Электрический термогенератор – Industrialcraft 2/Электрический теплогенератор — Minecraft Wiki

Содержание

принцип работы, применение, как сделать

Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.

Что такое термоэлектрический генератор?

Так принято называть устройство, позволяющее преобразовать тепловую энергию в электрическую. Следует уточнить, что термин «Тепловая» не совсем точен, поскольку тепло, это способ передачи, а не отдельный вид энергии. Под данным определением подразумевается общая кинетическая энергия молекул, атомов и других структурных элементов, из которых состоит вещество.

Несмотря на то, что на ТЭС сжигается топливо для получения электричества, ее нельзя отнести к ТЭГ. На таких станциях тепловая энергия вначале преобразуется в кинетическую, а она уже в электрическую. То есть, топливо сжигается для получения из воды пара, который вращает турбину электрического генератора.

Схема работы ТЭССхема работы ТЭС

Исходя из выше изложенного, следует уточнить, что ТЕГ должен генерировать электроэнергию без промежуточных преобразований.

Принцип работы

В основе ТЭГ лежит термоэлектрическое явление, описанное в начале 20-х годов XIX века немецким ученым-физиком Томасом Иоганном Зеебеком. Он обнаружил появление ЭДС в цепи замкнутого типа, состоящей из проводника и сурьмы, при условии создания разности температур в местах, где эти материалы контактируют. Изображение устройства, при помощи которого был зафиксирован данный эффект, представлено ниже.

Термопара из опыта ЗеебекаТермопара из опыта Зеебека

Обозначения:

  • 1 – медный проводник.
  • 2 – проводник из сурьмы.
  • 3 – стрелка компаса.
  • А и В – места контакта двух проводников.

При нагревании одного из контактов стрелка отклонялась, что свидетельствовало о наличии магнитного поля, вызванного ЭДС. При нагреве другого контакта, направление ЭДС менялось на противоположное. Соответственно, при разрыве цепи, можно зафиксировать разность потенциалов на ее концах.

Через 12 лет, после публикации Зеебеком результатов своих опытов, французским физиком Жаном Пельтье был обнаружен обратный эффект. Если через цепь термопары пропускать ток, то в местах контакта этих веществ возникает разность температур. Мы не будем приводить описание опыта Пельтье, а также данные по современным одноименным элементам, эту информацию можно найти на нашем сайте.

По сути, оба эти эффекта обратные стороны одного термоэлектрического явления, позволяющего напрямую получать электричество из тепловой энергии. Но, до открытия полупроводников, термоэлектрический эффект не находил практического применения, ввиду неприемлемо низкого КПД. Поднять его до 5% удалось только в середине пошлого века. К сожалению, даже у современных полупроводниковых элементов, этот показатель остается на уровне 8%-12%, что не позволяет рассматривать генераторы данного типа в качестве серьезных конкурентов ТЭС.

Современный элемент Пельтье с указанием размеровСовременный элемент Пельтье с указанием размеров

Перспективы

В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД. Проблема заключается в том, что под данные исследования затруднительно подвести теоретическую базу, поэтому приходится полагаться только на результаты экспериментов. Учитывая, что на эффект влияет процентное соотношение и состав сплавов материала для термопар, говорить о ближайших перспективах неблагодарное занятие.

Велика вероятность, что в ближайшее время для повышения добротности термоэлементов, разработчики перейдут на другой уровень изготовления сплава для термопар, с использованием нано-технологий, ям квантования и т.д.

Вполне возможно, что будет разработан совершенно иной принцип с использованием нетрадиционных материалов. В качестве примера можно привести эксперименты, проводимые в Калифорнийском университете, где для замены термопары использовалась искусственная синтезированная молекула, которая соединяла два золотых микро проводника.

Молекула вместо термопарыМолекула вместо термопары

Первые опыты показали возможность реализации идеи, насколько она перспективна, покажет время.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники электроэнергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все оба варианта применения.

Индигирка – три в одномИндигирка – три в одном

У представленной на рисунке энергопечи следующие параметры:

  • Вес – чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе – 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов. Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.

Радиоизотопное «сердце» КассиниРадиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.

РИТЕГ поднятый с 14-митровой глубины возле СахалинаРИТЕГ поднятый с 14-митровой глубины возле Сахалина

Как сделать термоэлектрический генератор своими руками?

В завершении расскажем, как сделать ТЕГ, которым можно пользоваться в турпоходе, на охоте или рыбалке. Естественно, мощность таких устройств будет уступать радиоизотопным генераторам энергии, но ввиду труднодоступности плутония, и его неприятным свойством наносить вред человеческому организму придется довольствоваться малым.

Нам понадобится термоэлектрический элемент, например, ТЕС1 12710. Желательно использовать несколько элементов, подключенных параллельно, для увеличения мощности. К сожалению, тут есть очень серьезный нюанс, потребуется подобрать элементы со сходными параметрами, что у китайской продукции практически не реально, а использовать брендовую дорого, проще купить готовый генератор. Если использовать один модуль Пельте, то его мощности едва хватит для зарядки телефона или другого гаджета. Нам также понадобится металлический корпус, например, отслужившего блока питания ПК и радиатор от процессора.

Основные моменты сборки:

Наносим на корпус термопасту в месте, где будет крепиться термоэлектрический элемент, прислоняем его и фиксируем радиатором. В результате у нас получается конструкция, как на нижнем рисунке.

Туристический ТЭГТуристический ТЭГ

В качестве топлива лучше всего использовать «сухой спирт».

Теперь необходимо подключить к нашему источнику стабилизатор напряжения (схему можно найти на нашем сайте или в других тематических источниках).

Конструкция готова, можно приступать к проверке.

www.asutpp.ru

Термогенератор, получаем электричество из тепла

Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяется термогенератор. Так же, как и у термопары, его принцип действия основан на эффекте Зеебека, открытом в 1821 году. Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется ЭДС, если места спаев проводников находятся при разных температурах. Например, один спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.

Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс. 

Приблизительно величину термоэдс можно определить по простой формуле:

E = α * (T1 – T2). Здесь α — коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус. Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного.

Приведенную формулу достаточно наглядно иллюстрирует рис. 1.

   Рис. 1. Принцип работы термопары

Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

  • Сурьма   +4,7
  • Железо   +1,6
  • Кадмий   +0,9
  • Цинк   +0,75
  • Медь   +0,74
  • Золото   +0,73
  • Серебро   +0,71
  • Олово   +0,41
  • Алюминий   +0,38
  • Ртуть   0
  • Платина   0

После платины идут металлы с отрицательным значением термоэдс:

  • Кобальт   -1,54
  • Никель   -1,64
  • Константан (сплав меди и никеля)   -3,4
  • Висмут   -6,5

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Как создавались термогенераторы

Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рис. 2.

   Рис. 2. Термобатарея, схематическое устройство

Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом. В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.

Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.

Полупроводниковые термоэлементы

Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую. Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.

Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.

Бытовой термогенератор

Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.

Внешний вид термогенератора ТГК-3 показан на рис. 3.

 
   Рис. 3. Термогенератор ТГК-3

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.

   Рис. 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

Видео

 

Смотрите также по теме:

   Ветрогенератор. Как выбрать, смонтировать и избежать разочарования?

   Безлопастной ветрогенератор. Устройство и принцип работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Термогенератор своими руками - порядок работ

самодельный термогенератор

Количество цифровых гаджетов постоянно увеличивается. К сотовому телефону добавились мобильная радиостанция, GPS-навигатор и фотоаппарат.

Таскать с собой полный котелок запасных аккумуляторов для всей этой электронной братии тяжело, а в холодное время года еще и бессмысленно – их емкость и мощность при низких температурах сильно сокращаются.

Поэтому каждый путешественник хотел бы обзавестись устройством, преобразующим в электричество доступную в походе энергию.

Весьма практичными оказались термогенераторы – источники, для работы которых необходимо тепло. На чем основан принцип их работы и как можно сделать термогенераторы электричества своими руками – об этом пойдет речь в этой статье.

Как определить термоЭДС металла?

Термоэлектродвижущая сила возникает в замкнутом контуре при соблюдении двух условий:

  1. Если он состоит хотя бы из двух проводников, изготовленных из различных материалов.
  2. Если все входящие в состав контура разнородные участки имеют различную температуру (хотя бы в области соединения).

В физике данное явление называют эффектом Зеебека.

Величина термоЭДС зависит от вида материалов и разности их температур.

Определяют ее по формуле:

Е = к (Т1 – Т2),

  • Где Т1 и Т2 – температура проводников;
  • К – коэффициент Зеебека.

Наибольшей производительностью обладают контуры, состоящие из разнородных полупроводников (обладающих р- и n-проводимостью). В металлах эффект Зеебека проявляется незначительно, за исключением некоторых переходных металлов и их сплавов, например, палладия (Pd) и серебра (Ag).

медный теплообменникТеплообменники широко применяются в быту. Довольно легко можно сделать теплообменник своими руками – инструкция по сборке представлена в статье.

Пошаговая инструкция по облицовке камина своими руками представлена тут.

Знаете ли вы, что напряжение всего в 12 Вольт может служить источником тепла? По ссылке https://microklimat.pro/otopitelnoe-oborudovanie/obogrevateli/12-volt-svoimi-rukami.html инструкция по изготовления обогревателя 12 Вольт своими руками.

Принцип работы

Решать задачу по производству электричества из тепловой энергии приходится, как принято говорить в науке, от обратного. Противоположным эффекту Зеебека является эффект Пельтье, который состоит в изменении температур двух объединенных в замкнутый контур разнородных полупроводников при пропускании через них постоянного тока: один из них нагревается, второй – остывает.

Если направление тока изменить, изменится и направление теплового потока: первый полупроводник будет остывать, а второй – нагреваться. В качестве полупроводников чаще всего применяют твердую смесь кремния с германием и теллурид висмута.

демонстрация эффекта Пельтье

Эффект Пельтье

Эффект, открытый Жаном Пельтье, получил широкое применение в различных сферах человеческой жизнедеятельности, где требуются холодильные машины, но нет возможности применить компрессорный тепловой насос на фреоне. Поэтому именно его именем назвали выпускаемые для этой цели устройства – элементы Пельтье.

Но если на такой элемент или, как его еще называют, термоэлектрический охладитель оказать воздействие с противоположной стороны, то есть создать на его полупроводниках разность температур, то мы получим эффект Зеебека: элемент Пельтье превратится в источник постоянного тока.

Конструкция термогенератора

Итак, идея термогенератора довольно проста: необходимо взять элемент Пельтье и сильно нагреть одну из его поверхностей. В генераторах заводского изготовления для этого применяются газовые горелки. Но создать такой прибор в домашних условиях довольно сложно – трудно обеспечить стабильное горение пламени в течение длительного времени.

Поэтому народные умельцы отдают предпочтение более простой версии термогенератора, о которой мы сейчас и расскажем.

Изготовление своими руками

Схематично устройство самодельной термоэлектростанции можно представить так:

необходимые детали

  1. Элемент Пельтье положим на дно глубокой посудины – миски или кружки.
  2. Далее в эту посудину вставим еще одну: если используются миски, то понадобится такая же; если ваш выбор пал на кружки, то вторая должна быть чуть меньше первой.
  3. К выведенным от элемента Пельтье проводам присоединим преобразователь напряжения.
  4. Внутреннюю посудину заполним снегом или холодной водой, после чего всю конструкцию поставим на огонь.

Через какое-то время снег растает, превратится в воду и закипит. Производительность генератора при этом понизится, но зато турист получит возможность выпить горячего чайку. После чаепития можно будет заправить генератор новой порцией снега.

Чем больше термоэлементов (их еще называют ветвями) будет у приобретенного вами элемента Пельтье, тем лучше. Можно применить прибор марки TEC1-127120-50 – их у него 127. Данный элемент рассчитан на токи до 12А.

Порядок работ

Теперь рассмотрим процесс создания самодельного термогенератора в деталях:

  1. Поверхность каждой посудины в месте контакта с элементом Пельтье следует выровнять и зачистить, что обеспечит максимальный теплообмен. Для идеального прилегания можно отполировать донышки смазанным пастой ГОИ куском войлока, закрепленным в шпинделе электродрели.
  2. Присоединяем к контактам элемента Пельтье провода от электроплиты, снабженные термостойкой изоляцией. За неимением таковых можно применить, к примеру, провод МГТФЭ-0,35, обернув его термостойкой тканью.
  3. Смазав дно одной из посудин термопроводящей пастой, например, КПТ-8, укладываем на него элемент Пельтье. Подсоединенные к нему провода следует расположить так, чтобы их концы оказались вне емкости.
  4. Сверху элемент Пельтье снова смазываем термопастой и вставляем в нашу кружку или миску вторую емкость подходящего размера (у кружки нужно будет отрезать ручку).
  5. Пространство между емкостями необходимо заполнить термоустойчивым герметиком (можно купить в автомагазине состав для ремонта выхлопных труб). Он послужит теплоизоляцией между горячей и холодной сторонами генератора и дополнительной защитой для проводов.
готовый генератор

Походный генератор электричества

Выступающие концы проводов можно приклеить к бортику кружки матерчатой изолентой.

Изготовление преобразователя

В ходе эксперимента установленный на электроплитку термогенератор при наличии снега во внутренней емкости обеспечил ЭДС в 3В и ток в 1,5А. После превращения снега в воду и ее закипания мощность генератора упала в три раза (напряжение составило 1,2В).

Чтобы использовать такой прибор в качестве зарядного устройства для телефона или другого гаджета, которому требуется стабильное напряжение в 5 В или 6,5 В, его необходимо оснастить преобразователем напряжения.

Рассмотрим два варианта.

Вариант 1

элементы термогенератораПроще всего применить в качестве преобразователя микросхему КР1446ПН1, снабженную DIP-корпусом.

Производится она в России и ее легко можно найти в магазине радиодеталей или на радиорынке.

Воспользоваться не возбраняется и более мощными аналогами, но все они выпускаются в миниатюрных корпусах для поверхностного монтажа, так что придется помучиться с распайкой.

На вход микросхемы подается напряжение с элемента Пельтье, а сама она включается в режиме «5 Вольт» (штатный). Параллельно с элементом Пельтье на вход преобразователя напряжения следует припаять достаточно мощный шунтирующий диод. Он предотвратит движение тока в обратном направлении, если на генератор будет оказано противоположное температурное воздействие.

К примеру, будучи заполненным горячей водой он может быть по неосторожности установлен на какую-нибудь холодную поверхность.

К выходу преобразователя нужно припаять кабель от старого зарядного устройства, подходящего для нашей модели телефона или фотоаппарата, а также светодиодный индикатор на 5 В.

Недостаток этого варианта: предложенная в качестве преобразователя микросхема ограничивает мощность генератора, поскольку ток на ее выходе не превышает 100 мА. Таким образом, элемент Пельтье используется приблизительно на 20%, чего будет достаточно только для телефонов устаревших моделей.

Чтобы иметь возможность заряжать более мощные устройства, необходимо применить усложненную версию преобразователя напряжения.

Вариант 2

Более мощный преобразователь можно собрать по двухкаскадной схеме с применением пары микросхем MAX 756. Чтобы при отключении потребителя генерируемый ток не пропадал зря, оснастим преобразователь встроенными аккумуляторами. Соединенные последовательно, они включены в нагрузку первого каскада через выключатель, диод и токоограничивающий резистор. Сам каскад настроен на режим выхода «3,3 Вольт».

К выходу каскада №1 подключаем каскад №2, настроенный на режим выхода «5 Вольт». Оба каскада реализованы согласно схеме, приведенной в документации на микросхему MAX 756 (опубликована в Сети). Единственное отличие – цепь обратной связи каскада №2 (между выходом каскада и ногой №6 его микросхемы) дополняется последовательностью из 3-х кремниевых диодов, расположенных анодом к выходу.

генератор тепла

Простейший походный термогенератор

Такое усовершенствование позволит получать на холостом ходу напряжение величиной 6,5 В (требуется для зарядки некоторых электронных устройств).

Чтобы упростить схему, можно применить микросхему MAX 757, которая снабжена отдельным выходом обратной связи.

Интерфейс этого преобразователя соответствует типу USB Type A. Но если к нему предполагается подключать USB-устройство, то последовательность диодов из цепи обратной связи 2-го каскада лучше убрать, чтобы выходное напряжение вернулось на уровень 5 В.

Эту версию преобразователя нельзя подключать к портам типа USB-Host.

Вариация на тему…

Элемент Пельтье можно просто прикрепить к колышку, втыкаемому в землю поблизости от костра.

Чтобы создать достаточный температурный градиент, обе его поверхности нужно оснастить ребристыми радиаторами.

На поверхности со стороны пламени радиатор должен иметь увеличенную площадь, а его ребра устанавливаются горизонтально.

На противоположной стороне элемента установлен меньший радиатор, а его оребрение – вертикальное.

подключение радиатора отопленияБатареи отопления могут устанавливаться по-разному в зависимости от типа отопительной системы – однотрубной или двухтрубной. Схемы подключения радиаторов отопления и советы по месту их установке – читайте внимательно.

Как отремонтировать циркуляционный насос своими руками? Основные типы поломок и методы их устранения представлены в этой статье.

Видео на тему

microklimat.pro

Сборка термогенератора своими руками для получения электричества: особенности процесса

Термоэлектрический котелок генератор партизанский котелокВ современном мире большое количество бытовой техники и других устройств работает от электроэнергии. При этом, находясь в путешествии, приходится возить с собой химические источники тока, способные вырабатывать электроэнергию. Но также можно изготовить термогенератор своими руками. Для этого потребуются некоторые материалы, приспособления и определенные знания.

Разновидности устройств

В цепи разнородных проводников при переменной температуре может возникать термо-ЭДС в местах контакта. На основании этого был разработан и создан так называемый модуль «Пельтье». Он представляет собой 2 пластины из керамики, между которыми установлен биметалл. При поступлении электрического тока одна из пластин постепенно начинает нагреваться, а другая одновременно охлаждается. Эта способность позволяет делать из таких элементов холодильники.

Но можно наблюдать и обратный процесс, когда в местах контакта будет поддерживаться перепад температур. В этом случае пластины начнут вырабатывать электрический ток. Такой модуль можно использовать для получения небольшого количества электрической энергии.

Работа модуля

Термоэлектрический генератор для зарядки гаджетовТермогенераторы электричества работают по определенному принципу. Так, в зависимости от направления тока, в контакте разнопроводных проводников наблюдается поглощение или выделение тепла. Это зависит от направления электричества. При этом плотность тока является одинаковой, а энергии — различной.

Разогревание кристаллической решетки наблюдается, если вытекающая энергия меньше той, что входит в контакт. При перемене направленности тока происходит обратный процесс. Энергия в кристаллической решетке снижается, поэтому происходит охлаждение устройства.

Наибольшей популярностью пользуется термоэлектрический модуль, состоящий из проводников типов р и n, которые между собой соединены через медные аналоги. В каждом из элементов существует по 4 перехода, которые охлаждаются и нагреваются. Из-за температурного перепада возможно создание термоэлектрогенератора.

Достоинства и недостатки

Независимо от того, куплен он или изготовлен своими руками, термоэлектрогенератор имеет ряд достоинств. Так, к наиболее весомым из них относятся:

  1. Малогабаритные размеры.
  2. Возможность работы как нагревательных, так и в охладительных приборах.
  3. При смене полярности наблюдается обратимость процесса.
  4. Отсутствие подвижных элементов, которые изнашиваются достаточно быстро.

Несмотря на имеющиеся существенные преимущества, такое устройство имеет некоторые недостатки:

  1. Незначительный КПД (всего 2−3%).
  2. Необходимость создания источника, отвечающего за температурный перепад.
  3. Существенное потребление энергии.
  4. Большая себестоимость.

Исходя из вышеперечисленных отрицательных и положительных качеств, можно сказать о том, что такое устройство целесообразно применять в случае необходимости подзарядки мобильного телефона, планшетного компьютера или зажигания светодиодной лампочки.

Изготовление своими руками

Можно изготовить термоэлектрический генератор своими руками. Для этой цели потребуются некоторые элементы:

  • Как самим сделать термогенераторМодуль, способный выдерживать нагрев до 300−400 °C.
  • Повышающий преобразователь, цель которого заключается в приеме беспрерывного напряжения 5 В.
  • Нагреватель в виде костра, свечки или какой-либо миниатюрной печи.
  • Охладитель. Вода или снег — наиболее популярные подручные варианты.
  • Соединительные элементы. Для этой цели можно использовать кружки или кастрюли разного размера.

Провода, проходящие между преобразователем и модулем, необходимо изолировать термостойким составом или обычным герметиком. Собирать устройство необходимо в такой последовательности:

  1. От блока питания оставить только корпус.
  2. Холодной стороной к радиатору нужно приклеить модуль «Пельтье».
  3. Предварительно зачистив и отполировав поверхность, нужно приклеить элемент другой стороной.
  4. От входа преобразователя напряжения необходимо припаять провода к выходам пластины.

Изготовление термогенератора своими рукамиПри этом термогенератор для корректной работы должен быть наделен такими характеристиками: выходное напряжение — 5 вольт, тип выхода для подключения устройства — USB (или любой другой в зависимости от предпочтений), минимальная мощность нагрузки должна составлять 0,5 А. При этом можно использовать любой вид топлива.

Проверить механизм достаточно просто. Внутрь можно положить несколько сухих и тонких веточек. Поджечь их, а через несколько минут подключить какое-либо устройство, например, телефон для подзарядки. Собрать термогенератор несложно. Если все сделать правильно, то он прослужит не один год в поездках и походах.

220v.guru

Термоэлектрический генератор: принцип работы

Термоэлектрический генератор (термогенератор ТЭГ) — это электрическое устройство, использующее эффекты Зеебека, Томсона и Пельтье для выработки электроэнергии за счет термо-ЭДС. Эффект термо-ЭДС был открыт немецким ученым Томасом Иоганном Зеебеком (эффект Зеебека) в 1821 г. В 1851 году Уильям Томсон (позже лорд Кельвин) продолжил термодинамические исследования и доказал, что источником электродвижущей силы (ЭДС) является температурный перепад.

Термоэлектрический генератор

В 1834 году французский изобретатель и часовщик Жан Чарльз Пельтье открыл второй термоэлектрический эффект, установил, что разность температур происходит на стыке двух различных типов материалов под воздействием электрического тока (эффект Пельтье). В частности, он предсказал, что ЭДС возникает внутри одного проводника, когда присутствует температурный перепад.

В 1950 году русский академик и исследователь Абрам Иоффе открыл термоэлектрические свойства полупроводников. Термоэлектрический генератор энергии стали использовать в системах автономного электроснабжения в недоступных районах. Изучение космического пространства, выход человека в космос дали мощный толчок для бурного развития термоэлектрических преобразователей.

Радиоизотопный источник энергии был впервые установлен на космических кораблях и орбитальных станциях. Их начинают использовать в крупной нефтегазовой отрасли для антикоррозионной защиты газопроводов, в исследовательских работах на Дальнем Севере, в сфере медицины в качестве электрокардиостимуляторов, в жилищном хозяйстве как автономные источники электроснабжения.

Термоэлектрический эффект и перенос тепла в электронных системах

Термоэлектрические генераторы, принцип работы которых основан на комплексном использовании эффекта трех ученых (Зеебека, Томсона, Пельтье), получили свое развитие почти через 150 лет после открытий, намного опередивших свое время.

Термоэлектрический эффект

Термоэлектрический эффект заключается в следующем явлении. Для охлаждения или генерации электричества используется «модуль» состоящий из электрически связанных пар. Каждая пара состоит из полупроводникового материала р (S> 0) и n (S

Термоэлектрические генераторы принцип работы

Если выбранные материалы обладают хорошими термоэлектрическими свойствами, этот тепловой поток, создаваемый движением носителей заряда, будет больше теплопроводности. Поэтому система передаст тепло от холодного источника к горячему и будет действовать как холодильник. В случае генерации электричества тепловой поток вызывает смещение носителей заряда и появление электрического тока. Чем больше разность температуры, тем больше электричества можно получить.

Эффективность ТЭГ

Оценивается коэффициентом полезного действия. Мощность термоэлектрогенератора зависит от двух критических факторов:

  1. Объема теплового потока, который может успешно перемещаться через модуль (тепловой поток).
  2. Дельты температур (DT) – разница температур между горячей и холодной стороной генератора. Чем больше дельта, тем эффективнее он работает, поэтому конструктивно должны быть обеспечены условия, как для максимальной подачи холода, так и максимального отвода тепла от стен генератора.

Термин "эффективность термоэлектрических генераторов" аналогичен термину, применяемому в отношении всех других типов тепловых двигателей. Пока он очень низкий и составляет не более 17 % эффективности Карно. КПД генератора ТЭГ ограничен эффективностью Карно и на практике достигает лишь несколько процентов (2-6 %) даже при высоких температурах. Это происходит из-за низкой теплопроводности в полупроводниковых материалах, что не способствует эффективной выработке электроэнергии. Таким образом, нужны материалы с низкой теплопроводностью, но в то же время с максимально высокой электропроводностью.

Полупроводники лучше справляются с этой задачей, чем металлы, но пока еще очень далеки от тех показателей, которые вывели бы термоэлектрический генератор на уровень промышленного производства (хотя бы с 15 % использованием высокотемпературного тепла). Дальнейшее повышение эффективности ТЭГ зависит от свойств термоэлектрических материалов (термоэлектрики), поиском которых сегодня занят весь научный потенциал планеты.

Разработки новых термоэлектриков относительно сложные и затратные, однако в случае успеха они вызовут технологическую революцию в системах генерации.

Термоэлектрические материалы

Термоэлектрики состоят из специальных сплавов или полупроводниковых соединений. В последнее время для термоэлектрических свойств применяются электропроводящие полимеры.

Термоэлектрические материалы

Требования к термоэлектрикам:

  • высокая эффективность, которая обусловлена низкой теплопроводностью и высокой электропроводностью, высоким коэффициентом Зеебека;
  • устойчивость к высоким температурам и термомеханическим воздействиям;
  • доступность и безопасность окружающей среды;
  • устойчивость к вибрациям и резким перепадам температур;
  • долгосрочная стабильность и дешевизна;
  • автоматизация процесса изготовления.

В настоящее время продолжаются опыты по подбору оптимальных термопар, что позволит увеличить КПД ТЭГ. Термоэлектрический полупроводниковый материал представляет собой сплав теллурида и висмута. Он был специальным образом изготовлен, чтобы обеспечить отдельные блоки или элементы с различными характеристиками «N» и «P».

Термоэлектрические материалы чаще всего изготавливаются путем направленной кристаллизации из расплавленной или прессованной порошковой металлургии. Каждый способ изготовления имеет свое особое преимущество, но наиболее распространены материалы с направленным ростом. В дополнение к теллуриту висмута (Bi 2 Te 3) существуют другие термоэлектрические материалы, в том числе сплавы свинца и теллурита (PbTe), кремния и германия (SiGe), висмута и сурьмы (Bi-Sb), которые могут использоваться в конкретных случаях. Пока термопары висмута и теллурида лучше всего подходят для большинства ТЭГ.

Достоинства ТЭГ

Достоинства термоэлектрогенераторов:

  • выработка электричества происходит по замкнутой одноступенчатой схеме без использования сложных передающих систем и применения движущих частей;
  • отсутствие рабочих жидкостей и газов;
  • отсутствие выбросов вредных веществ, бросового тепла и шумового загрязнения окружающей среды;
  • устройство длительного автономного функционирования;
  • использование отработанного тепла (вторичные источники теплоты) с целью экономии энергоресурсов
  • работа в любом положении объекта независимо от среды эксплуатации: космос, вода, земля;
  • выработка постоянного тока при малом напряжении;
  • невосприимчивость к короткому замыканию;
  • неограниченный срок хранения, 100 % готовность к работе.
Использование ТЭГ в системе охлаждения

Сферы применения термоэлектрического генератора

Преимущества ТЭГ определили перспективы развития и его ближайшее будущее:

  • изучение океана и космоса;
  • применение в малой (бытовой) альтернативной энергетике;
  • использование тепла от выхлопных труб автомобилей;
  • в системах переработки мусора;
  • в системах охлаждения и кондиционирования;
  • в системах тепловых насосов, для мгновенного разогрева дизельных двигателей тепловозов и автомобилей;
  • нагрев и приготовление пищи в походных условиях;
  • зарядка электронных устройств и часов;
  • питание сенсорных браслетов для спортсменов.

Термоэлектрический преобразователь Пельтье

Элемент Пельтье

Элемент Пельтье (ЭП) — это термоэлектрический преобразователь, работающий с использованием одноименного эффекта Пельтье, одного из трех термоэлектрических эффектов (Зеебека и Томсона).

Француз Жан-Шарль Пельтье соединил провода меди и висмута друг с другом и подключил их к батарее, создав таким образом пару соединений двух разнородных металлов. Когда батарея включалась, один из переходов нагревался, а другой охлаждался.

Устройства, основанные на эффекте Пельтье, чрезвычайно надежны, поскольку они не имеют движущихся частей, не нуждаются в техническом обслуживании, не имеют выбросов вредных газов, компактны и имеют возможность двунаправленной работы (нагрев и охлаждение) в зависимости от направления тока.

К сожалению, они малоэффективны, имеют низкий КПД, выделяют довольно много тепла, что требует дополнительной вентиляции и увеличивает стоимость устройства. Такие устройства потребляют довольно много электроэнергии и могут вызвать перегрев или конденсацию. Элементы Пельтье с размерами более 60 мм x 60 мм практически не встречаются.

Область применения ЭП

Внедрение передовых технологий в области производства термоэлектриков привело к удешевлению производства ЭП и расширению доступности рынка.

Сегодня ЭП широко применяется:

  • в переносных охладителях, для охлаждения небольших приборов и электронных компонентов;
  • в осушителях для извлечения воды из воздуха;
  • в космических аппаратах для уравновешивания воздействия прямого солнечного света на одну сторону корабля, рассеивая тепло на другую сторону;
  • для охлаждения фотонных детекторов астрономических телескопов и высококачественных цифровых камер, чтобы минимизировать погрешности наблюдения, возникающих из-за перегрева;
  • для охлаждения компьютерных компонентов.

В последнее время широкое применение он получил и для бытовых целей:

  • в устройствах кулеров, питающихся через USB-порт для охлаждения или нагрева напитков;
  • в виде дополнительной ступени охлаждения компрессионных холодильников с понижением температуры до -80 градусов для одноступенчатого охлаждения и до -120 для двухступенчатого;
  • в легковых автомобилях для создания автономных холодильников или обогревателей.
Элементов Пельтье TEC1-12706

Китай наладил производство элементов Пельтье модификаций TEC1-12705, TEC1-12706, TEC1-12715 стоимостью до 7 евро, которые могут обеспечить по схемам «тепло-холод» мощность до 200 Вт, сроком службы до 200 000 часов, работающих в температурной зоне от -30 до 138 градусов Цельсия.

Ядерные батарейки РИТЭГ

Ядерные батарейки РИТЭГ

Радиоизотопный термоэлектрический генератор (РИТЭГ) представляет собой устройство использующее термопары для преобразования тепла, выделяемое при распаде радиоактивного материала, в электричество. Этот генератор не имеет движущихся частей. РИТЭГ использовался в качестве источника энергии на спутниках, космических аппаратах, удаленных объектах маяков, построенных СССР для Полярного круга.

РИТЭГы, как правило, являются наиболее предпочтительным источником энергии для устройств, которым требуется несколько сотен Ватт мощности. В топливных элементах, батареях или генераторах установленных в местах, где солнечные элементы являются неэффективными. Радиоизотопный термоэлектрический генератор требует соблюдения строгих мер осторожного обращения с радиоизотопами в течение долгого времени после окончания его срока службы.

В России насчитывается порядка 1 000 РИТЭГов, которые использовались в основном для источников питания на средствах дальнего действия: маяках, радиомаяках и других специальных радиотехнических средствах. Первым космическим РИТЭГом на полонии-210 стал «Лимон-1» в 1962 году, затем «Орион-1» мощностью 20 Вт. Последняя модификация была установлена на спутниках «Стрела-1» и «Космос-84/90». «Луноходы»-1,2 и «Марс-96» использовали РИТЭГ в системах обогрева.

Устройство термоэлектрогенератора своими руками

ТЭГ своими руками

Столь сложные процессы, которые протекают в ТЭГ, никак не останавливают местных «кулибиных» в стремлении присоединится к мировому научно-техническому процессу по созданию ТЭГ. Использование самодельных ТЭГ применяется уже давно. Во время Великой Отечественной войны партизаны делали универсальный термоэлектрогенератор. Он вырабатывал электрический ток для зарядки рации.

С появлением на рынке элементов Пельтье по доступными для бытового потребителя ценам возможно сделать ТЭГ самому, выполнив следующие шаги.

  1. Приобрести два радиатора в магазине IT и применить термопасту. Последняя облегчит соединение элемента Пельтье.
  2. Разделить радиаторы любым теплоизолятором.
  3. Сделать отверстие в изоляторе для размещения элемента Пельтье и проводов.
  4. Собрать конструкцию, и поднести источник тепла (свеча) к одному из радиаторов. Чем дольше нагрев, тем больше тока будет вырабатываться из домашнего термоэлектрического генератора.

Работает такой прибор бесшумно, и имеет небольшой вес. Термоэлектрический генератор ic2 в зависимости от размера, может подключить зарядку мобильного телефона, включить небольшой радиоприемник и светодиодное освещение.

В настоящее врем

autogear.ru

Термоэлектрический генератор - конвертируем тепло в электричество термогенератором

Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.

Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.

Шаг 1: Необходимые детали

  1. 1х Элемент Пельтье (термоэлектрический преобразователь)
  2. Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
  3. Толстый электрический кабель двух цветов (опционально)
  4. Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
  5. Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
  6. Термопаста (опционально), алюминиевая фольга (желательно)
  7. Резак для резки тонких металлов
  8. Ножницы по металлу
  9. Разные отвертки (для закручивания винтов корпуса и входов/выходов)
  10. Разные винты и болты (для крепления металлических пластин и радиатора)
  11. Паяльник и припой (опционально) для надежного крепления
  12. Аккумуляторная батарея низкой или средней мощности (для подзарядки)
  13. Термоусадочные трубки для защиты проводов от тепла (необходимо)
  14. 1х блокирующий диод, чтобы предотвратить обратную зарядку.
  15. 2 алюминиевые банки (металлическая пластина)
  16. Толстая медная проволока
  17. Цифровой мультиметр

Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.


Шаг 2: Конструирование

Построить корпус и тепловой генератор электричества довольно просто.

Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.

Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.

Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.

Шаг 3: Тестирование теплогенератора

Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.

Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.

На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.

Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.

Файлы

Шаг 4: Улучшения

Возможные следующие модернизации устройства:

  1. Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
  2. Подключите Joule Thief или несколько для небольшого увеличения напряжения.
  3. Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
  4. Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
  5. Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
  6. Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
  7. Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
  8. Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)

masterclub.online

О термоэлектрическом генераторе: изготовление термоэлектрогенератора своими руками

Современное пользовательское электрооборудование нуждается в постоянной подкачке электричества, источники которого не всегда имеются «под рукой» (в длительном пешем путешествии, например). С этой точки зрения, традиционные автомобильные аккумуляторы (АКБ) очень тяжелы для переноски и не годятся для классических походных условий. Их может заменить такое удобное в эксплуатации и транспортировке устройство, как термоэлектрический генератор своими руками изготовленный из подсобных элементов (общий вид ТЭГ приведён на фото ниже).

Общий вид ТЭГ

Общий вид ТЭГ

Несмотря на свои внушительные размеры, этот агрегат имеет малый вес и может быть разборным, то есть вполне подходит для транспортировки во время похода. Ознакомимся с принципом работы термоэлектрического генератора более детально.

Эффект Пельтье, его обратимость

Изготовление автономных термических генераторов электричества стало возможным благодаря открытию известного из курса физики эффекта Пельтье, состоящего в следующем. Оказывается, что разнородные по структуре проводники при протекании через зону их спайки электрического тока обнаруживают интересное свойство, состоящее в появлении разницы температур между их пограничными точками.

На основании этого открытия был разработан специальный элемент «Пельтье», состоящий их двух разнесённых на некоторое расстояние пластин из керамики с помещённой между ними биметаллической прокладкой. При пропускании через такие системы электрических зарядов одна из этих обкладок нагревается, а другая, напротив, – охлаждается, что в принципе позволяет делать на их основе холодильные установки.

Важно! При изменении направления тока через стык проводников (при прямом эффекте) меняется вектор градации температуры на стыках.

На размещённом ниже рисунке изображены модули различного типа и размера, чаще всего применяемые в технических изделиях этого класса.

Разнообразие модулей «Пельтье»

Разнообразие модулей «Пельтье»

Как и многие другие электродинамические явления, этот эффект является полностью обратимым. Последнее означает, что при нагревании одной стороны пластин Пельтье и охлаждении другой на стыке между ними появится ЭДС, а через контактную зону и подключённую нагрузку потечёт небольшой ток (эффект Зеебека).

По этому принципу и функционирует рассматриваемый в этом обзоре генератор на элементах Пельтье, который вполне может работать на открытом воздухе (на рыбалке или в походе, например).

При проявлении эффекта Зеебека наблюдается та же зависимость от полярности происходящих изменений, а именно: если менять охлаждаемый и нагреваемый стыки местами, будет меняться и направление тока во всей системе. Таким образом, обратный элемент Пельтье как генератор электроэнергии представляет собой достаточно универсальное устройство, имеющее возможность регулировки величины и направления получаемой ЭДС.

Физическое объяснение

Причина возникновения разницы температур (в случае эффекта Пельтье) заключается в энергетике контактных зон, образующихся в местах стыка двух разнородных веществ (висмута и сурьмы, например). Особенности этих образований могут быть представлены следующим образом:

  • Из-за различной концентрации положительных и отрицательных зарядов в границах полярных зон (в центре размещается одно вещество, по краям – другое) между ними образуются собственные разнонаправленные электрические поля;
  • При протекании тока через контакт, в котором направление внешней и внутренней ЭДС совпадают, на поддержание перемещения электронов (на совершение работы в поле той же полярности) будет расходоваться внутренняя энергия вещества. Из основ физики известно, что такое явление соответствует остыванию материала в этом месте;
  • Соответственно этому, во второй контактной зоне, где направление приложенной ЭДС противоположно внутреннему полю, электроны будут тормозиться, и внешнему источнику придётся затрачивать дополнительную энергию по их перемещению. Согласно тем же физическим законам, указанный эффект соответствует забору энергии или нагреву материала в точке стыковки (смотрите фото ниже).
Пограничные явления в зонах Пельтье

Пограничные явления в зонах Пельтье

Обратите внимание! Напряжённости таких полевых образований максимальны на пограничных участках двух неоднородных сред (полупроводников разной проводимости, например), вследствие чего здесь этот эффект проявляется с особой силой.

Среди работающих по этому принципу устройств наиболее известны термические модули (ТЭМ), состоящие из разных типов полупроводников с размещённой между ними медной токопроводящей прокладкой.

Особенности функционирования ТЭМ

Принцип действия и конструкция

При рассмотрении особенностей функционирования ТЭМ, работающих по тому же принципу, что генератор Пельтье, необходимо обратить внимание на следующие моменты:

  • В одном таком элементе имеется четыре перехода, которые образуются в пограничных зонах между краями металлической прокладки и двумя разнородными полупроводниковыми пластинами;
  • При образовании замкнутой цепочки поток электронов перемещается по направлению от минуса источника питания к его плюсу, проходя через каждый переход;
  • На границе первого по порядку барьера (полупроводник p-типа – медь) разогнанные во внешнем поле электроны переходят в состояние с меньшими энергиями разгона, вследствие чего происходит тепловыделение;
  • На следующем переходе наблюдается поглощение энергии (то есть охлаждение материала), что объясняется её расходом на работу по перемещению из зоны проводимости типа «p»;
  • На третьем пограничном переходе они попадают в зону полупроводника «n» со значительно большей, чем в прокладке из металла энергией, из-за чего здесь наблюдается её поглощение. Это приводит к охлаждению материала полупроводника на границе данного стыкового образования;
  • В последнем переходе вследствие попадания электронов в зону с меньшими энергиями наблюдается обратный процесс, связанный с тепловыделением.

Поскольку каждый из рассмотренных барьеров в границах ТЭМ располагается в разных плоскостях, такая конструкция с одной из сторон будет иметь более низкую температуру, а с другой – более высокую. На их основе создаются недорогие и лёгкие термогенераторы.

Дополнительная информация. В большинстве промышленных образцов ТЭМ функцию полупроводников выполняют соединения кремния и висмута.

В готовом к практическому использованию элементе содержится большое количество рассмотренных ранее переходов, что позволяет получать вполне ощутимые по величине температурные перепады. Используя обратный эффект (охлаждая одну из его сторон и нагревая другую) удаётся получить электрогенератор, энергии от которого будет хватать для зарядки мобильного телефона, например.

Достоинства и недостатки

К преимуществам модулей типа ТЭМ, используемых в режимах охлаждения и нагрева, можно отнести их универсальность, небольшие габариты и лёгкость, что особо важно в походных условиях.

Их существенным недостатком является высокая стоимость, сравнительно низкий КПД (всего 2-3%), а также необходимость в стороннем источнике, позволяющем получить требуемый перепад температур.

Обратите внимание! Все перечисленные достоинства и недостатки относятся и к элементам ТЭМ, используемым как термоэлектрогенератор (смотрите рисунок ниже).

Модуль ТЭМ

Модуль ТЭМ

Несмотря на присущие им недостатки, все эти изделия довольно часто применяются в различных сферах, где уровень энергозатрат не имеет решающего значения.

Самостоятельное изготовление

Комплект необходимых деталей

Перед тем, как собрать ТЭГ Пельтье своими руками, обязательно нужно учесть следующие важные моменты:

  • Для получения электричества за счёт разницы температур подходят далеко не все представленные ранее модули ТЭМ, а лишь те из них, что рассчитаны на нагрев до 300-4000 градусов;
  • Определенный запас по температуре гарантирует, что преобразовательные пластины не выйдут из строя при случайном перегреве рабочих контактов;
  • Из всего многообразия представленных изделий предпочтение следует отдать элементам типа ТЕС1-12712, изготавливаемых в виде квадратов с разными размерами сторон: от 40 до 60 мм (смотрите рисунок ниже).
Термоэлементы типа TEC

Термоэлементы типа TEC

Дополнительная информация. Для сборки устройства, рассчитанного на минимум потребляемой мощности, вполне может хватить одного элемента с максимальным размером.

Помимо этого, для изготовления генератора потребуется электронный преобразователь, позволяющий поддерживать выходное напряжение на уровне 5 Вольт. Необходимость в этой схеме объясняется тем, что генерируемая системой ЭДС непостоянна, так как разность температур всё время меняет своё значение при нагреве и охлаждении отдельных зон.

Стабилизатор напряжения придётся использовать фирменный (самостоятельно изготовить его могут только профессионалы). Для заявленных целей подойдёт устройство от зарубежного производителя марки «MAX 756» или отечественные изделия (3.3В/5В ЕК-1674), оснащённые USB разъёмом.

В качестве нагревателя могут использоваться как костёр (мини-печка), так и свеча, сухой спирт или самодельная лампа. Роль охладителя на природе чаще всего играет холодная вода, а в зимнее время – снег.

Сборка

Для формирования сред с разной температурой потребуются небольшие металлические ёмкости типа кружек или кастрюль из дюралюминия с отпиленными ручками. По своему размеру посуда подбирается так, чтобы одну ёмкость можно было вставить в другую, и чтобы между стенками оставался зазор, достаточный для размещения элементов TEC (они крепятся с двух сторон на термическую пасту).

Затем к каждой из сторон надёжно закреплённого модуля припаиваются хорошо изолированные провода, ведущие к преобразователю (стабилизатору). Для повышения отдачи системы (её КПД) днища металлических ёмкостей, непосредственно контактирующих с элементами ТЭГ, предварительно полируются, а на их донные части наносится тонкий слой термостойкого герметика (фото ниже).

Самодельный термогенератор

Самодельный термогенератор

Последняя операция обеспечит концентрацию тепла в зоне расположения модуля и не позволит ему рассеиваться на близко расположенных охлаждаемых деталях. Для проверки работоспособности получившейся конструкции во внутреннюю (меньшую по объёму) ёмкость наливается вода, или закладывается снег, после чего она ставится на огонь. По истечении некоторого времени можно будет проверить наличие выходного напряжения 5 Вольт посредством мультиметра.

В заключение отметим, что из-за не очень высокого КПД этого устройства применять его в походе целесообразно только с целью зарядки телефона или для энергоснабжения не очень мощного фонарика с подсевшей батарейкой. Благо, что на природе имеются все условия, необходимые для создания нужной разности температур (холодная вода из реки и тепло от костра).

Видео

amperof.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о