ГОСТ 29322-2014 Напряжения стандартные
МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ. МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC) | |
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ |
ГОСТ 29322— |
2014 | |
(IEC 60038:2009) |
(IEC 60038:2009, MOD)
Издание официальное
Москва
Стандарт и форм 2015
Предисловие
Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»
Сведения о стандарте
1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научноисследовательский институт сертификации» (ОАО «ВНИИС»)
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 сентября 2014 г. Ыэ 70-П)
За принятие стандарта проголосовали:
Краткое наименование страны по МК (ИС0 3166) 004-97 |
Код страны по МК (ИС0 3166) 004-97 |
Сокращенное наименование национального органа по стандартизации |
Армения |
AM |
Минэкономики Республики Армения |
Беларусь |
8Y |
Госстандарт Республики Беларусь |
Казахстан |
К2 |
Госстандарт Республики Казахстан |
Киргизия |
KG |
Кыргыэстандарт |
Молдова |
MD |
Молдова-Стандарт |
Россия |
RU |
Росстамдарт |
Украина |
UA |
Гослотребстандарт Украины |
4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 ноября 2014 г. № 1745-ст межгосударственный стандарт ГОСТ 29322—2014 введен в действие в качестве национального стандарта Российской Федерации с 1 октября 2015 г.
5 Настоящий стандарт модифицирован по отношению к международному стандарту IEC 60038:2009 IEC standard voltages (Напряжения стандартные). При этом дополнительные и измененные положения, учитывающие потребности национальной экономики указанных выше государств, выделены в тексте курсивом, а также вертикальной линией, расположенной на полях этого текста.
Международный стандарт разработан Международной электротехнической комиссией (IEC).
Наименование настоящего стандарта изменено относительно наименования международного стандарта в связи с особенностями построения межгосударственной системы стандартизации.
Перевод с английского языка (ел).
Степень соответствия — модифицированная (MOD)
6 ВЗАМЕН ГОСТ 29322—92
Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты». а текст изменении и поправок — е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет
© Стандарт и кформ. 2015
В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
Введение
Настоящий стандарт устанавливает номинальные напряжения для электрических систем, сетей, цепей и оборудования переменного и постоянного тока, которые применяют в странах — членах Международной электротехнической комиссии.
Настоящий стандарт по построению, последовательности изложения требований, нумерации разделов и подразделов полностью соответствует стандарту IEC 60038:2009. По сравнению со стандартом IEC 60038:2009 настоящий стандарт дополнен обновленными ссылками на международные стандарты и определениями терминов.
Наименьшее используемое напряжение в Таблице А.1 Приложения А настоящего стандарта определено для максимального падения напряжения между вводом в электроустановку пользователя и электрооборудованием, которое равно 4 %. Такое максимальное падение напряжения в электрических цепях электроустановки было указано в ранее действовавшем стандарте [7]- 8 Таблице G.52.1 действующего в настоящее время стандарта [6] для электроустановок, подключаемых к электрическим сетям общего пользования, установлены иные значения максимального падения напряжения:
для электрических светильников — 3 %: для других электроприемников — 5 %.
Требования в настоящем стандарте набраны прямым шрифтом, примечания набраны мелким прямым шрифтом. Обновленные ссылки, а также дополнительные и измененные положения выделены в тексте курсивом.
Ill
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
НАПРЯЖЕНИЯ СТАНДАРТНЫЕ
Standard voltages
Дата введения — 2015—10—01
1 Область применения
Настоящий стандарт распространяется:
• на электрические системы переменного тока номинальным напряжением более 100 В и стандартной частотой 50 Гц или 60 Гц, используемые для передачи, распределения и потребления электроэнергии, и электрооборудование, применяемое в таких системах:
• на тяговые системы переменного и постоянного тока:
• на электрооборудование переменного тока с номинальным напряжением менее 120 6 и частотой (как правило, но не только) 50 или 60 Гц, электрооборудование постоянного тока с номинальным напряжением менее 750 8. К такому оборудованию относятся батареи (из элементов или аккумуляторов), другие источники питания переменного или постоянного тока, электрическое оборудование (включая промышленное и коммуникационное) и бытовые электроприборы.
Настоящий стандарт не распространяется на напряжения, используемые для получения и передачи сигналов или при измерениях. Стандарт не распространяется на стандартные напряжения компонентов или частей, применяемых в электрических устройствах или электрооборудовании.
Настоящий стандарт устанавливает значения стандартного напряжения, которые предназначены для применения в качестве:
• предпочтительных значений для номинального напряжения электрических систем питания:
• эталонных значений для электрооборудования и проектируемых электрических систем.
Примечания
1 Две главные причины привели к значениям, установленным в настоящем стандарте:
— значения номинального напряжения (или иаивысшего напряжения для электрооборудования), установленные в настоящем стандарте, главным образом основаны на историческом развитии электрических систем питания во всем мире, так как эти значения оказалось наиболее распространенными и получили всемирное признание:
-диапазоны напряжений, указанные в настоящем стандарте, были признаны самыми подходящими в качестве основы для разработки и испытания электрического оборудования и систем.
2 Однако определение надлежащих значений для испытаний, условий испытаний и критериев приемки является задачей систем стандартов и стандартов на изделия.
2 Термины и определения
8 настоящем стандарте применены следующие термины с соответствующими определениями. Для напряжений переменного тока ниже указаны действующие значения.
2.1_
номинальное напряжение системы (nominal system voltage): Соответствующее приближенное значение напряжения, применяемое для обозначения или идентификации системы.
[[1] раздел 601-01. статья 21]_
Издание официальное
2.5 напряжение литания (supply voltage): Напряжение между фазами или напряжение между фазой и нейтралью на зажимах питания.
2.2
2.4 зажимы литания (supply terminals): Точка в передающей или распределительной электрической сети, обозначенная как таковая и определенная договором, в которой участники договора обмениваются электрической энергией.
Примечание — Эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью на зажимах гмтания.
2.6 диапазон напряжения питания (supply voltage range): Диапазон напряжения на зажимах питания.
2.7 используемое напряжение (utilization voltage): Напряжение между фазами или напряжение между фазой и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электролриемники.
Примечание — Эквивалентное определение: напряжение между линиями или напряжение между линией и нейтралью в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электролриемники.
2.8 диапазон используемого напряжения (utilization voltage range): Диапазон напряжения в штепсельных розетках или в точках фиксированных электроустановок, к которым должны быть присоединены электролриемники.
Примечание — В некоторых стандартах на электрооборудование (например, в IEC 60335-1 [2] и IEC 60071 [3]). термин «диапазон напряжения» имеет другое значение.
2.9 наибольшее напряжение для электрооборудования (highest voltage for equipment): Наибольшее напряжение, для которого электрооборудование охарактеризовано относительно:
a) изоляции:
b) других характеристик, которые могут быть связаны с этим наибольшим напряжением в соответствующих рекомендациях для электрооборудования.
Примечание — Электрооборудование можно использовать только в электрических системах, имеющих наибольшее напряжение, которое меньшее или равно его наибольшему напряжению для электрооборудования.
2.10
2.12
3 Стандартные напряжения
3.1 Системы и электрооборудование переменного тока с номинальным напряжением от 100 до 1000 В включительно
Номинальное напряжение системы переменного тока в диапазоне от 100 до 1000 В следует выбирать из значении, приведенных в Таблице 1.
Таблица 1 — Системы и электрооборудование переменного тока с номинальным напряжением от 100 до 1000 В включительно
Номинальное напряженно трехфазных чотырехпроводиых или трехлроводиых систем. В |
Номинальное напряжение однофазных трехпроводных систем. В | |
50 Гц |
60 Гц |
60 Гц |
— |
120/208 |
120/240*’ |
230й |
240“ |
— |
230/400“ |
230/400“ |
— |
— |
277/480 |
— |
— |
460 |
— |
— |
347/600 |
— |
— |
600 |
— |
400/690*’ |
— |
— |
1000 |
— |
— |
“ Значение 230/400 В является результатом эволюции систем 220/330 В и 240/415 В. которые завершили использовать в | ||
Европе и во мнотих других странах. Однако системы 220/360 В и 240/415 В до сих лор продолжают применять. | ||
*’ Значение 400/690 В является результатом эоопюции системы 360/660 В. которую завершили использовать в Европе и во многих других странах. Однако систему 380/660 В до сих лор продолжают применять. ° Значение 200 или 220 В также используют о некоторых странах | ||
4’ Значения 100/200 В также используют в некоторых странах а системах с частотой 50 или 60 Гц. |
8 Таблице 1 трехфазные четырех проводные системы и однофазные трехлроводные системы включают однофазные электрические цепи, присоединенные к этим системам.
Меньшие значения в первой и второй колонках являются напряжениями между фазой и нейтралью, большие значения — напряжениями между фазами. Если указано одно значение, оно относится к трехфазным трехпроводным системам и устанавливает напряжение между фазами. Меньшее значение в третьей колонке является напряжением между фазой и нейтралью, большее значение — напряжение между фазными проводниками.
Напряжения, превышающие 230/400 В. предназначены для применения в тяжелой промышленности и в больших торговых предприятиях.
При нормальных условиях оперирования напряжение питания не должно отличаться от номинального напряжения системы больше чем на ±10 %.
Диапазон используемого напряжения зависит от изменения напряжения на зажимах питания и падения напряжения, которое может быть в потребительской электроустановке, например — е электроустановке здания. Для получения дополнительной информации см. [6]. Этот диапазон используемого напряжения следует учитывать техническим комитетам по стандартизации.
Примечание — Наибольшие и наименьшие значения напряжения на зажимах питания и на зажимах электроприемника приведены в Приложении А для информации. Они могут быть рассчитаны, как указано выше и по [6].
3.2 Тяговые системы постоянного и переменного тока
Напряжения тяговых систем постоянного или переменного тока следует выбирать из значений, приведенных в Таблице 2.
Таблица2 — Тяговые системы постоянного и переменного тока*’
Напрасен не, В_ Номинальная частота для
I Наименьшее |
Номинальное |
Наибольшее |
систем переменною г оса. Гц | |
Системы постоянного тока |
(400) |
(600) |
(720) | |
500 |
750 |
900 | ||
1000 |
1500 |
1800 | ||
| 2000 |
3000 |
3600“’ | ||
Однофазные системы |
(4750) |
(6250) |
(6900) |
50 ИЛИ 60 |
переменного тока |
12000 |
15000 |
17250 |
16% |
| 19000 |
25000 |
27500 |
50 или 60 |
м Значения, указанные о скобках, считается нопредлоч тигельным и значениями Эти значения не рекомендуется гспольэоаать для новых систем, сооружаемых е будущем. В частности, для одиофазимх систем переменного тока юминапьиое напряжение 62SO В следует использовать только тогда, когда местные условия не позволяют применить номинальное напряжение 25000 В.
Значения, указанные е таблице, являются значениями, принятыми Международным комитетом по оборудованию тпектричесхоё тяти и техническим комитетом 9 МЭК «Электрическое оборудование и системы для железных дрог*.
* В некоторых европейских странах это напряжение может достигать 4000 в. Электрическое оборудование траислортнмх :редс«е. участвующих о международном сообщении с этими странами, должно выдерживать это максимальное значение «апряяеиия е течение коротких промежутков времени до S мин.
3 3 Системы трехфазиые и электрооборудование переменного тока с номинальным напряжением свыше 1 до 35 кВ включительно
Напряжения для трехфазной системы переменного тока с номинальным напряжением свыше 1 до 35 кВ включительно следует выбирать из значений, приведенных в Таблице 3.
Таблица 3 — Системы трехфазные и электрооборудование переменного тока с номинальным напряжением свыше 1 до 35 кВ включительно—‘
Рад 1 |
Ряд II | ||||||
Наибольшее напряжение для |
Номинальное напряжение системы. |
Наибольшее напряжение для |
Номинальное напряжение | ||||
электрооборудования, кВ |
кВ |
системы. кВ | |||||
3.6*’ |
3.3″ |
з» |
4.40″ |
4.16″ | |||
7,2″ |
б.б» |
6″ |
— |
— | |||
12 |
11 |
10 |
— |
— | |||
— |
— |
— |
13.2″ |
12,47″ | |||
— |
— |
— |
13.97° |
13.2″ | |||
— |
— |
— |
14,52″ |
13.8″ | |||
(17.5) |
— |
(15) |
— |
— | |||
24 |
22 |
20 |
— |
— | |||
— |
— |
— |
26.4е‘*’ |
24.94е’» | |||
36″ |
33″ |
30″ |
— |
— |
— |
— |
— |
36.5“ |
34.5“ |
40.5й* |
— |
35й> |
— |
— |
Примечаний
1 Рекомендуется, чтобы е тобой стране соотношение между двумя смежными номинальными напряжениями было не иен ее двух.
2 в нормальной системе ряда I наибольшее и наименьшее напряжения не отличаются бопее чем на НО У> приблизительно) от номинального напряжения системы. В нормальной системе ряда II наибольшее напряжение не отличается более чем на «5 %. а наименьшее напряжение более чем на — 10 % от номинального напряжения системы
*’ Эти системы обычно представляют собой трехлроеодиые системы, если не указано иначе. Указанные значения являются напряжениями между фазами.
Значения, указанные а скобках, считаются нелред почти тельными значениями. Эти значения не рекомендуется «слользоаать для новых систем, сооружаемых а будущем.
** Эти значения не следует применять для новых систем распределения общего назначения.
^ Эти системы обычно представляют собой четырехпроеодные системы, а указанные значения являются напряжениями между фазами Напряжение между фазой и нейтралью равно указанному значению, деленному на 1,73.
41 Унификация этик значений на рассмотрении
“ Значения 22.9 кВ для номинальното напряжения и 24.2 или 25.8 кВ для наибольшего напряжения для злоктрооборудояамия также используют а некоторых странах
3.4 Системы трехфазиые и электрооборудование переменного тока с номинальным напряжением свыше 35 до 230 кВ включительно
Напряжения для трехфазной системы переменного тока с номинальным напряжением свыше 35 кВ до 230 кВ включительно следует выбирать из значений, приведенных в Таблице 4.
Таблица 4 — Системы трехфазиые и электрооборудование переменного тока с номинальным напряжением свыше 35 до 230 кВ включительно*
Наибольшее напряжение для |
Номинальное напряжение системы. кВ | |||
(52) |
(45) |
— | ||
72.5 |
66 |
69 | ||
123 |
110 |
115 | ||
145 |
132 |
138 | ||
(170) |
(150) |
(154) | ||
245 |
220 |
230 | ||
» Значения, указанные в скобках, считаются не пред почтительны ми тначениями Эти значения не рекомендуется использовать для новых гистем. сооружаемых а будущем. Значения являются напряжениями иожду Фазами |
Выше приведены два рода номинальных напряжений системы. В любой стране рекомендуется применять только один из двух рядов.
8 любой стране в качестве наибольшего напряжения для электрооборудования рекомендуется применять только одно значение из следующих групп:
• 123 или 145 кВ;
• 245 или 300 кВ (см. таблицу 5) или 362 кВ (см. Таблицу 5).
3.5 Системы трехфазные переменного тока с наибольшим напряжением для электрооборудования свыше 245 кВ
Наибольшее напряжение для электрооборудования для трехфазной системы переменного тока, превышающее 245 кВ, следует выбирать из значений, приведенных в Таблице 5.
Таблица 5 — Системы трехфазные переменного тока с наибольшим напряжением для электрооборудования более 245 кВ*:
Наибольшее напряжение дпя электрооборудования, кв
<300)
362
420
550b)
BOO1’
1100
1200
» 3качения, уиммиые о скобках, считаются иелродпочтительиыми качениями. Эти значения не рекомендуется использовать дпя новых :ис?ем. сооружаемых в будущем. Значения являются напряжениями между фазами.
» Применяют также значение 526 кв.
Применяют также значение 7в5 кВ. Значения напряжения, используемые три испытаниях электрооборудования, должны быть такими, хоторые установила IEC для 765 кВ.
Э любом географическом регионе в качестве наибольшего напряжения для электрооборудования рекомендуется применять только одно значение из следующих групп:
• 245 (см. Таблицу 4) или 300 или 362 к8:
• 362 или 420 кВ:
• 420 или 550 кВ:
• 1100 или 1200 кВ.
Примечание — Термин «географический регион» может указать одну страну, группу стран, которые соглашаются принять один и тот же уровень напряжения, или часть очень большой страны.
3.6 Электрооборудование переменного тока с номинальным напряжением менее 120 В и постоянного тока с номинальным напряжением менее 750 В
Номинальное напряжение менее 120 и 750 В для электрооборудования соответственно переменного и постоянного тока следует выбирать из значений, приведенных в Таблице 6.
Таблица 6 — Электрооборудование переменного тока с номинальным напряжением менее 120 в и постоянного тока с номинальным напряжением менее 750 В
Постоянный ток | |||
Предпочтя тельное, в |
Предпочтительное. В |
В | |
2.4 | |||
3 | |||
4 | |||
4.5 | |||
5 |
5 | ||
6 |
7.5 |
6 | |
9 | |||
12 |
15 |
12 |
15 |
24 |
30 |
24 | |
36 |
40 |
36 | |
46 |
48 | ||
60 |
60 |
72 |
80 | |
96 | ||
110 |
125 |
110 |
220 |
250 | |
440 |
600 |
Примечания
1 Поскольку напряжение элементов или аккумуляторов менее 2.4 В и выбор типа применяемою >пемента или аккумулятора для различных областей использования основан на иных критериях, чем етс чапряжоние. эти напряжения не указаны в табпиие Соответствующие технические комитеты IEC могут гстанаоливвть тилы элементов или аккумуляторов и соответствующие напряжения для конкретных трименений.
2 По техническим и экономическим причинам для специфических областей применения могут тотребоваться другие напряжения.
Приложение А
(справочное)
Наибольшие и наименьшие значения напряжения на зажимах питания и электроприемников для систем переменного тока с номинальным напряжением от 100 до 1000 В включительно
В Таблице А.1 указаны наибольшие и наименьшие значения напряжения на зажимах питания и электроприемников. Их можно рассчитать по данным Таблицы 1 Раздела 4 настоящего стандарта и указаниям, приведенным в [7].
Примечания
1 Значения в Таблице А.1 основаны на примечании к разделу 525 [7]. в котором указано: «При отсутствии других соображений, рекомендуется, чтобы на практике падение напряжения между вводом в электроустановку пользователя и электрооборудованием было не более 4 % от номинального напряжения электроустаиовкив. Раздел 525 [7] находится на рассмотрении. В будущем значения для наименьшего используемого напряжения могут быть изменены в соответствии с пересмотром [7].
2 Стандарт [7] заменен стандартом [6]. в Таблице С. 52.1 Приложения G которого для электроустановок, подключаемых к электрическим сетям общего пользования, установлены следующие максимальные падения напряжения: для электрических светильников — 3 96. для других эпектропроеммиков — 5%.
Таблица А.1 — Наибольшие и наименьшие значения напряжения на зажимах питания и электроприемников для систем переменного тока с номинальным напряжением от 100 до 1000 В включительно
Напряжение | |||||
Системы |
Номинальная частота. Гц |
Наибольшее напряжение питания или напряжение. В |
Номинальное напряжение. В |
Наименьшее литания. В |
Наименьшее используемое напряжение. В |
253 |
230“ |
207 |
198 | ||
50 |
253/440 |
230/400*’ |
207/360 |
198/344 | |
440/759 |
400/690“ |
360/621 |
344/593 | ||
1 |
1100 |
1000 |
900 |
860 | |
Трехфазмые четырех проводные или |
132/229 |
120/208 |
108/187 |
103/179 | |
264 |
240е 1 |
216 |
206 | ||
трехпроеодмые системы |
253/440 |
230/400*’ |
207/360 |
198/344 | |
60 |
305/528 |
277/480 |
249/432 |
238/413 | |
528 |
480 |
432 |
413 | ||
382/660 |
347/600 |
312/540 |
298/516 | ||
660 |
600 |
540 |
516 | ||
Эдиофаэиые грехпроводиые системы |
60 |
132/264 |
120/240“ |
108/216 |
103/206 |
* Значение 230/400 В является результатом эволюции систем 220/360 В и 240/415 В. «вторые завершили использовать в Европе и во многих других странах. Однако системы 220/380 В и 240/415 В до сих лор продолжают применять.
м Значение 400/690 В валяется результатом эволюции системы 380/660 В. которую завершили использовать о Европе и во
ниогмх других странах. Однако систему 380/660 В до сих пор продолжают применять.
“ Значение 200 или 220 В также используют о некоторых странах.
Значения 100/200 В также используют о некоторых странах а системах с частотой SO или 60 Гц.
(1] IEC 60050-601:1995
(2] IEC 60335-1:2013
(3] IEC 60071
(4] IEC 60050-826:2004
(5J ГОСТ 30331.1—2013 (6] IEC 60364-5-52:2009
[7J IEC 60364-5-52:2001
Библиографий
Electrotechnical Vocabiiary. Chapter 601: Generation, transmission and distribution of electricity. General
< Международный электротехнический словарь. Глава 601. Производство, передача и распределение электрической энергии. Общие понятия)
Household and similar electrical appliances. Safety. Pari 1: General requirements (Бытовые и аналогичные электрические приборы. Безопасность. Часть 1. Общие требования)
Insulation co-ordination {Координация изоляцш)
International Electrotechnical Vocabulary — Part 826: Electrical installations (Международный электротехнический словарь. Часть 826. Электрические установки)
Low-voltage electncal installations. Part 1. Fundamental prinoples, assessment of general characteristics, definitions
(Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения)
Low-voltage electncal installations. Part 5-52: Selection and erection of electrical equipment. Wiring systems
(Низковольтные электрические установки. Часть 5-52. Выбор и монтаж электрического оборудования. Системы электропроводок)
Electncal installations of buildings. Part 5-52: Selection and erection of electrical equipmenL Wiring systems
(Электрические установки зданий. Часть 5-52. Выбор и монтаж электрического оборудования. Системы электропроводок)
УДК 621.314.222.8:006.354 МКС 29.020 MOD
13.260
91.140.5
Ключевые слова: напряжение, номинальное напряжение, стандартное напряжение, номинальное напряжение системы, наибольшее напряжение системы, наименьшее напряжение системы, напряжение питания, напряжение между фазой и нейтралью, напряжение между фазами, используемое напряжение, наибольшее напряжение для электрооборудования, диапазон напряжения питания, диапазон используемого напряжения, зажимы питания, переменный ток. постоянный ток, электрооборудование, электроприемник, электроустановка, система, трехфаэная система, однофазная система, тяговая система
Подписано в почать 25.01.2015. Формат 60×64 V Уел. печ. л. 1.86. Тираж 31 экэ. Зак. 4999.
Подготовлено на основе электронной версии, предоставленной разработчиком стандарта
ФГУП «СТАНДАРТИНФОРМ»
123995 Москва. Гранатный пер.. 4.
allgosts.ru
Общие вопросы электроснабжения. Параметры напряжения. Допустимые отклонения напряжения в сети 380 в
Допустимые потери напряжения в местных электрических сетях
6.10. Допустимые потери напряжения в местных
электрических сетях
К местным электрическим сетям, в первую очередь это относится к сетям напряжением до 1 кВ, непосредственно подключены электроприемники. В соответствии с ГОСТ 13109-97] на зажимах электроприемников во всех режимах должны быть обеспечены допустимые отклонения напряжения, которые он устанавливает. Так, нормально допустимые значения отклонений напряжения равны +5% от номинального значения. Обратимся к примеру электрической сети, представленной на рис.6.16, состоящей из трансформатора и линии, например, напряжением 380В, к которой в разных точках подключены электроприемники. В линии 12 наиболее высокое напряжение имеет место в точке 1 , а наиболее низкое — в точке 2. Для обеспечения требуемого качества напряжения у наиболее близких к трансформатору электроприемников (точка 1) отклонение напряжения не должно быть больше 5%, а у наиболее удаленных электроприемников (точка 2) оно не должно быть ниже -5%. С учетом этого максимальный уровень напряжения в узле 1 должен быть не выше 1,05 , а минимальный уровень напряжения в узле 2 должен быть не ниже 0,95 . В итоге имеем, что в сети определенного класса напряжения, где в любой точке, в том числе в самом начале и конце, могут быть подключены электроприемники, предельно допустимая потеря напряжения равна
(6.81)
Легко подсчитать, что она составляет 10%
Действительная потеря напряжения в сети, определяемая формулой
,
зависит от передаваемой мощности. Мощность нагрузки в сети постоянно меняется в пределах от минимального до максимального значений. Очевидно, потеря напряжения в первом случае наименьшая, а во втором наибольшая. Конечно, при изменении передаваемой мощности изменяются уровни напряжения в сети. Если фактическое напряжение в узле 1 станет ниже (см. формулу (6.81)), то допустимая потеря напряжения станет меньше .
Для предотвращения этого используют возможности регулирования напряжения трансформаторами. Особенно эффективны в этом отношении трансформаторы с регулированием напряжения под нагрузкой (см. § 13.5), позволяющие при изменении нагрузки поддерживать требуемые напряжения на шинах вторичного напряжения. В соответствии с ПУЭ установка таких трансформаторов обязательна на подстанциях со вторичным напряжением
6-20 кВ, к которым присоединены распределительные сети. Применяемые понижающие трансформаторы с обмотками высшего напряжения 6-10 кВ, как правило не имеет такого регулирования (выпускаются с ПБВ). В них изменение напряжения на шинах вторичного напряжения за счет ПБВ можно произвести только при отключении нагрузки на какое-то время, что используется весьма редко. Поэтому допустимая потеря напряжения в питаемых от них линиях меньше.
Таким образом, на допустимую потерю напряжения влияют многие факторы. Учесть все их весьма затруднительно.
В практических расчетах часть принимают следующие значения допустимой потери напряжения:
— для сетей напряжением 380 В от шин низшего напряжения подстанции до последнего электроприемника
— для сетей напряжением 6-10 кВ
6.11.
vunivere.ru
Допустимая потеря напряжения в линии. Правила устройства электроустановок. Допустимое отклонение напряжения.
Допустимая потеря напряжения
Методы арифметического подсчета воздушных электронных сетей с проводами из различных материалов по потере напряжения. Допустимую потерю напряжения в электронной сети определяют по вероятно разрешенным отклонениям напряжения у потенциальных пользователей. Поэтому рассмотрению запроса для ответа об отклонениях напряжения уделено значительный интерес.
Для всякого приемника электрической энергии возможны конкретные падения вольтажа. К примеру, неодновременные силовые агрегаты в стандартных нормах допустимое отклонение аномалий напряжения ±5%. Это обозначает следовательно, что в курьезном инциденте если номинальное вольтажа предоставленного электрического двигателя составит 380 В, из этого вольтажа U’доп = 1,05 Uн = 380 х 1,05 = 399 В и U»доп = 0,95 Uн = 380 х 0,95 = 361 В нужно исходить из его наиболее вероятно дозволительными индикаторами вольтажа. Конечно же, что все буферные вольтажи, вмещенные среди обозначениями 361 и 399 В, еще будут довольствовать
10i5.ru
причины возникновения и защита от них
Обеспечение качества электроэнергии, отвечающего нормам ГОСТ 13109-97, является основной задачей при электроснабжении потребителей. Отклонения от номинальных значений, в частности, провалы напряжения, отрицательно отражаются на работе электрооборудования и могут стать причиной серьезного материального ущерба. В данной статье мы ответим на ключевые вопросы, связанные с кратковременным понижением напряжения, рассмотрим природу этого явления и причины его проявления.
Что такое провал напряжения?
В соответствии с определением, приведенным в ГОСТ 13109-97, под данным явлением подразумевается внезапное понижение амплитуды напряжения с последующим динамическим восстановлением питания в пределах номинального значения. Пример осцилограммы падения напряжения представлен ниже.
Осцилограмма провала напряженияХарактеризующие показатели
Для описания понижения амплитуды напряжения используются следующие показатели:
δUп – глубина провалов, для вычисления применяется следующая формула: δUп = (Uном – Uмин) / Uном , где Uном – номинальная величина амплитуды питающего напряжения, Uмин – значение остаточного напряжения;
∆t – длительность, данная величина определяется как разность между моментом восстановления напряжения к номинальному значению tк и временным параметром фиксации начальной стадии отклонения tн. Формула расчета длительности будет иметь следующий вид: ∆t = tк – tн
Fп – частотность повторений (частота возникновения провалов), приведем формулу, используемую для расчета этого параметра: Fп= 100% * m * (δUп* ∆tп) / M, где числитель дроби описывает количество отклонений, определенной глубины и длительности, произошедших в течение измеряемого периода. Знаменатель – общее количество отклонений, обнаруженных в ходе измерений.
Основные показатели провала напряженияПриведенные выше показатели используются для определения качества электроэнергии в той или иной системе электроснабжения.
Причины появления провалов
Несмотря на то, что проявления отклонения напряжения имеют случайный характер, вероятность этого события зависит от вполне определенных причин. К таковым относятся:
- Пусковые токи.
- Колебания напряжения при коротком замыкании.
- Внезапное значительное увеличение нагрузки.
- Другие причины сетевого происхождения.
Рассмотрим подробно каждый из перечисленных факторов.
Токи включения
Образование токов включения, например, при старте мощных электродвигателей или другого устройства – самая распространенная причина подобных провалов. На рисунке ниже представлен пример, когда мощный двигатель подключен к единому вводу питания с другими потребителями.
Образование провала напряжения при запуске электродвигателяОбозначения:
- Т1 – Понижающий трансформатор.
- RZ – Полное сопротивление на вводе питания.
- RZ1-RZ3 – Полные сопротивления цепей потребителей.
- М – мощный асинхронный двигатель.
С включением двигателя М образуется пусковой ток Iпуск, величина которого превышает номинальный по значению (Iпуск > Iном). Это приводит к образованию зоны провала c существенным понижением напряжения в цепи RZ1 и незначительным отклонениям на главном распределителе остальных цепей потребителей.
Короткие замыкания
Возникновение в электросети токов коротких замыканий также вызывают отклонения напряжения от нормы. Рассмотрим, как протекает и определяется процесс в сетях с различным классом напряжения.
КЗ в сетях с низким напряжением.
Пример такой ситуации проиллюстрирован на рисунке ниже. В данном случае на величину тока КЗ влияют полные сопротивления RZ и RZ2.
Образование провала вследствие КЗ в цепи потребителя 2Исходя из этого, можно сказать, что чем больше будет величина полного сопротивления в сети низкого напряжения, тем меньшим будет значение тока КЗ.
На практике, в случае КЗ в цепи потребителя 2 должно произойти срабатывание защиты этой группы. Например, если отключение цепи произойдет через 50 мс, то на главном распределителе образуется зона провала длительностью 50 мс. То есть, данный параметр зависит от скорости срабатывания защиты. При этом глубина провала будет уменьшаться по мере удаления от поврежденного участка, соответственно, чем ближе нагрузка, тем большее отклонение. Эти правила работают как в сетях с низким, среднем и высоким напряжением.
КЗ в сетях с напряжением среднего класса.
Больше всего проблем возникает, когда КЗ происходит в трехфазных сетях среднего класса напряжения. Несмотря на случайный характер этого явления, вероятность возникновения аварийной ситуации довольно велика, поскольку нельзя исключать влияние сторонних факторов. К таковым можно отнести:
- Различные виды земляных работ, в ходе которых может быть нанесено повреждение кабельной линии.
- Пробои в местах соединений.
- Старение изоляционного покрытия.
- Воздействие природных и техногенных факторов.
При образовании тока КЗ он будет протекать, пока устройства автоматического защитного отключения на распределительной подстанции не изолирует аварийный участок. Пока этого не произойдет, в сети распределительной подстанции будет наблюдаться значительное снижение линейных напряжений.
КЗ в высоковольтных линиях.
В большинстве случаев замыкания в ВЛ происходят вследствие воздействия природных факторов (грозовые разряды, ураган и т.д.) или по причине ошибочных коммутаций и ложных срабатываний автоматической защиты.
Большие нагрузки
При подключении к электросети большой нагрузки, может привести к образованию пусковых токов, превышающих номинальные в несколько раз. В тех случаях, когда электроцепь рассчитана под номинальный ток, превышение этого параметра станет причиной снижения амплитуды источника питания. Масштабность данного проявления напрямую зависит от запаса мощности электрической сети и величины полного сопротивления.
Провалы сетевого происхождения
Учитывая сложность распределительных цепей, следует принять во внимание, что при повреждении одного из участков цепи будет оказываться влияние на остальные части. При этом на глубину и продолжительность провалов будет оказывать влияние следующие факторы:
- топология цепи;
- величина полного сопротивления проблемного участка;
- текущая мощность нагрузки и источника электрической энергии (генератора).
Для более детального представления, рассмотрим пример, представленный на рисунке ниже.
Провалы сетевого происхожденияДопустим, произошло фазное замыкание в точке Р2, это приведет к тому, что у потребителя 1 отклонения напряжения наблюдаться не будут, у потребителя 2 глубина провала составит 63%, а у потребителя 3 – 97%.
Если однофазное замыкание возникнет в точке Р1, то глубина провала будет 50% от номинала у всех потребителей, за исключением потребителя 1. То есть, как мы видим, чем выше уровень топологии, где произошло повреждение, тем большее число потребителей попадает в зону провала напряжения. Соответственно, у потребителей, подключенных к уровню 3 риск появления провала значительно выше, чем у потребителей, запитанных от первого и второго уровня.
Допустимые провалы напряжения по ГОСТ
Согласно ГОСТ 32144 2013 для определения показателей качества электроэнергии провалы следует классифицировать по двум критериям:
- Величина остаточного напряжения.
- Длительность.
Поскольку появление провалов носит случайный характер, для представленных выше критериев не установлены численные значения. Тем не менее, измерения амплитуды и длительности должны проводиться с целью создания статистического массива, позволяющего установить вероятность случайного события для определенной электросети, с целью характеризовать КЭ.
Что касается «допустимых по ГОСТу провалов», то данное словосочетание не имеет смысла, поскольку под провалом подразумевается отклонение от установленной ГОСТом нормы (0,9Uном). Если быть точным, то можно назвать нормированием допустимую длительность провала (30 с), при превышении которого отклонение считается пониженным напряжением.
Влияние провалов на работу электрооборудования
Данное явление считается менее опасным отклонения частоты и импульсов напряжения, но, тем не менее, провалы могут привести к следующим последствиям:
- Понижению интенсивности светового потока, производимого источниками с нитью накала.
- Снижению чувствительности радио- и телеприемников.
- Нестабильности работы рентгеновских установок.
- Ложным срабатываниям электронных систем управления.
- Понижение уровня постоянного тока в контактной сети электротранспорта негативно отражается на работе подвижного состава.
- Изменению характеристик преобразователей напряжения.
- Падение мощности электродвигателей, что приводит к электропотерям и износу.
Глубина провала более 10% от допустимого отклонения с большой вероятностью вызовет отключение газоразрядных источников освещения. При низком напряжении, более 15% от допустимой нормы, произойдет размыкание пускателей, что вызовет отключение электрооборудования и, как следствие, приведет к нарушению техпроцесса.
Характерно, что на дуговую электросварку провалы не оказывают серьезного влияния ввиду большой термической инерционности процесса, в то время как качество точечной сварки существенно снижается.
Финансовая сторона вопроса
Говоря о влиянии провалов на электрооборудование, мы упустили из виду финансовые потери, которые складываются из следующих составляющих:
- Упущенная прибыль из-за простоя оборудования и потери времени на возобновление технологического цикла.
- Ремонт вышедшего из строя оборудования.
- Потери сырья и т.д.
Как бороться с провалами напряжения?
Как мы выяснили, провалы являются случайным явлением, длительность которого зависит от срабатывания защитных систем, а глубина – удаленностью от проблемного участка. Поскольку изменить вероятность проявления не представляется возможным, то остается только влияние на масштаб провала и устранение последствий.
Сделать это можно путем оптимизации сети, чтобы производилась компенсация провалов при резких изменениях нагрузки, а также установки специальных приборов для контроля фазных напряжений на соответствие номинальному уровню и исключению несимметрии. Не менее эффективно действует стабилизирующее оборудование, установленное у потребителя электроэнергии. Более серьезные приборы могут выступать в роли регулятора напряжения и преобразователя основной частоты.
Если проблема вызывается замыканиями, то установка системы АПВ, а при критических провалах и АВР, может сократить предельно допустимую длительность отклонения до короткого прерывания. То есть, автоматическая система произведет повторное включение и если это не даст результата, произойдет ввод резерва.
Советуем ознакомиться и прочитать:
www.asutpp.ru
Скачки напряжения, 12 причин появления скачков в сети
09-03-2013
Скачки напряжения. Определения и понятия
Скачки напряжения
Скачками напряжения в повседневной речи принято называть резкое (быстрое) значительное изменение значения напряжения. Как правило, под скачком напряжения понимается быстрое значительное увеличение напряжения. Юридически точного определения понятия «скачок напряжения» у нас не существует. Обычно юристы понимают под «скачком напряжения» отклонения качества поставляемой электроэнергии от требований нормативной документации.
Как правило, в судебной практике речь идет о таких скачках напряжения, которые стали причиной нанесения ущерба.
Четкого определения «скачка напряжения» в нормативной документации тоже не найти. Отраслевая нормативная документация различает следующие отклонения параметров электроснабжения от нормы: отклонения и колебания напряжения, перенапряжение.
Отклонение напряжения
«Отклонение напряжения» — это изменение амплитуды длительностью более 1 минуты. Различают нормально допустимое отклонение напряжения и предельно допустимое отклонение напряжения. При этом предельно допустимым является отклонение в 10% от номинального.
Колебание напряжения
«Колебание напряжения» — это изменение амплитуды длительностью менее 1 минуты. Различают нормально допустимое колебание напряжения и предельно допустимое колебание напряжения. При этом предельно допустимым является отклонение в 10% от номинального.
Перенапряжение
«Перенапряжение» — это значительное по амплитуде увеличение параметров тока. Перенапряжением считается повышение напряжения свыше 242 Вольт. Перенапряжение может проходить с длительностью и менее 1 секунды.
Таким образом, объединяя нормативные определения скачка электрического напряжения и юридическое понимание этого понятия, можно сказать, что скачками могут называться как не очень большие, но длительные изменения значения напряжения, так и кратковременные, но значительные превышения этого параметра. Последние ещё могут называться «импульсными скачками».
С точки зрения физики, важным является общая излишняя энергия, воздействующая на приборы — потребители тока. Именно эта энергия, вызванная скачком в сети, и приводит к нанесению ущерба подключенным электрическим приборам.
Причины появления скачков напряжения
Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.
1 причина появления «скачка напряжения» — одновременное отключение мощных бытовых приборов
Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети. При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.
2 причина появления «скачка напряжения» — нестабильность в работе трансформаторной подстанции
Большинство трансформаторных подстанций, осуществляющих электроснабжение в распределительных и транспортирующих сетях, было построено достаточно давно. Оборудование, установленное на этих подстанциях, имеет сегодня значительный износ. Кроме того, многие подстанции работают с большой перегрузкой ввиду увеличения потребления электроэнергии. В результате на подстанциях случаются сбои в работе оборудования, приводящие к возникновению скачков.
3 причина появления «скачков напряжения» — аварии в передающих электрических сетях
Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда». Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.
4 причина появления «скачков напряжения» — обрыв «нуля»
Это, пожалуй, самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке дома. При этом, если контакт не постоянный, то появляется, то пропадает, то возникают очень сильные скачки.
5 причина появления «скачков напряжения» — ослабление заземления
Заземление электрических приборов играет важную роль в обеспечении безопасности использования устройств. В случае нарушения изоляции электрических приборов, напряжение часто передается на корпус прибора. В этом случае «заземление» играет роль отвода этого аварийного тока. В случае ухудшения качества заземления вероятность появления скачков параметров тока существенно вырастает.
6 причина появления «скачков напряжения» — значительная перегрузка сети
Электрооборудование, смонтированное на электрических подстанциях, рассчитано на конкретное максимальное значение мощности подключаемой нагрузки. В настоящее время идет очень большой рост потребления электроэнергии в наших домах. Первая причина здесь — это строительство новых больших зданий на месте старых маленьких домиков. Вместо 10 квартир получается сразу 100 квартир в одном большом доме. Вторая причина — рост числа используемых мощных электрических приборов. Посмотрите на фасад современно многоквартирного дома, на нем 200 сплит-систем. А это дополнительно 400 кВт мощности. Плюс 100 микроволновых печей, плюс 100 электрических калориферов, плюс 100 стиральных машин, плюс 100 электрических нагревателей воды, набегает очень большая суммарная мощность дома. При этом подстанции испытывают значительные перегрузки, и скачки в таком районе города неизбежны.
7 причина появления «скачков напряжения» — плохое качество монтажа и материалов электрической домовой разводки
Если что-то не работает в электрической цепи, то нужно искать плохой контакт. Это первое правило электриков. Плохой контакт в розетке или в электрическом патроне может возникнуть из-за плохого монтажа этих устройств или по причине использования дешевых сплавов для контактных пластин этих приборов. Плохой контакт вызывает искрение. А искрение — это эпицентр появления скачков электрического напряжения и сильных импульсных помех. Было бы хорошо для исключения появления скачков напряжения не использовать розетки вовсе, но так не бывает. А значит, каждое включение или выключение мощного электрического прибора — это новый скачок напряжения в сети.
8 причина появления «скачков напряжения» — включение промышленного оборудования в смежной сети электропередач
Большие и систематические скачки напряжения в сети наблюдаются вблизи крупных промышленных объектов. Включение мощного электродвигателя порождает большие пусковые токи. Эти токи могут «вернуться» в электрическую сеть в виде большой реактивной нагрузки. И хотя на таком оборудовании должны устанавливаться специальные пускатели и дополнительные сетевые фильтры, порождения электрических скачков избежать нельзя. И вовсе не обязательно жить рядом с большим металлургическим заводом, чтобы получить неприятные электрические сюрпризы. Для порождения хорошего скачка напряжения будет достаточно соседства с насосной станцией, с мощным вентиляционным оборудованием, с автомобильной мастерской или с большим супермаркетом.
9 причина появления «скачков напряжения» — «мерцающий эффект»
Скачки напряжения могут иметь систематический характер. Возможной причиной таких скачков может быть некорректная работа регулирующего оборудования в электрических приборах. Регуляторы электрических приборов должны осуществлять включение и выключение прибора или его части для контроля определенных параметров. Пример самого простого регулятора — это регулятор температуры отопительного прибора или электрического утюга. При достижении нужной температуры элемента прибор должен отключится. Часто бывает, что регулятор срабатывает очень часто, это приводит к износу контактов коммутирующего устройства. Изношенные контакты начинают порождать скачки тока. В этом случае можно видеть на графике напряжения скачки периодического характера.
10 причина появления «скачков напряжения» — попадание молнии в линии передач
Самая эффектная и самая мощная причина, порождающая гигантские перенапряжения и скачки — это попадание молнии в линии электропередач. Я думаю, каждый человек видел, как молния попадает в линии электропередач и в металлические опоры линий передач. Нужно сказать, что история создания электрических приборов тесно связана с молнией. Первые опыты по использованию электричества проводились с энергией молнии. Современные системы электропередач имеют защиту от молнии, однако, полностью избежать появления больших импульсов в сети не удается. Мощные разряды молний порождают большое перенапряжение, которое распространяется вдоль линии передач и может дойти до конечного потребителя. И хотя импульс от удара молнии длиться сотые или тысячные доли секунды, но этой бешеной энергии в тысячи вольт достаточно для нанесения большого ущерба электрооборудованию.
11 причина появления «скачков напряжения» — попадание высокого напряжения с линий трамвайных и троллейбусных контактных линий
Ситуация, когда происходит обрыв контактной трамвайной или троллейбусной линии электропередач, случается в городе несколько раз в месяц. Причиной может быть сильный порыв ветра или выполнение строительных работ, падение дерева на линию передач. При этом один из проводов контактной линии может зацепить или полностью упасть на линии обычных электропередач. В этом случае в сети можно наблюдать скачки напряжения в сотни вольт. Бывают случаи, когда такая авария приводит к сгоранию всех электрических приборов в нескольких домах рядом с аварией. При этом, если не происходит защитного отключения, то перенапряжение может вызвать даже возгорание приборов.
12 причина появления «скачков напряжения» — проведение сварочных работ
Проведение сварочных работ с помощью электрической сварки всегда приводит к появлению больших скачков напряжения во всей сети. И если в городе такое явление редко, то в деревнях и поселках встречается с завидной постоянностью. Кто-то варит забор, кто-то выбрасывает холодильник, сгоревший от большого скачка напряжения. При этом часто сварочные аппараты подключают прямо на вход проводов в дом, то есть минуя все защиты. Каждая дуга сварки в этом случае порождает большой скачок параметров тока в сети.
Таким образом, можно выделить несколько групп причин порождения скачков напряжения:
- скачки напряжения порождаются по причине плохого качества оборудования и монтажа электрооборудования и электрической разводки;
- скачки напряжения появляются по причине включения или выключения мощного оборудования или мощных электрических приборов;
- скачок напряжения обусловлен природными факторами, ударами молнии, сильным ветром, наводнением;
- скачки напряжения порождены нарушениями правил эксплуатации приборов и оборудования или недостаточного объема проведенных профилактических работ;
- скачок электрического напряжения обусловлен нарушениями при проведении строительных и сварочных работ;
- скачок напряжения появился из-за аварий техногенного характера.
Как бороться со скачками напряжения в сети
Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения. Устройства защиты от скачков напряжения могут монтироваться в коммутационные электрические шкафы или включаться непосредственно в розетку. Отдельным способом защиты от скачков является использование устройства защиты от скачков, монтируемых внутри электрического прибора.
Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.
Читайте также по теме:
Тех. поддержка
Бастион в соц. сетях
Канал Бастион на YouTube
teplo.bast.ru
Как проверить или измерить напряжение электрического тока? Какое напряжение должно быть в квартире согласно госту
«220 В» или «230 В» — стандартное напряжение в России?
- Главная
- Статьи
- «220 В» или «230 В» — стандартное напряжение в России?
Какое напряжение должно быть в сети 220В или 230В
И так вопрос: «Какое напряжение должно быть в нашей сети 220В или 230В?»На первый взгляд, очень простой вопрос. И очень простой ответ: «В сети должно быть 220В».Действительно, мы с детства знаем, что в розетке 220 Вольт и это опасно для жизни.На заводе, фабрике и в офисе на каждой розетке должна быть надпись «220В». На двери трансформаторной будки: «Не влезай — Убьет! 220В/380В». И реклама идет сети магазинов «220 Вольт».
Однако это не совсем верный ответ. В настоящее время в России стандартным напряжением в сети является напряжение 230В, но для поставщиков электроэнергии действует 220В. Действительно ранее в Советском союзе стандартным напряжением было 220В, однако в последствии были приняты решения о переходе на общеевропейский стандарт — 230В. Согласно требований межгосударственного стандарту ГОСТ 29322-92 сетевое напряжение должно составлять 230 В при частоте 50 Гц. Переход на этот стандарт напряжения должен был завершиться в 2003 году. В ГОСТ 30804.4.30-2013 так же есть упоминание о необходимости проведения измерений при стандартном напряжении 230В. ГОСТ 29322-2014 определяет стандартное напряжение 230В с возможностью использовать 220В. Электросети поставляют электроэнергию согласно действующего на сегодняшний день ГОСТ 32144-2013 устанавливающего напряжение 220В.
Изменение стандартного значения напряжения было проведено для получения полного соответствия европейским стандартам качества электроэнергии. Из всех бывших республик СССР к стандарту «230В» перешли Россия, Украина, страны Балтии.
При этом следует понимать, что электрическое оборудование, выпускаемое в России и для России должно нормально работать и при напряжении 220В, и при напряжении 230В. Для приборов, как правило, закладывается диапазон по напряжению от -15 % до +10 % от номинального.
География стран со стандартными напряжениями: 100В, 110В, 115В, 120В, 127В, 220В, 230В, 240В
В разных странах мира приняты различные стандарты сетевого напряжения. Можно встретить следующие стандарты: — 100В в Японии, — 110В в Ямайке, Гаити, Гондурасе, Кубе,- 115В в Барбадосе, Сальвадоре,Тринидаде,- 120В в США, Канаде, Венесуэле, Эквадоре- 127В в Бонайре, Мексике, — 220В во многих странах Азии и Африки,- 230В во многих странах Европы и части стран Азии,- 240В в Афганистане, Гайане, Гибралтаре, Катаре, Кении, Кувейте, Ливане, Нигерии, Фиджи
География стран, в которых приняты напряжения 220В и 230В
Наибольшее распространение получили стандарты 220В и 230В, эти стандарты приняты более чем в 150 странах мира. Ниже приводится таблица стран, в которых приняты стандарты напряжения 220В и 230В. В левой колонке находятся страны, в которых стандартное сетевое напряжение 220В, в правой колонке — страны, где напряжение 230В
Таблица стран, в которых принято напряжение 220В и 230В.
Страна | Напряжение | Страна | Напряжение |
Азербайджан | 220В | Австралия | 230В |
Азорские острова | 220В | Австрия | 230В |
Албания | 220В | Алжир | 230В |
Ангола | 220В | Андорра | 230В |
Аргентина | 220В | Антигуа | 230В |
Балеарские острова | 220В | Армения | 230В |
Бангладеш | 220В | Бахрейн | 230В |
Бенин | 220В | Белоруссия | 230В (ранее 220В) |
Босния | 220В | Бельгия | 230В |
Буркина-Фасо | 220В | Ботсвана | 230В |
Бурунди | 220В | Бутан | 230В |
Восточный Тимор | 220В | Вануату | 230В |
Вьетнам | 220В | Великобритания | 230В |
Габон | 220В | Венгрия |
10i5.ru
Полные нормы напряжение 220 в электросети: ГОСТ
Дата публикации: 01.06.2018 20:42
Нормальное падение работы напряжения в сети:
- В сетях на 220 В – 380 В – в районе 4-6%.
- Норма 5% 209 — 231 В
- Придельное отклонение 10% 198 — 242 В (Кратковременно более 10 сек )
- В так называемых воздушных линиях – до 8%;
- В кабельных линиях электроснабжения – до 6%;
При отклонении на 12% — это аварийный режим
В следствии чего должна сработать автоматика не полнее чем через 30 секунд
Величина допустимого падения напряжения: ПУЭ
Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.
Нормальное падение работы напряжения в сети:
- В так называемых воздушных линиях – до 8%;
- В кабельных линиях электроснабжения – до 6%;
- В сетях на 220 В – 380 В – в районе 4-6%.
При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.
Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.
Обязательное регулирование напряжения в электрических сетях
Осуществить собственное регулирование напряжения не только трудозатратно, но и потребует финансовых вложений. Еще более трудным вариантом является добиваться стабилизации тока в сети от организации-поставщика. Это можно сделать путем подачи жалоб, личных обращений, исков в суд, однако, результат далеко не всегда достигается даже этими методами.
Для тех кто в танке ребята Видео сняли
Detect languageAfrikaansAlbanianArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanLaoLatinLatvianLithuanianMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPersianPolishPortuguesePunjabiRomanianRussianSerbianSesothoSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshYiddishYorubaZulu |
| AfrikaansAlbanianArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanLaoLatinLatvianLithuanianMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPersianPolishPortuguesePunjabiRomanianRussianSerbianSesothoSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshYiddishYorubaZulu |
|
|
|
|
|
Text-to-speech function is limited to 200 characters
new.zayn.pro
Качество напряжения в сети: показатели, требования, контроль
Параметры напряжения
Перед тем, как вы скажите, что напряжение в вашей сети не соответствует норме и заявите свою претензию в энергоснабжающую организацию, необходимо знать эту норму. Диапазон отклонения напряжения устанавливается в нормальном режиме: δUyнор= ± 5 %, в предельно допустимом: δUyпред= ± 10 % от номинального значения.
В России номинальное напряжение бытовой сети Uном = 230 Вольт (В), верхний диапазон составляет 242 В. Для Uном = 380 В, верхний диапазон равен 418 В. Если напряжение выше этих диапазонов и по этой причине вышли из строя электробытовые приборы, вы вправе пожаловаться в энергоснабжающую организацию.
Причины перепадов напряжения в частном секторе
Если потребитель живет в собственном доме, то самыми распространенными причинами ухудшения качества напряжения являются: повреждение линии электропередач, короткое замыкание на землю, отгорание нулевого проводника в трансформаторной подстанции (ТП) и молния.
Очень часто бывает так, что напряжение в сети намного ниже 230 В и лампочки очень тускло горят. Одна из причин, это падение напряжения по линии. Чем больше на линии подключено домов и тем самым нагрузки, тем меньше напряжение будет в отдаленных от ТП домов.К примеру, в начале улицы стоит трансформаторная подстанция. В первых домах от ТП напряжение может быть 235 В, а в последних 195 В, что по правилам допустимо. Чтобы хоть как то уменьшить нагрузку на линию, энергетики разгружают ее путем распределение нагрузки между соседними фазами или увеличивают сечение ЛЭП (линии электропередачи). Но могут и увеличить выходное напряжение из ТП, к примеру до 240 В. Это так же плохо для первых домов, но в пределах нормы.
Перенапряжение в многоквартирных домах
В последнее время перенапряжение в многоквартирных домах, построенных до начала 90-х годов, стало настоящим бедствием. Когда эти дома строились, в проектную нагрузку не вносились микроволновые печи, холодильники (два), компьютеры, домашние солярии и т.д.
Но, тем не менее, потребители пользуются этими благами цивилизации. Что в итоге происходит? В электроэнергетике есть понятие, вечерние и утренние максимумы нагрузки. Именно в это время люди идут на работу, готовят, включают много электроприборов в общем.
По проводам и кабелям протекает рабочий ток который больше длительно допустимых токов этих проводов и кабелей, соответственно они греются. Потом охлаждается и заново. В итоге происходит ослабление контактов или отгорание нулевого проводника.Если в нормальном режиме напряжение между фазным и нулевым проводником 230 В, то в данном случае нулевой проводник отсутствует и напряжение будет между фазами, т.е. 380 В. В итоге напряжение «гуляет» по стояку. Его величина зависит от включенной в сеть нагрузки и может быть в диапазоне 140 – 380 В от места отгорания нулевого проводника.
Защита от перенапряжения
Необходимо знать, что установленные в этажном щитке устройства защитного отключения (УЗО), дифавтоматы или простые автоматические выключатели, не защищают от перенапряжения, а только от перегрузки, токов короткого замыкания и поражения электрическим током.
По этой причине, для защиты бытовой техники, необходимо установить реле от перенапряжения в этажном щитке или стабилизатор напряжения в квартире. Для защиты от перенапряжения в частных домах, в случае удара молнии, рекомендуется монтировать в водное устройство дома устройства защиты от импульсных напряжений УЗИП.
С уважением, Николай Стороженко
elektrobiz.ru