Электромагнитное реле переменного тока: Реле Переменного Тока: Особенности Работы, Разновидности

Содержание

Реле Переменного Тока: Особенности Работы, Разновидности

Реле переменного тока твердотельное

Схемотехника различных электрических и электро-механических устройств предполагает наличие элемента, который должен в определенный момент времени включать и отключать подачу электрического тока. Если говорить техническим языком, то релейный элемент – это устройство с несколькими состояниями равновесия, каждое из которых может быть сменено на другое при определенных внешних воздействиях или направленном управлении.

Реле переменного тока – прибор для коммутации в автоматическом режиме для электрических цепей по управляющему сигналу. Помимо этого эти устройства могут дополнительно выступать в роли усилителей, элементами управления  к электродвигателям и исполнительным устройствам.

Основные рабочие характеристики

Промышленное реле на 24В

Итак, реле переменного тока является промежуточным элементом, который приводит в действие управляемую электрическую цепь.

Для этого устройства характерны следующие параметры:

  • Мощность срабатывания (Р ср – измеряется в Ваттах) – ток минимальной мощности, который должен подаваться на реле для его нормальной активации. Номинально этот параметр подбирается согласно общим конструктивным и электрическим параметрам реле.
  • Мощность управления (Р упр – измеряется в Ваттах) – максимальная мощность тока, которую способно передать реле в коммутируемой сети. Данное значение определяется параметрами рабочих контактов реле.

Совет! Не сложно догадаться, что при выборе реле для сети ориентируются на названные параметры, которые для определенных конструкций являются постоянными.

  • Время срабатывания (Т ср – измеряется в секундах) – разница во времени от момента поступления сигнала на управляющий контакт до смыкания или размыкания контактов.
  • Допустимая разрывная мощность (Р р – измеряется в Ваттах) – этот параметр можно встретить в сильноточных реле. Он обозначает мощность при определенном токе, которая при разрыве не позволит создать устойчивую электрическую дугу.

Как работает реле

Диаграмма работы реле во времени

Для управляющей цепи и самого реле характерна некоторая инертность, из-за чего входной ток на реле растет и убывает не мгновенно, а изменяется в некоторых пределах в течение времени, что прекрасно видно на показанной выше схеме, из которой так же понятно, что рабочий цикл состоит из трех этапов:

  • Срабатывание;
  • Работа;
  • Возврат.

Давайте в качестве примера, для понимания основных принципов возьмем электромагнитное реле постоянного тока.

Назад в будущее: реле из 1983 года

  • Внутри такого реле имеется катушка индуктивности, благодаря которой и происходит постепенное изменение параметров тока. Сама же работа реле для каждого этапа складывается из определенных временных отрезков.
  • Срабатывание – имеет два таких интервала: время трогания (tтр) и время на движение якоря(tдв). То есть Т ср = tтр+tдв – все просто.
  • Работа – также два участка, которые обозначены на временной линии отрезками АВ и ВС. На первом этапе ток продолжает еще какое-то время расти, пока не будет достигнуто установленное значение, что позволяет обеспечить надежное притяжение между якорем и сердечником, препятствующим вибрации якоря. На втором участке никаких изменений величины тока не происходит.
  • Возврат – аналогично, 2 участка. На первом происходит отпускание реле, а на втором – возврат в исходное состояние. На протяжении всего периода сила тока падает.

Трехфазное реле переменного тока

Прочие характеристики

Помимо перечисленного, у реле разных типов в ходу следующие параметры:

  • Коэффициент возврата (Kb) – отношение отпускающего тока к срабатывающему. Обычно данное значение варьируется от 0,4 до 0,8. Рассчитывается по формуле: Iот/Iср < 1.
  • Коэффициент запаса (К зап) – это отношение тока установившегося (I уст), то есть максимального  к току срабатывания. Это значение  показывает, насколько надежен выбранный прибор.
  • Последний параметр называется коэффициентом управления (К упр) и представлен отношением мощности управления к мощности срабатывания. То есть если реле используется как усилитель, то мы видим коэффициент этого усиления.

Разновидности электрических реле

Реле контроля изоляции переменного тока следит за уровнем сопротивления изоляции

Все реле можно разделить по нескольким признакам, и делят их:

  • По назначению – тут можно встретить варианты предназначенные для защиты, управления или сигнализации.
  • По принципу действия. Тут список будет куда шире: электромагнитные нейтральные; электромеханические; поляризованные электромагнитные; магнитоэлектрические; индукционные, электротермические; электродинамические; бесконтактные магнитные; фотоэлектронные и электронные, а также другие.

Реле времени переменного тока

  • Делят также эти устройства по замеряемым величинам. Замеряться может электрический ток – его мощность, частота, сопротивление, напряжение, сила, коэффициент мощности. Слежение может происходить и за механическими параметрами: объем, сила, давление, скорость, уровень и прочее. Физическими величинами – температура. Временем.
  • Естественно, разные устройства рассчитаны на отличающуюся мощность управления. Тут представлено три типа: малой мощности – приборы до 1 Вт; средней – от 1 до 10 Вт; высокой мощности – все, что выше 10 Вт.
  • Важным параметром, характеризующим разные модели является время срабатывания прибора. Тут представлено 4 категории: самые быстрые безынерционные модели, чье время на срабатывание составляет меньше 0,001 секунды; далее идут быстродействующие – от 0,001 до 0,05 секунды; замедленные – от 0,15 до 1 секунды; реле времени, которым требуется больше 1 секунды.

Наибольшее распространение получили электромеханические реле, в которых при подаче управляющего тока происходит перемещение подвижной части, называемой якорем, в результате чего происходит замыкание управляемой цепи.

Электромагнитные реле

Электромагнитное реле

Данный тип реле делится на два вида – постоянного и переменного тока. Давайте сначала немного побеседуем про первый тип, который бывает нейтральным или поляризованным.

  • Суть первого варианта заключается в том, что устройство одинаково реагирует на протекающий ток на его обмотке в разных направлениях, а это значит, что усилие на якоре никак не зависит от направления тока.
  • Эти устройства разделяются еще на два типа, в зависимости от движения, которое совершает якорь. Существуют механизмы с угловым движением и втяжным.

Данное втягивающее реле можно встретить на стартере автомобиля ВАЗ 2110

  • Принцип работы устройства предельно прост. При отсутствии управляющего тока якорь отстоит от сердечника на максимальном расстоянии и удерживается в таком положении за счет пружины возврата. В это время на реле будут сомкнуты размыкающие контакты и разомкнуты замыкающие.
  • В момент, когда подается ток в обмотку, он проходит через сердечник, якорь, ярмо и воздушный зазор, при этом создается магнитное усилие, которое притягивает якорь к сердечнику, преодолевая сопротивление пружины.
  • Якорь взаимодействует с колодкой, из-за чего замыкающие контакты смыкаются, а размыкающие, соответственно, разъединяются.

Принцип работы реле

Конструкция реле и тип применяемых контактов будут отличаться в зависимости от токов, на работу с которыми оно рассчитано. В случае маломощных устройств (связи, сигнализации, телемеханики) применяются контакты малой мощности, изготавливаемые из нейзильбера с контактными площадками (наклепанными) из вольфрама или серебра или фосфоритной бронзы.

Наклепки на контактах также могут быть изготовлены из золота, платины, палладия и прочих сплавов, их форма плоская или плоская цилиндрическая.

Контактное реле для автомобиля

В случае средних токов от 0,5 до 5 Ампер ставят контакты из тугоплавких металлов и их сплавов, например, платина-иридий, вольфрам, золото-палладий и прочие.

Беспроводное реле на 16 Ампер

Когда предполагается работа с большими токами, контакты делают медными или из механических смесей, изготавливаемых методом спекания порошков (металлокерамика).

Механическая и тяговая характеристики устройств

За время срабатывания реле меняется длина на воздушном зазоре, а значит, меняется и электромагнитное воздействие на якорь. Данная зависимость называется тяговой характеристикой и выражается формулой: Fэ = f(d).

Тяговая характеристика на диаграмме

Если не брать в расчет сопротивление элементов магнитопровода, изготовленных из стали, то тяговая характеристика должна, по идее, иметь форму гиперболы, однако магнитное сопротивление на воздушном зазоре Rмd при его уменьшении также снижается и сравнивается с сопротивлением магнитопровода Rмст. Исходя из этого, магнитное усилие не может быть больше, чем некая максимальная величина Fэ max. Не противоречит логике, что при самом большом значении воздушного зазора Fэ будет минимальным.

Когда отключается питание обмотки реле, на магнитопроводе остается намагничивание, из-за которого якорь может залипнуть. Чтобы избавиться от этого эффекта применят штифт из немагнитного материала.

Механическая характеристика реле

  • Фактически, работа реле заключается в соединении и разъединении контактов, которых может быть 2 и намного больше. Во время перемещения якоря происходит рост силы упругости возвратной и контактных пружин. Эти силы будут иметь разное значение в зависимости от положения якоря и величины воздушного зазора. Данная зависимость носит название механической характеристики реле.
  • Во время запуска реле, якорь первым преодолевает сопротивление возвратной пружины – на графике выше это усилие отмечено участком ab.
  • На следующем участке bc отмечено усилие на ход до первой контактной пружины. Участок cd – преодоление совместного сопротивления двух пружин.
  • Логично предположить, что тяговая характеристика у нормально работающего реле должна быть выше механической.

Интересно знать! В мощных устройствах процесс разъединения протекает намного сложнее первичного коммутирования, так как возникшая электродвижущая сила стремиться удержать значение текущего в управляемой цепи тока. В итоге в момент разъединения может образовываться искрение, а то и вовсе дуговой разряд, очень вредный для контактов реле.

Для того чтобы нейтрализовать описанный эффект используется либо увеличение активного сопротивления, либо специальные конструкции приборов.

Реле поляризованного типа

На фото — электромагнитное поляризованное реле

Работа таких устройств от описанных до этого отличается тем, что направление в котором действует электромагнитная сила меняется в зависимости от полярности тока, подаваемого на обмотку. Данный принцип реализуется посредством постоянного магнита. Подобных реле на рынке представлено великое множество, но все они делятся на мостовые и дифференциальные.

Также их можно разделить на три типа по настройке контактов:

  • Двухпозиционные модели;
  • Двухпозиционные с преобладанием вправо или влево;
  • Трехпозиционные, имеющие зону нечувствительности.

Принцип действия двухпозиционного поляризованного реле

По представленной схеме можно понять, как работают такие реле:

  • С разных сторон на сердечнике намотаны две катушки, обозначенные как 1.
  • При подключении они создают устойчивое магнитное поле (Fэ) в ярме (2).
  • Постоянный магнит (3) также имеет магнитное поле Ф0(п).
  • В момент, когда якорь находится в центральном (нейтральном) положении ток на катушки не подается, и магнитный поток от постоянного магнита разбивается на 2 одинаковые части (Ф01 и Ф02), а значит, тяговая сила будет отсутствовать.
  • Как только на обмотку подается питание, образующееся магнитное поле на ярме начнет выдавать результирующее поле, прибавляясь или отнимаясь от Ф01 и Ф02, в зависимости от полярности питания.
  • Как только одно поле начинает преобладать над другим, возрастает тяговая сила, а значит, якорь начинает движение влево или вправо.

К неоспоримым достоинствам таких реле можно отнести высокую чувствительность, быстрое срабатывание, высокий коэффициент управления. К недостаткам относятся, разве что, большие габариты, сложная конструкция и цена.

Реле электромагнитные переменного тока

Оптореле переменного тока

Реле электромагнитные переменного тока, как несложно догадаться, отличается от постоянных моделей тем, что могут работать от электрических сетей с частотой тока от 50 до 400 Гц. Обозначение переменного тока на реле рисуется в виде волнистой черты. Тот же символ можно встретить и в схемотехнике – он помещается в кружочек (см. рисунок ниже).

Схематическое изображение реле переменного тока

Работает такое реле по следующей схеме:

  • Переменный ток подается на обмотку, после чего якорь также притягивается к сердечнику.
  • Почему контакт не размыкается при смене направления движения тока?
  • Потому что тяговое усилие будет пропорционально квадрату силы намагничивания, а значит, и квадрату тока, текущего по обмотке.
  • Получаем, что направление тягового усилия не зависит от направления тока.

Как меняется тяговое усилие при перемене направления тока

  • Если представить себе два реле (постоянного и переменного тока) одинаковых размеров и с одинаковыми значениями самой высокой индукции, то тяговая сила у последнего будет в два раза меньше, так как оно вынуждено постоянно пульсировать с удвоенной частотой, опускаясь до нуля каждый раз, когда ток меняет свое направление, то есть 2 раза за такт.
  • Из-за этого якорю реле приходится постоянно вибрировать, что вызывает быстрый износ детали. Чтобы избавиться от этого эффекта устанавливаются дифференциальные сердечники и фазосдвигающие детали, которые не дают магнитному потоку переходить через нуль.
  • Сердечник может быть расщепленным с короткозамкнутой обмоткой, то есть конец элемента имеет пропил, делящий его на две части. На одну из таких частей и устанавливается короткозамкнутая обмотка из одного или пары витков.
  • Во время работы реле переменное магнитное поле делится на две части (Ф1 и Ф2), одна из которых (Ф2) создает в к.з. витке ЭДС, после чего образуется еще одно магнитное поле (Фкз), воздействующее на поле ЭДС создающее (Ф2), в результате чего оно начнет отставать от первого потока (Ф1). Данный сдвиг будет в пределах 60-80 градусов, а значит результирующее поле (Fэ), создающее тяговую силу, никогда не упадет до нуля, и тем более не сменит своего направления.

Изменение тяговой силы

Чтобы реле переменного тока работало надежно, без вибраций его параметры рассчитываются так, чтобы усилие Fэ min было максимально большим.

Из полученной информации можно сделать вывод о том, что такие реле имеют куда худшие параметры по сравнению с постоянными по тяговому усилию и чувствительности. Добавьте сюда усложненную конструкцию, и как следствие более высокую цену.

Однако и достоинство у таких реле хоть и одно, но неоспоримое – возможность применения в общественных сетях.

Итак, подведем итоги. Мы разобрали назначение реле, их принципы работы, основные виды и узнали, чем отличается реле управляемое переменным током от постоянного. Информации было много, но только на первый взгляд, поэтому рекомендуем углубиться в тему, просмотрев предложенное видео.

что это, как работает, виды, проверка

Мы редко задумываемся о том, как работает то или иное устройство. До тех пор, пока оно не вышло из строя. Но если приходится разбираться в причинах поломки, тут и возникают вопросы. Рассмотрим электромагнитное реле — оно стоит в электрической части автомобилей, в бытовой технике и электронике.

Содержание статьи

Что такое электромагнитное реле, устройство, назначение

Электромагнитное реле — коммутирующее устройство, которое для работы использует электромагнитное поле. Состоит оно из электромагнитной катушки и подвижного якоря, подвижных и неподвижных контактов. Якорь и катушка закреплены на основании. Якорь подпружинен и расположен так, чтобы неподвижные контакты с неподвижными имели точки соприкосновения.

Устройство электромагнитного реле

Как работает электромагнитное реле? При подаче напряжения на обмотку в ней возникает электромагнитное поле. Закрепленный подвижно якорь притягивается к сердечнику катушки, контакты переключаются (смыкаются/размыкаются). В этом и состоит работа реле — перекидывать контакты. К ним подключена разная нагрузка и, в результате срабатывания, изменяется цепи, по которым протекает электрический ток.

При снятии питания электромагнитное поле исчезает, якорь под действием пружины возвращается в исходное состояние. Соответственно и схема возвращается в исходное состояние. По принципу действия очень похоже на работу обычного выключателя. С той лишь разницей, что кнопки нет и  «управляются» контакты автоматически, а вместо лампочки может быть участок цепи или какое-то устройство.

Для чего нужно реле в электросхемах

На рисунке выше представлена простейшая схема с электромагнитным реле. Есть кнопка, при помощи которой подается питание на катушку. К контактам подключен исполнительный орган, например, электрическая лампа. При нажатии кнопки питание подается на катушку, якорь притягивается к сердечнику катушки, и давит на контакты. Они замыкаются, на лампочку поступает напряжение и она загорается. При снятии питания с катушки, пружина оттягивает якорь в исходное положение, цепь питания лампочки разрывается и она тухнет. Этот пример показывает, для чего и как используют электромагнитные реле.

Виды электромагнитных реле

Первая классификация — по питанию. Есть электромагнитные реле постоянного и переменного тока. Реле постоянного тока могут быть нейтральными или поляризованными. Нейтральные срабатывают при подаче питания любой полярности, поляризованные реагируют только на положительное или на отрицательное (зависят от направления тока).

Виды электромагнитных реле по типу питающего напряжения и внешний вид одной из моделей

По электрическим параметрам

Еще делят электромагнитные реле по чувствительности:

  • Мощность для сработки 0,01 Вт и меньше — высокочувствительные.
  • Потребляемая обмоткой мощность при срабатывании — от 0,01 Вт до 0,05 Вт — чувствительные.
  • Остальные — нормальные.

В первую очередь стоит определиться с электрическими параметрами

Первые две группы (высокочувствительные и чувствительные) могут управляться от микросхем. Они вполне могут выдавать требуемый уровень напряжения, так что промежуточное усиление не требуется.

По уровню коммутируемой нагрузки есть такое деление:

  • Не больше 120 Вт переменного и 60 Вт постоянного тока — слаботочные.
  • 500 Вт переменного и 150 Вт постоянного — повышенной  мощности;
  • Более 500 Вт переменного тока — контакторы. Применяются в силовых цепях.

Есть еще деление по времени срабатывания. Если контакты замыкаются не более чем после 50 мс (миллисекунд) после подачи питания на катушку — это быстродействующее. Если проходит от 50 мс до 150 мс — это нормальная скорость, а все которые требуют для сработки контактов больше 150 мс — замедленные.

По исполнению

Есть еще электромагнитные реле с различной степенью герметичности.

  • Открытые электромагнитные реле. Это те, у которых все части «на виду».
  • Герметичные. Они запаяны или заварены в металлический или пластиковый корпус, внутри которого воздух или инертный газ. Доступа к контактам и катушке нет, доступны только выводы для подачи питания и подключения цепей.
  • Зачехленные. Есть чехол, но он не припаян, а соединяется с корпусом при помощи защелок. Иногда присутствует накидная проволочная петля, которая удерживает крышку.

По массе и размерам отличия могут быть очень существенными

И еще один принцип деления — по размерам. Есть микроминиатюрные — они весят менее 6 граммов, миниатюрные — от 6 до 16 граммов, малогабаритные имеют массу от 16 гр до 40 гр, а остальные — нормальные.

Виды контактных групп

Электромагнитные реле делят по способу работы контактов. Они могут быть:

  • Нормально замкнутыми (закрытыми, размыкающими). Сокращенно обозначаются НЗ, на импортных схемах NC.
  • Нормально разомкнутыми (открытыми, замыкающими). Обозначение — НО на наших — и NO на зарубежных.
  • Перекидными (переключающими). Перекидные отличаются внешне, так как имеют три пластины с контактами. У них обычно обознается только общий контакт — пишут «общ» или comon.

В общем-то, по названиям контактов ясно, как они работают. Нормально замкнутые контакты в исходном состоянии замкнуты, через них протекает ток. При сработке реле контакты размыкаются, цепь питания обрывается.

Нормально закрытый (замкнутый) контакт: что значит
и принцип работы

Нормально открытые (понятнее — нормально разомкнутые) контакты, наоборот, в обычном состоянии разомкнуты. Когда реле срабатывает, контакт замыкается, в цепи возникает ток.

Электромагнитное реле с нормально открытым (разомкнутым) контактом

Наверное, уже понятно как работают переключающий контакт. В отличие от первых двух, переключающий состоит из трех пластин. По краям две неподвижные и подвижная в центре. Подвижный контакт часто называют общим. В нормальном положении подвижная пластина касается одного из контактов, ток протекает по этому пути (на рисунке снизу справа).

Принцип работы электромагнитного реле с переключающими контактами

При срабатывании реле, подвижный контакт изменяет положение благодаря упорной рамке (на рисунке это просто штырь, припаянный к подвижной пластине). А рамка прикреплена к якорю. После срабатывания реле, в первой цепи появляется разрыв, во второй начинает протекать ток.

Это все типы контактов — вроде не так много. Но в одном реле могут быть собраны все три вида, и количество групп каждого виды бывает разным. Их выбирают в зависимости от необходимости.

Электромагнитные реле на схемах: обмотки, контактные группы

Особенность реле в том, что оно состоит из двух частей — обмотки и контактов. Обмотка и контакты имеют различное обозначение. Обмотка графически выглядит как прямоугольник, контакты разного таки имеют каждый свое обозначение. Оно отражает их название/назначения, так что проблем с идентификацией обычно не возникает.

Типы контактов электромагнитных реле и их обозначение на схемах

Иногда рядом с графическим изображением ставят обозначение типа — НЗ (нормально замкнутый)  или НО (нормально открытый). Но чаще прописывают принадлежность к реле и номер контактной группы, а тип контакта понятен по графическому изображению.

Вообще, искать контакты реле надо по всей схеме. Ведь физически оно находится в одном месте, а разные его контакты являются частью разных цепей. Это и отображается на схемах. Обмотка в одном месте — в цепи подачи питания. Контакты разбросаны в разных местах — в цепях, в которых они работают.

Пример схемы на электромагнитных реле: контакты находятся в соответствующих цепях (см. цветовую маркировку)

Для примера посмотрите на схему с реле. Реле КА, КV1 и КМ имеют одну контактную группу, КV3 — две, KV2 — три. Но три — это далеко не предел. Контактных групп в каждом реле может быть и десять-двенадцать и больше. И схема на рисунке простая. А если она занимает пару листов формата А2 и в ней масса элементов…

Основные технические характеристики, плюсы и минусы, область применения

Как любые электротехнические детали, электромагнитное реле подбирают по параметрам. Сначала определяются с составом контактных групп, затем — с питанием. Затем наступает пора выбора характеристик.

  • Ток или напряжение срабатывания. Самое низкое значение тока или напряжения, при котором контакты уверенно переключаются.
  • Ток или напряжение отпускания. Максимальное значение параметров, при которых пружина оторвет якорь от катушки.
  • Чувствительность. Минимальный уровень мощности, при котором реле срабатывает.
  • Сопротивление обмотки. Измеряется при температуре +20°C.
  • Рабочий ток или напряжение. Это диапазон значений, при которых реле точно сработает в эксплуатационных условиях.
  • Время срабатывания. Промежуток от момента подачи питания на обмотку до переключения первого контакта.
  • Время отпускания. Через какой промежуток времени после снятия питания «отлипнет» якорь.
  • Частота коммутации. Сколько раз может сработать реле за определенный промежуток времени.

Характеристики электромагнитного реле. Один из видов

Электромеханические реле имеют большой рабочий ресурс, невысокую цену. Еще один плюс — малое падение мощности при переключении. Но они создают помехи при работе, возможен дребезг контактов, скорость срабатывания совсем невысокая, есть проблемы с индуктивными нагрузками.

Все эти свойства определяют область применения. Обычно это коммутация питания приборов, работающих от 220 В переменного тока или 12 В и 24 В постоянного. Чаще всего нагрузкой являются электродвигатели невысокой мощности, еще подключают освещение, другую индуктивную и активную нагрузку. Мощность коммутируемой нагрузки от 1 Вт до 2-3 кВт.

Как проверить электромагнитное реле

Работоспособность электромагнитного реле зависит от катушки. Поэтому в первую очередь проверяем обмотку. Ее прозванивают мультиметром. Сопротивление обмотки может быть как 20-40 Ом, так и несколько кОм. При измерении просто выбираем подходящий диапазон. Если есть данные о том, какая величина сопротивления должна быть — сравниваем. В противном случае довольствуемся тем, что нет короткого замыкания или обрыва (сопротивление стремится к бесконечности).

Проверить электромагнитное реле можно при помощи тестера/мультиметра

Второй момент — переключаются или нет контакты и насколько хорошо прилегают контактные площадки. Проверить это немного сложнее. К выводу одного из контактов можно подключить источник питания. Например — простую батарейку. При срабатывании реле потенциал должен появиться на другом контакте или исчезнуть. Это зависит от типа проверяемой контактной группы. Контролировать наличие питания также можно при помощи мультиметра, но его надо будет перевести в соответствующий режим (контроль напряжения проще).

Если мультиметра нет

Не всегда под рукой есть мультиметр, но батарейки есть почти всегда. Давайте рассмотрим пример. Есть какое-то реле в герметичном корпусе. Если знаете или нашли его тип, можно посмотреть характеристики по названию. Если данные не нашли или нет названия реле, смотрим на корпус. Обычно тут указывается вся важная информация. Напряжение питания и коммутируемые токи/напряжения есть обязательно.

Проверка обмотки электромагнитного реле

В данном случае имеем реле, которое работает от 12 V постоянного тока. Хорошо если есть такой источник питания, тогда используем его. Если нет, собираем несколько батареек (последовательно, то есть одну за одной), чтобы суммарно получить требуемое напряжение.

При последовательном соединении батареек их напряжение суммируем

Получив источник питания нужного номинала, подключаем его к выводам катушки. Как определить где выводы катушки? Обычно они подписаны. Во всяком случае, есть обозначения  «+» и «-» для подключения источников постоянного питания и знаки для переменного  типа таких «≈».  На соответствующие контакты подаем питание. Что происходит? Если катушка реле рабочая, слышен щелчок — это притянулся якорь. При снятии напряжения он слышен снова.

Проверяем контакты

Но щелчки — это одно. Это значит, что катушка работает, но надо еще контакты проверить. Возможно они окислились, цепь замыкается, но сильно падает напряжение. Может они стерлись и контакт плохой, может, наоборот, закипели и не размыкаются. В общем, для полноценной проверки электромагнитного реле необходимо еще проверить работоспособность контактных групп.

Проще всего объяснить на примере реле с одной группой. Они обычно стоят в автомобилях. Автолюбители называют их по числу выводов: 4 контактные или 5 контактные. В обоих случаях там всего одна группа. Просто четырех контактное реле содержит нормально замкнутый или нормально разомкнутый контакт, а пятиконтактное — переключающую группу (перекидные контакты).

Электромагнитное реле 4 и 5 контактное: расположение контактов, схема подключения

Как видите, питание подается в любом случае на выводы, которые подписаны 85 и 86. А к остальным подключается нагрузка. Для проверки 4-контактного реле можно собрать простейшую связку из маленькой лампочки и батарейки нужного номинала. Концы этой связки прикрутить к выводам контактов. В 4-контактном реле это выводы 30 и 87. Что получится? Если контакт на замыкание (нормально разомкнутый), при сработке реле лампочка должна загореться. Если группа на размыкание (нормально замкнутый) должна потухнуть.

В случае с 5-контактным реле схема будет чуть сложнее. Тут потребуется две связки из лампочки и батарейки. Используйте лампы разного формата, цвета или каким-то образом их разделите. При отсутствии питания на катушке у вас должна гореть одна лампочка. При срабатывании реле она гаснет, загорается другая.

Реле тока. Виды и устройство. Работа и как выбрать. Применение

Реле тока — в электрических промышленных сетях часто возникают чрезмерные нагрузки и короткие замыкания. Все компоненты цепи, начиная от обычного проводника, и заканчивая потребителями нагрузки со сложной конструкцией, рассчитаны на допустимый максимальный нагрузочный ток. Превышение этой величины приводит к пробою изоляции, либо нарушению целостности проводов из-за расплавления жил, а также межвитковому замыканию обмотки двигателя, перегрузке трансформатора. Все эти факторы являются аварийными режимами эксплуатации, ведущими к неисправностям и выходу из строя сети питания.

Для обеспечения надежной защиты агрегатов, трансформаторов, приводов электромоторов применяется релейная защита, включающая в себя один из основных элементов в виде реле тока, которое предотвращает эксплуатацию электрооборудования в аварийном режиме.

Виды
Реле тока классифицируются по двум основным признакам:
  • Первичные чаще всего встроены в конструкцию выключателя, и являются его частью. Они применяются в основном в электрических сетях напряжением до 1000 В.
  • Вторичные включаются в цепь посредством трансформатора тока, который подключается к питающей шине или кабелю. Трансформатор снижает ток до значения, которое подходит для функционирования реле. В качестве примера можно рассмотреть трансформатор тока, имеющий кратность 100 : 5. Он способен контролировать значение тока до 100 ампер, применяя для этого реле с допускаемой величиной наибольшего тока всего в 5 ампер.
Вторичные реле тока в свою очередь разделяются на виды:
  • Индукционные реле.
  • Электромагнитного действия.
  • Дифференциальные модели.
  • Реле на интегральных микросхемах.
Устройство и работа

Конструктивные особенности основных видов реле и их принцип действия.

Индукционные

Такой вид реле работает на основе взаимодействия между током, индуцированным в некотором проводнике, и переменным магнитным потоком. Вследствие этого они используются на переменном токе в качестве защитного реле косвенного действия.

Имеющиеся виды индукционных реле делятся на 3 группы:
  • С рамкой.
  • С диском.
  • Со стаканом.

В варианте с рамкой (рисунок «а») поток Ф2 создает ток в замкнутой обмотке, выполненной в виде рамки в магнитном поле второго потока Ф1, который сдвинут по фазе. Такие реле обладают повышенной чувствительностью и максимальной реакцией в отличие от других реле. В качестве недостатка можно отметить слабый момент вращения.

Образцы с диском имеют широкую популярность. Схема такого реле изображена на рисунке «б». Такие реле обладают большим моментом вращения диска, имеют простое устройство.

Реле со стаканом (рисунок «в») оснащены подвижным стаканом, который может вращаться в магнитном поле потоков магнитной системы, состоящей из четырех полюсов. Потоки расположены под прямым углом между собой в пространстве.

В стакане 5 находится стальной цилиндр 1, который предназначен для снижения магнитного сопротивления. Эта конструкция более сложная, в отличие от реле с диском. Это дает возможность получения короткого времени реакции на срабатывание (0,02 с), что является значительным преимуществом, и обеспечивает широкую популярность в использовании реле тока со стаканом.

4-полюсная магнитная система дает возможность получать без значительных доработок разные по назначению реле, и унифицировать их изготовление.

Электромагнитные

Нейтральные реле реагируют одинаково на постоянный ток, проходящий в обмотке, в любом направлении. По типу движения якоря реле делятся на два вида: с угловым перемещением якоря, и с втягивающим якорем.

  1. Сердечник.
  2. Ярмо.
  3. Якорь.
  4. Штифт.
  5. Контакты.

Если нет сигнала управления, то якорь удерживается на наибольшем расстоянии от сердечника с помощью воздействия пружины. При поступлении сигнала на обмотку образуется магнитная сила, прижимающая якорь к сердечнику. Тем самым одни контакты замыкаются, а другие размыкаются.

Поляризованные реле включают в себя аналогичные элементы, однако отличаются наличием двух обмоток, двух сердечников, постоянным магнитом и контактной тягой. Поляризованные реле срабатывают в зависимости от того, какой полярности пришел сигнал управления.

Сердечник изготавливается из листовой электротехнической стали. Это позволяет повысить скорость срабатывания устройства. При отсутствии тока на катушках, реле находится в исходном состоянии. При этом в реле уже есть магнитный поток, который образован постоянным магнитом. Силовые линии замыкаются на два контура.

Первый контур включает в себя магнит, левый сердечник, ярмо, якорь и другой магнит. А второй контур проходит по магниту и ярму к правому сердечнику и якорю. Далее он снова приходит в первоначальное положение.

Между левым сердечником и якорем нет воздушной прослойки. В этом случае правый сердечник и якорь разделены большим воздушным зазором. Воздух имеет большое сопротивление, поэтому величина магнитного потока в правом контуре будет намного меньше левого. Якорь притянется к левому сердечнику под действием более мощного магнитного потока.

Так функционирует поляризованное реле. Его работа происходит на основе магнитных свойств. Это дает возможность менять направление тока на обмотке, при разных полярностях.

Реле переменного тока имеет отличие от модели постоянного тока в том, что работает от переменного тока непосредственно от сети. При равных размерах конструкции, величина силы у реле переменного тока в два раза ниже, чем у реле, работающего на постоянном токе.

Достоинства
  • Низкая стоимость электромагнитных реле в отличие от полупроводниковых образцов.
  • Незначительное падение напряжения на контактах, низкое выделение теплоты, не требует охлаждения.
  • Качественная электрическая изоляция цепи управления катушки и группы контактов.
  • Невосприимчивость к импульсным нагрузкам и помехам, возникающим при ударах молнии, и при переключениях высоковольтных цепей.
  • Возможность подключения нагрузки до 4 киловатт при объемном размере реле ниже 10 куб. см.
Недостатки
  • Возникающие проблемы при подключении индуктивных потребителей и нагрузок постоянного тока высокого напряжения.
  • Возникновение радиопомех при работе силовых контактов.
  • Ограниченный механический и электрический ресурс.
  • Низкая скорость функционирования.
Дифференциальные

Такие реле действуют по принципу сравнивания значения тока до потребителя и после него. Таким потребителем обычно бывает силовой трансформатор. В обычном режиме эксплуатации ток до трансформатора и после него практически одинаков. Однако при появлении короткого замыкания на трансформаторе такой баланс нарушается. В этом случае реле замыкает контакты и подает команду на обесточивание неисправного участка цепи.

Дифференциальные реле широко используются в бытовых условиях, а также на производстве. Такие реле в виде защитных устройств предотвращают утечки тока в приборах и проводах.

Защищаемыми приборами обычно бывают:
  • Оргтехника.
  • Бойлеры.
  • Светильники.
  • Бытовые устройства.

Тем самым осуществляется защита человека от удара электрическим током при касании корпуса устройства.

Реле на микросхемах (интегральные электронные)

Такие типы изготавливают на основе полупроводниковых элементов. Основным их преимуществом является постоянная стабильная работа при повышенной вибрации.

Применение и подключение

В нормальном эксплуатационном режиме любое реле тока должно обладать достаточной чувствительностью к превышению номинального значения тока в цепи входа. При повышении тока больше допустимых значений, осуществляется переключение контактов выхода, которые обесточивают силовые устройства от сети питания.

Если ток дальше продолжает снижаться и подходит к номинальной величине, то при этом цепь снова замыкается под действием сигнала на выходе, и подается ток.

Реле для защиты применяют в жилых домах, а также на производственных объектах. Многие современные квартиры оснащены мощными бытовыми электрическими устройствами. Если включить сразу все такие устройства, то это вызовет значительные нагрузки в электрической сети питания.

Для предотвращения аналогичных случаев все устройства разделяют:
  • Приоритетные.
  • Второстепенные.

Приоритетными устройствами считаются те, отключение которых от сети создаст аварийную критическую обстановку. Такие внезапные отключения приводят к неисправностям и выходу из строя.

Второстепенными устройствами считаются те, которые можно отключить без всякого ущерба, не создавая аварийной ситуации или каких-либо неисправностей. Поэтому реле подключаются так, чтобы не допустить всевозможные перегрузки в сети питания.

Для примера реле максимального тока РМТ-101.

Это устройство дает возможность настроить определенное время отключения нагрузки при перегрузке сети, а потом снова подает питание.

Такой образец реле способен контролировать и измерять нагрузку по току. Также при необходимости реле может применяться вместо цифрового амперметра. При измерении тока нет необходимости разрывать цепь. В приборе установлен специальный датчик, расположенный в корпусе.

Защитное реле РМТ-101 можно присоединять к трансформаторам тока выносного типа. На передней панели реле находятся цифровые и светодиодные индикаторы, которые показывают величину тока в цепи. Реле оснащено двумя переключателями, которыми можно настраивать необходимый интервал измерений, режим индикации, точность показаний, наибольший и текущий ток.

Другой важной функцией реле является его использование вместо реле ограничения потребления тока. Также можно выбрать необходимую нагрузку. Реле может функционировать в двух режимах: наименьшего и наибольшего тока. Чтобы переключиться между режимами, необходимо воспользоваться специальным переключателем.

Реле тока РМТ-101 приобрело широкую популярность на производстве. Оно создает защиту мощных электродвигателей переменного и постоянного тока, а также другого оборудования от возникающих перегрузок.

Также широко используемым устройством в различных областях является реле РЭО-401.

 

Устройство этого реле тока защиты состоит из двух главных узлов:

  • Электромагнитная система.
  • Блок контакт.

Электромагнитная система включает в себя скобу сердечника с трубкой. На трубке размещена катушка, имеющая в качестве защиты изоляционный каркас. В трубке находится якорь, который может легко перемещаться вдоль трубки. Значение тока срабатывания зависит от расположения якоря.

Значение тока срабатывания регулируется с помощью изменения расположения скобы, которая после регулировки может фиксироваться специальным винтом. Когда реле сработает, то блок-контакты останутся разомкнутыми, пока не снизится ток до нормальной величины. Далее якорь переместится в нижнюю позицию, а контакты от воздействия пружины замкнутся. Проводники подключаются к реле на передней части корпуса.

Советы по выбору реле
Чтобы сделать правильный выбор реле наибольшего тока необходимо руководствоваться:
  • Поставленной задачей.
  • Значением тока.
  • Напряжением питания.
  • Условиями эксплуатации.
  • Наличием механизма задержки срабатывания.
  • Наибольшим допустимым током.
  • Характеристиками и параметрами регулировки.

После приобретения реле, его необходимо настроить. Это делается легко, при помощи встроенных уставок, плавно изменяя их. Все аналогичные реле имеют компактные размеры. Это дает возможность без особых проблем установить их в шкафы релейной защиты или распределительные щиты.

Такие реле имеют надежную и простую конструкцию, унифицированы между собой, что позволяет производить их легкую замену. Для контроля параметров применяются встроенные светодиодные дисплеи.

Похожие темы:

Электромагнитные реле переменного тока

В тех случаях, когда основным источником энергии является сеть переменного тока, желательно применять реле, обмотки которых питаются переменным током. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе под действием электромагнитной силы Fэ, пропорциональной магнитному потоку Фδ, возникающему в зазоре между якорем и сердечником и создаваемому при протекании тока в обмотке электромагнита:

Так как ток в обмотке электромагнита переменный, то и магнитный поток Фδ, создаваемый этим током в рабочем зазоре, будет также переменным, т. е.

После преобразований получим

или

где μ0 — магнитная постоянная.

Применение короткозамкнутого витка (экрана), охватывающего часть конца сердечника (расщепленный сердечник), является наиболее эффективным способом устранения вибрации якоря реле.

На рис. 6.4 изображена схема реле переменного тока с короткозамкнутым витком (контакты реле и выводы обмотки на схеме не показаны). Конец сердечника, обращенный к якорю, расщеплен на две части, на одну из которых надета короткозамкнутая обмотка — экран Э (один или несколько витков).

Рисунок 6.4. Схема реле переменного тока с короткозамкнутым витком

Принцип работы реле заключается в следующем. Переменный магнитный поток Фосн основной обмотки wосн, проходя через разрезанную часть сердечника, делится на две части. Часть потока Ф2 проходит через экранированную половину полюса сечением Sδ2, в которой размещается короткозамкнутая обмотка (экран), а другая часть потока Ф1 проходит через неэкранированную половину полюса сечением Sδ1. Поток Ф2 наводит в короткозамкнутом витке ЭДС екз, которая создает ток Iкз. При этом возникает еще один магнитный поток Фкз, который воздействует на магнитный поток Ф2 и вызывает его отставание относительно потока Ф1 по фазе на угол φ = 60… 80°. Благодаря этому результирующее тяговое усилие Fэ никогда не доходит до нуля, так как потоки проходят через нуль в разные моменты времени.

6.2. Поляризованные электромагнитные реле

В отличие от рассмотренных ранее нейтральных электромагнитных реле, у поляризованного реле направление электромагнитного усилия зависит от полярности сигнала постоянного тока в обмотке. Поляризация этих реле осуществляется при помощи постоянного магнита.

Существует много конструктивных разновидностей поляризованных реле, которые классифицируются по ряду признаков. По конструктивной схеме магнитной цепи различают реле с последовательной, параллельной (дифференциальной) и мостовой магнитными цепями, по числу обмоток управления — одно и многообмоточные, по способу настройки контактов (числу устойчивых положений якоря) — двух- и трехпозиционные.

Поляризованные реле могут быть использованы также в качестве вибропреобразователей, но наибольшее распространение они получили в маломощной автоматике, особенно в следящих системах при управлении реверсивными двигателями.

К числу достоинств поляризованных реле относятся:

  • высокая чувствительность, которая характеризуется малой мощностью срабатывания и составляет 10-5 Вт;

  • большой коэффициент управления;

  • малое время срабатывания (единицы миллисекунд).

Недостатки по сравнению с нейтральными электромагнитными реле следующие:

  • несколько сложнее конструкция;

  • большие габаритные размеры, вес и стоимость.

В поляризованных реле используют дифференциальные и мостовые схемы магнитных цепей, которые имеют много разновидностей (название цепей определяется типом электрической схемы замещения электромагнитной системы). На рис. 6.5 изображено поляризованное реле с дифференциальной схемой магнитной цепи.

Рисунок 6.5. Поляризованное реле с дифференциальной схемой магнитной цепи: 1,1’ — намагничивающие катушки; 2- ярмо; 3- постоянный магнит;

4- якорь; 5,5— контакты.

На якорь реле действует два независимых друг от друга потока: поток Ф0(п), создаваемый постоянным магнитом 3 и не зависящий от рабочего состояния схемы, в которую включено реле, и рабочий (управляющий) поток Фэ(р), создаваемый намагничивающими катушками 1 и 1’ и зависящий от тока, протекающего по их обмоткам.

Электромагнитное усилие, действующее на якорь 4, зависит, таким образом, от суммарного действия потоков Фэ(р) и Ф0(п). Изменение направления электромагнитного усилия при изменении полярности тока в рабочей обмотке происходит вследствие того, что изменяется направление рабочего потока относительно поляризующего.

Поляризующий поток Ф0(п) проходит по якорю и разветвляется на две части — Ф01 и Ф02 в соответствии с проводимостями воздушных зазоров слева δЛ и справа δпр от якоря. В зависимости от полярности управляющего сигнала рабочий поток Фэ(р) вычитается из потока Ф01 в зазоре слева от якоря и прибавляется к потоку Ф02 справа от якоря (как показано на рис. 6.5), или наоборот. В случае, показанном на рисунке, якорь перекинется из левого положения в правое. При выключении сигнала якорь будет находиться в том положении, которое он занимал до выключения сигнала. Таким образом, результирующее электромагнитное усилие, действующее на якорь, будет направлено в строну того зазора, где магнитные потоки суммируются.

Поляризованные реле находят широкое применение в схемах автоматики благодаря своим характерным особенностям. Наличие нескольких обмоток позволяет использовать их в качестве логических элементов, небольшая мощность срабатывания — в качестве элементов контроля небольших электрических сигналов, малое время срабатывания и чувствительность к полярности входных сигналов — в качестве амплитудных модуляторов и демодуляторов. Благодаря высокой чувствительности поляризованные реле часто используют в маломощных цепях переменного тока с включением через выпрямитель.

Электромагнитное реле: основные разновидности

Реле – это элемент автоматического устройства, который при воздействии на его вход внешних явлений скачкообразно примет значение выходной величины. Наиболее популярным видом считается электромагнитное реле.

Электромагнитное реле способно реагировать на изменение каких-либо определенных параметров замыканием или размыканием своих контактов. Контакты реле способны включаться в цепь, которая позволяет осуществлять контроль или управление аппаратами, включенными в электрическую цепь. Реле могут работать под воздействием следующих факторов:

  1. Электрического тока.
  2. Световой энергии.
  3. Давления жидкости.
  4. Уровня жидкости.

По способу присоединения электромагнитные реле могут быть первичные, вторичные или промежуточные.

  • Первичные будут включаться в цепь управления.
  • Вторичные подключаются через измерительные трансформаторы тока.
  • Промежуточные способны осуществлять свою работу от исполнительных органов другого реле и предназначаются для усиления и размножения сигнала.

Параметры реле

К основным параметрам электромагнитного реле можно отнести:

  • Номинальные данные. К ним можно отнести: ток, напряжение или другие величины.
  • Величина срабатывания. Это значение параметра, при котором будет происходить автоматическое действие реле.
  • Установка реле – это значение величины срабатывания, на которую будет отрегулировано определенное реле.

Электромагнитные реле может характеризоваться следующими параметрами:

  • Напряжением втягивания.
  • Напряжением отпадения.
  • Коэффициентом возврата реле.

Электромагнитные реле по времени срабатывания могут быть: безынерционные, быстродействующие, нормальные, замедленные и реле времени, у которых время срабатывания tср> 1 секунды. При необходимости врем срабатывания можно регулировать. Читайте также про релейную защиту трансформатора.

Составляющие электромагнитного реле

Обычно реле может состоять из:

  1. Воспринимающего. Этот элемент будет реагировать на входной параметр и преобразовывать его физическую величину.
  2. Промежуточного. Позволяет сравнивать величину с эталоном. Когда заданное значение будет достигнуто информация будет передаваться к исполнительному элементу. Промежуточными составляющими контактных реле будут считаться противодействующими пружинами и успокоителями. Успокоители необходимы для того, чтобы успокоить колебания подвижных частей.
  3. Исполнительного. Этот элемент будет устанавливаться на управляемую цепь.

Теперь пришло время рассмотреть устройство электрического реле, которое будет работать по электромагнитному принципу. Реле МКУ-48 будет состоять из:

  • Якоря с подвижной частью.
  • Сердечника, который является неподвижным.
  • Катушки реле.
  • Размыкающих контактов.
  • Пружины.

Слаботочные электромагнитные реле ранее применяли только в автоматике. Сейчас они активно применяются в автоматике. Это объясняется тем, что количество контактов достаточно большое и это позволяет уменьшить количество реле в определенной схеме. Кроме этого, подобные реле способны применять слаботочные токи и это позволяет осуществлять работу с датчиками, которые не рассчитаны на высокие токи.

Реле типа РПН

Реле типа РПН постоянного тока – это электромагнитное реле, которое состоит из одной катушки и имеет плоский сердечник. Оно предназначается для коммутации электрических цепей в разнообразных схемах стационарных устройств. Ток срабатывания этих реле считается достаточно маленьким. Он может составлять несколько десятков миллиампер. Пакет контактных групп будет состоять из набора контактов. Внешние провода будут подключаться к концам хвостов и пружин с помощью пайки. Для цепей переменного тока могут выпускаться реле РПП аналогичного устройства.

Реле МКУ-48

Реле МКУ-48 – это многоконтактное реле. Конструктивно эти устройства могут выпускаться в кожухе или без него. Подключение реле может осуществляться в кожухе или без него. Контактные группы реле могут осуществляться с разнообразными комбинациями контактов. Рабочий ток реле достаточно мал. Для некоторых устройств он может составлять 0,0045 А. Потребляемая мощность будет > или = 5 Вт. У нас вы также можете прочесть про релейный стабилизатор.

Поляризованное реле

Поляризованное реле представляет собою электромагнитное реле, у которого направление перемещения якоря будет зависеть от направления намагниченности тока. В отличии от электромагнитного реле поляризованное будет иметь два направления перемещения якоря.

Основными деталями поляризованного реле могут являться:

  1. Намагниченная катушка.
  2. Сердечник.
  3. Магнитный поток и постоянный магнит.
  4. Якорь.

Магнитный поток будет проходить через стальной передвижной якорь и разветвляться на два потока. На конце якоря будет располагаться средний контакт, замыкающийся, в зависимости от полярности управляющего сигнала.

Если отсутствует управляющий сигнал и потоки ФЭ, на якорь в нейтральном положении, действуют слева и справа одинаковые силы притяжения.

Теперь вы точно знаете, какие существуют электромагнитные реле. Надеемся, что эта информация была полезной и интересной.

Читайте также: принцип работы реле времени.

19. Специальные виды реле » СтудИзба

Глава 19

СПЕЦИАЛЬНЫЕ  ВИДЫ  РЕЛЕ

§ 19.1. Типы специальных реле

Наибольшее распространение в системах автоматики получили реле электромагнитного типа, рассмотренные в гл. 17 и 18. Однако находят применение и электрические реле других типов, в которых тяговое усилие, необходимое для переключения контактов, создается не с помощью электромагнита. Сюда отно­сятся прежде всего реле, аналогичные по принципу действия эле­ктроизмерительным приборам различных систем: магнитоэлектри­ческой, электродинамической, индукционной. Если в электроизме­рительном приборе подвижная часть перемещает по шкале стрел­ку или какой-либо указатель, то в реле соответствующего типа подвижная часть перемещает контакты.

Для получения значительных выдержек* времени при замыка­нии и размыкании контактов используются специальные реле вре­мени; некоторые из них имеют в основе электромагнитный меха­низм, но с добавлением различных устройств, обеспечивающих задержку срабатывания или отпускания.

Для автоматизации процессов нагрева и охлаждения применя­ются электротермические реле, в которых переключение электри­ческих контактов обеспечивается температурной деформацией металлов или температурным расширением жидкостей и га­зов.

В системах автоматической защиты оборудования от аварий­ных режимов используются специальные реле, срабатывающие при определенном значении тока, напряжения, скорости, момента, давления и других параметров.

§ 19.2. Магнитоэлектрические реле

Принцип действия магнитоэлектрического реле основан на взаимодействии магнитного поля постоянного магнита с током, протекающим по обмотке, выполненной в виде поворот­ной рамки.

Магнитоэлектрическое реле  (рис.  19.1, а)  состоит из постоян­ного магнита /, между полюсными наконечниками которого находится цилиндрический стальной сердечник 2. В кольцепом зазоре между полюсными на­конечниками и сердечником создается равно­мерное радиальпо направленное магнитное поле. В зазоре размещена легкая алюминие­вая рамка 3 с обмоткой из тонкого провода, к которой подводится ток по спиральным пру­жинам из фосфористой или оловянно-цинковой бронзы. Эти пружины создают противо­действующий момент, стремящийся устано­вить рамку с обмоткой таким образом, чтобы ее плоскость была направлена по оси полю­сов  магнита   /.   При   пропускании тока  / по

оомотке реле на рамку с обмоткой действует вращающий момент, заставляющий ее поворачиваться вокруг оси в направлении, опре­деляемом полярностью тока. Жестко закрепленный на рамке по­движный контакт 4 замыкается с одним из неподвижных контактов 5 или 6.

Сила, действующая па проводник длиной /, обтекаемый током / н помещенный в магнитное поле с индукцией В, определяется на основании закона Ампера:

 

На рамку длимой /, шириной а, с числом витков w действует вра­щающий момент

 

Из уравнения (19.3) видно, что при неизменных конструктив­ных параметрах реле и заданном токе / в его обмотке вращающий момент имеет постоянное значение.

В то же время противодействующий момент, создаваемый за­кручивающимися токоподводящими пружинами, пропорционален углу закрутки, т. е. углу поворота рамки. Поскольку направление поворота рамки определяется направлением тока в обмотке, маг­нитоэлектрическое реле является поляризованным и может быть выполнено трехпозиционным.

По сравнению с другими электромеханическими реле магнито­электрическое реле является наиболее чувствительным, оно сра­батывает при мощности управления в доли милливатта. Усилие па контактах магнитоэлектрического реле невелико (порядка 10-2 Н и меньше), поэтому для повышения надежности контакты выпол­няются из платины и платипоиридиевого сплава. При резком из­менении усилия маломощные контакты быстро изнашиваются, по­этому магнитоэлектрические реле используются обычно в схемах, где сигнал постоянного тока изменяется медленно. Недостатком магнитоэлектрических реле является сравнительно большое время срабатывания (0.1—0,2 с). По своему быстродействию они усту­пают нейтральным электромагнитным реле.

§ 19.3. Электродинамические реле

Принцип действия электродинамического реле основан на  взаимодействии двух катушек с током, одна  из которых подвнжпа, а другая неподвижна.

От маг­нитоэлектрического реле электродинами­ческое реле отличается тем, что индук­ция в рабочем зазоре создается не по­стоянным магнитом, а неподвижной ка­тушкой иа сердечнике, т. е. элекртомаг-нитным способом. От электромагнитного реле электродинамическое реле отлича­ется тем, что тяговое усилие воздейст­вует не на стальной якорь, а на подвиж­ную катушку. Устройство электродинамического ре­ле показано на рис. 19.2. На магиито-провод надета  неподвижная  катушка

2, обтекаемая током l2. Между полюсными наконечниками магни-топровода находится цилиндрический стальной сердечник 4. В кольцевом зазоре между полюсными наконечниками и сердеч­ником создается равномерное радиэльно направленное магнитное

поле. В зазоре размещена легкая алюминиевая рамка 1 с обмот­кой из тонкого провода, к которой подводится ток Ii по спираль­ным пружинам, создающим противодействующий момент, стремя­щийся установить плоскость рамки 1 вдоль оси полюсных нако­нечников.

При подаче управляющего тока Ii в обмотку рамки 1 она бу­дет поворачиваться в зазоре между полюсными наконечниками и сердечником. Жестко закрепленный па рамке подвижный кон­такт 5 замыкается с одним из неподвижных контактов 6 и 7.

Сила, действующая на проводники рамки электродинамическо­го реле, так же как и для магнитоэлектрического реле, определя­ется законом Ампера. Следовательно, будут справедливы урав­нения (19.1) и (19.2). Однако входящая в эти уравнения индук­ция В не постоянна, а определяется намагничивающей силой, соз­даваемой катушкой 2 с током I2:

 

                                                                                                                                       (19.4)

 

где Rм— магнитное сопротивление на пути магнитного потока возбуждения; s6— площадь поперечного сечения рабочего воздуш­ного зазора.

Подставляя (19.4) в (19.2) и выразив через постоянный коэф­фициент К сочетание всех неизменных конструктивных и обмо­точных данных реле, получим уравнение для вращающего момен­та электродинамического реле:

 

Однако в отличие от магнитоэлектрического реле электродина­мическое может работать при питании переменным током. В этом случае на рамку воздействует переменный магнитный поток а на­правление поворота определяется средним за период значением вращающего момента

 

где /1  и /2—действующие значения токов в обмотках;  — угол сдвига фаз между токами.                                                   

Из (19.6) следует, что электродинамическое реле реагирует на фазу входного сигнала, т.  е. его можно использовать как реле сдвига фаз, срабатывающее при определенном значении . Это же реле может реагировать и на мощность переменного или постоян­ного тока. В этом случае на одну из обмоток подается ток, а на другую —напряжение цепи.

При последовательном соединении обмоток I1I2=I вращаю­щий момент

                                                                                      Мвp = КI2,                                  (19.7)

т. е. зависимость тягового усилия от тока будет аналогична эле­ктромагнитному нейтральному реле.

К недостаткам электродинамических реле следует отнести их большие габариты и вес.

§ 19.4. Индукционные реле

Принцип действия индукционного реле основан на взаи­модействии переменных магнитных потоков с токами, индуциро­ванными этими потоками.

Индукционное реле (рис. 19.3) состоит из двух неподвижных электромагнитов 1 и 2, по обмоткам которых протекают соответ­ственно переменные токи I1 и I2В воздушном зазоре электромаг­нитов установлен алюминиевый или медный диск 3, который мо­жет поворачиваться относительно оси 4. Переменные магнитные потоки, создаваемые электромагнитами 1 и 2, индуцируют ЭДС в диске 3, под действием которых по диску протекают токи (так же, как в короткозамкнутом роторе асинхронного двигателя).

Для того чтобы взаимодействие магнитных потоков с вызван­ными ими же токами привело к созданию вращающего момента, необходимо наличие сдвига по фазе токов I1и I2. Только в этом случае в зазоре индукционного реле будет создано вращающееся магнитное поле, аналогично тому, как это происходит в двухфаз­ном асинхронном двигателе. При сдвиге фаз между токами I1и I2в 90° сила взаимодействия магнитного потока электромагнита 1 с током, индуцированным в диске от потока электромагнита 2, будет всегда совпадать по направлению с силой взаимодействия магнитного потока электромагнита 2 с током, индуцированным в диске от потока электромагнита 1. При совпадении токов I1и I2 по фазе в среднем за период результирующая сила будет равна нулю.

Вращающий момент, приложенный к диску, определяется так:

 

где К — постоянный коэффициент, зависящий от конструктивных и обмоточных данных реле;  — фазовый сдвиг между I1и I2.

Этот вращающий момент, преодолевая сопротивление пружи­ны 4, поворачивает диск до тех пор, пока не замкнутся контак­ты 5.

Поскольку индукционное реле реагирует на фазу, его (как и электродинамическое) можно применять в качестве реле фазы. Малая инерция подвижной части позволяет использовать такие реле как быстродействующие в схемах автоматической защиты и блокировки. Особенно они распространены в автоматике на же­лезных дорогах. Они могут использоваться в качестве реле тока, напряжения, мощности, частоты, фазы, сопротивления. Достоинст­вом их является то, что они не требуют подвода тока к подвижной части. Чувствительность индукционных реле невелика, для их сра­батывания требуется мощность не менее 0,5 Вт.

Рассмотрим также применение индукционного реле в качестве реле скорости (рис. 19.4). Входной вал 5 реле связан с механиз­мом, скорость которого требуется контролировать. На валу 5 ус­тановлен цилиндрический постоянный магнит 4. При вращении поле магнита пересекает проводники короткозамкнутой обмотки 3 поворотного статора 6. В обмотке 3 наводится ЭДС, значение которой пропорционально скорости вращения входного вала 5. Под действием этой ЭДС по обмотке 3 проходит ток, сила взаи­модействия которого с вращающимся полем магнита 4 стремится повернуть статор 6 в направлении вращения. При определенной скорости вращения сила возрастает настолько, что упор 2, преодо­левая противодействие плоской пружины, переключает контакты реле. В зависимости от направления вращения переключается кон­тактный узел / или 7. Точность работы индукционного реле ско­рости невелика. В точных системах контроля скорости необходи­мо использование более сложной схемы, включающей в себя ин­дукционный датчик скорости и высокочувствительное поляризо­ванное реле.

§ 19.5. Реле времени

Для получения больших замедлений при включении и отключении контактов используются реле времени. В этих реле обычно используют электромагнит, который приводит в действие какое-либо механическое устройство, имеющее значительную инер­ционность, либо включает электродвигатель, перемещающий кон­такты через понижающий редуктор с большим передаточным от­ношением.

 

Рассмотрим в качестве примера несколько типов реле вре­мени.

Маятниковое (часовое) реле времени (рис. 19.5) состоит из электромагнита с втяжным якорем 1, который при подаче вход­ного сигнала перемещает тягу 2 и, сжимая пружину 3, стремится переместить рычаг с зубчатым сектором 4 справа налево. Но спусковое зубчатое колесо 5 со скобой 6 может поворачиваться за каждое качание маятника 7 только на один зуб, благодаря чему скорость перемещения зубчатого сектора ограничивается. После того как все зубцы сектора 4 выйдут из зацепления с храповым колесом 8, сработает микропереключатель 9.

При снятии выходного сигнала с электромагнита 1 сектор 4 быстро возвращается в исходное положение под действием веса якоря электромагнита / и усилия пружины 3. Микропереключа­тель выключается без задержки времени. Таким образом, обеспе­чивается задержка времени только при срабатывании реле, но не при отпускании.

§ 19.6. Электротермические реле

Электротермические реле предназначены для автомати­ческого переключения электрических контактов в зависимости от температуры. Задача поддержания необходимой температуры или отключения какого-либо устройства при достижении некоторой температуры очень распространена в технике, причем не только

в промышленной, но и в бытовой. Например, в холодильнике, в электроутюге, в духовке электрической плиты установлены элект­ротермические реле, которые также часто называют тепловыми реле. Потребность в тепловых реле исчисляется миллионами штук в год, поэтому главными требованиями к ним являются простота, дешевизна, надежность.

Наиболее широкое распространение получили биметалличе­ские реле. Элементом, воспринимающим температуру, в таких ре­ле является биметаллическая пластина (рис. 19.8, а). Она состоит из слоев двух металлов с разными температурными коэффициен­тами линейного расширения. Например, для латуни этот коэффи­циент почти в 20 раз больше, чем для инвара (сплав стали с ни­келем и кобальтом). Поэтому при увеличении температуры слой латуни удлиняется значительно больше, чем слой инвара. Эти слои соединены жестко (сваркой или пайкой), и вся биметаллическая пластина при нагреве изгибается в сторону инвара. Поскольку один конец биметаллической пластины закреплен, второй конец перемещается, размыкая одну пару контактов и замыкая другую. С помощью тепловых реле осуществляется  и токовая защита различных электроустановок. В электротермических реле для то­ковой защиты используется тепловое действие электрического то­ка.  Нагрев  биметаллической  пластины  производится  с  помощью нагревательной спирали, по которой проходит ток. На рис. 19.8, б показана схема реле защиты электродвигателя от перегрева. Че­рез нагревательную спираль  1 проходит ток одной из фаз цепи питания электродвигателя. Если нагрузка  электродвигателя  воз­растает сверх допустимых пределов, ток в спирали / увеличива­ется, температура  растет  и  биметаллическая  пластина  2 изгиба­ется влево, освобождая защелку спускового механизма 3. Это при­водит к размыканию контактов 4 реле, которые находятся в цени питания аппаратуры включения электродвигателя. После останов­ки электродвигателя возврат контактов 4 реле и спускового ме­ханизма 3 в исходное положение выполняется вручную нажатием НА кнопку 5 после остывания биметаллической пластины. Но для повторного запуска электродвигатели этого недостаточно, необхо­дима подача специального сигнала на аппаратуру включения эле­ктродвигателя.   Биметаллические   реле  обладают   большой   инер­ционностью и не реагируют на большие, но кратковременные уве­личения тока. Поэтому пусковые токи электродвигателя не приво­дят к срабатыванию теплового реле.

В некоторых реле используется не косвенный нагрев биметал­лической пластины с помощью спирали, а прямой — пропускани­ем тока непосредственно через пластину. Основным недостатком биметаллических реле является низкая точность. Но благодаря простоте и низкой стоимости они получили преимущественное рас­пространение. Из числа других электротермических реле следует упомянуть электроконтактные термометры, в которых контакты замыкаются столбиком ртути, по уровню которой можно одновре­менно определить значение истинной температуры. Точность эле­ктроконтактных термометров выше, чем у биметаллических. Из­вестны также электротермические реле с расширяющимся газом. В таких реле газ при нагреве вытесняет ртуть, находящуюся на дне баллона, и тем самым разрывает контакт.

§ 19.7. Шаговые искатели и распределители

Шаговые искатели и распределители под действием уп­равляющего сигнала осуществляют поочередное переключение не­скольких исполнительных цепей. В простейшем случае шаговый искатель (рис. 19.9, а) имеет один входной зажим и несколько выходных. При подаче управляющего импульса в обмотку элект­ромагнита (ЭМ) входной зажим перемещается на один шаг, сое­диняясь с очередным выходным зажимом. Следовательно, номер ламели, цепь возврата размыкается и ускоренное движение шаго вого механизма прекращается. С помощью шагово-декадных рас пределителей осуществляется, например, автоматическая телефон ная связь. Когда мы набираем номер вызываемого телефона, т< диск телефонного аппарата дает столько импульсов, до какой циф ры мы его повернули. При этом шагово-декадный распределител! произвел соединение с соответствующим выходным проводом и од новременно подключил очередную декаду ламелей (новый ря; из десяти ламелей).

В шаговых искателях разных типов число рядов ламелей мо­жет достигать 8, а число ламелей в ряду — 50. Все шаговые ис­катели рассчитаны на работу в импульсном режиме с частотой до 10 срабатываний в секунду.

§ 19.8. Магнитоуправляемые контакты. Типы и устройство

В обычных электромагнитных реле наиболее часто от­каз возникает из-за контактов, которые подвергаются вредным воздействиям окружающей среды (окислению, загрязнению, кор­розии и др.). Существенно повысить надежность реле можно за • счет герметизации контактов. Так как в этом случае невозможно механически связать контактный узел с электромагнитным при­водом, то необходимо для перемещения герметизированных кон­тактов использовать силы электромагнитного притяжения. Кон­тактные пластины для этого изготовляются из ферромагнитного материала. Таким образом, контакты становятся магнитоуправ-ляемыми.

К магнитоуправляемым контактам относятся герконы (т. е. герметизированные контакты) и ферриды. Применяются они для тех же целей, что и мощные электромагнитные реле. Они и воз­никли в результате совершенствования контактных электромаг­нитных устройств и стремления свести к минимуму их недостат­ки: сравнительно небольшой срок службы (до 107 срабатываний), невысокое быстродействие (десятки миллисекунд), потребление энергии в течение всего периода притяжения якоря и необходи­мость периодического обслуживания.

Геркон (рис. 19.10, а) представляет собой впаянные в стек­лянную ампулу (баллон) пермаллоевые пластины /, служащие од­новременно токоподводами, контактами и магнитопроводом. Пла­стины впаяны в ампулу таким образом, чтобы контакты, в каче­стве которых используются внутренние концы пластин, покрытые золотом, радием или вольфрамом, находились на некотором рас­стоянии друг от друга, т. е. были разомкнуты.

К наружным концам пластин припаивают провода, служащие для присоединения к внешней цепи. Если геркон поместить в маг­нитное поле, созданное током в обмотке 2, окружающей геркон, то на контакты будет действовать электромагнитная сила F3. Ес­ли эта сила окажется больше противодействующего усилия упру­гих пластин, то произойдет замыкание контактов.

Электромагнитная сила притяжения контактов определяется аналогично силе притяжения, действующей в любом другом эле­ктромагнитном механизме:

 

Принимая зазор между пластинами плоскопараллельным, мож­но записать выражение для производной проводимости:

где / — ток в обмотке; w — число витков; / — длина обмотки; /i — перекрытие пластин; b — ширина пластин.

После отключения обмотки пластины под действием сил упру­гости возвращаются в исходное состояние, т. е. контакты размы­каются. Следовательно, удержать контакт в замкнутом состоянии можно только за счет потребления энергии от сети, что является одним из недостатков геркона. Герконы бывают вакуумные и га­зонаполненные, в которых стеклянная ампула заполнена азотом, водородом или другим инертным газом.

Для управления магнитоуправляемым контактом можно ис­пользовать не только магнитное поле катушки с током (рис. 19.10, а), но и магнитное поле постоянного магнита (рис. 19.10,6). В последнем случае срабатывание контактов осуществляется в за­висимости от взаимного перемещения геркона и постоянного маг­нита 3. Изменение магнитного поля, воздействующего на контакты, может осуществляться и за счет изменения параметров магнит­ной цепи при перемещении ферромагнитного экрана 4 (рис. 19.10, в).

Большая часть управляющего магнитного потока во всех схе­мах герконов, изображенных на рис. 19.10, проходит по воздуху. Так как воздушные участки имеют значительное магнитное сопротивление.

§ 19.9. Применение магнитоуправляемых контактов

На основе магнитоуправляемых контактов выпускаются высоконадежные промежуточные электромагнитные реле с числом контактных групп до десяти. В таких реле внутри общей катушки управления размещается несколько пар контактов (рис. 19.12). Как уже отмечалось, по сравнению с обычными электромагнит­ными реле герконовые имеют большее быстродействие и более на­дежны.

Однако им свойственны и некоторые недостатки. Они име­ют в 2—3 раза меньшие значения удельных токовых нагрузок на контакты, более критичны к переходным процессам в коммути­руемой  цепи.  Например,  при   3—5-кратном  увеличении  тока  посравнению с номинальным возможно сва­ривание контактов. В цепях с конденсато­рами возможны значительные броски тока, поэтому применение герконовых реле для коммутации таких цепей не рекомендуется. Необходимо отметить и характерный для герконовых реле недостаток — вибра­ция контактов при срабатывании. Это яв­ление называется «дребезг» контактов.

После подачи управляющего сигнала кон­такты сначала замыкаются, но тут же раз­мыкаются под действием сил упругости. Таких циклов замыкания-размыкания мо­жет быть несколько. Затем происходит не­сколько колебаний контактов без размыка­ния;  при этом происходит изменение контактного сопротивления.

Время вибрации контактов может со­ставлять половину полного времени срабатывания. Для борьбы с «дребезгом» контактов применяют специальные конструктивные и схемные решения.

На основе магнитоуправляемых контактов могут быть построе­ны различные путевые и конечные выключатели, реле различных неэлектрических величин. В качестве примера на рис. 19.13 по­казаны термоэлектрические реле (а) с биметаллической пласти­ной и реле давления  (б)  с упругим элементом в виде сильфона

 

гофрированного упругого стакана из фосфористой бронзы). При изменении температуры или давления постоянный магнит прибли­жается к геркону и его контакты срабатывают.

Магиитоуправляемые  контакты  специальной   конструкции  на­чинают применяться и для переключений в силовых цепях с мощ­ностью до нескольких сотен ватт. В таких устройствах использу­ется более массивный жесткий подвижный контактный сердечник, закрепленный на возвратной пружине. При этом за счет сниже­ния электрического сопротивления контактной системы и улучше­ния теплоотдачи удается повысить ток через контакты. Для этих же целей возможно применение жидкометаллических герметизи­рованных  контактов,   внутри   герметизированного   баллона   кото­рых  токопроводящие детали   частично   или   полностью   смочены ртутью.

Что такое электромагнитное реле? — Определение и типы

Определение: Электромагнитные реле — это те реле, которые работают по принципу электромагнитного притяжения. Это тип магнитного переключателя, который использует магнит для создания магнитного поля. Затем магнитное поле используется для размыкания и замыкания переключателя и для выполнения механической операции.

Типы реле электромагнитного

По принципу действия электромагнитные реле в основном делятся на два типа.Это

  1. Реле электромагнитного притяжения
  2. Реле электромагнитной индукции

1. Реле электромагнитного притяжения

В этом реле якорь притягивается к полюсу магнита. Электромагнитная сила, действующая на подвижный элемент, пропорциональна квадрату тока, протекающего через катушку. Это реле реагирует как на переменный, так и на постоянный ток.

Для количества переменного тока развиваемая электромагнитная сила равна

.

Приведенное выше уравнение показывает, что электромагнитное реле состоит из двух компонентов, один из которых не зависит от времени, а другой зависит от времени и пульсирует с удвоенной частотой питания.Эта двойная частота питания создает шум и, следовательно, повреждает контакты реле.

Трудность двухчастотного источника питания преодолевается путем разделения потока, развиваемого в электромагнитном реле. Эти потоки действовали одновременно, но различались по фазе времени. Таким образом, результирующая отклоняющая сила всегда положительна и постоянна. Разделение потоков достигается за счет использования электромагнита, имеющего фазосдвигающие цепи, или за счет установки затеняющих колец на полюсах электромагнита.

Реле электромагнитного притяжения — это простейший тип реле, которое включает в себя плунжер (или соленоид), шарнирный якорь, вращающийся якорь (или сбалансированный) и поляризованное реле с подвижным железом. Все эти реле показаны ниже.

а. Реле со сбалансированным пучком — В реле такого типа сравниваются две величины, потому что развиваемая электромагнитная сила изменяется пропорционально квадрату ампер-витка. Коэффициент рабочего тока для такого реле невысокий. Если реле настроено на быструю работу, то при быстрой работе оно будет иметь тенденцию выходить за пределы допустимого диапазона.

г. Реле с откидным якорем — Чувствительность реле можно увеличить для работы от постоянного тока, добавив постоянный магнит. Это реле также известно как подвижное поляризованное реле.

2. Реле электромагнитной индукции

Электромагнитное реле работает по принципу асинхронного двигателя с расщепленной фазой. Начальная сила создается на подвижном элементе, которым может быть диск или другая форма ротора немагнитного подвижного элемента. Сила создается за счет взаимодействия электромагнитных потоков с вихревым током, который индуцируется в роторе этими потоками.

Для получения разности фаз в потоках использовалась структура другого типа. Этих строений

а. Конструкция с заштрихованными столбами
b. Счетчик ватт-часов или двойная обмотка
c. Структура индукционной чашки.

а. Конструкция заштрихованных столбов

Эта катушка обычно возбуждается током, протекающим в одиночной катушке, намотанной на магнитную структуру, содержащую воздушный зазор. Потоки в воздушном зазоре, создаваемые инициализирующим током, разделяются на два потока смещения во времени-пространстве и заштрихованным кольцом.Заштрихованное кольцо состоит из медного кольца, охватывающего часть поверхности полюса каждого полюса.

Диск изготовлен из алюминия. Инерция алюминиевого диска намного меньше .. Следовательно, им требуется меньший отклоняющий момент для его движения. В двух кольцах есть ток, индуцированный переменным потоком электромагнитного поля. Магнитное поле, возникающее из-за тока, создает магнитный поток в части железного кольца, окруженной кольцом, который отстает по фазе на 40-50 ° от потока в незатененной части полюса.

г. Конструкция счетчика ватт-часов

Эта конструкция состоит из электромагнита E-образной формы и U-образного электромагнита с вращающимся между ними без диска. Сдвиг фаз между потоками, создаваемыми электромагнитом, получается за счет потока, создаваемого двумя магнитами, имеющими разное сопротивление и индуктивность для двух цепей.

Электромагнит E-образной формы имеет две обмотки: первичную и вторичную. Первичный ток переносил ток реле I 1 , в то время как вторичная обмотка подключена к обмоткам U-образного электромагнита.

Первичная обмотка несет ток реле I 1 , в то время как вторичный ток индуцирует ЭДС во вторичной обмотке и, таким образом, циркулирует в ней ток I 2 . Поток φ 1 индуцирует в E-образном магните, а поток φ индуцирует в U-образном магните. Эти потоки, индуцированные в верхнем и нижнем магнитном поле, различаются по фазе на угол θ, который будет развивать крутящий момент на диске, пропорциональный φ 1 φ sinθ.

Наиболее важной особенностью реле является то, что размыкание может управлять их работой или замыкать цепь вторичной обмотки.Если вторичная обмотка разомкнута, крутящий момент не будет развиваться, и, таким образом, реле может выйти из строя.

г. Реле индукционного стакана

Реле, работающее по принципу электромагнитной индукции, известно как реле индукционной чашки. Реле имеет два или более электромагнита, которые возбуждаются катушкой реле. Статический железный сердечник помещается между электромагнитом, как показано на рисунке ниже.

Катушка, намотанная на электромагнит, создает вращающееся магнитное поле.Из-за вращающегося магнитного поля внутри чашки возникает ток. Таким образом, чашка начинает вращаться. Направление вращения чашки такое же, как у тока.

В реле индукционной чашки создается больший крутящий момент по сравнению с затемненным реле и реле типа ваттметра. Реле быстро срабатывает, и их время срабатывания составляет примерно 0,01 сек.

Лучшее электромагнитное реле переменного тока — Выгодные предложения на электромагнитное реле переменного тока от глобальных продавцов электромагнитных реле переменного тока

Отличные новости !!! Вы находитесь в нужном месте для электромагнитного реле переменного тока.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку это электромагнитное реле переменного тока должно стать одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели электромагнитное реле переменного тока на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в электромагнитном реле переменного тока и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести электромагнитное реле переменного тока по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Символы реле и электромагниты

Символика реле / ​​управления электромагнитами

Символ Описание Символ Описание
Реле / ​​соленоид
(катушка и переключатель)
Общий символ
+ информация
Реле / ​​соленоид с управлением
Реле / ​​соленоид с управлением Реле / ​​соленоид
Катушка и кнопка
Реле (катушка)
Общее обозначение
Реле (катушка)
Общее обозначение
Реле Реле с двойной катушкой
Реле с двойной катушкой Две противоположные обмотки рабочего реле
Реле с двойной катушкой Реле максимального тока
Реле быстрого отключения Реле дифференциального тока
Реле медленного возбуждения Реле медленного отключения
Реле высокой скорости, как для включения, так и для отключения Реле максимального напряжения
Быстрое реле Реле срабатывает при неисправном напряжении
Реле, управляемое картой Реле не зависит от переменного тока
Дифференциальное реле Реле поляризованное
+ Инфо
Реле с магнитной поляризацией Реле с задержкой при отключении
Реле электромагнитное Термореле
Термореле
Полупроводниковое реле
Электронное реле
+ Информация
Реле шаговое или импульсное
Реле дистанционного управления Импульсное реле
Остаточное реле Прерывистое реле
Реле остаток Электроклапан / Электромагнитный клапан
+ информация
Реле переменного тока Реле упора с задержкой срабатывания
Реле механического резонанса
эл.г. 25 Гц
Реле ступени
Реле механической блокировки
Герконское реле / ​​Геркон
+ информация

Обозначения измерительных реле

Реле максимального напряжения Реле минимального напряжения
Реле низкого сопротивления Реле отсутствия напряжения
Реле обнаружения с разделенным проводом Реле малой мощности
Реле датчика короткого замыкания между катушками Реле обратного тока
Реле обнаружения отказа в трехфазных линиях Реле максимального и минимального тока
Реле блокировки ротора Реле частоты
Реле автоматического повторного включения Реле максимального тока с двумя измерительными элементами и диапазоном образца
эл.г. 1 … 5 А диапазон выборки
Реле максимального тока с задержкой срабатывания Измерительное реле
Звездочка заменяется буквами или символами, относящимися к реле

Обозначения электромагнитов / Элементы управления электромагнитными полями

Электромагнит
Электромагнитный привод
+ Инфо
Электромагнит
Электромагнит
Электромагнитный привод
Символ США
Контакт с электромагнитным анкерным механизмом

Обозначения контактов реле

Открытые контакты
+ Инфо
Замкнутые контакты
Открытые контакты Замкнутые контакты
Открытые контакты Замкнутые контакты
Контакты рабочие Контакты отдыхающие
Переключающие контакты Переключайте контакты последовательно
Коммутатор / переключатель Коммутатор / переключатель
Картинная галерея реле и электромагнитов
Символ скачать

Реле Меры предосторожности при использовании | Средства автоматизации | Industrial Devices

Реле может подвергаться воздействию различных условий окружающей среды во время фактического использования, что может привести к неожиданному отказу.Следовательно, необходимы испытания в практическом диапазоне в реальных условиях эксплуатации. Соображения по применению должны быть рассмотрены и определены для правильного использования реле.

Для правильного использования реле характеристики выбранного реле должны быть хорошо известны, а условия использования реле должны быть исследованы, чтобы определить, подходят ли они к условиям окружающей среды, и в то же время катушка Условия, условия контактов и условия окружающей среды для фактически используемого реле должны быть заранее известны в достаточной степени.
В таблице ниже приведены основные моменты выбора реле. Его можно использовать в качестве справочного материала для изучения вопросов и предупреждений.

Элемент спецификации Особенности выбора
Катушка a) Номинальное значение
b) Напряжение срабатывания (ток)
c) Напряжение отпускания (ток)
d) Максимальное длительное подаваемое напряжение (ток)
e) Сопротивление катушки
f) Полное сопротивление
g) Повышение температуры
1) Выберите реле с учетом пульсации источника питания.
2) Уделите достаточно внимания температуре окружающей среды, повышению температуры змеевика и горячему запуску.
3) При использовании в сочетании с полупроводниками необходимо уделять особое внимание применению. Остерегайтесь падений напряжения при запуске.
Контакты a) Расположение контактов
b) Мощность контактов
c) Материал контактов
d) Срок службы
e) Сопротивление контакта
1) Желательно использовать стандартный продукт с количеством контактов больше необходимого.
2) Желательно, чтобы срок службы реле соответствовал сроку службы устройства, в котором оно используется.
3) Соответствует ли материал контактов типу нагрузки?
Особая осторожность необходима при низком уровне нагрузки.
4) Номинальный срок службы может сократиться при использовании при высоких температурах.
Срок службы следует проверять в реальной атмосфере.
5) В зависимости от схемы релейный привод может синхронизироваться с нагрузкой переменного тока.
Поскольку это приведет к резкому сокращению срока службы, необходимо проверить фактическую машину.
Время срабатывания a) Время срабатывания
b) Время отпускания
c) Время дребезга
d) Частота переключения
1) Для звуковых цепей и подобных приложений полезно уменьшить время дребезга.
Механические характеристики а) Вибростойкость
б) Ударопрочность
в) Температура окружающей среды
г) Срок службы
1) Учитывайте характеристики при вибрации и ударах в месте использования.
2) Реле, в котором используется изолированный медный провод с высокой термостойкостью, если оно будет использоваться в среде с особенно высокими температурами.
Прочие предметы a) Напряжение пробоя
b) Способ монтажа
c) Размер
d) Защитная конструкция
1) Можно выбрать способ подключения: вставной тип, тип печатной платы, пайка, клеммы-вкладыши и тип винтового крепления.
2) Для использования в неблагоприятной атмосфере следует выбирать герметичную конструкцию.
3) При использовании в неблагоприятных условиях используйте герметичный тип. 4) Есть ли особые условия?

Основы работы с реле

  • Для сохранения исходных характеристик следует соблюдать осторожность, чтобы не уронить реле и не задеть его.
  • При нормальном использовании реле сконструировано таким образом, что корпус не отсоединяется. Для сохранения исходной производительности корпус снимать не следует. Характеристики реле не могут быть гарантированы при снятии корпуса.
  • Рекомендуется использовать реле в атмосфере при стандартной температуре и влажности с минимальным количеством пыли, SO 2 , H 2 S или органических газов. Для установки в неблагоприятных условиях следует рассмотреть один из герметичных типов.
    Избегайте использования кремниевых смол рядом с реле, так как это может привести к выходу из строя контактов. (Это также относится к реле с пластиковым уплотнением.)
  • Необходимо соблюдать полярность катушки (+, -) для поляризованных реле.
  • Для правильного использования необходимо, чтобы на катушке подавалось номинальное напряжение. Используйте прямоугольные волны для катушек постоянного тока и синусоидальные волны для катушек переменного тока.
  • Убедитесь, что подаваемое напряжение катушки не превышает максимально допустимого напряжения.
  • Номинальная коммутируемая мощность и срок службы приведены только для справки. Физические явления на контактах и ​​срок службы контактов сильно различаются в зависимости от типа нагрузки и условий эксплуатации. Поэтому обязательно перед использованием внимательно проверьте тип нагрузки и условия эксплуатации.
  • Не превышайте допустимые значения температуры окружающей среды, указанные в каталоге.
  • Используйте флюсостойкий или герметичный тип, если будет использоваться автоматическая пайка.
  • Используйте чистящие растворители на спиртовой основе, если чистка должна выполняться с использованием реле герметичного типа. Избегайте ультразвуковой чистки реле всех типов.
  • Избегайте сгибания клемм, так как это может привести к неисправности.
  • В качестве ориентира используйте монтажное давление Faston от 40 до 70 Н {4 до 7 кгс} для реле с лепестковыми выводами.
  • Для правильного использования прочтите основной текст.

Применение номинального напряжения является основным требованием для точной работы реле. Хотя реле будет работать, если приложенное напряжение превышает напряжение срабатывания, требуется, чтобы на катушку подавалось только номинальное напряжение, не принимая во внимание изменения сопротивления катушки и т. Д. Из-за различий в типе источника питания, напряжении. колебания и повышение температуры.
Также необходимо соблюдать осторожность, потому что могут возникнуть такие проблемы, как короткое замыкание слоев и выгорание в катушке, если приложенное напряжение превышает максимальное значение, которое может применяться непрерывно.В следующем разделе содержатся меры предосторожности относительно входа катушки. Пожалуйста, обратитесь к нему, чтобы избежать проблем.

1. Основные меры предосторожности при обращении с катушкой

Тип работы переменного тока

Для работы реле переменного тока источником питания почти всегда является коммерческая частота (50 или 60 Гц) со стандартными напряжениями 6, 12, 24, 48, 100 и 200 В переменного тока. Из-за этого, когда напряжение отличается от стандартного, продукт является предметом особого заказа, и факторы цены, доставки и стабильности характеристик могут создавать неудобства.Насколько это возможно, следует выбирать стандартные напряжения.
Кроме того, для типа переменного тока, потери сопротивления затеняющей катушки, потери на вихревые токи магнитной цепи и выход с гистерезисными потерями, и из-за более низкого КПД катушки обычно повышение температуры больше, чем для типа постоянного тока.
Кроме того, поскольку гудение возникает при напряжении ниже срабатывания и выше номинального напряжения, требуется осторожность в отношении колебаний напряжения источника питания.
Например, в случае запуска двигателя, если напряжение источника питания падает, и во время гудения реле, если оно возвращается в восстановленное состояние, контакты страдают ожогом и сваркой, с возникновением ложного срабатывания самоподдерживающееся состояние.
Для типа переменного тока существует пусковой ток во время работы (для изолированного состояния якоря полное сопротивление низкое и протекает ток, превышающий номинальный; для закрепленного состояния якоря полное сопротивление высокое и номинальное значение протекающего тока), поэтому в случае использования нескольких реле при параллельном соединении необходимо учитывать потребляемую мощность.

Тип работы постоянного тока

Для работы реле постоянного тока существуют стандарты для напряжения и тока источника питания, при этом стандарты постоянного напряжения установлены на 5, 6, 12, 24, 48 и 100 В, но в отношении тока значения, выраженные в каталогах в миллиамперах пусковой ток.
Однако, поскольку это значение тока срабатывания является не чем иным, как гарантией того, что якорь практически не перемещается, необходимо учитывать изменение напряжения питания и значений сопротивления, а также увеличение сопротивления катушки из-за повышения температуры. наихудшие условия работы реле, заставляя считать текущее значение в 1,5–2 раза больше тока срабатывания. Кроме того, из-за широкого использования реле в качестве ограничивающих устройств вместо счетчиков как напряжения, так и тока, а также из-за постепенного увеличения или уменьшения тока, подаваемого на катушку, вызывая возможную задержку движения контактов, существует вероятность того, что назначенная управляющая способность может не быть удовлетворена.При этом необходимо проявлять осторожность. Сопротивление обмотки реле постоянного тока изменяется в зависимости от температуры окружающей среды, а также из-за собственного тепловыделения примерно на 0,4% / ° C и, соответственно, при повышении температуры из-за увеличения срабатывания и отпускания. напряжения, требуется осторожность. (Однако для некоторых поляризованных реле эта скорость изменения значительно меньше.)

2. Источник питания для входа катушки

Напряжение питания катушки переменного тока

Для стабильной работы реле напряжение включения должно находиться в диапазоне +10% / — 15% от номинального напряжения.Однако необходимо, чтобы форма волны напряжения, приложенного к катушке, была синусоидальной. Нет проблем, если источником питания является коммерческий источник питания, но когда используется стабилизированный источник питания переменного тока, возникает искажение формы сигнала из-за этого оборудования, и существует возможность аномального перегрева. С помощью затеняющей катушки для катушки переменного тока гудение прекращается, но с искаженной формой волны эта функция не отображается. На рис. 1 ниже показан пример искажения формы сигнала.
Если источник питания для рабочей цепи реле подключен к той же линии, что и двигатели, соленоиды, трансформаторы и другие нагрузки, при работе этих нагрузок напряжение в сети падает, и из-за этого контакты реле подвергаются воздействию вибрации и последующие ожоги. В частности, если используется трансформатор небольшого типа и его мощность не имеет запаса прочности, при наличии длинной проводки, или в случае использования в быту или небольшом магазине, где проводка тонкая, необходимо принять меры предосторожности, поскольку нормальных колебаний напряжения в сочетании с другими факторами.При возникновении неисправности следует провести обследование ситуации с напряжением с помощью синхроскопа или аналогичных средств и принять необходимые контрмеры, а вместе с этим определить, следует ли использовать специальное реле с подходящими характеристиками возбуждения или выполнить изменение в цепи постоянного тока, как показано на рис. 2, в которое вставлен конденсатор для поглощения колебаний напряжения. В частности, когда используется магнитный переключатель, поскольку нагрузка становится подобной нагрузке двигателя, в зависимости от применения, следует попробовать и исследовать разделение рабочей цепи и силовой цепи.

Источник питания для входа постоянного тока

Мы рекомендуем, чтобы напряжение, подаваемое на оба конца катушки в реле постоянного тока, находилось в пределах ± 5% от номинального напряжения катушки.
В качестве источника питания для реле постоянного тока используется батарея или схема полуволнового или двухполупериодного выпрямителя со сглаживающим конденсатором. Характеристики напряжения возбуждения реле будут меняться в зависимости от типа источника питания, поэтому для отображения стабильных характеристик наиболее желательным методом является идеальный постоянный ток.
В случае пульсации, включенной в источник питания постоянного тока, особенно в случае схемы полуволнового выпрямителя со сглаживающим конденсатором, если емкость конденсатора слишком мала из-за влияния пульсации, возникает гудение и неудовлетворительное состояние производится.
Для конкретной схемы, которая будет использоваться, абсолютно необходимо подтвердить характеристики.
Необходимо рассмотреть возможность использования источника питания постоянного тока с пульсацией менее 5%. Также обычно следует думать о следующем.

  • 1. Для реле шарнирного типа нельзя использовать однополупериодный выпрямитель, если только вы не используете сглаживающий конденсатор. Для правильного использования необходимо оценить колебания и характеристики.
  • 2. Для реле шарнирного типа существуют определенные приложения, которые могут или не могут использовать сам по себе двухполупериодный выпрямитель. Пожалуйста, уточняйте технические характеристики у оригинального производителя.
  • 3.Приложенное к катушке напряжение и падение напряжения
    Ниже показана схема, управляемая одним и тем же источником питания (аккумуляторной батареей и т. Д.).) как для катушки, так и для контакта.
    На электрическую долговечность влияет падение напряжения в катушке при включении нагрузки.
    Убедитесь, что на катушку подается фактическое напряжение при фактической нагрузке.

3. Максимальное продолжительное напряжение и повышение температуры

Для правильного использования необходимо, чтобы на катушке подавалось номинальное напряжение.Однако обратите внимание, что если на катушку приложить напряжение, большее или равное максимальному непрерывному напряжению, катушка может сгореть или ее слои могут закоротиться из-за повышения температуры. Кроме того, не превышайте допустимый диапазон температуры окружающей среды, указанный в каталоге.

Максимальное длительное напряжение

В дополнение к требованию к стабильности работы реле максимальное непрерывное напряжение на обмотке является важным ограничением для предотвращения таких проблем, как термическое повреждение или деформация изоляционного материала, или возникновение опасности возгорания.
При фактическом использовании с изоляцией E-типа, когда температура окружающей среды составляет 40 ° C / 104 ° F, предел повышения температуры 80 ° C / 176 ° F считается разумным в соответствии с методом сопротивления. Однако при соблюдении Закона о безопасности электрических устройств и материалов это значение становится 75 ° C / 167 ° F.

Повышение температуры из-за импульсного напряжения

Когда используется импульсное напряжение со временем включения менее 2 минут, повышение температуры катушки не имеет никакого отношения к времени включения.Это зависит от отношения времени включения к времени выключения, и по сравнению с протеканием непрерывного тока оно довольно мало. В этом отношении различные реле по сути одинаковы.

Текущее время прохождения (%)
Для непрерывного прохода Значение повышения температуры составляет 100%
ВКЛ: ВЫКЛ = 3: 1 Около 80%
ВКЛ: ВЫКЛ = 1: 1 Около 50%
ВКЛ: ВЫКЛ = 1: 3 Около 35%
Изменение напряжения срабатывания из-за повышения температуры катушки (горячий старт)

В реле постоянного тока после непрерывного прохождения тока в катушке, если ток отключается, а затем сразу же снова включается, из-за повышения температуры в катушке напряжение срабатывания становится несколько выше.Кроме того, это будет то же самое, что использовать его в атмосфере с более высокой температурой. Отношение сопротивления / температуры для медного провода составляет около 0,4% на 1 ° C, и с этим соотношением сопротивление катушки увеличивается. То есть для срабатывания реле необходимо, чтобы напряжение было выше, чем напряжение срабатывания, и напряжение срабатывания повышалось в соответствии с увеличением значения сопротивления. Однако для некоторых поляризованных реле эта скорость изменения значительно меньше.

4.Подача напряжения на катушку и время срабатывания

В случае работы на переменном токе время срабатывания сильно колеблется в зависимости от точки фазы, в которой переключатель включен для возбуждения катушки, и выражается в виде определенного диапазона, но для миниатюрных типов это в большинстве случаев. часть 1/2 цикла. Однако для реле довольно большого типа, где дребезг велик, время срабатывания составляет от 7 до 16 мс, с временем срабатывания порядка от 9 до 18 мс. Кроме того, в случае работы на постоянном токе, до степени большого входного сигнала катушки, рабочее время время быстрое, но если оно слишком быстрое, время дребезга контакта «Форма А» увеличивается.Имейте в виду, что условия нагрузки (в частности, когда пусковой ток большой или нагрузка близка к номинальной) могут привести к сокращению срока службы и незначительному свариванию.

5. лотковые цепи (байпасные цепи)

В случае построения схемы последовательности из-за байпасного потока или альтернативной маршрутизации необходимо позаботиться о том, чтобы не было ошибочной или ненормальной работы. Чтобы понять это условие при подготовке цепей последовательности, как показано на рис.4, где 2 строки записаны как линии источника питания, верхняя линия всегда (+), а нижняя линия (-) (когда цепь переменного тока, применяется то же самое). Соответственно, сторона (+) обязательно является стороной для контактных соединений (контакты для реле, таймеров, концевых выключателей и т. Д.), А сторона (-) — это сторона цепи нагрузки (катушка реле, катушка таймера, катушка магнита, соленоид. катушка, мотор, лампа и т. д.).
На рис. 5 показан пример паразитных цепей. На рис. 5 (a) при замкнутых контактах A, B и C после срабатывания реле R 1 , R 2 и R 3 , если контакты B и C разомкнуты, имеется последовательная цепь через A, R 1 , R 2 и R 3 , и реле будут гудеть и иногда не переходят в состояние отключения.
Подключения, показанные на Рис. 5 (b), выполнены правильно. Кроме того, что касается цепи постоянного тока, поскольку она проста с помощью диода для предотвращения паразитных цепей, следует применять правильное применение.

6. Постепенное увеличение напряжения на катушке и цепь самоубийства

Когда напряжение, приложенное к катушке, увеличивается медленно, операция переключения реле нестабильна, контактное давление падает, дребезг контактов увеличивается, и возникает нестабильное состояние контакта.Этот метод подачи напряжения на катушку использовать не следует, и следует рассмотреть способ подачи напряжения на катушку (использование схемы переключения). Кроме того, в случае реле с фиксацией, использующих контакты «формы B», используется метод цепи самокатушки для полного прерывания, но из-за возможности развития неисправности следует соблюдать осторожность.
Схема, показанная на рис. 6, вызывает синхронизацию и последовательную работу с использованием реле герконового типа, но это не лучший пример со смесью постепенного увеличения приложенного напряжения для катушки и схемы самоубийства.В части синхронизации для реле R 1 , когда время ожидания истекло, возникает дребезжание, вызывающее проблемы. В первоначальном тесте (пробное производство) он показывает удовлетворительную работу, но по мере увеличения количества операций почернение контактов (карбонизация) плюс дребезжание реле создают нестабильность в работе.

7. синхронизация фаз при переключении нагрузки переменного тока

Если переключение контактов реле синхронизировано с фазой питания переменного тока, может произойти сокращение электрического срока службы, сварные контакты или явление блокировки (неполное размыкание) из-за переноса материала контакта.Поэтому проверяйте реле, пока оно работает в реальной системе. При управлении реле с таймерами, микрокомпьютерами, тиристорами и т. Д. Возможна синхронизация с фазой питания.

8. Ошибочная работа из-за индуктивных помех

Для длинных проводов, когда линия для цепи управления и линия для подачи электроэнергии используют один кабелепровод, индукционное напряжение, вызванное индукцией от линии питания, будет подаваться на рабочую катушку независимо от того, подается ли управляющий сигнал. выкл.В этом случае реле и таймер не могут вернуться в исходное состояние. Поэтому, когда проводка проходит на большом расстоянии, помните, что наряду с индуктивными помехами отказ соединения может быть вызван проблемой с распределительной способностью, или устройство может выйти из строя из-за влияния внешних скачков напряжения, например, вызванных молнией.

9. долгосрочный токонесущий

Для цепей (цепей аварийных ламп, устройств аварийной сигнализации и проверки ошибок, которые, например, восстанавливаются только во время сбоя и вывода предупреждений с помощью контактов формы B), желательна цепь, разработанная для невозбуждения, когда она остается в работе, желательна для цепей (цепей для аварийных ламп, устройств сигнализации и проверки ошибок), которые будут постоянно пропускать ток в течение длительные периоды без переключения реле.Непрерывный, длительный ток, подаваемый на катушку, будет способствовать ухудшению изоляции и характеристик катушки из-за нагрева самой катушки.
Для таких схем используйте фиксирующее реле с магнитной фиксацией. Если вам необходимо использовать одно стабильное реле, используйте реле герметичного типа, на которое не так легко влияют условия окружающей среды, и обеспечьте отказоустойчивую схему, учитывающую возможность выхода из строя или отключения контактов.

10.Использование при нечастом переключении

Пожалуйста, проводите периодические проверки контактной проводимости, если частота переключения составляет один или меньше раз в месяц.
Если переключение контактов не происходит в течение длительного времени, на контактных поверхностях может образоваться органическая мембрана, что приведет к нестабильности контакта.

11. Относительно электролитической коррозии катушек

В случае схем катушек сравнительно высокого напряжения, когда такие реле используются в атмосфере с высокой температурой и высокой влажностью или при непрерывном прохождении тока, можно сказать, что коррозия является результатом возникновения электролитической коррозии.Из-за возможности возникновения обрыва цепи следует обратить внимание на следующие моменты.

  • 1. Сторона (+) источника питания должна быть подключена к шасси. (См. Рис. 8) (Общий для всех реле)
  • 2. В случае неизбежного заземления стороны (-) или в случае, когда заземление невозможно.
    (1) Вставьте контакты (или переключатель) в сторону (+) источника питания. (См. Рис. 9) (Общий для всех реле)
    (2) Если заземление не требуется, подключите клемму заземления к (+) стороне катушки.(См. Рис.10) (NF и NR с клеммой заземления)
  • 3. Если сторона (-) источника питания заземлена, всегда избегайте перекрещивания контактов (и переключателей) на стороне (-). (См. Рис.11) (Общий для всех реле)
  • 4. В случае реле с клеммой заземления, когда клемма заземления не считается эффективной, отсутствие подключения к земле играет важную роль в качестве метода предотвращения электролитической коррозии.

Примечание. Обозначение на чертеже указывает на вставку изоляции между железным сердечником и шасси.В реле, где имеется клемма заземления, железный сердечник можно заземлить непосредственно на шасси, но из-за электролитической коррозии более целесообразно не выполнять подключение.

КОНТАКТ

Контакты — важнейшие элементы конструкции реле. На характеристики контактов заметно влияет материал контакта, а также значения напряжения и тока, подаваемые на контакты (в частности, формы сигналов напряжения и тока во время включения и отключения), тип нагрузки, частота переключения, окружающая атмосфера, форма контакта. , скорость переключения контактов и дребезга.
Из-за переноса контактов, сварки, аномального износа, увеличения контактного сопротивления и различных других повреждений, которые приводят к неправильной эксплуатации, следующие пункты требуют тщательного изучения.

* Мы рекомендуем вам проверить в одном из наших офисов продаж.

1. Основные меры предосторожности при обращении

Напряжение

Когда в цепь включена индуктивность, в качестве напряжения контактной цепи генерируется довольно высокая противоэдс, и поскольку в пределах значения этого напряжения, энергия, приложенная к контактам, вызывает повреждение с последующим износом контактов и переносом контактов, поэтому необходимо соблюдать осторожность в отношении управляющей способности.В случае постоянного тока нет точки нулевого тока, как в случае с переменным током, и, соответственно, после того, как возникла катодная дуга, поскольку ее трудно погасить, увеличенное время дуги является основной причиной. Кроме того, из-за фиксированного направления тока явление смещения контактов, как отдельно отмечено ниже, возникает в связи с износом контактов. Обычно приблизительная контрольная способность упоминается в каталогах или аналогичных технических паспортах, но одного этого недостаточно.Со специальными контактными цепями для каждого отдельного случая производитель либо оценивает на основе прошлого опыта, либо проводит испытания в каждом случае. Кроме того, в каталогах и аналогичных технических паспортах упомянутая управляющая способность ограничивается резистивной нагрузкой, но для этого класса реле указано широкое значение, и обычно допустимую нагрузку по току следует рассматривать как таковую для цепей 125 В переменного тока. .
Минимальные допустимые нагрузки указаны в каталоге; однако они представлены только в качестве ориентира для нижнего предела, который может переключать реле, и не являются гарантированными значениями.
Уровень надежности этих значений зависит от частоты коммутации, условий окружающей среды, изменения желаемого контактного сопротивления и абсолютного значения.
Используйте реле с контактами AgPd, когда требуется точный аналоговый контроль нагрузки или контактное сопротивление не более 100 мОм (для измерений, беспроводных приложений и т. Д.).

Текущий

Существенное влияние оказывает ток как во время замыкания, так и во время размыкания контактной цепи.Например, если нагрузкой является двигатель или лампа, в зависимости от пускового тока во время замыкания цепи, износ контактов и степень передачи контактов увеличиваются, а контактная сварка и перенос контактов делают разделение контактов невозможным.

2. Характеристики обычных контактных материалов

Характеристики контактных материалов приведены ниже. Обращайтесь к ним при выборе реле.

Материал контактов Ag
(серебристый)
Электропроводность и теплопроводность — самые высокие из всех металлов.Обладает низким контактным сопротивлением, недорогой и широко используется. Недостатком является то, что он легко образует сульфидную пленку в сульфидной атмосфере. Требуется осторожность при низком напряжении и низком уровне тока.
AgSnO 2
(серебро-олово)
Обладает превосходной сварочной стойкостью; однако, как и в случае с Ag, он легко образует сульфидную пленку в сульфидной атмосфере.
AgW
(серебро-вольфрам)
Высокие твердость и температура плавления, отличная устойчивость к дуге и высокая устойчивость к переносу материала.Однако требуется высокое контактное давление. Кроме того, контактное сопротивление относительно высокое, а устойчивость к коррозии плохая. Также есть ограничения на обработку и установку на контактные пружины.
AgNi
(серебро-никель)
Равно электропроводности серебра. Отличное сопротивление дуге.
AgPd
(серебро-палладий)
Обладает высокой устойчивостью к коррозии и сульфидированию при комнатной температуре; однако в контурах низкого уровня он легко поглощает органические газы и образует полимеры.Следует использовать золотое покрытие или другие меры для предотвращения такого накопления полимера.
Поверхность Правовое покрытие
(родий)
Сочетает в себе отличную коррозионную стойкость и твердость. В качестве гальванических контактов используются при относительно небольших нагрузках. В атмосфере органического газа необходимо соблюдать осторожность, поскольку могут образовываться полимеры. Поэтому он используется в реле с герметичным уплотнением (герконовые реле и т. Д.).
Au плакированный
(плакированный золотом)
Au, обладающий превосходной коррозионной стойкостью, наплавлен на основной металл.Особые характеристики — равномерная толщина и отсутствие проколов. Очень эффективен, особенно при низких нагрузках в относительно неблагоприятной атмосфере. Часто сложно реализовать плакированные контакты в существующих реле из-за конструкции и установки.
Покрытие золотом
(позолота)
Эффект аналогичен алюминиевому покрытию. В зависимости от используемого процесса нанесения покрытия очень важен надзор, так как существует вероятность появления точечных отверстий и трещин. Относительно легко применить золочение в существующих реле.
Вспышка золотом
(тонкопленочное золотое покрытие)
от 0,1 до 0,5 мкм
Предназначен для защиты основного металла контактов при хранении переключателя или устройства со встроенным переключателем. Однако определенная степень устойчивости контактов может быть получена даже при переключении нагрузок.

3. Защита от прикосновения

Счетчик ЭДС

При коммутации индуктивных нагрузок с помощью реле постоянного тока, таких как цепи реле, двигатели постоянного тока, муфты постоянного тока и соленоиды постоянного тока, всегда важно поглощать скачки напряжения (например.г. с диодом) для защиты контактов.
Когда эти индуктивные нагрузки отключаются, возникает противоэдс от нескольких сотен до нескольких тысяч вольт, что может серьезно повредить контакты и значительно сократить срок службы. Если ток в этих нагрузках относительно невелик, около 1 А или меньше, противоэдс вызовет зажигание тлеющего или дугового разряда. Разряд разлагает органические вещества, содержащиеся в воздухе, и вызывает образование черных отложений (оксидов, карбидов) на контактах. Это может привести к выходу из строя контакта.

Пример счетчика ЭДС и фактического измерения

На рис. 12 (a) противоэдс (e = -L di / dt) с крутой формой волны генерируется через катушку с полярностью, показанной на рис. 12 (b), в момент отключения индуктивной нагрузки. Счетчик ЭДС проходит по линии питания и достигает обоих контактов.
Обычно критическое напряжение пробоя диэлектрика при стандартной температуре и давлении воздуха составляет от 200 до 300 вольт.Следовательно, если противоэдс превышает это значение, на контактах возникает разряд для рассеивания энергии (1 / 2Li 2 )
, хранящейся в катушке. По этой причине желательно поглощать противоэдс до 200 В или меньше.

Явление переноса материала

Передача материала контактов происходит, когда один контакт плавится или закипает, а материал контакта переходит на другой контакт. По мере увеличения количества переключений появляются неровные контактные поверхности, такие как те, что показаны на рис.13. Через некоторое время неровные контакты замыкаются, как если бы они были сварены вместе. Это часто происходит в цепях, где искры возникают в момент замыкания контактов, например, когда постоянный ток велик для индуктивных или емкостных нагрузок постоянного тока или когда большой бросок тока (несколько ампер или несколько десятков ампер).
Цепи защиты контактов и контактные материалы, устойчивые к переносу материала, такие как AgSnO 2 , AgW или AgCu, используются в качестве контрмер. Обычно на катоде появляется вогнутое образование, а на аноде — выпуклое образование.Для емкостных нагрузок постоянного тока (от нескольких ампер до нескольких десятков ампер) всегда необходимо проводить фактические подтверждающие испытания.

Схема защиты контактов

Использование контактных защитных устройств или схем защиты может снизить противоэдс до низкого уровня. Однако учтите, что неправильное использование приведет к нежелательным последствиям. Типовые схемы защиты контактов приведены в таблице ниже.
(G: хорошо, NG: плохо, C: осторожно)

Избегайте использования схем защиты, показанных на рисунках справа. Хотя индуктивные нагрузки постоянного тока обычно труднее переключать, чем резистивные нагрузки, использование соответствующей схемы защиты повысит характеристики до уровня резистивных нагрузок.

Хотя чрезвычайно эффективен в дугогасящем

Твердотельные реле с управляющими входами переменного или постоянного тока

текст.перейти к содержанию text.skipToNavigation

переключить

  • Услуги
    • Конфигурируемые
      • Конфигурируемые
      • Датчик термопары
        • Зонд термопары
      • Датчики RTD
        • Датчики RTD
      • Датчики давления
        • Датчики давления
      • Термисторы
        • Термисторы
    • Калибровка
      • Калибровка
      • Инфракрасная температура
        • Инфракрасная температура
      • Относительная влажность
        • Относительная влажность
      • Давление
        • Давление
      • Сила / деформация
        • Сила / деформация
      • Поток
        • Поток
      • Температура
        • Температура
    • Служба поддержки клиентов
      • Служба поддержки клиентов
    • Индивидуальное проектирование
      • Заказное проектирование
    • Заказ по номеру детали
      • Заказ по номеру детали:
  • Ресурсы
Чат Чат

Тележка

    • Услуги
      • Услуги
      • Конфигурируемые
        • Конфигурируемые
        • Датчик термопары
        • Датчики RTD
        • Датчики давления
        • Термисторы
      • Калибровка
        • Калибровка
        • Инфракрасная температура
        • Относительная влажность
        • Давление
        • Сила / деформация
        • Поток
        • Температура
      • Служба поддержки клиентов
        • Служба поддержки клиентов
      • Индивидуальное проектирование
        • Заказное проектирование
      • Заказ по номеру детали
        • Заказ по номеру детали:
    • Ресурсы
      • Ресурсы
    • Справка
      • Справка
    • Измерение температуры
      • Измерение температуры
      • Датчики температуры
        • Температурные датчики
        • Зонды датчика воздуха
        • Ручные зонды
        • Зонды с промышленными головками
        • Зонды со встроенными разъемами
        • Зонды с выводами
        • Профильные зонды
        • Санитарные зонды
        • Зонды с вакуумным фланцем
        • Реле температуры
      • Калибраторы температуры
        • Калибраторы температуры
        • Калибраторы Blackbody
        • Калибраторы сухих блоков и ванн
        • Ручные калибраторы
        • Калибраторы точки льда
        • Тестеры точки плавления
      • Инструменты для измерения температуры и кабеля
        • Инструменты для измерения температуры и кабеля
        • Обжимные инструменты
        • Сварщики
        • Инструмент для зачистки проводов
      • Термометры с циферблатом и стержнем
        • Термометры с циферблатом и стержнем
        • Термометры циферблатные
        • Цифровые термометры
        • Жидкостные стеклянные термометры
      • Температурный провод и кабель
        • Температура провода и кабеля
        • Удлинительные провода и кабели
        • Монтажные провода
        • Кабель с минеральной изоляцией
        • Провода для термопар
        • Нагревательный провод и кабели
      • Бесконтактное измерение температуры
        • Бесконтактное измерение температуры
        • Фиксированные инфракрасные датчики температуры
        • Портативные инфракрасные промышленные термометры
        • Измерение температуры человека
        • Тепловизор
      • Этикетки, лаки и маркеры температуры
        • Этикетки, лаки и маркеры температуры
        • Необратимые температурные этикетки
        • Реверсивные температурные этикетки
        • Температурные маркеры и лаки
      • Защитные гильзы, защитные трубки и головки
        • Защитные гильзы, защитные трубки и головки
        • Защитные головки и трубки
        • Защитные гильзы
      • Чувствительные элементы температуры
        • Элементы датчика температуры
      • Датчики температуры поверхности
        • Датчики температуры поверхности
      • Проволочные датчики температуры
        • Проволочные датчики температуры
      • Температурные соединители, панели и блоки в сборе
        • Температурные соединители, панели и блоки в сборе
        • Проходы
        • Панельные соединители и узлы
        • Разъемы температуры
        • Клеммные колодки и наконечники
      • Регистраторы данных температуры и влажности
        • Регистраторы данных температуры и влажности
      • Измерители температуры, влажности и точки росы
        • Измерители температуры, влажности и точки росы
    • Контроль и мониторинг
      • Контроль и мониторинг
      • Движение и положение
        • Движение и положение
        • Двигатели переменного и постоянного тока
        • Акселерометры
        • Датчики смещения
        • Захваты
        • Датчики приближения
        • Поворотные датчики перемещения и энкодеры
        • Регуляторы скорости
        • Датчики скорости
        • Шаговые приводы
        • Шаговые двигатели
      • Сигнализация
        • Сигнализация
      • Счетчики
        • Метры
        • Счетчики и расходомеры
        • Многоканальные счетчики
        • Счетчики процесса
        • Специальные счетчики
        • Тензометры
        • Измерители температуры
        • Таймеры
        • Универсальные измерители входа
      • Переключатели процесса
        • Переключатели процесса
        • Реле потока
        • Реле уровня
        • Ручные выключатели
        • Реле давления
        • Реле температуры
      • Контроллеры
        • Контроллеры
        • Контроллеры влажности и влажности
        • Контроллеры уровня
        • Контроллеры пределов
        • Многоконтурные контроллеры
        • ПИД-регуляторы
        • ПЛК
        • Регуляторы давления
        • Термостаты
      • Дополнительные платы
        • Дополнительные платы
      • Реле
        • Реле
        • Программируемые реле
        • Модули твердотельного ввода-вывода
        • Твердотельные реле
      • Воздух, почва, жидкость и газ
        • Воздух, почва, жидкость и газ
        • Преобразователи воздуха и газа
        • Контроллеры качества воды
        • Датчики качества воды
        • Датчики качества воды
      • Клапаны
        • Клапаны
        • Поршневые клапаны с угловым корпусом
        • Сливные клапаны
        • Предохранительные клапаны блокировки
        • Игольчатые клапаны
        • Пропорциональные клапаны
        • Электромагнитные клапаны
    • Проверка и проверка
      • Проверка и проверка
      • Бороскопы
        • Бороскопы
      • Портативные счетчики
        • Портативные счетчики
        • Токоизмерительные клещи
        • Децибел-метры
        • Газоанализаторы
        • Детекторы утечки газа
        • Метры Гаусса
        • Твердость
        • Светомеры
        • Мультиметры
        • Скорость
        • Измерители температуры, влажности и точки росы
        • Измерители вибрации
        • Анемометры
        • Манометры
      • Аэродинамические трубы
        • Аэродинамические трубы
      • Весы и весы
        • Весы и весы
      • Тепловизор
        • Тепловизор
      • Воздух, почва, жидкость и газ
        • Воздух, почва, жидкость и газ
        • Газоанализаторы
        • Решения для калибровки
        • Анализаторы хлора
        • Бумага для измерения pH
        • pH-метры
        • Измерители вязкости
        • Счетчики качества воды
        • Наборы для проверки воды
    • Сбор данных
      • Сбор данных
      • Модули сбора данных
        • Модули сбора данных
      • Преобразователи данных и переключатели
        • Преобразователи данных и переключатели
        • Преобразователи данных
        • Коммутаторы Ethernet
      • Формирователи сигналов
        • Формирователи сигналов
        • Преобразователи сигналов на DIN-рейку
        • Формирователи сигналов для монтажа на голове
        • Специальные кондиционеры
        • Датчики температуры и влажности
        • Универсальные программируемые передатчики
      • Регистраторы данных
        • Регистраторы данных
        • Регистрация данных по Ethernet и беспроводной сети
        • Многоканальные программируемые и универсальные регистраторы входных данных
        • Регистраторы давления, деформации и ударов
        • Регистраторы данных технологического напряжения и тока
        • Специализированные регистраторы данных
        • Регистраторы данных состояния, событий и импульсов
        • Регистраторы данных температуры и влажности
      • Регистраторы
        • Регистраторы
        • Гибридные бумажные регистраторы
        • Безбумажные регистраторы
      • Программное обеспечение
        • Программное обеспечение
      • Интернет вещей и беспроводные системы
        • Интернет вещей и беспроводные системы
    • Измерение давления
      • Измерение давления
      • Манометры
        • Манометры
        • Аналоговые манометры
        • Цифровые манометры
      • Манометры
        • Манометры
      • Принадлежности для измерения давления
        • Принадлежности для измерения давления
        • Давление охлаждения Элементы
        • Кабели и соединители давления-силы
        • Воздушные фильтры
        • Лубрикаторы для воздушных линий
        • Трубопроводная арматура
        • Демпферы давления
        • Труба по длине
      • Датчики давления
        • Датчики давления
      • Калибраторы давления
        • Калибраторы давления
      • Регуляторы давления
        • Регуляторы давления
      • Реле давления
        • Реле давления
    • Измерение силы и деформации
      • Измерение силы и деформации
      • Весы и весы
        • Весы и весы
      • Тензодатчики
        • Тензодатчики
        • Тензодатчики мембранные
        • Двойные параллельные тензодатчики
        • Тензодатчики линейные
        • Розеточные тензодатчики
        • Принадлежности для тензодатчиков
        • Тензодатчики кручения и сдвига
        • Тензодатчики с Т-образной розеткой
      • Манометры
        • Манометры
      • Принадлежности для измерения силы и деформации
        • Принадлежности для измерения силы и деформации
        • Оборудование для тензодатчиков
        • Кабели и соединители давления-силы
      • Тензодатчики
        • Тензодатчики
      • Весы для резервуаров
        • Весы для резервуаров
      • Датчики крутящего момента
        • Датчики крутящего момента
    • Измерение уровня
      • Измерение уровня
      • Контактные датчики уровня
        • Контактные датчики уровня
        • Датчики емкости
        • Датчики поплавка
        • Волноводные радарные датчики
      • Бесконтактные датчики уровня
        • Бесконтактные датчики уровня
        • Датчики импульсного радара
        • Ультразвуковые датчики
      • Реле уровня
        • Реле уровня
    • Приборы для измерения расхода
      • Приборы для измерения расхода
      • Принадлежности для измерения расхода
        • Принадлежности для измерения расхода
        • Воздушные фильтры
        • Лубрикаторы для воздушных линий
        • Принадлежности для потока
        • Монтажная арматура датчика потока
        • Трубопроводная арматура
        • Демпферы давления
        • Труба по длине
      • Анемометры
        • Анемометры
      • Расходомеры
        • Расходомеры
        • Электромагнитные расходомеры
        • Измерители массового расхода
        • Расходомеры с крыльчатым колесом
        • Расходомеры прямого вытеснения
        • Турбинные расходомеры
        • Ультразвуковые расходомеры
        • Расходомеры переменного сечения
        • Вихревые расходомеры
      • Реле потока
        • Реле потока
      • Клапаны
        • Клапаны
        • Поршневые клапаны с угловым корпусом
        • Сливные клапаны
        • Предохранительные клапаны блокировки
        • Игольчатые клапаны
        • Пропорциональные клапаны
        • Электромагнитные клапаны
    • Промышленные обогреватели
      • Промышленные обогреватели
      • Поверхностные нагреватели
        • Поверхностные нагреватели
        • Ленточные нагреватели
        • Барабанные нагреватели
        • Гибкие обогреватели
        • Тепловые пушки
        • Ленточные и канатные нагреватели
      • Патронные нагреватели
        • Патронные нагреватели
      • Лучистые обогреватели
        • Лучистые обогреватели
        • Керамические лучистые обогреватели
        • Инфракрасные обогреватели
      • Циркуляционные нагреватели
        • Циркуляционные обогреватели
      • Обогреватели каналов и корпусов
        • Обогреватели каналов и корпусов
        • Канальные обогреватели
        • Обогреватели корпуса
      • Нагревательный провод и кабели
        • Нагревательный провод и кабели
      • Погружные нагреватели
        • Погружные нагреватели
      • Ленточные нагреватели
        • Ленточные нагреватели
      • Монтажные провода
        • Монтажные провода
    • Интернет вещей и беспроводные системы
      • Интернет вещей и беспроводные системы
      • Интерфейсы
        • Интерфейсы
      • Умные шлюзы
        • Умные шлюзы
      • Смарт-зонды
        • Смарт-зонды
      • Интеллектуальные беспроводные датчики
        • Интеллектуальные беспроводные датчики
      • Беспроводные актуаторы
        • Беспроводные актуаторы
      • Беспроводные приемники
        • Беспроводные приемники
      • Беспроводные передатчики
        • Беспроводные передатчики
      • Слой N
        • Слой N
      • Облако уровня N
        • Облако уровня N
    • Разъемы
      • Разъемы
      • Панельные соединители и узлы
        • Панельные соединители и узлы
      • Трубопроводная арматура
        • Трубопроводная арматура
      • Демпферы давления
        • Демпферы давления
      • Разъемы температуры
        • Разъемы температуры
      • Клеммные колодки и наконечники
        • Клеммные колодки и наконечники
      • Трубка по длине
        • Труба по длине
      • Кабели и соединители «давление-сила»
        • Кабели и соединители давления и усилия
    • Калибровка
      • Калибровка
      • Многофункциональная калибровка
        • Многофункциональная калибровка
      • Калибраторы давления
        • Калибраторы давления
      • Калибраторы температуры
        • Калибраторы температуры
        • Калибраторы Blackbody
        • Калибраторы сухих блоков и ванн
        • Ручные калибраторы
        • Калибраторы точки льда
        • Тестеры точки плавления
      • Принадлежности для калибровки
        • Принадлежности для калибровки
        • Решения для калибровки
      • Аэродинамические трубы
        • Аэродинамические трубы
      • Услуги по калибровке
        • Услуги по калибровке
    • Принадлежности
      • Аксессуары
      • Клеи и пасты
        • Клеи и пасты
      • Кулеры
        • Кулеры
      • Насосы
        • Насосы
        • Барабанные насосы
        • Дозирующие насосы
        • Перистальтические насосы
      • Защита
        • Защита
        • Электрошкафы
        • Проволочные рукава
        • Защитные головки и трубки
        • Защитные гильзы
      • Электрические компоненты
        • Электрические компоненты
        • Проходы
        • Кнопочные переключатели
        • Трансформеры
        • Сигнализация
        • Нагревательный провод и кабели
        • Монтажные провода
        • Ручные выключатели
        • Панельные соединители и узлы
        • Кабели и соединители давления-силы

11-контактное электромагнитное реле

MY3 общее реле
Клемма: 3Z, 11-контактный

Подробнее о продукте

Реле общего назначения

MY3 с 11 контактами — это электромагнитное реле, широко используемое в цепях постоянного и переменного тока в устройствах автоматизации, управлении технологическими процессами и оборудовании связи…

Спецификация реле общего назначения MY3

9011 1

5

9111

≤35

Модель

MY3

Расположение клемм

02 3Z

02 3Z

02 3Z

Переменный ток

5A 250V

DC

5A 30V

Сопротивление контакта (мОм)

≤50 мОм Сопротивление изоляции

≥500 МОм

Электрическая прочность

BOC

1000 В переменного тока

BCC

BCC

1500102

от 6 до 240 В

DC

От 6 до 220 В

Номинальная мощность катушки

AC

0.От 9 до 1,2 ВА

постоянного тока

≤0,9 Вт

Электрическая долговечность (OPS)

10 5

10 7

Рабочая температура (℃)

-40 ~ + 60

Вес (г)

≤35

Выход

Hot Tags: 11-контактное реле, реле, MY3, 11-контактное, общее реле, промышленное реле, электромагнитное реле, реле my3

Сопутствующие товары

Запрос

.

Добавить комментарий

Ваш адрес email не будет опубликован.