Электродвигатели однофазные – Однофазные электродвигатели 220в: особенности подключения

Содержание

Однофазные электродвигатели 220в: особенности подключения

В наше время трудно найти человека, который бы не знал что такое однофазный электродвигатель. Однофазные электродвигатели 220 в выпускаются серийно уже довольно много лет. Они востребованы в сельском хозяйстве, быту человека, на производстве, в частных и государственных мастерских. Однофазные двигатели 220 В пользуются высокой популярностью.

Общие понятия

Асинхронные однофазные электродвигатели переменного тока АИР 1ЕАсинхронный двигатель 220 вольт, однофазный, требует питания переменным электрическим током, сеть для подключения такого агрегата должна быть однофазной. Однофазные двигатели 220 в работают при напряжении в сети 220 вольт, частоте 50 герц. Эти электрические величины поддерживаются во всех бытовых электрических сетях, в домах, квартирах, дачах, коттеджах, по всей территории России, а в США напряжение в бытовой электрической сети составляет 110 вольт. На производстве же в нашей стране сетевое напряжение имеется однофазное, трёхфазное, и другие виды электрических сетей.

Применение однофазных моторов

Как быстро и просто подключить трехфазный двигатель в однофазную сетьТакой тип моторов применяют для работы устройств с малой мощностью.

  1. Бытовая техника.
  2. Вентиляторы небольшого размера.
  3. Электронасосы.
  4. Станки, предназначенные для обработки сырья.

В данном выпуске я рассказываю как подключить двигатель

Заводы производят электродвигатели однофазные 220 В малой мощности различных моделей, с разным числом оборотов и мощностью. Стоит отметить, что однофазные моторы уступают трёхфазным в нескольких параметрах.

  1. Эти моторы имеют меньшие значения КПД.
  2. Пускового момента.
  3. Мощности.
  4. Способность выдерживать перегрузку у трёхфазных электромоторов выше, чем у однофазных.

Эти параметры меньше при условии, когда трёхфазные моторы имеют такой же размер.

Устройство электродвигателя

Однофазные двигатели 220 В имеют две фазы, но основная работа выполняется одной, и такие моторы стали называть однофазными. В состав мотора входят следующие детали.

  1. Статор, или неподвижная часть мотора.
  2. Ротор, или подвижная (вращающаяся) часть мотора.

Однофазный электромотор можно охарактеризовать как асинхронный электрический мотор, в котором имеется рабочая обмотка на его неподвижной части, она подключается к сети переменного однофазного тока.

Пусковая катушка

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направлениеДля того чтобы однофазный мотор мог самостоятельно запускаться и начинать вращение, на них устанавливается ещё одна катушка. Она разработана для запуска двигателя. Пусковая катушка устанавливается по отношению к рабочей со смещением на 90 градусов. Для того чтобы получить сдвиг токов, следует установить в цепь звено, которое будет сдвигать фазы. В качестве фазосдвигающего звена могут выступать несколько средств.

  1. Активный резистор.
  2. Конденсатор.
  3. Катушка индуктивности.

Ротор и статор мотора металлические. Для того чтобы изготовить ротор или статор, нужна специальная электротехническая сталь марки 2212.

Двух и трёхфазные моторы

Асинхронный двигательСуществует возможность 2 или 3-фазный мотор подключить к однофазному источнику питания. Иногда по ошибке такие моторы называют однофазными. Это заблуждение, правильно будет называть это «двух (или трёх) фазный электромотор, подключённый в однофазную сеть питания переменного тока». Просто подключить двух или трёхфазный мотор в однофазную сеть не получится. Нужна схема согласования.

Таких схем есть несколько, согласование можно реализовать при помощи конденсаторов. После подключения к мотору конденсаторов согласно схеме, мотор будет работать, причём все фазы мотора будут работать, они всё время будут находиться под напряжением и выполнять работу по вращению ротора.

Принцип действия

Переменный электроток создаёт магнитное поле в статоре, которое имеет два поля, они одинаковы по амплитуде, частоте, но разнонаправленны. Эти поля воздействуют на неподвижный ротор, и, вследствие того, что поля разнонаправленны, ротор начинает вращение. При отсутствии в моторе пускового механизма, то ротор будет стоять на месте. Ротор, начав вращение в одну сторону, будет вращаться далее в этом же направлении.

Запуск мотора

Как самостоятельно подключить двигательПосредством магнитного поля производится запуск мотора, магнитное поле, воздействуя на ротор, принуждает его вращаться. Создают магнитное поле главная и дополнительная катушки, пусковая имеет меньший размер, подключается она к дополнительной через конденсатор, катушку индуктивности или активный резистор.

Если мотор низкой мощности, пусковая фаза замкнута. Чтобы запустить такой двигатель, подключать электричество к пусковой катушке можно лишь временно, не более чем на три секунды. Для этого существует пусковая кнопка. Кнопка вставлена в пусковое устройство.

Когда происходит нажатие пусковой кнопки, происходит подача электроэнергии на рабочую и на пусковую катушку одновременно, двигатель в эти первые секунды запуска работает как двухфазный, но через три секунды ротор уже набрал обороты, мотор запустился, и кнопка отпускается. Прекращается подача электроэнергии на пусковую катушку, но подача электричества на рабочую обмотку не прекращается, так устроено пусковое устройство, затем устройство работает уже как однофазное.

Важно помнить, что не следует долго держать пусковую кнопку, так как пусковая катушка может перегреться и выйти со строя, она рассчитана на работу несколько секунд. Для обеспечения безопасности в корпусе однофазного силового агрегата может быть встроено тепловое реле, центробежный выключатель. Центробежный выключатель устроен таким образом, что когда ротор набрал обороты, центробежный выключатель выключается сам, без вмешательства человека. Пусковой ток однофазного двигателя выше рабочего, после запуска ток снижается до уровня рабочего. Схему подключения однофазного двигателя смотрите здесь.

Тепловое реле

Тепловое реле действует следующим образом: при нагревании обмоток до установленного на реле предела, реле производит прекращение подачи электроэнергии на обе фазы, таким образом, исключается выход из строя при перегрузке или другой причине, это не даст возникнуть пожару.

Достоинства

К положительным качествам такого мотора можно отнести простоту его устройства, ротор в этой конструкции короткозамкнутый, обмотка статора не представляет собой большой сложности.

Недостатки

Кроме достоинств, в этом моторе имеются и некоторые недостатки.

  1. Невысокий пусковой момент мотора.
  2. Низкий КПД электродвигателя.
  3. Электродвигатель не способен генерировать магнитное поле, которое выполняет вращение.

По этой причине такой двигатель сам не может начать вращение. Дело в том что для того, чтобы мотор начал вращение, он должен иметь не менее двух обмоток, а следовательно, и двух фаз, но мотор имеет одну фазу изначально, таково его устройство. Кроме наличия двух фаз, требуется чтобы одна обмотка была смещена по отношению к другой на определённый угол.

Подключение двигателя

Подключать двигатель нужно в однофазную сеть переменного напряжения 220 вольт, частотой 50 герц. Эти номиналы электроэнергии имеются во всех жилых помещениях нашей страны, и вследствие этого однофазные моторы имеют огромную популярность. Они установлены во всей бытовой технике, такой как.

  1. Холодильник.
  2. Пылесос.
  3. Соковыжималка.
  4. Триммер.
  5. Кусторез электрический.
  6. Швейная машинка.
  7. Электродрель.
  8. Миксер кухонный.
  9. Вентилятор.
  10. Насос водяной.

Разновидности подключения

  1. Подключение с пусковой катушкой.
  2. Подключение с рабочим конденсатором.

 Подключить двигатель 220вЭлектродвигатели однофазные 220 В малой мощности с пусковой катушкой имеют включённый в цепь конденсатор во время старта. После разгона ротора катушка отключается. Если мотор сделан с рабочим конденсатором, цепь пуска не размыкается, идёт постоянная работа пусковой обмотки через конденсатор.

Существует возможность использовать один электромотор для разных целей. Один и тот же мотор можно снять с одной техники и установить на другую. Включать однофазный двигатель можно тремя схемами.

  1. Происходит временное включение электричества на пусковую обмотку через конденсатор.
  2. Происходит кратковременная подача напряжения на пусковое устройство через резистор, без конденсатора.
  3. Электричество подаётся через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

При использовании в цепи пуска резистора, обмотка будет иметь активное сопротивление выше. Произойдёт сдвиг фаз, достаточный для начала вращения. Можно использовать пусковую обмотку, в которой большее сопротивление и меньшая индуктивность. Чтобы обмотка соответствовала своим параметрам, она должна иметь меньше витков, тоньше провод.

Конденсаторный пуск представляет собой подключение конденсатора к пусковой обмотке и временную подачу электроэнергии. Чтобы достичь максимального значения момента пуска, нужно круговое магнитное поле, оно должно выполнить вращение. Для этого нужно расположение обмоток под углом 90 градусов. Такого сдвига резистором добиться невозможно. Если ёмкость конденсатора рассчитать правильно, то удастся сдвинуть обмотки под угол 90 градусов.

Вычисление принадлежности проводов

Чтобы вычислить провода, подключающие пусковую обмотку и рабочую, нужно иметь прибор, измеряющий омы или тестер. Нужно замерять сопротивления обмоток. Сопротивление рабочей обмотки должно быть меньше, чем пусковой. Например, если замеры показали у одной обмотки 12 Ом, а у другой 30 Ом, то первая из них рабочая, а вторая пусковая. Рабочая обмотка будет иметь большее сечение чем пусковая.

Подборка ёмкости конденсатора

Чтобы подобрать ёмкость конденсатора, нужно знать, какой ток потребляет электромотор. Если он потребляет ток 1,4 ампера, то нужен конденсатор, ёмкость которого составляет 6 микрофарад.

Проверка работоспособности

Начать проверку следует с визуального осмотра.

  1. Если у агрегата была отломана опора, то вследствие этого он тоже мог работать плохо.
  2. В случае если потемнел корпус посередине, это говорит о том что он чрезмерно перегревался.
  3. Возможно, что в разрез корпуса попали разные посторонние вещи, это будет замедлять его и способствовать перегреву.
  4. Если подшипники загрязнены, будет происходить перегревание.
  5. Износ подшипников будет причиной перегревания.
  6. Если к пусковой обмотке 220v подключён конденсатор завышенной ёмкости, то он будет перегреваться. При подозрении на конденсатор нужно отключить его от пусковой обмотки, включить двигатель в сеть, вручную прокрутить вал, произойдёт запуск и начнётся вращение. Нужно дать мотору поработать около пятнадцати минут, затем проверить, не нагрелся ли он. Если мотор не нагрелся, то причина была в повышенной ёмкости конденсатора. Нужно установить конденсатор меньшей ёмкости.

Электродвигатели однофазные 220 в малой мощности выпускаются совершенно разных моделей и для разных целей, и, прежде чем купить изделие, нужно чётко понимать, какова нужна мощность, тип крепления, количество оборотов в минуту, и прочие характеристики.

obrabotkametalla.info

Однофазные электродвигатели. Виды, принцип действия, схемы включения однофазных электродвигателей.


Однофазные электродвигатели

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.



Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая — вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.

На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.



Следует помнить, что использование однофазного электродвигателя — это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.


Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.

Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.

В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.



Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.

Выделяют четыре основных типа электродвигателей:

• индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),

• индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),

• индукционный двигатель с реостатным пуском (RSIR) и

• двигатель с постоянным разделением емкости (PSC).

На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.




Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.

Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.



Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.

Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.




Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.



Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.

Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.

Электродвигатели CSCR — самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.




Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

Данный тип двигателей ещё известен как «электродвигатели с расщеплённой фазой». Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.

Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление — выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.



Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.

Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.




Однофазный электродвигатель с постоянным разделение емкости (PSC)

Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.



Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов — обычно меньше 200% от номинального тока нагрузки, — что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.

Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).

Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.




Двухпроводные однофазные электродвигатели

Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.




Ограничения однофазных электродвигателей

В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.

Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.






О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.



Изменение напряжения питания

Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:



Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения — например 200 В.



Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ — например, пусковой момент будет ниже.

Заключение

Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).

Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

www.eti.su

Однофазный электродвигатель 220в. Схема, подключение, преимущества

Однофазный двигатель представляет собой электрическое устройство, которое питается от сети. Его особенностями являются наличие 1-фазной обмотки и способность функционировать без преобразователя частот. Наиболее распространённый и популярный пример – это мотор на 220 В. Его используют преимущественно для оснащения оборудования бытового назначения небольшой мощности.

Особенности конструкции и схема однофазного электродвигателя 220в.

Основные элементы двигателя однофазного типа – это ротор и статор. Первая комплектующая во время эксплуатации подвижна, вторая находится в состоянии покоя. Статор оснащён двумя типами обмотки: основная и вспомогательная. Иначе их называют рабочая и пусковая. Оба вида расположены под углом в 90 градусов в сердечнике и надёжно закреплены в пазах.

Устройство и схема однофазного электродвигателя 220в

Основная обмотка составляет большую часть, а вспомогательной отводится всего 30–35%. Что касается конструкции ротора, он представляет собой стержни из цветных металлов. На торцах элементы замкнуты специальными кольцами. Свободное пространство между стержнями заполнено сплавом алюминия. Из-за своего полого вида специалисты и конструкторы назвали ротор 1-фазного мотора «беличьей клеткой».

Преимущества механизма двигателя однофазного типа.

Среди достоинств 1-фазных двигателей отмечают следующие:

  • простота конструкции;
  • долговечность – при своевременном техническом обслуживании двигатель способен служить годами;
  • надёжность;
  • экономичность – потребление небольшого количества энергии;
  • доступная стоимость;
  • ремонтопригодность – в случае выхода из строя можно легко заменить повреждённые или сгоревшие детали;
  • минимальный уход;
  • возможность работы от сети со стандартным напряжением 220 В без преобразователей энергии.

Большинство современных бытовых приборов оснащены именно однофазными моторами. Причина объясняется их простотой и невысокой себестоимостью. Такими моторами оснащают крупную и мелкую бытовую технику. Кроме того, они нашли применение в создании оборудования для промышленных и производственных предприятий.

Однофазный электродвигатель 220в

Но есть ли недостатки у однофазного двигателя? Их немного. Практически все они обуславливаются простотой конструкции. Итак:

  • малый коэффициент мощности. По этой причине они используются для создания большинства бытовых приборов;
  • высокий показатель пускового тока;
  • возможность ограничения скорости движка при колебаниях в сети.

Основным недостатком считается отсутствие пускового момента. Тем не менее, для бытовых приборов и несложных устройств этот минус не является существенным и не влияет на работу.

Принцип работы однофазного электродвигателя 220 В.

В статоре однофазного электродвигателя 220 В вырабатывается магнитное поле. Именно оно является импульсом, который приводит в работу ротор. Чтобы представить, как функционирует электродвигатель, стоит смоделировать следующую ситуацию.

Например, в пусковой обмотке напряжения нет. Образование магнитного поля можно запустить, подключив основную обмотку к сети. Его работа основывается на пульсировании, при этом пространство остаётся в состоянии покоя. Магнитное поле разделяется на две части, каждая из которых вращается в стороны, противоположные друг другу, при одинаковой частоте. При задании ротору начального вращения двигатель со временем будет его наращивать. При этом частота элемента и самого магнитного поля различается. Разницу показателей определяют как скольжение.

Принцип работы однофазного электродвигателя 220 В

Из магнитных потоков возникает движущая сила. Это закон электромагнитной индукции. Движущая сила формирует два типа тока. Один из них обратный, второй – прямой. Частота вращения ротора прямо пропорциональна показателю скольжения. По закону Ампера, магнитное поле при взаимодействии с обратным током создаёт вращение.

Особенности подключения однофазного электродвигателя 220 В.

Для приведения асинхронного однофазного электродвигателя используется пусковое сопротивление. Такой метод задействован в устройствах с расщеплённой фазой. В электрической цепи мотора присутствуют ротор и статор. Обмотка второго смещена относительно основной. При этом рабочий элемент обладает меньшим сопротивлением, чем вспомогательный. Омический сдвиг фаз обеспечивается благодаря намотке бифилярным способом. Подключение без резистора невозможно.

Схема подключения однофазного электродвигателя 220 В

Особенностью однофазного двигателя является соединение вспомогательной обмотки с конденсатором. Работа начинается только после возникновения пускового момента. Конденсатор необходим для получения максимального значения. Благодаря ему и возникает пусковой момент, который приводит в работу все механизмы.

Советы при покупке однофазного электродвигателя 220 В.

При покупке однофазного электрического двигателя стоит учесть следующие характеристики оборудования:

  • частота;
  • мощность;
  • способ установки;
  • размер;
  • потребляемая энергия.

Производители обычно предоставляют гарантию на бесперебойную работу моторов.

Подключение однофазного двигателя. Видео урок.

o-remonte.com

принцип работы, виды и сравнение двигателей

Однофазные электродвигатели Наша жизнь стала уже просто немыслима без различных электромоторов. Пылесосы, стиральные машины, холодильники вентиляторы, кондиционеры, даже часы — все эти приборы снабжены электродвигателями. Если прибор подключается к домашней электрической сети, то, вероятнее всего, в нем стоит однофазный асинхронный двигатель 220В.

Принцип действия

Всем нам на школьных уроках физики демонстрировали опыты с проволочной рамкой, помещенной в поле постоянного магнита. Если через рамку пропустить ток, то на проводники в правой и левой части рамки будет действовать силы Ампера, создающие вращающий момент, и рамка с током будет поворачиваться до тех пор, пока она не займет положение, в котором действующие силы уравновешивают друг друга.

Если заставить поле вращаться, рамка с током будет вращаться вместе с ним. На этом принципе основана работа синхронного электродвигателя. Рамка с магнитами — аналог электрического двигателя. Вращающаяся рамка с током — ротор. Неподвижные магниты — статор.

Трехфазный синхронный двигатель

Теперь надо заставить неподвижный статор создать вращающееся магнитное поле.

Трехфазный синхроггый двигательДля начала заменим постоянные магниты катушками с током обмотками статора. Катушка с током создает такое же магнитное поле, как и магнит. Разместим на статоре не одну катушку-магнит, а три, повернув их на 120 градусов относительно друг друга. Подадим на эти обмотки переменный ток со сдвигом фаз на 120 градусов. Именно так сдвинуты фазы в трехфазной сети.

Результирующее магнитное поле есть результат векторного сложения трех полей. Суммарный вектор магнитной индукции будет вращаться с частотой переменного тока. За один период магнитное поле, создаваемое статором трехфазного двигателя, совершает полный оборот. Ротор, который аналогичен катушке с током, поворачивается вместе с магнитным полем статора с той же скоростью. Таким образом ротор синхронного двигателя вращается частотой питающего переменного тока.

Синхронные двигатели обладают самыми лучшими характеристиками, развивают максимальную мощность и обеспечивают высокий КПД. Однако там тяжелый ротор с обмотками, который сложно балансировать. К обмоткам ротора надо подводить ток, а это требует применения крайне ненадежного щеточного узла. В общем, синхронный двигатель — это хорошо, но сложно, дорого и не очень надежно.

Трехфазный асинхронный двигатель

Замкнем концы рамки накоротко. Получим один короткозамкнутый виток. Наш трехфазный статор создает вращающееся магнитное поле. Пусть это поле и создает ток в короткозамкнутом роторе.

Техфазный асинхронный двигательКогда поле статора вращается относительно неподвижной рамки, оно создает в ее контуре переменный магнитный поток. По закону электромагнитной индукции переменное поле наводит в рамке электрический ток. Ток создает вращающий момент, и рамка поворачивается вслед за магнитным полем, как и в синхронном двигателе.

Но есть одно принципиальное отличие. В синхронном двигателе ротор вращается одновременно, то есть синхронно с полем статора. Ротор относительно поля статора неподвижен.

В асинхронном двигателе ротор пытается догнать вращающееся поле, но всегда немного отстает, как бы скользит относительно него. Если вдруг скорость вращения ротора точно сравняется со скоростью поля, то в роторе перестанет наводиться ток индукции.

Разность частот вращения магнитного поля и ротора асинхронного двигателя называется скольжением. Именно оно обеспечивает наличие тока в роторе.

Асинхронные электродвигатели уступают синхронным по всем характеристикам, но значительно проще, легче, надежнее и дешевле. Практически все электрические двигатели, применяемые сегодня в промышленности — это асинхронные трехфазные двигатели.

Механическая характеристика

Механическая характеристика

Механическая характеристика двигателя — это зависимость момента на валу от скорости вращения.

Как уже было сказано, скорость вращения ротора в асинхронном двигателе всегда отличается от скорости вращения поля статора на величину скольжения.

Скольжение S = (n1- n2)/n1, где n1 — это скорость вращения поля, а n2 — скорость вращения ротора.

Характеристика показывает, что двигатель может работать в пяти режимах:

  1. Холостой ход.
  2. Пуск.
  3. Двигательный режим.
  4. Режим рекуперации.
  5. Генераторный режим.

В режиме холостого хода скольжение S равно 0. Ротор вращается синхронно с магнитным полем, как в синхронном двигателе, а момент вращения равен 0. Режим холостого хода — чисто гипотетический и никогда не реализуется на практике.

В момент пуска ротор еще неподвижен и S=1. Момент вращения при S=1 называется пусковым моментом.

После пуска ротор входит в двигательный режим и начинает раскручиваться, постепенно догоняя магнитное поле. В двигательном режиме 1 > S > 0.

Если ротор вдруг каким-то образом обгонит поле, то наступит режим рекуперации. При этом двигатель отдает энергию в сеть. В режиме рекуперации S < 0.

S > 1 соответствует генераторному режиму. В генераторном режиме ротор движется навстречу потоку и генерирует электрический ток.

S = Sn соответствует номинальному режиму. Номинальное значение скольжения составляет обычно 2−8%.

Однофазный асинхронный двигатель

Однофазный асинхронный двигательМожно еще упросить трехфазный асинхронный двигатель .

Оставим на статоре всего одну обмотку и подадим туда однофазный электрический ток. У нас получился однофазный асинхронный двигатель. В этом двигателе поле статора неподвижно — в этом принципиальное отличие однофазного двигателя от многофазного. Тем не менее такой двигатель работает.

Однофазный двигатель не может стартовать самостоятельно. Ничего особенного в этом нет. Привычный нам двигатель внутреннего сгорания тоже надо сначала раскрутить. В автомобиле мы пользуемся дополнительным электродвигателем — стартером, а в бензопиле делаем это вручную, дергая пусковой шнур.

Если однофазный двигатель подтолкнуть, причем в любую сторону, он разгонится и будет поддерживать вращение в заданном направлении.

Ели ротору придать вращение в определенном направлении, он будет двигаться попутно с одним полем и навстречу другому.

Двигатель можно представить как два трехфазных мотора, насаженных на один вал, но включенных во встречном направлении. При запуске вал неподвижен и моторы уравновешивают друг друга.

Если вал раскрутить внешней силой в каком-то направлении, то один мотор, запущенный в попутном направлении, окажется в двигательном режиме, а другой — в генераторном. Механическая характеристика показывает, что крутящий момент в двигательном режиме больше, чем в генераторном, поэтому попутный мотор перетягивает.

Пуск

Запуск однофазного электромотораДля запуска однофазного электромотора на его статоре наматывают дополнительную пусковую обмотку перпендикулярно основной и подают в нее ток со сдвигом по фазе. Для сдвига фазы последовательно с обмоткой включают фазосдвигающий элемент. В качестве фазосдвигающего элемента можно использовать резистор, дроссель или конденсатор. В любом случае полное комплексное сопротивление в цепях основной и пусковой обмоток будет разным, и токи получат фазовый сдвиг.

Чаще всего для сдвига фаз используют конденсатор.

Скорость вращения

В сетях наших энергоснабжающих компаний используется переменное напряжение 220/380 с частотой 50 Гц. Причем частота переменного тока 50 Гц поддерживается с точностью до 2 процентов. Как нам уже известно, ротор синхронного электромотора вращается с частотой переменного тока. То есть при частоте питающей сети 50 Гц ротор совершает 50 оборотов в секунду или 3000 оборотов в минуту. Обмотку статора можно разделить на секции и сделать мотор многополюсным. В многополюсном моторе скорость понижается с ростом числа полюсов и в общем случае равна 3000/ p оборотов, где p — это число полюсов.

Таким образом скорость вращения сетевого электромотора в нашей стране не может быть выше 3000 оборотов в минуту. В странах, где принята частота сети в 60 Гц, например, в США, электромоторы крутятся с максимальной скоростью в 3600 оборотов в минуту. И здесь мы снова отстаем от Америки.

В синхронном электромоторе обороты не зависят от нагрузки. При росте нагрузки ротор синхронной машины отстает от поля на больший угол, но частота вращения не меняется.

В асинхронном режиме величина скольжения зависит от нагрузки. Таким образом, при увеличении нагрузки скорость асинхронного электромотора падает.

Схемы подключения

Пусковая обмотка, включенная со сдвигом по фазе, поворачивает магнитное поле и превращает на время запуска однофазный электродвигатель в двухфазный.

Дополнительная обмотка не рассчитана на длительную работу и после выхода на рабочий режим должна быть отключена. Отключение производится либо вручную кнопкой, либо центробежным выключателем, либо тепловым реле по нагреву пусковой обмотки.

В однофазном двигателе в рабочем режиме магнитное поле статора неподвижно. В этом его главное отличие от многофазного.

Иногда ошибочно называют однофазными электромоторы, дополнительная обмотка которых подключена через конденсатор постоянно.

В однофазную сеть можно подключить и трехфазный мотор, если одну из фазных обмоток подключить через конденсатор. Так что, если в вашем распоряжении вдруг оказался промышленный трехфазный электромотор, вы можете использовать его в однофазной домашней сети, хотя и с потерей мощности и более низким КПД.

Сравнение двигателей

Синхронный

  1. На роторе есть обмотка, в которую подается ток.
  2. Частота вращения вала совпадает или кратна частоте питающей сети.
  3. Скорость стабильна и не меняется под нагрузкой.

Асинхронный

  1. Ротор не подключен к источнику тока.
  2. Частота вращения вала ниже частоты сети на величину скольжения.
  3. Скорость снижается с ростом нагрузки.

Однофазный асинхронный

  1. Единственная обмотка на статоре.
  2. Вращается в любом направлении.
  3. Не запускается самостоятельно.

tokar.guru

Однофазные асинхронные двигатели 220В — устройство и виды, схемы подключения

Однофазная электросеть предъявляет определенные условия к конструкции электродвигателя. В ней необходимо совместить один из способов получения крутящего момента с техническими возможностями однофазной электрической сети 220 В.

Трехфазная или двухфазная электросеть в принципе обеспечивает перемещение максимума магнитного поля. Но в однофазной сети этого нет. Тем не менее, однофазные движки работают. Далее более детально расскажем о том, почему это происходит.

Что общего в совершенно разных движках

Одной из технических задач, решаемых любым двигателем, является скорость вращения вала при заданном крутящем моменте. На частоте 50 Гц, основываясь на перемещении максимума магнитного поля при одной паре полюсов ротор, соответственно и вал, могут совершить лишь 3000 об/мин или менее. В таких случаях используются синхронные и асинхронные движки. У синхронных скорость определяется количеством пар полюсов, так же как и у асинхронных моделей. При необходимости получить более высокие скорости вращения с этими двигателями применяются специальные редукторы.

В коллекторных моделях в отношении скорости вращения существенно больше свободы. Скорость вращения, как и крутящий момент в них зависят от напряженности магнитных полей статора и ротора. Эти поля можно получить как прямым присоединением движка к однофазной сети 220 В, причем в двух вариантах, так и с использованием выпрямителя. Таким образом, один и то же коллекторный двигатель, присоединенный к сети 220 В, обеспечит четыре скорости вращения соответственно схемам соединения его обмоток и виду напряжения питания на его клеммах.

Хотя однофазные движки 220 В принципиально разные, их назначение одинаковое. Они применяются главным образом:

  • в бытовых электроприборах;
  • промышленных вентиляторах и кондиционерах небольшой мощности;
  • маломощных насосах;
  • определенной группе станков и т.п.

Это оборудование не требует электрической мощности более десяти киловатт. Помимо общего питающего напряжения, как и все движки с выходным валом, они состоят из статора и ротора. Но в коллекторном двигателе присутствует коллектор, а в некоторых моделях синхронных машин – кольца. А это значит, что в них нет изолированной электрической цепи, как в асинхронном двигателе. А контакт щетки с ламелями или кольцами сопровождается искрением.

По этой причине область применения коллекторных и синхронных движков ограничена условиями окружающей среды. Но для моделей с ротором, выполненным из специальных магнитных материалов, нет ограничений. А их работа отличается от асинхронных движков только более высоким значением скорости вращения синхронно с электромагнитным полем. Поэтому далее рассмотрим лишь однофазные асинхронные двигатели 220 В (ОАД).

Разновидности ОАД

Любой ОАД содержит рабочую обмотку. Она также именуется как основная. Примерно две трети поверхности статора, охватывающей ротор, приходится на основную обмотку. Остальная часть статора – это дополнительная (пусковая, вспомогательная) обмотка. Форма ротора может быть различной и обуславливается специализацией движка. Наиболее распространены модели, в которых ротор имеет вид цилиндрической болванки. В ОАД мощностью побольше – это биметаллическая конструкция.

Так называемая «беличья клетка» из материалов на основе меди, которые обеспечивают минимум потерь. В болванку эту конструкцию превращает заполнение свободного пространства алюминиевым сплавом. Но и сама клетка может изготавливаться из материала на основе алюминия. Другой разновидностью ротора ОАД может быть форма в виде стакана.

Короткозамкнутый ротор Короткозамкнутый роторПолый ротор ОАД Полый ротор ОАД

Этот ротор также именуется полым. Он менее инертный, а также менее прочный. По этой причине движки с этим ротором используются для специальных задач и распространены не так широко, как те, у которых ротор-болванка.  Пусковая обмотка создает магнитный поток, направленный под углом к магнитному потоку основной обмотки. Токи в обмотках должны характеризоваться определенным фазовым сдвигом. Его получают последовательным соединением с пусковой обмоткой одного из перечисленных элементов:

  • резистора,
  • дросселя,
  • конденсатора.

Элемент вместе с пусковой обмоткой эмулирует двухфазную электросеть, которая обеспечивает пространственное перемещение максимума магнитного потока между обмотками. Однако это техническое решение необходимо лишь для того, чтобы ротор начал вращаться в нужном направлении. По мере увеличения скорости вращения задействованная пусковая обмотка все больше уменьшает крутящий момент на вале движка. По этой причине она тем или иным способом отсоединяется вскоре после разгона ротора до заданной скорости.

Резистор и дроссель могут быть встроены в двигатель, поскольку необходимые сопротивление или индуктивность легко достигаются отличием характеристик провода обмоток или конструкцией пусковой обмотки. Например, существуют такие разновидности ОАД, в которых в явно выраженных полюсах содержится короткозамкнутый виток. Это так называемые экранированные полюсы. Другой способ – несимметричные полюсы. Они определили наименование этих разновидностей ОАД. Эффективность движков невысока, но они получаются компактными. Широко применяются в бытовых вентиляторах.

Сдвиги фаз Сдвиги фаз

Из трех элементов, используемых для получения фазового сдвига, самым лучшим является конденсатор. Резистор или дроссель могут обеспечить угол меньше 90 градусов. А конденсатор создает фазовый сдвиг именно в 90 градусов. При этом могут быть три схемы, которые отличаются пусковыми и рабочими характеристиками. При пуске движка необходим конденсатор с емкостью побольше. А в рабочем режиме оптимальный вариант – конденсатор небольшой емкости.

Емкость рабочего конденсатора в микрофарадах определяется примерно как 4/5 мощности движка в киловаттах. Емкость пускового конденсатора в микрофарадах определяется примерно как 2 мощности движка в киловаттах. Чтобы сэкономить на конденсаторах, которые должны быть рассчитаны как минимум на напряжение 330 В, путем переключения их получается как пусковая, так и рабочая емкость. Конденсаторные схемы показаны далее на изображениях:   

Схема Схема
  • Чтобы изменить направление вращения ротора в любом из вариантов с пусковым элементом, надо поменять местами концы пусковой обмотки.

Коллекторные движки (КД)

Эти двигатели в принципе только однофазные. Хотя их можно включать и в трехфазную сеть, но только через выпрямительные диоды. КД можно разделить на две группы по способу получения магнитного поля статора:

  • от постоянного магнита; 
  • от электромагнита.
Электромагнитный вариант КД Электромагнитный вариант КД

Прямое присоединение к сети 220 В допустимо лишь для электромагнитных моделей КД. В них ротор является якорем и может соединяться с сетью либо напрямую (параллельное соединение), либо через обмотку статора (последовательное соединение). Изменение полярности происходит в обеих обмотках. Это определяет сохранение направления вращения ротора. А если магнит постоянный, значит, в якоре направление магнитного потока меняется, а в статоре нет. Поэтому ротор такого движка будет колебаться, но не вращаться.

  • Если якорь и статор напрямую присоединены к сети 220 В, КД оказывается под угрозой разноса. Этот эффект появляется при пропадании контакта с сетью в обмотке статора.
Последовательное соединение обмоток в КД Последовательное соединение обмоток в КД

Хотя параллельное соединение более эффективно, поскольку при этом величина тока больше, для надежности предпочтительнее последовательное соединение. Направление вращения при этом зависит от того, какими концами соединены между собой, а соответственно и с сетью, обмотки движка. Если при этом движок недостаточно эффективен, его надо присоединить к сети через выпрямительный мост. Если на его выходе будет применен конденсатор, это еще больше увеличит эффективность КД.

КД используются там, где необходима наиболее простая конструкция электрооборудования. Эти движки создают много шума, коллектор и щетки изнашиваются, загрязняют изделие графитовой пылью, уменьшая надежность и долговечность электрооборудования. Электробезопасность при этом также ухудшается. По мере развития высоковольтных транзисторов появляется все больше электрооборудования с асинхронными управляемыми приводами. Но определенная ниша электрооборудования для КД, безусловно, останется.

Похожие статьи:

domelectrik.ru

Схема Подключения Однофазного Электродвигателя — tokzamer.ru

Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его. Другие способы При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.


Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме.

Обе фазы таких устройств являются рабочими и включены все время. Одна из них движется через экранированную часть полюса.
Однофазные двигатели. Включаем оптимально. (Обзор)

Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Присутствует постоянное разделение емкости.

Во время удерживания частота вращения ротора достигала значения номинальной величины. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Примерами их использования ДАК могут служить стиральные машины, электросоковыжималки и, конечно же, любой электроинструмент. Пример размещения конденсатора на внешней стороне корпуса электродвигателя В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения.

Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье. Существуют модели, в которых пусковая обмотка работает не только при запуске, а и все остальное время.


Электродвигатель может быть взят от одного прибора и подключен к другому.

Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.

Подключение однофазного асинхронного двигателя и принцип его работы

Использовать необходимо только конденсаторы, которые идут в комплекте поставки. Подбирать конденсаторы нужно с рабочим напряжением не меньше В. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.

В данной статье будет рассказано о том, как подключить однофазный электродвигатель в сеть В, в зависимости от его типа. Такие электромоторы также называют индукционными.

Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.


С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Для этого выполняют подключение, как на схеме.

Рассмотрим, как подключить однофазный электродвигатель, чтобы он выполнял роль генератора трехфазного напряжения. В формулах выше Iном — это номинальный ток фазы электродвигателя.

Такие устройства имеют коэффициент мощности больший, чем у выше описанных короткозамкнутых приборов, развивают по сравнению с ними больший вращающий момент.
Как подключить двигатель от старой стиральной машины через конденсатор или без него

Расчет емкости конденсатора мотора

Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме.


Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше.

Именно в этом причина популярности двигателя среди населения. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. В результате их взаимодействия между собой ротор приводится в движение.

Конденсатор подбирается по потребляемому двигателем току. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на вольт. Почему так происходит? В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.

Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети В. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций: на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора; пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Подключение


Существует несколько режимов работы конденсаторного двигателя: С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации — вторая, с рабочим.

Подключение остальных типов электродвигателей либо требует использования специальных устройств запуска, либо, как, например, шаговые, управляются электронными схемами. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

Схема с рабочим конденсатором Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Запустить Остановить Пульсирующее магнитное поле Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении. В то время как асинхронный двигатель работает в пределах максимальных оборотов, которые трудно, порою невозможно, плавно, без рывков, контролировать — уменьшать, увеличивать после разгонки.
Правильное подключение однофазного двигателя в сеть 220 v, от старой стиральной машинки.

Схема подключения однофазного двигателя через конденсатор

Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.

Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.

Статья по теме: Виды электромонтажных работ по смете

Заключение

В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.

После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.

Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

Генератор может исполнять роль двигателя, а он в свою очередь — генератора. На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора. В этом случае движок гудит, ротор остается на месте.
Подключение однофазного электродвигателя

tokzamer.ru

Работа однофазного электродвигателя 220В, описание технических данных однофазного электродвигателя

Электродвигатель однофазный

Электродвигатель однофазныйОднофазный электродвигатель 220В представляет собой изделие, имеющее мощность в разрезе 0,18-3,0 кВт. Такой механизм оснащен одной фазой, которая и питает устройство от электросети. Применение однофазного устройства приходится как для бытового, так и для промышленного назначения. Обычно этот механизм монтируется в различные электроприборы.

Разновидности электродвигателей

Существует огромное разнообразие электродвигателей. Среди них принято различать следующие их виды:

  1. Виды электродвигателейВиды электродвигателейУстройства общепромышленного назначения. Их используют в промышленном производстве и в крупногабаритных помещениях. Они защищены от возможного окисления и попадания взрывоопасных примесей.
  2. Электромеханизмы с постоянным и переменным током. Устройства постоянного тока питаются аккумуляторной батареей или другим источником энергии с постоянным током. Электродвигателям переменного тока для питания необходим только источник с переменным током.
  3. Устройства с синхронным и асинхронным ротором. Синхронный двигатель вращается по частоте магнитного поля, а асинхронный наоборот.
  4. Электродвигатели с однофазной, двухфазной и трехфазной сетью. Однофазное устройство питается от сети с одной фазой, двухфазное от сети с двумя фазами, а трехфазное от сети с тремя фазами.
  5. Устройства с короткозамкнутыми или фазными роторами. При отсутствии больших пусковых моментов используются короткозамкнутые роторы. В тех случаях, когда механизм испытывает повышенные силовые нагрузки показано применение фазных роторов.

Различие двигателей определяется некоторыми параметрами:

  • монтажным исполнением;
  • климатическим исполнением;
  • модификацией;
  • количеством скоростей.

Устройства с одной фазой используются как в бытовых, так и в промышленных целях. Их помещают в различные механизмы. Они работают от сети с переменным током напряжением 220 В. В составе механизма с одной фазой находится встроенный конденсатор небольших размеров.

Для того чтобы увеличить пусковой ток, электродвигатель комплектуется регулирующим устройством, состоящим из двух конденсирующих емкостей: пусковой и рабочей. Кроме этих деталей, регулирующее устройство оснащено реле для пуска и реле для токовой защиты. В результате работы оборудования происходит запуск регулирующим блоком пусковой емкости в режиме пуска двигателя или при наличии перезапуска.

Электродвигатель такого типа используется для приведения в действие таких механизмов, как: столярные станки, электронасосы, компрессорные устройства, промышленные вентиляционные агрегаты, транспортеры, подъемники, кормодробилки, бетономешалки и других устройств.

В устройстве статора монтируется двойная обмотка. Это необходимо для правильной работы конденсирующей емкости. Чтобы емкость-конденсатор не поддавалась влиянию атмосферы, ее помещают в места, защищенные от температурных перепадов. Кроме того, эксплуатируя электродвигатель, нужно следить за величиной конденсирующей емкости.

Технические данные однофазных электродвигателей

Описание однофазных электродвигателей

Описание однофазных электродвигателейЭлектрические приводы с одной фазой выпускаются в следующем исполнении:
  • лапами « IM1001»;
  • фланцем «IM3001»;
  • комбинированием « IM2001».

Устройства могут быть оснащены климатическим исполнением: «У2», «У3», «УХЛ4». Электродвигатели с одной фазой 220В выпускаются с малой мощностью. Дополнительное описание однофазных двигателей представлено в таблице ниже на примере марки электродвигателя «AIRE».

Электродвигатель «AIRE»

Однофазные электрические двигатели марки «АИРЕ» 220В комплектуются для привода в действие различной бытовой техники. Работают они от сети напряжением 220 В. Конструкция устройства уже имеет в своей комплектации конденсаторы. Подключается однофазный механизм согласно монтажной схемы и сразу же может быть приведен в действие. Обозначение «AIRE» определяется как двигатель с одной фазой, имеющий две обмотки и емкость-конденсатор.

Работа двигателя 220 В обусловлена следующими условиями:

  • питанием 220V и частотой 50 Hz;
  • в рабочем режиме «S1»;
  • защитой «IP 54»;
  • охлаждением «IC 041»;
  • классом термостойкости изоляции «В или F» по ГОСТу 8865-93;
  • климатическими факторами согласно ГОСТу 15150-69 или ГОСТу 15543.1-89.
  • плотностью запыленности воздуха в разрезе до 2 мг на 1 м3;
  • механическим исполнением «М1» согласно ГОСТу 17516.1-90;
  • нагрузками вибрации на электродвигатели 1-й степени жесткости согласно ГОСТу 17516.1-90.

Однофазные электроприводы пользуются огромным спросом среди широкого круга потребителей. Ведь они прекрасно работают от сети 220В. Устройство представлено в компактном исполнении, благодаря чему оно удобно эксплуатируется и способно экономить потребляемую электроэнергию. Нагрузка на электросчетчик почти всегда минимальная. Удивляет однофазный электродвигатель и своим простым принципом работы. Для его подключения совсем не нужно обладать квалификационными навыками и иметь особенные инструменты. Ремонт таких устройств достаточно примитивен. Но чтобы свести к минимуму поломки прибора, лучше подбирать устройства проверенных торговых марок.

Оцените статью: Поделитесь с друзьями!

stanok.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *