Электрические автоматы виды и назначение характеристики: Электрические автоматы. виды и работа. характеристики

Содержание

Электрические автоматы. виды и работа. характеристики

Таблица выбора защитного автомата по сечению кабеля

Выбор защитного автомата однозначно зависит от сечения кабеля. Если ток автомата выбран больше, чем надо, то возможен перегрев кабеля из-за протекания большого тока. Если же автомат выбран правильно, то при превышении тока он выключится, и кабель не повредится.

Таблица выбора автомата по сечению кабеля

Обратите внимание на способы прокладки кабеля (тип установки). От того, где проложен кабель, ток выбранного защитного автомата может отличаться в 2 раза!. По таблице – имеем исходно сечение кабеля, и под него выбираем защитный автомат

Для нас, как для электриков, наиболее важны первые три столбца таблицы

По таблице – имеем исходно сечение кабеля, и под него выбираем защитный автомат. Для нас, как для электриков, наиболее важны первые три столбца таблицы.

Теперь – как выбрать защитный автомат, если известна мощность приборов?

Как работает автоматический выключатель

Главная задача автоматического выключателя (автомата) — это улавливание чрезмерных токов в электросети, и мгновенное её обесточивание

Неважно, к какой категории относится автоматический выключатель, он должен уметь быстро обесточить электросеть и предотвратить тем самым повреждение кабелей

Поэтому главной функцией автоматического выключателя, является:

  • Срабатывание в случае перегрузки электросети. Здесь все достаточно просто, и если в сети возникнет чрезмерно большая нагрузка, например, из-за большого количества подключённых электроприборов в доме, автоматический выключатель должен сработать и обесточить домашнюю электросеть. Если этого не произойдёт, и автомат не справится со своей задачей, то может загореться электропроводка в доме;
  • Среагировать на сверхток, вызванный коротким замыканием электропроводки. Здесь все, также понятно. В случае замыкания, электропроводка подвергается сильному нагреву, а там где тонко, как известно, там и рвётся, поэтому, если автомат не сработает, возможно, повреждение и возгорание электропроводки.

Следует знать, что каждый автоматический выключатель рассчитан на разную силу тока. Время срабатывания автомата, зависит от величины перегрузки электросети. Если это короткое замыкание, то автоматический выключатель сработает мгновенно, буквально за считанные секунды. Если величина перегрузки не слишком большая, то автомат и электропроводка могут греться часами.

Что касается конструкции автоматического выключателя и его принципа работы, то в основе лежит биметаллическая пластина, через которую проходит электрический ток. Если он слишком большой величины, на которую автомат не рассчитан, то пластина начинает греться, что в итоге и приводит к срабатыванию автоматического выключателя.

Автоматы «В» и «С» — в чем разница, категории автоматических выключателей

Тех людей, которые занимаются модернизацией домашней электросети, часто интересует вопрос о том, чем именно отличаются автоматические выключатели категории «В» и «С», ведь именно они, чаще всего, устанавливаются в бытовых сетях. Главное отличие автоматов «В» и «С» в чувствительности электромагнитного расцепителя.

Буквы А, В, С, D и K, Z — как раз и указывают на характеристики расцепителя установленного в автоматическом выключателе:

А — автоматические выключатели данной категории имеют самую высокую чувствительность. Если номинальный ток на линии где будет установлен автомат категории «А» превысит 30%, то автоматический выключатель отключится.

В — автоматы этой категории срабатывают при превышении нагрузки по номинальному току в 3-5 раз. Автоматические выключатели категории «В» предназначены для установки в электросетях с отсутствием или с минимальным пусковым током (электродвигатели и т. д.). Простыми словами говоря, автоматы категории «В», более чувствительны к проходящему току, и при запуске мощных электродвигателей могут сработать.

С — автоматические выключатели стандартного типа с ещё большей перегрузочной способностью, чем у автоматов «В» класса. Их выключение происходит в том случае, если номинальный ток, проходящий через автомат, станет в 5-10 раз выше. Время срабатывания автомата категории «С», порядка 1,5 секунды. Такие автоматы предназначены для обеспечения защиты электросетей общего назначения.

Автоматы категории D, редко используются в быту. Чаще всего эти автоматические выключатели применяются в электросетях с большими пусковыми нагрузками. Ну и последние категории автоматов, это «K» и «Z», они используются в специальных целях, например, для защиты линий к которым подключены электронные устройства.

Виды и типы автоматических выключателей

Все наши электрические сети и цепи, а также бытовые электроприборы и электрооборудование надежно защищены автоматическими выключателями. Их главная задача — это в нужный момент обесточить электрическую цепь, т.е. отключить подачу электрического тока. Автомат (АВ) срабатывает, т.е. отключается, в случаях короткого замыкания и перегрузки в сети (нагрев проводов). Для различных электрических цепей существуют и различные виды и типы автоматических выключателей .

Виды автоматических выключателей (АВ)

• Все автоматы можно разделить на выключатели переменного тока, постоянного тока и универсальные, работающие при любом электрическом токе в сети.

• По своей конструкции АВ бывают: воздушные, модульные, а также в литом корпусе.

• Автоматические выключатели подразделяются по показателю номинального тока.

• Также еще одно различие — это номинальное напряжение. В большинстве случаев АВ работают в сетях с напряжением 220 или 380 Вольт.

• Электрические автоматы бывают токоограничивающие и нетокоограничивающие. Токоограничивающий автоматический выключатель — это выключатель с чрезвычайно малым временем отключения, в течение которого ток короткого замыкания не успевает достичь своего максимального значения.

• Все модели электровыключателей классифицируются по количеству полюсов. Они делятся на однополюсные, двухполюсные, трехполюсные и четырехполюсные автоматы.

• АВ подразделяются по виду расцепителей — максимальный расцепитель тока, независимый расцепитель, минимальный или нулевой расцепитель напряжения.

• По скорости срабатывания. Выделяют быстродействующие, нормальные и селективные автоматы. Бывают с выдержкой времени, без нее, независимой или обратно зависимой от тока выдержкой времени срабатывания. Характеристики могут сочетаться.

• Отличаются АВ и по степени защиты от окружающей среды — IP, механических воздействий, токопроводимости материала. По виду привода — ручной, двигатель, пружина.

• Также автоматы различают по наличию свободных контактов и способу присоединения проводников.

Типы автоматических выключателей

Что означает тип электрического автомата? Автоматические выключатели содержат внутри себя два вида размыкателей – тепловой и магнитный.

Магнитный быстродействующий размыкатель предназначен для защиты при коротком замыкании. Срабатывание размыкателя может происходить за время от 0,005 до нескольких секунд.

Тепловой размыкатель значительно медленнее, предназначен для защиты от перегрузки. Работает с помощью биметаллической пластины, нагревающейся при перегрузке цепи. Время срабатывания от нескольких секунд до минут.

Совместная характеристика срабатывания зависит от вида подключаемой нагрузки.

Существует несколько типов отключения АВ. Их еще называют — типы время-токовых характеристик отключения. Они обозначаются так — A, B, C, D, K, Z.

• A – применяется для размыкания цепей с большой длинной электропроводки, служит хорошей защитой для полупроводниковых устройств. Срабатывают при 2-3 номинальных токах.

• B – для осветительной сети общего назначения. Срабатывают при 3-5 номинальных токах.

• C – осветительные цепи, электроустановки с умеренными пусковыми токами. Это могут быть двигатели, трансформаторы. Перегрузочная способность магнитного размыкателя выше, чем у выключателей типа B. Срабатывают при 5-10 номинальных токах.

• D – применяются в цепях с активно-индуктивной нагрузкой. Для электродвигателей с большими пусковыми токами, например. При 10-20 номинальных токах.

• K – индуктивные нагрузки.

• Z – для электронных устройств.

Данные о срабатывании выключателей типов K, Z лучше смотреть в таблицах конкретно по каждому производителю.

Тепловой расцепитель автоматического защитного выключателя

Основным элементом этого устройства является биметаллическая пластина. При ее изготовлении используется два металла с различными коэффициентами теплового расширения.

Будучи спрессованными вместе, они при нагревании расширяются в разной степени, что приводит к искривлению пластины. Если ток не нормализуется в течение длительного времени, то по достижении определенной температуры пластина касается контактов АВ, прерывая цепь и обесточивая проводку.

Основной причиной чрезмерного нагрева биметаллической пластины, из-за которого срабатывает тепловой расцепитель, является слишком высокая нагрузка на определенном участке линии, защищенном автоматом.

Например, сечение выходного кабеля АВ, идущего в помещение, составляет 1 кв. мм. Можно подсчитать, что он способен выдерживать подключение приборов суммарной мощностью до 3,5 кВт, при этом сила проходящего в линии тока не должна превышать 16А. Таким образом, в эту группу можно спокойно подключить телевизор и несколько осветительных приборов.

Если хозяин дома решит включить в розетки этой комнаты дополнительно стиральную машину, электрокамин и пылесос, то общая мощность станет намного выше той, что способен выдержать кабель. В результате возрастет сила тока, проходящего по линии, и проводник станет нагреваться.

Перегрев кабеля может привести к тому, что изоляционный слой расплавится и загорится.

Чтобы этого не произошло, в действие вступает тепловой расцепитель. Его биметаллическая пластина нагревается вместе с металлом провода, и через некоторое время, изогнувшись, отключает питание группы. Когда она остынет, защитное устройство можно снова включить вручную, предварительно вытащив из розетки шнуры питания приборов, которые привели к перегрузке. Если этого не сделать, через некоторое время автомат вырубит снова.

Пример использования расцепителя в противопожарной защите на видео:

Важно, чтобы номинал АВ соответствовал сечению кабеля. Если он будет меньше нужного, то срабатывание будет происходить даже при нормальной нагрузке, а если больше, то тепловой расцепитель не отреагирует на опасное превышение тока, и в итоге проводка сгорит

В целях защиты электромоторов от длительных перегрузок и обрыва фаз на эти агрегаты могут также устанавливаться тепловые реле расцепления. Они представляют собой несколько биметаллических пластин, каждая из которых отвечает за отдельную фазу силового агрегата.

Типы автоматов

Данные изделия различаются по характеру процесса отключения на возникновение наиболее высокого тока. Существуют несколько основных типов автоматических устройств. Каждый вид отличается своей чувствительностью друг от друга.

В основном при производстве электромонтажа используются четыре ведущих типа: А, В, С, D. Кроме этого встречаются автоматы типа МА, K и Z.

Класс А

Защитные приборы данного типа имеют самую высокую чувствительность по отношению к остальным. Тепловой расцепитель такого автомата обесточивает электрическую цепь при повышении силы тока на 30%. Данный процесс осуществляется в течение 0,05 секунд, если ток превысил номинальное значение на 100%.

Автомат типа А не пользуется большой популярностью среди потребителей, так как завышенная чувствительность не допускает даже коротковременные повышенные нагрузки, которые вызывают постоянное срабатывание прибора. Эти типы зачастую устанавливают в электрические цепи, которые имеют соединения с полупроводниковыми элементами.

Класс В

Защитные средства категории В имеют меньшую чувствительность, чем тип В. Электронный расцепитель срабатывает на повышения силы тока на 200% от заявленной, при этом время отключения от электричества составляет 0,015 секунд. В случае если расцепитель по каким-то причинам не сработает, то биметаллическая пластина способна отключить электрическую систему за 4-5 секунд.

Такое устройство используется в электрических сетях, имеющих розетки, освещение и пусковое устройство с наименьшим значением.

Класс С

Аппараты типа С имеют большой спрос при монтаже бытовых электрических сетей. Они способны выдерживать наиболее высокие перегрузки. Чтобы произошел процесс отключения линии от напряжения, нужно чтобы протекающий ток в данной линии повысился в 5 раз от номинального показателя. При этом обесточивание линии происходит через 1,5 секунды.

Данные приборы хорошо выполняют свои защитные функции в общих бытовых сетях. Если в таких сетях розетки и осветительные приборы запитаны отдельно, то в этом случае защиту могут обеспечить приборы класса В. Данное действие производится для того, чтобы при появлении короткого замыкания не происходило обесточивание всего дома.

Класс D

Эти защитные изобретения выдерживают перегрузку сети, номинальный ток которой превышается в 10 раз. При этом отключение электрической цепи протекает в течение 0,4 секунд. Такие устройства нашли свое применение при защите зданий и сооружений в общем, то есть они устанавливаются дополнительно к имеющимся в квартирах автоматам.

Их отключение происходит лишь тогда, когда не сработали автоматические устройства отдельных помещений. Кроме этого их устанавливают в линиях с наиболее высоким значением пусковых токов.

Элестрический автомат: понятие и необходимость

Электрический автомат, или автоматический выключатель, представляет собой механическое коммутационное устройство, посредством которого можно вручную добиться обесточивания всей электросети или же конкретного ее участка. Сделать это можно в доме, квартире, на даче, в гараже и т.п. Более того, такой прибор оснащается функцией автоматического выключения электрического кабеля при возникновении аварийных ситуаций: например, в случае короткого замыкания либо при перегрузке. Отличие таких автоматических выключателей от обычных предохранителей состоит в том, что после срабатывания их можно кнопкой включить вновь.

Поговорим о том, как выбирать автоматы: электрические автоматы существуют в большом многообразии, что требует учета сразу целого ряда факторов при их покупке.

Нужен ли такой автомат? Необходимо дать утвердительный ответ. Исправно работающий автоматический выключатель будет защищать ваше помещение от различных неприятных ситуаций, в том числе от:

  • пожаров;
  • поражений электрическим током;
  • повреждений проводки.

Итак, при выборе автомата, как мы отмечали, следует учитывать сразу несколько показателей. Рассмотрим их по порядку.

Виды расцепителей

В бытовых автоматических выключателях чаще всего встречаются следующие
виды расцепителей: тепловой, электронный и электромагнитный. Они быстро
распознают критическую ситуацию (появление сверхтоков, перегрузки и перепады
напряжения) и размыкают контакты автоматического выключателя, предотвращая
порчу электрического оборудования и защищая проводку. Помимо этих видов,
существуют еще и расцепители нулевого напряжения, минимального напряжения,
независимые, полупроводниковые, механические.

Сверхтоки —
увеличение силы тока в электрической сети, превышающей номинальный ток
автомата. Это токи перегрузки, замыкания.

Ток перегрузки
— сверхток в функциональной сети.

Ток
короткого замыкания — сверхток, появляющийся в результате замыкания двух
составляющих сети при крайне низком сопротивлении между этими элементами.

Тепловой расцепитель

Тепловой расцепитель размыкает контакты автоматического
выключателя при небольших превышениях номинального тока, отличается увеличенным
временем срабатывания. При кратковременных превышениях токовой нагрузки он не
срабатывает, это удобно в сетях, где часты именно кратковременные превышения
номинального тока автомата.

Тепловой расцепитель является биметаллической пластиной, один
конец которой расположен рядом со спусковым механизмом расцепления. В случае
увеличения силы тока пластина начинает изгибаться и приближаться к спусковому
механизму, касается планки, а та, в свою очередь, размыкает контакты
автоматического выключатели. Принцип работы построен на физических свойствах
металла, расширяющегося при нагревании, поэтому такой расцепитель и называется
тепловым.

К достоинствам теплового расцепителя можно отнести отсутствие
трущихся друг о друга поверхностей, устойчивость к вибрациям, низкая стоимость
в силу простой конструкции

Но нужно обратить внимание и на недостатки — работа
теплового расцепителя сильно зависит от температуры окружающей среды, их
следует размещать в местах со стабильным температурным режимом вдали от
источников тепла, в противном случае возможны многочисленные ложные
срабатывания

Электронный расцепитель

В состав электронного расцепителя входят измерительные
устройства (датчики тока), блок управления и исполнительный электромагнит.
Электронные расцепители предназначены для подачи команды на автоматическое
отключения автомата с заданной программой при возникновении в электрической
цепи сверхтоков перегрузки или замыкания. При превышении силы тока через
автомат в блоке электронного расцепителя начинается отсчет времени срабатывания
в соответствии с время-токовой характеристикой. Если за время срабатывания ток
снизится до величины, ниже пороговой, то автоматического срабатывания не
произойдет.

К плюсам электронных расцепителей относятся: широкий выбор
настроек, четкое следование прибора заданной программе, наличие индикаторов.
Основной недостаток — довольно высокая стоимость, а также чувствительность
расцепителя к воздействию электромагнитного излучения.

Электромагнитный расцепитель

Электромагнитный расцепитель (отсечка) срабатывает мгновенно,
не допуская ни малейшей вероятности повреждения составных частей электроцепи. Это соленоид с подвижным
сердечником, который воздействует на механизм расцепления. В процессе протекания
тока по обмотке соленоида, в случае превышения токовой нагрузки, происходит
втягивание сердечника под воздействием электромагнитного поля.

Электромагнитный расцепитель срабатывает при превышении тока
короткого замыкания. Он обладает достаточной прочностью, устойчив к вибрации,
однако создает магнитное поле.

Определяемся с номиналом

Собственно, из функций защитного автомата и следует правило определения номинала автомата защиты: он должен срабатывать до того момента, когда ток превысит возможности проводки. А это значит, что токовый номинал автомата должен быть меньше чем максимальный ток, который выдерживает проводка.

На каждую линию требуется правильно выбрать автомат защиты

Исходя из этого, алгоритм выбора автомата защиты прост:

  • Рассчитываете сечение проводки для конкретного участка.
  • Смотрите, какой максимальный ток выдерживает данный кабель (есть в таблице).
  • Далее из всех номиналов защитных автоматов выбираем ближайший меньший. Номиналы автоматов привязаны к допустимым длительным токам нагрузки для конкретного кабеля — они имеют немного меньший номинал (есть в таблице). Выглядит перечень номиналов следующим образом: 16 А, 25 А, 32 А, 40 А, 63 А. Вот из этого списка и выбираете подходящий. Есть номиналы и меньше, но они уже практически не используются — слишком много электроприборов у нас появилось и имеют они немалую мощность.

Алгоритм очень прост, но работает безошибочно. Чтобы было понятнее, давайте разберем на примере. Ниже приведена таблица в которой указаны максимально допустимый ток для проводников, которые используют при прокладке проводки в доме и квартире. Там же даны рекомендации относительно использования автоматов. Они даны в колонке «Номинальный ток автомата защиты». Именно там ищем номиналы — он немного меньше предельно допустимого, чтобы проводка работала в нормальном режиме.

Сечение жил медных проводов

Допустимый длительный ток нагрузки

Максимальная мощность нагрузки для однофазной сети 220 В

Номинальный ток защитного автомата

В таблице находим выбранное сечение провода для данной линии. Пусть нам необходимо проложить кабель сечением 2,5 мм 2 (наиболее распространенный при прокладке к приборам средней мощности). Проводник с таким сечением может выдержать ток в 27 А, а рекомендуемый номинал автомата — 16 А.

Как будет тогда работать цепь? До тех пор, пока ток не превышает 25 А автомат не отключается, все работает в штатном режиме — проводник греется, но не до критических величин. Когда ток нагрузки начинает возрастать и превышает 25 А, автомат еще некоторое время не отключается — возможно это стартовые токи и они кратковременны. Отключается он если достаточно длительное время ток превысит 25 А на 13%. В данном случае — если он достигнет 28,25 А. Тогда электропакетник сработает, обесточит ветку, так как это ток уже представляет угрозу для проводника и его изоляции.

Расчет по мощности

Можно ли выбрать автомат по мощности нагрузки? Если к линии электропитания будет подключено только одно устройство (обычно это крупная бытовая техника с большой потребляемой мощностью), то допустимо сделать расчет по мощности этого оборудования. Так же по мощности можно выбрать вводный автомат, который устанавливается на входе в дом или в квартиру.

Если ищем номинал вводного автомата, необходимо сложить мощности всех приборов, которые будут подключены к домовой сети. Затем найденная суммарная мощность подставляется в формулу, находится рабочий ток для этой нагрузки.

Формула для вычисления тока по суммарной мощности

После того, как нашли ток, выбираем номинал. Он может быть или чуть больше или чуть меньше найденного значения. Главное, чтобы его ток отключения не превышал предельно допустимый ток для данной проводки.

Когда можно пользоваться данным методом? Если проводка заложена с большим запасом (это неплохо, кстати). Тогда в целях экономии можно установить автоматически выключатели соответствующие нагрузке, а не сечению проводников

Но еще раз обращаем внимание, что длительно допустимый ток для нагрузки должен быть больше предельного тока защитного автомата. Только тогда выбор автомата защиты будет правильным

Характеристики автоматических выключателей

Существует еще одна классификация автоматов – по их характеристикам. Этот показатель обозначает степень чувствительности защитного прибора к превышению величины номинального тока. Соответствующая маркировка покажет, насколько быстро в случае возрастания тока среагирует устройство. Одни типы АВ срабатывают моментально, в то время как другим на это понадобится определенное время.

Существует следующая маркировка устройств по их чувствительности:

  • A. Выключатели этого типа наиболее чувствительны и на повышение нагрузки реагируют мгновенно. В бытовые сети их практически не устанавливают, защищая с их помощью цепи, в которые включено высокоточное оборудование.
  • B. Эти автоматы срабатывают при возрастании тока с незначительной задержкой. Обычно они включаются в линии с дорогостоящими бытовыми приборами (жидкокристаллические телевизоры, компьютеры и другие).
  • C. Такие аппараты – самые распространенные в бытовых сетях. Отключение их происходит не сразу после повышения силы тока, а через некоторое время, что дает возможность ее нормализации при незначительном перепаде.
  • D. Чувствительность этих приборов к возрастанию тока самая низкая из всех перечисленных типов. Их чаще всего устанавливают в щитках на подходе линии к зданию. Они обеспечивают подстраховку квартирных автоматов, и если те по какой-то причине не срабатывают, отключают общую сеть.

Типы автоматов

Классификация автоматических выключателей основана на их типах и особенностей. Что касается типов, то можно выделить следующее:

  • Номинальные показатели способности к отключению — речь идет об устойчивости контактов выключателя к воздействию токов с высокими показателями, а также к условиям, в которых происходит деформация цепи. В таких условиях возрастает риск подгорания, который нейтрализуется благодаря появлению дуги и повышением температуры. Чем более качественным, прочным является материал изготовления оборудования, тем более высокими являются его соответствующие способности. Такие выключатели стоят дороже, однако их характеристики полностью оправдывают цену. Выключатели служат долго, не требуют регулярной замены
  • Калибровка номинала — речь идет о параметрах, в которых оборудование работает в нормальном режиме. Они устанавливаются еще на этапе производства оборудования, и уже в процессе его использования не регулируются. Данная характеристика позволяет понять, насколько сильные перегрузки способен выдерживать аппарат, период времени его работы в таких условиях
  • Уставка — обычно этот показатель отображается в виде маркировки на корпусе оборудования. Речь идет о максимальных значениях тока в нестандартных условиях, которая, даже при частом отключении, не окажет никакого влияния на функционирование аппарата. Выражается уставка в токовых единицах, маркируется латинскими буквами, цифровыми значениями. Цифры, в данном случае, отображают номинал. Латинские буквы можно увидеть в маркировке только тех автоматов, которые изготовлены в соответствии со стандартами DIN

Таблица различных типов автоматов

Типы и виды автоматических выключателей

Семейство электротехнических устройств, которые в повседневном употреблении нередко называют «электрический автомат», очень разнообразно. Если будет позволено такое сравнение, оно состоит из нескольких кланов, различающихся по типу воздействия, на которое они реагируют, а также по конструктивному исполнению.

В зависимости от этого они используются для защиты всей электрической сети в целом, отдельных цепей и устройств, или человека. Есть и внутриклановое деление. Например, по скорости срабатывания.

Типы автоматических выключателей по виду воздействия:

  • Срабатывание от сверхтоков (короткое замыкание) и нагрева. Самый распространенный тип. Применяются для защиты всей схемы электроснабжения (вводные автоматы) или отдельных устройств.
  • Реагирование на дифференциальный ток. Это так называемые УЗО – устройства защитного отключения, применяющиеся для предотвращения поражения человека электрическим током.
  • Тепловые реле. Используются в электрических приводах для защиты электродвигателей от перегрузок.

Различия по конструктивному исполнению:

  • Серия АП. Так называемые апэшки – большие черные коробки из электротехнического пластика с двумя кнопками: ВКЛ (белая) и ВЫКЛ (красная). Реагируют на тепло и сверхтоки. Обычно используются в трехфазных сетях для защиты отдельных устройств. Надежная массивная конструкция, считающаяся устаревшей.
  • Серия ВА. Современное малогабаритное устройство с рычагом включения-выключения, расположенным горизонтально.
  • Автоматические предохранители. Заменили так называемые пробки с резьбовым цоколем Эдисона Е14. Так же устаревшая, но еще широко применяющаяся в бытовых электрических сетях конструкция.

В зависимости от количества точек подключения, которые называют полюсами, выключатели бывают одно-, двух-, трех— и четырехполюсными.

Однополюсные коммутируют только одну линию, обычно фазную. Их используют в малонагруженных электрических цепях. Например, осветительных. Их второе название «модульные автоматические выключатели», поскольку их обычно собирают в пакет (на одну DIN-рейку несколько) и размещают в распределительном щите, по соседству с общей нулевой шиной. К ним же можно отнести и автоматические предохранители, входом которых является центральный контакт, а выходом – кольцо с резьбой.

Двухполюсные используются в однофазных сетях для защиты всей электрической схемы, тогда их называют вводными, или одного устройства.

Трех— и четырехполюсные устройства применяются для работы в трехфазных сетях, в которых может быть три (в случае глухозаземленной нейтрали) или четыре проводника.

Типы автоматических выключателей - какие бывают автоматы

Автоматическими выключателями называются устройства, задача которых состоит в защите электрической линии от воздействия мощного тока, способного вызвать перегрев кабеля с дальнейшим оплавлением изоляционного слоя и возгоранием. Возрастание силы тока может быть вызвано слишком большой нагрузкой, что происходит при превышении суммарной мощностью устройств той величины, которую кабель может выдержать по своему сечению – в этом случае отключение автомата происходит не сразу, а после того, как провод нагреется до определенного уровня. При КЗ ток возрастает многократно в течение доли секунды, и устройство тут же реагирует на него, мгновенно прекращая подачу электричества в цепь. В этом материале мы расскажем, какими бывают типы автоматических выключателей и их характеристики.

Автоматические защитные выключатели: классификация и различия

Помимо устройств защитного отключения, которые не используются по отдельности, есть 3 типа автоматов защиты сети. Они работают с нагрузками разной величины и отличаются между собой по своей конструкции. К ним относятся:

  • Модульные АВ. Эти устройства монтируются в бытовых сетях, в которых протекают токи незначительной величины. Обычно имеют 1 или 2 полюса и ширину, кратную 1,75 см.

  • Литые выключатели. Они предназначены для работы в промышленных сетях, с токами до 1 кА. Выполнены в литом корпусе, из-за чего и получили свое название.
  • Воздушные электрические автоматы. Эти устройства могут иметь 3 или 4 полюса и выдерживают силу тока до 6,3 кА. Используются в электрических цепях с установками высокой мощности.

Существует еще одна разновидность автоматов для защиты электросети – дифференциальные. Мы не рассматриваем их отдельно, поскольку такие устройства представляют собой обычные автоматические выключатели, в состав которых входит УЗО.

Типы расцепителей

Расцепители являются основными рабочими компонентами АВ. Задача их состоит в том, чтобы при превышении допустимой величины тока разорвать цепь, тем самым прекратив подачу в нее электроэнергии. Существует два основных типа этих устройств, отличающихся друг от друга по принципу расцепления:

  • Электромагнитные.
  • Тепловые.

Расцепители электромагнитного типа обеспечивают практически моментальное срабатывание автоматического выключателя и обесточивание участка цепи при возникновении в нем сверхтока короткого замыкания.

Они представляют собой катушку (соленоид) с сердечником, втягивающимся внутрь под воздействием тока большой величины и заставляющим срабатывать отключающий элемент.

Основная часть теплового расцепителя – биметаллическая пластина. Когда через автомат проходит ток, превышающий номинальную величину защитного устройства, пластина начинает нагреваться и, изгибаясь в сторону, касается отключающего элемента, который срабатывает и обесточивает цепь. Время на срабатывание теплового расцепителя зависит от величины проходящего по пластине тока перегрузки.

Некоторые современные устройства оснащаются в качестве дополнения минимальными (нулевыми) расцепителями. Они выполняют функцию выключения АВ, когда напряжение падает ниже предельного значения, соответствующего техническим данным устройства. Существуют также дистанционные расцепители, с помощью которых можно не только отключать, но и включать АВ, даже не подходя к распределительному щиту.

Наличие этих опций значительно увеличивает стоимость аппарата.

Количество полюсов

Как уже было сказано, автомат защиты сети имеет полюса – от одного до четырех.

Подобрать для цепи устройство по их числу совсем несложно, достаточно лишь знать, где используются различные типы АВ:

  • Однополюсники устанавливают для защиты линий, в которые включены розетки и осветительные приборы. Они монтируются на фазный провод, не захватывая нулевого.
  • Двухполюсник нужно включать в цепь, к которой подсоединена бытовая техника с достаточно высокой мощностью (бойлеры, стиральные машинки, электрические плиты).
  • Трехполюсники монтируются в сетях полупромышленного масшатаба, к которым могут подключаться такие устройства, как скважинные насосы или оборудование автомастерской.
  • Четырехполюсные АВ позволяют защитить от КЗ и перегрузок электропроводку с четырьмя кабелями.

Применение автоматов различной полюсности – на следующем видео:

Характеристики автоматических выключателей

Существует еще одна классификация автоматов – по их характеристикам. Этот показатель обозначает степень чувствительности защитного прибора к превышению величины номинального тока. Соответствующая маркировка покажет, насколько быстро в случае возрастания тока среагирует устройство. Одни типы АВ срабатывают моментально, в то время как другим на это понадобится определенное время.

Существует следующая маркировка устройств по их чувствительности:

  • A. Выключатели этого типа наиболее чувствительны и на повышение нагрузки реагируют мгновенно. В бытовые сети их практически не устанавливают, защищая с их помощью цепи, в которые включено высокоточное оборудование.
  • B. Эти автоматы срабатывают при возрастании тока с незначительной задержкой. Обычно они включаются в линии с дорогостоящими бытовыми приборами (жидкокристаллические телевизоры, компьютеры и другие).
  • C. Такие аппараты – самые распространенные в бытовых сетях. Отключение их происходит не сразу после повышения силы тока, а через некоторое время, что дает возможность ее нормализации при незначительном перепаде.
  • D. Чувствительность этих приборов к возрастанию тока самая низкая из всех перечисленных типов. Их чаще всего устанавливают в щитках на подходе линии к зданию. Они обеспечивают подстраховку квартирных автоматов, и если те по какой-то причине не срабатывают, отключают общую сеть.

Особенности подбора автоматов

Некоторые люди думают, что самый надежный автоматический выключатель – это тот, который может выдерживать наибольший ток, а значит, именно он может обеспечить максимальную защиту цепи. Исходя из этой логики, к любой сети можно подключать автомат воздушного типа, и все проблемы будут решены. Однако это совсем не так.

Для защиты цепей с различными параметрами надо устанавливать аппараты с соответствующими возможностями.

 

Ошибки в подборе АВ чреваты неприятными последствиями. Если подсоединить к обычной бытовой цепи защитный аппарат, рассчитанный на высокую мощность, то он не будет обесточивать цепь, даже когда величина тока значительно превысит ту, которую может выдержать кабель. Изоляционный слой нагреется, затем начнет плавиться, но отключения не произойдет. Дело в том, что сила тока, разрушительная для кабеля, не превысит номинал АВ, и устройство «посчитает», что аварийной ситуации не было. Лишь когда расплавленная изоляция вызовет короткое замыкание, автомат отключится, но к тому времени может уже начаться пожар.

Приведем таблицу, в которой указаны номиналы автоматов для различных электросетей.

Если же устройство будет рассчитано на меньшую мощность, чем та, которую может выдержать линия и которой обладают подключенные приборы, цепь не сможет нормально работать. При включении аппаратуры АВ будет постоянно выбивать, а в конечном итоге под воздействием больших токов он выйдет из строя из-за «залипших» контактов.

Наглядно про типы автоматических выключателей на видео:

Заключение

Автоматический выключатель, характеристики и виды которого мы рассмотрели в этой статье, является очень важным устройством, которое обеспечивает защиту электрической линии от повреждений мощными токами. Эксплуатация сетей, не защищенных автоматами, запрещена Правилами устройства электроустановок. Самое главное – правильно подобрать тип АВ, который подойдет для конкретной сети.

Типы автоматов электрических - Всё о электрике

Виды автоматических выключателей — какие бывают автоматы

Автоматическими выключателями называются устройства, задача которых состоит в защите электрической линии от воздействия мощного тока, способного вызвать перегрев кабеля с дальнейшим оплавлением изоляционного слоя и возгоранием. Возрастание силы тока может быть вызвано слишком большой нагрузкой, что происходит при превышении суммарной мощностью устройств той величины, которую кабель может выдержать по своему сечению – в этом случае отключение автомата происходит не сразу, а после того, как провод нагреется до определенного уровня. При КЗ ток возрастает многократно в течение доли секунды, и устройство тут же реагирует на него, мгновенно прекращая подачу электричества в цепь. В этом материале мы расскажем, какими бывают типы автоматических выключателей и их характеристики.

Автоматические защитные выключатели: классификация и различия

Помимо устройств защитного отключения, которые не используются по отдельности, есть 3 типа автоматов защиты сети. Они работают с нагрузками разной величины и отличаются между собой по своей конструкции. К ним относятся:

  • Модульные АВ. Эти устройства монтируются в бытовых сетях, в которых протекают токи незначительной величины. Обычно имеют 1 или 2 полюса и ширину, кратную 1,75 см.

  • Литые выключатели. Они предназначены для работы в промышленных сетях, с токами до 1 кА. Выполнены в литом корпусе, из-за чего и получили свое название.
  • Воздушные электрические автоматы. Эти устройства могут иметь 3 или 4 полюса и выдерживают силу тока до 6,3 кА. Используются в электрических цепях с установками высокой мощности.

Существует еще одна разновидность автоматов для защиты электросети – дифференциальные. Мы не рассматриваем их отдельно, поскольку такие устройства представляют собой обычные автоматические выключатели, в состав которых входит УЗО.

Типы расцепителей

Расцепители являются основными рабочими компонентами АВ. Задача их состоит в том, чтобы при превышении допустимой величины тока разорвать цепь, тем самым прекратив подачу в нее электроэнергии. Существует два основных типа этих устройств, отличающихся друг от друга по принципу расцепления:

Расцепители электромагнитного типа обеспечивают практически моментальное срабатывание автоматического выключателя и обесточивание участка цепи при возникновении в нем сверхтока короткого замыкания.

Они представляют собой катушку (соленоид) с сердечником, втягивающимся внутрь под воздействием тока большой величины и заставляющим срабатывать отключающий элемент.

Основная часть теплового расцепителя – биметаллическая пластина. Когда через автомат проходит ток, превышающий номинальную величину защитного устройства, пластина начинает нагреваться и, изгибаясь в сторону, касается отключающего элемента, который срабатывает и обесточивает цепь. Время на срабатывание теплового расцепителя зависит от величины проходящего по пластине тока перегрузки.

Некоторые современные устройства оснащаются в качестве дополнения минимальными (нулевыми) расцепителями. Они выполняют функцию выключения АВ, когда напряжение падает ниже предельного значения, соответствующего техническим данным устройства. Существуют также дистанционные расцепители, с помощью которых можно не только отключать, но и включать АВ, даже не подходя к распределительному щиту.

Наличие этих опций значительно увеличивает стоимость аппарата.

Количество полюсов

Как уже было сказано, автомат защиты сети имеет полюса – от одного до четырех.

Подобрать для цепи устройство по их числу совсем несложно, достаточно лишь знать, где используются различные типы АВ:

  • Однополюсники устанавливают для защиты линий, в которые включены розетки и осветительные приборы. Они монтируются на фазный провод, не захватывая нулевого.
  • Двухполюсник нужно включать в цепь, к которой подсоединена бытовая техника с достаточно высокой мощностью (бойлеры, стиральные машинки, электрические плиты).
  • Трехполюсники монтируются в сетях полупромышленного масшатаба, к которым могут подключаться такие устройства, как скважинные насосы или оборудование автомастерской.
  • Четырехполюсные АВ позволяют защитить от КЗ и перегрузок электропроводку с четырьмя кабелями.

Применение автоматов различной полюсности – на следующем видео:

Характеристики автоматических выключателей

Существует еще одна классификация автоматов – по их характеристикам. Этот показатель обозначает степень чувствительности защитного прибора к превышению величины номинального тока. Соответствующая маркировка покажет, насколько быстро в случае возрастания тока среагирует устройство. Одни типы АВ срабатывают моментально, в то время как другим на это понадобится определенное время.

Существует следующая маркировка устройств по их чувствительности:

  • A. Выключатели этого типа наиболее чувствительны и на повышение нагрузки реагируют мгновенно. В бытовые сети их практически не устанавливают, защищая с их помощью цепи, в которые включено высокоточное оборудование.
  • B. Эти автоматы срабатывают при возрастании тока с незначительной задержкой. Обычно они включаются в линии с дорогостоящими бытовыми приборами (жидкокристаллические телевизоры, компьютеры и другие).
  • C. Такие аппараты – самые распространенные в бытовых сетях. Отключение их происходит не сразу после повышения силы тока, а через некоторое время, что дает возможность ее нормализации при незначительном перепаде.
  • D. Чувствительность этих приборов к возрастанию тока самая низкая из всех перечисленных типов. Их чаще всего устанавливают в щитках на подходе линии к зданию. Они обеспечивают подстраховку квартирных автоматов, и если те по какой-то причине не срабатывают, отключают общую сеть.

Особенности подбора автоматов

Некоторые люди думают, что самый надежный автоматический выключатель – это тот, который может выдерживать наибольший ток, а значит, именно он может обеспечить максимальную защиту цепи. Исходя из этой логики, к любой сети можно подключать автомат воздушного типа, и все проблемы будут решены. Однако это совсем не так.

Для защиты цепей с различными параметрами надо устанавливать аппараты с соответствующими возможностями.

Ошибки в подборе АВ чреваты неприятными последствиями. Если подсоединить к обычной бытовой цепи защитный аппарат, рассчитанный на высокую мощность, то он не будет обесточивать цепь, даже когда величина тока значительно превысит ту, которую может выдержать кабель. Изоляционный слой нагреется, затем начнет плавиться, но отключения не произойдет. Дело в том, что сила тока, разрушительная для кабеля, не превысит номинал АВ, и устройство «посчитает», что аварийной ситуации не было. Лишь когда расплавленная изоляция вызовет короткое замыкание, автомат отключится, но к тому времени может уже начаться пожар.

Приведем таблицу, в которой указаны номиналы автоматов для различных электросетей.

Если же устройство будет рассчитано на меньшую мощность, чем та, которую может выдержать линия и которой обладают подключенные приборы, цепь не сможет нормально работать. При включении аппаратуры АВ будет постоянно выбивать, а в конечном итоге под воздействием больших токов он выйдет из строя из-за «залипших» контактов.

Наглядно про типы автоматических выключателей на видео:

Заключение

Автоматический выключатель, характеристики и виды которого мы рассмотрели в этой статье, является очень важным устройством, которое обеспечивает защиту электрической линии от повреждений мощными токами. Эксплуатация сетей, не защищенных автоматами, запрещена Правилами устройства электроустановок. Самое главное – правильно подобрать тип АВ, который подойдет для конкретной сети.

Электрические автоматы. Виды и работа. Характеристики

С самого начала возникновения электричества инженеры стали думать над безопасностью электрических сетей и устройств от токовых перегрузок. Вследствие этого было сконструировано много разных устройств, которые отличаются надежной и качественной защитой. Одними из последних разработок стали электрические автоматы.

Этот прибор называется автоматическим по причине того, что он оснащен функцией отключения питания в автоматическом режиме, при возникновении коротких замыканий, перегрузок. Обычные предохранители после срабатывания подлежат замене на новые, а автоматы после устранения причин аварии можно снова включить.

Такое защитное устройство необходимо в любой схеме электрической сети. Защитный автомат защитит здание или помещение от разных аварийных ситуаций:
  • Пожаров.
  • Ударов человека током.
  • Неисправностей электропроводки.
Виды и конструктивные особенности

Необходимо знать информацию о существующих видах автоматических выключателей, чтобы во время приобретения правильно выбрать подходящее устройство. Имеется классификация электрических автоматов по нескольким параметрам.

Отключающая способность
Это свойство определяет ток короткого замыкания, при котором автомат разомкнет цепь, тем самым отключит сеть и приборы, которые были подключены к сети. По этому свойству автоматы подразделяются:
  • Автоматы на 4500 ампер, применяются для предотвращения неисправностей силовых линий жилых домов старой постройки.
  • На 6000 ампер, используются для предотвращения аварий при замыканиях в сети домов в новостройках.
  • На 10000 ампер, применяются в промышленности для защиты электрических установок. Ток такой величины может образоваться в непосредственной близости от подстанции.

Срабатывание автоматического выключателя возникает при замыканиях, сопровождающихся возникновением определенной величины тока.

Автомат защищает электропроводку от повреждения изоляции большим током.

Число полюсов

Это свойство говорит нам о наибольшем количестве проводов, которые возможно подключить к автомату для обеспечения защиты. При аварии, напряжение на этих полюсах отключаются.

Особенности автоматов с одним полюсом

Такие электрические автоматы наиболее простые по своей конструкции, и служат для защиты отдельных участков сети. К такому автоматическому выключателю можно подсоединить два провода: вход и выход.

Задачей таких устройств является защита электрической проводки от перегрузок и КЗ проводов. Нейтральный провод подключается к нулевой шине, в обход автомата. Заземление подключается отдельно.

Электрические автоматы с одним полюсом не являются вводными, так как при его отключении разрывается фаза, а нулевой провод по-прежнему остается соединенным с питанием. Это не обеспечивает защиту на 100%.

Свойства автоматов с двумя полюсами

В случаях, когда при аварии требуется полное отсоединение от электрической сети, используют автоматические выключатели с двумя полюсами. Они используются как вводные. В аварийных случаях, либо при коротком замыкании вся электрическая проводка отключается в одно время. Это дает возможность осуществлять работы по ремонту и обслуживанию, а также проведения работ по подключению оборудования, так как гарантирована полная безопасность.

Двухполюсные электрические автоматы используют, когда необходимо наличие отдельного выключателя для устройства, работающего от сети 220 вольт.

Автомат с двумя полюсами подключают к устройству с помощью четырех проводов. Из них два приходят от сети питания, а другие два выходят из него.

Трехполюсные электрические автоматы

В электрической сети, имеющей три фазы, применяются 3-полюсные автоматы. Заземление оставляют незащищенным, а проводники фаз соединяют с полюсами.

Трехполюсный автомат служит вводным устройством для любых трехфазных потребителей нагрузки. Чаще всего такой вариант исполнения автомата применяют в промышленных условиях для питания электричеством электродвигателей.

К автомату можно подключить 6 проводников, три из которых – фазы электрической сети, а остальные три выходящие от автомата, и обеспеченные защитой.

Использование четырехполюсного автомата

Чтобы обеспечить защитой трехфазную сеть с четырехпроводной системой проводников (например, электродвигатель, включенных по схеме «звезды»), применяют 4-полюсный автоматический выключатель. Он играет роль вводного устройства четырехпроводной сети.

Имеется возможность подключения к устройству восьми проводников. С одной стороны – три фазы и ноль, с другой стороны – выход трех фаз с нолем.

Время-токовая характеристика

Когда устройства, потребляющие электроэнергию, и электрическая сеть работают в нормальном режиме, то происходит обычное протекание тока. Это явление касается и электрического автомата. Но, в случае повышения силы тока по разным причинам выше номинального значения, происходит срабатывание расцепителя автомата, и цепь разрывается.

Параметр этого срабатывания называется время-токовой характеристикой электрического автомата. Она является зависимостью времени сработки автомата и соотношения между реальной силой тока, проходящей через автомат, и номинальным значением тока.

Важность этой характеристики заключается в том, что обеспечивается наименьшее число ложных срабатываний с одной стороны, и осуществляется защита по току, с другой стороны.

В энергетической промышленности бывают ситуации, когда кратковременное повышение тока не связано с аварией, и защита не должна срабатывать. Также происходит и с электрическими автоматами.

Время-токовые характеристики определяют, через какое время сработает защита, и какие параметры силы тока при этом возникнут. Чем больше перегрузка тем быстрее сработает автомат.

Электрические автоматы с маркировкой «В»

Автоматические выключатели категории «В», способны отключаться за 5 — 20 с. При этом значение тока составляет от 3 до 5 номинальных значений тока ≅0.02 с. Такие автоматы используются для защиты бытовых устройств, а также всей электропроводки квартир и домов.

Свойства автоматов с маркировкой «С»

Электрические автоматы этой категории могут выключиться за время 1 — 10 с, при 5 — 10 кратной токовой нагрузке ≅0.02 с. Такие применяют во многих областях, наиболее популярны для домов, квартир и других помещений.

Значение маркировки «D» на автомате

С таким классом автоматы используются в промышленности и выполнены в виде 3-полюсных и 4-полюсных исполнений. Их применяют для того, чтобы защитить мощные электрические моторы и разные трехфазные устройства. Время их сработки составляет до 10 секунд, при этом ток срабатывания может превышать номинальное значение в 14 раз. Это дает возможность с необходимым эффектом использовать его для защиты различных схем.

Электродвигатели со значительной мощностью чаще всего подключают через электрические автоматы с характеристикой «D», т.к. пусковой ток высокий.

Номинальный ток

Имеется 12 вариантов исполнения автоматов, которые различаются по характеристике номинального тока работы, от 1 до 63 ампер. Этот параметр определяет скорость выключения автомата при достижении предельного значения тока.

Автомат по этому свойству выбирают с учетом поперечного сечения жил проводов, допускаемому току.

Принцип действия электрических автоматов
Обычный режим

При обычной работе автомата управляющий рычаг взведен, ток поступает через провод питания на верхней клемме. Далее ток идет на неподвижный контакт, через него на подвижный контакт и по гибкому проводу на катушку соленоида. После него по проводу ток идет на биметаллическую пластину расцепителя. От него ток проходит на нижнюю клемму и дальше на нагрузку.

Режим перегрузки

Этот режим возникает при превышении номинального тока автомата. Биметаллическая пластина нагревается большим током, изгибается и размыкает цепь. Для действия пластины требуется время, которое зависит от значения проходящего тока.

Автоматический выключатель является аналоговым устройством. При его настройке есть определенные сложности. Ток срабатывания расцепителя настраивается на заводе специальным регулировочным винтом. После остывания пластины автомат снова может функционировать. Температура биметаллической пластины зависит от окружающей среды.

Расцепитель действует не сразу, давая возможность току к возврату номинального значения. Если ток не снижается, то расцепитель срабатывает. Перегрузка может возникнуть из-за мощных устройств на линии, либо подключении сразу нескольких устройств.

Режим короткого замыкания

При этом режиме ток возрастает очень быстро. Магнитное поле в катушке соленоида движет сердечник, приводящий в действие расцепитель, и отключает контакты сети питания, тем самым снимает аварийную нагрузку цепи и защищает сеть от возможного пожара и разрушения.

Электромагнитный расцепитель действует мгновенно, чем отличается от теплового расцепителя. При размыкании контактов рабочей цепи появляется электрическая дуга, величина которой зависит от тока в цепи. Она вызывает разрушение контактов. Чтобы предотвратить это отрицательное действие, сделана дугогасительная камера, которая состоит из параллельных пластин. В ней дуга затухает и исчезает. Возникающие газы отводятся в специальное отверстие.

Типы автоматов электрических. Какой тип автомата выбрать?

Электричество очень полезное и вместе с тем опасное изобретение. Помимо прямого воздействия тока на человека, существует еще и большая вероятность возгорания при несоблюдении подключения электропроводки. Объясняется это тем, что электрический ток, проходя через проводник, нагревает его, и особенно высокие температуры возникают в местах с плохим контактом или же при коротком замыкании. Для предотвращения таких ситуаций применяются автоматы.

Что такое автоматические выключатели?

Это специально сконструированные аппараты, основная задача которых — защита проводки от оплавления. В целом автоматы не спасут от поражения электрическим током и не защитят технику. Они созданы для предотвращения перегрева.

Методика их работы основана на размыкании электрической цепи в нескольких случаях:

  • короткое замыкание;
  • превышение силы тока, текущей по проводнику для этого не предназначенного.

Как правило, автомат устанавливается на вводе, то есть защищает следующий за ним участок цепи. Так как для разведения к различным типам устройств применяется разная проводка, то, значит, и приборы защиты должны уметь срабатывать при разных токах.

С виду может показаться, что достаточно установить просто самый мощный автомат и нет проблем. Однако, это не так. Ток большой силы, на который не сработал прибор защиты, может перегреть проводку и, как следствие, стать причиной пожара.

Установка автоматов малой мощности будет каждый раз разрывать цепь, как только к сети будут подключены два или более мощных потребителя.

Из чего состоит автомат?

Обычный автомат состоит из следующих элементов:

  • Ручка взвода. С помощью неё можно произвести включение автомата после его срабатывания или же отключить, чтобы обесточить цепь.
  • Механизм включения.
  • Контакты. Обеспечивают соединение и разрыв цепи.
  • Клеммы. Подключаются к защищаемой сети.
  • Механизм, срабатывающий по условию. Например, биметаллическая тепловая пластина.
  • Во многих моделях может присутствовать регулировочный винт, для корректировки номинального значения силы тока.
  • Дугогасительный механизм. Присутствует на каждом из полюсов прибора. Представляет собой небольшую камеру, в которой размещены омедненные пластины. На них дуга гасится и сходит на нет.

В зависимости от производителя, модели и назначения, автоматы могут оснащаться дополнительными механизмами и устройствами.

Устройство механизма отключения

В автоматах имеется элемент, производящий разрыв электрической цепи при критических значениях тока. Их принцип работы может быть основан на разных технологиях:

  • Электромагнитные приборы. Отличаются большой скоростью реакции на короткое замыкание. При действии токов недопустимой величины срабатывает катушка с сердечником, который, в свою очередь, отключает цепь.
  • Тепловые. Основной элемент такого механизма — биметаллическая пластина, которая начинает деформироваться под нагрузкой токов большой силы. Выгибаясь, оказывает физическое воздействие на элемент, разрывающий цепь. Примерно по такой же схеме работает электрический чайник, который способен отключаться сам при закипании воды в нем.
  • Существуют также и полупроводниковые системы размыкания цепи. Но в бытовых сетях используются они крайне редко.

Типы автоматов по значениям тока

Различаются приборы по характеру срабатывания на излишне высокое значение тока. Существуют 3 наиболее популярных типа автоматов — B, C, D. Каждая литера означает коэффициент чувствительности прибора. Например, автомат типа D имеет значение от 10 до 20 xln. Как это понимать? Очень просто — чтобы понять диапазон, при котором способен сработать автомат, нужно умножить цифру рядом с литерой на значение. То есть прибор с маркировкой D30 будет отключаться при 30*10. 30*20 или от 300 А до 600 А. Но такие автоматы используются в основном в местах с потребителями, которые имеют большие пусковые токи, например, электродвигатели.

Автомат типа B имеет значение от 3 до 5 xln. Стало быть, маркировка B16 означает срабатывание при токах от 48 до 80А.

Но самый распространённый тип автоматов — С. Используется практически в каждом доме. Его характеристики — от 5 до 10 xln.

Условные обозначения

Разные типы автоматов маркируются по-своему для быстрой идентификации и выбора нужного для конкретной цепи или её участка. Как правило, все производители придерживаются одного механизма, который позволяет унифицировать изделия под многие отрасли и регионы. Разберём подробнее нанесённые на автомат знаки и цифры:

  • Бренд. Обычно в верхней части автомата ставится логотип производителя. Практически все они стилизованы определенным образом и имеют свой фирменный цвет, поэтому выбрать изделие своей любимой компании будет несложно.
  • Окошко индикатора. Показывает текущее состояние контактов. Если возникла неисправность в автомате, то по нему можно определить есть ли напряжение в сети.
  • Тип автомата. Как уже описывалось выше, означает характеристику отключения при токах, значительно превышающих номинальный. Чаще в быту используются C и чуть реже B. Отличия типов электрических автоматов B и C не так существенны;
  • Номинальный ток. Показывает значение силы тока, который может выдержать длительную нагрузку.
  • Номинальное напряжение. Очень часто данный показатель имеет два значения, написанных через «слэш». Первый — для однофазной сети, второй — для трехфазной. Как правило, в России используется напряжение в 220 В.
  • Предельный ток выключения. Означает максимально допустимый ток короткого замыкания, при котором автомат отключится без выхода из строя.
  • Класс токоограничения. Выражается в одной цифре или же отсутствует совсем. В последнем случае принято считать номер класса 1. Данная характеристика означает время, на которое ограничивается ток короткого замыкания.
  • Схема. На автомате можно встретить даже схему подключения контактов с их обозначениями. Находится она практически всегда в верхней правой части.

Таким образом, взглянув на фронтальную часть автомата, можно сразу установить, к какому типа тока он предназначен и на что способен.

Какой тип автомата выбрать?

При выборе защитного прибора все же одной из главных характеристик считается именно номинальный ток. Для этого нужно определить, какую силу тока требует совокупность всех устройств потребителей в доме.

А так как электричество течёт по проводам, то от его сечения зависит необходимая для нагревания сила тока.

Наличие полюсов также играет немаловажную роль. Чаще всего применяется такая практика:

  • Один полюс. Цепи с приборами освещения и розетками, к которым будут подключаться простые приборы.
  • Два полюса. Применяется для защиты проводки, проведённой к электроплитам, стиральным машинкам, отопительным приборам, водонагревателям. Также может устанавливаться в качестве защиты между щитом и помещением.
  • Три полюса. Используется преимущественно в трехфазных цепях. Это актуально для промышленных или же околопромышленных помещений. Небольшие мастерские, производства и им подобные.

Тактика установки автоматов происходит от большего к меньшему. То есть сначала монтируется, например, двухполюсной, затем однополюсной. Далее идут устройства с мощностью, уменьшающейся на каждом шаге.

Несколько советов по выбору автомата

  • При выборе стоит ориентироваться не на электроприборы, а на проводку, так как именно её будут защищать автоматические выключатели. Если она старая, то рекомендуется заменить её, чтобы можно было использовать наиболее оптимальный вариант автомата.
  • Для таких помещений, как гараж, или на время проведения ремонтных работ стоит выбрать автомат с номинальным током побольше, так как различные станки или сварочные аппараты имеют довольно большие показатели силы тока.
  • Имеет смысл комплектовать весь набор защитных механизмов от одного и того же производителя. Это поможет избежать несоответствия номинальных токов между приборами.
  • Приобретать автоматы лучше в специализированных магазинах. Так можно избежать покупки некачественной подделки, которая может привести к плачевным последствиям.

Заключение

Какой бы простой ни казалась разводка цепи по помещению, всегда нужно помнить о безопасности. Использование автоматов в значительной степени помогает избежать перегрева и, как следствие, её возгорания.

{SOURCE}

Как правильно называется электрический автомат. Электрические автоматы. Виды и работа. Характеристики. Значение маркировки « D» на автомате

Механизация и автоматизация. Виды автоматических устройств.

Основные понятия ТАУ

В любом процессе, выполняемом человеком, можно выделить два вида операций:

1. рабочие операции;

2. операции контроля и управления.

Рабочие операции необходимы для непосредственного выполнения технического процесса, например, снятия стружки, вращения вала машины. Рабочие операции связаны с затратой физической энергии. Замена труда человека в рабочих операциях называется механизацией .

Операции контроля связаны с измерением физических величин, а операции управления предназначены для правильного и качественного ведения процесса и направлены на его улучшение. Замена труда человека в операциях контроля и управления работой приборов и устройств, называется автоматизацией .

Совокупность технических устройств, выполняющих данный процесс и подвергающийся автоматизации. называется объектом управления (ОУ).

Технические устройства, выполняющие операции управления называются автоматическими .

Cовокупность автоматических устройств и объектов управления образует систему управления (СУ). Система, в которой все рабочие операции и операции управления выполняются автоматически, без участия человека, называется автоматиче­ской . Система, в которой автоматически выполняются только часть операций управления, а другая часть выполня­ется людьми, называется автоматизированной .

При автоматизации производственных процессов в зависимости от использования средств и методов возможны как более простые, так и более сложные воздействия на процесс. По назначению можно выделить следующие виды автоматических устройств.

1. Система автоматического контроля (САК).

2. Система автоматической защиты и блокировки (САЗ и Б).

3. Автоматические счетно-решающие устройства (АСРУ).

4. Системы автоматического регулирования (САР).

5. Системы автоматизированного управления (САУ).

1. САК предназначены для измерения контролируемой физической величины и ее регистрации без участи человека. Она включает датчик, устройство регистрации (показывающие или самопишущие) и устройство сигнализации.

2. САЗ служит для предотвращения от повреждения оборудования при возникновении ненормальных режимов работы. Автоматическая блокировка служит для предотвращения ошибок персонала.

3. К автоматическим решающим устройствам относятся управляющие вычислительные ма­шины, которые выполняют различные расчёты и определяют оптимальный режим работы.

4. Автоматическим регулированием называется поддержание постоянной или изменяемой по заданному закону некоторой выходной величины. САР это частный случай САУ.

5. САУ осуществляет сложный комплекс воздействий на объект, изменяя параметр управляемого технического процесса в соответствии с изменением регулируемой физической величины. Кроме того, в задачу САУ входят:

· осуществление экстремального регулирования;

· оптимальное управление, т.е. нахождение оптимальных режимов при решении определенных задач;

· адаптацию или самонастройку автоматического устройства.

Таким образом, можно сказать, что предмет ТАУ изучает:

1. Принципы построения САР и САУ.

2. Определение математического описания этих систем в виде дифференциальных уравнений (ДУ) и передаточных функций.

3. Исследование и анализ устойчивости этих систем.

4. Анализ точности процессов управления в установившемся режиме.

5. Синтез САР и САУ. Включает определение алгоритма управления, т.е. закона регулирования, в соответствие с которым автоматическое устройство должно воздействовать на объект в случае изменения регулируемой величины.

Автоматические выключатели - устройства, которые обеспечивают защиту проводки в условиях короткого замыкания, при подключении нагрузки с показателями, превышающими установленные значения. Их следует выбирать с особым вниманием. Важно учитывать типы автоматических выключателей, их параметры.

Автоматы разных типов

Характеристики автоматов

Выбирая автоматический выключатель, имеет смысл ориентироваться на характеристики устройства. Это показатель, по которому можно определить чувствительность устройства к возможному превышению значений тока. Разные виды автоматических выключателей имеют свою маркировку - по ней легко понять, насколько оперативно оборудование будет реагировать на превышение значений тока к сети. Некоторые выключатели реагируют мгновенно, другие активизируются в течение определенного периода времени.

  • А - маркировка, которая проставляется на самых чувствительных моделях оборудования. Автоматы такого типа сразу же регистрируют факт перегрузки и оперативно реагируют на нее. Они используются с целью защиты оборудования, характеризующегося высокой точностью, а вот в быту их встретить практически невозможно
  • В - характеристика, которой обладают выключатели, срабатывающие с несущественной задержкой. В быту выключатели с соответствующей характеристикой используются вместе с компьютерами, современными ЖК-телевизорами и другой дорогостоящей бытовой техникой
  • С - характеристика автоматов, которые имеют наиболее широкое распространение в быту. Оборудование начинает функционировать с небольшой задержкой, которой бывает достаточно для отложенной реакции на зарегистрированные сетевые перегрузки. Сеть отключается прибором только в том случае, если у нее есть неисправность, действительно имеющая значение
  • D - характеристика выключателей, обладающих минимальной чувствительностью к превышению показателей тока. В основном, подобные устройства используются в рамках подвода электричества к зданию. Они устанавливаются в щитках, под их контролем находятся практически все сети. Такие устройства выбираются в качестве запасного варианта, так как они активизируются только в том случае, если автомат вовремя не включился.

Все параметры автоматических выключателей написаны на лицевой части

Важно! Специалисты считают, что идеальные показатели автоматических выключателей должны варьироваться в определенных пределах. Максимум - 4,5 кА. Только в этом случае контакты будут под надежной защитой, и разряды тока будут отводиться в любых условиях, даже при превышении установленных показателей.

Типы автоматов

Классификация автоматических выключателей основана на их типах и особенностей. Что касается типов, то можно выделить следующее:

  • Номинальные показатели способности к отключению - речь идет об устойчивости контактов выключателя к воздействию токов с высокими показателями, а также к условиям, в которых происходит деформация цепи. В таких условиях возрастает риск подгорания, который нейтрализуется благодаря появлению дуги и повышением температуры. Чем более качественным, прочным является материал изготовления оборудования, тем более высокими являются его соответствующие способности. Такие выключатели стоят дороже, однако их характеристики полностью оправдывают цену. Выключатели служат долго, не требуют регулярной замены
  • Калибровка номинала - речь идет о параметрах, в которых оборудование работает в нормальном режиме. Они устанавливаются еще на этапе производства оборудования, и уже в процессе его использования не регулируются. Данная характеристика позволяет понять, насколько сильные перегрузки способен выдерживать аппарат, период времени его работы в таких условиях
  • Уставка - обычно этот показатель отображается в виде маркировки на корпусе оборудования. Речь идет о максимальных значениях тока в нестандартных условиях, которая, даже при частом отключении, не окажет никакого влияния на функционирование аппарата. Выражается уставка в токовых единицах, маркируется латинскими буквами, цифровыми значениями. Цифры, в данном случае, отображают номинал. Латинские буквы можно увидеть в маркировке только тех автоматов, которые изготовлены в соответствии со стандартами DIN

При возникновении аварийной ситуации в электрической сети – короткого замыкания, пожара или поражения человека током, она должна быть немедленно обесточена. Ранее эту функцию выполняли плавкие предохранители. Их основным недостатком является то, что они отключают только одну, и чаще всего только фазную, линию.

А по сегодняшним правилам эксплуатации электроустановок необходим полный разрыв. Кроме того, действуют они недостаточно быстро и после срабатывания подлежат замене. Этих недостатков лишены автоматические предохранители и выключатели.

Семейство электротехнических устройств, которые в повседневном употреблении нередко называют «электрический автомат», очень разнообразно. Если будет позволено такое сравнение, оно состоит из нескольких кланов, различающихся по типу воздействия, на которое они реагируют, а также по конструктивному исполнению.

В зависимости от этого они используются для защиты всей электрической сети в целом, отдельных цепей и устройств, или человека. Есть и внутриклановое деление. Например, по скорости срабатывания.

Типы автоматических выключателей по виду воздействия:

  • Срабатывание от сверхтоков (короткое замыкание) и нагрева. Самый распространенный тип. Применяются для защиты всей схемы электроснабжения (вводные автоматы) или отдельных устройств.
  • Реагирование на дифференциальный ток. Это так называемые УЗО – устройства защитного отключения, применяющиеся для предотвращения поражения человека электрическим током.
  • Тепловые реле. Используются в электрических приводах для защиты электродвигателей от перегрузок.

Различия по конструктивному исполнению:

  • Серия АП. Так называемые апэшки – большие черные коробки из электротехнического пластика с двумя кнопками: ВКЛ (белая) и ВЫКЛ (красная). Реагируют на тепло и сверхтоки. Обычно используются в трехфазных сетях для защиты отдельных устройств. Надежная массивная конструкция, считающаяся устаревшей.
  • Серия ВА. Современное малогабаритное устройство с рычагом включения-выключения, расположенным горизонтально.
  • Автоматические предохранители. Заменили так называемые пробки с резьбовым цоколем Эдисона Е14. Так же устаревшая, но еще широко применяющаяся в бытовых электрических сетях конструкция.

В зависимости от количества точек подключения, которые называют полюсами, выключатели бывают одно-, двух-, трех- и четырехполюсными.

Однополюсные коммутируют только одну линию, обычно фазную. Их используют в малонагруженных электрических цепях. Например, осветительных. Их второе название «модульные автоматические выключатели», поскольку их обычно собирают в пакет (на одну DIN-рейку несколько) и размещают в распределительном щите, по соседству с общей нулевой шиной. К ним же можно отнести и автоматические предохранители, входом которых является центральный контакт, а выходом – кольцо с резьбой.

Двухполюсные используются в однофазных сетях для защиты всей электрической схемы, тогда их называют вводными, или одного устройства.

Трех- и четырехполюсные устройства применяются для работы в трехфазных сетях, в которых может быть три (в случае глухозаземленной нейтрали) или четыре проводника.

Устройство автоматических выключателей

Принцип устройства коммутаторов, реагирующих на сверхтоки и перегрев, одинаково как для устройств типа АП, ВА или автоматических предохранителей. Выключатели типа ВА имеют клеммы с винтовым зажимом. К входной подключен подвижный контакт, который системой рычагов и пружин связан с рычагом управления.

Во включенном состоянии у него есть электрический контакт с электромагнитным расцепителем – соленоидом с подвижным сердечником-штоком. Проводник на его выходе соединен с еще одним элементом управления – биметаллической пластиной, упирающейся в шток. Дополнительным элементом устройства является дугогасительная камера – пакет пластин из электротехнического фибролита.

Расцепитель рассчитан на срабатывание при прохождении через его катушку тока определенного номинала. При достижении этого значения соленоид выталкивает шток и размыкает контакт. Обратите внимание, что биметаллическая пластина подключена к выходной клемме. Поэтому есть существенная разница в том, как поставить автоматический выключатель. Перевернутый вверх ногами, он перестает реагировать на короткое замыкание из-за дополнительного сопротивления пластины.

Автоматы дифференциального тока

Они называются УЗО – устройства защитного отключения. Внешне очень похожи на автоматы ВА, отличаясь только кнопкой «Тест». Принципиальные различия в устройстве электромагнитного расцепителя. Он построен на основе дифференциального трансформатора.

Его первичная обмотка составлена из двух катушек, к которым подключены фазный и нулевой провод. Вторичная обмотка соединена соленоидом. В обычном состоянии токи в фазном и нейтральном проводниках равны по величине, но противоположны по фазе. Они компенсируют друг друга, и в первичной обмотке не наводится электромагнитного поля.

При частичном пробое изоляции и соединении фазной линии с заземляющим контуром, баланс нарушается, в первичной обмотке возникает магнитный поток, порождающий электрический ток во вторичной. Соленоид срабатывает и размыкает контакт.

Так происходит если, например, человек берет рукой электроприбор, корпус которого замкнуло на фазу. Эти приборы не защищают ни от короткого замыкания, ни от перегрева, поэтому их ставят последовательно с автоматами ВА. И обязательно после них. Про правильное подключение читайте .

Дифференциальные выключатели

Их еще называют автоматическими выключателями дифференциального тока – аббревиатура АВДТ. В них совмещен автомат ВА и УЗО. Их применение упрощает электрическую схему и ее монтаж – вместо двух приборов можно поставить один.

Отличить АВДТ от УЗО можно по схематическому изображению на лицевой панели, что не всегда возможно из-за недостаточной технической грамотности, или по литере перед цифрой номинала и его величине. Подробнее об этом .

На устройстве защитного отключения может быть написано, например, I n 16A и I ∆n 10 mA. Первое значение – номинальный ток цепи, в котором может работать устройство. Обратите внимание, что перед ним нет буквенной литеры. Второе – ток срабатывания, он никогда не превышает единицы ампер. АВДТ маркируется иначе: C16 10 mA. Литера С – это времятоковая характеристика.

Времятоковые характеристики автоматических выключателей

В зависимости от конструкции соленоида электромагнитного расцепителя автоматический выключатель может срабатывать с разной скоростью. Это и называется времятоковой характеристикой. Основными из них являются:

  • А – максимально быстрое срабатывание. Необходимо для защиты чувствительных к качеству электричества полупроводниковых схем. Прибор может работать только в паре со стабилизатором компенсационного типа. Дома лучше не использовать, поскольку стандарты качества для бытовых сетей невысокие, он будет постоянно срабатывать.
  • В – чувствительность повышенная, но время срабатывания снижено. Можно применять для защиты схем электропитания локальных вычислительных сетей.
  • С – самый распространенный тип прибора, использующийся в быту. Удовлетворительная чувствительность и средняя скорость срабатывания.
  • В – промышленный вариант с пониженной чувствительностью. Используется в сетях с большими амплитудами перепадов напряжения. Например, подключенных к тяговым подстанциям электротранспорта.

Автоматические выключатели – важный элемент электрической цепи. Эксплуатация электроустановок без них может привести техногенной катастрофе локального характера и несет угрозу жизни для обслуживающего персонала.

Перегрузки в электроцепях – обычное дело. Чтобы предохранить приборы, работающие от электричества, от таких перепадов напряжения, были придуманы автоматические выключатели. Их задача проста – разорвать электроцепь, если напряжение превысит границы номинального.

Первыми подобными приборами были знакомые всем пробки, которые и сейчас стоят в некоторых квартирах. Как только напряжение подскакивает выше 220 В, их выбивает. Современные типы автоматических выключателей – это не только пробки, но и множество других разновидностей. Их замечательной особенностью является возможность многократного использования.

Классификация

Современный ГОСТ 9098-78 выделяет 12 классов автоматических выключателей:


Такая классификация автоматических выключателей очень удобна. При желании можно разобраться, какое из устройств установить в квартиру, а какое на производство.

Типы (виды)

Гост Р 50345-2010 делит автоматические выключатели на следующие типы (деление происходит по чувствительности к перегрузкам), маркируемые буквами латинского алфавита:

Это основные автоматические выключатели, используемые в жилых домах и квартирах. В Европе маркировка начинается с буквы A – самые чувствительные к перегрузкам выключатели. Они не используются для бытовых нужд, зато находят активное применение для защиты цепей питания точных приборов.

Также существуют еще три маркировки – L, Z, K.

Отличительные конструктивные особенности

Автоматические аппараты состоят из следующих узлов:

  • основной системы контактов;
  • дугогасительной камеры;
  • основного привода расцепляющего устройства;
  • различного вида расцепителя;
  • других вспомогательных контактов.

Контактная система может быть разноступенчатой (одно-, двух- и трехступенчатой). Она состоит из дугогасительных, главных и промежуточных контактов. Одноступенчатые контактные системы в основном производятся из металлокерамики.

Чтобы как-то защитить детали и контакты от разрушительной силы электрической дуги, достигающей 3 000° С, предусмотрена дугогасительная камера. Она состоит из нескольких дугогасительных решеток. Встречаются также комбинированные устройства, способные погасить электрическую дугу большого тока. В них находятся щелевые камеры вместе с решеткой.

Для любого автоматического выключателя находится предельный ток. Благодаря защите автомата, он не может привести к поломке. При огромных перегрузках такого тока контакты могут либо подгореть, либо вообще привариться друг к другу. К примеру, для самых распространенных бытовых аппаратов при токе сработки от 6 А до 50 А предельный ток может составлять от 1000 А до 10 000 А.

Модульные конструкции

Рассчитаны на небольшие токи. Модульные автоматические выключатели состоят из отдельных секций (модулей). Вся конструкция крепится на DIN-рейку. Рассмотрим более подробно устройство модульного выключателя:

  1. Вкл/выкл производится рычажком.
  2. Клеммы, к которым присоединяются провода, винтовые.
  3. Устройство фиксируется к DIN-рейке специальной защелкой. Это очень удобно, потому что такой выключатель в любой момент можно легко демонтировать.
  4. Соединение всей электроцепи производится за счет подвижного и фиксированного контактов.
  5. Расцепление происходит с помощью какого-нибудь расцепителя (теплового или электромагнитного).
  6. Контакты специально размещены рядом с дугогасительной камерой. Это связано с возникновением мощной электрической дуги во время расцепления соединения.

Серия ВА – промышленные выключатели

Представители этих автоматов, прежде всего, предназначены для использования в электроцепях переменного тока в 50-60 Гц, с рабочим напряжением до 690 В. Также используются при постоянном токе 450 В и силе тока до 630 А. Такие выключатели рассчитаны на очень редкое оперативное использование (не более 3 раз в час) и защиты линий от КЗ и электроперегрузок.

Среди важных характеристик этой серии выделяется:

  • высокая отключающая способность;
  • широкий диапазон электромагнитных расцепителей;
  • кнопка тестирования аппарата при свободном расцеплении;
  • выключатели нагрузки со специальной защитой;
  • дистанционный пульт управления через закрытую дверь.

Серия АП

Автоматический выключатель ап способен защитить электроустановки, двигатели от резких скачков напряжения и коротких замыканий внутри сети. Запуски таких механизмов не предусмотрены быть очень частыми (5-6 раз за час). Автоматический выключатель ап может быть двухполюсным и трехполюсным.

Все конструктивные элементы располагаются на пластмассовой основе, которая сверху закрывается крышкой. При больших перегрузках срабатывает механизм свободного расцепления, при этом автоматически происходит размыкание контактов. При этом тепловой расцепитель выдерживает время срабатывания, а электромагнитный обеспечивает мгновенное разъединение при коротком замыкании.

При работе автомата желательно придерживаться следующих условий:

  1. При влажности воздуха в 90% температуре не должна превышать 20 градусов.
  2. Рабочая температура колеблется в диапазоне от -40 до +40 градусов.
  3. Вибрация в месте крепления не должна превышать 25 Гц.

Строго запрещены работы во взрывоопасной среде, в которой содержатся разрушающие металл и обмотку газы, вблизи чистой энергии отопительных приборов, водяных потоков и брызг, в местах с токопроводящей пылью.

Многообразие автоматических выключателей позволяет без проблем подобрать устройство для квартиры или дома. Для его установки лучше всего пригласить специалиста.

Электрический автомат, или автоматический выключатель, представляет собой механическое коммутационное устройство, посредством которого можно вручную добиться обесточивания всей электросети или же конкретного ее участка. Сделать это можно в доме, квартире, на даче, в гараже и т.п. Более того, такой прибор оснащается функцией автоматического выключения электрического кабеля при возникновении аварийных ситуаций: например, в случае короткого замыкания либо при перегрузке. Отличие таких автоматических выключателей от обычных предохранителей состоит в том, что после срабатывания их можно кнопкой включить вновь.

Автоматы (автоматические выключатели) - это то, что пришло на замену обычным пробкам, т.е. предохранителям в керамическом корпусе, где защитой от перегрузки по току была перегорающая нихромовая проволочка.

В отличие от пробки, автомат - многоразовое устройство , и функции защиты у него разделены. Во-первых, защита от сверхтоков (токов короткого замыкания или КЗ), во-вторых, защита от перегрузки, т.е. механизм автомата разрывает цепь нагрузки при небольшом превышении рабочего тока автомата.

В соответствии с этими функциями, автоматический выключатель содержит в себе два типа размыкателей. Магнитный быстродействующий размыкатель защиты от КЗ с системой гашения дуги (время реакции миллисекунды) и медленный тепловой размыкатель с биметаллической пластиной (время его реакции - от нескольких секунд до нескольких минут, в зависимости от тока нагрузки).

Классификация электрических автоматов

Существуют несколько типовых характеристик отключения автоматов: A, B, C, D, E, K, L, Z

  • А – для размыкания цепей с большой протяженностью и для защиты электронных устройств.
  • B - для осветительных сетей.
  • С - для осветительных сетей и электроустановок с умеренными токами (перегрузочные способности по току вдвое больше, чем у В).
  • D – для цепей с индуктивной нагрузкой и электромоторов.
  • K – для индуктивных нагрузок.
  • Z – для электронных устройств.

Основные критерии для выбора автовыключателя

Предельный ток короткого замыкания

Этот показатель необходимо учитывать сразу же. Означает он ту максимальную величину тока, при которой электрический автомат сработает и разомкнет цепь. Здесь выбор не велик, так как есть лишь три варианта: 4,5 кА ; 6 кА ; 10кА .

При выборе следует руководствоваться теоретической вероятностью возникновения сильной тока короткого замыкания. Если такой вероятности нет, то достаточно будет приобрести 4,5 кА автомат.

Ток автомата

Учет этого показателя является следующим шагом. Речь идет о необходимом номинальном значении рабочего тока электрического автомата. Чтобы определить рабочий ток, нужно руководствоваться мощностью, которая, предположительно, будет подключена к проводке, или же по значению допустимого тока (тот уровень, который будет выдерживаться в нормальном режиме).

Что нужно знать при определении рассматриваемого параметра? Не рекомендуется применять автоматы с завышенным рабочим током. Просто в таком случае автомат при перегрузке не отключит питание, а это может вызвать термическое разрушение изоляции проводки.

Полюсность автомата

Это, пожалуй, наиболее простой показатель. Чтобы выбрать количество полюсов у выключателя, нужно исходить из того, как он будет применяться.

Так, однополюсный автомат – это ваш выбор при необходимости защиты проводки, которая идет из электрощита к розеткам и цепям освещения. Двухполюсный выключатель применяется тогда, когда нужно защитить всю проводку в квартире либо доме с однофазным питанием. Защита трехфазной проводки и нагрузки обеспечивается трехполюсным автоматом, а четырехполюсные используются в целях защиты четырехпроводного питания.

Характеристики автомата

Это последний показатель, на который понадобится обратить внимание. Время-токовая характеристика автоматического выключателя обусловливается нагрузками, которые подключаются к защищаемой линии. При выборе характеристики учитываются: рабочий ток цепи, номинальный ток автомата, пропускная способность кабеля, рабочий ток выключателя.

В том случае, если необходимо подключать к линии электропитания небольшие пусковые токи, т.е. электрические приборы, характеризующиеся небольшой разнице между рабочим током и тем током, который возникает при включении, предпочтение следует отдать характеристике срабатывания B. При более серьезных нагрузках выбирают характеристику C. Наконец, есть еще одна характеристика – D. Свой выбор следует остановить на ней в том случае, если предполагается подключать мощные устройства с высокими пусковыми точками. О каких устройствах идет речь? Например, об электродвигателе.

Классификация УЗО


УЗО реагирует на дифференциальный ток, т.е. разность токов, текущих по прямому и обратному проводу. Дифференциальный ток появляется при прикосновении человека к защищенной цепи и заземленному предмету. УЗО для защиты людей выбираются на ток 10-30 мА , пожарные УЗО - на ток 300 мА. Последние защищает всю систему проводки, а при пожаре обычно токи утечки возникают раньше, чем токи КЗ.

Устройства защитного отключения защищают людей от поражения электрическим током.

Выбор УЗО затруднен тем, что это более сложное устройство, чем автомат. Например, есть дифавтоматы – устройства, совмещающие в себя автомат и УЗО. УЗО также подразделяются по типу исполнения на электронные и электромеханические. Опыт показал, что лучше использовать электромеханические УЗО. Они лучше защищены от ложных срабатываний и от поломок.

По числу полюсов УЗО делятся на:

  • двухполюсные для цепей 220 В;
  • четырехполюсные для цепей 380 В.

По условиям функционирования на:

  • АС - реагирующие только на переменный синусоидальный дифференциальный ток.
  • А - реагирующие как на переменный синусоидальный дифференциальный ток, так и на постоянный пульсирующий дифференциальный ток.
  • В - реагирующие на переменный синусоидальный дифференциальный ток, на постоянный пульсирующий дифференциальный ток и на постоянный дифференциальный ток.

По наличию задержки на УЗО без задержки общего применения и с временной задержкой типа S. По токовой характеристике (дифавтоматы) на В, С, D. И, наконец, по номинальному току.


Следует знать, что если обычное Устройство Защитного Отключения и автомат стоят последовательно в одной цепи, то автомат должен быть на меньший ток, чем УЗО. Иначе УЗО может быть повреждено, т.к. автомат разрывает цепь нагрузки с задержкой.

В заключение необходимо сказать, что следует выбирать устройства известных фирм: ABB абб , GE POWER же пауэр , SIEMENS сименс , LEGRAND легранд и других, по крайней мере сертифицированных в России . Лучше выбирать электромеханические УЗО, т.к. они гораздо надежнее электронных. Вместо тандема из УЗО и автомата лучше выбрать дифавтомат, это сделает конструкцию щитка более компактной и надежной. Токовые характеристики необходимо выбирать в зависимости от используемой проводки. Ток срабатывания автоматов и дифавтоматов должен быть меньше максимально допустимых токов кабелей.

Для медных трехпроводных кабелей можно привести следующие данные соответствия сечения проводников кабеля в квадратных миллиметрах и токов автоматов:

  • 3 х 1.5мм 2 - 16 Ампер;
  • 3 х 2.5 мм 2 - 25 А;
  • 3 х 4 мм 2 – 32 Ампер;
  • 3 х 6мм 2 – 40 А;
  • 3 х 10 мм 2 – 50 Ампер;
  • 3 х 16 мм 2 – 63 А.

Надеемся, что после прочтения всего материала вам будет проще разобраться в проектировании и построении электропроводки.

История создания УЗО


Первое устройство защитного отключения (УЗО) было запатентовано германской фирмой RWE в 1928 г., когда принцип токовой дифференциальной защиты, ранее применявшийся для защиты генераторов, линий и трансформаторов, был применен для защиты человека от поражения электрическим током.

В 1937 г. фирма Schutzapparategesellschaft Paris & Со. изготовила первое действующее устройство на базе дифференциального трансформатора и поляризованного реле, имевшее чувствительность 0,01 А и быстродействие 0,1 с. В том же году с помощью добровольца (сотрудника фирмы) было проведено испытание УЗО. Эксперимент закончился благополучно, устройство сработало четко, доброволец испытал лишь слабый удар электрическим током, хотя и отказался от участия в дальнейших опытах.

Все последующие годы, за исключением военных и первых послевоенных, велась интенсивная работа по изучению действия электрического тока на организм человека, разработке электрозащитных средств и совершенствованию и внедрению устройств защитного отключения.

В нашей стране проблема применения устройств защитного отключения впервые возникла в связи с электрической и пожарной безопасностью школьников около 20 лет назад. Именно в этот период были разработаны и запущены в производство УЗОШ (УЗО школьное) для оборудования школьных зданий. Интересно, что УЗО такого типа ставят в школьных зданиях до сих пор, хотя в силу устаревших технологий эти устройства уже не вполне удовлетворяют современным требованиям электрической и пожарной безопасности.


Другим событием, обострившим проблему установки УЗО, была реконструкция московской гостиницы «Россия» после печально известного пожара, который возник по причине самого заурядного короткого замыкания. Дело в том, что при строительстве этого гостиничного комплекса были нарушены принципы электроснабжения. Несколько трагических случаев, приведших к гибели обслуживающего персонала, заставило руководство гостиницы наметить проведение установки устройств защитного отключения с целью обеспечить электро- и пожарную безопасность.

В то время подобные установки выпускались только для промышленного применения. Разработать установку защитного отключения для коммунально-бытового назначения было поручено одному из оборонных предприятий. Но трагедии предотвратить не успели, и возникший в результате короткого замыкания пожар в гостинице «Россия» привел к многочисленным жертвам. После пожара при восстановлении здания проводились работы по установке УЗО в каждом номере. Поскольку отечественные УЗО были изготовлены в очень сжатые сроки и имели недостатки, их постепенно стали заменять на устройства фирмы SIEMENS (Германия).


К этому времени над проблемой производства бытовых устройств защитного отключения стали задумываться и наши электротехнические предприятия. Так, гомельский завод «Электроаппаратура» и ставропольский электротехнический завод «Сигнал» разработали и стали выпускать бытовые устройства защитного отключения. И уже с 1991-1992 годов началось массовое внедрение устройств защитного отключения в домостроении, по крайней мере, в Москве.

В 1994 году был принят стандарт «Электроснабжение и электробезопасность мобильных (инвентарных) зданий из металла или с металлическим каркасом для уличной торговли и бытового обслуживания населения. Технические требования». В этом же году вышло постановление правительства Москвы о внедрении УЗО, которое предписывало обязательное оснащение новостроек Москвы устройствами защитного отключения.

В 1996 году вышло Письмо Главного управления государственной службы МВД России от 05.03.96 №20/2.1/516 «О применении устройств защитного отключения (УЗО) ». А правительством Москвы было принято еще одно решение о повышении надежности электроснабжения всего жилого фонда, независимо от года постройки. Можно сказать, что с этого момента началось узаконенное массовое внедрение УЗО в строительстве жилья.

В настоящее время уже четко расписаны области применения УЗО, действует ряд нормативных документов, регламентирующих технические параметры и требования к применению УЗО в электроустановках зданий. Сегодня УЗО является обязательным элементом любого распределительного щита, этими устройствами оборудованы в обязательном порядке все передвижные объекты (жилые домики-прицепы на кемпинговых площадках, торговые фургоны, фургоны общественного питания, малые временные электроустановки наружной установки, устраиваемые на площадях на время праздничных гуляний), ангары, гаражи.


Вариант подключения УЗО, обеспечивающий наиболее безопасную эксплуатацию электропроводки. Кроме того, УЗО встраивают в розеточные блоки или вилки, через которые подключаются электроинструмент или бытовые электроприборы, эксплуатируемые в особо опасных, влажных, пыльных, с проводящими полами и т.п., помещениях.

Страховые компании при оценке риска, определяющего страховую сумму, обязательно учитывают наличие на объекте страхования УЗО и их техническое состояние.

В настоящее время на каждого жителя развитых стран приходится в среднем по два УЗО. Тем не менее десятки фирм на протяжении многих лет стабильно в значительных количествах производят эти устройства самых различных модификаций, постоянно совершенствуя их технические параметры.

Таковы основные показатели, которые следует учитывать при выборе автоматического выключателя. Соответственно, если все необходимые данные вам будут известны, то выбор не составит труда. Останется лишь принять во внимание самый последний критерий – производителя автомата. На что это влияет? Очевидно, что на стоимость .

Действительно, разница есть. Так, известные европейские бренды свои автоматические выключатели предлагают по цене, которая в два раза превышает стоимость отечественных аналогов и в три раза больше цены на приборы из Юго-Восточных стран. Также от выбора конкретного производителя зависит наличие либо отсутствие выключателя с четко определенными показателями на складе.

виды и назначение, испытания, маркировка

На чтение 6 мин Просмотров 79 Опубликовано Обновлено

Автоматические выключатели – это устройства, через которые линия электропитания обеспечивается защитой от негативного воздействия мощного тока, что может спровоцировать перегрев проводов, оплавление изоляции и воспламенение.

Зачем нужны автоматические выключатели

Автоматические выключатели

Существует множество причин, по которым ток в сети может превысить нормальные показатели. В основном это происходит из-за чрезмерной нагрузки, когда суммарная мощность подключенных приборов превышает величину, которую может выдержать сечение кабеля. В этом случае автомат выключается не сразу, а только после того как температура провода достигнет установленного уровня.

Если в сети происходит короткое замыкание, это приводит к многократному увеличению мощности тока в мгновение, поэтому автоматический выключатель сразу реагирует на ситуацию и блокирует подачу электроэнергии.

Какими бывают автоматы

Модульные автоматические выключатели Siemens 5SY/5SP

Существует три категории, к которым может относиться автомат защиты сети. Каждая из них предназначена для конкретной нагрузки, а отличия между видами заключаются в особенностях используемой конструкции.

  • Модульные устройства чаще всего можно встретить в бытовых сетях, подключенных к сети электроснабжения с незначительными токами. В преимущественном большинстве случаев отличаются наличием одного или двух полюсов.
  • Литые используются в промышленных сетях, где мощность тока достигает 1000 А. Свое название получили потому, что основной их особенностью является использование литого корпуса.
  • Воздушные выключатели могут иметь до четырех полюсов, имея возможность выдерживать ток силой до 6300 А. В связи с этим их устанавливают только в электрические цепи, к которым подключаются высокомощные установки.

Также существуют дифференциальные автоматы, это обычные выключатели, имеющие УЗО в своей конструкции.

Расцепители и их разновидности

Строение автоматического выключателя

Расцепитель – это ключевой элемент любого автоматического выключателя. Несет в себе функцию блокировки электропитания, если величина тока превышает допустимое значение. При этом существует две разновидности таких устройств, которыми может быть оснащен автомат-выключатель – тепловые или электромагнитные.

Последние отличаются тем, что с их помощью достигается почти мгновенное срабатывание защитной системы, и участок сразу обесточивается, как только фиксируется возникновение короткого замыкания. В конструкцию входит катушка с сердечником, который под воздействием сильного тока втягивается внутрь, из-за чего постоянно срабатывает отключающий элемент.


Ключевым компонентом теплового расцепителя является биметаллическая пластина. Если автомат фиксирует прохождение через него тока, сила которого превышает установленную величину, температура пластины повышается, и она за счет этого цепляет отключающий элемент, который моментально отключает сеть от снабжения. Промежуток времени, за который сработает данный элемент, будет непосредственно зависеть от того, какую силу имеет ток, проходящий по пластине.

В качестве дополнительного прибора часто устанавливаются нулевые расцепители, которые отключают автоматический выключатель, если напряжение имеет показатель ниже допустимого предела.

Встречаются приборы дистанционного типа, которые не только блокируют, но и возвращают подачу энергии без необходимости самостоятельно подходить к электрощиту. Однако эти опции существенно увеличивают общую цену оборудования.

Отличие автоматов по количеству полюсов

Комплектация автоматических выключателей предусматривают наличие до четырех полюсов. Чтобы приобрести подходящий прибор, достаточно разобраться в видах электрических автоматов, назначении и характеристиках каждого и них:

  • Один полюс. Предназначены для безопасности в электросети, обеспечивающей питанием обычные розетки и освещение в доме. Устанавливаются на фазный провод, исключая захват нулевого.
  • Два полюса. Подключаются к цепи, которой обеспечивается питание бытовых приборов, отличающейся высоким потреблением энергии. В эту категорию входят электроплиты, стиральные машины и другие.
  • Три полюса. Устанавливаются в полупромышленные сети, которые обеспечивают питанием мощные устройства наподобие скважинных насосов или установок для автомобильной мастерской.
  • Четыре полюса. Обеспечивают безопасность сети от перегрузок и коротких замыканий, позволяя подключать к ней сразу четыре кабеля.

Устройства выбираются только в зависимости от области их применения.

Параметры автоматических выключателей

Характеристики автоматических выключателей – это еще один показатель, по которому они отличаются друг от друга. В первую очередь мастера обращают внимание, насколько защитное оборудование чувствительно к перепадам тока. Достаточно посмотреть соответствующую маркировку, чтобы понять, как устройство будет реагировать на возрастание силы тока. Одни сразу отключают доступ к питанию, в то время как другие срабатывают с задержкой.

В зависимости от чувствительности меняется и маркировка:

  • А. Самые чувствительные и эффективные устройства, которые мгновенно отключают электроснабжение, как только фиксируется повышенная нагрузка. Их не используют в бытовых сетях. Основной сферой применения являются цепи, обеспечивающие питанием высокоточное оборудование.
  • В. Когда фиксируется превышение током номинального значения силы, автомат отключает питание с небольшой задержкой. В преимущественном большинстве случаев сферой применения этих приборов являются линии, в которые подключается дорогая бытовая техника.
  • С. Наиболее популярный вариант автоматов для бытового применения. Когда таким оборудованием регистрируется превышение силы тока, они не сразу отключают электропитание, а с некоторой задержкой. Благодаря этому, если перепад является незначительным, нагрузка может нормализоваться сама, не требуя принудительного отключения всего помещения.
  • D. Имеют самую низкую чувствительность, из-за чего основной сферой их применения являются электрощиты, находящиеся на подходе к зданию. Другими словами, этими щитами обеспечивается своеобразная подстраховка квартирных устройств: если последние по каким-то причинам не срабатывают после обнаружения критической ситуации, общая сеть отключается этими приборами.

Также существуют специальные автоматы для сетей с нагрузкой выше 1000 вольт. Такие автоматические выключатели представляют собой сложное оборудование, которое производится по индивидуальному заказу под нужный класс напряжения. В большинстве случаев монтируют на трансформаторных подстанциях. Они должны быть надежными, безопасными, удобными в эксплуатации, быстро реагировать на возникающие аварии и быть относительно бесшумными во время работы.

Как выбрать автоматический выключатель

Есть мнение, что самый надежный вариант автоматического выключателя – это устройство, которое может выдержать максимальную нагрузку и обеспечить помещение максимально эффективной защитой. Если следовать такой логике, можно использовать в любых сетях воздушные автоматы, и таким образом избавить себя от большинства проблем, но на практике дело обстоит несколько иначе. В зависимости от параметров конкретной цепи будет зависеть и тип выключателя, который лучше в нее установить. Если ошибиться в выборе автоматического выключателя, в конечном итоге это может обернуться крайне негативно.

Если к обыкновенной бытовой сети электроснабжения будет подключен прибор, который рассчитан на работу в условиях повышенных мощностей, он не будет выключать питание даже тогда, когда сила тока будет существенно превышать все допустимые нормы. При этом температура изоляционного слоя значительно возрастет и станет разрушительной для кабеля, но номинальные показатели выключателя не будут превышены, поэтому автомат будет воспринимать такую ситуацию как рядовую. Отключение произойдет только после того, как вследствие плавления изоляции в сети произойдет короткое замыкание, но эта ситуация уже чревата пожаром.

Если допустимая мощность автомата, наоборот, не будет достигать той, которую выдерживает линия электропитания, нормальной работы цепи добиться практически невозможно. После подключения нескольких приборов электричество сразу выбьет, в итоге из-за постоянного воздействия большого тока он сломается по причине «залипания» контактов.

Автоматический выключатель – это крайне важное устройство, обеспечивающие защиту электроснабжения от риска повреждения под воздействием мощного тока. Работа сетей, в которых не стоят автоматы, запрещена в соответствии с Правилами устройства электроустановок. В связи с этим остается только правильно выбрать тип выключателя, который будет обеспечивать надежную защиту сети.

Виды автоматов электрических по току. Автоматические выключатели. Типы, характеристики, расчет автоматического выключателя. Явления, вызываемые сверхтоками

В этой статье мы рассмотрим основные характеристики автоматических выключателей, которые необходимо знать, чтобы правильно ориентироваться при их выборе — это номинальный ток и время токовые характеристики автоматических выключателей .

Напомню, что эта публикация входит в серию статей и видео, посвященных электрическим аппаратам защиты из курса

Основные характеристики автоматического выключателя указываются на его корпусе, где также наносится торговая марка или бренд производителя и каталожный либо серийный номер.

Самая главная характеристика автоматического выключателя - номинальный ток . Это максимальный ток (в Амперах), который может протекать через автомат бесконечно долго, не отключая защищаемую цепь. При превышении протекающим током этой величины, автомат срабатывает и размыкает защищаемую цепь.

Ряд значений номинального тока автоматических выключателей стандартизован и составляет:

6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100А.

Величина номинального тока автомата указывается на его корпусе в амперах и соответствует температуре окружающей среды +30˚С. С увеличением температуры, значение номинального тока снижается.

В момент подключения в электрическую сеть некоторых потребителей, например, холодильников, пылесосов, компрессоров и др. в цепи кратковременно возникают пусковые токи, которые могут в несколько раз превышать номинальный ток автомата. Для кабеля такие кратковременные броски тока не страшны.

Поэтому, чтобы автомат не выключался каждый раз при небольшом кратковременном возрастании тока в цепи, применяют автоматы с разными типами время-токовой характеристики.

Таким образом, следующая основная характеристика:

время-токовая характеристика срабатывания автоматического выключателя - это зависимость времени отключения защищаемой цепи, от силы протекающего через нее тока. Ток указывается как отношение к номинальному току I/Iном, т.е. во сколько раз протекающий через автомат ток превышает номинальный для данного автоматического выключателя.

Важность этой характеристики заключается в том, что автоматы с одинаковым будут отключаться по-разному (в зависимости от типа время-токовой характеристики). Это дает возможность уменьшить количество ложных срабатываний, применяя автоматические выключатели с различными токовыми характеристиками для разных типов нагрузки,

Рассмотрим типы время-токовых характеристик:

Тип A (2-3 значения номинального тока) применяются для защиты цепей с большой протяженностью электропроводки и для защиты полупроводниковых устройств.

Тип B (3-5 значений номинального тока) применяются для защиты цепей с малым значением кратности пускового тока с преимущественно активной нагрузкой (лампы накаливания, обогреватели, печи, осветительные электросети общего назначения). Показаны для применения в квартирах и жилых зданиях, где нагрузки в основном активные.

Тип C (5-10 значений номинального тока) применяются для защиты цепей установок с умеренными пусковыми токами — кондиционеры, холодильники, домашние и офисные розеточные группы, газоразрядные лампы с повышенным пусковым током.

Тип D (10-20 значений номинального тока) применяются для защиты цепей, питающих электроустановки с высокими пусковыми токами (компрессоры, подъемные механизмы, насосы, станки). Устанавливаются, в основном, в производственных помещениях.

Тип K (8-12 значений номинального тока) применяются для защиты цепей с индуктивной нагрузкой.

Тип Z (2,5-3,5 значений номинального тока) применяются для защиты цепей с электронными приборами, чувствительными к сверхтокам.

В быту обычно используются с характеристиками B ,C и очень редко D . Тип характеристики обозначается на корпусе автомата латинской буквой пред значением номинального тока.

Маркировка «С16» на автоматическом выключателе будет обозначать, что он имеет тип мгновенного расцепления С (т.е. срабатывает при величине тока от 5 до 10 значений от номинального тока) и номинальный ток, равный 16 А.

Время-токовая характеристика автоматического выключателя обычно приводится в виде графика. На горизонтальной оси указывается кратность значения номинального тока, а по вертикальной оси — время срабатывания автомата.

Широкий диапазон значений на графике обусловлен разбросом параметров автоматических выключателей, которые зависят от температуры — как внешней, так и внутренней, поскольку автоматический выключатель нагревается проходящим через него электрическим током, особенно, при аварийных режимах — током перегрузки или током короткого замыкания (КЗ).

На графике видно, что при значении I/Iн≤1 время отключения автоматического выключателя стремится к бесконечности. Другими словами, до тех пор, пока ток, протекающий через автоматический выключатель, меньше или равен номинальному току, автоматический выключатель не сработает (не отключится).

Также график показывает, что чем больше значение I/Iн (т.е. чем больше протекающий через автомат ток превышает номинальный), тем быстрее автоматический выключатель отключится.

При протекании через автоматический выключатель тока, величина которого равна нижней границе диапазона срабатывания электромагнитного расцепителя (3In для «В», 5In для «С» и 10In для «D»), он должен отключиться за время более 0,1с.

При протекании тока, равного верхней границе диапазона срабатывания электромагнитного расцепителя (5In для «В», 10In для «С» и 20In для «D»), автоматический выключатель отключится за время менее 0,1с. Если значение тока главной цепи находится внутри диапазона токов мгновенного расцепления, автоматический выключатель расцепляется либо с незначительной выдержкой, либо без задержки времени (менее 0,1 с).

Тема: на какие разновидности делятся электроавтоматы, их типы и классификация.

Автоматический выключатель представляет собой электротехническое устройство, основным назначением которого является совершение переключение своего рабочего состояния при возникновении определённой ситуации. Автоматы электрические совмещают в себе два устройства, это обычный выключатель и магнитный (или тепловой) расцепитель, задачей которого является своевременный разрыв электрической цепи в случае превышения порогового значения силы тока. Автоматические выключатели, как и все электрические устройства, также имеют различные разновидности, что их разделяет на определённые типы. Давайте ознакомимся с основными классификациями автоматических выключателей.

1» Классификация автоматов по количеству полюсов:

А) однополюсные автоматы

б) однополюсные автоматы с нейтралью

в) двухполюсные автоматы

г) трехполюсные автоматы

д) трехполюсные автоматы с нейтралью

е) четырехполюсные автоматы

2» Классификация автоматов по типу расцепителей.

В конструкцию различных видов автоматических выключателей, обычно, входят 2 основных типа расцепителей (размыкателей) - электромагнитный и тепловые. Магнитные служат для электрической защиты от короткого замыкания, а тепловые размыкатели предназначены в основном для защиты электрических цепей по определённому току перегрузки.

3» Классификация автоматов по току расцепления: В, С, D, (A, K, Z)

ГОСТ Р 50345-99, по току мгновенного расцепления автоматы разделяются на такие типы:

А) тип «B» - свыше 3 In до 5 In включительно (In - это номинальный ток)

б) тип «C» - свыше 5 In до 10 In включительно

В) тип «D» - свыше 10 In до 20 In включительно

Производителей автоматов в Европе имеют несколько иную классификацию. К примеру, у них имеется дополнительный тип «A» (свыше 2 In до 3 In). У некоторых производителей автоматических выключателей также существуют дополнительные кривые выключения (у АВВ автоматы с кривыми K и Z).

4» Классификация автоматов по роду тока в цепи: постоянного, переменного, обоих.

Номинальные электрические токи для основных цепей расцепителя подбирают из: 6,3; 10; 16; 20; 25; 32; 40; 63; 100; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300 А. Также дополнительно выпускаться автоматы на номинальные токи основных электроцепей автоматов: 1500; 3000; 3200 А.


5» Классификация по наличию токоограничения:

а) токоограничивающие

б) нетокоограничивающие

6» Классификация автоматов по видам расцепителей:

А) с максимальным расцепителем тока

б) с независимым расцепителем

в) с минимальным либо нулевым расцепителем напряжения

7» Классификация автоматов по характеристике выдержки времени:

А) без выдержки времени

б) с выдержкой времени, независимой от тока

в) с выдержкой времени, обратно зависимой от тока

г) с сочетанием указанных характеристик

8» Классификация по наличию свободных контактов: с контактами и без контактов.

9» Классификация автоматов по способу подсоединения внешних проводов:

А) с задним присоединением

б) с передним присоединением

в) с комбинированным присоединением

г) с универсальным присоединением (и передним и задним).


10» Классификация по виду привода:
с ручным, с двигательным и с пружинным.

P.S. У всего есть свои разновидности. Ведь если бы существовала только одна единвещь в своём единственном экземпляре, это было бы как минимум просто скучно и слишком ограниченно! Тем многообразие и хорошо, что в нём можно выбрать именно то, что максимум соответствует своим потребностям.

Привет, друзья. Тема поста – типы и виды автоматических выключателей (автоматов, АВ). Также хочу итоги турнира по разгадыванию кроссвордов.

Виды автоматов:

Можно разделить на выключатели переменного тока, постоянного тока и универсальные, работающие при любом токе.

Конструкция — бывают воздушные, модульные, в литом корпусе.

Показатель номинального тока. Минимальный ток срабатывания модульного автомата составляет 0,5 Ампер, например. Скоро напишу о том, как правильно выбрать номинальный ток для автоматического выключателя, подписывайтесь на новости блога , чтобы не пропустить.

Номинальное напряжение, еще одно различие. В большинстве случаев АВ работают в сетях с напряжением 220 или 380 Вольт.

Бывают токоограничивающие и нетокоограничивающие.

Все модели выключателей классифицируются по количеству полюсов. Делятся на однополюсные, двухполюсные, трехполюсные и четырехполюсные автоматы.

Виды расцепителей — максимальный расцепитель тока, независимый расцепитель, минимальный или нулевой расцепитель напряжения.

Скорость срабатывания автоматических выключателей. Выделяют быстродействующие, нормальные и селективные автоматы. Бывают с выдержкой времени, без нее, независимой или обратно зависимой от тока выдержкой времени срабатывания. Характеристики могут сочетаться.

Отличаются по степени защиты от окружающей среды — IP, механических воздействий, токопроводимости материала. По виду привода — ручной, двигатель, пружина.

По наличию свободных контактов и способу присоединения проводников.

Типы автоматов:

Что означает тип АВ?

Автоматические выключатели содержат внутри себя два вида размыкателей – тепловой и магнитный.

Магнитный быстродействующий размыкатель предназначен для защиты при коротком замыкании. Срабатывание размыкателя может происходить за время от 0,005 до нескольких секунд.

Тепловой размыкатель значительно медленнее, предназначен для защиты от перегрузки. Работает с помощью биметаллической пластины, нагревающейся при перегрузке цепи. Время срабатывания от нескольких секунд до минут.

Совместная характеристика срабатывания зависит от вида подключаемой нагрузки.

Существует несколько типов отключения АВ. Их еще называют — типы время-токовых характеристик отключения.

A, B, C, D, K, Z.

A – применяется для размыкания цепей с большой длинной электропроводки, служит хорошей защитой для полупроводниковых устройств. Срабатывают при 2-3 номинальных токах.

B – для осветительной сети общего назначения. Срабатывают при 3-5 номинальных токах.

C – осветительные цепи, электроустановки с умеренными пусковыми токами. Это могут быть двигатели, трансформаторы. Перегрузочная способность магнитного размыкателя выше, чем у выключателей типа B. Срабатывают при 5-10 номинальных токах.

D – применяются в цепях с активно-индуктивной нагрузкой. Для электродвигателей с большими пусковыми токами, например. При 10-20 номинальных токах.

K – индуктивные нагрузки.

Z – для электронных устройств.

Данные о срабатывании выключателей типов K, Z лучше смотреть в таблицах конкретно по каждому производителю.

Вроде все, если есть, что дополнить, оставь комментарий .

Автоматический выключатель представляет собой электротехническое устройство, основным назначением которого является совершение переключение своего рабочего состояния при возникновении определённой ситуации. Автоматы электрические совмещают в себе два устройства, это обычный выключатель и магнитный (или тепловой) расцепитель, задачей которого является своевременный разрыв электрической цепи в случае превышения порогового значения силы тока. Автоматические выключатели, как и все электрические устройства , также имеют различные разновидности, что их разделяет на определённые типы. Давайте ознакомимся с основными классификациями автоматических выключателей .

1» Классификация автоматов по количеству полюсов:

А) однополюсные автоматы

б) однополюсные автоматы с нейтралью

в) двухполюсные автоматы

г) трехполюсные автоматы

д) трехполюсные автоматы с нейтралью

е) четырехполюсные автоматы

2» Классификация автоматов по типу расцепителей.

В конструкцию различных видов автоматических выключателей, обычно, входят 2 основных типа расцепителей (размыкателей) - электромагнитный и тепловые. Магнитные служат для электрической защиты от короткого замыкания, а тепловые размыкатели предназначены в основном для защиты электрических цепей по определённому току перегрузки.

3» Классификация автоматов по току расцепления: В, С, D, (A, K, Z)

ГОСТ Р 50345-99, по току мгновенного расцепления автоматы разделяются на такие типы:

А) тип «B» - свыше 3 In до 5 In включительно (In - это номинальный ток)

б) тип «C» - свыше 5 In до 10 In включительно

В) тип «D» - свыше 10 In до 20 In включительно

Производителей автоматов в Европе имеют несколько иную классификацию. К примеру, у них имеется дополнительный тип «A» (свыше 2 In до 3 In). У некоторых производителей автоматических выключателей также существуют дополнительные кривые выключения (у АВВ автоматы с кривыми K и Z).

4» Классификация автоматов по роду тока в цепи: постоянного, переменного, обоих.

Номинальные электрические токи для основных цепей расцепителя подбирают из: 6,3; 10; 16; 20; 25; 32; 40; 63; 100; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300 А. Также дополнительно выпускаться автоматы на номинальные токи основных электроцепей автоматов: 1500; 3000; 3200 А.


5» Классификация по наличию токоограничения:

а) токоограничивающие

б) нетокоограничивающие

6» Классификация автоматов по видам расцепителей:

А) с максимальным расцепителем тока

б) с независимым расцепителем

в) с минимальным либо нулевым расцепителем напряжения

7» Классификация автоматов по характеристике выдержки времени:

А) без выдержки времени

б) с выдержкой времени, независимой от тока

в) с выдержкой времени, обратно зависимой от тока

г) с сочетанием указанных характеристик

8» Классификация по наличию свободных контактов: с контактами и без контактов.

9» Классификация автоматов по способу подсоединения внешних проводов:

А) с задним присоединением

б) с передним присоединением

в) с комбинированным присоединением

г) с универсальным присоединением (и передним и задним).


10» Классификация по виду привода:
с ручным, с двигательным и с пружинным.

P.S. У всего есть свои разновидности. Ведь если бы существовала только одна единвещь в своём единственном экземпляре, это было бы как минимум просто скучно и слишком ограниченно! Тем многообразие и хорошо, что в нём можно выбрать именно то, что максимум соответствует своим потребностям.

В любом автоматическом выключателе есть важная составная часть устройства: расцепитель, который служит для размыкания или замыкания коммутационного устройства. По сути расцепитель размыкает контакты автомата при появлении сверхтоков, снижении напряжения. ГОСТ Р 50030.1 (5) определяет понятие расцепителя, как «Устройство, механически связанное с контактным коммутационным аппаратом, которое освобождает удерживающие приспособления и тем самым допускает размыкание или замыкание коммутационного аппарата». Стандарт МЭК 61992‑1 (6) дополняет данное определение расцепителя автоматического выключателя - расцепитель может состоять из механических, электронных или электромагнитных компонентов; относится к любому устройству с механическим действием , которые применяется для расцепляющего оперирования в случае, когда во входной цепи встречаются определенные условия; в автомате может быть несколько расцепителей.

Виды расцепителей

В бытовых автоматических выключателях чаще всего встречаются следующие виды расцепителей: тепловой, электронный и электромагнитный. Они быстро распознают критическую ситуацию (появление сверхтоков, перегрузки и перепады напряжения) и размыкают контакты автоматического выключателя, предотвращая порчу электрического оборудования и защищая проводку. Помимо этих видов, существуют еще и расцепители нулевого напряжения, минимального напряжения, независимые, полупроводниковые, механические.

Сверхтоки - увеличение силы тока в электрической сети , превышающей номинальный ток автомата. Это токи перегрузки, замыкания.

Ток перегрузки - сверхток в функциональной сети.

Ток короткого замыкания - сверхток, появляющийся в результате замыкания двух составляющих сети при крайне низком сопротивлении между этими элементами.

Тепловой расцепитель

Тепловой расцепитель размыкает контакты автоматического выключателя при небольших превышениях номинального тока, отличается увеличенным временем срабатывания. При кратковременных превышениях токовой нагрузки он не срабатывает, это удобно в сетях, где часты именно кратковременные превышения номинального тока автомата.

Тепловой расцепитель является биметаллической пластиной, один конец которой расположен рядом со спусковым механизмом расцепления. В случае увеличения силы тока пластина начинает изгибаться и приближаться к спусковому механизму, касается планки, а та, в свою очередь, размыкает контакты автоматического выключатели. Принцип работы построен на физических свойствах металла, расширяющегося при нагревании, поэтому такой расцепитель и называется тепловым.

К достоинствам теплового расцепителя можно отнести отсутствие трущихся друг о друга поверхностей, устойчивость к вибрациям, низкая стоимость в силу простой конструкции. Но нужно обратить внимание и на недостатки - работа теплового расцепителя сильно зависит от температуры окружающей среды , их следует размещать в местах со стабильным температурным режимом вдали от источников тепла, в противном случае возможны многочисленные ложные срабатывания.

Электронный расцепитель

В состав электронного расцепителя входят измерительные устройства (датчики тока), блок управления и исполнительный электромагнит. Электронные расцепители предназначены для подачи команды на автоматическое отключения автомата с заданной программой при возникновении в электрической цепи сверхтоков перегрузки или замыкания. При превышении силы тока через автомат в блоке электронного расцепителя начинается отсчет времени срабатывания в соответствии с время-токовой характеристикой. Если за время срабатывания ток снизится до величины, ниже пороговой, то автоматического срабатывания не произойдет.

К плюсам электронных расцепителей относятся: широкий выбор настроек, четкое следование прибора заданной программе, наличие индикаторов. Основной недостаток - довольно высокая стоимость , а также чувствительность расцепителя к воздействию электромагнитного излучения.

Электромагнитный расцепитель

Электромагнитный расцепитель (отсечка) срабатывает мгновенно, не допуская ни малейшей вероятности повреждения составных частей электроцепи. Это соленоид с подвижным сердечником, который воздействует на механизм расцепления. В процессе протекания тока по обмотке соленоида, в случае превышения токовой нагрузки, происходит втягивание сердечника под воздействием электромагнитного поля.

Электромагнитный расцепитель срабатывает при превышении тока короткого замыкания. Он обладает достаточной прочностью, устойчив к вибрации, однако создает магнитное поле.

Ток расцепителя автоматического выключателя

Ток расцепителя автоматического выключателя имеет конкретное значение (номинал), означающий величину тока, при котором автомат разомкнет цепь. Ток в тепловом расцепителе всегда равен или меньше номинального тока автоматического выключателя. При любом превышении токовой нагрузки на расцепитель будет происходить отключения автомата. При этом время, через которое произойдет размыкание контактов, зависит от времени протекания тока превышенной нагрузки. Время отключения теплового расцепителя можно рассчитать, используя время-токовые характеристики.

Ток электромагнитного расцепителя отключает автомат мгновенно при превышении номинального тока автоматического выключателя, чаще всего это происходит при коротком замыкании. Перед КЗ в сети очень быстро нарастает величина тока, которую учитывает устройство электромагнитного расцепителя, в результате происходит очень быстрое воздействие на механизм расцепления. Скорость срабатывания в этом случае составляет доли секунды.

Они могут снабжаться следующими встроенными в них расцепителями:

Электромагнитным или электронным расцепителем максимального тока мгновенного или замедленного действия с практически независимой от тока выдержкой времени;

Электротермическим или электронным инерционным расцепителем максимального тока с зависимой от тока выдержкой времени;

Расцепителем тока утечки;

Асцепителем минимального напряжения;

Расцепителем обратного тока или обратной мощности;

Независимый расцепитель (дистанционное отключение выключателя).

Первые два типа устанавливаются во всех трех полюсах, остальные - по одному на выключатель. Токи уставки, а также выдержки времени токовых расцепителей могут быть регулируемыми. В одном выключателе могут применять один или несколько типов токовых расцепителей и дополнительно к ним расцепитель минимального напряжения, независимый расцепитель и электромагнит включения.

По времени срабатывания электромагнитные и аналогичные им электронные расцепители имеют четыре разновидности:

Расцепители, обеспечивающие срабатывание АВ за время намного меньше 0,01с, и отключение тока КЗ раньше, чем он достигнет своего ударного значения. Такие АВ называют токоогораничивающие.

Расцепители, обеспечивающие отключение тока КЗ при первом прохождении тока черехз нулевое значение tc=0,01с.

Нерегулируемые расцепители, время срабатывания которых превышает 0,01с;

Расцепители м регулируемой выдержкой времени (0,1-0,7с), позволяющие добиться замедленной работы относительно других АВ той же сети, называют селективными.

Расцепители тока утечки применяют для быстрого отключения участков сети, в которых из-за нарушения изоляции или прикосновения людей к проводникам возник ток утечки на землю. При этом ток уставки расцепителя выбирают в пределах от 10 до30 мА, а время зависимости от напяжения в пределах от 10 до100мс. Эту защиту в наст время считают более эффективной от защиты людей от поражения электрическим током.

Расцепители минимального напряжения применяют в целях отключения источников питания при прекращении ими питании сети (еред АВР)_, а также в целях отключения электроприемников, самозапуск которых при автоматическом восстановлении напряжения нежелателен. Напряжение сраьатывания расцепителя выбирают в пределах от 0,8 до0,9 Uном, время срабатывания – в соответствии с требованиями систем автоматического восстановления питания сети.

Независимые расцепители примеяют для местного дистанционного и автоматического отключения АВ при срабатывании внешних защитных устройств.

Расцепители обратного тока или обратной мощности применяют для защиты генереаторов, работающих на электрическую систему от выпадения синхронихма.

17. Максимальная токовая направленная защита (принцип действия, принципиальная элек­трическая схема, расчет выдержек времени).

Направленные токовые защиты линии МТНЗ

T 1 > t → 2 > t 3

I p = I` кз I p = I` кз

U p = U в U p = U в

φ p = 180 - φ а φ p = φ а t 4 > t ← 3 > t 2

I p = I`` кз I p = I` кз

U p = U в U p = U в

φ p = φ а φ p = 180 - φ а

В выключателях Q1 - Q3 стоят МТЗ направленного действия. Она отличается от обычной МТЗ тем, что вводится дополнительный орган, определяющий направление мощности КЗ - реле направления мощности, который реагирует на фазу тока КЗ относительно напряжения на шинах подстанции в месте установки комплекта защиты, то «-» знак мощности и реле направления мощности блокирует комплект защиты. Если направление мощности КЗ от шин к линии, то это «+» знак мощности КЗ и реле направления мощности, закрывая свои контакт, разрешает комплекту МТНЗ действовать.

В результате действия направленной защиты 2 и 3 комплект не нужно согласовывать, т.к. они развязаны с помощью направленного действия реле.Эта страница нарушает авторские права

Для того чтобы вся техника в доме или на производстве была защищена от перепадов напряжения электрического тока нужно установить специальные автоматические выключатели. Они смогут зафиксировать скачок и быстро на него среагировать, отключив всю систему от подачи электричества. Человек самостоятельно сделать этого не сможет, а вот автомат определенного типа справить за несколько секунд.

Типы автоматов

Чувствительность аппарата

Перед тем как ознакомится с видами автоматов нужно узнать с какой чувствительностью приборы подойдут для домашнего использования , а какие будут неуместны. Такой показатель будет указывать на то, насколько быстро будет реагировать прибор на скачок напряжения. Он имеет несколько маркировок:

Классификация автоматов

Выделяют различные виды автоматов по отношению к типу тока, номинальному напряжению или показателю тока и другим техническим характеристикам . Поэтому нужно конкретно разбираться по каждому пункту отдельно.

Тип тока

По отношению к этой характеристике автоматы разделяют на:

  1. Для работы в сети переменного тока ;
  2. Для работы в сети постоянного тока ;
  3. Универсальные модели.

Тут все ясно и дополнительных пояснений не нужно.

По показателю номинального тока

От значения данной характеристики будет зависеть в сети с каким максимальным значением может работать автоматический выключатель. Есть приборы, которые способны работать от 1 А до 100 А и больше. Минимальное значение, с которым можно найти в продаже автоматы составляет 0,5 А.

Показатель номинального напряжения

Данная характеристика указывает с каким напряжением может работать данный вид автоматических выключателей. Одни могут работать в сети с напряжением 220 или 380 Вольт - это самые распространенные варианты для бытового применения . Но есть автоматы, которые будут прекрасно справляться и с более высокими показателями.

По способности ограничить приток электричества

По данной характеристике выделяют:

Другие характеристики

Количество полюсов может быть от одного до четырех. Соответственно их называют однополюсные, двухполюсные и так далее.


Автоматы по количеству полюсов

По строению различают:

По скорости сбрасывания производят быстродействующие, нормальные и селективные приборы. В них может быть установлена функция выдержки времени, которая может обратно зависеть от тока или не зависеть от него. Выдержку времени могут и не устанавливать.

Есть у автоматов и привод, который может быть ручной, подключаться к двигателю или пружине. Рознятся выключатели и наличию свободных контактов, и способу подключения проводников.

Важной характеристикой будет защита от воздействия окружающей среды. Тут можно выделить:

  1. IP-защиту;
  2. От механического воздействия;
  3. Ток проводимость материала.

Все характеристики могут сочетаться в различных комбинациях . Все зависит от модели и производителя.

Типы выключателей

Автомат внутри содержит расцепитель, который с помощью рычага, защелки, пружины или коромысла способен мгновенно отключить сеть от подачи электричества. Типы автоматических выключателей и различают по типу расцепителя. Бывают:

Автоматические выключатели гораздо выгоднее плавких предохранителей . Это потому что после остывания автомат уже можно включать, и он будет работать как надо, если причина перегрузки устранена. Плавки предохранитель нужно заменить. Его может не оказаться под рукой и замена может занять много времени.

Привет, друзья. Тема поста – типы и виды автоматических выключателей (автоматов, АВ). Также хочу итоги турнира по разгадыванию кроссвордов.

Виды автоматов:

Можно разделить на выключатели переменного тока, постоянного тока и универсальные, работающие при любом токе.

Конструкция - бывают воздушные, модульные, в литом корпусе.

Показатель номинального тока. Минимальный ток срабатывания модульного автомата составляет 0,5 Ампер, например. Скоро напишу о том, как правильно выбрать номинальный ток для автоматического выключателя, подписывайтесь на новости блога, чтобы не пропустить.

Номинальное напряжение, еще одно различие. В большинстве случаев АВ работают в сетях с напряжением 220 или 380 Вольт.

Бывают токоограничивающие и нетокоограничивающие.

Все модели выключателей классифицируются по количеству полюсов. Делятся на однополюсные, двухполюсные, трехполюсные и четырехполюсные автоматы.

Виды расцепителей - максимальный расцепитель тока, независимый расцепитель, минимальный или нулевой расцепитель напряжения.

Скорость срабатывания автоматических выключателей. Выделяют быстродействующие, нормальные и селективные автоматы. Бывают с выдержкой времени, без нее, независимой или обратно зависимой от тока выдержкой времени срабатывания. Характеристики могут сочетаться.

Отличаются по степени защиты от окружающей среды - IP, механических воздействий , токопроводимости материала. По виду привода - ручной, двигатель, пружина.

По наличию свободных контактов и способу присоединения проводников.

Типы автоматов:

Что означает тип АВ?

Автоматические выключатели содержат внутри себя два вида размыкателей – тепловой и магнитный.

Магнитный быстродействующий размыкатель предназначен для защиты при коротком замыкании. Срабатывание размыкателя может происходить за время от 0,005 до нескольких секунд.

Тепловой размыкатель значительно медленнее, предназначен для защиты от перегрузки. Работает с помощью биметаллической пластины, нагревающейся при перегрузке цепи. Время срабатывания от нескольких секунд до минут.

Совместная характеристика срабатывания зависит от вида подключаемой нагрузки.


Существует несколько типов отключения АВ. Их еще называют - типы время-токовых характеристик отключения.

A, B, C, D, K, Z.

A – применяется для размыкания цепей с большой длинной электропроводки, служит хорошей защитой для полупроводниковых устройств. Срабатывают при 2-3 номинальных токах.

B – для осветительной сети общего назначения . Срабатывают при 3-5 номинальных токах.

C – осветительные цепи, электроустановки с умеренными пусковыми токами. Это могут быть двигатели, трансформаторы. Перегрузочная способность магнитного размыкателя выше, чем у выключателей типа B. Срабатывают при 5-10 номинальных токах.

D – применяются в цепях с активно-индуктивной нагрузкой. Для электродвигателей с большими пусковыми токами, например. При 10-20 номинальных токах.

K – индуктивные нагрузки.

Z – для электронных устройств.

Данные о срабатывании выключателей типов K, Z лучше смотреть в таблицах конкретно по каждому производителю.

Вроде все, если есть, что дополнить, оставь комментарий .

С самого начала возникновения электричества инженеры стали думать над безопасностью электрических сетей и устройств от токовых перегрузок. Вследствие этого было сконструировано много разных устройств, которые отличаются надежной и качественной защитой. Одними из последних разработок стали электрические автоматы.

Этот прибор называется автоматическим по причине того, что он оснащен функцией отключения питания в автоматическом режиме, при возникновении коротких замыканий, перегрузок. Обычные предохранители после срабатывания подлежат замене на новые, а автоматы после устранения причин аварии можно снова включить.

Такое защитное устройство необходимо в любой схеме электрической сети. Защитный автомат защитит здание или помещение от разных аварийных ситуаций:
  • Пожаров.
  • Ударов человека током.
  • Неисправностей электропроводки.
Виды и конструктивные особенности

Необходимо знать информацию о существующих видах автоматических выключателей, чтобы во время приобретения правильно выбрать подходящее устройство. Имеется классификация электрических автоматов по нескольким параметрам.

Отключающая способность
Это свойство определяет ток короткого замыкания, при котором автомат разомкнет цепь, тем самым отключит сеть и приборы, которые были подключены к сети. По этому свойству автоматы подразделяются:
  • Автоматы на 4500 ампер, применяются для предотвращения неисправностей силовых линий жилых домов старой постройки.
  • На 6000 ампер, используются для предотвращения аварий при замыканиях в сети домов в новостройках.
  • На 10000 ампер, применяются в промышленности для защиты электрических установок. Ток такой величины может образоваться в непосредственной близости от подстанции.

Срабатывание автоматического выключателя возникает при замыканиях, сопровождающихся возникновением определенной величины тока.

Автомат защищает электропроводку от повреждения изоляции большим током.

Число полюсов

Это свойство говорит нам о наибольшем количестве проводов, которые возможно подключить к автомату для обеспечения защиты. При аварии, напряжение на этих полюсах отключаются.

Особенности автоматов с одним полюсом

Такие электрические автоматы наиболее простые по своей конструкции, и служат для защиты отдельных участков сети. К такому автоматическому выключателю можно подсоединить два провода: вход и выход.

Задачей таких устройств является защита электрической проводки от перегрузок и КЗ проводов. Нейтральный провод подключается к нулевой шине, в обход автомата. Заземление подключается отдельно.

Электрические автоматы с одним полюсом не являются вводными, так как при его отключении разрывается фаза, а нулевой провод по-прежнему остается соединенным с питанием. Это не обеспечивает защиту на 100%.

Свойства автоматов с двумя полюсами

В случаях, когда при аварии требуется полное отсоединение от электрической сети, используют автоматические выключатели с двумя полюсами. Они используются как вводные. В аварийных случаях, либо при коротком замыкании вся электрическая проводка отключается в одно время. Это дает возможность осуществлять работы по ремонту и обслуживанию, а также проведения работ по подключению оборудования, так как гарантирована полная безопасность.

Двухполюсные электрические автоматы используют, когда необходимо наличие отдельного выключателя для устройства, работающего от сети 220 вольт.

Автомат с двумя полюсами подключают к устройству с помощью четырех проводов. Из них два приходят от сети питания, а другие два выходят из него.

Трехполюсные электрические автоматы

В электрической сети, имеющей три фазы, применяются 3-полюсные автоматы. Заземление оставляют незащищенным, а проводники фаз соединяют с полюсами.

Трехполюсный автомат служит вводным устройством для любых трехфазных потребителей нагрузки. Чаще всего такой вариант исполнения автомата применяют в промышленных условиях для питания электричеством электродвигателей.

К автомату можно подключить 6 проводников, три из которых – фазы электрической сети, а остальные три выходящие от автомата, и обеспеченные защитой.

Использование четырехполюсного автомата

Чтобы обеспечить защитой трехфазную сеть с четырехпроводной системой проводников (например, электродвигатель, включенных по схеме «звезды»), применяют 4-полюсный автоматический выключатель. Он играет роль вводного устройства четырехпроводной сети.

Имеется возможность подключения к устройству восьми проводников. С одной стороны – три фазы и ноль, с другой стороны – выход трех фаз с нолем.

Время-токовая характеристика

Когда устройства, потребляющие электроэнергию, и электрическая сеть работают в нормальном режиме, то происходит обычное протекание тока. Это явление касается и электрического автомата. Но, в случае повышения силы тока по разным причинам выше номинального значения, происходит срабатывание расцепителя автомата, и цепь разрывается.

Параметр этого срабатывания называется время-токовой характеристикой электрического автомата. Она является зависимостью времени сработки автомата и соотношения между реальной силой тока, проходящей через автомат, и номинальным значением тока.

Важность этой характеристики заключается в том, что обеспечивается наименьшее число ложных срабатываний с одной стороны, и осуществляется защита по току, с другой стороны.

В энергетической промышленности бывают ситуации, когда кратковременное повышение тока не связано с аварией, и защита не должна срабатывать. Также происходит и с электрическими автоматами.

Время-токовые характеристики определяют, через какое время сработает защита, и какие параметры силы тока при этом возникнут. Чем больше перегрузка тем быстрее сработает автомат.

Электрические автоматы с маркировкой «В»

Автоматические выключатели категории «В», способны отключаться за 5 — 20 с. При этом значение тока составляет от 3 до 5 номинальных значений тока ≅0.02 с. Такие автоматы используются для защиты бытовых устройств, а также всей электропроводки квартир и домов.

Свойства автоматов с маркировкой «С»

Электрические автоматы этой категории могут выключиться за время 1 — 10 с, при 5 — 10 кратной токовой нагрузке ≅0.02 с. Такие применяют во многих областях, наиболее популярны для домов, квартир и других помещений.

Значение маркировки « D» на автомате

С таким классом автоматы используются в промышленности и выполнены в виде 3-полюсных и 4-полюсных исполнений. Их применяют для того, чтобы защитить мощные электрические моторы и разные трехфазные устройства. Время их сработки составляет до 10 секунд, при этом ток срабатывания может превышать номинальное значение в 14 раз. Это дает возможность с необходимым эффектом использовать его для защиты различных схем.

Электродвигатели со значительной мощностью чаще всего подключают через электрические автоматы с характеристикой «D», т.к. пусковой ток высокий.

Номинальный ток

Имеется 12 вариантов исполнения автоматов, которые различаются по характеристике номинального тока работы, от 1 до 63 ампер. Этот параметр определяет скорость выключения автомата при достижении предельного значения тока.

Автомат по этому свойству выбирают с учетом поперечного сечения жил проводов, допускаемому току.

Принцип действия электрических автоматов
Обычный режим

При обычной работе автомата управляющий рычаг взведен, ток поступает через провод питания на верхней клемме. Далее ток идет на неподвижный контакт, через него на подвижный контакт и по гибкому проводу на катушку соленоида. После него по проводу ток идет на биметаллическую пластину расцепителя. От него ток проходит на нижнюю клемму и дальше на нагрузку.

Режим перегрузки

Этот режим возникает при превышении номинального тока автомата. Биметаллическая пластина нагревается большим током, изгибается и размыкает цепь. Для действия пластины требуется время, которое зависит от значения проходящего тока.

Автоматический выключатель является аналоговым устройством. При его настройке есть определенные сложности. Ток срабатывания расцепителя настраивается на заводе специальным регулировочным винтом. После остывания пластины автомат снова может функционировать. Температура биметаллической пластины зависит от окружающей среды.

Расцепитель действует не сразу, давая возможность току к возврату номинального значения. Если ток не снижается, то расцепитель срабатывает. Перегрузка может возникнуть из-за мощных устройств на линии, либо подключении сразу нескольких устройств.

Режим короткого замыкания

При этом режиме ток возрастает очень быстро. Магнитное поле в катушке соленоида движет сердечник, приводящий в действие расцепитель, и отключает контакты сети питания, тем самым снимает аварийную нагрузку цепи и защищает сеть от возможного пожара и разрушения.

Электромагнитный расцепитель действует мгновенно, чем отличается от теплового расцепителя. При размыкании контактов рабочей цепи появляется электрическая дуга, величина которой зависит от тока в цепи. Она вызывает разрушение контактов. Чтобы предотвратить это отрицательное действие, сделана дугогасительная камера, которая состоит из параллельных пластин. В ней дуга затухает и исчезает. Возникающие газы отводятся в специальное отверстие.

виды и назначение, испытания, маркировка

Как выбрать правильный автомат

До недавнего времени были широко распространены фарфоровые предохранители с плавкими элементами. Они хорошо подходили для однотипной нагрузки советских квартир. Сейчас число бытовых приборов стало намного больше, в результате чего вероятность получения возгорания со старыми предохранителями возросла. Чтобы не допустить этого, необходимо тщательно подойти к выбору автомата с правильными характеристиками. Следует избегать избыточных запасов мощности. Окончательный выбор делается после выполнения нескольких простых действий.

Определение числа полюсов

При определении данного параметра выключателя следует руководствоваться простым правилом. Если планируется обезопасить участки цепи с устройствами, имеющими незначительное энергопотребление (например, приборами освещения), то лучше оставить свой выбор на однополюсном автомате (чаще класса B или C). Если планируется подключение сложного бытового устройства, обладающего существенной мощностью потребления (стиральная машина, холодильник), то следует устанавливать двухполюсной автомат (класса C, D). Если же осуществляется оборудование небольшого производственного цеха или гаража с многофазными двигательными установками, то выбирать стоит трехполюсный вариант (класса D).

Вычисление потребляемой мощности

Как правило, к тому времени, когда планируется осуществить подключение автомата, проводка в комнату уже подведена. Исходя из сечения жил и типа металла (медь или алюминий) можно определить максимальную мощность. К примеру, для медной жилы в 2,5 мм2 эта величина составляет 4–4,5 кВт. Но проводку часто подводят с большим запасом. Да и расчет стоит делать до начала выполнения всех монтажных работ.

В этом случае потребуется значение о том, какая суммарная мощность будет использоваться всеми приборами. Всегда возможен вариант их одновременно включения. Так, на обычной кухне, часто используются такие приборы:

  • холодильник – 500 Вт;
  • электрический чайник – 1700 Вт;
  • микроволновая печь – 1800 Вт

Суммарная нагрузка составляет 4 кВт и для нее хватит автомата на 25 A. Но всегда есть потребители, которые включаются эпизодически и могут создать факторы, способствующие срабатыванию выключателя. Такими устройствами могут быть комбайн или миксер. Поэтому следует брать автомат с запасом в 500–1200 Вт.

Вычисление номинального тока

Поскольку мощность в однофазных сетях равна произведению напряжения на силу тока, то и ток легко определить как частное от мощности и напряжения. Для вышеприведенного примера эту величину легко вычислить, зная, что напряжение в сети составляет 220 В. Величина потребляемого тока составляет 18,8 A. Учитывая запас в 500–1200 В, она составит 20,4–23,6 A.

Для того чтобы работа не прекращалась даже при таких кратковременных превышениях нагрузки, номинальную силу тока для автомата можно взять равной 25 A. Приблизительно такому же значению соответствует и номинал, исходя из медного кабеля с сечением 2,5 мм2, которого хватит с запасом для такой нагрузки. Автомат с номинальным током 25 А сработает до того, как он начнет нагреваться.

Определение время токовой характеристики

Этот параметр определяется по специальной таблице, в которой перечислены пусковые токи и время их протекания. Например, для бытового холодильника кратность пускового тока составляет 5. При мощности в 500 Вт, рабочий ток составляет 2,2 A. Величина пускового тока составит 2,2*7 = 15,4 A. Данные о периодичности берутся также по специальной таблице.

Таблица № 1. Пусковые токи и длительности импульсов для бытовых приборов

устройствократность тока пускового токадлительность импульса пускового тока, с
лампы накаливания5–130,05–0,3
люминесцентные лампы1,05–1,10,1–0,5
компьютеры, телевизоры5–100,25–0,5
бытовая техника, офисная техникадо 30,25–0,5
холодильники, кондиционеры, насосы3–71–3

Для выбранного устройства эта характеристика не превышает 3 с. Выбор становится очевидным: для такого потребителя необходимо брать автоматический выключатель типа B. Допустимо делать выбор автомата по мощности нагрузки. Можно пропустить последний этап, остановив свой выбор на выключателе класса B. Для бытовых нужд чаще всего бывают достаточными характеристики электрических выключателей класса B и C.

Конструкция и принцип действия

Понимание механизма автоматического срабатывания выключателя поможет осуществить выбор правильной модели. Конструктивно автомат включает в себя следующие ключевые элементы:

  • клеммы;
  • тумблер;
  • электромагнитный расцепитель;
  • биметаллическая пластина.

В зависимости от вида перегрузки, срабатывает один из двух механизмов.

При возникновении перегрузка цепи током, превышающем номинал в разы, срабатывает биметаллическая пластина. Она нагревается в течение нескольких секунд, в результате чего происходит ее тепловое расширение. При достижении определенных размеров осуществляется ее существенный изгиб и цепь размыкается. Настройка параметров пластины осуществляется производителем. Для выключателей, применяемых в быту, время срабатывания занимает 5–20 с. На них, как правило, ставится маркировка литерами: B, C, D.

Режим короткого замыкания (КЗ) характеризуется лавинообразным возрастанием тока, превышающем не только номинал, но и его предельно допустимые нагрузки. Времени на нагрев пластины при скачке не остается, иначе проводка может оплавиться. Срабатывает в такой ситуации электромагнитный расцепитель. Магнитное поле приводит в движение сердечник, который осуществляет размыкание цепи. Мгновенное срабатывание позволяет обезопасить помещение от последствий КЗ.

Три кривых время-токовой характеристики автоматического выключателя: особенности графика

На графике представлены три кривые, со значением одной из них мы вкратце ознакомились выше. Настало время разобраться, зачем они вообще нужны:

  1. Верхняя кривая – для «холодного» состояния автомата.
  2. Пунктирная кривая – для расчета времени отключения автоматов с номиналом не выше 32А.
  3. Нижняя кривая – для «горячего» состояния.

Сам график составлен с учетом того, что окружающая температура находится в пределах +30℃. Для вышеприведенного примера автоматический выключатель категории «B» в холодном состоянии при токе 50А сделает задержку на срабатывание 0,04 секунды, а при токе 15А – 4000 секунд (около 67 минут). На графике эти ситуации обозначены синим цветом.

Что еще нужно учесть

Автоматы могут стоять и в квартире, и в подъезде, и на улице. Везде температура окружающей среды будет разной. Допустим, зимой в квартире будет +20℃, в парадной воздух нагреется до +15℃, а на улице мороз все -25℃. Температура деталей расцепителя во всех случаях различна, а это значит, что время срабатывания автомата на холоде и в тепле будет разным.

Нельзя упускать из вида и поправочный коэффициент. Его суть – чем выше окружающая температура, тем меньший ток пропускает автоматический выключатель и наоборот. Один и тот же автомат при одинаковых нагрузках, но установленный в холодном и теплом помещении сработает при разных значениях тока. Хоть разница и незначительна, но она становится актуальной, когда защита работает на пределе своего номинала или сильно перегружена.

Особо часто проблема встает в полный рост летом или в жарких помещениях. Как только температура вырастет, автомат может сразу же отключить линию.

Несколько слов о время-токовых характеристиках автоматических выключателей «C» и «D»

Графиковые кривые этих категорий сдвинуты вправо, другими словами, время срабатывания автоматов увеличено:

  • Защита с характеристикой «C» отключит нагрузку при КЗ, когда ток в сети будет больше номинала выключателя в 5-10 раз.
  • Автомат с характеристикой «D» сработает при КЗ в случае, когда ток в сети превысит его номинал в 10-20 раз.

Судя по графику, выключатель на 10А категории «C» при токе 50А сработает за 0,02 секунды, а при токе 15А – за 40 секунд. Это в «горячем» режиме, обозначенным красным цветом. В «холодном» режиме (синий цвет) при токе 50А получим около 27 секунд, а при 15А – 5000 секунд (около 83 минут).

Аналогичный график выключателя с характеристиками «D» показывает, что в «горячем» состоянии (красная линия) при токе 50А время срабатывания будет уже около 1,5 сек, а при 15А – 40 сек. В «холодном» режиме работы автомата имеем: при токе 50А нагрузка будет отключена через 30 секунд, а при 15А – 6000 секунд или около 100 мин

Все эти детали нужно принимать во внимание при покупке автоматических выключателей

Коротко о типах время-токовых характеристик автоматических выключателей и их назначении

  • A – для защиты линий большой протяженности, а также приборов на полупроводниках.
  • B – предназначены для использования в розеточных и осветительных цепях, где пусковые значения тока минимальны.
  • C – используются в роли защиты для общей цепи и электроаппаратов с умеренными пусковыми нагрузками.
  • D – технические характеристики этих автоматических выключателей позволяют им работать с высокими пусковыми токами электродвигателей, а также в цепях с активно-индуктивной нагрузкой.
  • K – только для линий с индуктивной нагрузкой.
  • Z – для защиты электронного оборудования.

Точно выяснить время токовые параметры автомата можно по графикам, в которых представлена зависимость времени срабатывания от величины тока. По ним определяют, через какой промежуток времени будут обесточены потребители при повышенном токе или его скачках. Если вы разбираетесь в графиках, то сразу же поймете, почему отключается автоматический выключатель и в чем причина.

Категории «B», «C» и «D»: в чем отличия?

Поскольку автоматы этих типов в основном используются в жилых зданиях, то и речь пойдет именно о них. Собственно, отличие только одно, и оно заключается в различных значениях величины отношения протекающего тока к номинальному току I/In.

Время-токовая характеристика (ВТХ)

Отношение протекающего тока к номинальному току I/In

B

3-5

C

5-10

D

10-20

Если еще не все прояснилось, будем разбираться дальше уже на практических примерах. Уверяю, так будет понятнее, чем «жевать» сухую теорию.

Расчетная мощность

С коротким замыканием все понятно. Это соединение фазы и ноль, при котором резко поднимается сила тока. Тут автомат срабатывает быстро, то есть, в действие приводится электромагнитный расцепитель. А чтобы не развился пожар, внутри прибора устраивается дугогасительная камера.

С перегрузкой все по-другому. Во-первых, необходимо решить вопрос, как рассчитать мощность автомата, которая бы соответствовала суммарной мощности электрических приборов, запитанных на сеть, где установлен сам автомат. По сути, ток, выдерживающий автомат, должен быть меньше, чем сила тока в контуре. Существуют определенные показатели, которые зависят друг от друга.

Расчет необходимой мощности автомата

  • В контуре освещения обычно используется медный кабель сечением 1,5 мм² и монтируется автомат 16 А.
  • На розетки выводится кабель сечением 2,5 мм² и устанавливается автоматический выключатель 25 А.
  • Если оба кабеля прокладываются по воздуху, то есть проводится открытая разводка, то для них соответственно устанавливаются автоматы 19 А и 27 А.

Во-вторых, перегрузка может действовать длительное время. Она может расти медленно, поэтому в данных автоматах срабатывает тепловой расцепитель. По сути, это биметаллическая пластина, которая под действием температуры выгибается, тем самым разрывая цепь. В этом случае автомат срабатывает лишь в том случае, если сила тока превышает номинальный минимум в три раза.

Чтобы избежать перегрузки, необходимо подсчитать мощность всех используемых бытовых приборов, к примеру, на кухне. У каждого из них она указана на бирке или в техдокументации. Поэтому сложить все и узнать потребляемую мощность будет несложно. Далее расчет ведется по известному со школьной скамьи закону Ома. Он гласит, что сила тока равна мощности, деленной на напряжение в сети. К примеру, суммарная мощность всех агрегатов равна 5 кВт, напряжение 220 В. В итоге получается, что сила тока должна быть 5000/220=22,7 А. Значит, вам необходим автомат 25 А.

Маркировка

Маркировка автоматов достаточно разнообразна. В ней присутствуют как буквенная маркировка, так и цифровая. Что они обозначают?

  • Серия А – используется в цепях, где перегрузки возникнуть не могут или их отклонения от номинала составляет 30%.
  • В – устанавливаются в сетях, где номинальный ток может быть ниже фактического в три раза. При таких ситуациях электромагнитный выключатель отключается за 0,015 секунд, а тепловой за 4-5 секунд.
  • С – это самый распространенный тип. Он может выдерживать перегруз более пяти номинальных показателей. При этом тепловой расцепитель отключается через 1,5 секунд.

Есть серии «D», «К» и «Z». В жилом секторе они не устанавливаются.

Теперь что касается буквенной маркировки. Для этого придется разобрать пример. Маркировка «С32». Что это обозначает?

  • «С» – это кратность тока, который кратковременно проходит через прибор. По сути, это и есть серия.
  • 32 – это номинальная сила тока, обозначается в амперах. Это долговременный показатель.

Крайне важные дополнения

В конструкции автоматического выключателя нет бесполезных составляющих. Все компоненты старательно трудятся во имя общего предохранительного дела, это:

Слегка задержимся на силовых контактах. Неподвижная разновидность напаивается электромеханическим серебром, оптимизирующим электрическую износостойкость выключателя. При применении недобросовестным производителем дешевого серебряного сплава вес изделия уменьшается. Иногда используется латунь с серебряным напылением. «Заменители» легче нормативного металла, потому качественный прибор авторитетной марки весит несколько больше, чем «левый» аналог

Важно заметить, что при замене серебра напайки неподвижных контактов на дешевые сплавы сокращается ресурс автомата. Циклов отключения и последующего включения он выдержит меньше

ИСПЫТАНИЯ ЭЛЕКТРОМАГНИТНЫХ РАСЦЕПИТЕЛЕЙ

Автоматические выключатели с технической характеристикой типа B.

I = 3*In.

Целью данной токовой прогрузки является проверка мгновенного электромагнитного расцепителя. Время срабатывания автоматических выключателей любых номиналов, имеющих ВТХ типа B не должно превышать 0,1 секунды.

Токовой нагрузке должны подвергаться все три полюса. Нагрузка расцепления подаётся толчком путём включения вспомогательного выключателя.

I = 5*In.

Токовая проверка пятикратным номиналом также рассчитана на мгновенный расцепитель. Технические условия проведения этого вида испытания такие же, как у предыдущего. АВ холодный, ток подаётся сторонним коммутатором. Автоматическое срабатывание расцепителя должно занимать не более 0,1 секунды.

Автоматические выключатели с технической характеристикой типа C и D.

АВ имеющие ВТХ вида C испытываются 5 – кратным и 10 – кратным током, автоматы с ВТХ D – 10 – кратным и 20 – кратным токами. Время отключения во всех случаях не должно быть более 0,1 секунды. В отдельных случаях АВ типа D могут быть подвергнуты техническим испытаниям 50 – кратным током.

Недопустимые ошибки при покупке

Существует несколько ошибок, которые могут допустить электрики-новички при выборе автоматического выключателя по силе тока и нагрузке. Если Вы неправильно выберите защитную автоматику, даже немного «промахнувшись» с номиналом, это может повлечь за собой множество неблагоприятных последствий: срабатывание автомата при включении электроприбора, электропроводка не выдержит токовые нагрузки, срок службы выключателя быстро сократиться и т.д.

Чтобы такого не произошло, рекомендуем ознакомиться со следующими ошибками, что позволит в будущем правильно выбрать автоматический выключатель для своего дома либо квартиры:

Первое и самое важное, что вы должны знать — во время заключения договора новые абоненты заказывают энергетическую мощность своего присоединения. От этого технический отдел производит расчет и выбирает в каком месте будет происходить подключение и сможет ли оборудование, линии, ТП выдержать нагрузку

Также по заявленной мощности рассчитывается сечение кабеля и номинал защитного автомата. Для квартирных абонентов недопустимо самовольное увеличение нагрузки на ввод без его модернизации, поскольку по проекту уже заявлена мощность и проложен питающей кабель. В общем номинал вводного автомата выбираете не вы, а технический отдел. Если в итоге вы захотите выбрать более мощный автоматический выключатель, все должно согласовываться.
Всегда ориентируйтесь не на мощность бытовой техники, а на электропроводку. Не стоит осуществлять выбор автомата только по характеристикам электроприборов, если проводка старая. Опасность в том, что если, к примеру, для защиты электроплиты Вы выберите модель на 32А, а сечение старого алюминиевого кабеля способно выдержать только ток в 10А, то Ваша проводка не выдержит и быстро расплавиться, что станет причиной короткого замыкания в сети. Если же Вам нужно выбрать мощный коммутационный аппарат для защиты, первым делом замените электропроводку в квартире на новую, более мощную.
Если, к примеру, при расчете подходящего номинала автомата по рабочему току у Вас вышло среднее значение между двумя характеристиками – 13,9А (не 10 и не 16А), отдавайте предпочтение большему значению только в том случае, если Вы знаете, что проводка выдержит токовую нагрузку в 16А.
Для дачи и гаража лучше выбрать автоматический выключатель помощнее, т.к. здесь могут использоваться сварочный аппарат, мощный погружной насос, асинхронный двигатель и т.д. Лучше заранее предусмотреть подключение мощных потребителей, чтобы потом не переплачивать на покупке коммутационного аппарата большего номинала. Как правило, 40А вполне хватает для защиты линии в бытовых условиях применения.
Желательно подобрать всю автоматику от одного, качественного производителя. В этом случае вероятность какого-либо несоответствия сводится к минимуму.
Покупайте товар только в специализированных магазинах, а еще лучше – у официального дистрибьютора. В этом случае Вы вряд ли выберите подделку и к тому же, стоимость изделий у прямого поставщика, как правило, немного ниже, чем у посредников.

Вот и вся методика правильного выбора автомата для собственного дома, квартиры и дачи! Надеемся, что теперь Вы знаете, как выбрать автоматический выключатель по току, нагрузке и остальным, не менее важным характеристикам, а также какие ошибки не следует допускать при покупке!

Как правильно подобрать подходящий номинал коммутационного аппарата для дома и квартиры?

4 способа проверки работоспособности УЗО

Схема подключения дифференциального автомата

Показать ещё

Где применяется автомат c16

В быту автомат C16 редко применяется как вводной, установленный до счетчика. Естественно, если выделенная мощность составляет всего 3,5 кВт для однофазной сети или 6кВт для трехфазной. Безусловно, при очень плохом состоянии электросетей продавец электроэнергии может выдвинуть подобные условия подключения. Количество полюсов вводного автомата определяется количеством фаз сети и требованиями энергоснабжающей компании.

Однополюсные и двухполюсные автоматы c16 могут быть применены как автоматы на отдельный электроприбор мощностью около 3,5килоВатт. Безусловно, для соблюдения селективности будет правильно если вводной автомат выше по номинальному току.

Трехполюсные и четырехполюсные автоматы c16 также могут применяться для отдельного электроприемника мощностью 6 КилоВатт.

Несомненно, однополюсный автомат c16 наиболее распространенный в быту выключатель. Разумеется, ведь большинство бытовых розеток предназначены на номинальный ток 16 ампер. Следовательно, защищать линии розеток должны однополюсные или двухполюсные автоматы С16.

Строго говоря, автомат c16 может применяться и для активной и для индуктивной нагрузки, а также и для других видов нагрузки. То есть, он может применяться как для защиты освещения и нагревательных приборов, так и для защиты двигателей, трансформаторов, а также различных электронных электроприборов. Однако, настоящее его применение – это сеть со смешанной нагрузкой.

По сути, автомат с обозначением буквы C имеет усредненные характеристики и предназначен для установки в сеть, к которой подключены разные виды нагрузок.  С другой стороны, для более корректной защиты двигателя часто приходится применить автомат с характеристиками D, а для защиты нагревательного элемента с характеристиками B.

Одно, двх, трех, или четерыхполюсный модульный автомат выбирается исходя из того, какое количество фаз требуется отключать.

  • 1, 2 полюса в случае однофазной цепи. (220V)
  • 3 полюса в случае трехфазной сети.
  • 4 полюса, в случае трехфазной сети, если требуется при срабатывании выключателя, также обеспечить разрыв нулевого провода.

Отключающая способность определяет, какой максимальный ток автоматический выключатель гарантированно разомкнет как минимум 1 раз. Данный параметр строго уникален для каждого потребителя и определяется максмально возможным током, в случае замыкания на коротко, без нагрузки, и в идеале, рассчитывается для каждого случая индивидуально. Но руководствуясь многолетним опытом эксплуатации существуют общепринятые стандарты:

  • для домашнего применения 4500 Ампер
  • для офисных зданий 6000 Ампер, 
  • для промышленного применения 10 000 Ампер. 

Кривая отключения определяет, во сколько раз ток должен превысить номинальный, чтобы сработала мгновенная, электромагнитная защита. 

  • B рекомендуется для защиты цепей освещения и нагревательных элементов (3-5 значений номинального тока для автоматического выключателя)
  • C рекомендуется для комбинированной нагрузки, свет+обогрев+бытовая техника(5-8 номиналов автоматического выключателя)
  • D рекомендуется для высокоиндуктивной нагрузки, применяемой в промышленности (более 10 номиналов)

Возможность установки дополнительного оборудования говорит о том, что конструкцией предусмотрена возможность установки различных устройств, контакты состояния, аварийные контакты, расцепители напряжения, независимые расцепители, устройства повторного взведения, мотор-редукторы и прочие устройства применяемые, как правило, в промышленности в составе систем диспетчеризации.

Схема подключения автомата c32

Как подключить автомат, сверху или снизу? По определению, питающий проводник подключается к неподвижному контакту автомата. Обычно, это означает подключение сверху. Но могут быть и исключения. Другими словами, нужно всегда смотреть схему подключения, нанесенную на корпус автомата.

Так, цифра 1 на схеме показывает, куда подключается вход первого фазного проводника. Цифра 2 показывает выход первого фазного проводника. Соответственно, 3 – вход, 4 – выход у двухполюсного автомата. Цифры 5 – вход, 6 – выход у трехполюсного; 7 – вход, 8 – выход у четырехполюсного.

В случае, если кроме цифр на схеме и (или) на контактах есть обозначение буквы N, то на эти контакты подключается нулевой проводник. Когда обозначения буквы N нет, то нулевой проводник подключается на контакты, обозначенные наибольшими цифрами. Если фазные проводники подключаются сверху, то и нулевой проводник подключается сверху же. С другой стороны, если фазные проводники подключаются снизу, то нулевой, соответственно, снизу.

Без всякого сомнения, автомат c32 используется в быту чаще всего в качестве вводного. Так, в бытовых условиях редко используются электроприборы с мощностью, которая бы потребовала автомата на номинальный ток 32 ампер. На выше расположенной схеме показано использование однополюсного автоматического выключателя C32 в качестве вводного автомата.

На данной схеме показано применение автомата c32 для отдельной цепи

Стоит обратить внимание, что вводной автомат должен быть минимум на два номинала больше нижестоящего автомата, для селективности по тепловой нагрузке. К тому же, счетчик электроэнергии должен быть рассчитан на номинальный ток не меньший, чем у вводного автомата

Особенности работы автоматов защиты сети

К какому бы классу ни относился автоматический выключатель, его главная задача всегда одна – быстро определить появление чрезмерного тока, и обесточить сеть раньше, чем будет поврежден кабель и подключенные к линии устройства.

Токи, которые могут представлять опасность для сети, подразделяются на два вида:

  • Токи перегрузки. Их появление чаще всего происходит из-за включения в сеть приборов, суммарная мощность которых превышает ту, что линия способна выдержать. Другая причина перегрузки – неисправность одного или нескольких устройств.
  • Сверхтоки, вызванные КЗ. Короткое замыкание происходит при соединении между собой фазного и нейтрального проводников. В нормальном состоянии они подключены к нагрузке по отдельности.

Устройство и принцип работы автоматического выключателя – на видео:

https://youtube.com/watch?v=9bTw3wtgOWY

Токи перегрузки

Величина их чаще всего незначительно превышает номинал автомата, поэтому прохождение такого электротока по цепи, если оно не затянулось слишком надолго, не вызывает повреждения линии. В связи с этим мгновенного обесточивания в таком случае не требуется, к тому же нередко величина потока электронов быстро приходит в норму. Каждый АВ рассчитан на определенное превышение силы электротока, при котором он срабатывает.

За отключение питания под воздействием мощной нагрузки отвечает тепловой расцепитель, основой которого является биметаллическая пластина.

Этот элемент нагревается под воздействием мощного тока, становится пластичным, изгибается и вызывает срабатывание автомата.

Токи короткого замыкания

Поток электронов, вызванный КЗ, значительно превосходит номинал устройства защиты, в результате чего последнее немедленно срабатывает, отключая питание. За обнаружение КЗ и немедленную реакцию аппарата отвечает электромагнитный расцепитель, представляющий собой соленоид с сердечником. Последний под воздействием сверхтока мгновенно воздействует на отключатель, вызывая его срабатывание. Этот процесс занимает доли секунды.

Однако существует один нюанс. Иногда ток перегрузки может также быть очень большим, но при этом не вызванным КЗ. Как же аппарат должен определить различие между ними?

На видео про селективность автоматических выключателей:

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

Таблица выбора сечения кабеля:

Проложенные открытоПроложенные в трубе
Сеч.МедьАлюминийМедьАлюминий
каб.,ТокW, кВтТокW, кВтТокW, кВтТокW, кВт
мм2А220в380вА220в380вА220в380вА220в380в
0,5112,4
0,75153,3
1,0173,76,4143,05,3
1,5235,08,7153,35,7
2,0265,79,8214,67,9194,17,214,03,05,3
2,5306,611,0245,29,1214,67,916,03,56,0
4,0419,015,0327,012,0275,910,021,04,67,9
6,05011,019,0398,514,0347,412,026,05,79,8
10,08017,030,06013,022,05011,019,038,08,314,0
16,010022,038,07516,028,08017,030,055,012,020,0
25,014030,053,010523,039,010022,038,065,014,024,0
35,017037,064,013028,049,013529,051,075,016,028,0

Табличные сведения следует несколько корректировать согласно отечественным реалиям. Преобладающее количество бытовых розеток рассчитано на подключение провода с жилою 2,5 мм², что предполагает согласно таблице возможность установки автомата с номиналом 25А (выделено в таблице красным цветом). Реальный номинал самой розетки всего лишь 16А, значит купить нужно автоматический выключатель с номиналом, равным номиналу розетки. Аналогичную корректировку следует провести, если есть сомнения в качестве имеющейся проводки. Если есть подозрения в том, что сечение кабеля могло не соответствовать указанному производителем размеру, лучше перестраховаться и взять автомат, номинал которого на позицию меньше табличного показателя. Например: по таблице для защиты кабеля подходит автомат на 18А, а возьмем мы на 16А, потому что провод покупали у Васи на рынке.

Оцените статью:

Электрические машины - Виды и принцип работы

Электричество в природе не существует в какой-либо полезной форме. Он должен вырабатываться из любых других источников энергии, таких как солнечная, ветровая, гидро-, тепловая, атомная и т. Д. Фотоэлектрические элементы помогают нам улавливать энергию солнечного света, а генераторы используются для преобразования механической энергии, доступной в других формах, в электричество. Механическая энергия может быть получена от ветра, проточной воды и пара с помощью турбин. Двигатели используются для обратного преобразования электричества в механическую энергию.Итак, в совокупности электрических машин - это устройства, преобразующие механическую энергию в электрическую и наоборот.

Давайте начнем с трансформаторов, чтобы вы могли понять основную концепцию электромагнитной индукции, которая возникает в каждой электрической машине.

Классификация электрических машин

В основном электрические машины подразделяются на

  • Статические электрические машины - трансформаторы
  • Вращающиеся электрические машины - двигатели (преобразование электрической энергии в механическую) и генераторы (преобразование механической энергии в электрическую)

Трансформаторы

Любое статическое устройство, которое может передавать переменный ток из одной цепи в другую за счет электромагнитной индукции, можно рассматривать как трансформатор.Трансформаторы используются для преобразования переменного тока с одного уровня напряжения на другой.

Базовый трансформатор состоит из двух катушек, соединенных магнитным сердечником. В случае трехфазных трансформаторов будет присутствовать два набора катушек на фазу. Один набор катушек известен как первичная обмотка, а другой - как вторичная обмотка. Эти две обмотки изолированы друг от друга и магнитно связаны через железный сердечник.

К первичной обмотке подключено переменное напряжение. При подключении создается переменный магнитный поток с амплитудой, пропорциональной величине приложенного напряжения, частоте и количеству витков. Этот поток связывается с вторичной обмоткой и индуцирует напряжение, пропорциональное количеству вторичных витков.

Отношение числа витков первичной и вторичной обмоток известно как коэффициент витков трансформатора . Возможен любой коэффициент трансформации напряжения, который достигается за счет правильного соотношения количества витков первичной и вторичной обмоток.

Коэффициент трансформации напряжения определяется выражением:

Если вторичное напряжение больше первичного, трансформатор называется повышающим трансформатором. Если первичное напряжение больше вторичного, трансформатор называется понижающим трансформатором.

Для обеспечения эффективного связывания магнитного потока сердечник (конструкция, поддерживающая обмотки) изготовлен из высокопроницаемого сплава железа или стали.Трансформаторы доступны в различных размерах, формах и конструкциях, но основной принцип остается неизменным.

Электроэнергия вырабатывается на станции среднего напряжения (6,6 кВ, 11 кВ, 33 кВ). Чтобы минимизировать потери передачи , генерируемое напряжение повышается до более высоких напряжений. Здесь используются повышающие трансформаторы. Понижающие трансформаторы используются для понижения передаваемого напряжения вблизи центров нагрузки. Это делает трансформатор самой важной электрической машиной.

Машины электрические вращающиеся

Вращающиеся электрические машины, используемые для преобразования механической энергии в электрическую или наоборот. Существует три основных типа вращающихся электрических машин .

  1. Электрические машины постоянного тока - двигатели постоянного тока и генераторы постоянного тока
  2. Синхронные машины - Генераторы переменного тока и синхронные двигатели
  3. Асинхронные двигатели или асинхронные машины

Все вращающиеся электрические машины имеют две общие основные части.Первая - это вращающаяся часть, известная как ротор, а вторая - неподвижная часть, называемая статором. Эти детали изготовлены из высокопроницаемого магнитного материала, такого как кремнистая сталь. Давайте углубимся в детали каждого из них.

Машины постоянного тока Машины

постоянного тока доступны в различных размерах и формах от небольших шаговых двигателей в принтерах до огромных тяговых двигателей. Машина постоянного тока состоит из обмотки возбуждения на статоре и якоря на роторе.

Вид в разрезе электрических машин постоянного тока

Как вы знаете, электромагнитное преобразование требует относительного движения между обмотками возбуждения и якоря.Для достижения относительного движения между статором и ротором якорь вращается снаружи с помощью первичного двигателя (турбины или двигатели). Когда якорь вращается мимо полюсов возбужденного поля, в якоре индуцируется ЭДС.

Индуцированная ЭДС имеет переменный характер. Чтобы преобразовать его в постоянный ток, два конца якоря подключаются к коммутатору. Коммутаторы представляют собой металлические стержни, прикрепленные к валу машин и подключенные к обмотке якоря, которые изменяют направление тока на каждые пол-оборота.Коммутатор разделен на несколько сегментов, и каждый сегмент изолирован друг от друга. Угольные щетки используются для сбора тока от коммутатора.

В машинах постоянного тока якорь всегда остается на роторе, чтобы преобразовать индуцированное переменное напряжение в постоянное. Якорь состоит из нескольких пазов и установлен на валу, который опирается на подшипник.

Двигатели постоянного тока

и генераторы постоянного тока имеют одинаковую конструкцию. Обычно двигатель можно использовать в качестве генератора и наоборот.По соединению обмоток статора и ротора машину постоянного тока можно классифицировать следующим образом:

  • Машина постоянного тока с независимым возбуждением
  • Машина постоянного тока с самовозбуждением

Машины постоянного тока с независимым возбуждением

В этом типе обмотки якоря и возбуждения возбуждаются отдельно. Обмотку возбуждения можно также заменить постоянным магнитом.

Двигатели с самовозбуждением

Якорь и обмотки возбуждения самовозбуждающегося двигателя возбуждаются от одного источника питания.Возможны следующие подключения.

  • Шунтирующее соединение - Якорь и поле подключены параллельно.
  • Последовательное соединение - Якорь и поле соединены последовательно.
  • Составное соединение
Соединение с машиной постоянного тока

Двигатели постоянного тока

Конструктивные особенности двигателей постоянного тока такие же, как и у генераторов. Они работают над свойством притяжения между разноименными магнитными полюсами и отталкивания между одинаковыми магнитными полюсами.Регулируя напряжение возбуждения и напряжение якоря, можно управлять скоростью двигателя постоянного тока. Кроме того, различные типы методов возбуждения делают двигатели постоянного тока более универсальными.

Скоростные характеристики двигателей постоянного тока

Синхронные машины

Генераторы переменного тока, присутствующие почти на всех турбинных электростанциях по всему миру, являются синхронными машинами. Генератор также может работать как двигатель, если на ротор подается постоянный ток, а на статор - переменное напряжение.Кратко рассмотрим принцип работы синхронных машин.

Изображение предоставлено: https://www.tonex.com/

Якорь синхронной машины находится на статоре, а поле - на роторе. На ротор (обмотку возбуждения) подается постоянный ток, который превращает его в электромагнит. В машинах PMDC (постоянный магнит постоянного тока) обмотка возбуждения ротора заменена постоянным магнитом.

Ротор может быть цилиндрического или явнополюсного типа. Цилиндрический; роторы механически устойчивы на высоких скоростях и используются в больших турбогенераторах, тогда как машины с явным полюсом используются в низкоскоростных гидроэлектрических генераторах.

Принцип работы синхронных машин

Генераторы

Когда на ротор подается постоянное напряжение, он становится электромагнитом. Если ротор приводится в движение первичным двигателем, происходит относительное движение между магнитным потоком ротора и проводником статора. Следовательно, согласно закону Фарадея в обмотке статора индуцируется ЭДС. Индуцированная ЭДС носит переменный характер, и частота чередования будет пропорциональна скорости вращения ротора.

Источник: www.wikimedia.org

В трехфазном генераторе переменного тока три набора катушек намотаны на полюсах статора с относительным электрическим расстоянием 120 градусов. Следовательно, ЭДС, индуцированная в каждом наборе катушек, должна иметь фазовый сдвиг 120 градусов.

Синхронные двигатели

Как упоминалось ранее, постоянное напряжение подается на обмотку возбуждения синхронного двигателя, а переменный ток подается на статор для создания крутящего момента. Крутящий момент создается из-за тенденции ротора выравниваться по магнитному полю, создаваемому статором.

Когда на статор подается трехфазное переменное напряжение, создается вращающееся магнитное поле. Поскольку ротор уже имеет постоянное магнитное поле, он пытается выровняться с вращающимся магнитным полем поля статора, создавая крутящий момент.

Ротор не может мгновенно набрать скорость из-за инерции. Кроме того, скорость вращения поля статора очень высокая (50 Гц или 60 Гц). Следовательно, ротору становится трудно первоначально набрать крутящий момент. Это делает синхронный двигатель несамостоятельным.Двигатель должен приводиться в движение другим вспомогательным средством, близким к его синхронной скорости. При скорости, близкой к синхронной, поля ротора и статора блокируются друг с другом, и ротор начинает вращаться с синхронной скоростью, после чего вспомогательные средства, используемые для запуска двигателя, могут быть разъединены.

Другой особенностью синхронного двигателя является то, что при перевозбуждении он действует как конденсатор и может использоваться для компенсации реактивной мощности. Двигатель, используемый для компенсации реактивной мощности, известен как синхронный конденсатор и используется в крупных энергетических установках для коррекции коэффициента мощности.

Асинхронные двигатели или асинхронные двигатели Асинхронные двигатели

широко используются во всех отраслях промышленности. Без сомнения, можно сказать, что это самая используемая электрическая машина в мире. Однофазный асинхронный двигатель можно найти в каждом доме в виде потолочных вентиляторов, насосов и т. Д. Самое большое преимущество асинхронных двигателей заключается в том, что они не требуют отдельного источника питания для ротора.

Принцип работы асинхронных двигателей

Асинхронные двигатели имеют трехфазную обмотку на статоре, аналогичную таковой в синхронных машинах.Когда на катушки статора подается трехфазное напряжение, образуется вращающееся магнитное поле. Это переменное магнитное поле контактирует с проводниками ротора и наводит в нем ЭДС.

Концы обмотки ротора закорочены, так что по ним протекает ток, пропорциональный наведенной ЭДС. Из-за протекания тока создается другое магнитное поле, вращающееся в том же направлении, что и у статора. Взаимодействие между этими двумя магнитными полями создает крутящий момент, который стремится вращать двигатель в направлении вращающегося магнитного поля статора.Асинхронные двигатели - это самозапускаемые двигатели.

Скорость ротора всегда меньше синхронной скорости приложенного напряжения статора. Следовательно, эти двигатели известны как асинхронные двигатели. Разница на единицу между синхронной скоростью и фактической скоростью ротора называется скольжением.

Асинхронный двигатель с короткозамкнутым ротором

В асинхронных двигателях возможны два типа конструкции ротора. Первый - это ротор с обмоткой, второй - ротор с короткозамкнутым ротором. Ротор состоит из пазов для размещения проводов.Ротор с обмоткой состоит из трех фазных обмоток, аналогичных обмоткам статора в этих пазах. Один конец каждой фазы закорочен, образуя соединение типа «звезда» или «звезда», а другие концы подведены к контактному кольцу, прикрепленному к валу.

Угольные щетки используются для нарезания контактных колец на внешней клеммной коробке. К ротору можно добавить внешнее сопротивление для ограничения пускового тока.

Роторы с короткозамкнутым ротором состоят из сплошных стержней из проводящего материала, помещенных в пазы ротора.Эти проводники закорочены на обоих концах. Этот тип роторов не имеет внешних электрических соединений. Кроме того, двигатели с короткозамкнутым ротором имеют меньший пусковой момент, чем роторы с обмоткой.

Индукционные генераторы

Когда асинхронный двигатель, вращающийся с определенной скоростью, вынужден вращаться выше своей синхронной скорости под действием внешней механической энергии, он действует как генератор. Такие машины известны как асинхронные генераторы. Они находят свое применение в ветроэнергетике и малых гидроэлектростанциях.

Двигатели постоянного тока с постоянными магнитами

Двигатели постоянного тока с постоянными магнитами состоят из радиально расположенных постоянных магнитов на статоре. Ротор состоит из обмотки постоянного тока, подключенной к коммутатору. Принцип работы двигателей с постоянным постоянным током такой же, как и у параллельных двигателей постоянного тока, за исключением того, что они не требуют отдельного питания возбуждения. Отсутствие возбуждения снижает потери мощности, повышает эффективность и уменьшает размер по сравнению с обычными двигателями постоянного тока того же размера.

Бесщеточный двигатель постоянного тока

Бесщеточный двигатель постоянного тока имеет набор постоянных магнитов на роторе и полупроводник, включенный на статоре.Полупроводниковые переключатели преобразуют входной источник постоянного тока в пульсирующий постоянный ток для создания максимального крутящего момента при заданной скорости.

В этих двигателях положение ротора и статора инвертировано. Поле присутствует в роторе, а якорь присутствует в начале. Датчики используются для позиционирования ротора, и в зависимости от его положения полупроводниковые переключатели включаются и выключаются для выполнения требований по скорости и крутящему моменту. Эти двигатели более дороги, чем обычные двигатели постоянного тока, требуют меньшего обслуживания и имеют более длительный срок службы, чем обычные двигатели постоянного тока.

Серводвигатель Серводвигатели

используются для точного управления положением. Это бесщеточные двигатели постоянного тока в сочетании с датчиками положения, такими как энкодеры и потенциометры. Серводвигатели используются для управления положением с обратной связью. Они находят свое применение в морской навигации, автоматических станках, самолетах, роботах, регуляторах скорости и т. Д.

Шаговые двигатели

Шаговые двигатели - это двигатели с импульсным приводом, используемые для управления положением.Эти двигатели могут перемещаться под определенным углом для каждой применяемой фазы управления. Для них не требуются датчики положения.

Типы электрических машин

ВИДЫ ЭЛЕКТРИЧЕСКИХ МАШИН

Электрические машины классифицируются как машины переменного и постоянного тока.

Типы машин постоянного тока

Генератор постоянного тока

Двигатель постоянного тока

Типы машин переменного тока

i.Трансформаторы

а. (а) Однофазный

б. (б) трехфазный

ii. Генераторы

iii. Синхронный двигатель

iv. Асинхронный двигатель

а. (а) Однофазный

б. (b) трехфазный

1. ПРИМЕНЕНИЕ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА

Шунтирующий: привод с постоянной скоростью, токарные станки, центробежные насосы , поршневые насосы

Серия: электровозы, системы скоростного транспорта, троллейбусы, краны и подъемники, конвейеры

Состав: лифты, воздушные компрессоры, прокатные станы, тяжелые проектировщики.

2. ХАРАКТЕРИСТИКИ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА

Для выбора электродвигателя для конкретной цели необходимо знать характеристики электродвигателей. Следовательно, о характеристиках двигателя постоянного тока можно судить по его характеристикам.

Ø Электрические характеристики

Характеристики крутящего момента / тока якоря

Характеристики скорости / тока якоря

Механические

9000 Характеристики крутящего момента

3.ВИДЫ ЭЛЕКТРИЧЕСКОГО ТОРМОЗА

Существует три типа электрического торможения, а именно:

Ø реостатическое или динамическое торможение

Ø вставное или противоточное торможение или торможение обратным током

Регенеративное торможение

РЕГЕНЕРАЦИОННОЕ ТОРМОЖЕНИЕ

Ø В режиме рекуперативного торможения двигатель работает как генератор, хотя он все еще подключен к источнику питания, скорость двигателя больше, чем у синхронного скорость.

Ø Механическая энергия - это преобразование в электрическую энергию, часть которой возвращается в источник питания, а остальное в виде тепла в обмотке и подшипнике.

ДИНАМИЧЕСКОЕ ТОРМОЖЕНИЕ

Ø При этом методе отключения двигатель отключается от питания, полевые соединения меняются местами, и двигатель подключается последовательно с переменным сопротивлением Р.

ЗАГЛУШКА

Операция вставки может быть достигнута путем изменения полярности двигателя путем изменения направления вращения двигателя на противоположное.

Этого можно достичь в двигателях переменного тока путем изменения последовательности фаз, а в двигателях постоянного тока - путем изменения полярности

Электрическая машина - обзор

I.D Стандарты

Электрические машины должны соответствовать стандартам, установленным соответствующими профессиональными организациями.В Соединенных Штатах это Национальная ассоциация производителей электрооборудования (NEMA) или Институт инженеров по электротехнике и электронике (IEEE) и, если они существуют, Американский национальный институт стандартов (ANSI), работающий по принципу «все включено». Таблички с паспортными данными должны соответствовать Национальному электротехническому кодексу. В частности, электродвигатели, продаваемые в Соединенных Штатах, должны соответствовать публикации стандартов ANSI / NEMA № MG1-1978 и более поздним частичным изменениям. Подобные стандарты преобладают в других странах.

Стандарты определяют номинальную мощность и скорость, напряжение и частоту.Вращающиеся машины классифицируются по размеру на дробные, интегральные (до 500 л.с. при 3600 об / мин для переменного тока и 1,25 л.с. / об / мин для постоянного тока) и большие машины. Стандарты NEMA определяют следующие мощности: 1, 1,25, 1,5, 2, 2,5, 3, 4, 5, 6, 8, 10, 12,5, 16, 20, 25, 30 и 40 л.с. и 120,115,112,110,18,16, 15,14,13,12,34 и 1 л.с. для двигателей переменного тока малой мощности и 0,5, 0,75, 1, 1,5, 2, 3, 5, 7,5, 10, 15, 20, 25, 30, 40, 50 , 60, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450 и 500 л.с. для двигателей переменного тока со встроенной мощностью.Можно видеть, что в каждом классе соотношение между двумя соседними номинальными мощностями уменьшается с увеличением размера. Эта тенденция продолжается и с крупными машинами, которые включают 60 номиналов с передаточными числами, варьирующимися от 1,25 на уровне 100 л.с. до 0,9 на уровне 100 000 л.с. Синхронная скорость определяется количеством пар полюсов, p , которое обычно достигает 4 в двигателях с дробной мощностью, 7 в двигателях со встроенной мощностью, 16 в больших двигателях и 26 в синхронных генераторах с явнополюсными двигателями.Стандартные напряжения следующие: для универсальных и однофазных двигателей 115 и 230 В при 60 Гц и 110 и 220 В при 50 Гц; для трехфазных двигателей: 115, 200, 230, 460, 575, 2300, 4000, 4600, 6600 и 13200 при 60 Гц и 220 и 380 В при 50 Гц. Аналогичные характеристики справедливы для машин постоянного тока, но базовая скорость крупных промышленных двигателей может составлять всего 50 об / мин.

Установочные размеры стандартизированы на национальном уровне, чтобы обеспечить взаимозаменяемость машин различного производства.Стандартные кадры NEMA обозначаются следующим образом. В машинах с дробной мощностью номер рамы представляет собой высоту H от средней линии вала до основания футов в дюймах, умноженную на 16; в машинах с интегральной мощностью первые две цифры номера рамы равны 4 H , а последующие цифры относятся к расстоянию между осевыми линиями монтажных отверстий в лапах или в основании машины (вид сбоку). После номеров рам идут буквы, обозначающие тип монтажа, или буква T , обозначающая, что рама соответствует стандартам размеров, установленным NEMA в 1964 году.

Вращающиеся машины обозначаются в зависимости от их применения как генераторы или двигатели, а также как машины общего, определенного или специального назначения. В соответствии с защитой окружающей среды они обозначаются как открытые машины (каплезащищенные, брызгозащищенные, полузащищенные, охраняемые, каплезащищенные, с наружной вентиляцией и трубной вентиляцией) или полностью закрытые машины (невентилируемые, с вентиляторным охлаждением, водонепроницаемые, с трубной вентиляцией, водяные или с масляным охлаждением, водяным или масляно-воздушным охлаждением, воздушно-воздушным охлаждением, вентиляторным охлаждением с защитой и воздушным охлаждением над машиной).Чтобы сделать полностью закрытые машины «взрывозащищенными» и «пыленевоспламеняемыми», требуется специальное усиление рам и специальная фурнитура. Классификация по типу включает индукционные, синхронные и коллекторные машины переменного тока с короткозамкнутым ротором и с фазным ротором, а также серийные, шунтирующие и составные машины постоянного тока.

Стандартные конструкции также классифицируются по производительности. В случае генераторов это оценивается с точки зрения регулирования напряжения между режимами холостого хода и номинальными условиями, а также соотношением токов возбуждения в условиях холостого хода и короткого замыкания.В случае двигателей важными параметрами являются критические крутящие моменты, такие как пусковой или заблокированный ротор, крутящие моменты втягивания и извлечения для синхронных двигателей, а также крутящие моменты с заблокированным ротором, подъемный или минимальный, и пробой или максимальные крутящие моменты для асинхронные двигатели. Типичные кривые крутящий момент – скорость и ток – скорость для различных классов конструкции NEMA асинхронных двигателей с короткозамкнутым ротором показаны на рис. 3а и 3б соответственно. Мотор класса A является базовой конструкцией с размерами ниже 7,5 и выше 200 л.с. Класс B характеризуется нормальным пусковым моментом, низким пусковым током и малым скольжением.Класс C имеет ротор с двойной обоймой и обеспечивает высокий пусковой момент при низком пусковом токе. В классе D используется ротор с одной клеткой и стержнями с высоким сопротивлением, он обеспечивает еще более высокий пусковой момент при низком пусковом токе, но работает с высоким скольжением и, следовательно, имеет низкую эффективность работы. Типичные зависимости КПД и коэффициента мощности от нагрузки для четырехполюсных двигателей конструкции B показаны на рис. 4a и 4b соответственно, а типичные кривые зависимости коэффициента мощности при полной нагрузке от номинальной мощности в лошадиных силах показаны на рис.5.

РИСУНОК 3. Типичные характеристики асинхронных двигателей с короткозамкнутым ротором. (а) Кривые крутящий момент – скорость; (б) кривые ток – скорость.

РИСУНОК 4. Типичные кривые КПД (a) и коэффициента мощности (b) в зависимости от нагрузки.

РИСУНОК 5. Типичные кривые зависимости коэффициента мощности при полной нагрузке от номинальной мощности.

Синхронные двигатели имеют более высокий КПД, чем асинхронные двигатели эквивалентного номинала. Если при выборе в первую очередь учитывается эффективность, стандартный коэффициент мощности равен единице.Когда, вместо этого, основное внимание уделяется компенсации коэффициента мощности системы, коэффициент мощности опережает 0,8 (перевозбуждение). Это также стандартный коэффициент мощности для синхронных генераторов.

Характеристики системы самолета установлены требованиями спецификации MIL-G-21480A / AS для генератора и MIL-E-23001B для стабилизатора мощности.

Электрические машины

Основная цель данной монографии - показать современный подход к процесс проектирования высокоскоростных асинхронных двигателей, задачей которого является достижение оптимальное решение с наивысшим КПД и наименьшим моментом инерции ротора.Описана процедура параллельного, но в то же время связанного многомерного дизайн становится все более популярным в случае электрических машин, особенно со сложной структурой и строгими требованиями ко всем трем физическим аспекты: электромагнитные, тепловые и механические. Основной акцент в этой работе сделан на высокоскоростных машинах, которые предназначены для для использования в электромобилях (машины для кинетической энергии и энергии выхлопных газов рекуперация), затем в качестве дополнения к системам ДВС (электрические нагнетатели, электрические компрессоры, воздуходувки и т. д.), а также в распределенные источники энергии (газовые турбины в домах). Вступительный в главе объясняется концепция высокоскоростной машины на примерах существующих решения. Из этих примеров выбрана концепция ротора с тормозной чашей. из-за своей простоты и очень малой инерции, поэтому основная тема монография строго ограничена. Изложение начинается с описания и сравнения обычных и алгоритм проектирования современных электрических машин с особым акцентом на специфику города скоростных машин.Здесь соотношение между преобразователем мощности также были объяснены конструкции электрических машин. Описание процедуры проектирования машины начинается с рассмотрения специфических аспектов конструкции статора для высокоскоростных машин, которые возникают от очень высокой скорости вращения и, следовательно, частоты питания. Это было объяснено как выбрать обмотку, тип проводника, геометрию паза, материал и типа охлаждения, и все подтверждается имеющимися практическими примерами. Эта часть экспозиции заканчивается иллюстрацией модифицированной конструкции статора. процедура, принятая для высокоскоростных асинхронных машин, и которая может привести к геометрии с выполненными входными ограничениями и требованиями данное приложение.Затем следует более подробная презентация концепции ротора с тормозной чашей. с точки зрения моделирования и оптимизации, направленной на достижение решение с максимальной эффективностью в номинальных условиях работы. Потенциал подчеркнуты проблемы практической реализации этого решения, но это было также объяснил, каким образом некоторые из них можно преодолеть или ослабить с помощью соответствующий дизайн и оптимизация конкретных частей ротора. 2. Абстрактный 12 Для анализа работы двигателя и поиска возможностей оптимизации конструкции ротора принята аналитическая модель гидробака. был представлен асинхронный двигатель.Используя эту модель, можно получить понимание основных характеристик машины и границ ввода для оптимизации процесс, который проводится с использованием 2D FEM (метод конечных элементов) программное обеспечение. Поскольку двухмерная модель МКЭ является неполной, в этой работе также объясняется, какие эффекты и явления в машине не учитываются при 2D-моделировании МКЭ, и также как можно устранить возникшие ошибки с помощью поправочных коэффициентов, которые получены путем сравнения результатов моделирования 2D FEM и нескольких 3D FEM.Кроме того, преимущества и недостатки моделирования с использованием инструментов FEM раскрыты, а также будущие направления развития в области электротехники. моделирование и проектирование машин. В монографии также исследуется влияние материала чашки ротора на производительность двигателя и оптимальная геометрия ротора. Специальный раздел посвящен к анализу термических и механических характеристик ротора тормозной чашки, где практическая применимость и основные производственные проблемы этого ротора Типа обрисованы в общих чертах.В этой работе концепция многофазных машин освещена в специально выделенный раздел, в котором объясняются основные достоинства и недостатки их реализации в современной электродвигательной установке. Главный описаны многофазные топологии, а также преимущества шестифазной обмотки. по сравнению с традиционным трехфазным на практическом примере перетаскивания Индукционный двигатель. В заключительной главе автор описывает свой взгляд на будущее. конструкции электропривода, что требует синергии специалистов из разных площади для достижения технически, экономически и экологически приемлемого решение для рынка.

Типы электродвигателей - Thomson Lamination Company, Inc.

Электродвигатели

можно найти во многих сферах применения: от обычных предметов домашнего обихода до различных видов транспорта и даже передовых аэрокосмических приложений. Здесь мы делимся руководством, которое поможет вам лучше понять доступные варианты.

Электродвигатели и генераторы

Электродвигатели и генераторы представляют собой электромагнитные устройства с обмоткой якоря или ротором, который вращается внутри обмотки возбуждения или статора; однако у них противоположные функции.Генераторы преобразуют механическую энергию в электрическую, а двигатели преобразуют электрическую энергию в механическую.

Два типа электродвигателей

Обмотка возбуждения в электродвигателях обеспечивает электрический ток для создания фиксированного магнитного поля, которое обмотка якоря использует для создания крутящего момента на валу электродвигателя. Различия между различными типами электродвигателей связаны с их уникальной работой, напряжением и требованиями к применению. Существует как минимум дюжина различных типов электродвигателей, но есть две основные классификации: переменного тока (AC) или постоянного тока (DC).То, как обмотки в двигателях переменного и постоянного тока взаимодействуют друг с другом для создания механической силы, создает дополнительные различия в каждой из этих классификаций.

Двигатели постоянного тока

Матовые двигатели

Щеточные двигатели состоят из четырех основных компонентов:

  • Статор
  • Ротор или якорь
  • Кисти
  • Коммутатор

Существует четыре основных типа щеточных двигателей, в том числе:

  • Двигатели серии. Статор включен последовательно или идентичен ротору, поэтому их токи возбуждения идентичны. Характеристики: используется в кранах и лебедках, большой крутящий момент на низкой скорости, ограниченный крутящий момент на высокой скорости.
  • Параллельные двигатели. Катушка возбуждения параллельна (шунтируется) ротору, благодаря чему ток двигателя равен сумме двух токов. Характеристики: используется в промышленности и автомобилестроении, отличное управление скоростью, высокий / постоянный крутящий момент на низких скоростях.
  • Кумулятивные составные двигатели. Этот тип сочетает в себе аспекты как последовательного, так и закрытого типов, делая ток двигателя равным сумме как последовательных, так и шунтирующих токов поля. Характеристики: используется в промышленности и автомобилестроении, объединяет преимущества как серийных, так и параллельных двигателей.
  • Двигатели PMDC (постоянный магнит). Наиболее распространенный тип щеточных электродвигателей, электродвигатели с постоянным постоянным током, в которых для создания поля статора используются постоянные магниты. Характеристики: используется в коммерческом производстве игрушек и бытовой техники, дешевле в производстве, хороший крутящий момент на нижнем конце, ограниченный крутящий момент на верхнем конце.
Бесщеточный

Двигатели категории бесколлекторных не имеют коллектора и щеток. Вместо этого ротор представляет собой постоянный магнит, а катушки находятся на статоре. Вместо того, чтобы управлять магнитными полями на роторе, бесщеточные двигатели управляют магнитными полями статора, регулируя величину и направление тока в катушках. Одним из основных преимуществ бесщеточных двигателей является их эффективность, которая позволяет лучше контролировать и производить крутящий момент в более компактной сборке.

Двигатели переменного тока

Двигатели, относящиеся к классификации двигателей переменного тока, бывают синхронными или асинхронными, в первую очередь различаются скоростью ротора относительно скорости статора. Скорость ротора относительно статора в синхронном двигателе равна, но скорость ротора меньше, чем его синхронная скорость в асинхронном двигателе. Кроме того, синхронные двигатели имеют нулевое скольжение и требуют дополнительного источника питания, в то время как асинхронные или асинхронные двигатели имеют скольжение и не требуют вторичного источника питания.

Синхронный двигатель

Синхронный двигатель - это машина с двойным возбуждением, то есть он имеет два электрических входа. В обычном трехфазном синхронном двигателе один вход, обычно трехфазный переменный ток, питает обмотку статора, создавая трехфазный вращающийся магнитный поток. Питание ротора обычно осуществляется постоянным током, который возбуждает или запускает ротор. Как только поле ротора сцепляется с полем статора, двигатель становится синхронным.

Асинхронный (индукционный)

В отличие от синхронных двигателей, асинхронные двигатели позволяют запускать асинхронные двигатели, подавая питание на статор без подачи питания на ротор.Асинхронные двигатели имеют конструкцию с обмоткой или с короткозамкнутым ротором. Вот некоторые примеры асинхронных асинхронных двигателей:

  • Индукционные двигатели с конденсаторным пуском. Это однофазный двигатель с ротором и двумя обмотками статора, запускаемый конденсатором. Их использование включает компрессоры и насосы в холодильниках и системах переменного тока с частым запуском и остановкой.
  • Асинхронные двигатели с короткозамкнутым ротором. Трехфазное питание создает магнитное поле в обмотке статора в этом двигателе, который включает в себя ротор с короткозамкнутым ротором, сделанный из листовой стали с высокой проводимостью.Это недорогие, низкие эксплуатационные расходы и высокоэффективные двигатели, используемые в центробежных насосах, промышленных приводах, больших нагнетателях и вентиляторах, станках, токарных станках и другом токарном оборудовании.
  • Двигатели с двойным короткозамкнутым ротором. Эти двигатели решают проблемы с низким пусковым крутящим моментом в двигателях с короткозамкнутым ротором. Их конструкция уравновешивает отношение реактивного сопротивления к сопротивлению между внешней и внутренней клеткой, увеличивая пусковой крутящий момент при сохранении общей эффективности.

Щелкните, чтобы развернуть

Идентификация электродвигателя

Выбор двигателя, наиболее подходящего для конкретного применения, зависит от четырех характеристик:

  • Мощность и скорость
  • Рама двигателя
  • Требования к напряжению
  • Корпуса и монтажные позиции

Металлическая табличка, прикрепленная к двигателю, содержит важную информацию, относящуюся к этим характеристикам, за исключением информации о корпусе.

Номинальная мощность и скорость электродвигателя

И номинальная мощность, и номинальная скорость вращения (об / мин) должны соответствовать требованиям к нагрузке для установленного приложения. Двигатели бывают разных категорий мощности, в том числе: дробные двигатели (от 1/20 до 1 л.с.), встроенные двигатели (от 1 до 400 л.с.) и большие двигатели (от 100 до 50 000 л.с.). Номинальные значения частоты вращения включают 3600 об / мин (2 полюса), 1800 об / мин (4 полюса) и 1200 об / мин (6 полюсов).

Рама электродвигателя

Размер рамы двигателя не указывает на его рабочие характеристики, особенно на номинальную мощность в лошадиных силах.Национальная ассоциация производителей электрооборудования (NEMA) разработала номера корпусов, соответствующие монтажным размерам, с их цифрами, относящимися к их размеру «D» или расстоянию от центра вала до центра нижней части крепления. Как правило, двухзначные метки предназначены для дробных двигателей, но в них могут быть встроены двигатели большей мощности.

Требования к напряжению

Напряжение, частота и фаза - все это часть требований к напряжению. В большинстве случаев в Северной Америке и Европе трехфазные двигатели оснащены дисплеями с двойным напряжением, например 230/460.Стандартная рабочая частота для большинства электродвигателей составляет 60 Гц, хотя в Европе распространены двигатели с частотой 50 Гц. Это изменение в герцах указывает на то, что двигатель будет работать со скоростью 5/6 от нормальной скорости вращения. Фаза - это последний бит информации, включенный в требования к напряжению двигателя, указывающий тип требуемого источника питания, например трехфазный, однофазный и постоянный ток.

Корпуса и монтажные позиции

Информация о корпусе зависит от среды, в которой установлен двигатель.Есть две основные категории корпусов: открытые двигатели и закрытые двигатели.

Открытые двигатели

Открытые двигатели применяются в относительно чистых и сухих помещениях, что важно, поскольку открытые кожухи двигателей обеспечивают циркуляцию воздуха через обмотки.

Закрытые двигатели

Эти типы не допускают свободного воздухообмена между внешней и внутренней частью двигателя. Различия в герметичности корпуса и характеристиках охлаждения дополнительно различают типы двигателей закрытого типа, в том числе:

  • Полностью закрытый вентилятор с охлаждением (TEFC)
  • Полностью закрытые, невентилируемые (TENV)
  • Полностью закрытый воздуховод (TEAO)
  • Полностью закрытая промывка (TEWD)
  • Взрывозащищенные корпуса (EXPL)
  • Опасная зона (HAZ)

Найдите электродвигатель, наиболее подходящий для вашего применения

Thomson Lamination Company - ведущий производитель штампованных компонентов для ламинирования двигателей, способный производить большие партии пластин ротора и статора из металлов с высокой проводимостью.

Ознакомьтесь с нашими возможностями по производству ламинации или свяжитесь с нами, чтобы узнать больше о наших решениях для ламинирования с электродвигателем.

(PDF) Сравнение и дизайн различных типов электрических машин с точки зрения их применимости в гибридных электромобилях

ТРУДЫ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ ПО ЭЛЕКТРИЧЕСКИМ МАШИНАМ 2008 ГОДА PAPER ID 988

(a) сконцентрировано (b) распределено

Рис. 5. Геометрия и схематические обмотки.

занимает больше места, и объем намотки увеличивается.Также

более высокий номер слота может увеличить громкость. Основное преимущество

распределенной обмотки - это возможность

изменять соотношение пазов и полюсов (зонирование) и применять короткий шаг. Посредством зонирования

(распространение катушки на несколько щелей q) и короткого тангажа

(смещение одного или нескольких витков в щели

рядом) гармоники магнитного поля могут быть ослаблены.

При квалифицированном применении можно избавиться от основных гармоник

и, таким образом, минимизировать пульсации крутящего момента.

На рис. 4 показаны характеристики объема и общий КПД

. Из-за более крупных концевых обмоток объем

машины с распределенными обмотками всегда на

больше, чем у машины с сосредоточенными обмотками.

Зонирование существенно не влияет на объем. Но зонирование

больше невозможно, если зубцы статора слишком тонкие

из-за большого количества пазов при большом числе полюсов.

Машины с распределенной обмоткой имеют более высокий общий КПД

из-за меньшего количества гармоник и меньших потерь в стали -

потери в меди обычно не критичны.Однако при малых числах пар полюсов

объем и, следовательно, потери в меди

увеличиваются, а потери в стали уменьшаются. Здесь преобладают потери в меди

; из-за этого эффективность концентрированной обмотки

лучше, чем у распределенной обмотки для пары полюсов

по два. Однако из-за плохой удельной мощности использование машин

с малым числом пар полюсов нецелесообразно.

Таким образом, машина с распределенной обмоткой - лучший выбор

, если требуется хороший общий КПД и низкая пульсация крутящего момента

.Если плотность мощности машины более важна, например,

из-за небольшого доступного пространства, то следует отдать предпочтение машине с

с концентрированной обмоткой.

IV. ВЫВОДЫ

Чтобы определить наиболее подходящую электрическую машину для гибридных электромобилей

, было проведено сравнение нескольких типов машин. Для обеспечения хорошей сопоставимости

было выполнено предварительное аналитическое проектирование

для номинальной мощности 30 кВт и подтверждено

средствами численного моделирования КЭ.Характеристики

машин, такие как удельная мощность или эффективность, и

их преимущества и недостатки сравнивались в отношении

их применимости в HEV. Что касается параллельной гибридной системы

с очень ограниченным пространством для установки, для приложения

была выбрана синхронная машина с постоянным магнитным возбуждением (PMSM)

, и было проведено дополнительное исследование ее плотности мощности и общей эффективности

.

Было определено влияние переменного числа пар полюсов на объем и эффективность машины

, а также преимущества и недостатки

концентрированных и распределенных обмоток

.

Результат этого документа показывает, что PMSM

является наиболее подходящей машиной для параллельных гибридных систем. Результат

подтверждается тем фактом, что PMSM является наиболее часто используемым типом машин

среди сегодняшних HEV.

ССЫЛКИ

[1] Д. ван Ризен, К. Монцель, К. Келер, К. Шленсок, Г. Хеннебергер,

«iMOOSE - среда с открытым исходным кодом для вычислений конечных элементов»,

IEEE Transactions по Магнетикам vol.40, no.2, pp.1390-1393, 2004.

[2] G. M¨

uller, K. Vogt, B. Ponick, Berechnung elektrischer Maschinen,

Wiley-VCH Verlag, 2008.

[3] M Schmitz, Fahrzyklusgerechte Auslegung einer Asynchronmaschine fuer

Elektrofahrzeuge, докторская диссертация, Институт электрических машин, RWTH

Ахенский университет, Shaker Verlag, май 1998 г.

[4] M. Sch2, K.

K. «Виртуальная разработка продукта для электрических двигателей

», Proc.6-го IEMDC, Анталия, 2007. Анталия, 2007.

[5] С. Хеннебергер, Проектирование и разработка постоянного магнита

Синхронный двигатель для гибридного привода электромобиля, докторская диссертация,

Католикский университет в Лёвене, май 1998.

[6] С. Рисе и Г. Хеннебергер, «Проектирование и оптимизация резистивного двигателя

для движения электромобиля», ICEM, Хельсинки, август 2000 г.

[7] М. Зераулия, MEH Бенбузид, Д. Диалло, «Проблемы выбора привода электродвигателя

для силовых установок HEV: сравнительное исследование»,

IEEE Trans.по автомобильным технологиям, том 55, № 6, ноябрь 2006 г.

[8] Л. Чанг, «Сравнение приводов переменного тока для электромобилей - отчет по обзору мнений экспертов

», журнал IEEE AES Systems, август 1994.

[9] М. Ябумото, К. Кайдо, Т. Вакисака, Т. Кубота, Н. Сузуки, «Электрический

стальной лист для тяговых двигателей гибридных / электрических транспортных средств», Nippon

Steel Technical Report, № 87, июль 2003 г.

[10] JGW Уэст, «Силовые установки для гибридных электромобилей», Elec-

trical Machine Design for Electric and Hybrid-Electric Vehicles, IEE

Colloquium on, pp.01.01 - 1/9 октября 1999 г.

[11] C.C. Чан, «Обзор технологии электромобилей», Труды

IEEE, том 81, выпуск 9, страницы: 1202–1213, сентябрь 1993 г.

Некоторые электрические машины специального назначения




Введение

Раздел посвящен изучению электрических машин специального назначения.

Хотя все электрические машины имеют одинаковый основной принцип работы, специальные машины имеют некоторые особенности, которые отличают их от обычные машины.

Мы не собираемся обсуждать все виды спецтехники. в одной секции; скорее, сделана попытка ввести основные операционные принципы работы некоторых специализированных машин, которые широко используются в быту, на отдыхе и в промышленности.

С распространением силовых электронных схем и цифрового управления системы, точное управление скоростью и положением может быть достигнуто в сочетании со специальными электрическими машинами, такими как двигатели с постоянными магнитами (ПМ), шаговые двигатели, реактивные реактивные двигатели, бесщеточные двигатели постоянного тока (dc) двигатели, двигатели с гистерезисом и линейные двигатели.Некоторые из этих устройств находят приложения в компьютерном периферийном оборудовании или в системах управления технологическими процессами в то время как другие могут использоваться в таких устройствах, как бытовая техника. Например, шаговые двигатели широко используются в компьютерах, где точное позиционирование требуется, как и в случае с магнитной головкой для дисковода. Для приложений которые требуют приводов с постоянной скоростью, бесщеточные двигатели постоянного тока предлагают отличные характеристики. С другой стороны, реактивные электродвигатели находят применение где мы традиционно используем двигатели постоянного тока или асинхронные двигатели.

В следующих разделах мы обсудим конструкцию, принципы работы и характеристики. каждой из перечисленных специальных электрических машин.


=== Бесщеточный двигатель постоянного тока в разрезе. (от Bodine Electric Co.)

Двигатели с постоянными магнитами

Разработка новых материалов с постоянными магнитами сделала двигатели с постоянными магнитами жизнеспособный заменитель шунтирующего двигателя (постоянного тока). В двигателе с постоянными магнитами полюса сделаны постоянных магнитов.Хотя двигатели постоянного тока мощностью до 75 л.с. с постоянными магнитами, основное применение постоянных магнитов ограничено к маломощным двигателям по экономическим причинам. В обычном Двигатель постоянного тока с цепью возбуждения, магнитный поток на полюс зависит от силы тока. через обмотку возбуждения и может управляться. Однако поток в ПМ двигатель в основном постоянный и зависит от точки срабатывания.

При той же выходной мощности двигатель с постоянными магнитами имеет более высокий КПД и требует меньше материала, чем у двигателя постоянного тока с такой же мощностью.Однако дизайн двигателя с постоянными магнитами должен быть таким, чтобы эффект размагничивания из-за максимальная реакция якоря в состоянии покоя настолько мала, насколько экономична возможный.

Поскольку магнитный поток в двигателе с постоянными магнитами фиксирован, скоростные и вольт-амперные характеристики в основном прямые. Математически эти отношения можно выразить as ... и ... где K, V, Op, R и Td - машинная постоянная, напряжение питания, магнитный поток на полюс, сопротивление обмотки якоря и развиваемое крутящий момент.

+++ 1 (a) Поперечный разрез двигателя с постоянными магнитами; (б) эквивалентная схема.

+++ 2 Скоростные и моментно-моментные характеристики двигателя с постоянными магнитами.

+++ 3 Рабочие характеристики при различных напряжениях питания.

Скорость-крутящий момент двигателя с постоянными магнитами можно регулировать, изменяя либо напряжение питания, либо эффективное сопротивление цепи якоря. Изменение напряжения питания изменяет скорость двигателя без нагрузки. не влияя на наклон характеристики.Таким образом, для разных поставок напряжения, может быть получен набор параллельных скоростно-крутящих характеристик.

С другой стороны, с изменением эффективного сопротивления цепь якоря, наклон кривой контролируется и холостого хода скорость мотора осталась прежней. Использование магнитов с разным магнитным потоком плотности и одинаковые площади поперечного сечения, или наоборот, есть практически безграничные возможности для проектирования двигателя с постоянными магнитами для заданного режима работы состояние.Из этого же рисунка можно также сделать вывод, что увеличение крутящий момент заблокированного ротора может быть достигнут только за счет меньшего холостого хода скорость.

+++ 4 Рабочие характеристики при различных сопротивлениях якоря схема.

+++ 5 Рабочие характеристики для различных потоков в двигателе с постоянными магнитами.

---

ПРИМЕР 1: Двигатель с постоянными магнитами работает при магнитном потоке 4 мВт. Арматура сопротивление 0,8 R, приложенное напряжение 40 В.Если моторная нагрузка составляет 1,2 Н · м, определите (а) скорость двигателя и (б) развиваемый крутящий момент. при заблокированном роторе. Постоянная двигателя K составляет 95.

ПРИМЕР 2: Рассчитайте магнитный поток в двигателе с постоянными магнитами на 200 Вт и 100 В, работающем при 1500 об. / мин.

Постоянная двигателя 85, сопротивление якоря 2 R, вращательное потеря 15 Вт.

Поскольку развиваемая мощность pd = 200 + 15 = 215 Вт, развиваемый крутящий момент становится...

-----

+++ 6 Эффект размагничивания в двигателе с постоянными магнитами.

+++ 7 Собственная рабочая точка заднего конца магнита во время начать или заглохнуть.

+++ 8 Эффект отдачи при работе двигателя с постоянными магнитами.

+++ 9 Влияние температуры на характеристическую кривую. Низкая температура.

Как объяснено, рабочая точка постоянного магнита зависит от проницаемость магнитной цепи. Точка пересечения операционных линия, а кривая размагничивания определяет плотность потока в магнитная цепь.Такая же ситуация имеет место и в двигателях с постоянными магнитами, пока так как эффект размагничивания реакции якоря не учитывается.

Предположим, что рабочая точка двигателя с постоянными магнитами отмечена значком X, когда эффект реакции якоря не учитывается. Однако неважно что, следует включить размагничивающий эффект реакции якоря чтобы определить правильную рабочую точку магнита, даже если двигатели с постоянными магнитами спроектированы с относительно большими воздушными зазорами для минимизации реакции якоря.В этом случае рабочая строка перемещается влево, где Har соответствует напряженности магнитного поля за счет якоря. Таким образом, фактическая эксплуатационная точка двигателя перемещается в точку Y. Из рисунка можно сделать вывод, что полезная плотность магнитного потока уменьшается с увеличением якоря реакция.

Эффект размагничивания в двигателе с постоянными магнитами из-за реакции якоря максимально при заблокированном роторе. Чтобы изучить его действие, мы рассматриваем кривую собственного размагничивания.Эта кривая может быть извлечена от нормальной кривой размагничивания, используя Bi = B, + k &, где Bi - собственная плотность потока. Здесь B и H - нормальная плотность потока, а соответствующей напряженности поля соответственно. +++ подчеркивает, что если Ха, превышает внутреннюю коэрцитивную силу Hci, магнит в двигателе с постоянными магнитами полностью размагничен.

Предположим, что линия нагрузки двигателя с постоянными магнитами без тока якоря пересекает кривую размагничивания в точке X.При увеличении арматуры ток, точка срабатывания смещается на Y из-за реакции якоря. Мы ожидаем, что рабочая точка снова вернется в X, как только ток якоря выключен. На самом деле это не так, и новой рабочей точкой будет Z на исходной рабочей строке. Линия от Y до Z называется линией отдачи. Линия отдачи примерно параллельно наклону кривой размагничивания в точке B ,. Общий влияние реакции якоря - уменьшение рабочего потока плотность в моторе.Однако, если используются керамические магниты, уменьшение несущественно, так как кривая размагничивания по существу прямая линия.

Влияние температуры следует также учитывать при проектирование двигателя с постоянными магнитами. +++ изменения характеристики размагничивания при двух разных температурах. При повышении температуры остаточная плотность потока в магните уменьшается, и собственная коэрцитивная сила увеличивается. С другой стороны, чем ниже температура, тем более выражено эффект размагничивания реакции якоря.

---- Упражнения

===

1. В двухполюсном двигателе с постоянными магнитами мощностью 0,5 л.с., напряжением 120 В и КПД 70% используется самариевый двигатель. постоянные магниты. Его идеальная скорость холостого хода составляет 1000 об / мин, а якорь сопротивление 1,5 Ом. Длина полюса и средний радиус двигателя равны 55 мм и 45 мм соответственно. Определите рабочую линию двигатель, если все потери, кроме потерь в меди, незначительны. Рассмотреть возможность постоянная двигателя должна быть 80.2-полюсный двигатель постоянного тока с постоянным током 100 В и магнитами Alnico водит нагрузку 0,25 л.с.

2. при КПД 72%. Когда мотор работает без нагрузки, частота вращения 1000 об / мин. Длина полюса и средний радиус магнитов 65 мм и 55 мм соответственно, а сопротивление цепи якоря 1,2 Р. Определить рабочее линейка мотора. Характеристика размагничивания магнита Alnico дано. К, равно 65.

-----

+++ 10 (а) Магнитная цепь со свободно вращающимся элементом, (б) реактивное сопротивление в зависимости от положения, и (c) минимальное сопротивление, равновесие или нет положения вращения.

Шаговые двигатели

Шаговые двигатели, также известные как шаговые или шаговые двигатели, по сути устройства инкрементального движения. Шаговый двигатель получает прямоугольную последовательность импульсов и отвечает вращая его вал на определенное количество градусов в соответствии с числом импульсов в последовательности импульсов. Обычно последовательность импульсов контролируется средствами компьютера или электронной схемы. В результате шаговый двигатель очень совместим с цифровыми электронными схемами и может образовывать интерфейс между компьютером и механической системой.Поскольку движение в шаговом двигателе обычно регулируется путем подсчета количества импульсов, для его управления не нужны петли обратной связи и датчики. Следовательно, шаговые двигатели подходят для управления положением в системе без обратной связи. Они относительно недороги и просты в конструкции и могут быть изготовлены шагать с равным шагом в любом направлении. Шаговые моторы отличные кандидаты для таких приложений, как принтеры, XY плоттеры, электрические пишущие машинки, управление дисководами гибких дисков, роботами и числовым программным управлением машины инструменты.Некоторые из недостатков шаговых двигателей заключаются в том, что они не предлагают гибкость регулировки угла наклона и их ступенчатая характеристика может иметь колебательный характер со значительным выбросом. Шаговые двигатели можно разделить на три большие категории: с переменным магнитным сопротивлением, с постоянным магнитом и гибридным.

Шаговые двигатели с регулируемым сопротивлением:

Шаговые двигатели с регулируемым сопротивлением работают по тому же принципу, что и реактивные. мотор. Принцип предполагает минимизацию сопротивления вдоль путь приложенного магнитного поля.

Статор шагового двигателя с переменным сопротивлением состоит из одного блока стальных пластин с фазными обмотками, намотанными на каждый зуб статора. В ротор, который также состоит из стальных пластин, не несет любая обмотка. Чтобы изготавливать только один комплект зубьев статора и ротора выровнять, количество зубьев в роторе отличается от статор.

Шаговый двигатель имеет шесть зубцов статора и четыре зубца ротора. Статор обмотки возбуждаются в разное время, что приводит к многофазному статору обмотка.Статор шагового двигателя имеет три фазы-A, B и C, с зубцы 1 и 4, 2 и 5, а также 3 и 6 соответственно.

Зубья 1 и 2 ротора совмещены с зубьями 1 и 4 статора в фазе A обмотка возбуждается постоянным током. Пока фаза А находится под напряжением в то время как все остальные фазы нет, ротор неподвижен и противодействует крутящий момент, вызванный механической нагрузкой на вал. Поскольку угол между магнитной осью фазы-B или -C и осью зубьев ротора 3 и 4 составляет 30 дюймов, если фаза A выключена и обмотка фазы 43 возбужден, на этот раз зубья 4 и 3 ротора совпадают под зубьями 3 и 6 статора, что приводит к смещению ротора на 30 дюймов.Наконец, если мы возбудим Обмотка фазы C после обесточивания фаз ротор вращается еще на 30 дюймов и выравнивается с фазой-C. Ротор можно заставить непрерывно вращаться по часовой стрелке. направления, следуя последовательности переключения, описанной выше. Достигать вращение против часовой стрелки, однако фазы должны переключаться последовательно в порядке A, C, B. --- фазные напряжения, приложенные к переменному сопротивлению. шаговый двигатель обсуждается, и в таблице 1 показана правильная последовательность переключения для вращения по часовой стрелке.Для этого конкретного двигателя подаваемое напряжение должно иметь не менее пяти циклов на один оборот.

Угол шага 6 для шагового двигателя с переменным сопротивлением определяется. по ....

... где n и p - количество фаз и количество ротора. зубцы (столбы) соответственно.

--- === +++ 11 Шаговый двигатель с переменным сопротивлением.

+++ 12 кривых фазного напряжения для двигателя с переменным сопротивлением.

Таблица 1: Последовательность переключения для двигателя с переменным сопротивлением.«1» и «0» соответствуют на положительный и нулевой ток в фазной обмотке соответственно.

------

Шаговые двигатели с постоянными магнитами (PM):

Шаговый двигатель с постоянным магнитом отличается от своего аналога с переменным магнитным сопротивлением тем, что его ротор сделан из постоянных магнитов. Конструкция статора ПМ шаговый двигатель такой же, как и у шагового двигателя с переменным сопротивлением. Двухфазный, 2-полюсный шаговый двигатель с постоянным ротором. В этом двигателе ротор намагничен радиально. так, чтобы полюса ротора совпадали с соответствующими зубьями статора.

Когда обмотка фазы А возбуждается постоянным током, зубец 1 действует как южный полюс. Благодаря этому северный полюс ротора PM совмещается с южный полюс статора. Позже фаза A обесточивается, пока обмотка фазы 4 активируется, вызывая смещение на 90 дюймов в направление против часовой стрелки для совмещения северного полюса ротора со статором зуб 2. Если поменять полярность приложенного тока и запустить снова возбуждая фазу А, ротор далее повернется на 90 дюймов вдоль против часовой стрелки, на этот раз, чтобы выровнять северный полюс ротора с зуб статора 3.Пока двигатель совершил половину оборота, и с при продолжении соответствующего переключения ротор продолжает вращаться и завершает его революция.

+++ входные формы волны для фазы-A и фазы-B двухфазного шага двигателя, а в Таблице === 2 описана последовательность переключения на один полный оборот. мотора.

Таблица -2: Последовательность переключения для двухфазного шагового двигателя с постоянными магнитами. «1», «-1» и «0» соответствуют на положительный, отрицательный и нулевой ток в фазной обмотке соответственно.

+++ 13 Двухфазный шаговый двигатель с постоянными магнитами.

+++ 14 Формы приложенного напряжения для двухфазного шагового двигателя с постоянными магнитами.

+++ 15 Различные виды гибридного шагового двигателя.

Гибридные шаговые двигатели:

Конструкция статора гибридного шагового двигателя ничем не отличается от переменного магнитного сопротивления или шагового двигателя с постоянным магнитом. Однако конструкция ротора объединяет конструкцию роторов переменного магнитного сопротивления и ПМ шаговый двигатель.Ротор гибридного шагового двигателя состоит из двух одинаковых стопки из мягкого железа, а также намагниченный в осевом направлении круглый постоянный магнит. Стеллажи из мягкого железа прикреплены к северному и южному полюсам перманента. магнит. Зубья ротора обрабатываются на штабелях из мягкого железа. Таким образом зубья ротора на одном конце становятся северным полюсом, а на другом конец стать южным полюсом. Зубья ротора на северном и южном полюсах смещены на угол для правильного совмещения полюса ротора с что статора.Режим работы гибридного шагового двигателя очень аналогичен шаговому двигателю с постоянными магнитами.

Характеристика крутящего момента-скорости:

Шаговые двигатели

обычно используются в диапазоне мощности от 1 Вт до примерно 3 л.с., а их размеры шага варьируются от 0,72 до 90 дюймов. Однако наиболее распространенные размеры шага - 1,8, 7,5 и 15 дюймов.

Поскольку шаговый двигатель вращается, когда к его фазе прикладывается серия импульсов обмоток, длительность каждого импульса должна быть достаточно большой, чтобы точно вращайте двигатель с желаемой скоростью.Если длительность импульса слишком мала, ротор пропустит ступеньки и не сможет следить за приложенными импульсами точно. Таким образом, либо двигатель не вращается, либо требуемая скорость не меняется. быть достигнутым. Чтобы избежать такой нежелательной операции, обычно пульс длительность выбирается так, чтобы она была больше инерционной постоянной времени комбинации ротора и механической нагрузки. Следовательно, это Ожидается, что большому двигателю с высоким моментом инерции потребуется более медленный частота пульса для точной работы.

Характеристика момента втягивания показывает допустимый диапазон скорость шагов для данной нагрузки и двигателя, чтобы не пропустить шаг. Когда двигатель достигает своего установившегося режима, скорость остается постоянной и нет запуск и остановка происходят на каждом этапе. Мы можем загрузить мотор до предела, определяемого характеристикой крутящего момента отрыва. Выше этого уровня крутящего момента двигатель начинает пропускать ступени, тем самым теряя скорость.

+++ 16 Моментная характеристика шагового двигателя.

+++ 17 Принципиальная схема реактивного реактивного двигателя в простейшем виде форма.

Импульсные электродвигатели

В принципе, реактивный электродвигатель с регулируемым сопротивлением работает как электродвигатель с переменным сопротивлением. шаговый двигатель, описанный в предыдущем разделе. Однако операция отличается в основном в сложном механизме управления двигателем. В целях развития крутящий момент в двигателе, положение ротора должно определяться датчиками так что синхронизация возбуждения фазных обмоток является точной.Несмотря на то что его конструкция - одна из самых простых среди электрических машин, из-за сложности управления и электропривода схемотехника, реактивные реактивные двигатели не смогли найти широкого распространения приложения уже давно.

Однако с введением новых силовых электронных и микроэлектронных коммутационные схемы, схемы управления и управления коммутируемым реактивным сопротивлением электродвигатели стали экономически оправданными для многих приложений, где традиционно используются двигатели постоянного тока или асинхронные двигатели.

Импульсный реактивный двигатель имеет обмотанный статор, но не имеет обмоток. его ротор, сделанный из магнитомягкого материала. Изменение сопротивления по периметру статора заставляет полюса ротора совмещаться с те из статора. Следовательно, в двигателе возникает крутящий момент, и вращение происходит.

Суммарные потокосцепления фазы A равны 1, = L, (O) i, а фазы B равны hb = Lb (0) ib, в предположении, что магнитные материалы бесконечно проницаемый.Поскольку магнитные оси обеих обмоток ортогональны, нет ожидаются взаимные потокосцепления между ними.

Сопутствующая энергия в двигателе ... а развиваемый крутящий момент ...

Можно сделать вывод, что развиваемый крутящий момент в двигателе не зависит от направления тока питания, потому что он пропорционален к квадрату фазных токов. Однако исходное положение ротора оказывает существенное влияние на развиваемый крутящий момент и вращение.Таким образом, необходим надежный датчик положения ротора и схема управления включить двигатель в нужный момент, чтобы вращать его в желаемом направление.

Бесщеточные двигатели постоянного тока

+++ 18 Схема бесщеточного двигателя постоянного тока с указанием рабочего принцип.

+++ 19 Скорость-моментная характеристика бесщеточного двигателя постоянного тока.

Благодаря присущим им характеристикам, как обсуждалось в предыдущих разделах, Двигатели постоянного тока находят широкое применение там, где требуется управление системой. основная цель.Однако электрические дуги, производимые механическими расположение коллектор-щетка является серьезным недостатком и ограничивает работу скорость и напряжение.

Двигатель, который сохраняет характеристики двигателя постоянного тока, но исключает Коммутатор и щетки называют бесщеточным двигателем постоянного тока.

Бесщеточный двигатель постоянного тока состоит из многофазной обмотки, намотанной на не выступающей статор и радиально намагниченный ротор ПМ. +++ а бесщеточный двигатель постоянного тока. Многофазная обмотка может быть одинарной или распределенной. по размаху шестов.Постоянное или переменное напряжение подается на отдельные фазные обмотки за счет последовательного переключения для достижения необходимая коммутация для придания вращения. Переключение осуществляется электронным способом. с помощью силовых транзисторов или тиристоров. Например, если обмотка 1 находится под напряжением, ротор PM выравнивается с магнитным полем, создаваемым обмоткой 1. Когда обмотка 1 выключена, а обмотка 2 включена, ротор выполнен вращаться до совпадения с магнитным полем обмотки 2.Как можно видеть, работа бесщеточного двигателя постоянного тока очень похожа на работу шага с постоянными магнитами. мотор. Основное различие - это время переключения, которое определяется положением ротора для обеспечения синхронизма между магнитное поле постоянного магнита и создаваемое магнитное поле по фазным обмоткам. Положение ротора можно определить с помощью Устройства на эффекте Холла или фотоэлектрические устройства. Сигнал, генерируемый ротором датчик положения отправляется в логическую схему, чтобы принять решение о переключение, а затем соответствующий сигнал запускает силовую цепь для возбуждения соответствующей фазной обмотки.Контроль величины и Скорость переключения фазных токов существенно определяет скорость-момент характеристика бесщеточного двигателя постоянного тока.

Гистерезисные двигатели

Двигатели с гистерезисом используют свойство гистерезиса магнитных материалов. для развития крутящего момента. Статор может иметь равномерно распределенную трехфазную или однофазная обмотка. В однофазном гистерезисном двигателе статор обмотка подключена как двигатель с постоянным разделенным конденсатором (PSC).Конденсатор выбирается таким образом, чтобы сбалансированное двухфазное состояние могло быть приблизительно достигается, так что почти однородное вращающееся поле может быть установлено в мотор. Ротор представляет собой твердый магнитотвердый материал без зубцов или обмотки. +++ принципиальная схема гистерезисного двигателя с двухфазным обмотки.

Когда обмотка статора возбуждена, в воздушный зазор двигателя, который вращается с синхронной скоростью.Вращающийся поле намагничивает ротор и наводит столько полюсов на его периферии как есть в статоре.

Из-за больших потерь на гистерезис в роторе магнитный поток развивался. в роторе отстает магнитодвижущая сила статора (ммс). Таким образом, угол ротора, 6, находится между магнитными осями ротора и статора. +++ иллюстрирует взаимное расположение магнитных осей ротора и статора для 2-полюсный двигатель с гистерезисом.

Чем больше потери из-за гистерезиса, тем больше угол между магнитные оси ротора и статора.Из-за тенденции магнитные полюса ротора совпадают с полюсами статора, создается конечный крутящий момент, называемый гистерезисным крутящим моментом. Этот крутящий момент пропорциональна произведению потока ротора и статора mmf и синус угла ротора 6. Таким образом, следует отметить, что ротор с большая петля гистерезиса приводит к более высокому моменту гистерезиса.

Поскольку ротор представляет собой твердый магнитный материал, индуцируются вихревые токи. в роторе магнитным полем статора до тех пор, пока есть относительное движение между магнитным полем статора и ротором.Эти вихревые токи создают свои собственные магнитные поля и, следовательно, свои собственные крутящий момент, который дополнительно увеличивает общий крутящий момент, развиваемый двигателем. Крутящий момент из-за вихревых токов пропорционален скольжению электродвигателя, и он максимален в состоянии покоя и равен нулю, когда синхронный скорость достигнута.

+++ 20 (а) Схема гистерезисного двигателя; (b) Распределение потока, показывающее эффект гистерезиса. Ротор-статор - Моментная характеристика гистерезиса мотор.

Когда двигатель возбуждается определенным напряжением во время простоя, двигатель развивает постоянный крутящий момент, и если он превышает крутящий момент, необходимый для нагрузки, двигатель начнет вращаться. С фиксированное приложенное напряжение, момент гистерезиса остается почти постоянным в течение весь диапазон скоростей двигателя до синхронной скорости, потому что угол ротора 6 существенно зависит от материала ротора. Тем не мение, под влиянием вихретокового момента небольшое уменьшение общий развиваемый крутящий момент наблюдается при увеличении скорости двигателя.После синхронная скорость достигается, двигатель регулирует угол ротора 6, поэтому что двигатель может развивать требуемый крутящий момент. Типичный крутящий момент-скорость характеристика гистерезисного двигателя. Из этого рисунка видно чтобы развиваемый крутящий момент был максимальным в состоянии покоя.

Таким образом, пусковой момент никогда не является проблемой для двигателей с гистерезисом. Более того, потому что развиваемый крутящий момент практически одинаков от состояния покоя до синхронного скорости, двигатель с гистерезисом может разгонять высокоинерционную нагрузку.

Линейные асинхронные двигатели

До сих пор мы рассмотрели основные принципы работы электрических машины, которые производят вращательное или круговое движение. За последние несколько десятилетия, обширные исследования в области двигательной установки привели к развитию линейных двигателей. Теоретически каждый тип вращающейся машины может найти линейный аналог. Однако именно линейный асинхронный двигатель используется в широком спектре таких промышленных приложений, как высокоскоростные наземный транспорт, системы раздвижных дверей, съемники штор и конвейеры.

Если асинхронный двигатель разрезан и положен горизонтально, линейный асинхронный двигатель получается.

Статор и ротор вращающегося двигателя соответствуют первичной и вторичной обмоткам. стороны, соответственно, линейного асинхронного двигателя. Первичная сторона состоит магнитопровода с трехфазной обмоткой, а вторичная сторона может быть просто металлическим листом или трехфазной обмоткой, намотанной вокруг магнитного основной. Основное отличие линейного асинхронного двигателя от его вращающегося аналогом является то, что последний демонстрирует бесконечный воздушный зазор и магнитное поле. структура, в то время как первая открытая из-за конечной длины первичной и вторичной сторон.Кроме того, угловая скорость становится линейная скорость, а крутящий момент становится тягой в линейной индукции мотор. Чтобы поддерживать постоянную тягу (силу) на значительном расстояние, одна сторона остается короче другой. Например, в высокоскоростном наземный транспорт, короткая первичная и длинная вторичная использовал. В такой системе первичная обмотка является неотъемлемой частью транспортного средства, тогда как трек проявляется как второстепенный.

Линейный асинхронный двигатель может быть односторонним или двусторонним.Чтобы для уменьшения полного сопротивления магнитного пути в одностороннем линейном асинхронный двигатель с металлическим листом в качестве вторичной обмотки, металлический лист поддерживается ферромагнитным материалом, например железом.

При подаче напряжения питания на первичную обмотку трехфазного линейный асинхронный двигатель, магнитное поле, создаваемое в области воздушного зазора движется с синхронной скоростью. Взаимодействие магнитного поля с индуцированными токами во вторичной обмотке оказывает давление на вторичную двигаться в том же направлении, если первичная обмотка остается неподвижной.На с другой стороны, если вторичная сторона неподвижна, а первичная свободна чтобы двигаться, первичный элемент будет двигаться в направлении, противоположном направлению движения магнитное поле.

Рассмотрим упрощенную принципиальную схему линейного индукционного мотор. Только одна фазная обмотка, скажем, фазированная, трехфазной первичной обмотки. Показано. Фазовая обмотка N-витка испытывает ммс NIb. Если мы сосредоточимся наше внимание только на фундаментальных сигналах mmf, мы получаем, где k, - коэффициент намотки, in - мгновенное значение основной гармоники. ток в фазе-а, А - длина волны поля (по сути, это шаг обмотки), n - количество периодов по длине двигателя, а z - произвольное место в линейном двигателе.Каждая фазная обмотка смещена от остальных на расстояние A / 3 и возбуждаются сбалансированной трехфазной подача угловой частоты ш. Таким образом, чистый ммс в двигателе состоит из только составляющая бегущей вперед волны, заданная как ... где ...

+++ 22 (а) Односторонние и (б) двусторонние линейные асинхронные двигатели.

+++ 23 Принципиальная схема линейного асинхронного двигателя и его форма сигнала в ммс.

Синхронная скорость движущегося ммс может быть определена установкой аргумент косинусного члена уравнения.(7) до некоторой постоянной K ... и тогда дифференцируя по t, чтобы получить нас как ... где f - операционная частота подачи. Уравнение также можно выразить через шаг полюсов Т как ....

Оба уравнения. предполагают, что синхронная скорость не зависит от количество полюсов первичной обмотки. Причем количество полюсов нужно не быть четным числом.

Подобно вращающимся асинхронным двигателям, скольжение в линейных асинхронных двигателях мотор определяется как....

.... где u ,, - скорость двигателя.

Мощность и тягу в линейном асинхронном двигателе можно рассчитать по формуле с использованием той же эквивалентной схемы, что и для его вращающегося аналога. Таким образом, мощность воздушного зазора Px равна .... развиваемая мощность Pd равна ... и развиваемая тяга, F_d, составляет ...

+++ 24 Типичная характеристика зависимости скорости от тяги для линейной индукции мотор. Скорость.

Характеристики скорости-момента обычного асинхронного двигателя эквивалентны с характеристикой тяги линейного асинхронного двигателя.В скорость в линейном асинхронном двигателе быстро уменьшается с увеличением толкать. По этой причине эти двигатели часто работают с малым скольжением, к относительно низкому КПД.

Линейный асинхронный двигатель демонстрирует явление, известное как конечные эффекты, потому что его открытой конструкции. Конечные эффекты можно разделить на статические и динамические. Статический торцевой эффект возникает исключительно из-за асимметричной геометрии начальный. В этом случае взаимные индуктивности фазных обмоток равны не равны друг другу.Это приводит к асимметричному распределению потока. в области воздушного зазора и вызывает неодинаковые наведенные напряжения в фазные обмотки. Динамический конечный эффект возникает в результате относительного движение первичной стороны относительно вторичной. В качестве основного перемещается по вторичной обмотке, каждый момент появляется новый вторичный проводник. подведен под передний край первичной обмотки, в то время как другой вторичный проводник выходит за задний край первичной обмотки. Дирижер идет под передней кромкой противодействует магнитному потоку в воздушном зазоре, а проводник, выходящий за заднюю кромку, пытается выдержать поток.Следовательно, распределение потока искажено. Он слабее в области переднего края по сравнению с областью задней кромки. Кроме того, проводник, уходящий задний край, хотя по-прежнему несет ток и вносит свой вклад к убыткам, не способствует доверию. Следовательно, увеличенный потери во вторичной обмотке снижают КПД двигателя.

ПРИМЕР 3: Шаг полюсов линейного асинхронного двигателя составляет 0,5 м, а частота подаваемого трехфазного напряжения 60 Гц.Скорость первичная сторона двигателя 200 л.с. / час, развиваемая тяга 100 кН. Рассчитайте мощность, развиваемую двигателем, и потери в меди в вторичная сторона.

РЕШЕНИЕ: Скорость двигателя ... Развиваемая мощность ... Синхронная скорость двигателя ... Скольжение для данного рабочего состояния ... Медь потери на вторичной стороне ...

Упражнения

На тележке используется линейный асинхронный двигатель с шагом полюсов 50 см. который проходит расстояние 10 км.Сопротивление и ток вторичная сторона по отношению к первичной определяется как 4 R и 500 А соответственно. Определить развиваемую двигателем тягу при скольжении составляет 25% при работе на частоте 60 Гц.

Линейный асинхронный двигатель 660 В (линия), 50 Гц приводит в движение транспортное средство скольжение 20%. Двигатель имеет 5 полюсов, шаг полюсов - 30 см. Параметры его схемы замещения составляют:

Первичная сторона: r1 = 0,15 R, x1 = 0,5 R Вторичная сторона: r2 = 0.3 R, x2 = 0,3 R Реактивное сопротивление намагничивания: X, = 3 R

Определите (а) синхронную скорость, (б) мощность, передаваемую нагрузке, (c) тяга, (d) входной ток и (e) коэффициент мощности. Пренебрегать потери в сердечнике.

РЕЗЮМЕ

Последние разработки в области силовой электроники и цифровых технологий. системы управления облегчили использование двигателей специального назначения для точный контроль скорости и / или положения.Моторы специального назначения Изучаются: двигатели с постоянными магнитами (ПМ), шаговые двигатели, реактивно-коммутируемые электродвигатели. двигатели, бесщеточные двигатели постоянного тока и линейные асинхронные двигатели. Эти моторы найти широкий спектр приложений, начиная от компьютерного периферийного оборудования высокоскоростному наземному транспорту и управлению технологическими процессами.

Двигатели с постоянными магнитами

работают как двигатели постоянного тока с независимым возбуждением, за исключением того, что они не иметь обмотку возбуждения. Вместо этого двигатель с постоянными магнитами имеет постоянные магниты для установки необходимое магнитное поле для электромеханического преобразования энергии.Однако следует проявлять особую осторожность, чтобы не размагнитить магниты. за счет превышения их коэрцитивной силы из-за реакции якоря.

Шаговый двигатель - это устройство с инкрементным движением, которое широко используется в компьютерах. периферийные устройства. Его вращение продиктовано количеством импульсов, приложенных к обмотка статора. Таким образом, для его работа. Переходная характеристика шагового двигателя может быть колебательной. В Шаговые двигатели трех типов: с переменным магнитным сопротивлением, с постоянным магнитом и гибридные.

Электродвигатель с регулируемым сопротивлением работает аналогично электродвигателю с регулируемым сопротивлением. шаговый двигатель. Однако датчик точно определяет положение ротора. для поддержания точной синхронизации фазных обмоток для заданного рабочего режима состояние. Реактивные электродвигатели нашли широкое применение. где традиционно использовались двигатели переменного или постоянного тока.

Бесщеточные двигатели постоянного тока не обладают недостатками обычных двигателей постоянного тока. двигатели, потому что у них нет механизма коллектор-щетка.И все же их эксплуатационные характеристики очень близки к характеристикам обычного параллельный двигатель постоянного тока. Бесщеточный двигатель постоянного тока аналогичен конструкции конструкция шагового двигателя с ПМ. Однако в бесщеточном двигателе постоянного тока положение ротора точно определяется датчиком, чтобы правильно рассчитать время переключение обмоток статора.

Устройства на эффекте Холла или оптоэлектронные устройства используются для определения положения ротора в бесщеточном двигателе постоянного тока.

Двигатель с гистерезисом - это синхронный двигатель, использующий свойство гистерезиса. магнитных материалов для развития крутящего момента.Крутящий момент, развиваемый Двигатель с гистерезисом по своей природе выше на любой скорости, кроме синхронной скорость.

Следовательно, пусковой момент никогда не является проблемой для гистерезиса. мотор.

Несмотря на то, что каждый тип вращающейся машины может найти своего линейного аналога, линейный асинхронный двигатель подходит для широкого спектра применений. такие как высокоскоростной наземный транспорт, конвейеры и раздвижные двери. У линейного асинхронного двигателя есть первичная и вторичная стороны.Главная состоит из трехфазной обмотки и магнитопровода, а вторичная представляет собой металлический лист или трехфазную обмотку, намотанную на магнитный основной. Для высокоскоростного наземного транспорта короткое основное (транспортное средство) и используются длинные второстепенные (дорожки). Синхронная скорость u может быть рассчитывается из u = 27f, где T - шаг полюсов (м), а f - частота (Гц) приложенного трехфазного напряжения. Развитая тяга, с другой стороны, Fd = pd / u, где pd (w) - развиваемая мощность, а u, (м / с) - скорость двигателя.

ВИКТОРИНА

Почему КПД двигателя с постоянными магнитами выше, чем у двигателя постоянного тока? Почему полезная плотность магнитного потока уменьшается в двигателе с постоянными магнитами, когда он работает под нагрузкой? При каких условиях двигатель с постоянными магнитами может быть полностью размагничен? Какая линия отдачи у двигателя с постоянными магнитами? Как температура влияют на работу двигателя с постоянными магнитами? Как работает шаговый двигатель? Какие бывают разные виды шаговых двигателей? Каково выражение для угол шага шагового двигателя с переменным сопротивлением? В чем принципиальная разница между PM и шаговым двигателем с переменным магнитным сопротивлением? В чем разница между шаговым электродвигателем с регулируемым сопротивлением и электродвигателем с переключаемым сопротивлением? В каких приложениях можно использовать реактивный электродвигатель? Какие чем отличается шаговый двигатель с постоянными магнитами от бесщеточного двигателя постоянного тока? Как изменяется скорость в бесщеточном двигателе постоянного тока при изменении крутящего момента? Объяснять принцип действия гистерезисного двигателя.

Что такое гистерезис крутящего момента? Гистерезисный двигатель - это синхронный двигатель? Как работает линейный асинхронный двигатель? Как синхронная скорость выражается в линейном асинхронном двигателе? Как изменяется скольжение в зависимости от функции тяги в линейном асинхронном двигателе? Может ли бегущее назад поле быть поддерживается в трехфазном линейном асинхронном двигателе? Назови причины.

ПРИМЕР ПРОБЛЕМЫ:

Двигатель постоянного тока с постоянным током 20 В развивает крутящий момент 1 Н · м при номинальном напряжении.В магнитный поток в двигателе 2 мВт. Сопротивление якоря составляет 0,93 Ом, а сопротивление константа двигателя 95. Рассчитайте рабочую скорость двигателя.

Вращательными потерями пренебречь.

Какой ток якоря двигателя указан в Задаче 1 под состояние заблокированного ротора? Определите величину приложенного напряжения. когда двигатель, указанный в задаче === 1, развивает крутящий момент 10 Н · м при состояние заблокированного ротора.

Двигатель постоянного тока с постоянным током 100 В работает при 1200 об / мин и номинальном напряжении.В поток на полюс из-за магнитов составляет 1,5 мВт, а сопротивление якоря составляет 0,7 Р. Определите развиваемый крутящий момент, если постоянная двигателя равна 82. Пренебрегать вращательные потери.

A 12-В, 2-полюсный двигатель постоянного тока с постоянными магнитами, изготовленный с керамическими магнитами, приводит в действие нагрузка 0,134 л.с. при КПД 54%. Идеальная скорость холостого хода частота вращения двигателя 800 об / мин, сопротивление якоря 2 Ом. рабочая линия двигателя, если длина полюса и средний радиус равны 35 мм и 25 мм соответственно.Постоянная двигателя 75, и все предполагается, что потери незначительны, за исключением потерь в меди. Размагничивание дана кривая.

Определите производительность двигателя, указанную в задаче === 5, если на основе самария редкоземельные магниты заменяют керамические магниты без изменения габариты мотора.

Определите магнитный поток в двигателе с постоянными магнитами на 120 В и мощностью 1 л.с., работающем при скорость 1500 об / мин. Постоянная двигателя 85, сопротивление якоря 0.7 R, а вращательные потери равны SO W. Электродвигатель постоянного тока с постоянным током 120 В работает на скорости 400 рад / с без нагрузки. Если сопротивление цепи якоря составляет 1,3 R, определить скорость двигателя, когда нагрузка требует 5 Н · м. при SO V. Изобразите скоростные характеристики для 50-В и 100-В. операции. Предположим, что двигатель поддерживает постоянный магнитный поток с нет вращательных потерь.

Трехфазный линейный асинхронный двигатель имеет шаг полюсов 1 м. Определять скорость результирующей бегущей волны ммс, если двигатель возбужден от трехфазного источника питания частотой 50 Гц.

Синхронная скорость, рабочая частота и пиковый ток. линейного асинхронного двигателя составляют 10 м / с, 60 Гц и 10 А соответственно. Определите чистую бегущую волну ммс, если количество витков на фазу равно 300 с коэффициентом намотки 3 0,9. Предположим, что количество периодов за длина мотора 2.

Линейный асинхронный двигатель приводит в движение конвейерную ленту со скоростью 20 км / ч. со скольжением 20% при 60 Гц и развивает тягу 200 Н.а) определить шаг полюсов двигателя. (b) Рассчитайте мощность, развиваемую двигателем. (c) Рассчитайте потери меди на вторичной стороне.

Линейный асинхронный двигатель мощностью 2300 В, 60 Гц, 10 МВт имеет отставание 0,8 пФ, в то время как работает со скольжением 30% и КПД 72%. Полюсный шаг мотора 60 см. Если ток намагничивания составляет 15% от приложенного тока и отстает от приложенного напряжения на угол 88 дюймов, определить развиваемая тяга двигателя и сопротивление обмотки вторичный по отношению к первичному.Пренебрегайте сердечником, трением и парусностью убытки.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *