - применяемый для генерации колебаний в СВЧ -технике. Основан на лавинном умножении носителей заряда.
  • · Магнитод . Диод, характеристики которого зависят от значения индукции магнитного поля и расположения его относительно плоскости p-n-перехода .
  • · Диоды Ганна . Используются для преобразования и генерации частоты в СВЧ диапазона.
  • · Диод Шоттки . Имеет малое падение напряжения при прямом включении.
  • · Полупроводниковые лазеры .

Применяются в лазеростроении , по принципу работы схожи с диодами, но излучают в когерентном диапазоне .

  • · Фотодиоды . Запертый фотодиод открывается под воздействием светового излучения . Применяются в датчиках света , движения и т.д.
  • · Солнечный элемент (вариация солнечных батарей ) . При попадании света, происходит движение электронов от катода к аноду, что генерирует электрический ток .
  • · Стабилитроны - использовать обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения .
  • · Туннельные диоды , использующие квантовомеханические эффекты . Применяются как усилители , преобразователи , генераторы и пр.
  • · Светодиоды (диоды Генри Раунда, LED ). При переходе электронов, у таких диодов происходит излучение в видимом диапазоне света .

Для диодов использовать прозрачные корпуса для возможности рассеивания света.Также производят диоды, которые могут давать сфере излучение в ультрафиолетовом , инфракрасном и других требуемых диапазонах (в основном литографической и космической ).

  • · Варикапы (диод Джона Джеумма ) Благодаря тому, что закрытый p — n-переход обладает немалой емкостью, ёмкость зависит от приложенного обратного напряжения . Применяются в качестве конденсаторов с переменной емкостью .

Назначение диода и конденсатора в этой цепи двигателя

Диод должен обеспечить безопасный путь для индуктивного отдачи двигателя. Если вы внезапно попытаетесь отключить ток в краткосрочной перспективе, это создаст любое напряжение, необходимое для поддержания тока в краткосрочной перспективе. Иными словами, ток через индуктор никогда не может измениться мгновенно. Всегда будет некоторый конечный уклон.

Двигатель частично индуктор.Если транзистор быстро отключается, то ток, который еще некоторое время должен проходить через индуктор, будет течь через диод и не причинит вреда. Без диода напряжения на двигателе становилось настолько большим, насколько это необходимо для поддержания тока, что, вероятно, потребовало бы обжаривания транзистора.

Небольшой конденсатор через двигатель будет снижать скорость работы, возможно, быстрых переходов напряжения, что приводит к менее излучению и ограничивает Dv / дт транзистор подвергается.100 нФ избыточны для этого и будут препятствовать работе на всех частотах, кроме низких ШИМ. Я бы использовал 100 пф или около того, возможно, до 1 нФ.

Резистор для ограничения тока, который должен иметь цифровой выход, а база транзистора должна обрабатывать. Транзистор BE выглядит как диод для внешней цепи. Следовательно, напряжение будет ограничено до 750 мВ или около того. Удержание цифрового выхода при 750 мВ, когда он пытается подать напряжение до 5 В или 3,3 В, не соответствует спецификации.Это может повредить цифровой выход. Или, если цифровой выход может быть создать большого тока, он может повредить транзистор.

1 кОм снова сомнительная величина. Даже с 5 В цифровым выходом, это будет только 4,3 мА или около того через базу. Вы не показываете указанные для транзистора, поэтому давайте подумаем, что он имеет минимальный гарантированный коэффициент усиления 50. Это означает, что вы можете рассчитывать только на транзистор, поддерживающий 4,3 мА х 50 = 215 мА тока двигателя.Это звучит низко, особенно для запуска, если это не очень маленький мотор. Я хотел бы взглянуть на то, что цифровой выход может безопасно использовать и настроить R1, чтобы получить большую часть этого.

Другая проблема заключается в том, что диод 1N4004 здесь неуместен, тем более вы будете включать и выключать двигатель, как это быстро подразумевает «ШИМ». Этот диод является силовым выпрямителем, предназначенным для нормальных частот линии питания, таких как 50-60 Гц. У него очень медленное восстановление.Вместо этого використовуйте диод Шоттки. Любой универсальный диод Шоттки на 1 В 30 В будет работать хорошо и будет лучше, чем 1N4004.

Я могу видеть, как эта схема может работать, но она явно не планировала работать кем-то, кто действительно, что они делают. В общем, если вы видите, что Arduino находится в цепи, это предположение, что она находится в сети, особенно, что она опубликована, потому что автор считает это большим достижением. Те, кто знает, что они делают, и за минуту считают нужным писать эту веб-страницу.Это оставляет тех, кому понадобилось две недели, чтобы заставить вращаться без взрыва транзистора, и они не совсем уверены, что все делает для написания этих веб-страниц.

Зачем нужен диод. Полупроводниковые диоды: виды и характеристики

. Содержание:

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами.Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область называется имеющая низкую концентрацию, базой. Марки диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия.Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высокими коэффициентами передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят, и.Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов таких параметров, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока.Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом технических характеристик проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе снабжен буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением.Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики в справочных таблицах, широко используемых специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются -диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементов обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям.Иногда могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123.На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающую роль при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры.Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается найти производителя. Для поиска нужного нужны специальные поисковики. В некоторых случаях диодные сборки вообще несут какой-либо информации, поэтому в таких случаях могут помочь справочник. Подобные упрощения, делающие обозначения диода очень коротким, объясняются очень ограниченным пространством для маркировки.При использовании трафаретной или лазерной печати удается link 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности установки более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой.Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно получить ожидаемого результата.

Маркировка диодов анод катод

Каждый диод, как и резистор, оснащен двумя выводами - анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

соответствует каждому диодному выводу.Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая отличается от общего цвета корпуса.
  • Второй вариант проверки диода мультиметром. В результате не устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в "семейство" диодов входит не один десяток полупроводниковых приборов, носящих название "диод". Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод - катод, один из которых обладает электропроводностью типа р, другой - n.

Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выходит через ниппель. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя.Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если поставить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью - это будет управляемый пробой. Из этого можно сделать вывод, что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький)

Внутреннее сопротивление диода (открытого) - величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.

Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем - рассмотрим все поверхностно.В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др.

Диоды

Обозначаются на схемах вот так:

Треугольная часть является АНОД "ом, а черточка это КАТОД. Анод это плюс, катод - минус. неправильной полярности включения и т.п.

Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех встречно, посмотрите на рисунки ниже.

Именно так и обозначается схематический мост, правда в некоторыхах обозначают сокращенный мост:

Вывода ~ подключаются к трансформатору, по схеме это будет выглядеть вот так:

Диодный мост для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе образует немного пульсирующее положительное положительное напряжение с постоянной величиной.

Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать.

Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройств. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:

Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.

Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:

Стабилитрон

Стабилитрон препятствует превышению напряжения выше установленного порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения делителя напряжений.

Стабилитроны на схемах обозначаются следующим образом:

Основным параметром стабилизации напряжения является напряжение стабилизация, стабилитроны имеют стабилизацию напряжения, например 3в, 5в, 8.2в, 12в, 18в и т.п.

Варикап (по другому емкостной диод) меняет свое сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор конденсаторные емкости, например, для настройки высокочастотных колебательных контуров.

Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.

Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод - используется для перевода тиристора военное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.

Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ.Мощные силовые тиристоры вида Т143 (500-16) применяются в шкафах управления эл.двигателями, частотниками.

Симистор

Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, включительно. Симистор пропускает ток в обоих направлениях.

Светодиод

Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.

Обозначение на схемах:

Инфракрасный диод

Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне. Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи.Ик диоды обозначаются так же как и светодиоды.

Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и увидеть, например, через камеру сотового телефона, данные диоды так жеют в камеру видеонаблюдения, особенно на уличных камерах, чтобы в темное время суток была видна картинка.

Фотодиод

Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, применение в преобразовании света в электрический сигнал.

Фото диоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так.

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход.Разберем подробнее, что же такое этот p-n переход. Полупниковый диод представляет собой очищенный кристаллния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка , а в качестве акцепторной примеси ионы Индия . Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и ток в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этой графики диод имеет небольшое сопротивление, и, соответственно, хорошо пропускает ток, а в обратном включении до величина напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток.В этом легко убедиться, если есть под рукой диод и мультиметр, нужно установить прибор в положение звуковой прозвонки, либо установить переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установить переключатель в положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода, как бы показывает свою вершину направления тока, то есть от плюса к минусу.

Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на приборных цифрах равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и мощность и используют их в основном в выпрямителях.Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, которые работают на высоких частотах.

Плоскостной и точечный диод

Какие бывают типы диодов?


А) На фото изображен рассмотренный нами выше диод.

Б) На этом рисунке изображён стабилитрон , (иностранное название диод Зенера), он используется при обратном включении диода.Основная цель: поддержание напряжения стабильным.


Двуханодный стабилизатор - изображение на схеме

В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно вне зависимости от полярности.

Г), может быть, в качестве усилительного элемента.

Д), использовать в высокочастотных схемах для детектирования.

Е), используемые как конденсатор емкости.

Ж), при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок.

З), всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только.

Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое - это соединенные для создания постоянного (выпрямленного) тока диода в одном корпусе.Подключены они по Мостовой схеме , стандартная для выпрямителей:

Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405 :

А теперь рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

Светодиодная лампа фото

Светодиоды существуют в разных корпусах, в том числе и SMD.

Выпускаются и так называемые RGB-светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Красный-Зеленый-Синий соответственно Красный - Зеленый - Голубой, эти светодиоды получают путем смешения цветов получить видимым любой цвет.

Эти светодиоды в SMD исполнение часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт.Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

При использовании силы напряжение не должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока.Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил - AKV .

Обсудить статью ДИОДЫ

Диод - простейший полупроводниковый или вакуумный прибор, имеющий два контакта. Главное свойство этого элемента - так называемая односторонняя проводимость.

Это означает, что в зависимости от полярности, полупроводник имеет кардинально разную проводимость. Меняя направление тока, можно открывать или закрывать диод.Свойство широко распространенного в самых разных областях схемопостроения.

Принцип действия следующий:
Радиоэлемент состоит из токового перехода с интегрированными рабочими контактами - анодом и катодом.
Прикладывая к электродам прямое напряжение (анод - положительный, катод - отрицательный), мы открываем, сопротивление диода становится ничтожно малым, и через него протекает электрический ток, именуемый прямой.

Если поменять местами полярность: то есть на анод подать отрицательный потенциал, а на катод - положительное сопротивление перехода возрастает настолько, что принято считать стремящимся к бесконечности.Электрический ток (обратный) фактически равенство нулю.

Основные разновидности диодов - не полупроводниковые и полупроводниковые

Первый вид широко использовался в эпоху радиоламп, до начала масштабного применения полупроводников. В колбе, являющейся корпусом радиодетали, мог быть специальный газ или вакуум. Надежность и мощность газонаполненных (вакуумных) диодов не вызывает нареканий, однако крупные габариты и необходимость прогрева для выхода на рабочие характеристики ограничивает применение.

Для работы требовалось разогреть один из электродов - катод. После чего внутри лампы нагнетается электронная эмиссия, и между рабочими электродами протекал ток (в одном направлении).

Это интересно! Несмотря на архаичность вакуумных ламп, ценители хорошей музыки предпочитают усилители, собранные на этих элементах. Считается, что звук будет естественнее и чище, чем в полупроводниковых системах.

Усилитель собран из вакуумных диодов

Полупроводниковые диоды.Рабочие элементы - полупроводниковый материал с интегрированными контактами-электродами.

кристалл может работать в любых условиях, необходимость помещения в вакуум или особую газовую среду нет. Требуется лишь механическая защита, все полупроводниковые материалы хрупкие.

Диод это - полупроводниковый прибор, который пропускает электрический ток только в одном направлении. Это очень краткое описание свойства диода и его работы и самое точное.Теперь давай разберемся подробнее, тем более, что с диода ты начинаешь свое знакомство с огромным семейством полупроводников. Что такое полупроводник? Из самого названия полупроводник, понятно, это проводящий на половину. В конкретном случае пропускает электрический ток только в одну сторону. Работает как система ниппель или золотник в камере автомобиля или велосипеда. Воздух, нагнетаемый насосом через золотник или ниппель поступает в камеру автомобиля и не выходит обратно за счет запирания его золотником.На рисунке изображен диод так как его обозначают на электрические схемах.

В соответствии с рисунком, треугольник (анод) показывает в какую сторону проходит электрический ток от плюса к минусу диод будет «открыт», соответственно со стороны вертикальной полосы (катода) диод будет «заперт».

Это свойство диода используется для переменного тока в постоянный для этого из диодов собирается диодный мост .

Диодный мост

Как работает диодный мост. На следующем рисунке изображена принципиальная схема диодного моста. Обрати внимание, что на вход диодного моста подается переменный ток, на выходе уже получаем постоянный ток. Теперь давай разберемся как происходит преобразование переменного тока в постоянный.


Если ты читал мою статью «Что такое переменный ток» ты должен помнить, что переменный ток меняет свое направление с характерным типом. Проще говоря, на входных клеммах диодного моста, плюс с минусом будут меняться местами с системой сети (в России эта частота составляет 50 Герц), значит (+) и (-) меняются местами 50 раз в секунду.Допустим в первом цикле на клемме «А» будет положительный (+) на клемме «Б» отрицательный (-). Плюс от клеммы «А» может пройти только в одном направлении по красной стрелке, через диод «Д1» на выходную клемму со знаком (+) и далее через резистор (R1) через диод «Д3» на минус клеммы «Б». В следующем цикле когда плюс и минус поменяются местами, все произойдет с точностью до наоборот. Плюс с клеммы «Б» через диод «Д2» пройдет на выходную клемму со знаком (+) и далее через резистор (R1) через диод «Д4» на минус клеммы «А».Таким образом, получается вход выпрямителя, постоянный электрический ток который движется только в одном направлении от плюса к минусу (как в обычной батарейке). Этот способ преобразования переменного тока в постоянный используется во всех электронных устройствах, которые питаются от электрической сети 220Вольт. Кроме диодных мостов, собранных из отдельных диодов, включают электронные компоненты в одном компактном корпусе. Такое устройство называют «диодная сборка» .


Диоды бывают не только выпрямительные. Есть диоды проводимости которых зависит от освещенности их называют «фотодиоды» обозначаются они так -

Выглядеть могут так -


Светодиоды, тебе хорошо известны, они встречаются в елочной гирлянде и в мощных прожекторах и фарах автомобилей. Н схема они обозначаются так -

Выглядят светодиоды так -

Как проверить диод

Проверить диод можно обычным мультиметром - как пользоваться мультиметром в этой статье , для переключаем тестер в режим прозвонки .Подключаем щупы прибора к электродам диода, щуп к катоду



(на корпусах современных диодах катод обозначен кольцевой меткой), красный щуп подключаем к аноду (как ты уже знаешь диод пропускают напряжение только в одну сторону) сопротивление диода будет маленьким т. е. цифры на приборе будут иметь значение большое значение.

Переключаем щупы прибора наоборот -


Сопротивление будет очень большим практически бесконечным.Если у тебя все получится так, как я написал, диод исправен, если в обоих случаях сопротивление очень большое, значит «диод в обрыве» неисправен и не пропускает напряжение вообще, если сопротивление очень маленькое, значит, диод пробит и пропускает напряжение в обоих направлениях.

Как проверить диодный мост

Если диодный мост собран из отдельных диодов, каждыйод проверяют отдельно, как было описано выше. Выпаивать каждый диод из схемы не обязательно, но лучше отключить плюсовой или минусовой вывод выпрямителя от схемы.

Если нужно проверить диодную сборку, где диоды находятся в одном корпусе и добраться до них невозможно, поступаем следующим образом,

Подключаем один щуп мультимерта к плюсу диодной сборки, а вторым поочередно касаемся выводам сборки куда подается переменный ток. В одном направлении прибора показать малое сопротивление при смене щупов в обратном направлении должно очень большое сопротивление. После чего также проверяем выпрямитель относительно минусового выхода. Если при измерении показания в обоих направлениях будут малыми или большой диодной сборкой неисправна.Этот способ проверки применяется, когда проводится ремонт электроники.

Высокочастотные диоды, импульсные, туннельные, варикапы все эти диоды широко применяются в бытовой и специальной аппаратуре. Для того, чтобы понять и разобраться, как правильно применять и где какие использовать использовать, необходимо совершенствовать свои знания изучать специальную литературу и конечно не стесняться задавать вопросы.

Что такое диод и как его проверить

Приветствую друзья!

Мы привыкли к компьютеру, что не представляем своей жизни без них.Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.

А собранные вместе, являют собой совершенно уникальное!

Какой кирпич не возьми - это только кусок обожженной глины; не сразу и понятно, к какому делу - самого по себе - можно приспособить.

Это как дом, построенный из кирпичей.

Защищает себя несколько тысяч собранных определенным образом таких кусков глины, защищает от непогоды и крышу над головой.

Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.

, если вы хотите научиться «лечить» ваши компьютеры, придется разбираться, как устроены их составные части.

Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно.Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.

Что такое диод?

Диоды применяются в компьютерных блоках питания для выпрямления переменного тока.

Выпрямительный диод - это деталь, имеющая в своем составе соединенные полупроводники двух типов - p-типа (положительный - положительный) и n – типа (отрицательный - отрицательный).

При их соединении (сплавлении) образуется так называемый p-n переход.Этот переход обладает разным сопротивлением при полярности приложенного напряжения.

Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику - аноду, отрицательная - к n-полупроводнику - катоду), то сопротивление диода невелико.

В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).

Когда диод открыт, то на нем падает какое-то напряжение.

Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.

Причем зависимости эта нелинейная .

Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.

Эта характеристика обязательно в полном техническом описании (спецификации, справочных листах).

Например, на распространенном диоде 1N5408, применяется в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.

Мостовая схема выпрямления

В компьютерном блоке питания при выпрямлении сетевого напряжения обычно мостовая схема выпрямления - 4 диода, установленным определенным образом.

Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.

Если клемма 1 имеет отрицательный клеммы 2, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении - от клеммы 3 к клемме 4.

В этом и заключается эффект выпрямления. Если бы не было диодного моста - ток по нагрузке протекал бы в разных направлениях.С мостом же он протекает в одном. Такой ток называется пульсирующим.

В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и величину гармоник (частоты, кратных основных частот переменного 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.

Схема выпрямления из двух диодов

Выпрямительные диоды присутствуют и в низковольтной части блока питания.Только схема включения состоит там не из 4-х диодов, а из двух.

Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части? »

Можно, но это будет не лучшее решение. В случае диодного моста ток через нагрузку и два следующих включенных диода.

В случае использования диодов 1N5408 общее падение напряжения на них может составить положение 1,8 В. Это очень немного по с сетевым напряжением 220 В.

А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжением +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.

К тому же, ток во вторичных цепях блока питания намного больше (в разы), чем в первичной.

Следует отметить, что для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.

Если потенциал верхнего конца вторичной обмотки (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.

Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.

Теперь давайте покончим со скучной теорией и перейдем к самому интересному - к практике.

Проверка диодов

Для начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как с цифровым тестером.

Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.

Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.

Палочка - это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) - анод.

Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).

Если присоединить красный щуп тестера к аноду, а черный - к катоду отдельного диода, то диод будет открыт напряжением с тестера.

Дисплей покажет отображение 0,5 - 0,6 В.

Если изменение полярности щупов, диод будет заперт.

Дисплей при этом покажет единицу в крайнем левом разряде.

Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (~ переменное напряжение, +, - постоянное напряжение).

Диодный мост можно проверить, установив один щуп на одну из клемм «~», а второй - поочередно на выводы «+» и «-».

При этом один диод будет открыт, а другой закрыт.

Если поменять полярность щупов - то тот диод, который был закрыт, теперь откроется, а другой закроется.

Следует обратить внимание на то, что катод - это плюсовой вывод моста.

Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).

Такой мост, естественно, непригоден для работы.

В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.

При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.

Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.

Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.

Токи потребления могут достичь 20 А и более, и на диодах будет рассеиваться большая мощность.

Вследствие этого они будут сильно греться.

Мощность рассеяния уменьшится, если будет меньше прямое напряжение на диоде.

Поэтому в таких случаях применяются так называемые диоды Шоттки, у которых прямое падение напряжения меньше .

Диоды Шоттки

Диод Шоттки состоит из двух различных полупроводников, из металла и полупроводника.

Получающийся при так называемый потенциальный барьер будет меньше.

В компьютерных блоках питания применяются сдвоенные диоды Шоттки в трехвыводном корпусе.

Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если ее тестером (в режиме проверки проверить диодов), то он покажет значение около 0,17 В.

Меньшая величина напряжения обусловлена ​​тем, что через диод протекает очень небольшой ток, далекий от максимального.

В заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт - к нему приложено обратное напряжение. При замене диодов надо учитывать эту часть.

Если в реальной схеме обратное напряжение превысит предельно допустимое - диод выйдет из строя!

Диод - важная «железка» в электронике.Чем бы еще мы выпрямляли напряжение?

До встречи на блоге!


Возобновляемый источник энергии - солнечная энергия от Гелиос Хаус

Опубликовано 23 мая 2020
Ни для кого не секрет, что, при производстве солнечных батарей, а также при их существже, используют диоды. Тем не менее, для мобильных пользователей нет четкого понимания о том, какую роль эти диоды выполняют и зачем они вообще нужны.
Мы постараемся пролить свет на этот сложный вопрос и изложить основные правила применения диодов при монже солнечных электростанций.

По большей части солнечные батареи состоят из некоторого количества солнечных ячеек. Простейшая эквивалентная схема солнечной структуры следующим образом:

Рис. 1 Эквивалентная схема фотоэлектрической ячейки

Здесь Rп - последовательное сопротивление фотоэлектрической ячейки, Rш - шунтовое (параллельное) сопротивление фотоэлектрической ячейки.
Обычно в солнечной панели все элементы соединяются последовательно, что может приводить к проблеме «черного пятна». Рассмотрим схему солнечной батареи. Нагрузку обозначим как Rн.

Рис. 2 Схема солнечной батареи

Если затеняется один из элементов, исчезает его ЭДС, активное сопротивление растет по мере затенения. Нетрудно догадаться, что на затененной ячейке выделится большая часть мощности солнечной батареи, от чего ячейка может перегреться и выйти из строя, а вместе с ней и вся солнечная панель.
Для предотвращения нежелательного воздействия каждую фотоэлектрическую ячейку нужно шунтировать диодом.

Рис. 3 Схема фотоэлектрической панели с шунтирующими диодами.

Если солнечная ячейка освещена, шунтирующий диод заперт ЭДС самой емкости, и ток через нее не идет, солнечная батарея работает в обычном режиме. При затенении исчезает ЭДС, диод открывается и весть ток идет мимо отсеков, не повреждая её. Таким образом, фотоэлектрическая ячейка, равно как и вся солнечная батарея, не выходит из строя.

Конечно, шунтировать каждую ячейку очень сложно и дорого, поэтому обычно диоды подключают к некоторой группе ячеек. В зависимости от мощности и конструкции солнечной батареи, в монтажной коробке может быть различное количество шунтирующих диодов.

Теперь, наверняка, понятно, зачем нужны шунтирующие диоды, также совершенно ясно, что ставить их отдельно не нужно, они уже есть внутри солнечных батарей. Могут встречаться солнечные батареи и без шунтирующих диодов, однако это большая редкость.

Блокирующие диоды для солнечных панелей


Помимо шунтирующих диодов широко применяются и блокирующие. Зачем они нужны? Рассмотрим параллельное соединение двух солнечных батарей. Для наглядности изобразим их как диоды.

Рис.4 Параллельное соединение двух солнечных батарей.

При затенении одной из солнечных батарей, даже частичном, возникнет довольно неприятная картина: затененный модуль станет нагрузкой для освещенного, возникнет противоток и дополнительный нагрев.Ситуация усугубляется, если сопротивление нагрузке велико, а это запросто может быть, если аккумулятор заряжен. В предельном случае имеет место просто короткое замыкание освещенной панели через затененную.
Тем не менее, если солнечных батарей две, то все не так страшно, в цепи будет течь ток короткого замыкания одной солнечной батареи, который, как известно, не так велик, чтобы как-то повредить панель.

Рис.5 Параллельное соединение трех солнечных батарей.

Другое дело, если соединено много солнечных батарей, больше двух. Тогда, при затенении, в цепи может протекать сумму токов короткого замыкания и затененный солнечный модуль запросто может выйти из строя. В данном случае, чтобы исключить противоток, установить блокирующий диод для каждой параллельной цепочки, будь это одна солнечная батарея или несколько соединенных последовательно.

Рис. 6 Применение блокирующих диодов при параллельном соединении солнечных батарей.

Итак, мы рассмотрели тот единственный случай, когда действительно нужно установить блокирующие диоды.
Подключается диод при помощи МС4 коннекторов. Прелесть в том, что подключить его в неверном направлении просто невозможно, так как МС4 + и - разные и они просто не подойдут, если неверное направление. Диоды характеризуются предельным током, от 5 до 30 А. Больше 30А вряд ли получится встретить, так как это максимальный ток для МС4 коннектора.

Намеренное затенение солнечных батарей


Затенение солнечных батарей является большой проблемой, однако иногда оно создается намеренно.Довольно популярна идея установки солнечных батарей на разные стороны света, допустим, на восток и на запад. Идея, действительна, хорошая. Увеличиваем объем выработки дневной выработки в течение дня, увеличивая объем утренней и вечерней части. Таким образом, аккумулятор меньше циклируется и живет дольше. Использовать в системах систем следует два независимых трекера, то есть два солнечных контроллера, что вполне логично, солнечные массивы освещены по-разному и каждый имеет свою рабочую точку.
Пример такой электростанции мы уже разбирали в обзоре "Установка солнечных батарей на разные скаты крыши".
Тем не менее, очень часто, по большей части из экономии, оба солнечных элемента подключают к одному контроллеру. Якобы второй контроллер вообще не нужен, а влияние солнечных батарей друг на друга можно исключить при помощи диодов. Применяется даже термин - «развязывающие» диоды. Действительно, блокирующие диоды в данной ситуации просто необходимы, и скорее уже как противопожарная мера.Тем не менее, в течение дня один из солнечных массивов блокирован диодом постоянно, работает только самый освещенный. По сути, солнечные батареи мешают работать друг другу и толку от такой системы совсем не много.
Итак, имея солнечные батареи в разных условиях, это может быть просто разные солнечные панели, разная ориентация по сторонам света, или разный угол установки - используйте отдельные контроллеры заряда. Диоды вам не помогают сохранить выработку. Когда мы соединяем три и более солнечных батареи или группы солнечных батарей.

Вам могут быть интересны:
Монтаж солнечной электростанции своими руками
Инвертор для солнечной электростанции. Что внутри?
Защита солнечных батарей. Устройства защиты и предохранители фотоэлектрической системы

Добавим диод и наилучшим электросхему автомобиля.

Приветствую всех любителей что-то улучшать в своей машине постоянно, в этой небольшой статье мы рассмотрим, что способен обыкновенный диод, и что даст нам его главная способность - проводить электрический ток только в одном направлении. Многие водители знают, что диоды установлены в выпрямителях генераторов (диодный мост), и выпрямляют переменный ток от генератора в постоянный ток для заряда батареи. Но не многие знают, что германиевый или кремниевый диод, можно использовать на машине не только этого.

Если знать, куда добавить (припаять) в электросхеме автомобиля диод, то этим можно добиться некоторых полезных свойств в электрооборудовании машины. Например на машинах прошлых лет выпуска, можно сделать так, что при включении насоса омывателя стекла, дворники сами включатся при этом.Нужно просто добавить диод и подключить моторчик насоса, как показано на схеме № 1.

А при опускании водителем кнопки Вк 1, насос отключается, но при этом дворники останавливаются только после завершения цикла и при возвращении на свое место (внизу стекла). Ну а диод в этой схеме нужен для того, чтобы насос не включался, когда будут работать дворники, при включенной заводской Вк 2 (например во время дождя, когда насос не нужен).

На схеме 1 моторчик стеклообывателя это М1, а М2 - это моторчик дворников.Вк 1 - это кнопка включения омывателя, а Вк 2 это выключатель дворников (стеклоочистителей). Ну а VD - это диод КД 202, можно наглядно увидеть на самом верхнем фото.

Полезные свойства диода можно использовать и в схемах зажигания. Например на катушке зажигания (типа Б 117) не установлено добавочное сопротивление (резистор). И конечно же у жигулёвского стартера нет дополнительных контактов в тяговом реле.

Ну а если установить на машину катушку типа Б-115, и подключить диод, как показано на схеме № 2, чтобы он обеспечил поступление напряжения на первичную обмотку, когда будет работать стартер.Благодаря этому, можно не бояться перегреть катушку зажигания и разрядить аккумулятор, как бывает при заводской схеме, если оставить ключ зажигания включенным.

На схеме №2 показано, как подключить катушку зажигания Б 115, вместо катушки Б 117. Буква П по схеме - это прерыватель, а буквы VD означают диод КД 202Р.

Ещё диод можно добавить в заводскую электросхему включения фар и звукового сигнала, как показано на схеме №3. Добавление диода в схему, обеспечивающее включение фар как только вы нажмёте на звуковой сигнал.Но благодаря диоду, звуковой сигнал не будет звучать, если вы включите фары. В этой схеме можно использовать даже маломощные кремниевые диоды, например КД 209 (так как силовые функции здесь возложены на реле света и сигнала).

По схеме №3 показано как включить фары и звуковой сигнал. Буквы Зс - это звуковой сигнал, Р1 - это реле сигнала, а Р2 - это реле дальнего света фар. Ну а буквы Вк1 означают кнопку включения звукового сигнала, а буквы Вк2 - это включатель дальнего света.

Диод можно подключить и в цепь регулятора напряжения, а для чего это нужно? Для начала напомню, что при протекании тока через диод в прямом направлении, падение напряжения на этом диоде практически не зависит от величины этого тока и составляет примерно 0,7 вольта (для кремниевого диода) или 0,4 вольта (для германиевого диода).

И поэтому, если вы подключите диод (как на схеме № 4) в цепи питания реле-регулятора напряжения (Я112), это повысите напряжение генератора на вашей машине тоже на о, 4 или на 0 , 7 вольта (в зависимости от типа диода).А чуть повысить напряжение бывает полезно в зимний период, или при каждодневных коротких поездках на работу, когда батарея постоянно недозаряжается.

Ну а чтобы в любой момент вернуть напряжение в заводское состояние, например летом или когда вы отправляетесь в дальнюю поездку, нужно подключить тумблер Вк (зима - лето), с помощью которого в любой момент вы сможете включить влияние диода на работу генератора.

В схемах можно использовать кремниевые диоды, например: КД 202, КД 203, КД 213, Д 231, Д 232, Д 214, Д 215, Д 242, Д 243, Д 245, Д 246, Д 247.

Так же подойдут и германиевые диоды, но их поменьше, например: Д 304 или Д 305.

Надеюсь статья поможет кому то улучшить заводскую электросхему своего автомобиля, с помощью такой полезной мелочи как диод; удачи всем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *