Двигатель схема: Двигатели. Рядный? V-образный? «Оппозит»? — ДРАЙВ

Содержание

Двигатели. Рядный? V-образный? «Оппозит»? — ДРАЙВ

В начале XX века, когда конструкторская мысль бушевала вовсю, двигатель рабочим объёмом 10 л мог быть как одноцилиндровым, так, к примеру, и рядной «восьмёркой». Тогда никого особо не удивляли установленная на автомобиле рядная «шестёрка» объёмом 23 л или семицилиндровый звездообразный мотор с аэроплана…

Однако рост мощностей, оборотов и ожесточенная борьба за снижение себестоимости всё расставили по местам. Простейший одноцилиндровый мотор для автомобилестроителей остался в далёком прошлом. Средний объём цилиндра двигателя обычного автомобиля сейчас — от трёхсот до шестисот кубических сантиметров. Литровая мощность — от 35 л.с./л для безнаддувного дизеля до 100 л.с./л для форсированного бензинового «атмосферника». Для серийных двигателей это оптимум, выходить за рамки которого просто невыгодно.

Очень маленькие цилиндры часто встречаются на японских микролитражках: например, объём рядной «четвёрки» у Subaru R1 — всего 658 см³.
Из «европейцев» отличился трёхцилиндровый дизельный Smart — 799 «кубиков». Есть цилиндры-напёрстки и у «корейцев»: трехцилиндровый Matiz — это 796 «кубиков», а четырёхцилиндровый — 995. «Четвёркой» объёмом 1086 см³ оснащаются Hyundai i10 и Kia Picanto. На другом полюсе — конечно же «американцы». Объём V-образной «восьмёрки» купе Chevrolet Corvette Z06 составляет 7011 см³. Хотя японцы, например, оснащали внедорожник Nissan Patrol предыдущего поколения рядной «шестёркой» TB48DE объёмом 4758 «кубиков».

Сегодня двигатель мощностью 100 л.с. в большинстве случаев окажется четырёхцилиндровым, у 200-сильного будет четыре, пять или шесть цилиндров, у 300-сильного — восемь… Но как эти цилиндры расположить? Иными словами — по какой схеме строить многоцилиндровый двигатель?

Простота хуже компактности

О чём болит голова у конструктора? Во-первых, о том, как упростить конструкцию двигателя, чтобы он был дешевле в производстве и легче в обслуживании. Самый простой двигатель — рядный (мы будем обозначать такие моторы индексами R2, R3, R4 и т.

д.). Располагаем в ряд нужное количество цилиндров — получаем необходимый рабочий объём.

  • Двигатель R3 (А). Угол между кривошипами — 120°.
  • Добиться равномерности вспышек в двухцилиндровом двигателе (В) можно только при двухтактном цикле.
  • А такой мотор (C), например, стоит на «Оке». Поршни движутся синфазно.

Двух- и трёхцилиндровые двигатели встречаются на автомобилях нечасто, хотя мода на «двухгоршковые» моторчики набирает обороты. Тому способствуют продвинутые системы смесеобразования и применение турбонаддува (как, например, на 85-сильной двухцилиндровой турбоверсии хэтчбека Fiat 500). А вот рядная «четвёрка» попала в самый массовый диапазон рабочего объёма легковых автомобилей — от 1,0 до 2,4 л.

В современных четырёхтактных двухцилиндровых двигателях, вроде турбомотора Фиата 500, проблему вибраций отчасти решает балансирный вал.

Пятицилиндровые рядные моторы появились на серийных автомобилях сравнительно недавно — в середине 70-х годов. Первым был Mercedes-Benz со своими дизельными «пятёрками» — они появились в 1974 году (на модели 300D с кузовом W123). Через два года увидел свет пятицилиндровый двухлитровый бензиновый двигатель Audi. А в конце 80-х годов такие моторы сделали Volvo и FIAT.

Рядные «шестёрки», до недавнего времени столь популярные в Европе, нынче во мгновение ока стали вымирающим видом. А про рядную «восьмёрку» и говорить нечего — с ней практически распрощались еще в 30-х годах. Почему?

Ответ прост. С ростом числа цилиндров двигатель становится длиннее, и это создаёт массу неудобств при компоновке. Например, втиснуть поперёк моторного отсека переднеприводного автомобиля рядную «шестёрку» удавалось в считанных случаях — можно припомнить лишь английский Austin Maxi 2200 середины 60-х годов (тогда конструкторам пришлось спрятать коробку передач под двигателем) и Volvo S80 с суперкомпактной коробкой передач.

Два мотора R3, составленные друг за другом, дают великолепный результат — абсолютно уравновешенную рядную «шестёрку».

Как укоротить рядный мотор? Его можно «распилить» пополам, поставить две половинки рядом друг с другом и заставить работать на один коленвал. Такие моторы, у которых цилиндры расположены в виде латинской буквы V, вдвое короче рядных — наибольшее распространение получили двигатели с углом развала блока 60° и 90°. А V-образный мотор с углом развала блока 180°, в котором цилиндры расположены друг против друга, называют оппозитным (или «боксером» — обозначения В2, В4, В6 и т. д. происходят именно от слова boxer).

Такие моторы сложнее рядных — например, у них две головки цилиндров (каждая со своей прокладкой и коллекторами), больше распредвалов, сложнее схема их привода. А оппозитные двигатели ещё и занимают много места в ширину. Поэтому из компоновочных соображений они применяются довольно редко — производителей «боксеров» можно пересчитать по пальцам.

А как сделать V-образный двигатель еще компактнее? Одно из простых, на первый взгляд, решений — установить угол развала блока менее 60°. Действительно, такие моторы были, но редко — можно вспомнить, например, автомобили Lancia Fulvia 70-х годов с моторами V4, угол развала блока которых составлял 23°. Почему же этим не пользовались все? Дело в том, что перед конструктором двигателя всегда стоит ещё одна проблема — вибрации.

О силах и моментах

Вообще без вибраций поршневой двигатель внутреннего сгорания работать не может — так уж он устроен. Но бороться с ними нужно, и не только для повышения комфорта пассажиров. Сильные неуравновешенные вибрации могут вызвать разрушения деталей мотора — со всеми вылетающими и выпадающими оттуда последствиями…

Отчего возникают вибрации? Во-первых, в некоторых схемах двигателей вспышки в цилиндрах происходят неравномерно. Таких схем конструкторы по возможности избегают или стараются делать массивней маховик — это помогает сгладить пульсации крутящего момента. Во-вторых, при движении поршней вверх-вниз они то разгоняются, то замедляются, из-за чего возникают силы инерции — сродни тем силам, что заставляют пассажиров автомобиля кланяться при торможении или вдавливают их в спинки сидений при разгоне.

В-третьих, шатун в двигателе движется вовсе не вверх-вниз, а совершает сложное движение. Да и возвратно-поступательное перемещение поршня от верхней мёртвой точки к нижней тоже нельзя описать простой синусоидой.

  • Силы инерции от двух масс, вращающихся на одном валу поодаль друг от друга, создают свободный момент.
  • В простейшем моторе есть свободные силы инерции, но нет моментов. Цилиндр-то один.

Поэтому среди сил инерции появляются составляющие с удвоенной, утроенной, учетверённой частотой вращения коленвала… Этими так называемыми силами инерции высших порядков, как правило, пренебрегают — они по сравнению с основной силой инерции (которой присвоили первый порядок) очень малы. Исключение составляют силы инерции второго порядка, с которыми приходится считаться. Плюс к этому, пары сил, приложенные на определённом расстоянии, образуют моменты — так происходит, когда в соседних цилиндрах силы инерции направлены в разные стороны.

Что сделать для того, чтобы уравновесить силы и моменты? Во-первых, можно выбрать схему мотора, в которой цилиндры и кривошипы коленчатого вала расположены таким образом, что силы и моменты взаимно уравновесят друг друга — всегда будут равны и направлены в противоположные стороны.

Яркий представитель вымершего племени автомобилей с рядной «восьмёркой» — модель 1930-х годов Alfa Romeo 8C.

А если ни одна из уравновешенных схем не подходит — например, из компоновочных соображений? Тогда можно попытаться по-другому расположить шейки коленвала и применить всякого рода противовесы, создающие силы и моменты, равные по величине, но противоположные по направлению основным уравновешиваемым силам. Иногда это можно сделать, разместив противовесы на коленчатом валу мотора. А иногда — на дополнительных валах, которые называют балансирными валами противовращения. Называются они так потому, что крутятся в другую сторону, нежели коленвал. Но это усложняет и удорожает двигатель.

Чтобы облегчить описание степени уравновешенности разных двигателей, мы подготовили сводную таблицу. Зелёным в ней выделены самоуравновешенные силы и моменты, а красным — свободные (те, что не уравновешены и вырываются на свободу — через опоры силового агрегата проходят на кузов автомобиля).

Степень уравновешенности (зелёная ячейка — уравновешенные силы или моменты, красная — свободные)
1 R2 R2* V2 B2 R3 R4 V4 B4 R5 VR5 R6 V6 VR6
B6
R8 V8 B8 V10 V12 B12
Силы инерции первого порядка
Силы инерции второго порядка
Центробежные силы**
Моменты от сил инерции первого порядка
Моменты от сил инерции второго порядка
Моменты от центробежных сил
* Поршни в противофазе.
** Уравновешиваются противовесами на коленчатом вале.

Что же получается? Из распространённых типов двигателей абсолютно уравновешенных всего два — это рядная и оппозитная «шестёрки». Теперь понимаете, почему BMW и Porsche так крепко держатся за такие моторы? Ну а о причинах, по которым от них отказываются остальные, мы уже упоминали. Теперь рассмотрим поподробнее остальные схемы.

Шестицилиндровый «оппозитник» водяного охлаждения Porsche. С левой и правой сторон блока в целях экономии стоят одинаковые головки, поэтому цепные приводы распредвалов пришлось устраивать и спереди, и сзади.

Уравновешенные и не очень

Из двухцилиндровых двигателей на автомобилях нынче применяется только один — двухцилиндровый рядный мотор с коленчатым валом, у которого кривошипы направлены в одну сторону (такой, например, стоял на отечественной «Оке»). Как видно, этот двигатель по степени уравновешенности похож на одноцилиндровый, поскольку оба поршня движутся вверх и вниз одновременно, в фазе. Для того чтобы уравновесить свободные силы инерции первого порядка, в моторе «Оки» слева и справа от коленвала применялись два вала с противовесами. А как же быть с силами второго порядка? Для того чтобы с ними справиться, пришлось бы добавить ещё два балансирных вала, что на двухцилиндровом моторе, изначально предназначенном для маленьких и дешёвых автомобилей, было бы совершенно неуместным.

Впрочем, это ещё ничего — много двухцилиндровых моторов выпускалось вообще без балансирных валов. Так было, например, на малышках Fiat 500 образца 1957 года. Да, вибрации были, их старались погасить подвеской силового агрегата… Но мотор зато получался простым и дешёвым! Дешевизна двухцилиндровых двигателей соблазняет разработчиков и сегодня: не зря же эту схему использовали создатели самого доступного автомобиля планеты, индийского хэтчбека Tata Nano.

Машин с оппозитной «двойкой» — по экономическим и компоновочным соображениям — было немного. Можно упомянуть, например, французский Citroen 2CV.

Двухцилиндровый двигатель, у которого кривошипы направлены в разные стороны (под углом 180°), можно встретить сегодня только на мотоциклах. Поскольку поршни в нём всегда движутся в противофазе, то он уравновешен лучше. Однако равномерного чередования вспышек в цилиндрах можно добиться только на двухтактных моторах — такие двигатели устанавливались на довоенные DKW и их прямых наследников, пластиковые гэдээровские Трабанты. По причине простоты и дешевизны никаких балансирных валов на них тоже не было, а с возникающими вибрациями просто мирились.

Автомобиль с двухцилиндровым V-образным мотором припоминается только один — отечественный НАМИ-1. А до наших дней этот тип двигателя дожил только на мотоциклах — вспомните американский Harley Davidson и его японских последователей с их V-образными «двойками» во всей хромированной красе. Такой мотор можно уравновесить практически полностью с помощью противовесов на коленчатом валу, но достичь равномерного чередования вспышек невозможно. Хорошо, что байкеры особого внимания на вибрации не обращают…

НАМИ-1 — прототип 1927 года.

Трёхцилиндровый двигатель уравновешен хуже, чем рядная «четвёрка», и поэтому производители трёхцилиндровых моторов — например, Subaru и Daihatsu — стараются оснащать их балансирными валами. В своё время опелевские двигателисты решили отказаться от балансирного вала, разрабатывая трёхцилиндровый мотор семейства Ecotec для Корсы второго поколения — в целях удешевления и уменьшения механических потерь. И трёхцилиндровая Corsa после дебюта в 1996-м была раскритикована немецкими автожурналистами: «По городу на переменных режимах ездить совершенно невозможно».

В самой популярной среди двигателистов рядной «четвёрке» остаётся свободной сила инерции второго порядка. Её можно уравновесить только балансирным валом, вращающимся с удвоенной скоростью. (Вы не забыли — сила инерции второго порядка действует с удвоенной частотой?) А для компенсации момента от балансирного вала придётся ставить ещё один, вращающийся в противоположную сторону. Дорого? Безусловно. Однако моторы с балансирными валами можно встретить на автомобилях Mitsubishi, Saab, Ford, Fiat и самых разных марок концерна Volkswagen.

Пример рядной «четвёрки» с балансирными валами — двухлитровый двигатель Audi. Валы располагаются по обе стороны от коленвала и с удвоенной скоростью вращаются в противоположные стороны. Здесь балансирные валы расположены снизу и соединены зубчатой передачей, а раньше (как, например, на приведённом на картинке внизу двигателе Saab 2.3) их располагали сверху и у каждого был свой шкив цепного привода.

Кстати, оппозитная «четвёрка» уравновешена лучше, чем рядная, — здесь есть только момент от сил инерции второго порядка, который стремится развернуть двигатель вокруг вертикальной оси. Однако и «оппозитник» воздушного охлаждения легендарного «Жука», и знаменитые «боксеры» Subaru обходились и обходятся без балансирных валов.

Subaru из компоновочных соображений предпочитает рядной «четвёрке» оппозитную. Что до вибраций, то силы инерции второго порядка у «боксера» уравновешены, но момент от них всё же остаётся свободным.

У рядных «пятёрок» с уравновешенностью дела обстоят не очень. Силы инерции компенсируются, но вот моменты от этих сил… Во время работы двигателя по блоку постоянно «пробегает» волна изгибающего момента, поэтому блок должен быть весьма жёстким. Однако и Mercedes-Benz, и Audi, и Volvo борются с вибрациями, дорабатывая подвеску силового агрегата или применяя специальные противовесы (как у наддувной «пятёрки» 2.5 TFSI на Audi TT RS). И только фиатовские мотористы применяли балансирный вал, который полностью уравновешивал все моменты.

  • На картинке FIAT JTD от хэтчбека Croma — потомок пятицилиндрового турбодизеля Fiat TD 125 объёмом 2387 см³, образованного путём добавления одного цилиндра к 1,9-литровой «четвёрке» TD 100. Балансирный вал — слева, в нижней части картера.
  • Под каким углом расположить кривошипы коленвала рядной «пятёрки»? 360° делим на пять. .. Правильно — 72°!

Кстати, практически все «пятёрки» образованы путём прибавления ещё одного цилиндра к четырёхцилиндровому двигателю — как кубики в конструкторе. Делают это для того, чтобы с минимальными производственными и конструкторскими затратами получить более мощные моторы. При этом всю начинку, включая поршни, шатуны, клапаны и т. д., можно взять от «четвёрки». Понадобятся иные блок и головка цилиндров и, само собой, коленчатый вал, кривошипы которого должны быть расположены под углом в 72°.

О шестицилиндровых моторах — мечте с точки зрения уравновешенности — мы уже упоминали. А вот в моторах V6, которые вытесняют рядные «шестёрки», ситуация с уравновешенностью такая же, как у «трёшки», то есть не ахти. Поэтому, например, балансирным валом в развале блока цилиндров был оснащён самый первый двигатель V6 фирмы Mercedes-Benz — заслуженный М112 с тремя клапанами на цилиндр. У трёхлитровой «шестёрки» концерна PSA вал находился в одной из головок блока. На других моторах того времени инженеры пытались не усложнять конструкцию и старались свести уровень вибраций к минимуму за счёт усовершенствованной подвески силового агрегата и хитроумного смещённого расположения шатунных шеек коленчатого вала (как, например, на Audi V6).

  • В моторе V6 с углом развала блока 90° сдвоенные кривошипы расположены под углом 120°. А в моторах с развалом 60° каждый шатун приходится устанавливать на своём кривошипе.
  • Для уравновешивания свободного момента от сил второго порядка мотору V6 90° необходим один балансирный вал (показан стрелкой). В двигателе Citroen 3.0 V6 он был установлен в одной из головок блока.

У новейших мерседесовских двигателей V6 угол развала блока сократился до 60°, в результате чего необходимость в балансирном вале отпала.

Добавим сюда ещё одно замечание — в моторах V6 с развалом в 90° не обеспечивается равномерное чередование вспышек в цилиндрах. Возникающая неравномерность хода может компенсироваться за счёт утяжелённого маховика, но лишь отчасти. Вот вам и ещё один источник вибраций…

Двигатели V8 с углом развала цилиндров в 90° и коленвалом, кривошипы которых располагаются в двух взаимно перпендикулярных плоскостях, весьма неплохо уравновешены. В таком моторе можно обеспечить равномерное чередование вспышек, что тоже работает на плавность хода. Остаются неуравновешенными два момента, которые можно полностью утихомирить с помощью двух противовесов на коленчатом валу — на щеках крайних цилиндров. Понимаете, почему американцы раньше других прочувствовали всю прелесть V-образных моторов? Вибрации и тряски в своих автомобилях они очень не любят…

Двигатель V8: и развал блока, и угол между кривошипами — 90°.

Напоследок можно поговорить о схемах необычных. Сначала вспомнить о моторах V4. Таких было немного — европейский Ford образца 60-х годов (который стоял на автомобилях Ford Taunus, Capri и Saab 96) да чудо-двигатель отечественного «Запорожца». Здесь не обошлось без уравновешивающего вала для момента от сил инерции первого порядка. Впрочем, конструкторы вышеупомянутых автомобилей выбирали эту схему из условий компактности и отчасти экономии, а не за хорошую уравновешенность.

  • Ford и ЗАЗ выбрали экзотику: мотор V4, в котором и угол развала блока, и угол между кривошипами составляют 90°.
  • Угол развала цилиндров моторов V2 колеблется от 25° до 90°.

А что насчёт V-образных «десяток»? Как можно видеть, степень уравновешенности таких моторов точно такая же, как и у моторов R5. Впрочем, конструкторы прежних моторов Формулы-1 или монстров Dodge Viper и Dodge RAM, где стоят двигатели V10, о вибрациях думали далеко не в первую очередь.

Как жаль, что Viper и его коллосальный V10 — уже история.

Двигателями V10 отметилась целая череда знаковых машин: BMW M5, Audi S6 и S8, а также RS6 с наддувной «десяткой». Не говоря уже об автомобилях Lamborghini. Наконец, Lexus LFA тоже оснащается двигателем V10.

Ну а прочие схемы легко свести к предыдущим. Например, оппозитная «восьмёрка» (пример применения — гоночные болиды Porsche 917) — это две «четвёрки», работающие на один коленвал. А V-образный и оппозитный двенадцатицилиндровые двигатели можно свести к двум рядным «шестёркам».

VR6, VR5, W12…

Помните, мы упоминали о V-образных моторах с малым углом развала блока — как на Лянчах? Раньше таких схем избегали — уравновесить их сложнее, чем моторы с развалом в 60° или 90°, а выигрыш в компактности тогда ценили не так…

Но теперь ситуация изменилась. Во-первых, повсеместно применяются гидроопоры силового агрегата, которые значительно ослабляют вибрации. Во-вторых, пространство под капотом нынче на вес золота. Ведь кто раньше мог себе представить скромный хэтчбек с 2,8-литровым мотором? А теперь — пожалуйста! Всё началось с Фольксвагена Golf VR6 третьего поколения.

Знаменитый фольксвагеновский двигатель VR6, «V-образно-рядный» мотор (об этом и говорит обозначение VR), стал дальнейшим развитием V-образных двигателей с малым углом развала блока. Цилиндры этого мотора разведены на ещё меньший угол, чем на Лянчах, — всего на 15°. Угол настолько мал, что такой мотор называют ещё «смещённо-рядным». Гениальное решение — «шестёрка» 2. 8 компактнее, чем обычный мотор V6, да ещё и имеет одну головку блока! Потом появился двигатель VR5 — это VR6, от которого «отрезали» один цилиндр. После этого мотористы концерна Volkswagen вообще словно с цепи сорвались.

Двигатель VR5 2.3 конструкторы Фольксвагена получили, отняв один цилиндр от мотора VR6. Угол развала компактного блока — 15°, все пять цилиндров укрыты одной головкой блока.

Они придумали суперкомпактный двигатель W12, который дебютировал в 1998 году на концепт-каре W12 Roadster. Это два двигателя VR6, установленные под углом 72° на одном коленвале. Но прежде в серию пошёл мотор W8, которым оснащалась топ-модель седана Passat. Там тоже два мотора VR6, от которых «отрезано» по два цилиндра и которые тоже объединены в одном блоке на одном коленвале. Когда-то в Вольфсбурге подумывали и о восемнадцатицилиндровом двигателе — но в итоге остановились на W16 с четырьмя турбокомпрессорами, который разгоняет Bugatti Veyron до 431 км/ч.

Супермотор W12, показанный на концепте имени себя, приводит в движение представительские модели фирм Audi, Volkswagen и Bentley. На фото хорошо видно шахматное расположение цилиндров пары блоков, объединённых в одной отливке под углом 72°. Длина 420-сильного мотора — всего 51 см, ширина — 70 см.

Почему же таких моторов не было раньше? Взгляните, к примеру, на коленвал двигателя W12 — такое технологу и в страшном сне не приснится! Создателям новых схем должен помогать компьютер. Чтобы просчитать все варианты угла развала блока, расположения шатунных шеек, порядка вспышек в цилиндрах и выбрать самый уравновешенный, без помощи вычислительных мощностей обойтись очень сложно.

Теория и практика

Как видно, при выборе схемы силового агрегата конструкторы ставят во главу угла вовсе не степень уравновешенности. Главное — это удачно вписать в моторный отсек такой двигатель, который будет обладать наилучшим соотношением массы, размеров и мощности. Потом, двигатели сейчас всё чаще строятся по модульному принципу. Говоря упрощённо, на одной поршневой группе можно построить любой мотор — и трёхцилиндровый, и W12. Вслед за Фольксвагеном на модульные конструкции переходит всё больше производителей. Новейшая линейка моторов Mercedes — тому отличное подтверждение.

А вибрации… Во-первых, следует различать теоретическую и действительную уравновешенность двигателя. Если коленчатый вал в сборе с маховиком не отбалансирован, а поршни и шатуны заметно отличаются по массе, то трясти будет даже рядную «шестёрку». А потом, действительная уравновешенность всегда значительно хуже теоретической — по причинам отклонения деталей от номинальных размеров и из-за деформации узлов под нагрузкой. Так что вибрации «прорываются» из двигателя наружу при любой схеме. Поэтому автомобильные инженеры и уделяют такое внимание подвеске силового агрегата. На самом деле конструкция и расположение опор двигателя — не менее важный фактор, чем степень уравновешенности самого мотора. ..

Материал адаптирован к публикации с разрешения ООО «Газета «Авторевю». Все права на перепечатку принадлежат Авторевю.

Схемы автомобильных двигателей

Рядные..

ДВИГАТЕЛИ, у которых цилиндры расположены друг за другом в одной плоскости, обозначаются литерой “R”.

Рядные моторы – самые простые и недорогие, поскольку по сравнению с другими схемами состоят из минимального количества деталей. Неудивительно, что на заре автомобилизма подавляющее большинство машин оснащалось именно такими двигателями. Причем некоторые фирмы (например, “Voisin”) строили опытные образцы 12-цилиндровых монстров!

Но сегодня делать большой моторный отсек – непозволительная роскошь, ведь при этом останется мало места на пассажирский салон. Тем более что большинство современных моделей – переднеприводные. Мотор у них обычно расположен поперечно, то есть громоздкие рядные “восьмерки” и иные многоцилиндровые агрегаты разместить под капотом практически невозможно. Кроме того, длинный коленвал очень непросто сделать прочным. Он может не выдержать огромных нагрузок, свойственных нынешним высокофорсированным двигателям. Конечно, дорогостоящие материалы и технологии позволяют решить проблему, но это неизбежно увеличит стоимость производства.

Однако рядные моторы с четным количеством цилиндров достаточно неплохо уравновешены. Конечно, в любом двигателе движущиеся детали создают множество паразитных сил и моментов, порождающих вибрации и шум. Но в данном случае дополнительных мер для их снижения конструкторам применять не надо.

В частности, рядная “шестерка” изначально полностью сбалансирована, поэтому ее до сих пор применяют на некоторых дорогих и престижных машина х вроде моделей BMW. Но баварские автомобили заднеприводные, и инженеры могли поставить мотор продольно, избежав проблем с его размещением.

А вот компания “Volvo” на модели “S80” умудрилась установить такой двигатель поперек (!) моторного отсека (ранее это удалось лишь в 70-х годах прошлого века англичанам из фирмы “Austin”). Но заодно шведам пришлось потратиться и на разработку сверхкомпактной коробки передач…

Четырехцилиндровые рядные моторы уступают “шестеркам” по сбалансированности, зато они намного компактнее. Поэтому “четверки” сегодня являются самыми популярными двигателями из разряда “до 2,5 л рабочего объема”. (Правда, у некоторых четырехцилиндровых дизелей объем превышает 3 л.) Они повсеместно применяются на моделях компактного и “семейного” классов, а также на недорогих спортивных автомобилях и внедорожниках.

Уравновешенность моторов с нечетным количеством цилиндров оставляет желать лучшего, поэтому они встречаются достаточно редко. Например, на некоторых малолитражка х вроде “Chevrolet Spark” используются трехцилиндровые двигатели. Рядные “пятерки” популярнее. Они присутствуют в гамме таких производителей, как “General Motors”, “Volvo”, “Ford”…

 

 

V-образные..

ЭТО ОБОЗНАЧЕНИЕ родилось благодаря расположению цилиндров в двух плоскостях, как бы образующих собой латинскую букву “V” (по сути, это два рядных двигателя с общим коленвалом). Угол между ними называется “углом развала”. Обычно он составляет 60° или 90°. Первая величина оптимальна для V6. А прямой угол – идеальный вариант для V8.

По сравнению с рядными V-образные моторы почти в два раза короче (при одинаковом количестве цилиндров), чуть ниже, но несколько шире. В целом последние компактнее, поэтому большинство современных многоцилиндровых двигателей построено по такой компоновке.

Но “V-образники” сложнее и дороже – ведь два ряда цилиндров означают удвоение количества головок блока, распредвалов, ремней или цепей, коллекторов и прочих деталей. Кроме того, такие двигатели страдают повышенной вибронагруженностью. Особенно этим грешит популярный V6, ведь каждая его “половинка” – трясучая “трешка”. А известная в 60-70-х года х прошлого века по отечественному “Запорожцу” и некоторым моделям “Ford” и “Saab” конфигурация V4 вообще исчезла из-под капотов автомобилей именно по причине своей неуравновешенности…

Чтобы уменьшить влияние врожденных недостатков, конструкторам приходится применять различные технические ухищрения вроде балансирных валов или специальных подушек крепления двигателя, что еще больше усложняет автомобиль и делает его дороже.

 

 

Оппозитные..

ЭТО V-ОБРАЗНЫЕ двигатели с углом развала 180°. Цилиндры в таких мотора х лежат в одной плоскости параллельно земле, но расположены напротив друг друга. Такую компоновку принято обозначать литерой “B” (“Boxer”).

Плоский двигатель обладает всеми преимуществами V-образного собрата, но при этом неплохо уравновешен и помогает значительно понизить центр тяжести машины, улучшая тем самым ее управляемость и устойчивость.

Однако “Вoxer” трудоемок и дорог как в изготовлении, так и в обслуживании. Кроме того, он занимает много места по ширине, ограничивает размер колесных арок и соответственно уменьшает угол поворота управляемых колес. Причем на некоторых моделях моторный отсек настолько плотно “упакован”, что для замены свечей зажигания необходимо частично разбирать двигатель или снимать его с подушек крепления.

Поэтому, несмотря на то, что первые “оппозиты” появились практически одновременно с рождением самого автомобиля, сегодня их применяют только две фирмы: “Porsche” и “Subaru”.

Причем в наше время “боксеры” обычно не делают с количеством цилиндров больше шести. Раньше встречались и 12-цилиндровые “оппозиты”, а фирма “Porsche” экспериментировала с мотором “B16”, но так и не решилась применить его даже на гоночных моделях.

 

 

“VR”…

ПИОНЕРОМ этой компоновки стала компания “Lancia”, в 20-60-х годах прошлого столетия выпускавшая семейство V-образных четырех- и шестицилиндровых двигателей с очень маленьким углом развала: 10°-20°.

Такие моторы компактнее обычных рядных, но проще и дешевле V-образных, так как имеют только одну головку блока. Однако из-за чрезмерной вибронагруженности подобная схема не получила широкого распространения.

Лишь шестнадцать лет назад концерн “Volkswagen” возродил эту компоновку. Семейство двигателей с углом развала 10,6°-15° фольксвагеновцы назвали “VR” (то есть V-образно-рядные), и с тех пор это обозначение в автомобилестроении стало официальным.

“Volkswagen” был необходим компактный шестицилиндровый мотор для установки на переднеприводные модели VW, “Audi” и “Seat” (традиционный “V6” оказался для них очень широким). Поэтому инженерам пришлось серьезно поработать над уравновешиванием строптивого двигателя (сказалось асимметричное расположение его цилиндров). Зато этот опыт пригодился в 1997 году, когда понадобилось сбалансировать еще более вибронагруженный “VR5”.

 

 

W-образные…

В ОТЛИЧИЕ от предыдущей компоновки эта схема полностью обязана своим появлением концерну “Volkswagen” (прежде она встречалась лишь в авиации). Инженеры из Вольфсбурга получили ее, соединив одним коленвалом два двигателя типа “VR”.

Получившийся инженерный шедевр позволил намного уменьшить габариты 8- и 12-цилиндровых моторов. Фольксвагеновские “W-образники” значительно компактнее конкурентов с тем же числом цилиндров. Сегодня двигатели подобной компоновки можно встретить под капотом наиболее престижных моделей концерна: к примеру, на “Volkswagen Phaeton” и “Bentley Continental GT”.

Но немецкие инженеры на этом не остановились и создали, пожалуй, наиболее сложные двигатели в мире – “W16” и “W18”. Они разрабатывались специально для перспективных автомобилей “Bugatti”. Причем “W16” все-таки пошел в мелкосерийное производство и ныне устанавливается на суперкар “Bugatti Veyron 16.4”.

 

 

Автор
Юрий УРЮКОВ
Издание
Клаксон №7 2007 год
Фото
фото фирм-производителей

устройство, принцип работы и классификация


Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает  благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).


Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    — выпускной коллектор (приёмник отработанных газов),
    — газоотвод (приёмная труба, в народе- «штаны»),
    — резонатор для разделения выхлопных газов и уменьшения их скорости,
    — катализатор (очиститель) выхлопных газов,
    — глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.


Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.  

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.


Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.


Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).


Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.


А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.


Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.


Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Особенности двигателя TSI в автомобилях Volkswagen

Силовыми агрегатами TSI комплектуются все современные модели Volkswagen. Аббревиатура от Turbo Stratified Injection обозначает двигатель, в котором впрыск топлива происходит непосредственно в цилиндр, а воздух нагнетается двойным турбонаддувом.

В результате эксплуатационные характеристики мотора более высокие, чем у двигателя с обычной турбиной, но из-за этого ему требуется более качественное обслуживание, которое нереально осуществить в кустарных условиях.

Этот тип двигателя самый популярный среди автомобилей Volkswagen. На Passat В8, Passat СС, Tiguan устанавливают сейчас (2016 года) только двигатели типа TSI. На  Golf и Jetta кроме TSI устанавливают также MPI. Единственная модель, которая не комплектуется TSI — Туарег.

Каким образом работает двойной турбонаддув?

Для понимания принципа действия двойного турбонаддува стоит рассмотреть, как формируется воздушно-топливная смесь на разных оборотах:

  • до 2 400 об/мин работает исключительно механический компрессор, а турбокомпрессор простаивает, поскольку нет необходимости в дополнительной мощности и недостаточно давления выхлопных газов;
  • от 2 400 до 3 500 об/мин для нагнетания воздуха подключается турбокомпрессор, но только если электроника регистрирует очень динамичное увеличение потребности в мощности, к примеру, при резком старте с места;
  • от 3 500 об/мин и выше заслонка турбокомпрессора полностью открыта и он один работает на нагнетание воздуха.

В результате такого комплексного подхода становится возможным тонкое изменение мощности двигателя в большом диапазоне оборотов. Практически отсутствует «турбояма», которая характерна для силовых агрегатов с классической турбиной. В механическом нагнетателе используется редуктор, благодаря которому скорость вращения компрессора достигает 17 500 об/мин для наиболее эффективного давления в системе подачи воздуха.

Особенности охлаждения моторов TSI

Здесь применяется система охлаждения из двух контуров: один для головки блока цилиндров, а второй для самого блока. Количество охлаждающей жидкости в 2 раза больше в головке цилиндров, чтобы быстрее выполнялся прогрев и снижалась вероятность её перегрева, поскольку она изначально нагревается более интенсивно, чем блок цилиндров. Дополнительно система оснащена двумя термостатами, которые срабатывают при температуре в 80 и 95 °C.

Для охлаждения турбины используется еще более интересная схема. Дополнительный водяной насос с электроприводом охлаждает её в течение еще 15 мин. после остановки двигателя. В результате сложный механизм никогда не перегревается, что увеличивает его ресурс.

Недостатки технологии

Наибольшим минусом этих двигателей является их относительно плохой прогрев в холодное время года. Классическая схема разогрева на холостых оборотах в минусовую температуру малоэффективна — вам придётся долго ожидать тепла из дефлектора отопителя. В такую погоду на рабочую температуру мотор выходит достаточно долго даже при езде. К сожалению, такая плата за отменные рабочие параметры этих силовых агрегатов.

Рекомендации по эксплуатации

Любая вещь, созданная человеком, рано или поздно придёт в негодность и даже такие качественные двигатели не вечны. Однако если вы будете использовать качественные расходники и уделите пристальное внимание на состояние цепи ГРМ, то детище немецких инженеров не будет расстраивать вас форс-мажорными поломками в течение многих десятков тысяч километров.

Нюанс с долгим прогревом можно просто решить. Достаточно установить автономный предпусковой подогреватель мотора. Ведь такие приспособления уже не первое десятилетие используются в грузовиках и в нашем случае они помогут вам не мёрзнуть во время коротких зимних поездок.

асинхронный, синхронный или на постоянных магнитах?

Можно ли буксировать электромобили? Зависит от типа двигателя. Да, бывают разные. Если вы только собираетесь покупать электрокар, то знайте: до полной разрядки его лучше не доводить. И вот почему

Автомобили с двигателями внутреннего сгорания допускают буксировку. Если у вас механическая коробка передач, то это самое простое дело: ставите нейтраль в коробке передач или выжимаете сцепление – и ваш мотор оказывается физически отключен от колес, а машина превращается в обычную телегу: тяни не хочу.

С автоматами чуть сложнее, в них полного разрыва связи между колесами и мотором не предусмотрено. Но и они в режиме N позволяют буксировать машину на короткие расстояния и с невысокой скоростью.

Однако в инструкциях к электромобилям вы прочтете, что буксировка или не допускается вовсе, или, как в случае с современными моделями Tesla, допускается со скоростью не более 5 км/ч на расстояние не более 10 метров: иными словами, вы в праве только оттолкать сломанную машину на обочину.

А может ли быть иначе? Да, старые модели Tesla такое позволяли. Как и GM EV1 – легенда электрокаров 90-х годов прошлого века. Так в чем же дело? В типе электрических двигателей. Или, если уж говорить совсем правильно, электрических машин, так как в электромобилях эти устройства служат не только двигателями, но и генераторами. И на современных типах электрокаров встречается три типа таких устройств. Но для начала немного истории.

В 1821 году британский ученый Майкл Фарадей в своей статье впервые описал основные принципы преобразования электроэнергии в движение. Фарадей уже знал, что электрический ток, проходя через проволоку, создает магнитное поле. Закрученный в катушку, такой провод становится электромагнитом.

Он также знал, что противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются. В электромагнитах же полярность зависит от направления движения тока, то есть ее можно быстро менять. И вот что придумал Фарадей. Берем магнит, который движется к другому. В последний момент полярность меняется, но рядом расположен третий магнит, к которому можно тянуться. Затем четвертый, пятый. Эти разнополярные магниты выстроены в линию. И если ее закольцевать, движение будет идти по кругу до тех пор, пока сквозь электромагниты идет ток и пока его направление не перестает меняться.

Чтобы понять, как это действует, представьте, что у вас в руках два школьных магнита в форме подковы или буквы U – помните, были такие. Если их повернуть друг к другу взаимоотталкивающимися полюсами, то они будут стремиться сделать полуоборот, чтобы снова друг к другу притянуться. А теперь представьте, что их полюса постоянно меняются местами: тогда они станут вертеться друг относительно друга. Это и есть электродвигатель.

Так впервые был описан принцип действия всех электромоторов в целом и самого древнего в частности: того, который работает от постоянного тока и использует с одной стороны постоянные магниты из намагниченного сплава, а с другой – переменные электромагниты. Это наш первый герой: мотор-генератор постоянного тока на перманентных магнитах.

Изобретения Фарадея были развиты его полседователями, в частности изобретателем электрической лампочки Томасом Эдисоном. Эдисон усовершенствовал генераторы постоянного тока и стал пионером в электрификации Нью-Йорка. В 1884 году на пороге его кабинета появился молодой сербский инженер. Звали иммигранта Никола Тесла.

Тесла предложил улучшить конструкцию Эдисона и попросил за работу 50 тысяч долларов – баснословная в те времена сумма. По легенде Эдисон согласился, но когда Тесла действительно существенно улучшил существующую модель, любимец Америки просто кинул безвестного сербского эмигранта.

Тесла рассердился и отправился к главному конкуренту, адепту переменного тока Джорджу Вестингаузу. Так началась «Война токов», окончательно проигранная постоянным током только в 2007 году, когда Нью-Йорк последним из городов перешел на ток переменный.

Генераторы Эдисона вырабатывали электричество с напряжением, близким к потребительскому: 100-200 вольт. Это удобно для домов, но его сложно передавать на большие расстояния из-за сопротивления проводов. Тут было два решения: увеличивать диаметр кабелей или повышать напряжение. Первый вариант позволял делать линии длинной 1,5 километра. Да, совсем немного. Второй вариант был невозможен из-за отсутствия в те годы эффективных способов повышения напряжения постоянного тока.

Однако еще в 1876 году русский ученый Павел Яблочков изобрел трансформатор, меняющий напряжение переменного тока. Подача энергии на большие расстояния перестала быть проблемой.

Но была другая проблема. Лампочкам Эдисона все равно от какого тока питаться: постоянного или переменного. А вот с электродвигателями сложнее: они в те годы требовали только постоянного. В 1888 году Тесла запатентовал в США асинхронный электрический двигатель переменного тока. Он же изобрел и синхронный генератор, впоследствии использованный и как двигатель. Это второй и третий герои нашей статьи.

Так поговорим же о них поподробнее

Если в детстве вам доводилось разбирать игрушечные электрические машинки, то вы должны помнить устройство их простейших двигателей. Для остальных напомним. Все применяемые в электромобилях моторы состоят из двух частей: неподвижного статора и вращающегося ротора.

В игрушечных машинах на статоре стоят постоянные магниты, а на роторе – электрические переменные. При вращении на них через специальные щетки подается постоянный ток от батареек, и их последовательное включение и обеспечивает движение.

Похожая конструкция встречается практически у всех электромобилей. С одним отличием: на роторе там стоят постоянные магниты, а на статоре, напротив, электрические и переменные. Так в том числе можно избавиться от щеток: одного из немногих элементов электродвигателя, который подвержен износу.

Преимущество моторов на постоянных машинах в том, что они легкие, компактные, мощные, эффективные, работают от вырабатываемого аккумуляторами постоянного тока… так, стоп! А какие недостатки?

Недостаток прост. Таким моторам не хватает тяги. Так перейдем же к асинхронным инверсионным моторам переменного тока.

Бородатый анекдот про умирающего мастера заваривать чай, который делился своим секретом словами «не жалейте заварки» – это прям притча про компанию Tesla. Вопреки расхожему мнению, ее основал не Илон Маск (он позже стал главным инвестором и владельцем), а Мартин Эберхард и его партнер Марк Тарпенинг.

Эти двое придумали немыслимое. Создать не тихоходный, эффективный и относительно дешевый электрокар, а дорогой, быстрый и клевый. Маск же первым идею оценил и быстро прибрал ее к рукам.

Имя компании Tesla не случайно. Одной из ее технических революций стало использование асинхронного двигателя без постоянных магнитов, работающего на переменном токе – того самого, который изобрел Никола Тесла. Эта конструкция дороже как сама по себе, так и благодаря необходимости в установке преобразователя постоянного тока от батареи в переменный для электродвигателя. Успешное решение данной задачи и стало первым из множества теперь уже легендарных прорывов «Теслы».

Благодаря мощному асинхронному мотору электрокары Tesla с самого начала были очень динамичным, что стало ключевой причиной роста их популярности. В таком моторе переменный ток в обмотке статора создает вращающееся магнитное поле. Оно вызывает индукцию в роторе, заставляя его вращаться чуть медленнее, чем вращение самого поля – поэтому двигатель и называется асинхронным. Если скорости вращения синхронизируются, поле перестает создавать в роторе индукцию, и он начинает замедляться, рассинхронизируясь обратно. Важно заметить, что собственно на ротор никакого электричества напрямую не подается.

Итак, есть еще третий тип электрического двигателя, который встречается в современных электромобилях: синхронный на электромагнитах. Он похож по устройству на двигатели с постоянными магнитами на роторе, только эти магниты – электрические. На них подается постоянный ток, так что полярность магнитов ротора остается неизменной. А вот полярность магнитов статора, напротив, меняется, что и обеспечивает вращение.

Такие синхронные моторы на электромагнитах славятся своей способностью обеспечивать стабильность оборотов и ставятся, обычно, на всякие установки вроде насосов. А еще… на электрокар Renault Zoe. Зачем? Честно сказать, найти быстрый ответ на этот вопрос не получилось. Можем лишь предположить, что это связано с лучшей способностью такого двигателя служить генератором, рекуперируя энергию торможения. Мотор на Zoe не самый мощный, а мощным генератором он быть обязан.

Так что же лучше? Большинство автоконцернов выбирает моторы на постоянных магнитах: они эффективнее. Tesla в первые годы настаивала на асинхронных моторах. Но потом… сделала ставку на двух моторную полнопривродную схему, в которой асинхронный мотор обеспечивает динамику, а двигатель на постоянных магнитах гарантирует низкий расход энергии при небольших нагрузках. И только Renault… ну вы поняли.

А теперь о том, что ждет нас дальше. При буксировке даже обесточенный двигатель на постоянных магнитах тут же начинает работать как генератор, что чревато перегревом и возгоранием энергосистемы электромобиля. В синхронных моторах Renault оставшейся магнетизм в роторе также способен вызвать индукцию в катушках статора, ну и пошло поехало – генерация тока, перегрев, пожар.

И только асинхронные двигатели, когда их статоры не под напряжением, не являются генераторами: их можно буксировать.

Так вот, современная тенденция такова. Моторы на постоянных магнитах становятся все мощнее и тяговитее, оставаясь самыми эффективными. Производители постепенно переходят на них. Но придумать, как машины с ними безопасно буксировать инженерам еще предстоит. Пока они декларируют принцип «Наши электромобили не ломаются и в буксировке не нуждаются». Но звучит не больно убедительно.

Что такое катализатор на автомобиле, зачем он нужен и что будет, если его убрать

Автомобиль в системе выхлопа имеет каталитический нейтрализатор, который часто выходит из строя из-за некачественного топлива. Давайте разберемся, что это такое, для чего нужен и что делать в случае засора.

Что такое катализатор

Катализатор предназначен для очистки вредных выхлопов. Он расположен в системе выпуска, в процессе его работы происходят химические реакции: опасные вещества переходят в безопасные формы, после чего выбрасываются вместе с выхлопом. Пройдя этот путь выхлопные газы становятся чище. И как результат, автомобиль наносит меньший вред окружающей среде. 

Схема катализатора

Нейтрализатор работает только после нагрева до 300°C, сразу после запуска двигателя очистка не происходит.

Устройство каталитического нейтрализатора

Основой катализатора являются керамические или металлические соты. В зависимости от модели на стенки сот наносится микрослой из палладия и родия или иридия. Эти металлы обладают высокой химической активностью. Касаясь напыления, часть выхлопа входит с ним в химическую реакцию. Часть элементов, образовавшихся при сгорании топлива, связывается.

Современные катализаторы трехкомпонентные.

  • Первый элемент связывает оксиды азота.
  • Второй — удаляет часть несгоревших элементов топлива. В большей части удаляется окись углерода.
  • Третий элемент — это датчик. Он анализирует газы на выходе из катализатора, данные передаются в бортовой компьютер.

Трехкомпонетные катализаторы

Неисправности катализатора и их причины

Производители пишут, что срок службы нейтрализатора 100–150 тысяч километров. Но на практике проблемы могут возникнуть и при меньшем пробеге, особенно в больших городах, где часто приходится стоять в пробках. 

В зависимости от особенностей эксплуатации, замена каталитического нейтрализатора может производиться раз в 3–7 лет.

Основной причиной неисправности становится выгорание слоя металлов, покрывающих соты. Это естественный процесс, в результате которого качество выхлопа ухудшается. Бортовой компьютер показывает горящий «чек», а в некоторых случаях и вообще не позволяет мотору работать, выключая зажигание.

Ускоряет процесс выгорания и некачественное топливо. Зачастую у бензина увеличивают октановое число путем добавки свинца, это усиливает нагрузку на катализатор, уменьшая срок эксплуатации. В ситуации с дизельным топливом выход из строя может ускорить сам владелец, используя в зимнее время добавки-«антигель».

В некоторых случаях причиной поломки может стать неисправный двигатель. При неправильно выставленном зажигании и проблемах в системе питания (последнее особенно актуально для дизельных двигателей) выгорание каталитического слоя ускоряется.

Соты каталитического нейтрализатора

Диагностика автомобильного катализатора

Определить неисправность можно по нескольким признакам:

  • На панели приборов загорелась лампочка “Check Engine”. Она включается при любых ошибках мотора. В нашем случае, как результат нехарактерных показателей датчика, лямбда-зонд. Точно определить, что причина в катализаторе может диагностика сканером.
  • Снижение мощности двигателя. При неисправном катализаторе машина начинает троить, дергаться, хуже разгоняется. Причина в снижении пропускной способности каталитического нейтрализатора, связанной с частичным разрушением сот: они запекаются, забивают проход для выхлопных газов. В итоге мотор «задыхается».
  • Грохот под днищем. Обычно проявляется на высоких оборотах, изредка сразу после запуска. Причина в частичном разрушении керамической конструкции сот. Отпавшие частицы начинают биться о стенки катализатора под воздействием потока газов и центробежных сил.
  • Недостаточно сильный или ровный напор газов из глушителя. При исправном нейтрализаторе, поднеся руку к выхлопной трубе, можно ощутить слабую пульсацию, она возникает вследствие поочередной работы выпускных клапанов. Если поток ровный или ослабленный, вероятно проблема в разрушенных сотах катализатора.

Каталитический нейтрализатор не выходит из строя резко и неожиданно. Обычно перед отказом начинаются мелкие проблемы из списка выше.

Катализатор в разборе

Оригинал или аналог

Оригинальный катализатор — довольно дорогая вещь. Он не производится в нашей стране, все детали в автомагазинах импортные, поэтому на увеличение цены влияют пошлины.

При этом, в случае использования оригинальной детали, автомобиль сохраняет все режимы работы двигателя. Это положительно сказывается на экологии, а также на ресурсе мотора.

Все описанные ниже способы замены катализатора, носят только ознакомительный характер. Не рекомендуется пользоваться данными методами самостоятельно!

Из-за высокой цены автолюбители ищут альтернативу. Вариантов несколько:

  • универсальный катализатор;
  • пламегаситель.

Под универсальным катализатором подразумевается сразу две группы деталей. Первая — катализатор, подходящий под любой автомобиль. Довольно дорогая вещь, но работает безотказно. Второй вариант — блок с сотами. В этом случае в старый катализатор устанавливают новые соты. Недостатком данного варианта считается сложность с выбором сервиса для ремонта, не везде возьмутся за такую работу. Срок службы универсального нейтрализатора 60–90 тысяч километров.

Съём/Установка катализатора

Более дешевый и распространенный способ — пламегаситель. Он может быть готовым, просто предназначенным для установки вместо катализатора. Другой вариант — установка пламегасителя непосредственно в корпус нейтрализатора. Такой способ несколько сложнее, но позволяет скрыть факт замены детали при продаже автомобиля.

Иногда водители просто выбивают соты из корпуса. Способ дешевый, но может привести к увеличению уровня шума и урону экологии.

Особенности удаления катализатора из выхлопной системы

Ниже рассмотрим, какие нюансы удаления катализатора стоит учитывать. В первую очередь, нужно решить, как будет обходиться лямбда-зонд. После удаления нейтрализатора, датчик будет постоянно выдавать ошибку.

Чтобы обойти датчик, обычно делают обманку. Это проставка, которая отдаляет датчик от выхлопных газов, в результате он фиксирует больше кислорода. Обманку вкручивают на место датчика, и уже в нее устанавливают прибор. Такая система работает стабильно, хоть и имеет большое количество минусов. 

  • Любое вмешательство в конструкцию автомобиля приводит к снятию его с гарантии. Подумайте, что будет, если возникнет неисправность двигателя, которая попадает под гарантийный случай.
  • Невозможность пройти государственный техосмотр. Бортовой компьютер вы обманули, но вот при проверке на стенде, обман вскроется. В итоге, вы получите запрет на эксплуатацию транспортного средства. Со станции СТО, вы поедете уже на эвакуаторе.

Еще можно сделать перепрошивку ЭБУ. В результате система будет считать, имеющиеся показатели за норму. Для такой работы требуются дополнительные знания, а также программное обеспечение.

Предупреждения на приборной панели

При перепрошивке нарушаются нормальные циклы работы мотора. Он начинает работать в неправильном режиме. Это снижает ресурс силового агрегата примерно в два раза. В результате перепрошивка вместо экономии принесет вам только больше расходов.

Заключение

В случае возникновения проблем с катализатором, необходимо его заменить. Оптимальным решением будет установка оригинального нейтрализатора. Все аналоги и обманки могут привести к ускоренному выходу двигателя из строя, сделают невозможным получение диагностической карты, а также создадут дополнительную нагрузку на экологию.

Экологически чистый газовый двигатель для морских судов

Kawasaki разработала экологически чистый морской газопоршневой двигатель — Kawasaki GREEN Gas Engine, модель серии L30KG с использованием выдающихся оригинальных технологий, эффективно снижающих выбросы NOx до уровня стандартов IMO (Международной морской организации) NOx Tier III, действующих с 2016 года, а также уменьшающих выбросы CO2 с помощью технологии сжигания обедненной смеси.

Особенности

Экология

  • Выбросы оксидов азота NOx меньше, чем 1.0 г/квт*час (значительно ниже ограничения стандартов IMO NOx Tier III)
  • Выбросы CO2 на 20 % меньше, чем при использовании мазута.
  • При сжигании СПГ отсутствуют выбросы серы.

Высокая эффективность

  • Самый низкий удельный расход топлива — 7 200 кДж/ квт*час
    1. По ISO 3046, без подключенных насосов.
    2. Турбокомпрессор с регулируемыми соплами, смазочные масла, рекомендованные Kawasaki, гарантийный допуск +5 %

Применение

  • Электрогенерация
  • Механический привод гребного винта с регулируемым шагом (CPP)
  • Гибридная силовая установка

Пропульсивный пэкедж Kawasaki

  • С гребным винтом с регулируемым шагом, азимутальным подруливающим устройством

Модельный ряд двигателей

Модель двигателя6L30KG8L30KG9L30KG
Диаметр цилиндрамм300
Ход поршнямм480
Число оборотовоб./мин.750
Мощность
кВт2 6703 5604 005
Удельный расход
топливного газа
кДж/кВт*ч 7 200
Масса
Тонн
33
 42 47

Схема двигателя (6L30KG)

Применение

Выработка электроэнергии / ГЭУГибкая компоновка
Устойчивый к перегрузкам и превышению числа оборотов
Механический привод (ВРШ)Простая конструкция
Высокая производительность в штатных режимах
Гибридная силовая установкаОптимизированная пропульсивная установка, основанная на карте эффективности двигателей и гребных винтов.

Ссылка

Брошюры

Головной офис

Головной офис в Токио
Департамент сбыта продукции морского машиностроения

ИНФОРМАЦИЯ И КАРТА
14-5, Кайган 1-тёмэ, Минато-ку,
Токио 105-8315, Япония
Отдел международной торговли
Телефон : +81-3-3435-2374/ Факс : +81-3-3435-2022

Если вам нужна дополнительная информация о нашем бизнесе, пожалуйста, свяжитесь с нами.
Телефон. +81-3-3435-2374

Контакты Цепь стартера двигателя

| Pacific Yacht Systems

Распространенная беда, из-за которой мы часто получаем запросы на обслуживание, — это двигатель, который не запускается или даже «не переворачивается». Большинство из нас знакомо со звуком низкого напряжения батареи стартера двигателя, который медленно переворачивает двигатель, но недостаточно быстро, чтобы запустить двигатель; некоторые люди, возможно, даже слышали «щелкающий» звук от батареи настолько низкого напряжения, что стартер даже не включается. Традиционные схемы стартера относительно просты, и базовое понимание схемы может позволить оператору найти неисправность в цепи.

«Стартер» состоит из электродвигателя, достаточно мощного, чтобы вращать двигатель, из-за высокой силы тока, необходимой для работы двигателя, приведение в действие стартера для включения будет осуществляться с помощью соленоида (обычно прикрепленного к двигателю). Это позволит цепи с переключением на более низкую силу тока на мгновение задействовать стартер. Кабель высокого тока подключается к одной стороне соленоида, а другой вывод соленоида с высоким током подключается к стартеру.На соленоиде будет один или два (два, если соленоид имеет изолированное заземление) меньших клемм, которые обеспечивают электрическое срабатывание соленоида.

Логика схемы стартера следует этому традиционному формату. Электропитание подается на сторону высокого тока соленоида стартера по кабелю, подключенному к выключателю пусковой аккумуляторной батареи двигателя. Выключатель стартерной батареи также будет обеспечивать питание остальной части цепи стартера, которая может включать дополнительный выключатель (также известный как выключатель).выключатель зажигания), но должен иметь выключатель мгновенного действия для приведения в действие соленоида стартера. Когда переключатель стартерной батареи двигателя находится в положении «включено», питание должно присутствовать на одной стороне соленоида стартера и на одной стороне переключателя мгновенного действия стартера (возможно, от переключателя «зажигание»). Нажатие кнопки мгновенного стартера подает напряжение на клемму срабатывания соленоида стартера, замыкая контакт соленоида и активируя стартер.

Диагностика падений напряжения Диагностика электрических неисправностей в автомобилях

Одно из самых серьезных электрических заболеваний, проявляющихся сегодня в автомобильных сервисных центрах, — это явление, известное как падение напряжения.Если не контролировать, то падение напряжения вызывает бесчисленные неразрешенные электрические загадки, особенно когда оно поражает заземленную сторону цепи. Это также может обманом заставить вас заменить неплохие детали.

Чем больше соединений и проводов в автомобиле, тем более уязвима электрическая система к падению напряжения.

Соблюдайте правила безопасного обслуживания электрооборудования при наличии перепада электрического напряжения. Это означает измерение падения напряжения, прежде чем делать какие-либо выводы. «Падение напряжения» в цепи сообщает вам, когда цепь слишком ограничена для работы компонента (например,g., мотор, реле, лампочку) или эксплуатировать его правильно. Если цепь заблокирована, отремонтируйте ее и повторите проверку. Если ограничений нет, а компонент по-прежнему не работает или работает правильно, замените компонент.

В этом примере при обрыве провода или обрыве соединения ток перестает течь, а напряжение падает до нуля. Выключается стартер или гаснет фара.

Симптомы падения напряжения

Часто сбивающие с толку и противоречивые симптомы падения электрического напряжения различаются в зависимости от работы схемы и серьезности падения напряжения.

  • Неисправные электрические детали
  • Вялые, ленивые электрические устройства
  • Неустойчивые, прерывистые устройства
  • Устройства, которые работают медленно или беспорядочно в периоды высоких электрических нагрузок
  • Чрезмерные радиопомехи или шумы в радио
  • Повреждена дроссельная заслонка или кабели передачи
  • Неоднократные отказы дроссельной заслонки или троса трансмиссии
  • Поврежденные детали трансмиссии
  • Жалобы на работу двигателя или трансмиссии
  • Отсутствие запусков или резкий запуск
  • Высокое напряжение датчика или компьютера
  • Неустойчивая работа компьютера двигателя или трансмиссии
  • Ложные коды неисправностей в памяти бортового компьютера
  • Преждевременный или повторяющийся отказ муфты компрессора кондиционера

В этом списке симптомов можно выделить несколько моментов.

  1. Визуальный осмотр в большинстве случаев пропускает падение электрического напряжения. Обычно вы не можете увидеть коррозию внутри соединения или поврежденный провод, из-за которого возникла проблема.
  2. Падение напряжения на стороне заземления, часто игнорируемая причина электрических неисправностей, может вызвать большинство из этих симптомов. Любая цепь или компонент хороши настолько, насколько хороши их заземления.
  3. Чем сложнее становятся электрические системы, тем важнее их заземление. Количество электрических компонентов быстро увеличивалось, и большинство из них не имеет отдельных заземляющих проводов.Вместо этого эти устройства заземлены на двигатель или кузов. Ржавчина, жир, вибрация и / или небрежный ремонт часто ограничивают цепь от двигателя / кузова обратно к аккумуляторной батарее.
  4. Многие компоненты, например датчики двигателя, имеют общую землю. Таким образом, плохое заземление усложняет диагностику, поскольку затрагивает сразу несколько компонентов.
  5. В некоторых руководствах и диагностических таблицах или деревьях неисправностей рекомендуется проверять заземление в последнюю очередь. Гораздо быстрее проверить цепи заземления перед тем, как взобраться на это дерево неисправностей.
  6. Быстрее и разумнее регулярно проверять падение напряжения в цепи, чем запоминать длинные списки симптомов. Если опыт ничему другому нас не научил, так это тому, что погоня за симптомами не заменяет рутинных и тщательных проверок падения напряжения.

Опыт научил нас другим причинам для проверки падения напряжения в первую очередь. Падение напряжения, обычно на стороне земли, приводит к неточным или странным показаниям цифрового мультиметра и осциллограммам. Более того, когда вы подключаете цифровой мультиметр или осциллограф к системе с плохим заземлением, само испытательное оборудование может создать хорошую замену заземления, в зависимости от импеданса инструмента.Если сопротивление достаточно низкое, это может расстраивать — если ваше оборудование подключено, цепь работает, и вы не найдете ничего плохого.

Основные процедуры

Всякий раз, когда у вас возникает проблема с электричеством, сделайте глубокий вдох и подумайте об основном электрическом строительном блоке: последовательной цепи. Независимо от того, насколько сложна система, вы всегда можете упростить ее до меньших серий схем. Затем проверьте каждую цепь на предмет падения напряжения.

В электрической цепи электрическое давление (напряжение или вольты) проталкивает электрический объем (ток или амперы) через цепь, приводя в действие нагрузку.Нагрузкой может быть компьютер, двигатель, лампа, реле или другое устройство. Электрическое давление (напряжение) расходуется на работу нагрузки. Следовательно, на стороне земли напряжение падает примерно до нуля, но ток продолжает течь к батарее. Поскольку напряжение в цепи исправного заземления должно быть около нуля, некоторые техники называют его нулевым заземлением.

Падение напряжения на стороне заземления ухудшает характеристики нагрузки и вызывает считывание напряжения на стороне заземления нагрузки.

Сопротивление — ограничение

Чрезмерное сопротивление в электрической цепи может вызвать ограничение тока.Плохие соединения, а также обрыв или недостаточный размер проводов действуют как изгиб трубы, ограничивая прохождение тока. Ограничение прохождения тока в любом месте — на горячей стороне или на стороне земли — ухудшает характеристики нагрузки. Влияние на нагрузку трудно предсказать, поскольку оно зависит от степени ограничения. Например, двигатель в цепи с ограничениями может перестать работать или просто работать медленнее, чем обычно.

Ограниченный контур может вызвать проскальзывание и преждевременное сгорание муфты компрессора кондиционера. Компьютер, подключенный к цепи с ограничениями, может отключиться или работать нестабильно.Когда коррозия, ослабленные соединения или другие типы сопротивления ограничивают цепь, напряжение и ток падают. Если падает напряжение, падает и сила тока. Вот почему, когда вы обнаруживаете падение напряжения в соединении или кабеле, вы знаете, что соединение или кабель ограничены.

Посмотрите на схемы на наших чертежах и запомните две критические точки:

  1. Свободная сторона заземления так же важна, как и свободно протекающая горячая сторона.
  2. Ограничение со стороны земли — единственное, что вызывает показания напряжения больше 0–0.1В в любой цепи заземления.

Обрыв провода заземления полностью блокирует прохождение тока, отключает нагрузку и заставляет сторону заземления нагрузки считывать напряжение системы.

Испытания падения напряжения

Падение электрического напряжения зависит от протекающего тока. Если вы не управляете схемой так, чтобы через нее протекал ток, вы не сможете измерить падение напряжения. Поскольку батарея цифрового мультиметра не может обеспечивать ток, который обычно протекает через большинство цепей, тесты цифрового мультиметра обычно не могут обнаружить ограничения так же точно, как тест падения напряжения.

Проблемы с обрывом цепи, например обрыв или отсоединение проводов или соединений, останавливают прохождение тока. После устранения обрыва цепи снова включите ее и проверьте, не наблюдается ли продолжающегося падения напряжения. Пока вы не пропустите ток и не проверите цепь снова, вы не сможете узнать, исправна ли вся цепь.

Хотя соединения, провода и кабели без сопротивления были бы идеальными, большинство из них будет иметь хотя бы некоторое падение напряжения. Если в ваших руководствах не указаны значения падения напряжения, используйте следующие максимальные пределы:

  • 0.00 В по соединению
  • 0,20 В по проводу или кабелю
  • 0,30 В по переключателю
  • 0,10 В по земле

Поскольку большинство компьютерных схем работают в миллиамперном диапазоне, они не допускают падения напряжения, а также других схемы делаем. Обратите внимание, что миллиампер равен одной тысячной (0,001) ампер. Рекомендуемый рабочий предел — падение 0,10 В на слаботочные провода и переключатели. Для тестирования слаботочных цепей также требуется цифровой мультиметр с высоким сопротивлением (10 МОм).Цифровой мультиметр с низким импедансом может настолько нагружать слаботочную цепь, что дает неверные показания или вообще не показывает их. Большинство цифровых мультиметров профессионального уровня имеют входное сопротивление 10 МОм. Использование цифрового мультиметра — самый быстрый способ точно измерить падение напряжения. Если у вашего цифрового мультиметра нет возможности автоматического выбора диапазона, используйте шкалу низкого напряжения (от 0 до 1 В) для проверки падения напряжения. Помните, что контрольные лампы недостаточно точны для диагностики падения электрического напряжения и могут повредить большинство компьютерных цепей.

Быстрые проверки заземления

Поскольку падение напряжения в цепи заземления может вызвать большинство перечисленных выше симптомов, подумайте о том, чтобы принять этот новый рабочий навык: сначала проверьте заземление. Прежде чем выполнять настройку, проверять электрические проблемы или проверять запуск, зарядку, АБС или систему кондиционирования воздуха, регулярно проверяйте двигатель и заземление кузова. Подключите цифровой мультиметр между двигателем и отрицательной клеммой аккумуляторной батареи. Безопасно отключите зажигание и проверните двигатель на несколько секунд, или, если ваш мультиметр имеет функцию записи данных, он будет регистрировать показания всего за 100 миллисекунд.

Если падение напряжения слишком велико, отремонтируйте цепь массы двигателя и повторите проверку. Обратите внимание, что в некоторых системах зажигания без распределителя самый простой способ предотвратить запуск двигателя во время проверки заземления — вытащить предохранитель топливного насоса. Затем подключите цифровой мультиметр между отрицательной клеммой аккумулятора и межсетевым экраном автомобиля. Затем запустите двигатель и включите основные электрические аксессуары. Если падение напряжения слишком велико, зафиксируйте массу тела и проведите повторную проверку.

Когда двигатель и масса кузова находятся в допустимых пределах, приступайте к диагностике. Не удивляйтесь, если исправление этих оснований решит проблемы автомобиля. Тот факт, что автомобиль проходит тест на массу, не означает, что вы можете безопасно заземлить свой цифровой мультиметр в любом месте. Некоторые техники часами бегают по кругу из-за того, что их цифровые мультиметры не имеют хорошего заземления. Для безопасного электрического обслуживания сделайте себе 20- или 30-футовую перемычку с зажимом типа «крокодил» на каждом конце, чтобы вы могли проверить электрический топливный насос, систему освещения или компьютер АБС в задней части автомобиля, заземлив цифровой мультиметр на аккумулятор с перемычкой.

Перегибы заземления компьютера

Поскольку компьютерные цепи работают с таким низким током, стандартные тесты заземления могут не выявить пограничного заземления на бортовом компьютере. Прежде чем осуждать какой-либо бортовой компьютер, сначала проверьте его обоснованность. Включите компьютерную систему и проверьте каждую клемму заземления компьютера. Если вы измеряете напряжение выше 0,10 В, проследите цепь заземления и найдите проблему.

Иногда заземления компьютера подключаются к месту, где они легко повреждаются или подвержены коррозии, например к болту корпуса термостата.Клеммы разъема компьютера также могут подвергнуться коррозии. Удаление разъема и обработка клемм электроочистителем — все, что нужно для устранения падения напряжения.

Опыт показывает, что всего лишь 0,30 В на клемме заземления компьютера может вызвать проблемы. Прежде чем определить это с помощью электронной контрольной лампы, помните, что традиционная контрольная лампа потребляет слишком большой ток и может повредить компьютер. Плохое заземление компьютера и / или датчика может вызвать превышение нормального напряжения датчика и появление ложных кодов неисправностей.Во многих случаях плохое заземление не позволяет компьютеру или датчику понижать сигнал напряжения до нулевой отметки или приближаться к ней. Доступ к компьютеру для проверки заземления может быть проблемой, однако ошибочная замена дорогих датчиков и компьютеров — большая проблема.

Подключите цифровой мультиметр к любой части цепи, чтобы напрямую измерить падение напряжения на этом проводе, кабеле, переключателе или соединении. В этом примере один цифровой мультиметр будет отображать потерю напряжения между батареей и нагрузкой, другой — потерю напряжения со стороны заземления нагрузки на батарею.

Гремлины от земли

Следите за отсутствием грунта на теле. Если кто-то другой работал с транспортным средством, возможно, он забыл повторно подключить провода или кабели заземления кузова. Помните, что когда земля ограничена, ток пытается найти другой путь обратно к батарее. Самый простой альтернативный путь может быть через трос переключения передач или трос дроссельной заслонки. Этот ток может не только спаять кабель, но и вызвать коррозию втулок и подшипников внутри трансмиссии или колесных подшипников.

Если вы обнаружите, что изоляция на заземляющем проводе кузова сгорела или покрылась пузырями, вы можете держать пари, что ток стартера перегрел провод. Когда заземление двигателя ограничено, стартерный ток пытается вернуться в аккумулятор через цепь заземления кузова. Опыт показывает, что если цепь заземления кузова не выдерживает текущей нагрузки, заказчик может не сразу заметить проблему.

В периоды сильного электрического тока ограниченное заземление может препятствовать работе компонента или отключать его.Например, известно, что указатели поворота перестают мигать, когда водитель нажимает на педаль тормоза. Тестирование подтвердило, что ограниченный участок земли заглушает поворотники. Земля не могла одновременно пропускать ток от указателей поворота и стоп-сигналов.

Безопасное обслуживание

Практика безопасного обслуживания электрооборудования поможет вам решать электрические проблемы быстрее и выгоднее, чем угадывать и менять детали. Заставьте свой цифровой мультиметр работать, устраняя падение электрического напряжения уже сегодня.Это ответственный поступок.

Цепь стартера двигателя — Currents Bluewater Cruising

Распространенное бедствие, в связи с которым мы часто получаем запросы на обслуживание, — это то, что двигатель не запускается или даже не запускается. Большинство из нас знакомо со звуком низкого заряда батареи, когда стартер двигателя медленно переворачивает двигатель, но недостаточно быстро, чтобы запустить двигатель; некоторые люди, возможно, даже слышали «щелкающий» звук от батареи настолько низкого напряжения, что стартер даже не включается.Традиционные схемы стартера относительно просты, и базовое понимание схемы может позволить оператору найти неисправность в цепи.

«Стартер» состоит из электродвигателя, достаточно мощного, чтобы провернуть двигатель и запустить его. Из-за высокой силы тока, необходимой для работы двигателя, включение стартера осуществляется соленоидом (обычно прикрепленным к двигателю), который позволяет снизить силу тока для кратковременного переключения цепи для включения стартера.Кабель высокого тока подключается к одной стороне соленоида, а другой вывод соленоида с высоким током подключается к стартеру. На соленоиде будет один или два (два, если соленоид имеет изолированное заземление) меньших клемм, которые обеспечивают электрическое срабатывание соленоида.

Логика схемы стартера следует этому традиционному формату. Электропитание подается на сторону высокого тока соленоида стартера по кабелю, подключенному к выключателю пусковой аккумуляторной батареи двигателя.Выключатель батареи стартера также будет обеспечивать питание остальной части цепи стартера, которая может включать дополнительный переключатель включения / выключения (он же выключатель зажигания), но должен включать выключатель мгновенного действия для управления соленоидом стартера. Когда переключатель стартерной батареи двигателя находится в положении «включено», питание должно подаваться на одну сторону соленоида стартера и на одну сторону переключателя мгновенного действия стартера (возможно, от переключателя «зажигание»). Нажатие кнопки мгновенного стартера подает напряжение на клемму срабатывания соленоида стартера, замыкая контакт соленоида и активируя стартер.

Цепь электронного регулятора скорости двигателя

В посте обсуждается электронный регулятор или схема регулятора скорости двигателя, использующая контур сигнала обратной связи по частоте вращения через сеть датчиков Холла. Идея была предложена г-ном Имса Нага.

Цели и требования схемы

  1. Большое спасибо за ваше время. Я считаю, что эта схема подойдет для однофазного питания. У меня трехфазный генератор переменного тока 7 кВА, и я хотел бы соединить его с дизельным двигателем транспортного средства, имеющим ускоритель вместо регулятора скорости.
  2. То, что я хотел бы реализовать, это — «ЭЛЕКТРОННЫЙ РЕГУЛЯТОР СКОРОСТИ ДВИГАТЕЛЯ», который, вероятно, будет иметь электронный сервоуправляемый механизм, такой как — Цепь датчика скорости (датчик оборотов двигателя) для привода серводвигателя для приведения в действие механизма акселератора. для поддержания постоянной скорости двигателя по отношению к нагрузке, приложенной к генератору переменного тока.
  3. Это поможет сохранить частоту, а также напряжение генератора. Я мог бы позаботиться о механическом аспекте, если вы любезно спроектируете схему для управления серводвигателем таким образом, чтобы его можно было поворачивать в любом направлении относительно изменения оборотов двигателя.Большое спасибо в ожидании.

Принципиальная схема

ПРИМЕЧАНИЕ: ДВИГАТЕЛЬ МОЖНО ЗАМЕНИТЬ СОЛЕНОИДОМ НА 12 В ПОД ПРУЖИННОЙ НАГРУЗКОЙ

Конструкция

Схема регулятора или регулятора частоты вращения дизельного двигателя может быть показана на приведенном выше рисунке с использованием процессора частоты вращения с обратной связью или Схема тахометра

Левый каскад IC1 555 образует простую схему тахометра, которая сконфигурирована с датчиком эффекта Холла, прикрепленным к колесу нагрузки двигателя для определения его скорости вращения.

Число оборотов в минуту преобразуется в пропорционально изменяющуюся частоту или частоту импульсов и применяется на базе BJT для переключения контакта № 2 IC1.

Работа схемы

IC1 в основном настроен на моностабильный режим, который заставляет его выход генерировать пропорционально регулируемое переключение ВКЛ / ВЫКЛ, период которого устанавливается с использованием показанного 1M потенциометра.

Выходной сигнал микросхемы IC1, который передает данные о числе оборотов в минуту в виде длительных синхронизированных импульсов, адекватно сглаживается каскадом интегратора, состоящим из пары RC-компонентов, использующих резисторы 1 кОм, 10 кОм и 22 мкФ.Конденсаторы 2,2 мкФ.

Этот каскад преобразует грубые данные об / мин моностабильного устройства в достаточно плавно изменяющееся или экспоненциально изменяющееся напряжение.

Это экспоненциально изменяющееся напряжение можно увидеть подключенным к выводу № 5 следующего каскада IC2 555, сконфигурированного как нестабильная схема.

Функция этого нестабильного устройства заключается в генерации очень узкого или низкого выходного сигнала ШИМ на его выводе №3 в нормальных рабочих условиях.

Здесь нормальное рабочее состояние относится к ситуации, когда измеренное число оборотов находится в пределах указанного предела, а на вывод № 5 IC2 не поступает входное напряжение от эмиттерного повторителя.Этот низкий выход ШИМ может быть реализован путем соответствующей настройки двух резисторов 100 кОм и конденсатора 1 мкФ, связанных с контактом №6 / 2 IC2 и контактом №7.

Этот низкий уровень ШИМ от контакта № 3 IC2 не может переключить TIP122 достаточно сильно, и, следовательно, указанный узел мотор-колеса не может получить требуемый импульс и, следовательно, остается отключенным.

Однако, когда число оборотов в минуту начинает расти, тахометр начинает вырабатывать экспоненциально более высокие напряжения, что, в свою очередь, вызывает пропорциональное увеличение напряжения на выводе № 5 IC2.
Это впоследствии позволяет TIP122 вести себя более жестко, а подключенному двигателю получить достаточный крутящий момент, так что он начинает нажимать подключенную педаль акселератора в сторону режима замедления.

Эта процедура заставляет дизельный двигатель снизить скорость, что, соответственно, приводит к тому, что тахометр и ступени ШИМ возвращаются в исходное состояние и обеспечивают требуемую управляемую скорость для дизельного двигателя.

Вместо показанного устройства ускорительного двигателя коллектор TIP122 может быть альтернативно соединен проводом с блоком CDI дизельного двигателя для идентичного снижения скорости, для облегчения твердотельной и более надежной реализации обсуждаемого электронного управления скоростью двигателя или электронного цепь регулятора оборотов двигателя.

Как установить

Первоначально держите ступени IC1, IC2 отключенными, удалив перемычку эмиттерного повторителя с контакта № 5 IC2.

Затем убедитесь, что два резистора 100 кОм соответствующим образом заменены и отрегулированы таким образом, чтобы контакт № 3 микросхемы IC2 генерировал минимально возможные ШИМ (при временном интервале включения приблизительно 5%).

После этого, используя регулируемый источник питания от 0 до 12 В, подайте переменное напряжение на вывод № 5 микросхемы IC2 и подтвердите пропорциональное увеличение ШИМ на выводе № 3.

После тестирования нестабильной секции ее тахометр должен быть проверен путем подачи известных импульсов числа оборотов, соответствующих желаемому превышению предельного числа оборотов.Во время регулировки базовая настройка эмиттерного повторителя BJT так, чтобы его эмиттер мог генерировать не менее 10 В или уровень, достаточный для того, чтобы заставить IC2 PWM создать требуемый крутящий момент на подключенном двигателе управления педалью.

После некоторых дополнительных настроек и экспериментов вы можете рассчитывать на достижение необходимого автоматического регулирования скорости для двигателя и нагрузки, связанной с ним.

ОБНОВЛЕНИЕ

Если двигатель заменить подпружиненным соленоидом, то вышеуказанная конструкция может быть значительно упрощена, как показано ниже:

Вал соленоида может быть соединен с педалью акселератора для выполнения предполагаемого автоматического регулирования скорости двигателя. .

Дополнительные возможности преобразователя частоты в напряжение см. В статье .

Электрооборудование двигателя

В течение сорока лет после первый полет братьев Райт использовались самолеты двигатель внутреннего сгорания повернуть пропеллеры генерировать толкать. Сегодня большинство самолетов авиации общего назначения или частных самолетов все еще находятся в эксплуатации. с пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. Мы обсудим основы двигатель внутреннего сгорания с использованием Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера.Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить и изучить основы двигателей и их операция. На этой странице мы представляем компьютерный чертеж электрической системы Райта Авиадвигатель братьев 1903 года.

Механическое управление

На рисунке вверху показаны основные компоненты электрической системы двигателя Wright 1903. В любом двигателе внутреннего сгорания топливо и кислород объединяются в процесс горения произвести силу, чтобы повернуть коленчатый вал двигателя.Задача электрической системы — обеспечить искру, которая инициирует горение.

Электроэнергия вырабатывается магнето в задней части двигателя. Магнето полагается на физический принцип электрической индуктивности для производства электричества; когда провод проходит через магнитное поле, электрический ток индуцировал в проводе. Магнето имеет большой U-образный постоянный магнит вверху. Между плечами магнита намотана проволока. вал, который вращается фрикционным приводом , трение колеса о маховик двигателя.В движущемся проводе индуцируется электрический ток. Мощность для поворота магнето обеспечивается работающим двигатель. Магнето очень похоже на генератор или генератор на современный автомобиль. Братья Райт купили свой магнето, и он обеспечивал очень скромные 10 вольт при 4 амперах в работе. Два провода подключают магнето к двигателю; заземляющий провод к нога картер, и силовой провод к шине снаружи четырех камер сгорания двигателя.

В каждой камере сгорания электрическая шина проводит электричество к розетка свеча которая вкручивается через стенку камеры. В заглушка изолирована от стенки камеры. Внутри камеры там представляет собой подвижный контактный переключатель . Когда переключатель замкнут, создается цепь, и через нее проходит электричество. провода, шину и вилку. При быстром размыкании переключателя возникает искра. сгенерировано. Вы можете увидеть этот эффект, если отключите работающий прибор в домашних условиях. Пружинные рычаги , установленные снаружи камеры, используется для размыкания и замыкания контактного выключателя с помощью изолированного вала, который проходит через стенку камеры сгорания. Пружинные рычаги прикреплены к картеру двигателя, который заземлен на магнето. Рычаги приводятся в действие кулачками которые включают распредвал под двигатель. Кулачковый вал соединен шестернями с кулачковым валом выпускного клапана. который превращается временная цепь. Шестерни и кулачки гарантируют, что контактный выключатель размыкается, и искра зажигания возникает как раз при подходящий момент двигателя цикл.Вот компьютерная анимация действия рычагов и контактного переключателя:

В этой анимации мы вырезали открытый цилиндр №3, чтобы вы могли наблюдать движение клапанов, кулачков, коромысел, электрических контактов и переключателей. Пружина, которая перемещает электрический контакт внутри цилиндра №3 частично скрыт самим цилиндром. Весна еле видна за синей пружиной выпускного клапана. Вы можете лучше увидеть действие электрический кулачок и пружина на соседнем цилиндре №4 справа.Но обратите внимание что синхронизация движения переключателей и клапанов различается между прилегающие цилиндры. В анимации мы вырезали шину, чтобы чтобы увидеть цилиндр №3 изнутри; штанга оборачивается вокруг цилиндра №3 в таким же образом, как он оборачивается вокруг цилиндра №2 слева.

Как это работает?

Чтобы понять, как работает электрическая система, мы нарисовали Упрощенная схема подключения двигателя :

Мы пронумеровали цилиндры (и камеры сгорания) от 1 до 4. идёт от передней части двигателя к задней.Магнито, провода, контактные выключатели и заземленные цилиндры производят электрическая цепь , о которой вы слышали в школе. Этот конкретный тип схемы называется параллельной схемой . потому что есть параллельные линий , проходящие через четыре цилиндры. Контактный выключатель на любом цилиндре может быть открыт или закрыт не затрагивая соседние цилиндры. (Если бы цилиндры были подключен к серии , размыкание любого переключателя отключит ток ко всем цилиндрам.)

На протяжении почти всего цикла для данного цилиндра контактный выключатель удерживается разомкнутым, и через систему не течет ток. Но когда кулачок нажимает на рычаги, контактный переключатель в одном цилиндре изначально замкнут, что производит ток электричество от магнето через шину, выключатель и рычаги, к картеру и обратно к магнето. Это состояние для цилиндра №1 показано в верхней части рисунка. Поскольку кулачок продолжает двигаться, контактный переключатель внезапно размыкается, как показано внизу рисунка.Небольшая искра возникает, когда выключатель открыт (вы можете увидеть этот эффект, если выдернете вилку из операционная лампа в вашем доме.) Внутри камеры сгорания эта искра используется для воспламенения топлива / воздуха. смесь в конце ход сжатия. Контактный выключатель остается разомкнутым внутри цилиндр до следующего обжига. Открытие переключателя называется электрический разрыв (цепи) и эта техника зажигания называется системой «сделать и сломать». Четыре цилиндра этого двигателя горят по одному в порядке срабатывания , который повторяется.Братья использовал порядок стрельбы 1 — 3 — 4 — 2, чтобы сбалансировать стрельбы и сделать двигатель работает максимально плавно.

Историческая справка — Обратите внимание, что в системе «сделать и сломать» есть подвижные части, расположенные внутри камеры сгорания. Современное внутреннее сгорание двигатели не используют этот метод, а вместо этого используют свечу зажигания, чтобы произвести искра зажигания. Свеча зажигания не имеет движущихся частей, что намного безопаснее, чем у свечи зажигания. метод, используемый братьями. В современных системах также используется очень высокое напряжение по сравнению с системой братьев.Но у братьев было одно преимущество перед современными системами. Их контактные данные перемещались во время цикла двигателя, поэтому оставались относительно чистыми. Современные свечи зажигания могут загрязнять из-за масла и грязи, присутствующих в камера сгорания собирается в зазоре свечи. «Сделать и break «система не имеет этой проблемы.


Деятельность:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Механизм умножения и сложения с монолитно интегрированной трехмерной перемычкой мемристора / гибридной схемой CMOS

  • 1

    Chen, Y.S. et al. Масштабируемая память из оксида гафния с улучшенным резистивным распределением и защитой от помех при чтении. IEDM Tech. Копать землю. 5.5. 1–4 http://dx.doi.org/10.1109/IEDM.2009.5424411 (2009).

  • 2

    Hsu, C. W. et al. Вертикальная трехмерная память TaOx / TiO2 RRAM с коэффициентом самовыпрямления более 103 и рабочим током менее мкА. IEDM Tech. Копать землю. 10.4. 1–4 http://dx.doi.org/10.1109/IEDM.2013.6724601 (2013).

  • 3

    Govoreanu, B. et al. Резистивное ОЗУ Hf / HfOx с поперечной перемычкой 10 × 10 нм2 с превосходной производительностью, надежностью и низким энергопотреблением. IEDM Tech. Копать землю. 31.6. 1–4 http://dx.doi.org/10.1109/IEDM.2011.6131652 (2011).

  • 4

    Ли, С. Р. и др. Многоуровневая коммутация трехуровневой памяти TaOx RRAM с превосходной надежностью для памяти класса хранения. Dig. Tech. папа — СБИС Технол. (ВЛСИТ), 2012 г. 52 , 71–72 (2012).

    Артикул Google ученый

  • 5

    Sheu, S. S. et al. Встроенный макрос резистивного ОЗУ SLC размером 4 Мбайт с расширением 7.Время произвольного доступа чтения-записи 2 нс и возможность доступа MLC 160 нс. Dig. Tech. pap.- Int. Твердотельные схемы, конф. (ISSCC) 11.2. 200–202 http://dx.doi.org/10.1109/ISSCC.2011.5746281 (2011).

  • 6

    Sheu, S. S. et al. Многоуровневая энергонезависимая память RRAM емкостью 1 Кбит с быстрой записью 5 нс с опережающей схемой записи. Dig. Tech. pap.- Схемы СБИС, 2009 Symp. 82–83 (2009).

  • 7

    Kim, Y. B. et al. Двухслойный RRAM с неограниченным сроком службы и чрезвычайно равномерным переключением. Dig. Tech. pap.- VLSI Technol. (ВЛСИТ), 2011 г. 52–53 (2011).

  • 8

    Лайхо, М. и Лехтонен, Э. Арифметические операции в аналоговой памяти на основе мемристоров. Proc. Int. Семинар CNNA 1–4 http://dx.doi.org/10.1109/CNNA.2010.5430319 (2010).

  • 9

    Меррих-Баят, Ф. и Шураки, С. Б. Мемристорные схемы для выполнения основных арифметических операций. Процедура Comp. Sci. 3 , 128–132 (2011).

    Артикул Google ученый

  • 10

    Шин, С., Ким, К. и Кан, С. М. Применение мемристоров для программируемых аналоговых ИС. IEEE Trans. Нанотехнологии. 10 , 266–274 (2011).

    ADS Статья Google ученый

  • 11

    Габа, С., Шеридан, П., Чжоу, Дж., Чой, С. и Лу, В. Стохастические мемристивные устройства для вычислительных и нейроморфных приложений. Nanoscale 5 , 5872–5878 (2013).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 12

    Джо, С.H. et al. Наноразмерное мемристорное устройство как синапс в нейроморфных системах. Nano lett. 10 , 1297–1301 (2010).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 13

    Ким, К.-Х. и другие. Функциональная гибридная мемристорная матрица / КМОП-система для хранения данных и нейроморфных приложений. Nano lett. 12 , 389–395 (2012).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 14

    Прециозо, М.и другие. Обучение и работа интегрированной нейроморфной сети на основе металлооксидных мемристоров. Nature 521 , 61–64 (2015).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 15

    Ю, С., Ву, Ю., Джеясинг, Р., Кузум, Д. и Вонг, Х. С. П. Электронное устройство синапсов на основе металлооксидной резистивной коммутационной памяти для нейроморфных вычислений. IEEE Trans. Электрон Дев. 58 , 2729–2737 (2011).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 16

    Xia, Q. et al. Гибридные интегральные схемы мемристор-КМОП для реконфигурируемой логики. Nano lett. 9 , 3640–3645 (2009).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 17

    Янг, Дж. Дж., Боргетти, Дж., Мерфи, Д., Стюарт, Д. Р. и Уильямс, Р. С. Семейство электронно реконфигурируемых наноустройств. Adv. Мат. 21 , 3754–3758 (2009).

    CAS Статья Google ученый

  • 18

    Гао, Й., Ранасинге, Д. К., Аль-Сарави, С. Ф., Кавехей, О. и Эбботт, Д. Криптопримитив Memristive для создания высоконадежных физических неклонируемых функций. Sci. Отчет 5 , 12785 (2015).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 19

    Гао, Л., Алибарт Ф. и Струков Д. Б. Программируемая КМОП / мемристорная пороговая логика. IEEE Trans. Нанотех . 12 , 115–119 (2013).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 20

    Лихарев, К. К., Струков, Д. Б. CMOL: устройства, схемы и архитектуры. Lect. Примечания Phys. 680 , 447–477 (Springer, 2005).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 21

    Лихарев, К.К. Нейроморфные схемы КМОЛ. Proc. IEEE-NANO. 339–342 http://dx.doi.org/10.1109/NANO.2003.1231787 (2003).

  • 22

    Струков Д. Б., Лихарев К. К. Перспективы терабитной наноэлектронной памяти. Нанотех. 16 , 137–148 (2005).

    ADS Статья Google ученый

  • 23

    Liu, T. Y. et al. Двухслойное запоминающее устройство ReRAM емкостью 130,7 мм и 32 Гбайт по 24-нм технологии. IEEE J. Твердотельные схемы 49 , 140–153 (2014).

    ADS Статья Google ученый

  • 24

    Li, H. et al. Четырехслойная трехмерная вертикальная RRAM, интегрированная с FinFET в качестве универсального вычислительного блока для обработки когнитивной информации, вдохновляемой мозгом. Dig. Tech. pap.- VLSI Technol. (ВЛСИТ), 2016 Symp. 1-2 (2016).

  • 25

    Лин, П., Пи, С. и Ся, К. Трехмерная интеграция мемристивных устройств с планарной перекладиной и подложкой CMOS. Нанотех . 25 , 405202 (2014).

    Артикул Google ученый

  • 26

    Adam, G.C. et al. Высокооднородные многослойные перекрестные схемы ReRAM. Proc. ESSDERC 436–439 (2016).

  • 27

    Струков, Д. Б. и Уильямс, Р. С. Четырехмерная адресная топология для схем с многослойными многослойными матричными перекрестными панелями. Proc. Nat. Академия Наук. 106 , 20155–20158 (2009).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 28

    Ли, Х. Д., Миллер, М. Х. и Бифано, Т. Г. Планаризация кристалла CMOS для интегрированной металлической MEMS. SPIE Proc. 4979 , 137–144 (2003).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 29

    Ластрас-Монтаньо, М. А., Гофрани, А. и Ченг, К.-Т. Создание энергосберегающих запоминающих устройств с произвольным доступом на основе перекладин. Внутр. Symp. Наноразмерный Archit. (NANOARCH) 1–6 http://dx.doi.org/10.1109/NANOARCH.2015.7180575 (2015).

  • 30

    Payvand, M. et al. Настраиваемая платформа памяти CMOS для 3D-интегрированных мемристоров. Внутр. Symp. Схемы и сист. (ISCAS) 1378–1381 http://dx.doi.org/10.1109/ISCAS.2015.7168899 (2015).

  • 31

    Ян Дж. Дж., Струков Д. Б. и Стюарт Д. Р. Мемристивные устройства для вычислений. Нат. Нанотехнологии. 8 , 13–24 (2013).

    CAS ОБЪЯВЛЕНИЯ Статья Google ученый

  • 32

    Xia, L. et al. Технологическое исследование решетчатой ​​матрицы RRAM для умножения матрицы на вектор. J. Comp. Sc. Tech. 31 , 3–19 (2016).

    MathSciNet Статья Google ученый

  • 33

    Hu, M. et al. Механизм скалярных произведений для нейроморфных вычислений: программирование кроссбара 1T1M для ускорения умножения матрицы на вектор. Proc. Конференция по автоматизации проектирования. (DAC) 1–6 http://dx.doi.org/10.1145/2897937.2898010 (2016).

  • 34

    Лю Б. и др. Vortex: тренировка с учётом вариаций для мемристора по оси x. Proc. Конференция по автоматизации проектирования. (DAC) 1–6 http://dx.doi.org/10.1145/2744769.2744930 (2015).

  • BEAM Circuits — Солнечные двигатели

    Коллекция схем BEAM ЛУЧ Справочная библиотека сайт.

    Раньше я колебался, но теперь у меня расслабленный …
    Накопление энергии для дождя день



    В основе большинства роботов, работающих на солнечной энергии, лежит электрическая цепь. называемый солнечным двигателем (по-разному называемый Solar Двигатели, солнечные двигатели, СЭ; a.k.a, релаксационные осцилляторы). Цель солнечного двигателя — действовать как сила «сберегательный счет» — небольшая струйка поступающей энергии сохраняется до тех пор, пока не будет сохранена полезная сумма.Это хранится энергия затем выделяется в виде всплеска, чтобы полезная (хотя бы разовая и поэтапная) работа.

    Солнечный двигатель имеет ряд преимуществ:

    • Робота на солнечной энергии можно заставить работать даже в относительно низкий уровень освещенности.
    • Размер солнечной батареи минимизирован
      • Экономия денег
      • Экономия веса
      • Позволяет разместить солнечную батарею. усиленный.

    На сегодняшний день существует четыре типа солнечных двигателей:

    • Тип 1 — напряжение управляемый спусковой крючок. Это, безусловно, преобладающая форма солнечного двигателя, поскольку они «достаточно эффективны» для большинство применений и довольно проста в сборке.
    • Тип 2 — время управляемый спусковой крючок. Они не очень эффективны, но удобны для ботов, которым нужна активность в определенных раз.
    • Тип 3 — кривая заряда дифференцированный (т.е. он срабатывает, когда скорость заряда конденсаторы тормозят). Теоретически это наиболее эффективны, хотя конструкции типа 3 все еще находятся в младенчество.
    • Nocturnal — Эти солнечные двигатели заряжаются, когда светло, и разряжаются (т. е. запитать нагрузку) в темноте.
    Для дополнительной информации.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *