Коллекторный электродвигатель переменного тока — устройство
В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.
Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.
Принцип работ и конструктивные особенности
Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.
Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.
Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.
Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.
Видео: Универсальный коллекторный двигатель
Из чего состоит конструкция?
Устройство электродвигателя переменного тока включает помимо ротора и статора:
- тахогенератор;
- щеточно-коллекторный механизм.
Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.
Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.
Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.
Схема подключения (упрощенная)
Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.
Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей.
В итоге, направление момента всегда одинаково.
Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.
Видео: Подключение и регулировка оборотов двигателя от стиральной машины
Управление двигателем
На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.
В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.
Упрощенно этот принцип можно описать такими пунктами:
- на затвор симистора подается сигнал от электронной схемы;
- затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
- мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
- как следствие, вращение ротора при любых нагрузках, остается равномерным;
- с помощью реле R и R1 осуществляется реверс мотора.
Другая схема – тиристорана фазоимпульсная.
Преимущества машин и недостатки
К достоинствам относят:
- небольшие размеры;
- универсальность, т. е. работу на напряжении постоянном и переменном;
- большой пусковой момент;
- независимость от сетевой частоты;
- быстроту;
- мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.
Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:
- уменьшение срока службы механизма;
- возникновение между щетками и коллектором искры;
- высокий уровень шума;
- большое число коллекторных элементов.
Основные неисправности
Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.
Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.
Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т. е. строгое соблюдение режима работы.
Видео: Коллекторный электрический двигатель
Электродвигатель переменного тока — асинхронный, коллекторный, однофазный и трехфазный
Легкость преобразования напряжения переменного тока сделала его наиболее широко используемым в электроснабжении. В сфере конструирования электродвигателей открылось другое достоинство переменного тока: возможность создания вращающегося магнитного поля без дополнительных преобразований или с их минимальным количеством.
Поэтому, даже несмотря на определенные потери из-за реактивного (индуктивного) сопротивления обмоток, простота создания электродвигателей переменного тока внесла свой вклад в победу над электроснабжением постоянным током в начале XX века.
Принципиально электродвигатели переменного тока можно разделить на две группы:
- Асинхронные
- B них вращение ротора отличается по скорости от вращения магнитного поля, благодаря чему они могут работать на самых разных оборотах. Этот тип электродвигателей переменного тока наиболее распространен в наше время.
- Синхронные
- Эти двигатели имеют жесткую связь оборотов ротора и скорости вращения магнитного поля. Они сложнее в производстве и менее гибки в применении (изменение оборотов при фиксированной частоте питающей сети возможно только изменением числа полюсов статора).
Они находят применение только на высоких мощностях в несколько сотен киловатт, где их больший по сравнению с асинхронными электродвигателями КПД значительно снижает тепловые потери.
ЭЛЕКТРОДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА АСИНХРОННЫЙ
Наиболее распространенный тип асинхронного двигателя – это электродвигатель с короткозамкнутым ротором типа «беличья клетка», где в наклонные пазы ротора уложен набор токопроводящих стержней, с торцов соединенных кольцами.
История этого типа электродвигателей насчитывает более сотни лет, когда было замечено, что токопроводящий предмет, помещенный в зазор сердечника электромагнита переменного тока, стремится вырваться из него за счет возникновения в нем ЭДС индукции с противонаправленным вектором.
Таким образом, асинхронный двигатель с короткозамкнутым ротором не имеет каких-либо механических контактирующих узлов, кроме опорных подшипников ротора, что обеспечивает моторам такого типа не только низкую цену, но и высочайшую долговечность.
Благодаря этому электродвигатели такого типа стали наиболее распространенными в современной промышленности.
Однако им присущи и определенные недостатки, которые приходится учитывать при проектировании асинхронных электродвигателей подобного типа:
Высокий пусковой ток – так как в момент включения асинхронного бесколлекторного электродвигателя в сеть на реактивное сопротивление обмотки статора еще не влияет магнитное поле, создаваемое ротором, возникает сильный бросок тока, в несколько раз превосходящий номинальный ток потребления.
Эту особенность работы двигателей подобного типа необходимо закладывать во все проектируемое электроснабжение во избежание перегрузок, особенно при подключении асинхронных электродвигателей к мобильным генераторам с ограниченной мощностью.
Низкий пусковой момент – электродвигатели с короткозамкнутой обмоткой имеют ярко выраженную зависимость крутящего момента от оборотов, поэтому их включение под нагрузкой крайне нежелательно: значительно увеличиваются время выхода на номинальный режим и пусковые токи, обмотка статора перегружается.
Так, например, происходит при включении глубинных насосов – в электроцепях их питания приходится учитывать пяти-семикратный запас по току.
Невозможность непосредственного запуска в цепях однофазного тока
Для запуска асинхронного электродвигателя переменного тока в однофазной сети используется либо вручную коммутируемая пусковая обмотка, отключаемая после раскрутки ротора, либо вторая обмотка, включенная через фазовращательный элемент (чаще всего – конденсатор необходимой емкости).
Особенности подключения электрических двигателей рассматриваются на этой странице.Отсутствие возможности получения высокой частоты вращения — хотя вращение ротора и не синхронизировано с частотой вращения магнитного поля статора, но и не может его опережать, поэтому в сети 50 Гц максимальные обороты для асинхронного электродвигателя с короткозамкнутым ротором – не более 3000 об/мин.
Увеличение частоты вращения асинхронного двигателя требует применения частотного преобразователя (инвертора), что делает такую систему дороже, чем коллекторный двигатель. Кроме того, при увеличении частоты возрастают реактивные потери.
Трудность организации реверса — для этого необходима полная остановка двигателя и перекоммутация фаз, в однофазном варианте – смещение фазы в пусковой или второй фазной обмотке.
Наиболее удобно использование асинхронного электродвигателя в промышленной трехфазной сети, так как создание вращающегося магнитного поля при этом осуществляется самими фазными обмотками без дополнительных приспособлений.Фактически цепь, состоящую из трехфазных генератора и электромотора, можно рассматривать как пример электро трансмиссии: привод генератора создает в нем вращающееся магнитное поле, преобразуемое в колебания электрического тока, в свою очередь возбуждающего вращение магнитного поля в электродвигателе.
Кроме того, именно при трехфазном питании асинхронные электродвигатели имеют наибольший КПД, так как в однофазной сети создаваемое статором магнитное поле по сути может быть разложено на два противофазных, что увеличивает бесполезные потери на перенасыщение сердечника. Поэтому мощные однофазные электродвигатели как правило выполняются по коллекторной схеме.
ЭЛЕКТРОДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА КОЛЛЕКТОРНЫЙ
В электромоторах данного типа магнитное поле ротора создается фазными обмотками, подключенными к коллектору. Фактически коллекторный двигатель переменного тока отличается от двигателя постоянного тока только тем, что в его расчет заложено реактивное сопротивление обмоток.
В ряде случаев даже создаются универсальные коллекторные двигатели, где статорная обмотка имеет отвод от неполной части для включения в сеть переменного тока, а к полной длине обмотки может подключаться источник тока постоянного.
Преимущества данного типа двигателей очевидны:
Возможность работы на высоких оборотах позволяет создавать коллекторные электромоторы с частотой вращения до нескольких десятков тысяч оборотов в минуту, знакомые всем по электрическим бормашинам.
Отсутствие необходимости в дополнительных пусковых устройствах в отличие от двигателей с короткозамкнутым ротором.
Высокий пусковой момент, что ускоряет выход на рабочий режим, в том числе и под нагрузкой. Более того, крутящий момент коллекторного электродвигателя обратно пропорционален оборотам и при росте нагрузки позволяет избежать просадки частоты вращения.
Легкость управления оборотами — так как они зависят от напряжения питания, для регулировки частоты вращения в широчайших пределах достаточно иметь простейший симисторный регулятор напряжения. При отказе регулятора коллекторный двигатель может быть включен в сеть напрямую.
Меньшая инерция ротора — он может быть выполнен гораздо более компактным, чем при короткозамкнутой схеме, благодаря чему и сам коллекторный двигатель становится заметно меньше.
Также коллекторный двигатель элементарно может быть реверсирован, что особенно актуально при создании различного рода электроинструмента и ряда станков.
По этим причинам коллекторные двигатели широко распространены во всех однофазных потребителях, где необходимо гибкое регулирование оборотов:
- в ручном электроинструменте;
- пылесосах;
- кухонной технике и так далее.
Однако ряд конструктивных особенностей определяет специфику эксплуатации коллекторного электродвигателя:
Коллекторные двигатели требуют регулярной замены щеток, изнашивающихся со временем. Изнашивается и сам коллектор, в то время как двигатель с короткозамкнутым ротором, как уже писалось выше, при условии нечастой замены подшипников практически вечен.Неизбежное искрение между коллектором и щетками (причина появления всем знакомого запаха озона при работе коллекторного электродвигателя) не только дополнительно снижает ресурс, но и требует повышенных мер безопасности при работе из-за вероятности воспламенения горючих газов или пыли.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
принцип работы и устройство (фото)
Синхронный электродвигатель – электрическая установка, действующая от сети переменного и постоянного тока. Синхронная машина улучшает коэффициент мощности. Данные моторы используются довольно часто в электрической системе, потому что они подходят для любой сети напряжения и обладают высокими экономическими данными.
Область применения
- конвейеры,
- мощные вентиляторы,
- мельницы,
- эксгаустеры,
- компрессоры,
- дробилки,
- прокатные станки.
Преимущества и недостатки
Синхронный электродвигатель имеет сложнее структуру, чем асинхронный, но обладает некоторыми достоинствами.
Главным положительным качеством данных агрегатов является способность поддерживать оптимальный режим реактивной энергии. Из-за автоматического регулирования силы тока двигателя, он работает, не употребляя, не давая реактивную энергию, значение коэффициента мощности равняется 1. Если нужна реактивная энергия, она будет производиться синхронным мотором.
Данным двигателям не страшны перебои в сети, которой равен их максимальный момент. А значение критического момента равно квадрату напряжения.
Агрегат выдерживает большую перегрузку, которую можно еще увеличить автоматически повышением тока при необходимости непродолжительной нагрузки на вал. Он имеет постоянную скорость вращения независимо от нагрузки.
Трехфазный синхронный двигатель дороже обычного асинхронного из-за сложного механизма и особого устройства.
Еще недостатком оказывается надобность в постоянном источнике энергии, функции которого выполняет выпрямитель или специализированный возбудитель.
Устройство электродвигателя
Синхронный мотор имеет две основные части — статор и ротор. Неподвижная часть называется статором, а подвижный элемент ротором.
Однофазный двигатель с короткозамкнутым ротором, расположенным в статоре или снаружи в двигателях обращенного вида. В основе ротора — постоянные магниты. Материал магнитов имеет высокую коэрцитивную силу. Полюсы ротора могут быть явно и неявно выраженными. Синхронный двигатель с короткозамкнутым ротором бывает с магнитами на поверхности или с уже встроенными.
Статор представлен корпусом и сердечником, состоящим из двухфазных и трехфазных обмоток. Обмотка бывает распределенная и сосредоточенная. У распределенной насчитываются пазы полюса и фазы Q= 2,3.
У сосредоточенной обмотки пазы полюса и фазы Q=1. Пазы размещены на одинаковом расстоянии на окружности неподвижной части двигателя. Катушки статора соединяются последовательно или параллельно. Такие обмотки не могут влиять на форму кривой ЭДС. Электродвижущая сила имеет трапецеидальную и синусоидальную форму. У явно выраженного полюса форма ротора и наводимая электродвижущая сила проводника является трапециевидной формы (а). При необходимости создания синусоидальной ЭДС, полюсные наконечники приобретают другую форму, где величина кривой распределения индукции близкая синусоидальной. Осуществление возможно благодаря наличию скосов на наконечнике полюса ротора.
Ротор синхронного двигателя переменного тока: а — явно выраженный полюс, 6 — неявно выраженный полюс.
Неявно выраженные полюса обладают равной индуктивностью продольных и поперечных осей, а явно выраженные полюса имеют одинаковую величину поперечной и продольной индуктивности (б).
Принцип действия
Принцип действия электрической машины переменного тока: 1 — статор, 2 — ротор.
У однофазного двигателя отсутствует пусковой момент. При подключении обмотки якоря к сети переменного тока, ротор неподвижен, в обмотку возбуждения поступает постоянный ток, за время одного изменения напряжения, два раза происходит смена направления электромагнитного момента. Значение среднего момента равняется нулю. Ротор разгоняется посредством внешнего момента до вращающейся частоты, которая приближается к синхронности.
Из-за высокого значения коэффициента мощности обеспечивается снижение потребления электричества, уменьшаются потери. В сравнении с асинхронным механизмом с такой же мощностью, синхронный двигатель имеет КПД выше. Так как крутящийся момент аналогичен напряжению сети. Даже снижение напряжения не влияет на нагрузочную способность. Что свидетельствует о надежности механизма.
Тип подключения делится на однофазный и трехфазный. Синхронные агрегаты чаще бывают трехфазными. При положении проводников трехфазного двигателя в определенной геометрической позиции появляется электромагнитное поле, которое вращается с одновременной скоростью. При имении магнита во вращающемся поле, они замыкают, крутятся параллельно. Двигатель можно назвать нерегулируемым, так как его скорость постоянная.
Пуск электродвигателя
Существует два способа пуска синхронной машины.
- Асинхронное включение
Схема пуска на основе глухо подключенного возбудителя, применима для статистического момента нагрузки менее 0,4, без падений напряжения.
Асинхронный пуск с помощью трансформатора
В обмотке возбуждения замыкается сопротивление разряда, избегая тем самым перебои возбуждения обмотки на впуске, потому как на небольшой скорости вращения ротора возникают перенапряжения. Если скорость приближается к синхронной, реагирует контактор, а обмотка возбуждения переключается из разрядного сопротивления на якорь возбудителя.
- Применение тиристорного возбудителя
Возбуждение, осуществляемое при помощи электромагнитного реле
Пуск с тиристорным возбудителем более надежный, обладает высоким КПД. Легче становится управление возбуждением, напряжение шин, остановка в аварийном режиме. Во многих моделях электродвигателей установлены тиристорные возбудители. Подача возбуждения работает автоматически функцией скорости и тока.
Синхронный компенсатор
Упрощенная конструкция для холостого хода называется компенсатором.
Потребление электричества, помимо активной мощности, нуждается в реактивной мощности. Генератор вырабатывает реактивную мощность с минимальными затратами. Переход реактивной мощности генератора связан с потерями на линии передач. Поэтому применение компенсаторов является обоснованным экономически. При возбуждении синхронные двигатели не используют напряжение сети, а при перевозбуждении отдают реактивную мощность.
Синхронный электродвигатель применяется в сети переменного и постоянного тока, обеспечивая высокую надежность работы. Этот двигатель улучшит коэффициент мощности предприятия.
схема. Электродвигатели постоянного и переменного тока
В статье вы узнаете, что такое электродвигатели переменного тока, рассмотрите их устройство, принцип действия, область применения. Стоит отметить, что сегодня в промышленности более 95 процентов всех используемых двигателей приходится на асинхронные машины. Они получили большое распространение в связи с тем, что у них высокая надежность, они могут служить очень долго за счёт своей ремонтопригодности.
Принцип работы асинхронных двигателей
Чтобы понять, как функционирует электродвигатель, можно провести небольшой эксперимент. Конечно, для этого потребуется наличие специального инструмента. Установите магнит в форме подковы так, чтобы он приводился в движение при помощи ручки. Как вы знаете, у магнита имеется два полюса. Между ними необходимо расположить цилиндр, изготовленный из меди. С таким расчетом, что он может свободно вокруг своей оси вращаться. Теперь сам эксперимент. Начинаете раскручивать магнит, при этом создается поле, которое двигается. Внутри медного цилиндра начинают возникать вихревые токи, которые противодействуют полю магнита.
В результате этого медный цилиндр начинает вращение в ту сторону, в которую двигается постоянный магнит. Причем его скорость оказывается несколько ниже. Причина этого — при равной скорости силовые линии перестают пересекаться с полем магнита. Магнитное поле вращается синхронно. А вот скорость движения самого магнита несинхронна. А если немножко сократить определение, то асинхронна. Отсюда и название электрической машины — асинхронного электродвигателя. Если грубо, то схема электродвигателя переменного тока примерно такая же, как и в приведенном эксперименте. Только магнитное поле создается статорной обмоткой.
Двигатели постоянного тока
Они несколько отличаются от асинхронных электродвигателей переменного тока. Во-первых, в нём имеется одна или две статорных обмотки. Во-вторых, способ изменения частоты вращения ротора несколько иной. Но направление вращения ротора изменяется переполюсовкой (у асинхронных машин меняются местами фазы питающей сети). Изменить скорость ротора двигателя постоянного тока можно, если увеличить или уменьшить напряжение, подаваемое на статорную обмотку.
Двигатель постоянного тока не может работать без обмотки возбуждения, которая находится на роторе. Передача напряжения происходит при помощи щеточного узла. Это самый ненадежный элемент конструкции. Щетки, изготовленные из графита, со временем стираются, что приводит к выходу из строя мотора, ему необходим ремонт. Заметьте, что электродвигатели постоянного и переменного тока имеют одни и те же элементы, но их конструкции отличаются существенно.
Конструкция электродвигателя
Как и любая другая нестатическая электрическая машина, асинхронный двигатель состоит из двух основных частей — статора и ротора. Первый элемент неподвижный, на нём размещаются три обмотки, которые соединяются по определенной схеме. Ротор является подвижным, его конструкция называется «беличьей клеткой». Причина такого названия в том, что внутреннее устройство очень похоже на колесо с белкой.
Последней, конечно же, нет в электродвигателе. Центровка ротора производится при помощи двух крышек, устанавливаемых на статоре. В них имеются подшипники, которые облегчают вращение. На задней части электродвигателя устанавливается крыльчатка. С ее помощью проводится охлаждение электрической машины. На статоре сделаны ребра, которые улучшают теплоотдачу. Таким образом электродвигатели переменного тока работают в нормальном тепловом режиме.
Статор асинхронного двигателя
Стоит отметить, что у статора современных асинхронных электродвигателей полюсы невыраженные. Если говорить проще, то внутри вся поверхность идеально гладкая. В целях уменьшения потерь на вихревых токах, сердечник набирается из очень тонких листов стали. Эти листы очень плотно прилегают друг другу и впоследствии закрепляются в корпусе из стали. Статор имеет пазы для закладывания обмоток.
Обмотки изготовлены из медного провода. Соединение их производится в «звезду» или «треугольник». В верхней части корпуса имеется небольшой щиток, полностью заизолированный. В нем находятся контакты для подключения и соединения обмоток. Причем соединить обмотки можно при помощи перемычек, устанавливаемых в этом щитке. Устройство электродвигателя переменного тока позволяет быстро провести соединение обмоток в нужную схему.
Ротор асинхронного электродвигателя
О нем было уже немного сказано. Он похож на беличью клетку. Конструкция ротора собирается из тонких стальных листов, как и статора. В пазах ротора находится обмотка, но она может быть нескольких типов. Все зависит от того, фазный или короткозамкнутый ротор. Наиболее распространенные последние конструкции. Толстые медные стержни укладываются в пазы без изоляционного материала. С обоих концов эти стержни соединяются медными кольцами. Иногда вместо «беличьей клетки» применяются литые роторы.
Но есть еще электродвигатели переменного тока с фазным ротором. Они используются намного реже, в основном для электродвигателей, у которых очень большая мощность. Второй случай, при котором необходимо использовать фазные роторы в электродвигателях — создание большого усилия в момент запуска. Правда, для этого необходимо использовать специальный реостат.
Способы запуска асинхронного электродвигателя
Запустить асинхронный электродвигатель переменного тока несложно, достаточно только подключить статорные обмотки в трехфазную сеть. Производится подключение при помощи магнитных пускателей. Благодаря им можно практически автоматизировать запуск. Даже реверс сделать можно без особых трудностей. Но в некоторых случаях необходимо снижать напряжение, которое подводится к статорным обмоткам.
Производится это благодаря использованию схемы подключения типа «треугольник». При этом запуск производится, когда обмотки соединены по схеме «звезда». При увеличении числа оборотов, достижении максимального значения обмотки необходимо переключить на схему «треугольник». При этом происходит уменьшение потребляемого тока примерно в три раза. Но необходимо учитывать, что не каждый статор может нормально функционировать при подключении по схеме «треугольник».
Регулирование частоты вращения
В промышленности и быту все большую популярность приобретают частотные преобразователи. С их помощью можно легким движением руки изменить скорость вращения ротора. Стоит заметить, что электродвигатели переменного тока используются совместно с частотными преобразователями в большинстве механизмов. Он позволяет осуществить тонкую настройку привода, при этом нет необходимости использовать магнитные пускатели. Все органы управления подключаются к контактам на частотном преобразователе. Настройки позволяют изменять время разгона ротора электродвигателя, его остановки, время минимальной и максимальной скорости, а также множество других защитных функций.
Заключение
Теперь вы знаете, как происходит работа электродвигателя переменного тока. Даже изучили конструкцию наиболее популярного асинхронного двигателя. Он является самым дешевым из всех, которые представлены на рынке. Кроме того, для его нормального функционирования нет необходимости использовать различные вспомогательные устройства. В частности, реостаты. И только такое дополнение, как частотный преобразователь, способно облегчить эксплуатацию асинхронного электродвигателя, существенно расширить его возможности.
Какие бывают двигатели? Типы электродвигателей. Асинхронные двигатели
В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.
Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)
Двигатели постоянного тока
По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.Простой двигатель имеет 2 положения ротора (2 «мёртвые точки»), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).
Данные двигатели с наличием щёточно-коллекторного узла бывают:
Колекторные — электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.
Бесколекторные — замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.
Двигатели переменного тока
По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).Синхронный — двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.
Асинхронный — двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин — индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором
По количеству фаз двигатели бывают:
- однофазные
- двухфазные
- трехфазные
Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:
Однофазный асинхронный двигатель с короткозамкнутым ротором
Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.
Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.
Двухфазный асинхронный двигатель с короткозамкнутым ротором
Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.
Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.
Трехфазный асинхронный двигатель с короткозамкнутым ротором
Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.
Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.
Трехфазный асинхронный двигатель с фазным ротором
Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков, шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.
Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.
как он устроен и работает
Электрический двигатель представляет собой особый преобразователь. Это машина, где электрическая энергия преобразуется и переходит в механическую. Принцип действия двигателя основан на электромагнитной индукции. Есть к тому же и электростатические двигатели. Можно без особых дополнений использовать двигатели на других принципах преобразования электричества в перемещении. Но немногие знают, как устроен и как работает электродвигатель.
Принцип работы устройства
В составе электродвигателя переменного тока присутствуют неподвижные и подвижные части. К первым относят:
- статор;
- индуктор.
Статор находит применение для машин синхронного и асинхронного типа. Индуктор эксплуатируется в машинах постоянного тока. Подвижная часть состоит из ротора и якоря. Первый применяют для синхронных и асинхронных устройств, тогда как якорь используется для оборудования с постоянными показателями. Функция индуктора лежит на двигателях небольшой мощности. Здесь нередко используют постоянные магниты.
Говоря о том, как устроен электродвигатель, необходимо определить, к какому классу оборудования относится конкретная модель. В конструкции асинхронного двигателя ротор бывает:
- короткозамкнутым;
- фазным, то есть с обмоткой.
Последний тип используется, если требуется уменьшить пусковой ток и отрегулировать частоту вращения асинхронного электродвигателя. Обычно речь идет о крановых электродвигателях, повсеместно используемых в крановых установках.
Кран обладает подвижностью и применяется в машинах постоянного тока. Это может быть генератор либо двигатель, а также универсальный двигатель, функционирующие по тому же принципу. Его используют в электроинструменте. Фактически универсальный двигатель — это тот же двигатель с постоянными показателями, в котором происходит последовательное возбуждение. Отличие касается лишь расчётов обмоток. Здесь отсутствует реактивное сопротивление. Оно бывает:
- емкостным;
- индуктивным.
Вот почему любой электроинструмент, если из него извлекается электронный блок, сможет работать и на постоянном токе. Но при этом напряжение в сети будет меньше. Принцип действия электродвигателя определяется сообразно тому, из каких компонентов он состоит и для каких целей предназначается.
Работа трехфазного асинхронного двигателя
Во время включения в сеть формируется вращающееся магнитное поле. Оно отмечается в статоре и проникает через короткозамкнутую обмотку ротора. В ней переходит в индукцию. После этого, в соответствии с законом Ампера, ротор начинает вращаться. Частота перемещения этого элемента зависит от частоты питающего напряжения и количества магнитных полюсов, представленных парами.
Разность между частотой вращения ротора и магнитного поля статора выражается в виде скольжения. Двигатель именуют асинхронным, потому что частота вращения магнитного поля у него сообразна с частотой вращения ротора. Синхронный двигатель имеет отличия в конструкции. Ротор дополняется магнитом постоянного типа либо электромагнитом. В нём имеются элементы, такие как для запуска беличья клетка и постоянные магниты. Также их роль могут выполнять электромагниты.
В асинхронном двигателе у магнитного поля статора частота вращения совпадает с аналогичным показателем у ротора. Для включения используют асинхронные электродвигатели вспомогательного типа либо ротор с короткозамкнутой обмоткой. Асинхронные двигатели смогли найти широкое применение во всех технических областях.
Особенно это актуально в отношении трехфазных двигателей, характеризующихся простотой конструкции. Они не только доступны по цене, но и надежнее в сравнении с электрическими. Ухода они не требуют почти никакого. Название асинхронный, присвоенное им, обусловлено несинхронным вращением ротора в таком двигателе. Если отсутствует трехфазная сеть, такой двигатель может включаться в сеть однофазного тока.
В составе статора асинхронного электродвигателя присутствует пакет. В нём имеются лакированные листы электротехнической стали, чья толщина составляет 0,5 мм. У них есть пазы, куда уложена обмотка. Три фазы обмотки соединены друг с другом треугольником или звездой, которые смещены на 120 градусов пространственно.
Если речь идет о роторе электродвигателя, в котором имеются контактные кольца в пазах, здесь отмечается ситуация, похожая на обмотку статора. Это актуально, если он включён звездой либо начальные концы фаз соединены тремя контактными кольцами, зафиксированными на валу. Когда двигатель запущен, можно подключить реостат на фазы обмотки для контроля частоты вращения. После успешного разбега контактные кольца коротко замыкаются, а потому обмотка ротора выполняет те же функции, что и в случае с короткозамкнутым изделием.
Современная классификация
По принципу формирования вращающего момента двигатели электрического типа делят на магнитоэлектрические и гистерезисные. Последняя группа отличается тем, что вращающий момент здесь формируется вследствие гистерезиса при чрезмерном намагничивании ротора. Такие двигатели не считаются классическими и не так распространены в промышленности. Наибольшее распространение получили магнитоэлектрические модификации, которые делятся на две большие группы, согласно потребляемой энергии. Это двигатели переменного и постоянного тока. Выпускаются также универсальные модели, которые способны питаться обоими видами электрического тока.
Основные особенности
Было бы правильно называть эти устройства электрическими нефазными. Это обусловлено тем, что фазы переключаются здесь непосредственно в двигателе. За счет этого мотор питается постоянным, как и переменным типами тока, с одинаковым успехом. Эта группа делится по способу переключения фаз и присутствию обратной связи. Они бывают вентильными и коллекторными.
Что касается типа возбуждения, коллекторные двигатели подразделяют на модели с самовозбуждением, моторы с независимым возбуждением от постоянных магнитов и электромагнитов. Первый тип, в свою очередь, классифицируется на моторы с последовательным, параллельным, смешанным возбуждением.
Бесколлекторные, или вентильные изделия, работают от электричества. В них переключение фаз происходит посредством специального электроблока, носящего название инвертора. Процесс этот может оснащаться обратной связью, когда пускают в ход датчик положения ротора либо без обратной связи. Такое устройство можно фактически позиционировать, как аналог асинхронного устройства.
Агрегаты пульсирующего тока
Такой двигатель является электрическим, и питание у него осуществляется пульсирующим электротоком. Конструкционные особенности его схожи с аналогичными особенностями у устройств постоянного тока. Конструктивные отличия его от двигателя с постоянными показателями состоят в присутствии шихтованных вставок для выпрямления переменного тока. Используют его на электровозах со специальными установками. Характерной особенностью является наличие компенсационной обмотки и значительного количества пар полюсов.
Модификации переменного тока
Двигатель представляет собой устройство, питание которого происходит с переменным током. Агрегаты эти бывают асинхронными и синхронными. Различие состоит в том, что в асинхронных машинах магнитодвижущая сила статора перемещается со скоростью вращения ротора. У асинхронного оборудования всегда наблюдается разница между скоростью вращения магнитного поля и ротора.
Синхронный электродвигатель работает от переменного тока. Ротор здесь вращается сообразно движению магнитного поля питающего напряжения. Синхронные электродвигатели делятся на модификации с обмотками возбуждения, с постоянными магнитами, а также на реактивные модификации, гистерезисные, шаговые, гибридные реактивные типы устройств.
Выделяют и так называемый реактивно-гистерезисный тип. Выпускают также модели с шаговыми агрегатами. Здесь определённое положение ротора фиксируется подачей питания на определенные зоны обмотки. Переход в другое положение достигается посредством снятия напряжения с одних обмоток и перемещения его в другие области. Вентильные реактивные модели электрического типа формируют питание обмоток посредством полупроводниковых элементов. Асинхронное устройство имеет частоту вращения ротора, отличную от частоты вращающегося магнитного поля. Она создается питающим напряжением. Такие модели получили на сегодня наибольшее распространение.
Универсальное коллекторное оборудование
Такой агрегат может работать на переменном и постоянном токе. Изготавливают его с последовательной обмоткой возбуждения при показателях мощности до 200 Вт. Статор выполняется из особой электротехнической стали. Обмотка возбуждения осуществляется при постоянном показателе напряжения полностью и частично при переменном показателе. Номинальное напряжение для переменного электротока составляют 127 и 220 В, аналогичные показатели для постоянного параметра равны 110 и 220 В. Находят применение в электроинструментах и бытовых аппаратах.
То, как работает электродвигатель, зависит от его принадлежности к тому или иному типу оборудования. Модификации переменного тока с питанием от промышленной сети 50 Гц не дают получить частоту вращения больше 3000 оборотов в минуту. Вот почему для получения значительных частот используют коллекторный мотор электрического типа. Он к тому же легче и меньше по размерам, нежели устройства с переменными показателями с аналогичной мощностью.
В их отношении используют специальные передаточные механизмы, преобразующие кинематические параметры механизма до приемлемых. При использовании преобразователей частоты и при наличии сети повышенной частоты двигатели переменного тока легче и меньше коллекторных изделий.
Ресурс асинхронных моделей с переменными показателями значительно выше, нежели у коллекторных. Определяется он состоянием подшипников и особенностями обмоточной изоляции.
Синхронный двигатель, у которого есть датчик положения ротора и инвертор, считается электронным аналогом коллекторного двигателя постоянного тока. Фактически он является коллекторным электродвигателем с последовательно включенными обмотками статора. Они идеально оптимизированы для работы с бытовой электросетью. Такую модель, независимо от полярности напряжения, можно вращать в одну сторону, так как последовательное соединение обмоток и ротора гарантирует смену полюсов из магнитных полей. Соответственно, результат остается направленным в одну сторону.
Статор из магнитного мягкого материала применим для работы на переменном токе. Это возможно, если сопротивление в перемагничивании у него незначительное. Чтобы снизить потери на вихревые токи, статор делают из изолированных пластин. Он получается наборным. Его особенностью является то, что потребляемый ток ограничивается за счёт индуктивного сопротивления обмоток. Соответственно, момент двигателя оценочно становится максимальным и варьируется от 3 до 5. Чтобы приблизить к механическим характеристикам двигатели общего назначения, применяются секционные обмотки. Они имеют отдельные выводы.
Примечательно, что для передвижения некоторыми видами бактерий используется электродвигатель из нескольких белковых молекул. Он способен трансформировать энергию электрического тока в форме движения протонов во вращении жгутика.
Синхронная модель возвратно-поступательного движения работает таким образом, что подвижная часть устройства оснащена постоянными магнитами. Они зафиксированы на шторке. Посредством неподвижных элементов постоянные магниты находятся под воздействием магнитного поля и проводят перемещение штока возвратно-поступательным методом.
Основы двигателей переменного тока
1. Обзор двигателей переменного тока
Двигатели переменного тока— это электродвигатели, которые вращаются за счет энергии от коммерческого источника переменного тока. Они просты в обращении и имеют функции, которые можно настроить за небольшую плату. Они широко используются для питания различных устройств.
1.1 Простота использования, низкая стоимость
С легкостью управляйте двигателями переменного тока, подключив двигатель к источнику переменного тока. Возможен недорогой запуск. Для однофазного двигателя подключите конденсатор между источником питания и двигателем.
1.2 Конструкция двигателя переменного тока
На следующем рисунке показана конструкция стандартного двигателя переменного тока.
1. Фланцевый кронштейн Алюминиевый кронштейн, отлитый под давлением с механической обработкой, запрессован в корпус двигателя
2. Статор , состоящий из сердечника статора из электромагнитных стальных пластин, медной катушки с полиэфирным покрытием и изоляционной пленки
3. Корпус двигателя из литого под давлением алюминия с механической обработкой внутри
4. Ротор Пластины из электромагнитной стали из литого под давлением алюминия
5. Выходной вал доступен с круглым валом и валом-шестерней. В валу используется металл S45C. Тип вала с круглым валом имеет плоскую форму (выходная мощность 25 Вт, 1/30 л.с. и более), а вал с шестерней проходит прецизионную чистовую обработку.
6. Подшипник шариковый
7. Провода свинцовые с термостойким полиэтиленовым покрытием
8. Краска Обожженная отделка из акриловой или меламиновой смолы
1.3 Принцип работы асинхронных двигателей 1 (диск Араго)
Двигатели переменного тока генерируют «магнитный поток» и «индуцированный ток» внутри двигателя под действием статора и ротора и получают вращающую силу.
Принцип работы двигателей переменного тока можно объяснить с помощью диска Араго.
Диск Араго — это явление, когда магнит перемещается по поверхности металлического диска, при этом диск вращается, чтобы следовать за магнитом. Сначала приготовьте круглую медную пластину, которая может свободно вращаться, и магнит.Поместите их так, чтобы медная пластина находилась между магнитными полюсами, но магнит не касался медной пластины.
Затем переместите U-образный магнит по краю медной пластины. Медная пластина начнет вращаться и преследовать магнит.
Принцип диска Араго
Принцип диска Араго можно объяснить «Правилом правой руки Флеминга» и «Правилом левой руки Флеминга».
Правило правой руки Флеминга указывает направление индуцированного тока (для генераторов), когда проводник проходит через линии магнитного потока.
Правило левой руки Флеминга указывает направление электродвижущей силы (для двигателей), когда проводник проходит через линии магнитного потока.
Мы применяем эти два закона к отношениям между медной пластиной и магнитом в следующем порядке: правило правой руки, затем правило левой руки.
Скорость вращения медного диска будет немного ниже, чем у магнита.Это позволяет создавать вращающую силу проводником, проходящим через магнитное поле.
1.4 Принцип работы асинхронных двигателей 2 (вращающееся магнитное поле)
Замена дисков Arago на статоры и роторы
Принцип работы двигателя переменного тока можно объяснить заменой диска Араго внутренней структурой двигателя переменного тока. Электромагниты полюса N и полюса S представляют собой упрощенную модель статора. Замкнутая катушка в центре представляет собой упрощенную модель проводящего ротора.
Поместите закрытую катушку в магнитное поле и поверните внешний магнит по часовой стрелке. Затем в катушке протекает индуцированный ток. Когда течет ток, он вступает в реакцию с магнитным полем и создает в катушке электродвижущую силу. Катушка начинает вращаться в том же направлении, что и магнит.
В реальном двигателе ротор похож на серию перекрывающихся катушек, соединенных вместе, так что вращательное усилие может быть эффективно создано.
Ротор с короткозамкнутым ротором — это ротор с несколькими перекосами из алюминия и железа.В роторе с короткозамкнутым ротором ток течет в алюминиевой части.
Вращающееся магнитное поле (однофазный источник питания, трехфазный источник питания)
Поскольку статор создает вращающееся магнитное поле вокруг ротора, ротор вращается.
В следующем разделе объясняется, как двигатель переменного тока создает вращающееся магнитное поле.
Однофазный источник питания — фазовый сдвиг с использованием конденсатора
Внутри однофазного двигателя две обмотки: основная и вспомогательная.
Подключите основную обмотку к источнику питания, а вспомогательную обмотку к источнику питания через конденсатор.
Ток от источника питания течет непосредственно к основной обмотке. С другой стороны, ток через конденсатор течет через вспомогательную обмотку.
При работе от однофазного источника питания мы используем опережающий конденсатор для генерации сигнала, близкого к двухфазному источнику питания, и создания вращающегося магнитного поля.
При подключении однофазного источника питания повторите действия с ① по ④.
①Напряжение подается на основную обмотку, на вспомогательную обмотку не подается. В магнитном полюсе основной обмотки генерируются полюс N и S.
② Напряжение подается на вспомогательную обмотку, а напряжение на основную обмотку не подается. Полюс N и полюс S образуются в магнитном полюсе вспомогательной обмотки.
③Напряжение подается на основную обмотку, на вспомогательную обмотку не подается. Магнитный полюс, противоположный полюсу, образуется в магнитном полюсе основной обмотки.
④ Напряжение подается на вспомогательную обмотку, а напряжение на основную обмотку не подается. Магнитный полюс, противоположный полюсу, создается в магнитных полюсах вспомогательной обмотки.
Таким образом, магнитное поле, создаваемое в статоре, изменяется, чтобы производить вращение по часовой стрелке.
для трехфазного источника питания — фазовый сдвиг источника питания
В однофазных двигателях есть две обмотки, основная обмотка и вспомогательная обмотка, а трехфазные двигатели состоят из трех обмоток.
Предполагая, что фазы U, V, W на стороне источника питания, есть три пути, по которым может течь ток: UV, VW, WU. Подключите эти обмотки напрямую к источнику питания.
В линии U, V, W трехфазного источника питания каждая фаза сдвинута на 120 °. Поскольку этот фазовый сдвиг создает вращающееся магнитное поле в статоре, нет необходимости подключать конденсатор, например, к однофазному двигателю.
1.5 Типы асинхронных двигателей
Асинхронный двигатель
Асинхронные двигателиидеально подходят для приложений, которые непрерывно работают в одном направлении.
Реверсивный двигатель
Реверсивные двигатели идеально подходят для приложений, в которых часто повторяется двунаправленная работа.
С помощью простого тормоза и увеличения пускового момента можно мгновенно изменить направление вращения двигателя.
• Структура простого тормоза
Реверсивные двигатели имеют простой тормозной механизм (фрикционный тормоз) в задней части двигателя.
Тормозной механизм постоянно оказывает давление на тормозную колодку, которая трется о тормозной диск. Как только двигатель останавливается, перебег можно значительно снизить по сравнению с асинхронным двигателем.
Электромагнитный тормозной двигатель
Двигатели с электромагнитным тормозом идеально подходят для приложений, требующих удержания нагрузки, например, для вертикального привода.
За счет включения электромагнитного тормоза без возбуждения можно удерживать нагрузку при отключении питания.
Электромагнитные тормоза доступны с асинхронными двигателями и реверсивными двигателями.
В чем разница между двигателями переменного тока и двигателями постоянного тока?
Между двигателями переменного и постоянного тока существует много различий. Наиболее очевидное различие — это тип тока, который каждый двигатель превращает в энергию: переменный ток в случае двигателей переменного тока и постоянный ток в случае двигателей постоянного тока. Двигатели переменного тока известны своей повышенной выходной мощностью и эффективностью, в то время как двигатели постоянного тока ценятся за их контроль скорости и диапазон выходной мощности.Двигатели переменного тока доступны в одно- или трехфазной конфигурации, а двигатели постоянного тока всегда однофазные.
Подробнее о электродвигателях переменного тока
В двигателе переменного тока энергия поступает из магнитных полей, создаваемых катушками, намотанными вокруг выходного вала. Двигатели переменного тока состоят из нескольких частей, включая статор и ротор. Двигатели переменного тока эффективны, долговечны, бесшумны и универсальны, что делает их жизнеспособным решением для многих потребностей в производстве электроэнергии.
К двум типам двигателей переменного тока относятся:
- Синхронный: Синхронный двигатель вращается с той же скоростью, что и частота питающего тока, что и дало ему название.Синхронные двигатели состоят из статора, ротора и синхронных двигателей, которые используются в широком спектре приложений.
- Индукция: Асинхронные двигатели — это самый простой и надежный электродвигатель на рынке. Эти электродвигатели переменного тока состоят из двух электрических узлов: статора с обмоткой и узла ротора. Электрический ток, необходимый для вращения ротора, создается за счет электромагнитной индукции, создаваемой обмоткой статора. Асинхронные двигатели являются одними из наиболее часто используемых типов двигателей в мире. Электродвигатели переменного тока
используются в различных сферах, включая насосы для предприятий общественного питания, водонагреватели, садовое и газонное оборудование и многое другое.
Подробнее о двигателях постоянного тока
Энергия, используемая двигателем постоянного тока, поступает от батарей или другого генерируемого источника энергии, обеспечивающего постоянное напряжение. Двигатели постоянного тока состоят из нескольких частей, самые известные из которых включают подшипники, валы и редуктор или шестерни. Двигатели постоянного тока обеспечивают лучшее изменение скорости и управление, а также обеспечивают больший крутящий момент, чем двигатели переменного тока.
К двум типам двигателей постоянного тока относятся:
- Матовый: Один из самых старых типов двигателей, щеточные двигатели — это электродвигатели с внутренней коммутацией, работающие от постоянного тока. Щеточные двигатели состоят из ротора, щеток, оси, а заряд и полярность щеток контролируют направление и скорость двигателя.
- Бесщеточный: В последние годы бесщеточные двигатели стали популярны во многих сферах применения, в основном благодаря их эффективности.Бесщеточные двигатели устроены так же, как и щеточные двигатели, за исключением, конечно, щеток. Бесщеточные двигатели также включают специализированную схему для управления скоростью и направлением. В бесщеточных двигателях вокруг ротора установлены магниты, что повышает эффективность.
используются в широком спектре приложений, включая электрические инвалидные коляски, ручные распылители и насосы, кофеварки, внедорожное оборудование и многое другое.
Двигатели переменного тока| Асинхронные двигатели и мотор-редукторы
Двигатели переменного тока | Асинхронные двигатели переменного тока и мотор-редукторы | Компоненты RSДвигатели переменного тока
Двигатели переменного тока приводятся в действие переменным током и представляют собой высокоэффективный способ превращения электрической энергии в механическое движение.Двигатели переменного тока отличаются от двигателей постоянного тока тем, что они бесщеточные, что означает меньшую потребность в техническом обслуживании и, как правило, более длительный срок службы. В отличие от двигателей постоянного тока, выходная скорость двигателей переменного тока обычно регулируется частотным преобразователем.
Какие типы двигателей переменного тока?
В ассортимент двигателей переменного тока RS входят следующие :
- Асинхронные двигатели : обычно используемые в кухонных приборах, автомобилях и промышленном оборудовании, асинхронные двигатели имеют выходную скорость вращения, пропорциональную приложенной частоте альтернативного текущий.
- Синхронные двигатели переменного тока : так называемые синхронные двигатели переменного тока, поскольку скорость ротора пропорциональна статору, используются там, где точность является важным фактором, например, в часах и таймерах. .
- Двигатели переменного тока с короткозамкнутым ротором : тип асинхронного двигателя, в котором используется ротор с сепаратором вместо обмотанного ротора, поэтому он считается более прочным и менее сложным в обслуживании. Асинхронные двигатели с короткозамкнутым ротором часто используются в приложениях, где требуется низкий пусковой момент и не требуется регулирование скорости, например, в насосах и воздушных компрессорах.
- Двигатели переменного тока с экранированными полюсами : однофазный двигатель с короткозамкнутым ротором, в котором используется вспомогательная обмотка, состоящая из медного кольца или стержня, называемая затеняющей катушкой. В отличие от стандартных двигателей с короткозамкнутым ротором, они подходят для нескольких скоростей и часто используются в вентиляторах.
- Мотор-редукторы переменного тока : интегрируйте редуктор с электродвигателем переменного тока для обеспечения высокого крутящего момента. на малой скорости или малой мощности. Работа на низкой скорости позволяет этим двигателям развивать большую мощность.
- Серводвигатели переменного тока : поворотный привод, позволяющий точно контролировать угловое положение. Двигатель прикреплен зубчатыми колесами к колесу управления, по мере того как двигатель вращается, сопротивление датчиков положения изменяется, поэтому цепь управления может точно регулировать движение.
- Шаговые двигатели переменного тока : используется как выходной сигнал в электронных схемах, он делит полный оборот на ряд равных шагов.
Хорошо, я понимаю
Серводвигатели переменного тока| Средства автоматизации | Промышленные устройства
Модельный ряд
MINAS A6 Семейство
Более компактные, более быстрые и простые в использовании Серводвигатели
, отвечающие требованиям современности.Серия A6SE : Только инкрементальный, тип входа импульсной линии Серия A6SG : Вход импульсной линии, тип Modbus (RS485 / RS232) Серия A6SF : Аналоговый, вход импульсной линии, тип Modbus (RS485 / RS232) Серия A6NE : Сверхскоростной сетевой тип (RTEX) без функции безопасности Серия A6NF : Сверхскоростной сетевой тип (RTEX) с функцией безопасности Серия A6BF : Тип EtherCAT с функцией безопасности (продукты специального заказа) CAD (Motors) CAD (Драйверы) Каталоги Руководства Программное обеспечение
MINAS A5 Семейство
Серводвигатель, раскрывающий потенциал машины.
Серия A5II : Система управления с двумя степенями свободы Универсальный тип Серия A5IIE : Система регулирования с двумя степенями свободы Тип регулирования положения Серия A5 : Универсальный тип Серия A5E : Тип управления положением Серия A5IIN : Сверхскоростная сеть (RTEX) CAD (Motors) CAD (Драйверы) Каталоги Руководства Программное обеспечение
Сеть
Техническая информация
- Привод управления двигателем с линейным и прямым приводом (DD)
Дополнительная информация
Основная информация
- Что такое серводвигатели переменного тока
- Сервомоторы
переменного тока и приводы, обеспечивающие быстрое / высокоточное реагирование, используются на предприятиях по производству полупроводников и в роботах.Наша обширная линейка, поддерживающая широкий спектр средств управления и методов связи, позволяет вам выбрать двигатель, наиболее соответствующий вашим потребностям.
- Типичные приложения
Оборудование для производства полупроводников, машины для монтажа электронных компонентов, роботы, машины для обработки металлических деталей и обработки, деревообрабатывающие машины, текстильные машины, машины для обработки пищевых продуктов / упаковки, машины для печати / изготовления пластин, медицинское оборудование, конвейерные машины, машины для производства бумаги / пластика и т. Д.
0708 Mars, 24-72 В постоянного тока, щеточный двигатель постоянного тока с постоянными магнитами Цена: 549 долларов США | 0709 Mars, 24-72 В постоянного тока, щеточный двигатель постоянного тока с постоянными магнитами Цена: 619 долларов.00 | 0909 Mars, 24-72 В постоянного тока, щеточный двигатель постоянного тока с постоянными магнитами Цена: 479,00 $ Цена продажи !: 429,00 $ Вы экономите 50,00 $! | ||
Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | ||
24V 550W Матовый двигатель постоянного тока с постоянным магнитом Цена: 159 долларов.99 | Двигатель с обмоткой серии 60V 4KW KSW-170ZDC401 Цена: 459 долларов США | Двигатель AMD 24 В (2,8 л.с.), 36 В (5,8 л.с.), 48 В (7,9 л.с.) для Taylor-Dunn Цена: 798,00 долларов | ||
Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | ||
Мотор серии AMD.36 В (3,0 л.с.) / 48 В (4,0 л.с.) для Cushman Цена: $ 810.00 | Мотор серии AMD. 36 В (3,5 л.с.) / 48 В (10,0 л.с.) для Taylor-Dunn Цена: $ 710.00 | Curtis 1236SE-5621 Комплект бесщеточного двигателя переменного тока HPEVS AC-20 — 48 В Цена: $ 2722,50 | ||
Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | ||
Curtis 1236SE-5621 Комплект бесщеточного двигателя переменного тока HPEVS AC-34 — 48 В Цена: 3019 долларов.50 | Curtis 1236SE-5621 Комплект бесщеточного двигателя переменного тока HPEVS AC-9 — 48 В Цена: $ 2,475.00 | Curtis 1238-6501 Комплект бесщеточного двигателя переменного тока HPEVS AC-12 — 72 В Цена: 2920,50 долларов | ||
Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | ||
Curtis 1238-6501 Комплект бесщеточного двигателя переменного тока HPEVS AC-20 — 72 В Цена: 2848 долларов.26 | Curtis 1238-6501 Комплект бесщеточного двигателя переменного тока HPEVS AC-34 — 72 В Цена: 3440,25 долларов | Curtis 1238-7601 Комплект бесщеточного двигателя переменного тока HPEVS AC-15 — 96 В Цена: 3088,80 долл. США | ||
Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | ||
Curtis 1238-7601 Комплект бесщеточного двигателя переменного тока HPEVS AC-20 — 96 В Цена: 3564 доллара.00 | Curtis 1238-7601 Комплект бесщеточного двигателя переменного тока HPEVS AC-23 — 96 В Цена: $ 3,564.00 | Curtis 1238-7601 Комплект бесщеточного двигателя переменного тока HPEVS AC-34 — 96 В Цена: $ 3 861,00 | ||
Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | ||
Curtis 1238-7601 Комплект бесщеточного двигателя переменного тока HPEVS AC-50 — 96 В Цена: 4083 доллара.75 | Curtis 1238-7601 Комплект бесщеточного двигателя переменного тока HPEVS AC-75 — 96 В Цена: 4544,10 долларов | Curtis 1238e-7621 Комплект двойного бесщеточного двигателя HPEVS AC-34 — 96 В Цена: 7 821,00 $ | ||
Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | Fast Mover — закажите сегодня! | ||
Комплект бесщеточного двигателя переменного тока Curtis 1239-8501 HPEVS AC-76 — 144 В Цена: 5 296 долларов.50 | Curtis 1239e-8521 Комплект бесщеточного двигателя переменного тока HPEVS AC-35 — 144 В Цена: 4603,50 долларов |
Двигатель переменного тока с лучшим соотношением цены и качества с сервоуправлением — Отличные предложения на двигатель переменного тока с сервоуправлением от глобального двигателя переменного тока с продавцами сервоуправления
Отличные новости !!! Вы находитесь в нужном месте для двигателя переменного тока с сервоуправлением.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот первоклассный двигатель переменного тока с сервоуправлением вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели мотор переменного тока с сервоуправлением на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в двигателе переменного тока с сервоуправлением и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг, и предыдущие клиенты часто оставляют комментарии, описывающие свой опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести ac motor with servo control по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.
.