Дроссель для ламп дневного света от ОСК Лампы.РФ
ОСК Лампы.РФ осуществляет оптовую реализацию светотехнической продукции. В условиях постоянно растущего спроса на производительные энергосберегающие приборы предприятие делает упор на инновационные изделия, отвечающие современным требованиям.
Стандартное напряжение домашней сети для люминесцентных ламп не подходит. Использование специальных приборов, дросселей, позволяет преобразовать силу тока до номинального показателя. Это катушка с проводом, намотанным на специальный ферромагнитный сердечник. Индуктивные свойства дросселя дают возможность использовать его для запуска люминесцентных ламп.
Технические характеристики дросселей
Фото | Артикул | Наименование | Напряжение, В | Упаковка |
503875.58 | L 7/9/11.851 230V/50HZ 85x41x28 VS — дроссель 2250/п | 230V | 10 | |
12682600 | L 26.826H 230V 0,325А 155x41x26 Schwabe Hellas — дроссель | 230V | 10 | |
534142.12 | L 4/6/8-265H 220V VS — дроссель | 220V | 10 | |
13283100 | L 32.830H 0.45A 230V 155x41x26 Schwabe Hellas — дроссель | 230V | 10 | |
10707134 | NAHJ 70.713.4 230V 1,00A 112x66x52 SCHWABE HELLAS -дроссель | 230V | кор. 6 | |
11256134 | Q 125.613.4 230V 1,15A 112x66x52 SCHWABE HELLAS — дроссель | 230V | 1 | |
12282200 | L 22.890H 0.4A 230V 155x41x26 Schwabe Hellas — дроссель | 230V | 10 | |
534487.11 | NAHJ 1000.089 220V 10,3A 203x102x92 метгал-натрий -дроссель Vossloh Schwabe 105/палл | 220V | 1 | |
12506146 | Q 250.614.6 220V 2,13A 145x66x52 SCHWABE HELLAS — дроссель | 220V | 1 | |
13083000 | L 30.832H 0.36A 230V 155x41x26 Schwabe Hellas — дроссель | 230V | 10 | |
20041210 | CD-Z 400M 35-400W 230V 50Hz d35x87 FOTON металл+гайка -ИЗУ | 230V | 30 | |
20040202 | CD-Z 1000 600-1000W 230V 4-5kV 1 метр FOTON металл+гайка — ИЗУ | 230V | 30 | |
x02564752 | FOTON 1000W 230V 10,3А 248x102x92 МГ-натрий -дроссель | 230V | 1 | |
3545454646 | FL-01 2000W 10,3A 400x265x188 IP65 FOTON LIGHTING- моноблок | 230V | 1 | |
434641 | FL-02 BOX 70W 250×85 IP65 FOTON LIGHTING- пустой корпус | 230V | 1 | |
246466 | FL-11 GEAR BOX 70W 224x170x105 IP65 FOTON LIGHTING-моноблок | 230V | 10 | |
246467 | FL-11 GEAR BOX 150W 224x170x105 IP65 FOTON LIGHTING-моноблок | 230V | 10 | |
20110071 | FL-19 GEAR BOX 70 FOTON LIGHTING (моноблок) (225Х125Х75) | 230V | 8 | |
556444 | FL-20 GEAR BOX 2x18w IP20 FOTON LIGHTING моноблок 225x125x75 | 230V | 8 | |
511031 | GBP-23 35W зеленый FOTON LIGHTING моноблок 215x82x73 | 230V | 10 |
Принцип работы дросселя
Дроссель (катушка индуктивности) работает, как электрический трансформатор с одной намоткой. Он представляет собой сдерживающий барьер при резком снижении или сильном росте напряжения в сети. Катушка используется для подавления помех и пульсаций в цепи, изоляции и развязки частей схемы.
В низкочастотном дросселе сердечник и ферромагнитные пластины изолированы для предотвращения помех, вызванных токами Фуко. Такая катушка отличается большой индуктивностью и защищает сеть и приборы от резких скачков напряжения. Высокочастотные устройства не имеют сердечника – многослойная навивка осуществляется на стандартные резисторы или пластиковые каркасы.
Сфера применения дросселей
При покупке изделий необходимо следить за тем, чтобы их мощность соответствовала количеству подключаемых люминесцентных ламп. Особенно это касается больших площадей, например, офисных центров, магазинов, конференц-залов, промышленных цехов.
Дроссели используются:
- в моноблоках;
- компактных источниках света;
- линейных источниках света.
Разновидности дросселей
Катушки индуктивности различаются в зависимости от назначения, места установки, видов ламп, в которых применяются, и объема мощностных потерь.
По назначению выделяют следующие типы дросселей:
- переменного тока — для ограничения напряжения в сети;
- сглаживающие — для подавления пульсаций выпрямленного тока;
- насыщения — для установки в стабилизаторах напряжения;
- усилители — с подмагничивающимся от постоянного тока в сети сердечником, который допускает изменение значений индуктивного сопротивления.
По типу ламп, с которыми используются, различают два вида катушек индуктивности:
- однофазные, рассчитанные на офисные и бытовые системы освещения, работающие от сети 220 В;
- трехфазные, подходящие для ламп ДРЛ и ДНАТ, рассчитанные на напряжение 220 и 380 В.
По месту установки различают дроссели:
- открытые — встраиваемые непосредственно в корпус светильника, который защищает устройство от внешних факторов;
- закрытые герметичные устройства с водостойким корпусом подходят для установки в уличных условиях и помещениях с повышенным уровнем влажности.
В процессе работы люминесцентной лампы сопротивление дросселя уменьшает силу тока, который протекает по цепи, до некого необходимого значения. Какая-то часть мощности тратится на нагрев устройства, не выполняя при этом никакой полезной работы.
По объему мощностных потерь дроссели делятся на следующие виды:
- В — низкий уровень потерь;
- С — пониженный уровень;
- D — обычный уровень.
Гибкий подход к вопросам ценообразования и внимательное отношение к покупателям позволяют ОСК Лампы.РФ занимать одну из лидирующих позиций на рынке реализации светотехнических изделий.
Отзывы наших клиентов
Кристина Алексеевна
В помещениях нашего завода постоянно наблюдалось мерцание света. Удалось решить проблему путем установки дросселей. Важно, что менеджеры уделили внимание всем помещениям, подобрали устройства с расчетом количества ламп, мощности. Теперь все поставленные задачи выполнены, провели установку оборудования, и увеличилась производительность труда! Спасибо!
Кирилл
Убедился, что всегда нужно обращаться к профессионалам. До этого покупал продукцию в другом месте, и постоянно были проблемы с освещением. Все решилось просто, после консультации со специалистами ОСК Лампы.РФ. Поставили на складах дросселя и перестали перегоратьь лампы, что важно — снизилось энергопотребление!
Дмитриев
Заказывал раньше люминесцентные лампы и решил сэкономить на покупке дросселей. Оказалось, сделал ошибку, при малейших сбоях в сети приборы сгорали. В общем, скупой платит дважды, хорошо хоть теперь удалось наладить работу. Хочу поблагодарить вашу компанию за грамотные консультации и быструю поставку продукции!
Смотрите также:
Все о ПРА — электромагнитном пускорегулирующем аппарате
Все о ПРА — электромагнитном пускорегулирующем аппарате
1. Общее описание электромагнитных ПРА :
Электромагнитныe ПРА для трубчатых люминесцентных и компактных люминесцентных ламп внутреннего применения. Иногда их называют: дроссель для ламп дневного света. Класс защиты от поражения электрическим током — I, степень защиты от воздействия от окружающей среды — IP 20. Применяется для двухламповых светильников. Простой монтаж и подключение.
Область применения:
- магазины,
- офисные центры,
- гостиницы,
- промышленные помещения.
Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель), подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами электромагнитного дросселя для ламп дневного света является его простота и дешевизна. Недостатки электромагнитного балласта — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск пра (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Электромагнитный дроссель также может издавать низкочастотный гул.
Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.
Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.
2. Регламентирующие нормативные документы для электромагнитных ПРА- DIN VDE 0100 Предписание по устройству силовых электроустановок с номинальным напряжением ДО 1000 В
- EN 60598-1 Осветительные приборы — часть 1: Общие требования и испытания
- EN 61347-1 Устройства управления для ламп — часть 1: Общие требования и требования безопасности
- ЕN 61 347-2-8 Устройства управления для ламп — часть 2-8: Особые требования к электромагнитным ПРА для люминесцентных ламп.
- ЕN 60921 ПРА для трубчатых люминесцентных ламп. Требования к рабочим характеристикам.
- ЕN 50294 Методы измерения общей потребляемой мощности соединения ПРА — лампа.
- ЕN 61000-3-2 Электромагнитная совместимость. Предельно допустимые токи высших гармоник в питающей сети.
- ЕN 61547 Осветительные приборы и системы общего назначения. — Требования к электромагнитной совместимости и устойчивости к электромагнитным помехам.
З. Общие данные ПРА
Электромагнитные (индуктивные) ПРА являются активными компонентами, которые совместно со стартерами нагревают электроды ламп, обеспечивают напряжение зажигания и стабилизируют ток лампы в течение ее работы. Для компенсации реактивного тока необходимы конденсаторы последовательного или параллельного соединения.
При установке в светильники нужно обращать внимание на напряжение и частоту сети, габаритные размеры и температурные пределы, а также возможное генерирование шумов.
Электромагнитные ПРА оптимизированы в отношении к их магнитным полям и магнитным нагрузкам так, чтобы они обычно не ощущались. Поскольку магнитные колебания могут воздействовать в зависимости от конструкции светильников на другие области, то нужно учитывать при проектировании светильников.
Необходимо сделать конструкцию жесткой, чтобы вибрации не распространялись.
Срок службы индуктивного ПРА определяется выбором материала и изоляцией обмотки.
Предельная температура обмотки обозначает ту величину температуры (tw), которую выдерживает изоляция при непрерывной работе при номинальных условиях в течение 10 лет. Эта предельная температура обмотки не должна быть превышена в светильнике в реальных условиях, тогда можно достигнуть работы ПРА на весь срок службы. Установленная в светильнике температура обмотки электромагнитного балласта состоит из температуры окружающей среды, температурных условий в светильнике и потери мощности дросселя. Мерой потери мощности ПРА является Δt, значение которой находится на маркировке балласта. В дополнение к этому, потеря мощности схемы соединения дросселя и люминесцентной лампы измеряется по норме ЕN 50294. Этот метод измерений является основой классификации энергопотребления ПРА.
Кроме этого, применяется европейская директива 2000/55/ЕС «Предельные допустимые величины потребления мощности схемами люминесцентных ламп».
При включении электромагнитного балласта возникают кратковременные высокие импульсы тока из-за паразитарных нагрузок, которые суммируются в зависимости от количества светильников в осветительной установке. Эти высокие токи при включении системы нагружают автоматы защиты электропроводки, поэтому необходимо использовать соответствующим образом подобранные автоматические выключатели.
Индуктивные ПРА конструктивно вызывают токи утечки, которые отводятся заземлением светильника (устройство заземления). Максимально допустимая величина тока утечки у светильников класса защиты I составляет 1 мА.
4. Электромагнитная совместимость (ЭМС/ ЕМV)Помехи:
Измерение напряжения помех должно проводиться у светильников с электромагнитными ПРА на
контактных зажимах, поскольку частота напряжения ламп этих систем ниже 100 Гц. Это низкочастотное напряжения помех, как правило, не критично у электромагнитных дросселей, если конструкция ПРА согласована в этом отношении.
Невосприимчивость к помехам:
Благодаря жесткой конструкции и специально отобранным материалам, электромагнитные ПРА обеспечивают высокую степень защиты от помех и не подвержены отрицательному влиянию присутствующих помех в сети.
Гармоники сети:
Люминесцентные лампы имеют пик перезажигания после каждого N-прохода тока ламп, лампы
гаснут на короткое время (почти незаметно глазом). За счет этих пиков перезажигания люминесцентных ламп создаются гармоники сети, которые сглаживаются с помощью импеданса ПРА. С помощью правильной конструкции, то есть выбора рабочей точки магнитного ПРА, ограничиваются гармоники сети на предельные значения нормы Е N 6100-3-2
5. Схемы соединения люминесцентных ламп с электромагнитными пускорегулирующими аппаратами (ПРА)6. Температурный режим ПРА
Предельные значения температур:
При нормальной работе температура обмотки tw не должна превышать 130º С. При аномальном режиме работы предельное значение температуры обмотки tw =232º С: Эти значения должны быть проверены методом «изменения сопротивления» в течение работы.
Повышение температур:
Ток лампы, который протекает через ПРА, обуславливает потерю мощности, что приводит к повышению температуры обмотки. Критерием для этого повышения является значение Δt как для нормальной так и для аномальной работы. Значение Δt определяется по стандартной схеме измерений и указывается на маркировке в градусах Кельвина.
Пример: Δt =55К/140К
Первое значение Δt указывает на превышение температуры для нормального режима при рабочем токе лампы. Второе значение (здесь 140К) означает превышение температуры обмотки, что является результатом протекания тока, когда разрядный промежуток лампы короткозамкнут. Ток, который течет в этом режиме, является током нагрева для электродов лампы.
7. Срок службы электромагнитного балластаПри условии, что температура обмотки будет соответствовать указанному предельному значению, можно рассчитывать на срок службы 10 лет. Интенсивность отказов < О,О2% / 1.000 час.
8. Коэффициент мощности ПРАИндуктивные ПРА: λ ≤ 0,5. Параллельно компенсированные дроссели для ламп дневного света:
λ ≤ 0,9
9. Рекомендации по монтажу электромагнитных дросселей- Положение встраивания: Любое
- Место монтажа: электромагнитные ПРА спроектированы для установки в светильниках или в подобных приборах.
- Независимые ПРА не нужно встраивать в корпус.
- Крепление дросселей: Предпочтительно с помощью винтов М4
Клеммные колодки (универсальные контактные зажимы)
- Применять медный провод (негибкий провод)
- Поперечные сечения для соединения безвинтового зажима 0,5—1,0 мм²
- Длина зачищенного конца проводника 8 мм
- Поперечное сечение соединительного надреза (IDС — зона) 0,5 мм² , с изоляцией максимум Ø2 мм, снятие изоляции не обязательно, монтаж возможен только со специальным инструментом.
Безвинтовые контактные зажимы
- Встроенные контактные зажимы могут присоединять только жесткие проводники. Жесткие проводники:
- 0,5—1,0 мм². Длина зачищенного конца проводника 8 мм.
- Соединение проводников
- Соединение между сетью, дросселем и люминесцентными лампами должно производиться согласно представленным схемам соединения.
виды устройств и принцип работы
Дневное освещение—это экономичный вариант, вследствие чего является альтернативой традиционному освещению. Использование люминесцентных ламп сосредоточено практически во всех отраслях, не исключено и применение в бытовых условиях. На сегодняшний день такой источник света классифицируют по яркости и оттенку излучения света: холодный белый, теплый белый и желтоватый тон. Однако, для безопасности и нормализации работы принято использовать дроссель для ламп дневного света.
Внимание! Приобретайте люминесцентный светильник исключительно в специализированных магазинах, спрашивайте гарантию на прибор.
Что такое дроссель и для чего он нужен?
В первую очередь дроссель обеспечивает стабильную работу ламп дневного света. Если вы случайно заметили почернение на концах светильника, обратите внимание, возможно неисправность именно в стабилизаторе.
Дроссель—это деталь, которой оснащена энергосберегающая лампа. Функцией этого устройства считается контроль напряжения на выходных контактах источника света. Чтобы свет в люминесцентной лампе не погасал, необходимо создать балласт, он сможет поддержать ток в контактах светильника на оптимальном уровне. По стандартам производства балласт подключается последовательно, далее к нему параллельным путем подсоединяют стартер (он отвечает за зажигание лампы).
Дроссель для лам дневного света
Важно! Перегоревшая лампа способна работать без дросселя, нужен лишь правильный алгоритм работы.
Включение осветительного прибора в электрическую сеть влечет за собой вход высокого напряжения, которого слишком много для работы, а дроссель служит, как оптимизатор и пропускает лишь нужное количество тока для свечения люминесцентных ламп. Но, иногда, в целях перестраховки нужно знать, как проверить дроссель лампы дневного света мультиметром, и оценить качество, а также норму работы приспособления. Также для этой цели можно использовать лампочку с патроном и двумя свободными проводами. Их подсоединяют к контактам устройства, если они зажгутся, следовательно, дроссель находится в рабочем состоянии.
Как подключить дневную лампу без дросселя?
Устройство, обеспечивающее длительную работу люминесцентной лампы положительно влияет на внутренний механизм, кроме того, есть отдельная схема подключения дневной лампы без дросселя.
Подобный эксперимент можно проводить даже с перегоревшими элементами и используя различные детали.
- Если лампочка сгорела, вскрываем ее и вынимаем из нее схему. Обратите внимание, колба при демонтаже устройства должна остаться целой и неповрежденной.
- Эту же схему подсоединяем к обычной лампе дневного света. То есть делаем подключение проводников к обеим сторонам лампы, затем от схемы создаём провод для вилки и втыкаем в розетку.
- Если люминесцентный источник заработал, значит, опыт удался.
Как мы видим опыт довольно простой и рабочий. К тому же, встречаются еще более простые варианты решения подобной проблемы, например, подключение балласта к общему механизму энергосберегающей лампы.
Лампа дневного света
Важно! При подключении лампы дневного освещения без дросселя, нить накала не используется!
Наверняка вам пригодится схема подсоединения лампы дневного света с дросселем. Этот вариант подойдет при исправной и работоспособной схеме механизма. На самом деле данный вариант доступен в двух вариантах, но более доступным и легко реализуемым считается способ, при котором используются все содержимые детали люминесцентной лампы, а именно, стартер, дроссель и емкость, в которую поступает стандартное напряжение домашней сети.
Для новичков не рекомендуется проводить ремонт дросселя самостоятельно, а иногда это сделать невозможно, идеальный способ—это произвести полную замену стабилизатора. Если у вас в планах бездроссельное включение люминесцентных ламп, важно придерживаться единой схемы для всех устройств подобного действия.
Рабочий механизм дроссельной платы
По внешнему виду устройство представляет собой цилиндр в металлическом корпусе. Его мощность обязательно совпадает с предельно допустимой рабочей мощностью энергосберегающей лампы. В способности дросселя входит ограничение подачи электрического тока, что предотвращает перегорание электродов лампочки.
Работа дросселя происходит в паре со стартером, по отдельности они не способны обеспечить нужные функции.
Схема подключения дросселя
Рассмотрим, как они действуют при включении дневного освещения:
- происходит запуск стартера;
- электроды разогреваются и происходит подача электрического тока к действующему механизму прибора;
- за счет этого выполняется, нагрев биметаллической пластины стартера;
- после прогрева контактов, ток приходит к дросселю;
- дроссель скапливает ток, происходит пробивание газа, и лампа начинает светиться.
В процессе работы экономной лампы с работоспособным стартером и стабилизатором, происходит равномерное распределение напряжения, если наблюдается приход сверхтоков либо утечки тока.
Важно! Подключение лампы дневного света без дросселя не может давать гарантии на длительное функционирование прибора.
Виды дросселей люминесцентного освещения
На сегодняшний день электриками признаны только два вида устройств, которые отлично работают с механизмом энергосберегающих светильников.
- Электромагнитный дроссель—этот тип прибора включается последовательно с люминесцентной лампой. Данный вариант не работает от холодного старта и требует установки стартера.
- Электронный дроссель—это элемент, который изобретен не так давно. Преимущественной чертой считается простая схема подключения устройства. С подобной установкой снижается мерцание лампы и ее пульсация.
Срок эксплуатации подобных приспособлений чаще всего зависит от обеспеченных условий для работы. Стоит отметить, что диапазон температур не должен варьироваться не на один градус от значений +5—+55°С.
Электрическая схема подключения нескольких ламп дневного света с дросселем
Правила выбора дросселя
Выбор любого устройства для полноценной работы приборов следует делать внимательно. Приходится обращать внимание не только на технические качества оборудования, но еще и на марку производителя, ценовой эквивалент, а также учесть плюсы и минусы данного выбора.
Самые качественные изобретения предоставляют фирмы Chilisin, Luxe и Vossloh schwabe. Зачастую в комплекте с дневной лампой поставляется и запасной комплект необходимых элементов.
Посмотрите видео о том, как подключить 2 люминесцентные лампы к одному дросселю:
Вас могут заинтересовать:
Дроссель для люминесцентных ламп: 36вт, электронный, устройство, назначение
До настоящего времени дроссель для ламп был незаменимым узлом люминесцентного светильника (ЛЛ), выпущенная английской компанией General Electric в 1934 году. Она создала первые трубки с горячим катодом, в которых использовался положительный разряд в колонке в ртутной атмосфере низкого давления, для генерации коротковолнового УФ-излучения. Последнее стимулировало флуоресцентное порошковое покрытие на внутренней поверхности разрядной трубки. Хотя в той конструкции еще отсутствовали многие современные функции, но именно General Electric стал первопроходцем на рынке флуоресцентных ламп.
Дроссель для лампочек
Популярность люминесцентных ламп подтверждается тем фактом, что она и сегодня вырабатывает больше количества света на планете, чем любой другой источник. Пик производства был достигнут к 1970-му году. По современным оценкам, сегодня на их долю приходится около 80% мирового искусственного освещения.
Люминесцентное освещениеЛюминесцентный вид освещения предлагает низкую стоимость системы, очень большой срок службы. Он полностью диммируемый и простой в использовании, и, кроме того, достигает высокой световой отдачи. Большая площадь трубки хорошо подходит для эффективного и безбликового освещения больших пространств.
Флуоресцентная лампа использует электричество, чтобы ртутный газ смог излучать ультрафиолетовый (УФ) свет. Когда этот свет, который невидим невооруженным глазом, взаимодействует с покрытием порошка люминофора внутри трубки, он начинает светиться и излучать яркий свет. Для того чтобы контролировать пропускаемое электричество, используют дроссель или в западной терминологии — дроссель балласт или механизм управления. Он представляет собой небольшое устройство, подключенное к электрической цепи источника света, которое ограничивает количество тока, проходящего через него.
Дроссель для лампочекПоскольку напряжение в бытовой сети имеет более высокое значение, чем необходимо для работы светильника, дроссель первоначально дает источнику скачок напряжения для запуска, а затем только поддерживает минимальное количество для безопасной работы.
Процесс, который происходит внутри флуоресцентного света, вовлекает молекулы ртутного газа, нагреваемые электричеством. Без дросселя, контролирующего этот процесс, на лампу поступало бы много тока, который вывел бы ее из строя.
Флуоресцентные лампы используют два вида балластов:
- Магнитные, которые устарели и сегодня уже не используются в новых моделях ламп. Работа их построена на принципах электромагнетизма, когда электрический ток проходит через провод, он генерирует вокруг себя магнитную силу. Балласт содержит катушку из медной проволоки. Магнитное поле, создаваемое проводом, задерживает большую часть тока. Это количество может колебаться в зависимости от толщины и длины медной проволоки.
- Электронный дроссель для люминесцентных ламп использует более сложные схемы и компоненты, может с большей точностью контролировать ток, проходящий через люминесцентные лампы. По сравнению со своими магнитными аналогами они меньше, легче, эффективнее и, благодаря подаче энергии на гораздо более высокой частоте, практически не вызывают мерцание или жужжание.
Важно! Магнитные балласты не могут функционировать без помощи стартера. Этот небольшой цилиндрический элемент расположен позади светильника и заполнен газом, который при нагревании позволяет зажечь свет.
Характеристики
Базовые функции балластов: обеспечивает процесс подогрева катодов для старта процесса электронной эмиссии, создает напряжение стартового разряда и последующее ограничение рабочего тока. В режиме переменного тока, он обеспечивает сдвиг фаз (cos f) между I и U, называемым коэффициент мощности. Эта величина обозначается в паспорте и маркировки балласта. Активная мощность рассчитывается по соотношению: P = U х I х cosf, очевидно, что низкий cos f дает рост использования реактивной энергии.
Маркировка балластаВ связи, с чем балласты группируются по уровню мощности:
- С— низкий показатель;
- В— супернизкий;
- D — средняя возможность поглощения.
Классификация и по уровню шума:
- С — очень низкий шумовой эффект;
- А — особо низкий показатель;
- П — пониженный шум;
- Н — норма.
Технические характеристики балласта должны соответствовать показателям мощности лампы, иначе она работать не будет.
Люминесцентные ламы требуют установку дросселей различной мощности:
- Вт до 15.0 Вт — небольшие настольные светильники;
- 16.0 Вт до 36.0 Вт — потолочные и настенные бытовые осветительные устройства;
- 37.0 Вт до 80.0 Вт — мощные промышленные осветительные системы с несколькими единичными точками света.
На территории России выпуск люминесцентных ламп и комплектующих производятся достаточно большими партиями — от миллиона ламп в год. Производство организовано на предприятиях: «ЛИСМА-ВНИИС» им. Лодыгина, «Фотон», Саранский завод точных приборов, компании «СЭПО-ЗЭМ». Среди западных производителей популярностью пользуются греческая компания Schwabe Hellas и финская Helvar. Считается, что балласты и стартеры лучше приобретать известных марок, таких как Navigator или Luxe.
Как работает
Первоначально, подается переменное напряжение, которое пройдя через дроссель, попадает на лампу. Так как мощность передается через балласт, который является индуктором, он ограничивает ток и препятствует возникновению короткого замыкания в лампе. Далее ток проходит через нити накаливания и нагревает их, а также присутствующие в трубке газы.
Работа люминесцентных лампРазрядная трубка заполнена газообразным аргоном и имеет внутри фосфорное покрытие, а также содержит небольшое количество ртути. Затем ток поступает на стартер, внутри которого есть биметаллическая полоса, расширяемая при нагревании и замыкающая цепи, минуя лампу и создавая короткое замыкание. Когда цепь замкнута, напряжение падает до нуля. После того биметаллическая полоса остынет, она возвращается в исходное положение, открывая цепь. Так как в балласте имеется индуктор и собственное магнитное поле.
Во время размыкания цепи, магнитное поле разрушается и это создается «индуктивный удар с всплеском высокого напряжения, проходящего через нить накала, создавая дугу, для возбуждения фотонов в газовой среде аргона. Их эмиссия вызывает излучение ультрафиолетового света, который, проходя через фосфорное покрытие лампы, преобразуется в видимый свет.
Назначение дросселя
Принципиальные схемы электронных балластов разные. Но все они поддерживают фактическую типовую структурную схему:
- Сначала подключается последовательный резистор. Он подключен для ограничения тока перегрузки и короткого замыкания. В некоторых электронных балластах вместо последовательного резистора используется предохранитель. Этот резистор имеет очень низкое значение до 22 Ом.
- Затем подключается схема фильтра электромагнитных помех, который состоит из одного последовательного индуктора и одного параллельного конденсатора.
- Затем используется выпрямительная схема для преобразования переменного тока в постоянный. Схема мостового выпрямителя состоит из четырех PN диодов.
- Конденсатор подключен параллельно для фильтрации постоянного тока, поступающего из выпрямительной цепи.
Применяется инверторная схема с использованием двух транзисторов. Эти транзисторы создают высокочастотный переменный ток и повышающий трансформатор. С частотой в электронном балласте от 20.0 кГц до 8.00 кГц. Как правило, транзистор создает прямоугольный токовый сигнал. Повышающий трансформатор повышает уровень напряжения до 1000.0 В. В начальный момент и после того, как лампочка накаливания загорается, напряжение на ней снижается до 230 В. Таким образом главное назначение дросселя в люминесцентной лампе — сдерживать ток при работе осветительного прибора.
Конструкция
Конструктивно он выполнен из индуктивной катушки, намотанной на ферримагнитный сердечник, имеющего сходство с трансформатором, но с одной обмоткой из медного эмаль-провода.
Типовая структура дросселя:
- Проволока с изолированным покрытием;
- сердечник ферритовой конструкции, обеспечивающий индуктивность;
- компаунд для заливки — негорючее вещество, для дополнительного обеспечения межвитковой изоляции;
- корпус из термоустойчивых полимеров для размещения функциональных узлов.
Катушка
Дроссель в схеме ЛЛ должен выполнить скачок, чтобы возникло ЭДС самоиндукции катушки по правилу Ленца. Чтобы увеличить эти свойства, провод накручивают на сердечник, тем самым увеличивая электромагнитный поток.
Таким образом, по устройству балласт — это обыкновенная катушка, работающая по типу электротрансформатора.
Катушка дросселяОбратите внимание! Перед применением нужно их точно рассчитать, чтобы обеспечить работоспособность ламп. Особенно в момент старта свечения, когда потребуется разряд достаточно высокого напряжения, чтобы пробить газовую среду.
После чего балласт, примет на себя функции гасящего устройства. Поскольку для того чтобы ЛЛ светилась, больших параметров тока не требуется, в связи с чем этот класс светильников обладает повышенной экономичностью.
Сердечник для балласта
Индуктивность дросселя люминесцентных ламп обеспечивается сердечником, поэтому он выполняется из пластин с ферромагнитными свойствами, изолированные друг от друга, чтобы препятствовать токам Фуко, создающим недопустимые помехи в работе. Он служит мощным функциональным барьером, как при снижении входного напряжения, так и при его подъеме.
СердечникКонструкция относится к низкочастотным схемам. Переменный ток в бытовых электросетях имеет большой диапазон колебаний: от 1.0 до миллиарда Гц и выше и группируется по таким градациям:
- Звуковые низкие частоты с диапазоном от 20.1 Гц до 20.1 кГц.
- Ультразвуковые от 20.1 кГц до 100.1 кГц.
- Сверхвысокие свыше 100.1 кГц.
Дополнительная информация. Сердечник присутствует только у низкочастотных дросселей, в высокочастотных вариантах сердечники не устанавливаются. Для намотки медного провода, применяют пластиковые каркасы или обыкновенные резисторы. В этом случае трансформатор выполнен в форме секционной, многослойной намотки.
Как подобрать
В паспортной документации для дросселя указывается, какие типы, и конфигурации ламп предназначены для работы с ним. Для правильного выбора нужно обратить внимание на следующие данные:
- Контрольный список параметров выбора дросселя ЛЛ.
- Тип запуска — мгновенный или запрограммированный.
- Обычный балластный коэффициент (от 0,77 до 1,1) является значением по умолчанию для большинства ламп.
- Входное напряжение — 120/230/380В.
- Минимальная начальная температура от −17С до 20С.
- Схема — параллель это норма. Это позволяет другим лампам оставаться зажженными, даже если одна лампа в приборе гаснет.
- Контроль анти-стратификации — нежелательные яркие и тусклые области, которые могут образовывать структуру стоячей волны по всей длине лампы. Полоски более вероятны, когда лампа работает при низких температурах.
- Оценка звука: балласт с рейтингом «А» будет тихо гудеть; балласт с рейтингом «D» вызовет ярко выраженный шум.
- Гарантия производителя.
Как подключить дроссель
Установка люминесцентного дросселя не сложная, но, как и всегда, при работе с электрическими цепями, лучше доверить ее квалифицированному специалисту, если у пользователя не соответствующей группы допуска по электробезопасности.
Алгоритм установки дросселя на ЛЛ:
- При установке люминесцентного осветительного прибора сначала отключают питание от сети.
- Снимают пластину рассеивателя, закрывающую лампу и удаляют саму лампу.
- При получении доступа к дросселю снимают с него крышку и отсоединяют все провода. Перед этим рекомендуется удостовериться, что питание прибора не выполняется, используя тестер напряжения.
- После приобретения необходимого балласта выполняют зачистку проводов для подсоединяют по указанной схеме.
- Включают электропитание только тогда, когда все вышеперечисленные шаги были выполнены в обратном порядке ибалласт будет полностью установлен.
Обратите внимание! Согласно европейским нормам старые дросселя утилизируют, поскольку они содержат токсины, вредные для окружающей среды.
Как заменить
В последнее время очень часто такая операция вызвана необходимостью замены магнитных дросселей на электронные. Этот процесс довольно прост и понятен, но также должен выполнятся специалистами электриками.
Процесс замены балласта с магнитного на электронный:
- Отключают питание на прибор.
- Открывают светильник, снимают колбу и балластный кожух.
- С помощью кусачек обрезают силовые (коричневые) и нейтральные (синие) провода, идущие в прибор.
- Закрывают провода проволочными гайками.
- Кусачками, отрезают провода и снимают магнитный балласт.
- Присоединяют электронный балласт в место, где был магнитный.
- Подключают провода питания и нейтрали к соответствующим балластным проводам.
- Закрепляют провода проволочными гайками.
- Возвращают колбу лампы и дроссельный кожух обратно.
- Включают питание на лампу.
Правильно установленные и функционирующие электрические осветительные балласты должны долго проработать, обеспечивая безопасный, хорошо регулируемый ток для ламп освещения без раздражающего мерцания и гудения.
Схема дневного освещенияДроссель, хоть и выполняет сегодня важную роль в установке ЛЛ, но уже не является незаменимым, его место занял электронный пускорегулирующий аппарат ЭПРА (электронный балласт). Собственникам помещений,планирующим устанавливать такое освещение нужно учитывать, что 1 июля 2018 года в России запрещено применение трубчатых ЛЛ, а также ртутных ламп, а с начала 2020 года будут запрещены люминесцентные и натриевые светильники.
Дроссель для ламп дневного света
Дроссель для ламп дневного света – обязательный элемент, который используется с целью безопасности эксплуатации и нормализации функционирования осветительного прибора.Что такое дроссель и для чего он предназначен?
Вне зависимости от типовых особенностей осветительного электрического прибора, на стадии их запуска появляется очень большое сопротивление.
Розжиг искусственного источника дневного света сопровождается своеобразным электрическим пробоем внутри атмосферы инертных газов, которые насыщены ртутными и натриевыми парами.
В результате образуется разряд, так называемого, тлеющего или дугового типа, а уровень сопротивления снижается в несколько десятков раз, что вызывает рост протекающего электрического тока.Отсутствие ограничения тока может спровоцировать чрезмерное выделения тепла и резкий перегрев газовых паров, что и становится причиной взрыва лампы дневного света.
Именно по этой причине в цепь добавляется сопротивление, представленное дроссельным устройством.
Чтобы минимизировать расходы электрической энергии на активное сопротивление, используется дроссельное устройство, не потребляющее мощность, а накапливающее и отдающее энергию в цепь.
Как подключить дневную лампу без дросселя?
Достаточно простой вариант схемы подключения может использоваться даже на сгоревших искусственных источниках дневного света. В этом случае отсутствует применение нити накаливания, а питание высоким постоянным напряжением осуществляется посредством диодного моста.
В процессе питания током с постоянными показателями, трубка с течением времени начинает сильно темнеть с одной стороны.
Схема подключения люминесцентных ламп без дросселя и стартера
Самостоятельное подключение без дросселя вполне доступно и предполагает использование сборки GВU-408 в качестве диодного моста и конденсаторов с уровнем емкости в 2нФ и 3нФ. Показатели рабочего напряжения конденсатора не должны быть более 1000В.
Важно помнить, что мощные трубки дневного света нуждаются в конденсаторах высокой емкости, а диоды, используемые для подключения диодного моста, должны быть подобраны с достаточным запасом по показателям напряжения.
Рабочий механизм или дроссельная плата
Цилиндрическое по форме дроссельное устройство заключено в стандартный металлический корпус. Мощность такого устройства должна совпадать с предельно допустимыми показателями рабочей мощности источника света.
Дроссель функционирует совместно со стартером, при запуске которого осуществляется разогрев электродов и подача тока на действующий механизм осветительного прибора. В результате биметаллическая пластина стартера нагревается, а ток поступает и накапливается в дросселе.
Схема подключения лампы дневного света с дросселем
Наличие в осветительном приборе стартера и стабилизатора способствует максимально равномерному распределению всего напряжения, а подключение источника света без дросселя негативно сказывается на сроке эксплуатации.
Хотите заменить старые лампы на лампочки дневного света? Принцип работы ламп дневного освещения и критерии выбора рассмотрим подробно.
Виды и способы подключения диммеров для светодиодных ламп описаны тут.
Инструкция по замене светодиодных ламп вместо люминесцентных представлена в этой теме.
Разновидности дросселей для люминесцентного освещения
Ламповые дроссели отличаются основными характеристиками, а при подключении неправильно подобранного элемента становятся основной причиной выхода из строя источника света. В настоящее время существует несколько видов ламповых дросселей:
- мощность 9 Вт – для энергосберегающих источников света;
- мощность 11 w — для миниатюрных осветительных приборов и энергосберегающих источников света;
- мощность 15 w — для настольных и миниатюрных осветительных приборов;
- мощность 18 w — для настольных осветительных приборов;
- мощность 36 Вт – для маломощных люминесцентных осветительных приборов;
- мощность 58 Вт — для потолочных осветительных приборов;
- мощность 65 Вт — для потолочных многоламповых осветительных приборов;
- мощность 80 Вт — для мощных люминесцентных осветительных приборов.
Электронные ламповые дроссели могут быть рассчитаны по показателям мощности сразу на два источника света.
Правила выбора дросселя
Для правильного выбора пусковой индуктивности, требуется выполнить визуальный осмотр корпуса устройства, на котором указываются показатели мощности нагрузки, определяемые сечением обмоточных проводов.
Для устройства с высокими показателями мощности, очень характерными являются большие размеры и достаточно высокая стоимость.
С целью запуска собирается схема, представленная стартером, лампой и корректирующим конденсатором.
Стартер подключается в параллельном положении источнику света. Присоединение элемента осуществляется на верхнюю или нижнюю пару выводов, которые располагаются с двух сторон ламповой колбы. К оставшемуся проводу подключается дроссель. Клемма на сетевом источнике питания соединяется с катушечной клеммой, а вторая клемма используется для подачи напряжения.
При выборе важно обратить внимание на маркировку группы, которая может быть представлена буквами «В», «С» или «D», и позволяет подобрать дроссельное устройство, оптимальное по показателям поглощения мощности.
Проверка при помощи мультиметра
Как проверить дроссель лампы дневного света мультиметром?
Проверка дроссельного устройства, как правило, производится посредством контрольного исправного осветительного прибора.
В этом случае пара проводов, идущая от устройства, осторожно отсоединяется и присоединяется к цокольной части контрольной лампочки.
Если после подключения прибор освещения загорается в полную силу, значит, дроссельное устройство является исправным.
Основные неисправности дросселя представлены:
- обрывом обмотки, который чаще всего встречается на катушках низкого качества, выполненных с использованием плохо очищенного металла;
- витковым замыканием, которое наблюдается при наличии на проводниковой изоляции лакового покрытия низкого качества;
- повреждением клеммных контактов, которые прикручены недостаточно плотно, что вызывает скопление нагара, препятствующего перемещению тока.
Обрывы достаточно легко определяются посредством тестера, щупы которого нужно приложить к балластным клеммам. Появление звукового сигнала свидетельствует о исправности устройства. Кроме всего прочего, важно помнить, что «пробив» обмотки на корпусе устройства, всегда сигнализирует о выходе катушки из строя. Определить «пробив» можно, если один щуп такого измерительного прибора приложить поочередно к катушечным контактам. Звуковой сигнал должен отсутствовать.
Сложнее всего самостоятельно определить поломку, представленную межвитковым замыканием, так как в этом случае потребуется выяснить индуктивность рабочей катушки, которая в разных осветительных приборах значительно варьируется.
Выполнение замены неисправного устройства
Производить ремонтные работы по замене неисправного устройства вполне возможно самостоятельно. Важно помнить, что замена дросселя в обязательном порядке должна осуществляться после отключения осветительного прибора от сети электрического питания.
Выполняя ремонт, нужно ориентироваться на стандартную схему подключения, а произвести тестирование отремонтированного источника света можно посредством мультиметра.
Видео на тему
Как сделать дроссель на лампу ДРЛ 250
Так как лампы высокого давления ДРЛ 250 имеют довольно долгий срок службы и высокую экономичность по сравнению с лампами накаливания, их с успехом применяют для освещения дачных участков, двора частного дома, а иногда даже гаражей внутри.Они годами доказали свою надежность, качество освещения, и все это за небольшую сумму. Приобрести лампу ДРЛ 250 не составит особого труда. Она есть в продаже как специализированных магазинах, так и на рынках.
Проблему может составить дроссель, который входит в схему питания лампы. Так как он состоит из медной проволоки, стоимость его, даже бывшего в употреблении довольно высока. Поэтому в этой статье будет описано — как сделать дроссель для этой лампы из других часто встречающихся материалов. Например, из трех дросселей распространенных некогда светильников дневного света. Такие дроссели применялись в светильниках на лампы ЛД 40, соответственно дроссель у них был 40 Ватт. Также светильники на лампы ЛД 80 в которых дросселя рассчитаны на 80 Ватт. Для замены дросселя под лампу ДРЛ 250 ватт, вам понадобится два дросселя на 80 Ватт и один на 40 Ватт. Схемы их соединения можно видеть на рисунке.
Здесь видно, что все дроссели соединяются в параллель, то есть соединенные в параллель дроссели образуют один общий балласт.
Один провод, идущий от розетки 220 соединяется с одним концом дросселей, а другой провод в розетке 220 идет прямо на лампу. Провод с выхода дросселей идет на второй контакт лампы. Вариант монтажа дросселей на корпусе светильника можно увидеть на фотографиях.
Здесь также видно как подключаются провода. Очень важно позаботиться, чтобы контакты на клеммах дросселей имели хорошее соединение, иначе они будут искрить и нагреваться. На фото можно видеть, как работает такой дроссель и запускает лампу ДРЛ 250.
Такая конструкция была сделана и испытана, показавши хорошие результаты. Помимо монтажа дросселей на светильники, можно сделать отдельный ящик в котором они будут располагаться, а провода с него вывести на лампу. Такой вариант сборки обойдется гораздо дешевле покупки специального дросселя. Хотелось бы напомнить, что по правилам монтажа ламп ДРЛ, они должны находиться на высоте не менее трех метров. Так как считается, что они излучают достаточно много ультрафиолета, а это нежелательно для человеческой кожи.
На этом все. Пробуйте, и у вас получиться.
Проверка ламп дневного света мультиметром
В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах. Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад. При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света (ЛДС).
Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в 5-7 раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением.
В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов. Для ремонта необходимо знать, как можно проверить лампы дневного света тестером. Для этого нужно представлять, как устроены и как работают такие источники света.
Устройство
Принцип работы ламп дневного света основан на свечении люминофоров в ультрафиолетовом свете.
Сам прибор представляет собой герметичную колбу из тонкого прочного стекла, на поверхность которой внутри нанесен люминофорный состав. Внутри колбы также находится небольшое количество ртути, которая и образует свечение под действием разогретых вольфрамовых спиралей по концам колбы. Перегорание спиралей можно проверить тестером.
В светильниках лампа подключается последовательно с дросселем, представляющим собой катушку индуктивности.
Параллельно лампе подключается стартер. Он представляет собой заключенные в пластмассовый или алюминиевый корпус компактную газоразрядную лампу с биметаллическим контактом и компенсационный конденсатор, который служит для выравнивания тока на лампе стартера.
Принцип работы
Когда электрическая цепь светильника подключается к источнику тока, как правило, это электрическая сеть переменного тока с напряжением 220 В и частотой 50 Гц, величины силы тока не хватает, чтобы разогреть спирали в колбе лампы.
И вот в этот самый момент газоразрядная лампа под действием тока в цепи включается и разогревает биметаллический контакт, который физически замыкает цепь светильника. Ток увеличивается в несколько раз, спирали в колбе разогреваются до температуры испарения ртути. Чем выше температура, тем выше проводимость паров в колбе.
Далее ток проходит через пары ртути, вызывая их ультрафиолетовое свечение, а оно в свою очередь преобразуется в белый свет люминофорным составом, нанесенным на стенки колбы.
Величина тока на участке цепи светильника, на котором установлен стартер, падает вдвое и газоразрядная лампа гаснет. Биметаллический контакт остывает, выключается и с этого момента ток течет только внутри колбы и через дроссель. В исправном светильнике стартер больше не участвует в процессе до того момента, пока не нужно будет еще раз разогревать спирали лампы после ее отключения.
Дроссель обеспечивает регулировку тока в цепи, не допуская перегрева спиралей в колбе и их перегорания.
В подавляющем большинстве случаев в конструкциях светильников используется несколько ламп. Их количество четно и они подключаются последовательно по две. Соответственно, стартеры (а их тоже будет два или более – по количеству ламп), тоже подключаются последовательно. В этом случае стартеры должны быть на напряжение 127 В, иначе они не сработают.
Проверка стартера
Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.
После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.
При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:
- конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
- лампа не должна быть сильно почерневшей;
- далее конденсатор можно проверить с помощью универсального тестера – мультиметра.
Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.
Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.
В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.
Целостность спиралей-электродов
Лампы «перегорают» гораздо реже, хотя проверить их проще, чем стартер. Делают это обычным тестером с контрольной лампой или мультиметром, настроенным на измерение сопротивлений. Довольно легко проверить целостность спиралей.
Для проверки тестер или мультиметр подключается к паре выводов на отдельном конце колбы.
Если спирали целые, то контрольная лампа тестера должна светиться, а мультиметр должен показывать небольшое сопротивление (около 10 Ом). Если тестер «молчит», а сопротивление мультиметра бесконечно, имеет место обрыв спирали. При обрыве даже одной спирали из двух, лампа, очевидно, работать не будет. В этом случае необходима ее замена.
Проверка дросселя
Следующим шагом будет проверка дросселя. Он во всей этой конструкции самый стойкий элемент, и выходит из строя гораздо реже остальных. Тем не менее важно знать, как проверить дроссель лампы дневного света мультиметром.
Неисправность его может заключаться в обрыве или перегорании обмотки, нарушении изоляции между витками провода. В обоих случаях неисправность можно выявить, подключив к выводам дросселя мультиметр, настроенный на измерение сопротивления.
Если сопротивление между выводами дросселя будет бесконечно, значит, имеет место обрыв или перегорание обмотки. Перегорание обычно предвещается неприятным запахом, исходящим от детали, особенно во время работы.
Если сопротивление ничтожно мало, то, скорее всего, нарушена изоляция провода, и произошло межвитковое замыкание в обмотке, или замыкание обмотки на сердечник.
Совершенно очевидно, что все приемы проверки, описанные выше, справедливы только при использовании в светильниках, так называемых электромагнитных пускорегулирующих аппаратов (ЭмПРА).
В настоящее время появляются электронные пускорегулирующие аппараты (ЭПРА), исключающие наличие в схеме стартеров. Устанавливаются такие аппараты и в компактные ртутные лампы дневного света.
Пока они достаточно дороги и ремонту своими силами не подлежат, поэтому использование ЭмПРА еще оправдано.
Некоторые измерения флуоресцентной лампы и ее магнитного балласта
Некоторые измерения флуоресцентной лампы и ее магнитного балластаВведение
Люминесцентные лампы повсюду; они надежны и энергоэффективны. Даже если сегодня (2017) светодиоды заменяют многие источники света, лампы все еще остаются рентабельны и имеют почти такой же хороший КПД, если не лучше. Старый магнитный (индуктивный) балласт в настоящее время часто заменяют на электронный для большей эффективности, но есть еще очень много старых балласты, которые я думаю, стоит взглянуть на этот простой и эффективная схема.
Подземный паркинг с большим количеством люминесцентных ламп (нажмите для увеличения).
Найти подробные данные о люминесцентных лампах очень сложно и удивительно. достаточно, поисковые системы в Интернете мало помогают. Несмотря на то, что подавляющее большинство электронных компонентов производители детально указывают все электрические характеристики, для люминесцентных ламп трудно найти какое-либо техническое описание с более чем номинальная мощность и механические размеры.Поэтому очень сложно ответить на такие вопросы, как: что бросается в глаза? Напряжение? Какое напряжение горения лампы? Как выглядит ток при включенной лампе? Эти вопросы были у меня в голове много лет, пока я не решил подключить лампу к пробнику высоковольтного осциллографа и сам посмотрю, что продолжается.
Чтобы провести эти измерения с помощью осциллографа, некоторые необычные оборудование чрезвычайно полезно (если не обязательно), например, высокое напряжение дифференциальный зонд и токовый зонд.Поскольку не у всех есть доступ к этим инструментам, я решил поделиться своими измерения на этой странице, потому что я думаю, что они могут быть интересны.
Прямое подключение осциллографа к сети крайне плохое и опасная идея, всегда используйте подходящие и безопасные пробники высокого напряжения.
На этой странице вы не найдете никаких ракетостроительных технологий, а только некоторые измерения и некоторые мысли о люминесцентных лампах, пускателях и их старые индуктивные балласты.
Здесь обсуждаются только люминесцентные лампы с «горячими электродами»; эти лампы в основном используются для освещения. У них есть две клеммы с каждой стороны, чтобы обеспечить циркуляцию тока в электроды для их нагрева. С другой стороны, трубки с «холодными электродами», также называемые CCFL (Cold Катодные люминесцентные лампы) вроде тех, что используются в «неоновых вывесках». имеют только одну клемму с каждой стороны: у них разные электрические характеристики, требуют другой системы питания и не обсуждается на этой странице.
Базовая схема
Базовая схема показана на схеме ниже. Его поведение неоднократно описывалось в литературе и в Интернете. поэтому здесь я дам лишь краткий обзор, чтобы прояснить, о чем я говорю о.
Принципиальная схема.
Схема очень проста и состоит только из люминесцентной лампы, стартер и индуктивный балласт.
Важно отметить, что данная схема типична для сети 230 В. В сети 120 В пиковое напряжение обычно недостаточно велико, чтобы лампы горения и балласты часто проектируются как автотрансформаторы с немного другая схема. Соображения относительно напряжения и тока лампы, вероятно, все еще будут применяться, но схема, балласт и возможно также характеристики стартера разные. Поскольку у меня никогда не было возможности поиграть с люминесцентным оборудованием на 120 В, Я не буду обсуждать это здесь, а все соображения на этой странице только действительно для сети 230 В.
В этой схеме отсутствует фазирующий конденсатор и она будет иметь значительную индуктивную реактивное сопротивление. Это было сделано специально, чтобы измерить его cos (φ) . Конечно, в нормальных ситуациях добавляется подходящая схема для компенсация и приведение cos (φ) очень близко к 1. Часто бывает достаточно конденсатора, подключенного параллельно к сети.
Лампа
Люминесцентная лампа обычно состоит из стеклянной трубки с низким смесь газов под давлением, обычно паров ртути и некоторого количества аргона.Давление составляет порядка 5 мбар. Добавление небольшого количества благородного газа к ртути значительно снижает поражающее напряжение (эффект Пеннинга). На концах трубки две вольфрамовые нити, похожие на нити обычных лампы накаливания, которые действуют как электроды для передачи тока в газ и часто называются катодами. Нити часто покрываются веществами с высоким коэффициентом излучения электронов, такими как соединения бария. Ток, протекающий в этих нитях, будет нагревать их, увеличивая их способность испускать электроны еще больше и, следовательно, снижение напряжения требуется для ионизации газа и зажигания лампы.Вот почему эти элкотроды есть два терминала. Когда лампа включена, нити накаливания остаются достаточно горячими, даже если лампа включена. ток, и нет необходимости форсировать дополнительный ток, поэтому другой конец каждой нити накала можно отсоединить.
Внутренняя структура люминесцентной лампы хорошо видна в
эта маленькая прозрачная УФ-лампа (нажмите, чтобы увеличить).
Внимательно посмотрев на большую версию изображения, можно заметить, что маленькие капельки
ртуть на внутренней стенке стакана хорошо видна, особенно в
близость электродов.
Ток, протекающий через газ, — очень сложное явление, но, вкратце, Короче говоря, если газ не ионизирован, он ведет себя как изолятор. Если между электродами приложить достаточно большое напряжение, газ ионизируется. и ток течет из-за свободных электронов и положительных ионов (атомов, потерявших один электрон) подпрыгивает. Препятствия между электронами, ионами и нейтральными атомами передают часть кинетической энергия атомам, которые «возбуждаются».Затем энергия переизлучается в виде фотонов, когда они вскоре после этого расслабляются. Активным газом практически любых обычных люминесцентных ламп являются пары ртути: излучает невидимый и вредный свет в ультрафиолетовом (УФ) диапазоне для наших глаз и кожи. Покрытие из флуоресцентных материалов внутри трубки поглощает УФ-свет и преобразует его в видимый свет. Тщательно подобрав подходящее флуоресцентное покрытие, можно получить практически любой цвет свет можно получить.Кроме того, стекло, из которого состоит трубка, непрозрачно для УФ-излучения. радиации и не дает ей выйти наружу.
Трубка, использованная для этих тестов, IBV L36W 4200K, (щелкните, чтобы увеличить).
Для этих измерений я использовал трубку IBV T8 (Ø25,4 мм), 4 фута. (1,2 м) в длину, 36 Вт, холодный белый. На этой конкретной лампе сопротивление постоянному току двух нитей нити равно 5,9 Ом и 5,3 Ом в холодном состоянии. Я также измерил кучу других трубок и нашел аналогичные значения: несколько Ω.
Два следующих графика показывают напряжение и ток в горящем фонарь. Это трубка IBV 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт. Конечно, индуктивный балласт включен последовательно. Обратите внимание, что эта лампа уже горит и ее нити горячие (из-за ток лампы).
На первом графике, где представлены напряжение и ток отдельно интересно отметить, что оба находятся в фазе, даже если не идеально синусоидальной формы.Это показывает, что лампа эффективно поглощает активную мощность. Также стоит отметить, что напряжение близко к прямоугольной. Это типично для газоразрядных трубок, поведение которых очень похоже на поведение газоразрядных трубок. Стабилитрон, где напряжение примерно постоянное независимо от тока. Присмотревшись, можно увидеть, что на самом деле напряжение немного падает, так как ток увеличивается (прямоугольная волна не совсем плоская, но немного понижается посередине, когда ток максимален).Это показывает поведение отрицательного сопротивления, еще одну типичную характеристику газоразрядная трубка. В нормальном резисторе при увеличении тока падение напряжения также увеличивается; здесь все наоборот.
Напряжение лампы (Ch2) и ток лампы (Ch3) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.
В конце каждого полупериода ток падает до нуля и лампа гаснет.Как только это произойдет, лампа снова загорится, импульс противоположной полярности появляется на графике, и цикл повторяется. Этот импульс не из-за индуктивного балласта (поскольку ток уже был ноль), это просто сетевое напряжение, которое перезагружает лампу: это работает потому что нити еще горячие (подробнее здесь).
Форма волны напряжения не идеально гладкая: есть небольшие колебания колебания, в данном случае около 20 В pp на частоте 4 кГц.Это еще одно типичное поведение отрицательного сопротивления и газа. разрядная трубка. Даже если я не буду проводить никаких дальнейших измерений, это не должно быть проблема для этой схемы как амплитуда и частота колебания достаточно низки, чтобы беспокоить электромагнитные совместимость.
То же измерение может быть показано в режиме XY (ниже), где по оси X есть напряжение лампы, а по оси Y — ток лампы.Точка с нулевым напряжением и нулевым током находится в центре сетки. Когда лампа горит, напряжение составляет около 100 В (положительное или отрицательное). Также видны паразитные колебания.
Следует отметить один интересный факт: ток лампы немного увеличивается. еще до того, как загорится лампа. На сюжете не идеально горизонтальная линия, а скорее наклонная. «S»: при увеличении напряжения небольшой ток течет прямо далеко.Я не уверен в этом, но я думаю, что это из-за горячих электродов и газ все еще частично ионизирован, что позволяет протекать току. Затем, конечно, когда загорается лампа, ток внезапно увеличивается, и напряжение падает примерно на 100 В.
Зависимость тока лампы (по вертикали) от напряжения (по горизонтали) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.
Было бы интересно провести такие же измерения с холодной лампой и посмотрите, что нужно, чтобы ударить по нему без предварительного нагрева нитей.К сожалению, у меня нет подходящего источника переменного тока высокого напряжения, достаточного для зажгите лампу.
Индуктивный балласт
Индуктивный балласт — это просто большой индуктор, намотанный на многослойный железный сердечник. Он выполняет две функции: ограничивает ток и генерирует высокое напряжение для зажгите лампу. Люминесцентные лампы имеют отрицательные характеристики сопротивления и, следовательно, нельзя напрямую подключать к сети.Другими словами, если ток в лампе увеличивается, эквивалент сопротивление уменьшается, дополнительно увеличивая ток. Балласт ограничивает ток и предотвращает самоуничтожение лампы.
Индуктивные балласты являются индукторами и поэтому зависят от частоты. Балласт, рассчитанный на 50 Гц, будет иметь слишком большое реактивное сопротивление при 60 Гц. и наоборот.
В лампах малой мощности (несколько ватт) можно также использовать простой резистор; в этом случай, когда импульс высокого напряжения возникает из-за сбоя в электросети индуктивность.Как ни странно, это работает. Обратной стороной является то, что резистор преобразует в тепло примерно такое же количество тепла. мощность как у лампы, что приводит к очень плохому КПД.
Емкостные балласты будут иметь значительно меньшие потери, но из-за нелинейное поведение лампы, это приведет к очень высоким пикам в лампе. Текущий. Кроме того, конденсаторы не могут генерировать пик высокого напряжения, необходимый для зажгите лампу. Емкостные балласты используются только (и часто) в высокочастотной электронике. балласты.
Изображение индуктивного балласта, используемого здесь, IBV 230 В переменного тока 50 Гц 40/36 Вт (2 × 18) 0,43 А (щелкните, чтобы увеличить).
Используемый здесь балласт рассчитан на 230 В, 50 Гц, 40/36 Вт, 0,43 А. Я измерил индуктивность 1,097 Гн и последовательное сопротивление 36,8 Ом в холодном состоянии.
С этим сопротивлением, если короткое замыкание в сети (предполагается, что 230 В 50 Гц), этот балласт будет ограничивать ток на уровне 0.66 А рассеивающий 16,2 Вт. Это выходит за рамки технических характеристик и может перегреться, но наверняка этого не произойдет. мертвый короткий.
Стартер
Куча старых стартеров. Здесь для тестирования используется тот, который находится на
внизу слева, FZ FS-U 180-250V ~ 4-65W (щелкните, чтобы увеличить).
Стартер представляет собой небольшую стеклянную трубку, заполненную смесью низких благородные газы под давлением, обычно аргон, неон и гелий под давлением порядка 50 мбар.Внутри трубки два биметаллических электрода, которые изгибаются навстречу друг другу. когда жарко. В холодном состоянии два электрода находятся близко друг к другу, но не соприкасаются. При приложении достаточно высокого напряжения газ ионизируется, ток около 30 мА начинает течь, и газ светится. Примерно через полсекунды тепло, выделяемое свечением, мягко сгибает электроды, которые соприкасаются, закорачиваются вместе, и свечение гаснет. В горячем состоянии стартер ведет себя как при коротком замыкании.Так как закороченный стартер больше не светится, он остывает и контакты снова размыкаются примерно через полсекунды.
Посмотрите фильм, показывающий, как стартер светится, а электроды замыкаются:
светящийся-стартер.mp4
(1870811 байт, 14 с, h364,
640 × 480, 15 кадров в секунду).
С помощью стартера и лампочки можно сделать очень красивый и грубый мигалка.
Используемый здесь стартер — FZ FS-U, мощностью 180-250 В ~ 4-65 Вт.Чтобы лучше понять характеристики стартера, его ток как функция приложенного напряжения было измерено и видно на графике ниже:
Зависимость тока стартера (по вертикали) от напряжения (по горизонтали) для пускателя FZ FS-U.
По горизонтальной оси отложено приложенное напряжение, по вертикальной оси — результирующий ток. Ноль для обеих осей находится в центре экрана.Начиная с нуля, по мере увеличения напряжения (в положительном или отрицательном отрицательное направление), ток через пускатель не течет, в результате горизонтальная линия. Как только напряжение станет достаточно высоким (скажем, +220 В или –240 В в этом случае) газ ионизируется и становится проводником; напряжение падает на около 50 В и начинает течь ток (наклонные участки). Если теперь напряжение уменьшается, ток также уменьшается до минимума. напряжение горения пересекается (скажем, ± 180 В в этом случае), где ток падает до нуля (снова на горизонтальной линии).
Для выполнения этого измерения вы должны действовать быстро: как только стартер горячий, он замкнется, и вы будете измерять только вертикальную линию. Вы должны сделать снимок экрана, пока стартер еще светится (нагрев вверх).
Поведение этого (и почти любого стартера, которое мне удалось измерить) является не симметричный. Пороговые напряжения и динамическое сопротивление (наклон наклонных участков) не одинаковы для положительной и отрицательной полярностей.Думаю, из-за несимметричной формы электродов.
Очень часто конденсатор из полистирола подключается параллельно к стартер, который помогает снизить коммутационный шум. К сожалению, я никогда не видел маркировки на этих конденсаторах, но они обычно измеряют около 5 или 6 нФ. Для проведения вышеуказанного измерения этот конденсатор был временно удален, в противном случае сегменты больше похожи на эллипсы.
Удивительная последовательность
Газ в лампе обычно является изолятором.Чтобы включить его, электроды предварительно нагревают в течение нескольких секунд, затем Импульс напряжения ионизирует газ внутри трубки и запускает лампу. Этот процесс состоит из следующих шагов:
Нулевой уровень
Выключатель питания SW1 разомкнут, лампа выключена и холодная. И лампа LN1, и стартер ST1 не ионизируются и ведут себя как изоляторы. Пока не очень интересно … Теперь мы замыкаем SW1 и подаем питание на схему.
Шаг первый
SW1 замыкается и через балласт L1 появляется напряжение сети. лампа и стартер, которые работают параллельно (через нагреватель нити). Напряжение в сети недостаточно велико для ионизации газа в лампе, который по-прежнему ведет себя как изолятор, но этого достаточно, чтобы ионизировать газ внутри стартер, который ведет себя примерно как неоновое свечение фонарь. Теперь в цепи протекает небольшой ток, который нагревает стартер.Это часто можно наблюдать, поскольку стартер обычно светится слабым синим светом. свет.
Стартер светится при разогреве (нажмите для увеличения).
На этом этапе был измерен ток 38,5 мА. Слишком низкий для предварительного нагрева электродов в трубке, которые остаются темными; только стартер светится. Из-за индуктивности балласта этот ток является реактивным: cos (φ) из 0.79 было измерено, что соответствует углу φ 38 °. При сетевом напряжении 237 В полная полная мощность составляет 9,1 ВА. а активная мощность — 7,2 Вт.
Продолжительность этой фазы непостоянна и зависит от многих факторов, таких как напряжение в сети, температура окружающей среды, возраст стартера и т. д., но это полсекунды диапазона. Измеренная здесь длительность составила 550 мс.
Напряжение и ток лампы (стартера) при разогреве стартера
(светится).
Кривые выше показывают напряжение на пускателе (и, следовательно, также поперек лампы) на этом этапе. Сбои в синусоиде напряжения указывают на каждом цикле, когда именно стартер начинает светиться и при выключении. Здесь стартер ионизируется примерно при 230 В и деионизируется примерно при 180 В. Конечно, каждую половину цикла переменного тока напряжение падает до нуля, и газ в стартер деионизируется. Он снова будет ионизироваться в следующем полупериоде, как только напряжение станет высоким. достаточно.График тока (синий) показывает, что проводимость стартера не нарушена. симметричный: положительные пики имеют более высокий ток, чем отрицательные. Я не знаю точно, почему это происходит, полагаю, это из-за несимметричная форма электродов внутри стартера. В любом случае этот ток небольшой и используется только для нагрева стартера: он не обязательно быть симметричным.
Шаг второй
Стартер нагревается, и биметаллический переключатель внутри него в конце концов замыкается.Теперь у стартера произошло короткое замыкание, он перестает светиться и начинает остывать. Когда стартер замыкается, через нити лампы протекает больший ток, который теперь подключены последовательно, хотя пускатель закорочен, и они нагреваются. Нагревание электродов трубки значительно снижает напряжение зажигания лампы. Кстати, по этой причине запускать холодные лампы в холодную среду не рекомендуется. намного сложнее, чем повторно зажигать горячие лампы. Итак, нити теперь раскалены докрасна, и этот красноватый свет часто может быть наблюдается на концах трубки во время этой фазы.Из-за высокой излучательной способности электродов (белое) свечение Также часто наблюдается флуоресцентное покрытие концов трубок.
Во время этой фазы ток составляет 589 мА. Было измерено cos (φ) , равное 0,23, что соответствует углу φ 77 °. При сетевом напряжении 236 В полная полная мощность составляет 139 ВА. и полная активная мощность 31,5 Вт.
Напряжение и ток лампы при нагреве (короткое замыкание стартера), измеренные
через обе нити последовательно.
Обе нити теперь включены последовательно и имеют одинаковый ток и половину Напряжение. Среднеквадратичное значение напряжения на каждой нити накала составляет около 11 В. Каждая нить накала получает около 6,5 Вт, поэтому из 31,5 Вт 13 Вт нагревают электроды, а 18,5 Вт теряется в балласте. Ток и напряжение в нити совпадают по фазе, низкий общий cos (φ) возникает только из-за реактивного сопротивления балласта.
Как и раньше, продолжительность этой фазы также в какой-то степени неустойчива и зависит от много факторов, но он также находится в диапазоне полсекунды.Измеренная здесь длительность составила 400 мс.
Шаг третий
Когда стартер остывает, биметаллический переключатель снова размыкается, прерывая Текущий. Поскольку катушки индуктивности не «любят» резкие изменения тока, балласт отвечает на это прерывание с помощью всплеска высокого напряжения, который вероятно, ионизируйте лампу и зажгите ее. Поскольку точным моментом открытия стартера в этой контура (определяется охлаждением стартера, его возрастом, общим температура ,…), это может произойти в неподходящий момент цикла переменного тока, когда ток уже довольно низкий; произойдет скачок низкого напряжения и лампа может не ударить. В этом случае на пускателе снова появится полное сетевое напряжение. и весь процесс начнется снова с первого шага. Старые и холодные лампы также требуют более высокого напряжения, и их сложнее наносить удар.
Высоковольтный ударный импульс (–2,78 кВ).
Некоторые паразитные импульсы высокого напряжения также видны до того, как лампа загорится и
возникают из-за плохих контактов стартера.
Яркие плюсы очень разнообразны. Они не всегда попадают в лампу, могут быть положительными или отрицательными и сильно зависят от времени фазового соотношения при открытии, которое является термомеханическим процесс и не синхронизирован с частотой сети. Другими факторами, влияющими на амплитуду импульсов, являются скорость, с которой биметаллические электроды ломаются, газ, заполняющий стартер, его возраст и возможно другие.Показанный здесь — –2,78 кВ, но импульсы от 1 до 3 кВ, как положительные, так и отрицательные стороны наблюдались с помощью одной и той же установки (лампа, стартер и балласт).
Шаг четвертый
Когда лампа загорается, напряжение на ней падает, и именно в этом Трубка держит напряжение около 100 В. Каждую половину цикла переменного тока ток падает до нуля, и лампа должна снова загореться. каждый раз. Из-за фазового сдвига, вносимого индуктивным балластом, когда ток пересекает ноль и меняется на противоположное, напряжение не равно нулю, так что лампа может немедленно возобновить зажигание только с помощью сетевого напряжения, пока лампа горячий и газ не деионизируется слишком долго, нет дополнительного высокого напряжения необходимы импульсы.Если лампу выключить, электроды остынут и почти все ионы в газе рекомбинируют: теперь требуется новая последовательность запуска, чтобы снова зажгите лампу.
Напряжение на стартере (а также на лампе) и ток лампы при включенной лампе.
Кривая на рисунке выше показывает, что ток лампы и напряжение лампы находятся в фаза, что имеет смысл, поскольку лампа потребляет активную мощность.Напряжение в сети здесь не показано (к сожалению, у меня нет двух высоких датчики напряжения), но не в фазе из-за реактивного сопротивления балласта. Другими словами, ток лампы и напряжение лампы совпадают по фазе, но из-за балласта, тока лампы и сетевого напряжения нет. Каждый раз, когда лампы выключаются (ток падает до нуля), напряжение сразу же подскакивает до значения более 300 В при противоположной полярности. Это просто напряжение сети, которое появляется на лампе.Из-за значительного фазового сдвига балласта сетевое напряжение составляет близко к своему пику, когда это происходит, что объясняет внезапный всплеск. Поскольку трубка сейчас горячая (и, вероятно, также имеет более низкое напряжение зажигания, чем стартер), он сработает первым, быстро вернув напряжение к напряжение горения (около 100 В) и предотвращение накала стартера.
Если лампа погаснет, напряжение повысится, и стартер ионизируется. начиная с первого шага.Вот что происходит со старыми или поврежденными лампами, которые постоянно мерцают. «надежда» снова включиться в один прекрасный день.
Напряжение и ток сети при включенной лампе. Фазовый сдвиг хорошо виден.
При сетевом напряжении 236 В общий ток составляет 385 мА и cos (φ) составляет 0,49, что соответствует углу φ 60 °. Полная мощность составляет 90,9 ВА, а активная мощность — 44.9 Вт. Мощность, теряемая в балласте, составляет 5,5 Вт, а трубка поглощает 39,4 Вт. приводит к КПД 88%: неплохо для такой простой схемы. Более высокая эффективность может быть достигнута с помощью лучшего индуктивного балласта (встроенный с большим количеством меди и большего количества железа, чтобы минимизировать его потери) или с электронным балласт. Конечно (и к сожалению) лампа не может преобразовать всю энергию в свет.
Поразительное резюме последовательности
Теперь, когда мы прошли все этапы поразительной последовательности, давайте резюмируйте это и посмотрите, что происходит в более общем плане.На графике ниже видно напряжение на пускателе:
Напряжение на стартере (а также на лампе) при всех пусках
процесс.
Поскольку это измерение проводится на стороне запуска нитей,
напряжение нагрева не видно и появляется как короткое замыкание.
Хорошо видны различные шаги. На нулевом шаге (лампа не горит) нет напряжения. Когда SW1 замкнут (первый шаг), стартер ионизируется и начать нагреваться.Примерно через полсекунды происходит короткое замыкание стартера (шаг два) и электроды лампы начинают нагреваться, пока стартер остывает вниз. Поскольку лампа закорочена стартером, напряжение на стороне стартера нити, измеренные здесь, показывают ноль. Конечно, на нити накала, которые сейчас светятся, есть напряжение, но они не могут соблюдать здесь. Еще через полсекунды стартер снова остывает и открывается. (шаг 3) создание скачка высокого напряжения, который зажигает и включает лампу (шаг четвертый).
Также интересно посмотреть напряжение на балласте (внизу), где эти же шаги можно наблюдать снова. Обратите внимание, что это измерение было проведено на том же оборудовании, но несколько минут спустя, поэтому продолжительность различных шагов будет разные.
Напряжение на балласте во время всего процесса пуска.
Амплитуда этого напряжения дает приблизительное представление о токе, протекающем в схема.
Присутствуют паразитные импульсы, когда предполагается, что стартер закорочен. Это означает, что его контакты не совсем надежны, и иногда он открывается для крошечная доля секунды. Даже если эти импульсы достаточно сильны, чтобы поразить лампу, этого не происходит. потому что при повторном замыкании контактов лампа закорачивается и не может включиться. Он включится только после последнего импульса, когда стартер наконец откроется. и остается открытым.Блуждающие импульсы не вредят, и схема работает нормально.
Посмотрите фильм, в котором показана полная поразительная последовательность:
люминесцентная лампа.mp4
(3781910 байт, 11 с, h364,
960 × 540, 24 кадра в секунду).
Прочие соображения
До сих пор мы обсуждали, как запускается лампа и ее электрические характеристики. Давайте теперь посмотрим на некоторые другие соображения, такие как коэффициент мощности или спектр света.
Фазирующий конденсатор
Из-за индуктивности балласта эта схема имеет плохое питание. коэффициент: я измерил cos (φ) , равный 0,49. Поскольку все нагрузки, подключенные к сети, должны иметь cos (φ) как как можно ближе к 1, нужно что-то улучшить. Есть несколько разных решений этой проблемы, но самый простой. (и единственное, что здесь обсуждается) — просто подключить подходящий конденсатор в параллельно с электросетью.
Чтобы узнать необходимую емкость, нам сначала нужно рассчитать реактивную мощность, которую нам нужно компенсировать. Ранее мы обнаружили, что полная мощность S составляет 90,9 ВА, в то время как активная мощность P составляет 44,9 Вт. Если вам интересно, как их измерить, определение кажущейся мощности довольно просто: просто измерьте среднеквадратичный ток сети (здесь I = 385 мА ) и напряжения (здесь U = 236 В ) с помощью мультиметра и умножьте их все вместе: S = U · I = 90.9 ВА . Определить активную мощность сложнее: если у вас есть измеритель мощности переменного тока, он сразу даст вам P , и это то, что я сделал. В противном случае вы можете измерить фазовый угол φ либо с помощью осциллографом (как и я) или кософиометром (если он у вас есть) и затем вычислить P = S · cos (φ) . Но если у вас нет этого модного оборудования, вы все равно можете использовать метод трех вольтметров.
Зная S и P , можно рассчитать реактивную мощность Q по формуле ниже.Жалко, что в электронике буквенное обозначение Q используется как для реактивная мощность цепи переменного тока и добротность цепи LC: на этой странице Q — реактивная мощность.
Это не что иное, как теорема Пифагора, где S — это гипотенуза и P и Q — две другие стороны правой треугольник. Со значениями S и P , которые были измерены ранее, мы находим Q = 79.0 var .
Напоминаем, что активная мощность P измеряется в ваттах (Вт), полная мощность S измеряется в вольт-амперах (ВА), а реактивная мощность Q измеряется в реактивных вольт-амперах (вар). Это просто для того, чтобы различать их и избежать путаницы, даже если физически все эти три единицы имеют измерение силы.
Чтобы компенсировать эту индуктивную реактивную мощность, мы вводим равное количество емкостная реактивная мощность, с конденсатором, включенным параллельно сети.Реактивное сопротивление X , создающее такую реактивную мощность, определяется как:
Где U — напряжение сети. Находим X = 705 Ом . Наконец, с определением необходимой емкости C со следующим уравнение:
Где f — частота сети (в данном случае 50 Гц). Находим 4,5 мкФ. Этот конденсатор должен быть рассчитан на прямое подключение к сети: используйте только конденсаторы класса X (или Y).
ПРА прочие
Доступны не только индуктивные балласты. Индуктор простой серии работает только при напряжении сети 230 В. В странах с сетевым напряжением 120 В, в зависимости от длины трубки и мощность, напряжение может быть слишком низким, чтобы лампа продолжала гореть, поэтому балласты немного отличается и работает как автотрансформатор для увеличения напряжения и ограничить ток в то же время.
Некоторые балласты автотрансформаторного типа могут также работать без стартера, с или без подогрева электродов.Импульс высокого напряжения, необходимый для зажигания лампы, может генерироваться резонансный контур, состоящий из дополнительного конденсатора. Дополнительные обмотки в балласте могут использоваться для предварительного нагрева нитей, если обязательный. Запуск трубки без предварительного нагрева нитей возможен, но чем выше требуемое напряжение обычно вызывает разбрызгивание электродов, которое изнашивается преждевременно.
В настоящее время электронные балласты заменяют старые индуктивные, особенно из-за их более высокой эффективности, лучших пусковых характеристик и возможность приглушить свет.Кстати, диммирование люминесцентных ламп индуктивным балластом возможно. до некоторой степени, но когда яркость ниже заданного порога, основной ток слишком низкий, чтобы нити оставались достаточно горячими, и дополнительный ток нагрева должны циркулировать в электродах, например, с дополнительным трансформатор. К сожалению, снижение яркости до 0% невозможно.
Посмотрите на спектр света
Как объяснялось выше, свет, излучаемый флуоресцентными трубки обычно преобразуются из ультрафиолетового в видимое излучение за счет сочетания флуоресцентные пигменты.При наблюдении с помощью светового спектрометра излучаемый спектр не меняется. непрерывен, как лампа накаливания, но состоит из несколько пиков, каждый из которых более или менее соответствует определенному пигменту. Это объясняет, почему некоторые объекты при флуоресцентном освещении выглядят другого цвета. освещение.
Спектр излучаемого света, пики различных флуоресцентных материалов
хорошо видны.
Свет кажется холодным белым и имеет температуру 4 200 К.
По горизонтальной оси отложена длина волны в нанометрах, по вертикальной оси. интенсивность света в произвольной, но линейной единице. Эта конкретная трубка имеет холодное белое покрытие и рассчитана на цветовая температура 4’200 тыс.
Заключение
Некоторые измерения и рекомендации по люминесцентным лампам (с горячим катодом) были представлены.На этой странице нет ракетостроения, но есть только некоторые необычная электрическая информация о люминесцентных лампах и их свечении закуски. Надеюсь, вы сочтете это полезным.
Библиография и дополнительная литература
[1] | А. Даешлер, Г. Кампоново. Elettrotecnica. Edizioni Casagrande SA, Беллинцона, 1974 г., sezione 11.3. |
[2] | Техническое руководство по применению — люминесцентные лампы. Philips Lighting, 2006 г. |
[3] | Руководство для начинающих. OSRAM GmbH, 2010 г. |
Как предотвратить люминесцентные балластные пожары
Автор: Фрэнк С.Джонсон
Все мы выросли на лампах накаливания. Когда они перегорели, свет погас, поэтому мы их заменили. Без проблем!
Люминесцентные лампы, которые можно найти в пожарных частях и большинстве других зданий, которые только можно вообразить, совершенно разные. На самом деле их нужно заменить, прежде чем они полностью прекратят работу — и представляют опасность пожара — но, похоже, никто об этом не знает, и немногие этому учат.
Понимание опасности
Люминесцентные лампы необходимо заменить, прежде чем они станут причиной возгорания.Люминесцентная лампа была изобретена в 1930-х годах, поэтому магнитный балласт существует уже довольно давно. Сейчас они быстро заменяются гораздо более легкими и более эффективными электронными балластами.
Тем не менее, в настоящее время по всей стране ежедневно возникают балластные пожары, особенно в потолочных светильниках старых зданий. Старые люминесцентные светильники, особенно F96T12 («8 футов»), устанавливаемые непосредственно на потолки из деревянных панелей, склонны к возгоранию, но это также происходит в относительно новых зданиях и с лампами F40T12 (4 фута).
Итак, что происходит и как это предотвратить? Флуоресцентная технология действительно очень проста. Во-первых, люминесцентная лампа должна соответствовать установленному балласту. Например, это означает, что нельзя устанавливать 40-ваттные лампы в светильнике с балластом, рассчитанным на 34-ваттные лампы. Во-вторых, у ламп действительно есть «ожидаемый срок службы». Производимая сегодня стандартная лампа рассчитана на срок службы около 3000 часов. При использовании восьми часов в день, пять дней в неделю, они рассчитаны на работу около шести месяцев.
По истечении этого времени происходит выгорание, называемое испарением катода. Это проявляется в потемнении концов ламп. В этот момент световой люмен, излучаемый лампой, падает на 40-50%, поэтому у вас есть только часть ранее подаваемого света. Затем лампу необходимо заменить, иначе она начнет перегружать и в конечном итоге испортит балласт. Когда вы видите черную лампу на концах, срок ее службы уже истек. Вы можете подумать, что экономите деньги, не покупая новые лампы, но на самом деле это будет стоить больше денег, если их оставить на месте, чтобы испортить балласт.Помните, что плохие лампы могут испортить хороший магнитный балласт, а плохой магнитный балласт может испортить хорошие лампы.
Вот что происходит с балластом, когда старые лампы остаются на месте, пытаясь «работать», независимо от того, очень старый балласт или относительно новый. После того, как балласт, находящийся под напряжением, проработал в течение часа или более, он становится очень горячим, а смола внутри — загруженная печатными платами — расплавляется, замыкая цепь, и прибор перестает работать.
Пусковой режимЧерез некоторое время балласт остынет достаточно, чтобы расплавленная смола превратилась в гель, и приспособление запускается или, по крайней мере, пытается снова работать. Но поскольку балласт уже не балансирует, напряжение остается в «пусковом режиме». Этот цикл повторяется снова и снова, пока не произойдет одно из двух: либо температура в потолке, чему способствует накопление тепла на чердаке, наконец, достигнет точки, когда потолок загорится, либо сам балласт взорвется. пламя, проливая расплавленную и пылающую смолу на пол.Затем здание горит сверху и снизу.
Многие люди по всей стране сообщили, что видели это. Общественность должна быть осведомлена о том, что что-то не так, если прибор сильно нагревается.
Когда я провожу аудит мощности с использованием линейных люминесцентных ламп, я использую устройство для проверки балласта, чтобы определить, является оно магнитным или электронным.Затем я визуально проверяю, не перегревается ли магнитный балласт. Если потолок слишком высок для ручной проверки, я использую термолазер для измерения температуры крышки балласта и ламп. Затем я пытаюсь рассказать владельцам об опасности балластных пожаров.
В дополнение к предложению регулярной программы замены лампы, мы обсуждаем замену балласта, если необходимо, по сегментам на электронный балласт. При использовании с электронным балластом люминесцентные лампы просто гаснут, не повреждая лампы и не вызывая возгорания.Поддержание работы неэффективного балласта обходится дороже, и можно сэкономить энергию, поддерживая их работу с максимальной производительностью.
Существует безопасная альтернатива замене ламп каждые шесть месяцев — хотя они не получили широкого распространения в нашем обществе одноразового использования и изначально стоят дороже, существуют люминесцентные лампы, которые рассчитаны на более длительный срок службы, дают более яркий свет и имеют более высокий световой поток. Обслуживание.
Это означает, что они сохранят такое же количество света в течение всего срока службы лампы, как и в новые.Эти долговечные люминесцентные лампы рассчитаны на работу от 30 000 до 40 000 часов. Учитывая целостность балласта, лампы могут легко прослужить пять-семь лет, в зависимости от ежедневного использования. Хотя первоначальные вложения в эти лампы могут быть больше, в течение их срока службы они сэкономят деньги и избавят от необходимости часто менять лампы, а также предотвратят возгорание.
Конечно, сегодня лучший выбор — это электронный балласт.Каждый должен двигаться в этом направлении в своем планировании. Если вы решите приобрести долговечные лампы с низким содержанием ртути, вам понадобится балласт с коэффициентом 0,9 или выше. Я стараюсь поддерживать коэффициент балласта 1,15 для максимальной производительности и долгого срока службы.
Об авторе
Фрэнк С. Джонсон является соучредителем EnviroLight. EnviroLight специализируется на полном спектре освещения, эквивалентном естественному дневному свету.Для получения дополнительной информации посетите www.envirolightusa.com.
Эта статья, первоначально опубликованная в 2007 году, была обновлена.
История люминесцентных ламп
Пионеры: Джордж Инман и Ричаред Тайер
Инженеры по исследованиям и разработкам: Уильям Л. Энфилд и Филип П. Притчард
Инженер по приложениям: Уорд Харрисон
В ЗАПИСИ: В январе 1931 г. (27 января 31 г., если быть точным) Dr.Альберт
В. Халл из лаборатории GE Schenectady labs получает патент на низкое давление.
пароразрядные лампы — это большой шаг к развитию
люминесцентные лампы в ближайшие годы
1934: Д-р Артур Х. Комптон во время визита в Оксфорд, Англия пишет
письмо доктору Уильяму Л. Энфилду, в котором рассказывается об английских производителях ламп.
показал ему интересную экспериментальную лампу. Он был трубчатым, примерно
2 фута длиной, а центральная часть была покрыта флуоресцентным материалом.Он излучал желтовато-зеленый свет и оказался очень эффективным.
В ноябре 1934 года в парке НЕЛА начинаются исследования. Под руководством Dr.
Уильям Энфилд, Джордж Инман приступили к разработке. Также в
В группу входили Ричард Тайер, Юджин Леммерс, доктор Уиллард А. Робертс. В
В декабре группа изготовила свою первую лампу. Это было 10 дюймов в длину,
дюйм в диаметре и имел электроды на каждом конце. Группа изготовила лампы
которые использовали различные люминофоры, в том числе силикат цинка.
1934-35: Доктор Клифтон Г. Фаунд присоединяется к группе исследований и разработок. Доктор Уиллард
Робертс, химик разрабатывает люминофоры с помощью доктора Г. Фонда и
К. А. Никель из Скенектади и Гарри М. Фернберджер из проволочного дивизиона.
В первые несколько лет производства люминесцентных ламп самые важные
люминофоры представляли собой силикат цинка-бериллия и вольфрамат магния («белый»
и «дневные» лампы соответственно).
В июле 1935 года , инженеры и исследователи лампового отделения провели
закрытая встреча в парке НЕЛА с группой У.С. Офицеры ВМФ. Образец
Люминесцентные лампы были показаны, и моряки были первыми лицами.
за пределами GE, чтобы увидеть новые лампы. В начале сентября 1935 г.
инженерное общество (I.E.S.) провело свой ежегодный съезд в Цинциннати,
Огайо. На стенде GE была представлена одна из новых ламп «F» в г.
операция. Присутствующие инженеры по свету были заинтересованы, но не
подавляюще впечатлен. Лампа выглядела как узкоспециализированная
пункт.Он был 2 фута в длину, светился ярко-зеленым светом. Дисплей
карточка гласила: «Люмилиновая лампа — лабораторная разработка.
многообещающе. «Это заявление на той карточке было НАСТОЯЩИМ недоговоркой.
— ОБЯЗАТЕЛЬНО, всего за 6 лет война и новый источник света будут
преобразите США и скоро мир!
1936-1937: В июле 1936 г. оборудование для производства люминесцентных ламп
начинает разработку с Филипом Дж.Притчард главный. тем временем
другие отделы GE оказали помощь в строительстве балластов, стартеров
(сначала встроены в тот же корпус, что и ПРА), и патроны для ламп
для ламп F. Департамент трансформаторной техники в Форт-Уэйне, Индиана
развивает балласты.
23 ноября 1936 г., в Вашингтоне, округ Колумбия, состоялся ужин, посвященный празднованию
100-летие со дня основания Патентного ведомства США было
вдвойне исторический.Гости, пришедшие на ужин, наблюдали за
впервые практическое публичное применение люминесцентного освещения. В
новые лампы, поставленные GE, обеспечивали большую часть освещения в большом
банкетный зал.
Прошло больше года, это был конец 1937 года, и П.Дж.
коллеги добивались успехов, но ни одна фабрика не могла взять на себя люминесцентные лампы.
производства ламп пока нет. Очень скоро это изменится!
1938: 21 апреля 1938 года GE объявила о выпуске люминесцентных ламп.
Лампы MAZDA как обычная линейка, и они были размещены в открытой продаже.А
в журнале света появилась история, в которой говорилось, что
«Эти новые источники света обеспечивают эффективный цветной свет.
поэтому недостижим. «Освещение изменится навсегда, и
к лучшему!
1938: Новые лампы MAZDA F доступны в 3-х размерах:
15 Вт, длина 18 дюймов, диаметр 1 дюйм (‘T-12’) и 30 Вт, 36 дюймов
длинный, 1 дюйм в диаметре («Т-8»). Они бывают 7 цветов, 2 из которых
«белые».
Цвета: красный, золотой (желтый), зеленый, синий, розовый, белый.
(3500 град. К) и дневной свет (6500 К). 3 типа «вспомогательных средств»
или балласты для работы с лампами F были доступны в 1938 году.
Вспомогательный «балласт», представлявший собой балласт простого дроссельного реактора.
совмещен с пускателем «звонок-магнитофон» вибратор-реле »
блок »в том же корпусе. Следующим типом балласта стал« Тепловой ».
Вспомогательная », стенки которой имели балласт дроссельного реактора комбинированный.
с «дверным звонком, зуммером-магнитом« вибратор »-реле стартера»
в том же случае.
Следующее тип балласта был «Вспомогательный тепловой», который также имел балласт дроссельного реактора совмещенный с термовыключателем-реле стартера единица в том же футляре. Последний тип, производимый до сих пор, тогда назывался «Вспомогательный ручной запуск» и был просто дроссельной заслонкой. для использования с ручными пусковыми выключателями. ПРА 15 и 20 Вт были От 110 до 120 вольт. Балласты на 30 Вт были 220-240 вольт, и требовалось в светильники устанавливаются повышающие трансформаторы, если требуется 220 вольт не подавалось, и к светильникам было доступно только 110 вольт.
Летом 1938 года Westinghouse Electric Corporation изобретает
выключатель накаливания стартера. Изначально в лампочке С-6 со штыком
основание, он вставляется в гнездо на конце балластного корпуса. Знакомый
«консервный» выключатель накаливания стартер не появлялся до середины лета
1939.
1938: Немного позже в этом году, 14 Вт, 15 дюймов 1-1 / 2 »
(Т-12) Выпуск лампы MAZDA.Изначально предназначался для использования от сети 64 В.
трамвайный вагон, вскоре он был использован 2 последовательно на 120 вольт с 60
Лампа накаливания MAZDA вольт ½ ампер в качестве балласта, в полу и
настольные лампы, он также работал от балластов мощностью 15 ватт.
Внедрение бактерицидных ламп. Прозрачный, без люминофора, сделанный
У.В. передавая стекло «corex-D», они излучают коротковолновую
ультрафиолетовые (УФ) лучи, убивающие переносимые по воздуху бактерии. Лампа изготовлена
в лампах Т-8 мощностью 15 и 30 Вт.Westinghouse разработал принципы
до 1936 года.
В конце весны 1938 года люминесцентные лампы были показаны в Нью-Йоркском
Всемирная выставка и выставка Golden Gate в Сан-Франциско, Калифорния. В
лампы использовались на открытом воздухе на мировых ярмарках и в большой внутренней установке
на выставке в Нью-Йорке.
Официально запущено люминесцентное освещение. В октябре 1941 г.
Патент был выдан Джорджу Инману, охватывающий основные принципы
люминесцентная лампа дизайн.Заявка была подана в апреле 1936 года.
За период с апреля 1938 года GE и вся промышленность продали около 200000 единиц продукции.
лампы, годные годные, но ничто по сравнению с тем, что было скоро
приходить!
1939:
Сначала лампа мощностью 40 Вт (белого цвета) имела мощность 35 люмен на ватт,
и до середины года он достиг 47 люмен на ватт (lpw), а за годы
в конце он достиг 50 л / с.
Продажи люминесцентных ламп стремительно выросли до 1.6 миллионов в 1939 году.
GE разрабатывает RF, или выпрямленную люминесцентную лампу для промышленного освещения.
в начале года. Это было 8,5 Вт, длина 58 дюймов, дюйм 1-1 / 4 дюйма.
диаметр (Т-10), составлял 47 л / вес и рассчитан на 3000 часов. У него был один
катод с подогревом на одном конце, как у стандартных ламп F, и 2 ненагреваемых анода
на другом конце. Ток течет только в одном направлении, подумал
лампа, идущая к 2 анодам поочередно по мере изменения линейного тока переменного тока
направление 60 раз в секунду (120 оборотов / сек.) изготовление ВЧ лампы
«двухполупериодный ртутно-дуговый выпрямитель». Использовались специальные базы
и розетки, с 3 штырями на анодном конце, 2 штырями на катоде
конец, и специальный балласт. И не нужен был стартер. Не было сделано
после 1942 г. больше.
Hygrade -Sylvania разработала «стробоскопически скорректированное» опережение.
схемы балласта и представляет первое устройство, которое будет его использовать — 2-ламповый,
4-футовая установка «HF-100» для промышленного использования.У этого было 2 дроссельных балласта,
повышающий трансформатор, пусковой компенсатор «ведущего»
лампа, и конденсатор к этому же компенсатору для «ведущего»
лампа, и конденсатор для этой же лампы, все отдельные блоки! у меня есть
один, изготовленный примерно в мае 1939 г., заводской № 8108 с редким оригинальным термовыключателем
начала — работает!
1939: В начале этого года (примерно с февраля по март) GE представила
теперь повсеместно 48 дюймов (4 фута) 1-1 / 2 дюйма.Диаметр Т-12, МАЗДА 40 ватт
Лампа F. Изначально инженеры GE скептически относились к тому, что
такую длинную лампу было непрактично или даже невозможно изготовить.
И снова GE совершила «невозможное»! Как лампа на 30 ватт,
в этой новой лампе сначала использовались дросселирующий балласт на 240 вольт и повышающий трансформатор.
при использовании в цепи 120 В. Этот размер быстро стал и остается
сегодня самая популярная люминесцентная лампа из когда-либо созданных! Даже сегодня
4-футовые лампы Т-8 Ф вовсе не «хай-тек» и производились
экспериментально в 1939 году!
Эта статья продолжается до 1957 года.См. Полную статью на
Технический центр Эдисона.
Видео с изображением более ранних изобретателей лампы:
Нажмите на рисунке ниже, чтобы увидеть всю нашу страницу о флуоресцентных лампах. лампы в том числе ранней истории.
Уголок вопросов: роль Дросселя — Индус
Почему дроссель требуется в ламповом свете, а не в КЛЛ?
RAM POOJAN CHAURASIA
Sultanpur, Уттар-Прадеш
Как обычные люминесцентные лампы (обычно длиной 4 фута), так и компактные люминесцентные лампы — КЛЛ (намного меньшие как по длине, так и по диаметру трубки), используемые в осветительных приборах, представляют собой ртутные газоразрядные лампы низкого давления.
Эти лампы генерируют свет в процессе флуоресценции (преобразование невидимого ультрафиолета, УФ в видимый свет) за счет электрического разряда — прохождения электричества через парогазовую среду вдоль колонны трубки.
Когда электрический разряд может ударить по столбику трубки, образуется много невидимого УФ-излучения с длиной волны в основном 254 нм. Это УФ-излучение, попадая на белое покрытие внутри трубки из флуоресцентного материала — люминофоров, преобразуется в видимый свет с длинами волн в диапазоне 400-700 нм в процессе флуоресценции.
Электрическое сопротивление разрядного столба трубки увеличивается с увеличением размеров и уменьшается с уменьшением размеров лампы.
Для обычной люминесцентной лампы в качестве балласта используется дроссель, который, по сути, является трансформатором утечки (состоящим из обмоток большой катушки), который на мгновение производит индуктивный удар в виде высокого напряжения (приблизительно 1000 вольт), так что может возникнуть электрический разряд. по столбику трубки. Таким образом, в обычной люминесцентной лампе дроссель запускает процесс электрического разряда.
После возникновения разряда его можно поддерживать за счет падения электрического сопротивления столба. Но компактные люминесцентные лампы меньшего размера и гораздо меньшее электрическое сопротивление не требуют таких громоздких дросселей. Вместо этого разряд в КЛЛ инициируется очень компактными электронными схемами, встроенными в держатель КЛЛ. Обычно эти электронные балласты представляют собой небольшие схемы генераторов, генерирующих высокие частоты (примерно 10 килогерц), способствующие быстрому запуску лампы без мерцания, поскольку электрический разряд возникает быстрее на таких высоких частотах.
Р. ДЖАГАННАТАН
Группа люминесценции
CECRI
Караикуди, Тамил Наду
Схема цепи двухтрубного светильника Схема цепи двухтрубного светильника Как мы знаем, ламповый светильник представляет собой ртутно-газоразрядную лампу низкого давления, или иначе называемую флуоресцентным светом, и в основном излучает белый свет. В наши дни продукты освещения CFL и LED производятся в больших масштабах, хотя светодиодные лампы не могут полностью заменить ламповые лампы , потому что ламповый свет дает ровный яркий свет, но пока светодиод не может.
В этой статье дается подробная информация о соединении двухтрубных осветительных приборов с использованием одиночного балласта или дросселя (некоторые электронные дроссели не поддерживают это соединение), проверьте характеристики балласта и уровень мощности, прежде чем устанавливать этот тип соединения.
Электрическая схема
Здесь используются две ламповые лампы, в нашем случае каждая по 20 Вт, каждая ламповая лампа будет иметь две нити накала с четырьмя выводами, подключите стартовый элемент к любой стороне лампового света, после этого подключите фазовую линию к балласту (дросселю) через переключатель.Подключите другую клемму балласта к клемме первой ламповой лампы, затем последовательно подключите ламповую лампу 2 к первой, как показано на рисунке. Наконец вывести нейтраль из лампы 2.
Для подключения однотрубного светильника см. Здесь.
Соблюдайте особую осторожность и меры безопасности при работе с высоким напряжением переменного тока
Стартер
Пускатель, расположенный параллельно нити накала трубки, содержит небольшую неоновую лампу с фиксированным контактом, биметаллическую полосу и небольшой конденсатор.Стартер обеспечивает путь прохождения тока к нити накала трубки в начальный момент времени. Он становится неактивным после ионизации газа и протекания тока в трубке.
Балласт или штуцер
Это электрическое устройство, вырабатывающее высокое напряжение за счет использования низкочастотного переменного напряжения. Он способствует ионизации легкого газообразного ртутного газа в трубке, и после ионизации этот балласт или дроссель снижает уровень выходного напряжения.
ламп, освещения и потолочных вентиляторов = FSU EcoClick Choke 14 Вт 18 Вт 36 Вт 58 Вт PHILIPS S10 Флуоресцентный ламповый стартер 4-65 Вт Для дома и сада casaalvarezrh.com
= FSU EcoClick Choke 14 Вт 18 Вт 36 Вт 58 Вт PHILIPS S10 Стартер для люминесцентных ламп 4-65 Вт
Найдите много отличных новых и подержанных опций и получите лучшие предложения на PHILIPS S10 Fluorescent Tube Starter 4-65W (= FSU) EcoClick Choke 14w 18w 36w 58w по лучшим онлайн-ценам! Бесплатная доставка для многих товаров! Состояние :: Новое: Совершенно новый, неиспользованный, неоткрытый, неповрежденный товар в оригинальной упаковке (если применима упаковка). Упаковка должна быть такой же, как в розничном магазине, за исключением случаев, когда товар сделан вручную или был упакован производителем в нерозничную упаковку, такую как коробка без надписи или полиэтиленовый пакет.См. Список продавца для получения полной информации. Просмотреть все определения условий: Тип:: Флуоресцентная лампа EcoClick Starter, Торговая марка:: Philips: MPN:: S10 Ecoclick,
= FSU EcoClick Choke 14 Вт 18 Вт 36 Вт 58 Вт PHILIPS S10 Стартер для люминесцентных ламп 4-65 Вт
Пожалуйста, подтвердите размер в соответствии с нашим описанием, а не на фотографиях. 5 Вкладыш (Белый военный танк): Кузов — ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках. Эффективность вашего воздушного фильтра будет зависеть от вашей среды.ОБЪЕМ 50 шт. Натуральные перья фазана Ривза 12-18 см DIY Craft Smudge Fan Decor, корпус из алюминиевого сплава может легко выжить при падении с 10 футов, Объем гироскопа: + 250 500 1000 2000 ° / с, ВЫСОКОКАЧЕСТВЕННЫЕ САПОГИ: Каждая женская обувь в нашей коллекции ботинки в Brinley Co, BOBBINS JUKI DDL 500 555 5500 5550 8300 8500 8700 9000 TL 98 98E 98Q 98QE 98P, гибкие замены ABS — наши комплекты для замены ABS заменяют каждую резиновую часть тормозных систем ABS, RAB Lighting HBHH70HQTA HB Металлогалогенный прожектор HID с капотом , Принесет больше смеха и сюрпризов для вашей вечеринки, Белый деревянный шебби-шик Driftwood Photo White Hearts Freestanding Frame-4×6 «, См. Описание для списка доступных цветных камней.Пожалуйста, свяжитесь с вашим местным почтовым отделением, чтобы решить любые проблемы с недоставленными посылками. на них могут быть незначительные признаки износа. Kingston Brass KB6321LL Смеситель для биде Legacy с 3 ручками и выдвижным элементом Polis из латуни …. напишите мне перед заказом, и мы что-нибудь придумаем. Файл можно распечатать дома или через типографию. Corelle 15 X 12 Mandarin Flower Counter Saver Tmpr Разделочная доска для стекла 91512MFH. Сверхъяркая светодиодная лампа с низким нагревом, которая остается включенной до тех пор, пока вы ее не выключите, Гольфы, махровые носки без каблука O’Neill Anno.8-дюймовый регулируемый гаечный ключ с храповым механизмом Kobalt Rapid Adjust новинка, это уникальный дизайн Трейси. 2 больших чугунных дверных тяги HW-31. Оригинальный запасной ключ Ryobi OEM # 307010001. Удобная и забавная сумка для хранения вещей, * Машинная стирка; сушить в стиральной машине или сушить в барабане. Дорожные кофейные кружки на 20 унций Многоразовый стакан из нержавеющей стали для питья соломинки для молока — Позвольте 3-5 дней для обработки заказа, хотя большинство заказов обрабатывается в течение 2-3 дней. он не повредит любую поверхность ваших дверей, современный кубистский художник-кубистский замок Клее с солнечным счетным крестом.Этот материал имеет скользкую поверхность и превосходит большинство пластиков по химической стойкости и характеристикам при экстремальных температурах. Установить металлические рельсовые экраны изнутри. Контейнер для хранения держателя для держателя для декоративного дренажного мыла Leafology 1 шт., Не поцарапает дверь и дверную раму и будет более безопасным в использовании. 304 Гайка с проушиной из нержавеющей стали M16 Треугольник в форме кольца Подъемная гайка с проушиной Набор резьбовых гаек 2PCS: DIY & Tools. Купите AMKA Western Stirrup Set Comfort для детей / Детские стремена для Western Saddle Stirrups Horse Set for Wood в Великобритании.Без БЛОКА ПИТАНИЯ (ASIN «B01FFY9CDQ» для справки). Мужские кольца размером 10-12 или люди с крупными руками.
Что такое балластный фактор и как он влияет на люминесцентные лампы?
Балластный коэффициент — это число, обычно от 0,70 до 1,2, которое говорит вам, сколько света будет излучать лампа с этим балластом.
Балластный коэффициент рассчитывается путем деления светового потока комбинации лампа-балласт на световой поток той же лампы (ей) на эталонном балласте.Коэффициент балласта <1 означает, что ваша флуоресцентная система будет производить меньше света (люменов), чем эталонный балласт, а коэффициент> 1 означает, что она будет производить больше света.
Нужна балластная грунтовка? Посмотрите наш пост «Что такое балласт?»
Балластный коэффициент для электронного балласта T8 обычно бывает трех видов — низкий, нормальный или высокий . Помимо влияния на светоотдачу, существует также косвенное влияние на потребление энергии.Как правило, чем ниже балластный коэффициент, тем меньше потребляемая мощность вашей системы.
В автомобильном мире коэффициент балласта может быть аналогичен сравнению размера трех различных четырехцилиндровых двигателей. В общем, небольшой двигатель обеспечивает максимальную топливную экономичность и наименьшую мощность. По мере того, как вы переходите к более мощному двигателю, эффективность использования топлива обычно снижается (при использовании большего количества энергии в режиме освещения) и повышаются характеристики (в режиме освещения увеличивается светоотдача).
Примечание. Для автолюбителей аналогия ограничена.Мы говорим об обычных безнаддувных двигателях для серийных автомобилей, а не о гоночных двигателях F1.
Как выбрать балластный коэффициент?
Одним из наиболее важных вариантов выбора балласта для люминесцентной системы является балластный фактор.
Вот наши рекомендации по выбору балластного фактора.
Когда использовать
низкий балластный коэффициентИспользуйте низкий балластный коэффициент, если ваша основная цель — энергоэффективность и вы не против получить световой поток от люминесцентных ламп немного меньше номинального.Однако, если вы соединяете маломощный T8 с низким балластным коэффициентом, будьте осторожны с приложениями, которые подвержены низким температурам (морозильные камеры, наружные применения в холодном климате). Этот сверхэффективный вариант не очень любит холода. Честно говоря, светодиоды могут быть отличным вариантом для рассмотрения, если вы находитесь в этой лодке.
Когда использовать
нормальный балластный коэффициентЕсли вас не интересует максимальная эффективность и вы ищете стандартный световой поток, или если ваше приложение подвержено низким температурам, нормальный балластный фактор может быть хорошим вариантом.
Когда использовать
высокий балластный коэффициентЕсли вы пытаетесь получить максимально возможный световой поток от вашей флуоресцентной системы, высокий балластный коэффициент будет правильным решением.
Совет для профессионалов: если вы выполняете точечную замену, попробуйте сопоставить балластный коэффициент старого продукта с новым. Таким образом, вы получите приспособление, которое будет более точно соответствовать внешнему виду других.
Как балластный фактор влияет на потребление энергии?
Когда вы пытаетесь получить максимальную экономию и эффективность от линейной люминесцентной системы, первое, на что вы обычно смотрите, — это мощность лампы.Вы можете подумать, что флуоресцентный T8 мощностью 32 Вт потребляет 32 Вт, а высокоэффективный флуоресцентный T8 мощностью 25 Вт потребляет 25 Вт.
Не совсем так.
Люминесцентная лампа имеет номинальную мощность, но мы рассчитываем фактическую мощность люминесцентной системы на основе мощности системы, которая включает влияние множества факторов (например, напряжения, тока и коэффициента мощности).
Самый надежный и точный способ рассчитать мощность системы для люминесцентного светильника — обратиться к каталогу балластов и найти конкретную «Входную мощность» для комбинации конкретной лампы (ламп) и балласта, которую вы рассматриваете.Если у вас нет под рукой каталога балластов, существует также обычный способ оценить мощность системы люминесцентного светильника: умножить мощность лампы на количество ламп и балластный коэффициент.
Мощность лампы x количество ламп x балластный коэффициент
=
Расчетная общая мощность системы
Давайте посмотрим, как это может измениться для лампы мощностью 32 Вт в паре с балластами в низком, нормальном и высоком диапазоне коэффициентов.Хотя коэффициент балласта будет варьироваться в зависимости от производителя и типа балласта, давайте воспользуемся этими коэффициентами балласта для наших примеров:
Лампа 32 Вт x 1 лампа X 0,78 (низкий балластный коэффициент) =
Общая мощность системы 24,96 Вт
(Диапазон из каталогов балласта: от 25 Вт до 26 Вт)
Лампа 32 Вт x 1 лампа x 0,88 (нормальный балластный коэффициент) =
Общая мощность системы 28,16 Вт
(Диапазон по каталогам балласта: от 28 Вт до 31 Вт)
Лампа 32 Вт x 1 лампа X 1.2 (высокий балластный фактор) =
Общая мощность системы 38,4 Вт
(Диапазон из каталогов балласта: от 38 Вт до 41 Вт)
Как видите, колебание мощности от низкого балластного коэффициента к высокому составляет до 16 Вт для той же лампочки, что может существенно повлиять на ваши счета за электроэнергию и предполагаемую окупаемость проекта модернизации. Также стоит отметить, что метод оценки энергопотребления путем умножения мощности лампы на балластный коэффициент все еще находится в диапазоне точных чисел, указанных в каталогах балласта.
Вопросы по балластному коэффициенту
Линейные люминесцентные продукты невероятно распространены в коммерческих помещениях, поэтому, надеюсь, это поможет вам избавиться от жаргона и узнать, что вы получите, когда разместите следующий заказ на освещение в нашем интернет-магазине.