Электромагнитные двигатели: миф или реальность, устройство, виды

Содержание

миф или реальность, устройство, виды

Идея разработки вечного бестопливного двигателя не нова, за разработку такого агрегата во все времена брались именитые ученые своего времени. Однако ни технических средств для реализации задумки, не возможностей того времени не хватало. В некоторых случаях дело доходило только до теоретического обоснования, но существуют примеры реально разработанных альтернативных двигателей, которые призваны создать конкуренцию классическим электрическим машинам. Одним из таких вариантов является  магнитный двигатель.

Миф или реальность?

Вечный двигатель знаком практически каждому еще со школьной скамьи, только на уроках физики четко утверждалось, что добиться практической реализации невозможно из-за сил трения в движущихся элементах. Среди современных разработок магнитных моторов представлены самоподдерживающие модели, в которых магнитный поток самостоятельно создает вращательное усилие и продолжает себя поддерживать в течении всего процесса работы. Но основным камнем преткновения является КПД любого двигателя, включая магнитный, так как он никогда не достигает 100%. Со временем мотор все равно остановится.

Поэтому все практические модели требуют повторного вмешательства через определенное время или каких-либо сторонних элементов, работающих от независимого источника питания. Наиболее вероятным вариантом бестопливных двигателей и генераторов выступает магнитная машина. В которой основной движущей силой будет магнитное взаимодействие между постоянными магнитами, электромагнитными полями или ферромагнитными материалами.

Актуальным примером реализации являются декоративные украшения, выполненные в виде постоянно двигающихся шаров, рамочек или других конструкций. Но для их работы необходимо использовать батарейки, которые питают постоянным током электромагниты. Поэтому далее рассмотрим тот принцип действия, который подает самые обнадеживающие ожидания.

Устройство и принцип работы

Сегодня существует достаточно большое количество магнитных двигателей, некоторые из них схожи, другие имеют принципиально отличительную конструкцию.

Для примера мы рассмотрим наиболее наглядный вариант:

Принцип действия магнитного двигателя

Как видите на рисунке, мотор состоит из следующих компонентов:

  • Магнит статора здесь только один и расположен он на пружинном маятнике, но такое размещение требуется только в экспериментальных целях. Если вес ротора окажется достаточным, то инерции движения хватит для преодоления самого малого расстояния между магнитами и статор может иметь стационарный магнит без маятника.
  • Ротор дискового типа из немагнитного материала.
  • Постоянные магниты, установленные на роторе в форме улитки в одинаковое положение.
  • Балласт  — любой увесистый предмет, который даст нужную инерционность (в рабочих моделях эту функцию может выполнять нагрузка).

Все, что нужно для работы такого агрегата — это придвинуть магнит статора на достаточное расстояние к ротору в точке самого наибольшего удаления, как показано на рисунке. После этого магниты начнут притягиваться по мере приближения формы улитки по кругу, и начнется вращение ротора. Чем меньше размер магнитов и чем более плавная форма получится, тем легче произойдет движение. В месте максимального сближения на диске установлена «собачка», которая сместит маятник от нормального положения, чтобы магниты не притянулись в статическое положение.

Разновидности магнитных двигателей и их схемы

Сегодня существует много моделей бестопливных генераторов, электрических машин и моторов, чей принцип действия основан на природных свойствах постоянных магнитов. Некоторые варианты были спроектированы именитыми ученными, достижения которых стали основополагающим камнем в фундаменте науки. Поэтому далее мы рассмотрим самые популярные из них.

Николы Тесла

В данном примере мы рассмотрим одну из разработок известного ученого, конструкция которой приведена на рисунке ниже:

Магнитный двигатель Тесла

Конструктивно магнитный двигатель Тесла состоит из таких элементов:

  • электрического генератора, который представлен двумя дисками из проводника, помещенными в униполярной магнитной среде;
  • гибкого ремня, изготовленного из проводящего материала, расположенного по периферии дисков;
  • независимых магнитов, сохраняющих униполярность полей при вращении дисков.

Такой двигатель, по словам изобретателя, может функционировать и в качестве генератора, вырабатывая электрическую энергию при вращении дисков.

Минато

Этот пример нельзя назвать самовращающимся двигателем, так как для его работы требуется постоянная подпитка электрической энергией. Но такой электромагнитный мотор  позволяет получать значительную выгоду, затрачивая минимум электричества для выполнения физической работы.

Схема двигателя Минато

Как видите на схеме, особенностью этого вида является необычный подход к расположению магнитов на роторе. Для взаимодействия с ним на статоре возникают магнитные импульсы за счет кратковременной  подачи электроэнергии через реле или полупроводниковый прибор.

При этом   ротор будет вращаться, пока его элементы не размагнитятся. Сегодня все еще ведутся разработки по улучшению и повышению эффективности устройства, поэтому назвать его полностью завершенным нельзя.

Николая Лазарева

Это не только простейший гравитационный двигатель, но и одна из реально работающих моделей вечного двигателя. Пример приведен на рисунке ниже:

Двигатель Лазарева

Как видите, для изготовления такого двигателя или генератора вам потребуется:

  • колба;
  • жидкость;
  • трубка;
  • прокладка из пористого материала;
  • крыльчатка и нагрузка на вал.

Принцип действия заключается в том, что вода по тонкой трубке из-за избытка давления будет подниматься вверх и скапывать на прокладку и вращать крыльчатку. Далее вода будет просачиваться сквозь губку и под воздействием магнитного поля Земли  дальше стекать в нижний резервуар. Цикл будет повторяться до тех пор, пока жидкость не исчезнет, что в идеально герметичном контуре не произойдет никогда. Для усиления момента на вращаемый вал добавляют магнитные усилители.

Говарда Джонсона

В своих исследованиях Джонсон руководствовался теорией потока непарных электронов, действующих в любом магните. В его двигателе обмотки статора формируются из магнитных дорожек. На практике эти агрегаты получили реализацию в конструкции роторного и линейного двигателя. Пример такого устройства приведен на рисунке ниже:

Двигатель Джонсона

Как видите, на оси вращения в двигателе устанавливаются сразу и статор и ротор, поэтому классически вал вращаться здесь не будет. На статоре магниты повернуты одноименным полюсом к роторным, поэтому они взаимодействуют на силах отталкивания. Особенность работы ученого заключалась в длительном вычислении  расстояний и зазоров между основными элементами мотора.

Перендева

Данный вид двигателя, как и предыдущий, представляет собой еще одну модель магнитного взаимодействия между статором и ротором, где обе части содержат постоянные магниты. Схема конструкции обоих представляет собой диск или кольцо, в котором точечно устанавливаются вектолиты.

Магниты статора и ротора в двигателе Переднева

Как видите на рисунке, положение активных элементов имеет угол смещения, который и определяет эффективность вращения машины. Взаимодействие магнитных потоков в двигателе происходит  при задании начального крутящего момента. Точность положения и угла наклона можно отстроить только в лабораторных или заводских условиях.

Василия Шкондина

Получить вечный генератор Василию Шкодину не удалось, КПД такого магнитного двигателя и сегодня не превышает 83%. Но и этого более чем достаточно, чтобы его повсеместно применяли для велосипедов, байков и самокатов. Он может эксплуатироваться как в режиме тяги, так и для рекуперации электроэнергии.

Двигатель Шкондина

На рисунке приведена конструкция магнитного двигателя Шкодина. Как видите, и ротор и статор представляют собой кольца. Из магнитных деталей он содержит 11 пар неодимовых магнитов. Ротор устройства содержит 6 электромагнитов, смещенных на одинаковое расстояние друг относительно друга.

Свинтицкого

Еще в конце 90-х украинский конструктор предложит модель самовращающегося магнитного двигателя, который стал настоящим прорывом в технике. За основу им был взят асинхронный двигатель Ванкеля, которому не удалось решить проблему с преодолением 360° оборота.

Игорь Свинтицкий эту проблему решил и получил патент, обратился в ряд компаний, однако асинхронное магнитное чудо техники никого не заинтересовало, поэтому проект был закрыт и за его масштабное тестирование ни одна компания не взялась.

Джона Серла

От электрического мотора такой магнитный двигатель  отличает взаимодействие исключительно магнитного поля статора и ротора. Но последний выполняется наборными цилиндрами с таблетками из специального сплава, которые создают магнитные силовые линии  в противоположном направлении. Его можно считать синхронным двигателем, так как разница частот в нем отсутствует.

Двигатель Серла

Полюса постоянных магнитов расположены так, что один толкает следующий и т.д. Начинается цепная реакция, приводящая в движение всю систему магнитного двигателя, до тех пор, пока магнитной силы будет хватать хотя бы для одного цилиндра.

Алексеенко

Интересный вариант магнитного двигателя представил ученый Алексеенко, который создал устройство с роторными магнитами необычной формы.

Двигатель Алексеенко

Как видите на рисунке, магниты имеют необычную изогнутую форму, которая максимально сближает противоположные полюса. Что делает магнитные потоки в месте сближения значительно сильнее. При начале вращения отталкивание полюсов получается значительно большим, что и должно обеспечить непрерывное движение по кругу.

Видео в помощь

конструкция, принцип работы, классификация, характеристики

Постоянное совершенствование технологий и развитие точного электрооборудования приводит к созданию новых и преобразованию старых устройств. Такому совершенствованию подвергаются и электрические машины, которые неоднократно преобразовывались для получения точного позиционирования. При массовом внедрении полупроводниковых приборов появилась возможность заменить классические щетки на p-n переходы, в результате чего был создан  вентильный двигатель.

Конструкция и принцип работы

Конструктивно вентильный агрегат представляет собой разновидность синхронного двигателя.

В его состав входят:

  • Ротор, как правило, из магнитного материала, реагирующий на воздействие электромагнитного поля. 
  • Статор, включающий в себя фазы обмоток, намотанные в катушки станину и диэлектрическую прокладку.
  • Измерительные датчики (чаще всего Холла), позволяющие определить положение вращения вала.
  • Микропроцессорный блок, формирующий импульсы, их форму, задающие частоту вращения ротора, сравнивающий показания датчиков и подаваемого переменного тока на фазные обмотки.

Пример конструкции вентильного двигателя приведен на рисунке ниже:

Рис. 1. Конструкция вентильного двигателя

Принцип работы вентильного двигателя заключается в четком позиционировании постоянных магнитов на роторе по отношению к формируемому пику электромагнитного импульса на фазных электрических обмотках. При движении магнитов датчики воспринимают информацию об их положении в пространстве и меняют пропускную способность реактивных вентильных преобразователей, что позволяет валу вращаться дальше. Таким образом, управление вращением осуществляется без использования скользящего контакта, поэтому данная категория электрических машин относится к категории бесколлекторных электродвигателей.

Статор

Рис. 2. Конструкция статора вентильного двигателя

Конструктивно статор мало чем отличается от классических моделей синхронных и асинхронных двигателей. Это металлический цельнолитой или наборной магнитопровод, в пазах которого укладываются фазные провода. Количество обмоток якоря определяется числом подключаемых фаз и периодичностью их чередования. Чем чаще уложены обмотки статора, тем точнее контролируется вращение вентильного электродвигателя.

Полюса статора также могут характеризоваться смещением на строго определенный угол, как и его обмотки. По количеству фаз коммутации вентильные двигатели бывают двух-, трех-, четырех- и шестифазными.

Ротор

В зависимости от конструкции ротора бесконтактные двигатели могут иметь внутрироторное и внешнероторное исполнение.

Рис. 3. Внешнероторные и внутрироторные модели

Количество пар полюсов также может отличаться, но уже без каких-либо привязок к обмоткам, как правило, этот параметр варьируется от двух до шестнадцати с парным шагом.

В более старых моделях для бесколлекторных двигателей использовались постоянные магниты из ферритовых сплавов. Которые отличались доступностью и относительно более низкой себестоимостью, но имели слишком низкие показатели индукции. Однако с постепенным развитием технологий, на смену им пришли магнитные элементы из редкоземельных металлов. Этот вариант обладает более точным позиционированием, но и стоит он дороже.

Рис. 4. Вентильный двигатель с внешним ротором

Датчик положения ротора

В синхронных электродвигателях датчик необходим для осуществления обратной связи с положением вала механического устройства. В зависимости от принципа действия могут применяться датчики:

  • Фотоэлектрического принципа действия;
  • Трансформаторного;
  • Индуктивного;
  • На эффекте Холла.
Рис. 5. Датчик положения ротора

Наиболее распространенными вариантами для практической реализации стали фотоэлектрические датчики и датчики с эффектом Холла. Они обладают большей точностью и меньше запаздывают при передаче данных в канале связи. Датчики привязываются к определенным маркерам на валу и реагируют на их прохождение.

Система управления

В состав блока управления, как правило, входит микроконтроллер и электронный ключ для подключения к двух- или трехфазным обмоткам двигателя. Микроконтроллер или микропроцессор необходим для обработки получаемых с датчиков сигналов и последующего преобразования синусоидальной коммутации в более удобную форму сигнала. Электрические преобразователи выполняется на базе полупроводниковых транзисторов, соединенных по мостовой схеме. Они производят широтно-импульсную модуляцию питающего напряжения в соответствии с заданным режимом работы.

Рис. 6. Электронный ключ вентильного двигателя

Классификация

По типу питания вентильные  электрические машины подразделяются на электродвигатели постоянного и переменного тока.

По способу взаимодействия магнитного поля статора и ротора встречаются синхронные, асинхронные и индукторные аппараты.

Помимо этого, в зависимости от числа задействованных фаз они разделяются на:

  • Однофазные – представляю собой наиболее простой вариант, где используется минимум линий передачи питающего напряжения от блока управления к его обмоткам. Однако в некоторых позиция существует трудность пуска такого вентильного двигателя под нагрузкой.
  • Двухфазные – обладают хорошей связью между обмоткой и статором. Но выдают довольно сильные пульсации, которые могут привести к негативным последствиям в работе.
  • Трехфазные – наиболее распространенные варианты, способные выдать плавный пуск и нормальный режим работы вентильного двигателя. Характеризуется четным количеством обмоток и хорошими тяговыми характеристиками. К его недостаткам относят лишь чрезмерный шум во время работы.
  • Четырехфазные – характеризуются минимальными пульсациями низким пусковым моментом. Но, в сравнении с другими моделями, они имеют высокую себестоимость, из-за чего применяются редко.
Рис. 7. Четырехфазный вентильный двигатель

Технические характеристики

При выборе конкретной модели важно определить ее соответствие месту установки, поэтому важно обращать внимание на следующие характеристики вентильных двигателей:

  • номинальное напряжение – определяет питающую величину, которая должна подаваться на вентильный двигатель для получения номинального усилия;
  • потребляемая мощность – характеристика электродвигателя, показывающая величину мощности, расходуемую на работу устройства;
  • КПД – показывает соотношение полезной работы, совершаемой вентильным двигателем к израсходованной мощности;
  • мощность на валу – полезная работа электрической машины, совершаемая за счет тягового усилия;
  • номинальная частота – определяет количество оборотов в минуту, которые вентильный двигатель может совершать в номинальном режиме работы;
  • диапазон регулировки частоты – показывает, в каких пределах можно изменять частоту оборотов вала для конкретной модели;
  • номинальный крутящий момент – определяет усилие, создаваемое на валу вентильного двигателя при оптимальных параметрах работы, также в параметрах может регламентироваться пусковой и максимальный момент;
  • коэффициент нагрузки – показывает, насколько снижается эффективность электрической машины, в зависимости от подъема над уровнем моря;
  • габаритные размеры и масса вентильного двигателя.

Преимущества и недостатки

В сравнении с другими типами электрических машин, вентильный двигатель имеет ряд качественных отличий, дающих ему как выгодное, превосходство, так и определенные недостатки.

К преимуществам вентильных двигателей относят:

  • Относительно небольшая величина магнитных потерь из-за отсутствия постоянно действующего поля, как в классических синхронных и асинхронных электродвигателях.
  • Обеспечивает безопасное вращение даже с максимальной нагрузкой, в отличии от коллекторных электродвигателей.
  • За счет встроенного преобразователя частоты коммутация вентильного преобразователя обеспечивает широкий спектр скоростей вращения, которые отличаются плавным переходом от одной к последующей.
  • Хорошая динамика  работы и точность позиционирования, способная создать конкуренцию шаговым двигателям.
  • Относительно большая степень надежности и длительный срок эксплуатации без обслуживания за счет отсутствия скользящего контакта, в отличии от коллекторных двигателей.
  • Может применяться во взрывоопасной среде, в отличии от электродвигателей постоянного и переменного тока со щетками.

К недостаткам вентильных агрегатов следует отнести их высокую себестоимость, наличие дополнительных элементов, усложняющих последующую эксплуатацию. Также существенным минусом считается  сложность управления и задания логики перемещения рабочих органов трехфазных бесколлекторных двигателей в соответствии с меняющимися факторами производственного процесса.

Применение

Вентильные двигатели применяются во всех сферах, где требуется регулировать скорость вращения рабочего элемента. Такие синхронные приводы имеют точное позиционирование и применяются для компьютерной техники, устройств привода, винчестера, куллеров обдува и т.д.

Рис. 8. Вентильный двигатель в компьютере

Помимо этого он используется в робототехнике, строительстве спутников, летательных аппаратов. Для бытовой техники, в устройствах автомобилестроения, в медицинской сфере.  Также нашел широкое применение в станочном оборудовании, горнодобывающих машинах, используется в компрессорных установках и насосных станциях.

Магнитный двигатель своими руками: как сделать вечный электродвигатель

Сотни лет человечество пытается создать двигатель, который будет работать вечно. Сейчас этот вопрос, стоит особенно актуально, когда планета неминуемо движется к энергетическому кризису. Конечно, он может никогда и не наступить, но независимо от этого, люди все-таки нуждаются в том, чтобы отойти от привычных источников энергии и магнитный двигатель – отличный вариант.

Что такое магнитный двигатель

Все вечные двигатели можно разделить на 2 вида:

  1. Первые;
  2. Вторые.

Что касается первых, они представляют собой по большей мере плод фантазий писателей фантастов, но вторые – вполне реальные. Первый вид подобных двигателей извлекает энергию из пустого места, но второй, получает ее из магнитного поля, ветра, воды, солнца и т.д.

Магнитные поля не только активно изучают, но и пытаются использовать их в качестве «топлива» для вечного силового агрегата. Причем многие из ученых разных эпох добивались значительных успехов. Среди известных фамилий, можно отметить следующие:

  • Николай Лазарев;
  • Майк Брэди;
  • Говард Джонсон;
  • Кохеи Минато;
  • Никола Тесла.

Особенное внимание уделялось именно постоянным магнитам, которые могут восстанавливать энергию в прямом смысле из воздуха (мирового эфира). Несмотря на то, что каких-то полноценных объяснений природы постоянных магнитов на данный момент нет, человечество двигается в правильном направлении.

На данный момент, есть несколько вариантов линейных силовых агрегатов, что имеют отличия по своей технологии и схеме сборки, но работают на основе одинаковых принципов:

  1. Работают благодаря энергии магнитных полей.
  2. Импульсного действия с возможностью контроля и дополнительного источника питания.
  3. Технологии, которые совмещают в себе принципы обоих силовых агрегатов.

Общее устройство и принцип работы

Двигатели на магнитах, не похожи на привычные электрические, в которых вращение происходит благодаря электрическому току. Первый вариант будет работать только благодаря постоянной энергии магнитов и имеет 3 главные части:

  • ротор с постоянным магнитом;
  • статор с электрическим магнитом;
  • двигатель.

На один вал с силовым агрегатом монтируется генератор электромеханического типа. Статический электромагнит, сделан в виде кольцевого магнитопровода с вырезанным сегментом или дугой. Помимо всего прочего электрический магнит имеет также катушку индуктивности, к которой присоединен электрокоммутатор, благодаря которому поставляется реверсивный ток.

По сути, принцип работы разных магнитных моторов может отличаться исходя из типа моделей. Но в любом случае, основной движущей силой является именно свойство постоянных магнитов. Рассмотреть принцип работы, можно на примере антигравитационного агрегата Лоренца. Суть его работы заключается в 2-х разнозаряженных дисках, которые подсоединяются к источнику питания. Эти диски размещены наполовину в экране полусферической формы. Их начинают активно вращать. Таким образом, магнитное поле без труда выталкивается сверхпроводником.

История возникновения вечного двигателя

Первые упоминания о создании такого устройства возникли в Индии в VII веке, но первые практические пробы его создания возникли в VIII веке в Европе. Естественно, создание такого устройства позволило бы значительно ускорить развитие науки энергетики.

В те времена, такой силовой агрегат смог бы не только поднимать разные грузы, но и крутить мельницы, а также водяные насосы. В XX веке произошло знаменательное открытие, которое дало толчок к созданию силового агрегата – открытие постоянного магнита с последующим изучением его возможностей.

Модель мотора на его основе должна была работать неограниченное количество времени, из-за чего его назвали вечным. Но как бы там ни было, а вечного ничего нет, так как любая часть или деталь может прийти в неисправность, поэтому под словом «вечно» необходимо понимать только то, что он должен работать без перерывов, при этом не подразумевая каких-либо затрат, включая топливо.

Сейчас невозможно точно определить создателя первого вечного механизма, в основе которого, стоят магниты. Естественно, он сильно отличается от современного, но есть некоторые мнения на тот счет, что первые упоминания о силовом агрегате на магнитах, есть в трактате Бхскара Ачарья математика из Индии.

Первые сведения о появления такого устройства в Европе, появились в XIII веке. Информация поступила от Виллара д’Оннекура, выдающегося инженера и архитектора. После своей смерти, изобретатель оставил потомкам свой блокнот, в котором были разные чертежи не только сооружений, но и механизмов для поднятия грузов и собственно первым устройством на магнитах, что отдаленно напоминает вечный двигатель.

Магнитный униполярный двигатель Тесла

Значительных успехов в этой сфере достиг великий ученый, известный множеством открытий – Никола Тесла. Среди ученых, устройство ученого получило несколько иное название – униполярный генератор Тесла.

Стоит отметить, что первые исследования в этой области проводит Фарадей, но несмотря на то, что он создал прототип с похожим принципом работы, как впоследствии Тесла, стабильность и эффективность оставляли желать лучшего. Слово «униполярный», означает что в схеме устройства цилиндровый, дисковый или кольцевой проводник, находится между полюсами постоянного магнита.

Официальный патент представлял следующую схему, в которой имеется конструкция с 2-мя валами, на которых устанавливаются 2 пары магнитов: одна пара создает условно отрицательное поле, а другая пара – положительное. Между этими магнитами располагаются генерирующие проводники (униполярные диски), которые имеют связь между собой с использованием металлической ленты, которая по сути может быть использована не только для вращения диска, но и в качестве проводника.

Тесла известен большим количеством полезных изобретений.

Двигатель Минато

Очередным отличным вариантом такого механизма, в котором энергия магнитов применяется в качестве бесперебойной автономной работы, является двигатель, который уже давно вышел в серию, несмотря на то, что был разработан только 30 лет назад, изобретателем из Японии Кохеи Минато.

Специалисты отмечают высокий уровень бесшумности и вместе с этим, эффективность. Как утверждает его создатель, такой самовращающийся двигатель магнитного типа как этот имеет коэффициент полезного действия, выше 300%.

Конструкция подразумевает ротор в форме колеса или диска, на котором под углом размещаются магниты. При приближении к ним статора с крупным магнитом, колесо начинает движение, которое основывается на попеременным отталкиванием/сближением полюсов. Скорость вращения будет увеличиваться по мере приближения статора к ротору.

Чтобы исключить нежелательных импульсов во время работы колеса, применяются реле стабилизаторы и уменьшают использование тока управляющего электромагнита. Есть в такой схеме и недостатки, в качестве необходимости систематического намагничивания и отсутствию информации по тяге и нагрузочным характеристикам.

Магнитный мотор Говарда Джонсона

Схема этого изобретения от Говарда Джонсона, подразумевает использование энергии, что создается благодаря потоку непарных электронов, которые имеются в магнитах, для создания цепи питания силового агрегата. Схема устройства выглядит, как совокупность большого количества магнитов, особенность расположения которых, определяется исходя из конструктивной особенности.

Магниты располагаются на отдельной пластине, с высоким уровнем магнитной проводимости. Одинаковые полюса располагаются по направлению к ротору. Благодаря этому обеспечивается попеременное отталкивание/притяжение полюсов, а при этом и смещение частей ротора и статора относительно друг друга.

Правильно подобранное расстояние между основными работающими частями, позволяет правильным образом выбирать магнитную концентрацию, благодаря чему удастся выбирать силу взаимодействия.

Генератор Перендева

Генератор Перендева представляет собой очередное удачное взаимодействие магнитных сил. Это изобретение Майка Брэди, которое он даже успел запатентовать и создать компанию «Перендев», до того, как на него открыли уголовное дело.

Статор и ротор выполнены в форме внешнего кольца и диска. Как видно из схемы, предоставленной в патенте, на них по круговой траектории располагают отдельные магниты, четко соблюдая определенный угол по отношению к центральной оси. Благодаря взаимодействию полей магнитов ротора и статора, происходит их вращение. Расчет цепи магнитов сводится к определению угла расхождения.

Синхронный двигатель на постоянных магнитах

Синхронный двигатель на постоянных частотах представляет собой основной вид электродвигателя, где частоты вращения ротора и статора находятся на одинаковом уровне. Классический электромагнитный силовой агрегат имеет обмотки на пластинах, но если сменить конструкцию якоря и вместо катушки установить постоянные магниты, тогда получится достаточно эффективная модель синхронного силового агрегата.

Схема статора имеет классическую компоновку магнитопровода, куда входят обмотка и пластины, где и скапливается магнитное поле электротока. Это поле взаимодействует с постоянным полем ротора, что и создает крутящий момент.

Помимо всего прочего, необходимо учесть, что исходя из конкретного типа схемы, расположение якоря и статора могут быть изменены, так например первый, может быть сделан в виде внешней оболочки. Для активации мотора от тока сети, применяется цепь магнитного пускателя и теплового защитного реле.

Как собрать двигатель самостоятельно

Не менее популярными являются и самодельные варианты таких устройств. Они достаточно часто встречаются на просторах интернета не только в качестве рабочих схем, но и конкретно выполненных и работающих агрегатов.

Один из самых простых в создании в домашних условиях устройств, создается с использованием 3 соединенных между собой валов, которые скреплены таким методом, чтобы центральный, был повернут на те, что находятся по сторонам.

В центр того вала, что посередине, прикрепляется диск из люцита, диаметром в 4 дюйма, а толщиной в 0,5 дюймов. Те валы, которые располагаются по сторонам, также имеют диски на 2 дюйма, на которых располагаются магниты по 4 штуки на каждом, а на центральном вдвое больше – 8 штук.

Ось обязательно должна находиться по отношению валов в параллельной плоскости. Концы возле колес проходят с проблеском в 1 минуту. В случае если начать перемещать колеса, тогда концы магнитной оси начнут синхронизироваться. Чтобы придать ускорения, необходимо поставить в основание устройства брусок из алюминия. Один его конец должен немного касаться магнитных деталей. Как только усовершенствовать конструкцию таким образом, агрегат будет вращаться быстрее, на пол оборота в 1 секунду.

Приводы были установлены так, чтобы валы вращались аналогично друг другу. В случае если на систему попробовать воздействовать пальцем или каким-то другим предметом, тогда она остановится.

Руководствуясь такой схемой, можно своими силами создать магнитный агрегат.

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Среди преимуществ таких агрегатов, можно отметить следующие:

  1. Полная автономность с максимальной экономией топлива.
  2. Мощное устройство с использованием магнитов, может обеспечивать помещение энергией в 10 кВт и более.
  3. Такой двигатель работает до полного эксплуатационного износа.

Пока что, не лишены такие двигатели и недостатков:

  1. Магнитное поле может отрицательным образом влиять на человеческое здоровье и самочувствие.
  2. Большое количество моделей не может эффективно работать в бытовых условиях.
  3. Есть небольшие сложности в подключении даже готового агрегата.
  4. Стоимость таких двигателей достаточно велика.

Такие агрегаты уже давно не являются вымыслом и в скором времени вполне смогут заменить привычные силовые агрегаты. На данный момент, они не могут составить конкуренцию привычным двигателям, но потенциал к развитию имеется.

Магнитные двигатели. Виды и устройство. Применение и работа

Магнитные двигатели (двигатели на постоянных магнитах) являются наиболее вероятной моделью «вечного двигателя». Еще в давние времена была высказана эта идея, но так никто его не создал. Многие устройства дают ученым возможность приблизиться к изобретению такого двигателя. Конструкции подобных устройств еще не доведены до практического результата. С этими устройствами связано много различных мифов.

Магнитные двигатели не расходуют энергию, являются агрегатом необычного типа. Силой, двигающей мотор, является свойство магнитных элементов. Электродвигатели также применяют магнитные свойства ферромагнетиков, но магниты приводятся в движение электрическим током. А это является противоречием основному принципиальному действию вечного двигателя. В двигателе на магнитах используется магнитное влияние на объекты. Под действием этих объектов начинается движение. Небольшими моделями таких двигателей стали аксессуары в офисах. На них двигаются постоянно шарики, плоскости. Но там для работы применены батарейки.

Ученый Тесла занимался серьезно проблемой образования магнитного двигателя. Его модель была выполнена из катушки, турбины, проводов для соединения объектов. В обмотку закладывался маленький магнит, захватывающий два витка катушки. Турбине давали небольшой толчок, раскручивали ее. Она начинала движение с большой скоростью. Такое движение называлось вечным. Двигатель Тесла на магнитах стал идеальной моделью вечного двигателя. Его недостатком стала необходимость начального задания скорости турбине.

По закону сохранения электропривод не может содержать более 100% КПД, энергия частично тратится на трение в двигателе. Такой вопрос должен решать магнитный двигатель, у которого постоянные магниты (роторный тип, линейный, униполярный). В нем осуществление механического движения элементов идет от взаимодействия магнитных сил.

Принцип работы

Многие инновационные магнитные двигатели применяют работу трансформации тока во вращение ротора, являющееся механическим движением. Вместе с ротором вращается вал привода. Это дает возможность утверждать, что всякий расчет не даст результата КПД равного 100%. Агрегат не получается автономным, он имеет зависимость. Такой же процесс можно увидеть в генераторе. В нем крутящий момент, который образуется от энергии движения, создает выработку электроэнергии на пластинах коллектора.

1 — Линия раздела магнитных силовых линий, замыкающихся через отверстие и внешнюю кромку кольцевого магнита
2 — Катящийся ротор (Шарик от подшипника)
3 — Немагнитное основание (Статор)
4 — Кольцевой постоянный магнит от громкоговорителя (Динамика)
5 — Плоские постоянные магниты (Защелки)
6 — Немагнитный корпус

Магнитные двигатели применяют другой подход. Необходимость в дополнительных источниках питания сводится к минимуму. Принцип работы легко объяснить «беличьим колесом». Для производства демонстративной модели не нужны специальные чертежи или прочностной расчет. Нужно взять постоянный магнит, чтобы его полюса находились на обеих плоскостях. Магнит будет главной конструкцией. К ней добавляется два барьера в виде колец (внешний и внутренний) из немагнитных материалов. Между кольцами располагают стальной шарик. В магнитном двигателе он станет ротором. Силами магнита шарик притянется к диску противоположным полюсом. Этот полюс не будет менять свое положение при движении.

Статор включает в себя пластину, изготовленную из экранируемого материала. На нее по траектории кольца закрепляют постоянные магниты. Полюса магнитов находятся перпендикулярно в виде диска и ротора. В итоге, при приближении статора к ротору на некоторое расстояние, появляется отталкивание и притяжение в магнитах поочередно. Оно создает момент, переходит во вращательное движение шарика по траектории кольца. Запуск и торможение осуществляется движением статора с магнитами. Такой метод магнитного двигателя действует, пока магнитные свойства магнитов будут сохраняться. Расчет делается относительно статора, шариков, управляющей цепи.

На таком же принципе работают действующие магнитные двигатели. Самыми известными стали магнитные двигатели на тяге магнитов Тесла, Лазарева, Перендева, Джонсона, Минато. Так же известны двигатели на постоянных магнитах: цилиндровые, роторные, линейные, униполярные и т.д. У каждого двигателя своя технология изготовления, основанная на магнитных полях, образующихся вокруг магнитов. Вечных двигателей не бывает, так как постоянные магниты утрачивают свои свойства через несколько сотен лет.

Магнитный двигатель Тесла

Ученый исследователь Тесла стал одним из первых, кто изучал вопросы вечного двигателя. В науке его изобретение называется униполярным генератором. Сначала расчет такого устройства сделал Фарадей. Его образец не произвел стабильности работы и должного эффекта, не достиг необходимой цели, хотя принцип действия был сходным. Название «униполярный» дает понять, что по схеме модели проводник находится в цепи полюсов магнита.

По схеме, обнаруженной в патенте, видна конструкция из 2-х валов. На них помещены 2 пары магнитов. Они образуют отрицательное и положительное поля. Между магнитами находятся униполярные диски с бортами, которые применяются как образующие проводники. Два диска друг с другом имеют связь тонкой лентой из металла. Лента может использоваться для вращения диска.

Двигатель Минато

Этот тип двигателя также использует магнетическую энергию для самостоятельного движения и самовозбуждения. Образец двигателя разработан японским изобретателем Минато более 30 лет назад. Двигатель обладает высокой эффективностью, характеризуется бесшумной работой. Минато утверждал, что магнитный самовращающийся двигатель такого исполнения выдает КПД более 300%.

Ротор изготовлен в форме колеса или дискового элемента. На нем находятся магниты, расположенные под определенным углом. Во время приближения статора с мощным магнитом создается момент вращения, диск Минато вращается, применяет отторжение и сближение полюсов. Скорость вращения и крутящий момент мотора зависит от расстояния между ротором и статором. Напряжение мотора подается по цепи реле прерывателя.

Для предохранения от биения и импульсных движений при вращении диска применяют стабилизаторы, оптимизируют расход энергии управляющего электрического магнита. Негативной стороной можно назвать то, что нет данных по свойствам нагрузки, тяге, которые применяются реле управления. Также периодически необходимо производить намагничивание. Об этом Минато в своих расчетах не упоминал.

Двигатель Лазарева

Русский разработчик Лазарев сконструировал действующую простую модель двигателя, применяющего магнитную тягу. Роторный кольцар включает в себя резервуар с пористой перегородкой на две части. Эти половины между собой сообщаются трубкой. По этой трубке поступает поток жидкости из нижней камеры в верхнюю. Поры создают перетекание вниз за счет гравитации.

При расположении колеса с расположенными на лопастях магнитами под напором жидкости возникает постоянное магнитное поле, двигатель вращается. Схема двигателя Лазарева роторного типа применяется при разработке простых устройств с самовращением.

Двигатель Джонсона

Джонсон в своем изобретении применял энергию, которая генерируется потоком электронов. Эти электроны находятся в магнитах, образуют цепь питания двигателя. Статор двигателя соединяет в себе множество магнитов. Они располагаются в виде дорожки. Движение магнитов и их расположение зависит от конструкции агрегата Джонсона. Компоновка может быть роторной или линейной.

1 — Магниты якоря
2 — Форма якоря
3 — Полюса магнитов статора
4 — Кольцевая канавка
5 — Статор
6 — Резьбовое отверстие
7 — Вал
8 — Кольцевая втулка
9 — Основание

Магниты прикрепляются к особой пластине, обладающей большой магнитной проницаемостью. Одинаковые полюса магнитов статора поворачиваются в сторону ротора. Этот поворот создает отторжение и притяжение полюсов по очереди. Совместно с ними смещаются элементы ротора и статора между собой.

Джонсон организовал расчет воздушного промежутка между ротором и статором. Он дает возможность коррекции усилия и магнитной совокупности взаимодействия в направлении увеличения или снижения.

Магнитный двигатель Перендева

Двигатель самовращающейся модели Перендева так же является примером применения работы магнитных сил. Создатель этого мотора Брэди оформил патент и создал фирму еще до начала уголовного дела на него, организовал работу на поточной основе.

При анализе принципа работы, схемы, чертежей в патенте можно понять, что статор и ротор выполнены в форме внешнего кольца и диска. На них по траектории кольца располагают магниты. При этом соблюдают угол, определенный по центральной оси. Из-за взаимного действия поля магнитов образуется момент вращения, осуществляется их перемещение друг относительно друга. Цепь магнитов рассчитывается путем выяснения угла расхождения.

Синхронные магнитные двигатели

Главным видом электрических двигателей является синхронный вид. У него обороты вращения ротора и статора одинаковые. У простого электромагнитного двигателя эти две части имеют в составе обмотки на пластинах. Если изменить конструкцию якоря, вместо обмотки установить постоянные магниты, то получится оригинальная эффективная рабочая модель двигателя синхронного типа.

1 — Стержневая обмотка
2 — Секции сердечника ротора
3 — Опора подшипника
4 — Магниты
5 — Стальная пластина
6 — Ступица ротора
7 — Сердечник статора

Статор сделан по привычной конструкции магнитопровода из катушек и пластин. В них образуется магнитное поле вращения от электрического тока. Ротор образует постоянное поле, взаимодействующее с предыдущим, и образует момент вращения.

Нельзя забывать о том, что относительное нахождение якоря и статора имею возможность изменяться в зависимости от схемы двигателя. Например, якорь может быть сделан в форме наружной оболочки. Для запуска двигателя от сети питания применяется схема из магнитного пускателя и реле тепловой защиты.

Похожие темы:

Двигатель на постоянных магнитах - схема синхронного устройства, принцип действия и изготовление своими руками

Двигатели на протяжении многих лет используются для преобразования электрической энергии в механическую различного типа. Эта особенность определяет столь высокую его популярность: обрабатывающие станки, конвейеры, некоторые бытовые приборы – электродвигатели различного типа и мощности, габаритных размеров используются повсеместно.

Основные показатели работы определяют то, какой тип конструкции имеет двигатель. Существует несколько разновидностей, некоторые пользуются популярностью, другие не оправдывают сложность подключения, высокую стоимость.

Двигатель на постоянных магнитах используют реже, чем асинхронный вариант исполнения. Для того, чтобы оценить возможности этого варианта исполнения, следует рассмотреть особенности конструкции, эксплуатационные качества и многое другое.

Устройство

устройство

Электродвигатель на постоянных магнитах не сильно отличается по виду конструкции.

При этом, можно выделить следующие основные элементы:

  1. Снаружи используется электротехническая сталь, из которой изготавливается сердечник статора.
  2. Затем идет стержневая обмотка.
  3. Ступица ротора и за ней специальная пластина.
  4. Затем, изготовленные из электротехнической стали, секции редечника ротора.
  5. Постоянные магниты являются частью ротора.
  6. Конструкцию завершает опорный подшипник.

Как любой вращающийся электродвигатель, рассматриваемый вариант исполнения состоит из неподвижного статора и подвижного ротора, которые при подаче электроэнергии взаимодействую между собой. Отличие рассматриваемого варианта исполнения можно назвать наличие ротора, в конструкцию которого включены магниты постоянного типа.

При изготовлении статора, создается конструкция, состоящая из сердечника и обмотки. Остальные элементы являются вспомогательными и служат исключительно для обеспечения наилучших условий для вращения статора.

Принцип работы

Принцип работы рассматриваемого варианта исполнения основан на создании центробежной силы за счет магнитного поля, которое создается при помощи обмотки. Стоит отметить, что работа синхронного электродвигателя схожа с работой трехфазного асинхронного двигателя.

К основным моментам можно отнести:

  1. Создаваемое магнитное поле ротора вступает во взаимодействие с подаваемым током на обмотку статора.
  2. Закон Ампера определяет создание крутящего момента, который и заставляет выходной вал вращаться вместе с ротором.
  3. Магнитное поле создается установленными магнитами.
  4. Синхронная скорость вращения ротора с создаваемым полем статора определяет сцепление полюса магнитного поля статора с ротором. По этой причине, рассматриваемый двигатель нельзя использовать в трехфазной сети напрямую.

В данном случае, нужно в обязательном порядке устанавливать специальный блок управления.

Виды

В зависимости от особенностей конструкции, существует несколько типов синхронных двигателей. При этом, они обладают разными эксплуатационными качествами.

По типу установки ротора, можно выделить следующие типы конструкции:

  1. С внутренней установкой – наиболее распространенный тип расположения.
  2. С внешней установкой или электродвигатель обращенного типа.

Постоянные магниты включены в конструкцию ротора. Их изготавливают из материала с высокой коэрцитивной силой.

Эта особенность определяет наличие следующих конструкций ротора:

  1. Со слабо выраженным магнитным полюсом.
  2. С ярко выраженным полюсом.

Равная индуктивность по перечным и продольным осям – свойство ротора с неявно выраженным полюсом, а у варианта исполнения с ярко выраженным полюсом подобной равности нет.

Кроме этого, конструкция ротора может быть следующего типа:

  1. Поверхностная установка магнитов.
  2. Встроенное расположение магнитов.

Кроме ротора, также следует обратить внимание и на статор.

По типу конструкции статора, можно разделить электродвигатели на следующие категории:

  1. Распределенная обмотка.
  2. Сосредоточенная обмотка.

По форме обратной обмотке, можно провести нижеприведенную классификацию:

  1. Синусоида.
  2. Трапецеидальная.

Подобная классификация оказывает влияние на работу электродвигателя.

Преимущества и недостатки

Рассматриваемый вариант исполнения имеет следующие достоинства:

  1. Оптимальный режим работы можно получить при воздействии реактивной энергии, что возможно при автоматической регулировке тока. Эта особенность обуславливает возможность работы электродвигателя без потребления и отдачи реактивной энергии в сеть. В отличие от асинхронного двигателя, синхронный имеет небольшие габаритные размеры при той же мощности, но при этом КПД значительно выше.
  2. Колебания напряжения в сети в меньшей степени воздействую на синхронный двигатель. Максимальный момент пропорционален напряжению сети.
  3. Высокая перегрузочная способность. Путем повышения тока возбуждения, можно провести значительное повышение перегрузочной способности. Это происходит на момент резкого и кратковременного возникновения дополнительной нагрузки на выходном валу.
  4. Скорость вращения выходного вала остается неизменной при любой нагрузке, если она не превышает показатель перегрузочной способности.

К недостаткам рассматриваемой конструкции можно отнести более сложную конструкцию и вследствие этого более высокую стоимость, чем у асинхронных двигателей. Однако в некоторых случаях, обойтись без данного типа электродвигателя невозможно.

Как сделать своими руками?

Провести создание электродвигателя своими руками можно только при наличии знаний в области электротехнике и наличия определенного опыта. Конструкция синхронного варианта исполнения должна быть высокоточной для исключения возникновения потерь и правильности работы системы.

Зная то, как должна выглядеть конструкция, проводим следующую работу:

  1. Создается или подбирается выходной вал. Он не должен иметь отклонений или других дефектов. В противном случае, возникающая нагрузка может привести к искривлению вала.
  2. Наибольшей популярностью пользуются конструкции, когда обмотка находится снаружи. На посадочное место вала устанавливается статор, который имеет постоянные магниты. На валу должно быть предусмотрено место для шпонки для предотвращения прокручивания вала при возникновении серьезной нагрузки.
  3. Ротор представлен сердечником с обмоткой. Создать самостоятельно ротор достаточно сложно. Как правило, он неподвижен, крепится к корпусу.
  4. Механической связи между статором и ротором нет, так как в противном случае, при вращении будет создавать дополнительная нагрузка.
  5. Вал, на котором крепится статор, также имеет посадочные места для подшипников. В корпусе имеется посадочные места для подшипников.

Большая часть элементов конструкции создать своими руками практически невозможно, так как для этого нужно иметь специальное оборудование и большой опыт работы. Примером можно назвать как подшипники, так и корпус, статор или ротор. Они должны иметь точные размеры. Однако, при наличии необходимых элементов конструкции, сборку можно провести и самостоятельно.

Электродвигатели имеют сложную конструкцию, питание от сети 220 Вольт обуславливает соблюдение определенных норм при их создании. Именно поэтому, для того, чтобы быть уверенным в надежной работе подобного механизма, следует покупать варианты исполнения, созданные на заводах по выпуску подобного оборудования.

В научных целях, к примеру, в лаборатории для проведения испытаний по работе магнитного поля часто создают собственные двигатели. Однако они имеют небольшую мощность, питаются от незначительно напряжения и не могут быть применены в производстве.

Рекомендации

Выбор рассматриваемого электродвигателя следует проводить с учетом следующих особенностей:

  1. Мощность – основной показатель, который влияет на срок службы. При возникновении нагрузки, которая превосходит возможности электродвигателя, он начинает перегреваться. При сильной нагрузке, возможно искривление вала и нарушение целостности других компонентов системы. Поэтому следует помнить о том, что диаметр вала и другие показатели выбираются в зависимости от мощности двигателя.
  2. Наличие системы охлаждения. Обычно особого внимания на то, как проводится охлаждение, никто не уделяет. Однако при постоянной работе оборудования, к примеру под солнцем, следует задуматься о том, что модель должна быть предназначена для продолжительной работы под нагрузкой при тяжелых условиях.
  3. Целостность корпуса и его вид, год выпуска – основные моменты, на которые уделяют внимание при покупке двигателя бывшего употребления. Если имеются дефекты корпуса, велика вероятность того, что конструкция имеет повреждения и внутри. Также, не стоит забывать о том, что подобное оборудование с годами теряет свой КПД.
  4. Особое внимание нужно уделять корпусу, так как в некоторых случаях можно провести крепление только в определенном положении. Самостоятельно создать посадочные отверстия, приварить уши для крепления практически невозможно, так как нарушение целостности корпуса не допускается.
  5. Вся информация об электродвигателе находится на пластине, которая прикрепляется к корпусу. В некоторых случаях, есть только маркировка, по расшифровке которой можно узнать основные показатели работы.

В заключение отметим, что многие двигатели, которые были произведены несколько десятилетий назад, зачастую проходили восстановительные работы. От качества проведенной восстановительной работы зависят показатели электродвигателя.

Статья была полезна?

0,00 (оценок: 0)

Вечный электромагнитный двигатель-генератор | « Новейшие экологические и энергетические технологии 21 века »

Настоящая статья посвящена разработке и описанию принципа работы, конструкций и электрической схемы простого оригинального «вечного» электромагнитного двигателя –генератора нового типа с электромагнитом на статоре и всего с одним постоянным магнитом(ПМ) на роторе, с вращением этого ПМ в рабочем зазоре этого электромагнита.

ВЕЧНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР С ЭЛЕКТРОМАГНИТОМ НА СТАТОРЕ И МАГНИТОМ НА РОТОРЕ

Содержание статьи

1. Введение
2. Сколько энергии спрятано в постоянном магните и откуда она там?
3. Краткий обзор электромагнитных двигателей и генераторов с ПМ
4. Описание конструкции и электрики модернизированного электромагнитного мотор-генератора с электромагнитом переменного тока
5. Обратимый электромагнитный двигатель с внешним ПМ на роторе
6. Описание работы «вечного» электромагнитного двигателя-генератора
7. Необходимые узлы и алгоритмы управления для работы данного электромагнитного мотор-генератора в режиме «вечного двигателя»
8. Алгоритм реверса электрического тока в обмотке электромагнита в зависимости от положения магнитного
9. Выбор и расчет элементов и оборудования для ЭМДГ
10. Малозатратный электромагнит ЭМД (основы конструирования и расчета)
11. Правильный выбор постоянных магнитов ротора ЭМД
12. Выбор электрогенератора для макетирования ЭМДГ
13. Вечный шторочный электромагнитный мотор- генератор
14. Вечный электромагнитный двигатель на обычном индукционном электросчетчике
15. Сравнение энергетических показателей нового ЭМДГ с аналогами
16. Заключение

ВВЕДЕНИЕ

Проблема создания вечных двигателей многие столетия будоражит умы многих изобретателей и ученых всего мира и является по-прежнему актуальной.

Интерес к этой теме «вечных двигателей» со стороны мирового сообщества по- прежнему огромный и все возрастающий, по мере роста потребностей цивилизации в энергии и в связи со скорым исчерпанием органического невозобновляемого топлива и особенно в связи с наступлением глобального энергетического и экологического кризиса цивилизации. При построении общества будущего, безусловно, важно заниматься разработкой новых источников энергии, способных обеспечить наши потребности. А сегодня для России и многих иных стран это просто жизненно необходимо. В будущем восстановлении страны и грядущем энергетическом кризисе новые источники энергии, основанные на прорывных технологиях, будут совершенно необходимы.

Взоры многих талантливых изобретателей, инженеров и ученых давно прикованы к постоянным магнитам (ПМ) и к их таинственной и удивительной энергетике. Причем этот интерес к ПМ даже усиливается в последние годы, в связи со значительным прогрессом в создании сильных ПМ, а отчасти, в связи с простотой предлагаемых конструкций магнитных двигателей (МД).

Сколько энергии спрятано в постоянном магните и откуда она там?

Очевидно, что современные компактные и мощные ПМ таят в себе значительную скрытую энергию магнитного поля. И цель изобретателей и разработчиков таких магнитных двигателей и генераторов состоит в выделении и преобразовании этой скрытой энергии ПМ в иные виды энергии, например, в механическую энергию непрерывного вращение магнитного ротора или в электроэнергию. Уголь при сгорании выделяет 33 Дж на грамм, нефть, которая через 10-15 лет у нас начнет подходить к концу, выделяет 44 Дж на грамм, грамм урана дает 43 миллиарда Дж энергии. В постоянном магните теоретически содержится 17 миллиардов Дж энергии. на один грамм. Конечно, как и у обычных источников энергии, КПД магнита не будет стопроцентным, к тому же у ферритового магнита срок жизни около 70 лет, при условии, что на него не действуют сильные физические, температурные и магнитные нагрузки, впрочем, при таком количестве заключенной в нем энергии, это не так уж и важно. К тому же, есть еще уже серийные промышленные магниты из редких металлов, которые в десять раз сильнее ферритовых и соответственно эффективнее. Потерявший силу магнит можно просто «перезарядить» сильным магнитным полем. Однако вопрос «откуда в ПМ столько энергии» — остается в науке пока открытым. Многие ученые считают, что энергия в ПМ непрерывно поступает извне от эфира (физического вакуума). А иные исследователи утверждают, что она просто возникает в нем самом из-за намагниченного материала ПМ. Пока ясности тут нет.

КРАТКИЙ ОБЗОР ИЗВЕСТНЫХ ЭЛЕКТРОМАГНИТНЫХ ДВИГАТЕЛЕЙ И ГЕНЕРАТОРОВ

В мире есть уже много патентов и инженерных решений различных конструкций магнитных двигателей – но практически пока нет в показе таких действующих МД в режиме «вечных двигателей». И до сих пор «вечные» промышленные магнитные двигатели (МД) так не созданы и не освоены в серии и не внедряются в реалии и тем более их нет пока в открытой продаже. К сожалению, известная информация в Интернете о серийных магнитных мотор-генераторах фирм «Перендев» (Германия) и «Акойл-энергия» пока в реалии не подтверждается . Возможных причин медленного реального в металле прогресса в МД много, но по-видимому главные причины две: или по причине засекречивания этих разработок они не доводятся до серийного производства или по причине низких энергетических показателей опытно-промышленных образцов МД. Следует отметить, что некоторые проблемы создания чисто магнитных двигателей с механическими компенсаторами и магнитными экранами, например, МД шторочного типа, наукой и техникой пока так полностью, и не решены.

Классификация и краткий анализ некоторых известных МД

  1. Магнито–механические магнитные моторы Дудышева /1-3/. При их конструктивной доводке вполне могут работать в режиме “вечных двигателей”.
  2. Двигатель МД Калинина – неработоспособный возвратно-поступательный МД с вращающимся магнитным экраном — МД по причине не доведенного до правильного конструктивного решения пружинного компенсатора.
  3. Электромагнитный мотор «Перендев» – классический электромагнитный двигатель с ПМ на роторе и компенсатором, неработоспособный без процесса коммутации в зонах прохождения мертвых точек удержания ротора с ПМ. В нем возможны два вида коммутации (позволяющей проходить «точку удержания» ПМ ротора — механическая и электромагнитная. Первая автоматически сводит задачу к закольцованному варианту SMOT’a (и ограничивает скорость вращения, а значит и мощность), о второй ниже. В режиме «вечного двигателя» работать не может.
  4. Электромагнитный Двигатель Минато — классический пример электромагнитного двигателя с ПМ ротора и электромагнитным компенсатором, обеспечивающим проход магнитного ротора «точки удержания» (по Минато «точка коллапса»). В принципе это просто рабочий электромагнитный мотор с повышенным кпд. Максимальный достижимый КПД — ориентировочно 100% неработоспособен в режиме «вечного» МД.
  5. Мотор Джонсона — аналог электромагнитного мотора «Перендев» с компенсатором, но с еще более низкой энергетикой.
  6. Магнитный мотор–генератор Шкондина – электромагнитный мотор с ПМ, работающий на силах магнитного отталкивания ПМ (без компенсатора). Конструктивно сложен, имеет коллекторно-щеточный узел, его к.п.д. порядка 70-80%. Неработоспособен в режиме вечного МД.
  7. Электромагнитый Мотор–генератор Адамса – это по сути наиболее совершенный из всех известных — электромагнитный мотор–генератор, работающий как и мотор-колесо Шкондина, только на силах магнитного отталкивания ПМ от торцов электромагнитов. Но этот мотор-генератор на ПМ конструктивно намного проще магнитного мотора–генератора Шкондина. В принципе, его КПД может только приближаться к 100%, но только обязательно при условии коммутации обмотки электромагнита коротким высокоинтенсивным импульсом с заряженного конденсатора. Неработоспособен в режиме «вечного» МД.
  8. Электромагнитный мотор Дудышева. Обратимый электромагнитный двигатель с внешним магнитным ротором и центральным статорным электромагнитом). КПД его не более 100% из-за разомкнутости магнитопровода /3/. Этот ЭМД проверен в работе (фото макета имеется).

Известны и другие ЭМД, но они примерно таких же принципов действия. Но тем не менее, развитие теории и практики магнитных двигателей в мире все же постепенно идет. И особенно ощутимый реальный прогресс по МД наметился именно по малозатратным совмещенным магнито-электромагнитным двигателям с применением в них высокоэффективных постоянных магнитов. Эти ближайшие аналоги столь важных для мирового сообщества — прообразы вечных магнитных двигателей называются — электромагнитные двигатели–генераторы (ЭМДГ) с электромагнитами и постоянными магнитами на статоре или роторе. Причем они уже реально существуют непрерывно совершенствуются и даже некоторые из них уже серийно выпускаются. Достаточно много появилось сообщений в Интернете и статей о их конструкциях с фото и их экспериментальных исследованиях. Например, известны эффективные, уже испытанные в металле — относительно малозатратные электромагнитные моторы–генераторы Адамса /1/. Причем некоторые простейшие конструкции совмещенных ЭМДГ даже уже дошли до серийного выпуска и массового внедрения. Это, например, серийные электромагнитные мотор-колеса Шкондина, применяемые на электровелосипедах.

Однако конструкции и энергетика всех известных ЭМДГ пока еще достаточно неэффективные, что не позволяет им работать в режиме «вечного двигателя», т.е. без внешнего источника электроэнергии.

Тем не менее, пути конструктивного и радикального энергетического совершенствования известных ЭМДГ есть. И именно такие более энергетически совершенные их варианты, которые могут справиться с этой непростой задачей – полностью автономной работы в режиме «вечного» электромагнитного мотор- генератора -вообще без потребления электроэнергии от внешнего источника и рассматриваются в настоящей статье.

Настоящая статья посвящена разработке и описанию принципа работы оригинальной конструкции простого электромагнитного двигателя –генератора нового типа с дуговым электромагнитом на статоре и всего с одним постоянным магнитом(ПМ) на роторе, с полярным вращением этого ПМ в зазоре электромагнита, которая вполне работоспособна и в режиме «вечного двигателя-генератора».

Ранее и частично данная конструкция такого необычного полярного ЭМД в ином обратимом варианте уже апробирована на действующих макетах автора статьи и показала работоспособность и достаточно высокие энергетические показатели.

Описание конструкции и электрической схемы модернизированного ЭМДГ

Рис.1 Электромагнитный мотор-генератор с ПМ на роторе, внешним электромагнитом переменного тока на статоре и электрогенератором на валу магнитного ротора

Упрощенная конструкция электромагнитного двигателя- генератора (ЭМДГ) такого типа и его электрическая часть приведены на рис. 1.  Она состоит из трех основных узлов – из непосредственно МД с электромагнитом на статоре и ПМ на роторе и электромеханического генератора на одном валу с МД. Устройство МД состоит из статорного статического электромагнита 1, выполненного на кольцевом с вырезанным сегменте или на дуговом магнитопроводе 2 с индуктивной катушкой 3 этого электромагнита и присоединенным к ней электронным коммутатором реверса тока в катушке 3 и постоянного магнита (ПМ) 4, жестко размещенного на роторе 5 в рабочем зазоре этого электромагнита 1. Вал вращения ротора 5 ЭМД соединен муфтой с валом 7 электрогенератора 8. Устройство снабжено простейшим регулятором -электронным коммутатором 6, (автономным инвертором), выполненным по схеме простого мостового полууправляемого автономного инвертора, электрически присоединенного по выходу к индуктивной обмотке 3 электромагнита 2 а по входу электропитания — к автономному источнику электроэнергии 10. Причем реверсивная индуктивная обмотка 3 электромагнита 1 включена в диагональ переменного тока этого коммутатора 6 а по цепи постоянного тока этот коммутатор 6 присоединен к буферному источнику постоянного тока 10, например к аккумуляторной батарее (АБ) Электрический выход электромашинного генератора 8 присоединен либо непосредственно к обмоткам индуктивной катушки 3, либо через промежуточный электронный выпрямитель(не показан )к буферному источнику постоянного тока (типа АБ) 7.

Мостовой простейший электронный коммутатор (автономный инвертор) выполнен на 4-х полупроводниковых вентилях, содержит в плечах моста два силовых транзистора 9 и два неуправлямых бесконтактных ключа односторонней проводимости (диода) 10. На электромагнитном статоре 1 этого МД размещены также два датчика 11 положения магнита ПМ 5 ротора 6, вблизи траектории его движения 15 причем в качестве датчика положения ПМ-магнита 5 ротора использованы простые контактные датчики напряженности магнитного поля – герконы. Эти датчики положения 11 магнита 4 ротора 5 размещены в квадратуре — один датчик размешен возле торца соленоида с полюсами а второй- со сдвигом на 90 градусов (герконовые реле), вблизи траектории вращения ПМ5 ротора 6. Выходы этих датчиков положения 11 ПМ 5 ротора -герконовых реле присоединены через усилительно- логическое устройство 12 на управляющие входы транзисторов 9. К выходной обмотке электрогенератора 8 присоединена через выключатель (не показан) полезная электрическая нагрузка 13. В электрической цепи коммутатора 6 и цепи электропитания катушки 3 имеется элементы защиты и управления, в частности автоматический переключатель от пускового блока постоянного тока на полное электропитание от электрогенератора 8 ( не показаны ).

Отметим основные конструктивные особенности такого МД по сравнению с аналогами:

1. Применен многовитковый экономичный низкоамперный дуговой электромагнит.

2. Постоянный магнит 4 ротора 5 вращается в зазоре дугового электромагнита 1, именно магнитными силами притягивания – отталкивания ПМ 5. Вследствии изменения магнитной полярности магнитных полюсов в зазоре этого электромагнита при циклическом переключения (реверсе) направления тока в катушке 3 электромагнита 1 от коммутатора 5 по команде датчиков положения 11 ПМ магнита 4 ротора 5. Отметим также, что ротор 5 целесообразно делать массивным из немагнитного материала для выполнения им полезной функции маховика-инерциоида.

Обратимый электромагнитный двигатель с внешним ПМ на роторе

В принципе, возможен и обратимый вариант конструкции ЭМД, в котором ротор с постоянным магнитом ПМ на ободе размещен снаружи электромагнита. Ранее такой вариант обратимого ЭМД автором статьи был разработан, создан и успешно опробован в работе, причем еще в 1986 г. Ниже, на рис.2,3 приводится также упрощенная конструкция такого апробированного ранее ЭМДГ, описанная ранее в статьях автора /2-3/

Конструкция (неполная) макета простейшего ЭМД с внешним постоянным магнитом на роторе и со снятым электромагнитом статора ЭМД, показана на фото (рис.3). В реалии электромагнит размещен штатно в центре цилиндрического диэлектрического немагнитного прозрачного цилиндра с верхней крышкой, на которой крепится вал вращения данного ЭМД. Коммутатор и прочая электрика на фото не показаны.

Рис.2 Обратимый ЭМДГ с внешним МП- магнитным ротором (неполная конструкция)

Обозначения :

1. постоянный магнит (ПМ1)
2. постоянный магнит (ПМ2)
3. кольцевой ротор ЭМД(ПМ1,2 жестко размещены на роторе)
4. обмотка неподвижного статорного электромагнита (независимая подвеска)
5. магнитопровод электромагнита
6. датчики положения ПМ ротора
7. вал ротора ( на немагнитном подшипнике)
8. спицы механической связи кольцевого ротора и с его валом
9. опорный вал
10. опора
11. силовые магнитные линии электромагнита
12. силовые магнитные линии постоянного магнита Стрелкой показано направление вращения ротора 3

 

Рис.3 Фото простейшего макета ЭМДГ (со снятым электромагнитом)

 Описание работы «вечного» электромагнитного мотор — генератора (рис. 1)

Устройство – данный вечный электромагнитный мотор – генератор (рис.1) работает следующим образом.

Запуск и разгон магнитного ротора ЭМДГ до установившейся скорости

Запуск ЭМДГ осуществляем подачей электрического тока в катушку 3 электромагнита 2 от блока электропитания 10. Исходное положение магнитных полюсов постоянного магнита 4 ротора перпендикулярное зазору электромагнита 2 Полярность магнитных полюсов электромагнита возникает при этом такая, что постоянный магнит 4 ротора 5 начинает поворачиваться на своей оси вращения 16, магнитными силами, притягиваясь своими магнитными полюсами к противоположным магнитным полюсом электромагнита 2. В этот момент совпадения разноименных магнитных полюсов магнита 4 и торцов в зазоре электромагнита 2 ток в катушке 3 выключают по команде магнитного герконового реле ( или синусоида этого тока проходит через ноль) и по инерции массивный ротор проходит эту мертвую точку его траектории вместе с ПМ 4. После этого изменяют направление тока в катушке 3 и магнитные полюса электромагнита 2 в этом рабочем зазоре становятся одноименными с магнитными полюсами постоянного магнита 4. В результате силами магнитного отталкивания одноименных магнитных полюсов –постоянный магнит 4 ротора и сам ротор получают дополнительный ускоряющий момент, действующий в направлении вращения ротора в ту же прежнюю сторону. После достижения положения магнитных полюсов ПМ ротора – по мере его вращения –вдоль магнитного меридиана, в катушке 3 вновь изменяют направления тока по команде второго магнитного датчика положения 11, вновь возникает реверс магнитных полюсов электромагнита 2 в рабочем зазоре и постоянный магнит 4 снова начинает притягиваться к ближайшим по направлению вращения разноименным магнитным полюсам электромагнита 2 в его зазоре. И далее процесс разгона ПМ 4 и ротора — путем цикличного реверса электрического тока в катушке 3 цикличным переключением транзисторов 8 коммутатора 7 от датчиков положения 11 ПМ ротора многократно повторяется циклично. Причем одновременно по мере ускорения ПМ 4 и ротора 5 автоматически возрастает и частота реверсов электрического тока в катушке 3, благодаря наличию в этой электромеханической системе положительной обратной связи по цепи через коммутатор и датчики положения ПМ 4 ротора.

Отметим, что направление электрического тока в катушке 3 (на рис. 1 показано стрелками) изменяется в зависимости от того, какой из транзисторов 8 коммутатора 7 открыт. Изменением частоты переключения транзисторов изменяем частоту переменного тока в катушке 3 электромагнита и соответственно изменяем и скорость вращения ПМ 4 ротора 5.

ВЫВОД: Таким образом, постоянный магнит ротора за полный оборот вокруг своей оси практически непрерывно испытывает однонаправленный ускоряющий момент от силового магнитного взаимодействия с магнитными полюсами электромагнита, который и приводит его во вращение и постепенно разгоняет его и электрический генератор на общем валу вращения до заданной установившейся скорости вращения.

Прямой метод электрического управления обмоткой статорного электромагнита ЭМДГ в зависимости от положения ПМ ротора

Дополнительным новшеством для обеспечения такого метода управления обмоткой электромагнита 3 МД переменным током требуемой частоты и фазы непосредственно с выхода электрогенератора переменного тока в установившемся режиме работы является введение в такой системе магнитный двигатель – электрогенератор параллельная резонансная L-C цепь – в контуре две индуктивности –от катушки 3 и статорной обмотки генератора и дополнительная электроемкость введение в выходную электроцепь электрогенератора 8 дополнительного электрического конденсатора 17 для обеспечения его самовозбуждения и последующего электрического L-C резонанса, для снижения электрических потерь и для предельно простого управления индуктивностью 3 переменным током с нужной фазой напряжения и тока непосредственно от генератора 8.

Полностью автономный режим («вечный двигатель») ЭМДГ

Совершенно очевидно, что для обеспечения работы данного устройства в режиме «вечного двигателя» необходимо получить от постоянных магнитов ротора свободную энергию, достаточную для выработки электрогенератором на валу ЭМД требуемой для этой полностью автономной работы системы- электроэнергии. Поэтому важнейшим условием является обеспечение достаточного по величине крутящего момента магнитного ротора этого МД для выработки электрогенератором на его валу достаточного количества электроэнергии, которого бы с избытком хватило и на электропитание катушки электромагнита ,и на полезную нагрузку заданной величины и на компенсацию различных неизбежных потерь в такой электромеханической системы с ПМ на роторе. После раскрутки ПМ 4 и достижения ротором 5 номинальных оборотов, электропитание катушки 3 переключаем осуществляем уже непосредственно от электрогенератора или через дополнительный преобразователь напряжения а стартерный источник электроэнергии либо вообще отключаем либо переводим его в режим подзарядки от электрического генератора на валу этого ЭМД.

НЕОБХОДИМЫЕ УЗЛЫ КОНСТРУКЦИИ И АЛГОРИТМЫ УПРАВЛЕНИЯ ДЛЯ РАБОТЫ ДАННОГО МОТОР-ГЕНЕРАТОРА В РЕЖИМЕ “ВЕЧНОГО ДВИГАТЕЛЯ”

Это важное условие работы МД в режиме «вечного двигателя» может быть выполнено только при одновременном выполнении как минимум шести условий:

1. применение в МД современных сильных ниобиевых постоянных магнитов, обеспечивающих максимальный момент вращения такого ротора при минимальных габаритах ПМ.

2. применение на статоре МД эффективной сверхмалозатратной схемы электромагнита МД за счет предельно высокого количества витков в обмотке электромагнита и правильного эффективного конструирования его магнитопровода и обмотки.

3. необходимость пускового устройства и стартерного источника электроэнергии для запуска и разгона МД с электропитанием катушки электромагнита от коммутатора.

4. правильный алгоритм управления электрическим током в обмотке электромагнита по направлению, величине в зависимости от положения ПМ ротора.

5. согласование электрических параметров электрогенератора и обмотки электромагнита.

6. правильный алгоритм коммутации цепей электропитания обмотки электромагнита при включения цепи электрогенератора в цепь электропитания обмотки электромагнита и перевода пускового источника электроэнергии, например АБ из режима разрядки в режим его электрической подзарядки.

АЛГОРИТМ ПЕРЕКЛЮЧЕНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА В КАТУШКЕ ЭЛЕКТРОМАГНИТА В ЗАВИСИМОСТИ ОТ ПОЛОЖЕНИЯ ПМ РОТОРА ЭМД (рис.1)

Рассмотрим алгоритм переключения электрического тока в катушке при наличии одного полосового магнита на роторе ЭМД за один оборот ротора(рис.3).для обеспечения эффективной работы данного ЭМД (конструкция рис.1)с помощью совмещенных диаграмм положения ротора и направления протекания тока в обмотке 3 статорного электромагнита 1. Как следует из этих диаграмм, сущность правильного алгоритма управления электромагнитом 1 ЭМД состоит в том, что один полный оборот ПМ ротора электрический ток в индуктивной обмотке 3 электромагнита совершает два полных колебания.. Т.е., проще говоря, частота электрического тока, подаваемая в обмотку3 электромагнита 1посредством присоединенного к ней электронного коммутатора, управляемого по командам датчиков положения ПМ ротора, равна двойной частоте вращения ротора, а фаза этого электрического тока строго синхронизирована с положением ПМ ротора. ЭМД. Поскольку переключение коммутатором направления тока в обмотке 3 (реверс тока) происходит строго на магнитном экваторе ПМ при совпадении магнитных полюсов ПМ и магнитных полюсов торцов магнитопровода в рабочем зазоре магнитопровода 2 электромагнита 1, то в итоге, за один полный оборот ПМ ротора, он испытывает постоянно ускоряющий однонаправленный момент вращения, причем дважды от притяжения разноименных магнитных полюсов торцов магнитопровода электромагнита и ПМ ротора, и дважды – за счет магнитных сил отталкивания их одноименных магнитных полюсов.

Рис.4 Временная диаграмма работы электронного коммутатора для реверса тока в обмотке статорного электромагнита за один оборот ПМ ротора

Рис.5 Циклограмма чередования магнитных полюсов в зазоре электромагнита за один оборот ПМ ротора ЭМДГ

К объяснению алгоритма работы электромагнита ЭМД:

3.4 -магнитные полюса торцов дугового магнитопровода 2 электромагнита 1
Катушка с обмоткой 3 размещена на магнитопроводе 2 электромагнита 1
9. магнит ротора Стрелки показывают направление вращения ротора с ПМ а цифры в квадратах показывают картину при разных положениях ротора


Рис.6 Конструкция простейшего макета ЭМДГ на базе индуктивного электросчетчика

Выбор и расчет элементов и оборудования для «вечного» ЭМДГ

В настоящем разделе статьи кратко обсуждаются важные вопросы и основы конструирования и выбора основных элементов ЭМДГ – постоянных магнитов, электромагнита ЭМД и электрогенератора, от которых и зависит нормальная работа ЭМДГ в режиме «вечного двигателя-генератора»

Примечание:

Детально выбранные и расчетные параметры конструкции действующего макета ЭМД, постоянных магнитов ротора и параметры оригинального электромагнита в статье пока полностью не раскрываются (НОУ-ХАУ). Автор заинтересован в деловых предложениях о сотрудничестве от инвесторов для разработки, проектирования и изготовление данного опытно- промышленного образца данного эффективного электромагнитного мотор- генераторного устройства по ТЗ заказчика на заданную мощность.

МАЛОЗАТРАТНЫЙ ЭЛЕКТРОМАГНИТ СТАТОРА ЭМД

Все, кто достаточно хорошо знакомы с принципом действия и устройством электромагнита, наверняка знают, что электромагнит притягивает посторонние ПМ или металлы именно на постоянном токе. Причем многие его выходные параметры, например, подъемная сила электромагнита и его электропотребление, а, значит и кпд( в смысле энергетической эффективности ватт/на кг подымаемого им груза, определяются в основном, конструкцией, магнитными характеристиками магнитопровода и параметрами обмотки электромагнита и величиной его рабочего зазора.

Известно, что любой магнитопровод обладает магнитной петлей гистерезиса, и что его магнитная энергия, определяется произведением ВхН, где В- магнитная индукция а Н-коэрцитивная сила.

В случае нашего ЭМД существуют цикличные интервалы его работы во времени, в которые по обмотке электромагнита протекает знакопостоянный ток, при подаче электрического тока в обмотку электромагнита от электронного коммутатора. Именно поэтому к данному электромагниту тоже вполне применима известная методика расчета электромагнитов постоянного тока.

Ориентировочный расчет электромагнита. Зададим тяговое усилие нашего электромагнита порядка 100 Н =10 кг и рассчитаем примерно некоторые конструктивные параметры этого электромагнита при рабочем зазоре электромагнита порядка 1-2 см. Тяговая сила Pэм, развиваемая электромагнитом, вычисляется по формуле полученной на основе баланса энергии (энергетическая формула). В условиях равномерного распределения индукции в рабочем воздушном зазоре эта формула преобразуется в формулу Максвелла:

По основной кривой намагничивания для низкоуглеродистой стали, находим среднее значение магнитной напряженности Hc в стали магнитопровода. Hc = 600. При правильном конструировании электромагнита можно достигнуть максимума его силы магнитного силового взаимодействия его магнитных полюсов с сильными постоянными магнитами ротора ЭМДГ при минимуме электропотребления обмоткой данного электромагнита, что и обеспечивает избыточную мощность на валу нашего электромагнитного ЭМДГ.

О выборе постоянных магнитов для ротора «вечного» ЭМДГ. Наиболее важными элементами данного устройства «вечного двигателя». безусловно являются постоянные магниты, которые по сути и являются источником энергии для всей этой системы. Поэтому от их правильного выбора зависит работоспособность этой системы и ее энергетические показатели. Постоянные магниты характеризуются тремя основными параметрами: остаточной магнитной индукцией Вr, коэрцитивной силой Нc и энергетическим произведением BH.

Вr определяет величину магнитного потока. Если в генератор поставить магниты с большей магнитной индукцией, то пропорционально (грубо говоря) увеличится напряжение на обмотках, а значит и мощность генератора.

Нc определяет магнитное напряжение. Если в генератор поставить магниты с большей коэрцитивной силой, то магнитное поле сможет преодолевать большие воздушные зазоры. И сможет «поддержать ток» в большем числе виков статора. При переделке промышленного генератора на постоянные магниты мотать добавочные витки обычно некуда, поэтому повышенная коэрцитивная сила полезна при изготовлении самодельных генераторов со статором не имеющим железа. Чтобы «пробить» значительные воздушные промежутки без большой Нc не обойтись. Редкоземельные магниты лидеры по этому показателю. BH вычисляется в расчете на 1 м3 магнитов, Это произведение получается меньше чем просто произведение Вr на Нc. По величине BH можно судить о том, насколько будут малы габариты магнитной системы.

Теперь о том, какие бывают магниты. Для изготовления самодельных магнитных моторов-генераторов целесообразно применять только два вида магнитов: ферритовые, которые используются в динамиках и самые мощные в настоящее время РЗМ (редкоземельный металл) магниты из неодима. Ориентировочные характеристики их такие (учтите, что разброс параметров очень большой, даны некие средние цифры):

  • Феррит-бариевые магниты:
    4500 кг/м3; Вr = 0,2 — 0,4 Тл; Нc = 130 — 200 кА/м; BH = 10 — 30 кДж/м3; цена 100 — 400 руб/кг; максимальная температура 250 градусов.

  • Феррит-стронциевые магниты:
    4900 кг/м3; Вr = 0,35 — 0,4 Тл; Нc = 230 — 250 кА/м; BH = 20 — 30 кДж/м3; цена 100 — 400 руб/кг; максимальная температура 250 градусов.

  • РЗМ магниты Nd-Fe-B:
    7500 кг/м3; Вr = 0,8 — 1,4 Тл; Нc = 600 — 1200 кА/м; BH = 200 — 400 кДж/м3; цена 2000 — 3000 руб/кг; максимальная температура 80 — 200 градусов.

Если посчитать стоимость одного кубометра магнита и затем разделить на BH, на количество запасенных там джоулей, то окажется, что бариевые магниты раза в два дешевле неодимовых по стоимости энергии, имеющейся в магнитах. Но этот выигрыш «съедается» большими габаритами генератора и более тяжелой обмоткой, железом. Поэтому применять в самодельном электромагнитном мотор-генераторе дорогие неодимовые магниты довольно выгодно. А по мере того, как они дешевеют, то неодимовые магниты становятся вне конкуренции.

Выбор типа электрогенератора для использования его в “вечном” ЭМДГ

Возникает вопрос — какой же электрогенератор выбрать для применения в этом необычном электромагнитном мотор-генераторе? Например, на этапе его реального макетирования? Вполне логично взять для этих целей, по-видимому, стандартный автомобильный электрогенератор с готовым п/п выпрямителем ,системой управления и узлом согласования его параметров с параметрами бортовой автомобильной аккумуляторной батареи (АБ)и скоростью вращения ПМ ротора ЭМД.

ВЕЧНЫЙ ШТОРОЧНЫЙ ЭЛЕКТРОМАГНИТНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР С ЭЛЕКТРОМАГНИТОМ ПОСТОЯННОГО ТОКА

Описанная в настоящей статье конструкция вечного электромагнитного мотор-генератора с электромагнитом переменного тока может быть выполнена и на электромагните постоянного тока без электронного коммутатора и без его электромагнитной переполюсовки магнитных полюсов торцов электромагнита в рабочем зазоре за счет реверса направления тока в катушке электромагнита.

Это существенно упрощает электрику и электронику данного ЭМДГ, но взамен требует введения в его конструкцию вращающегося магнитного экрана с механическим коммутатором магнитного поля на валу магнитного ротора, который и обеспечивает синхронную экранировку магнитных полей статора и ротора в нужные моменты времени, по мере вращения магнитного ротора для обеспечения однонаправленного электромагнитного момента вращения ПМ ротора. Анимация его работы показана ниже.

Описание конструкции шторочного «вечного» ЭМДГ Дудышева

Этот вечный электромагнитный МДГ состоит из статорного неподвижного кольцевого электромагнита 1 с обмоткой 6 на магнтопроводе 1 с рабочим зазором , магнитного ротора на постоянном магните 9 и диска со шторками –магнитными экранами 2., с внешним расположением шторочного обода относительно ПМ ротора и независимым вращение концентрично с ним . Кроме того, на общем выходном валу этого электромагнитного двигателя размещен маховик 5 и обратимый электромотор -стартер-генератор 7, а на статорном электромагните 1 размещена индуктивная обмотка 6, электрически присоединенная через выпрямитель к индуктивными обмотками эл стартер–генератора.

Описание работы шторочного «вечного» ЭМДГ Дудышева

Этот вечный мотор запускается в работу от электрической машины 7, связанной общим валом 10 валом с ПМ ротором 9 и диском 2 со шторками – магнитными экранами после этого данная Эл машина переходит в генераторный режим.

Алгоритм работы такого МД должен обеспечивать взаимосвязанное перемещении шторок на диске 2 и магнита ротора 9 так, чтобы при повороте магнитного ротора 9 и шторочного диска 2 с магнитными экранами обеспечивать циклическую магнитную экранировку одноименных магнитных полюсов 3,4 статорного электромагнита 1 (или дугового магнита) от одноименных магнитных полюсов магнитного ротора 9 в моменты их прохождения ПМ ротора.

Т.е. необходимо обеспечивать техническими средствами такое взаимное перемещение магнитного ротора 9 и диска с шторками 2 , что эти магнитные экраны –шторки оказывались точно между их одноименными магнитными полюсами этого неподвижного электромагнита статора 1 и магнита ротора 9 в тот момент когда совпадают одноименные магнитные полюса статорного и роторного ПМ –магнитов.

При самовращении магнита ротора 9 в таком шторочном МД в индуктивной обмотке электромагнита и обмотке электрогенератора 7 будет наводиться электродвижущая сила -эдс Фарадея, которая будет использоваться для получения электроэнергии внешним электропотребителям ( не показаны).

Отметим возможность двух режимов работы электрической машины 7 после выхода шторочного МД в установившийся режим работы:

1. При принудительном вращения ротора эл мотора 7 он может работать эл. генератором
2. В случае электрического присоединения к нему – мотору 7 — обмоток индуктивной обмотки 6 – он работает в режиме электромотор–генератора, передающего момент вращения на общий вал 10 шторочного МД.

Вечный электромагнитный мотор–генератор на обычном индуктивном электросчетчике

Наиболее просто реализовать простой действующий макет такого »вечного» электромагнитного двигателя на обычном индуктивном электросчетчике. В конструкции такого индуктивного электросчетчика уже есть готовый электромагнит с многовитковой индуктивной обмоткой и есть немагнитный ротор, т.е. уже есть практически все, что нужно для полноценной конструкции нашего вечного МД кроме коммутатора и постоянных магнитов на этом роторе. .Конструкция этого индуктивного электросчетчика показана на рис.6 Благодаря малому зазору между верхними и нижними частями магнитопровода стандартного трансформатора напряжения этого электросчетчика достигается значительная напряженность магнитного поля в этом зазоре, что способствует повышению момента вращения постоянных магнитов ротора , в отличии от конструкции МД с полярным вращением этих ПМ ротора. Естественно, этот рабочий зазор в магнитопроводе должен быть достаточным по высоте для прохода ротора с размещенными на нем ПМ , при его вращении. В качестве постоянных магнитов ротора рекомендуем использовать 3-6 дисковых сильных магнитов на основе ниобиевых сплавов , высотой не более 10 мм с жестким закреплением их на роторе в специальных немагнитных обоймах. Электронный коммутатор в виде автономного мостового инвертора присоединен в выходам обмотки электромагнита, а электропитание коммутатор в режиме запуска ЭМД получает от малогабаритной аккумуляторной батареи (на рис . не показана).

Сравнение энергетической эффективности электромагнитного мотор- генератора Дудышева с аналогами — ЭМДГ Адамса и Шкондина

В указанных аналогах ЭМДГ Адамса и Шкондина для вращения постоянных магнитов ротора производится их импульсное электромагнитное отталкивание в момент прохождении ими над полюсами электромагнитов. .А в остальное время при обороте ПМ ротора эти катушки работают в генераторном режиме, производят электроэнергию, которая возвращается в бортовой аккумулятор. В результате, на значительной части траектории при вращении ПМ ротора испытывает торможение, причем из-за этого несовершенного алгоритма управления электромагнитами статора ПМ ротора не получает достаточный вращающий момент, т.е. недоиспользуется его скрытая магнитная энергия. Поэтому на серийных китайских электровелосипедах, и на иных электровелосипедах с электромагнитным мотор-колесом Шкондина максимальная скорость движения ограничена скоростью всего порядка 25км/час. Это возникает потому что они одновременно с работой в двигательном режиме начинают одновременно работать и в генераторном режиме т.е. ПМ ротора конкретно начинают тормозиться. В нашем электромагнитном моторе — генераторе с электромагнитом такого тормозного режима нет, поскольку за счет правильного алгоритма управления обмоткой электромагнита, ПМ магнитного ротора испытывают непрерывно ускоряющий момент вращения как от магнитных сил отталкивания так и от притяжения –ПМ ротора и магнитных полюсов статорного электромагнита ,поскольку частота переключения(реверса ) тока в обмотке электромагнита в два раза превышает частоту вращения ПМ ротора . Поэтому ПМ ротора в предлагаемом варианте ЭМДГ работает на полную силу и магнитные силы непрерывно подкручивают ПМ ротора в отличии от мотор колес Шкондина и в отличии от магнитного мотор генератора Адамса Нагрузка вала ЭМД осуществляется именно стандартным электрогенератором вращения Однако если заменить этот стандартный электрогенератор на оригинальный электрогенератор с ПМ на роторе и с бифилярными индуктивными статорными обмотками, то можно существенно устранить влияние противоэдс и в разы снизить механическую нагрузку на вал ЭМД.

ЗАКЛЮЧЕНИЕ

1. Предложены и разработаны по конструкции и электрической части оригинальные электромагнитные мотор -генераторы , некоторые из которых уже ранее испытаны.

2. Энергетические показатели предлагаемого электромагнитного мотор- генератора с электромагнитом переменного тока существенно выше чем у сравниваемых аналогов из-за намного более полного использования скрытой внутренней магнитной энергии постоянных магнитов ротора.. Поэтому удельная мощность на валу магнитного ротора такого предлагаемого ЭМДГ будет намного (в разы)выше чем в известных совмещенных ЭМДГ Адамса и Шкондина.

3. Именно предлагаемый ЭМДГ способен работать в режиме «вечного двигателя», поскольку электромагнитный мотор с ПМ на роторе вырабатывает избыточную механическую мощность на валу , а требуемую электрическую энергию для .работы его электромагнита с избытком вырабатывает электрический генератор, размещенный на его валу.

Литература:

1. Дудышев В.Д. Революционные открытия, изобретения и технологии для решения глобальной эколого-энергетической проблемы цивилизации –«Новая Энергетика»,1/2005 г. http://www.dudishev2.narod.ru/technology.html

2.Дудышев В.Д. Явление прямого преобразования энергии магнитных полей постоянных магнитов в иные виды энергий – «Новая энергетика»3/2004 г. http://www.dudishev2.narod.ru/menergy.html

3..Дудышев В.Д. Методы преобразования магнитной энергии постоянных магнитов и принципы работы преобразователей энергии магнитного поля – «Новая Энергетика»4/2004 г, http://www.dudishev2.narod.ru/menergy.html

Дата: 03.12.2007 г.
Автор: Валерий Дудышев
Правила републикации материала

Понравилось это:

Нравится Загрузка...

Похожее

~ от energy21x на 27 марта, 2010.

Опубликовано в Исследования, Новая магнитоэнергетика

Что такое электромагнитный двигатель? (с рисунками)

Электромагнитный двигатель - это машина, которая использует магнитные силы, создаваемые проводом с протекающим электричеством, для обеспечения движения двигателя. Все электродвигатели работают на электромагнитных принципах. Типы электродвигателей включают двигатели переменного тока (AC) и двигатели постоянного тока (DC). Двигатели переменного тока используют ток стены, а двигатели постоянного тока используют батарею в качестве источника энергии и магнитных сил для вращения двигателя. Электромагнитный двигатель распространен почти в каждом доме, часто встречается в популярных предметах домашнего обихода, таких как вентиляторы, насосы для бассейнов, кондиционеры, стиральные машины и электрические зубные щетки.

На дизель-электрическом локомотиве дизельный двигатель обеспечивает питание тягового электродвигателя, который вращает колеса агрегата.

Вращающее движение электромагнитного двигателя основано на силах, наблюдаемых в магнитных полюсах.Магнит, подвешенный на веревке в центре, будет естественно вращаться так, чтобы один конец был направлен на север, а другой конец - на юг. Магнитные полюса, расположенные на каждом конце магнита, притягиваются, если полюса противоположны, и отталкиваются, если полюса одинаковы. Когда два магнита северного полюса попадают в поле силы магнитов, магниты отталкиваются друг от друга. Если объединить один северный полюс и один южный полюс, они будут притягиваться и прилипать друг к другу.

Все электродвигатели работают на электромагнитных принципах.

Хотя электромагниты, используемые для научных экспериментов в классе, обычно представляют собой провода, намотанные на небольшую железную палку, правильно скрученный проводящий провод может стать электромагнитом, когда на него подается ток. Сила усиливается, когда проволока наматывается. Магнитная сила от проволочной катушки с током становится сильнее, когда катушка наматывается на железный магнит.

Электрические зубные щетки имеют электромагнитные двигатели.

Электрический ток, протекающий по проводу, создает магнитное поле, поэтому в проводах присутствует электромагнитная сила, по которым протекает ток.Следовательно, провод, по которому проходит электрический ток, обладает внутренней магнитной силой. Когда этот провод наматывается в несколько параллельных петель, он приобретает свойства магнита, когда через него проходит ток. Провода, не предназначенные для использования в качестве электромагнитов, часто экранированы, чтобы ослабить магнитную силу и уменьшить ее взаимодействие с другой находящейся поблизости электроникой.

В домашних генераторах, работающих на газе, используются те же принципы, что и в электромагнитных двигателях, однако они работают в обратном направлении и преобразуют механическое воздействие в электричество.

Некоторые типы электромагнитных двигателей могут приводиться в движение без электрифицированного магнита с железным сердечником, используя только магнитную силу от тщательно уложенных спиральных проводов. Обычно электромагнитные двигатели имеют один или несколько электромагнитов с железным сердечником, приводящих в движение двигатель. Хотя электромагнит, созданный с помощью магнитного сердечника, более мощный, он также потребляет больше электроэнергии, увеличивая нагрузку на источник питания и быстрее разряжая батареи. В узлах мощных электромагнитных двигателей иногда используется более одного электромагнита в двигателе, чтобы обеспечить управляемое повышение мощности двигателя.

Электромагниты могут повлиять на показания компасов поблизости.

Электродвигатель и магнетизм

ЭЛЕКТРОДВИГАТЕЛЬ И МАГНИТИЗМ

После прочтения этого раздела вы сможете делать следующее:

  • Обсудите, почему магнетизм важен для работы электродвигателя.

Вопросы

  1. Из того, что вы наблюдали в этом эксперименте, можете ли вы объяснить, как работает электродвигатель?
  2. Почему важно, чтобы в наши дома подавали переменный ток?

Как магнетизм заставляет работать электродвигатель?

Электродвигатель преобразует электрическую энергию в механическую, которую можно использовать для выполнения работы.В эксперименте мы сначала используем постоянный ток для протекания через провод. Помните, что постоянный ток течет только в одном направлении, если нет переключателя для изменения его направления. При первом включении тока одинаковые магнитные полюса находятся рядом друг с другом. Вспомните из прошлых экспериментов, что подобные магнитные полюса отталкиваются друг от друга, и они вынуждены удаляться друг от друга.

Так как электромагнит может двигаться свободно, его южный полюс перемещается от южного полюса неподвижного магнита. Однако, когда он вращается, он приближается к северному полюсу неподвижного магнита и притягивается к нему силой притяжения, потому что разные магнитные полюса притягиваются друг к другу.Когда мы меняем направление тока на противоположное, положение полюсов меняется местами, и снова у вас есть два одинаковых полюса рядом друг с другом. Такое расположение заставляет электромагнит снова вращаться, поскольку одинаковые полюса отталкиваются друг от друга, а разные полюса притягиваются друг к другу. Затем движение снова останавливается, пока ток не изменится на противоположное и магнитные полюса в электромагните не поменяются местами в другой раз.

Можно сделать вывод, что каждый раз, когда ток в проводе меняет направление, электромагнит перемещается в ответ на силу отталкивания одинаковых полюсов и силу притяжения противоположных полюсов.Это движение электромагнита, в свою очередь, вращает вал, к которому он подключен, и создается механическая энергия. Вращающийся вал может быть соединен с различными другими компонентами для создания движущихся частей, которые могут выполнять работу. Переменный ток по своей природе постоянно меняет направление потока и не требует реверсивного переключателя. Таким образом, когда через провод пропускается переменный ток, электромагнит продолжает вращаться без остановки. Это происходит из-за того, что положения магнитных полюсов постоянно меняются местами и притягивают или отталкивают магнитные полюса фиксированного постоянного магнита.

Завод по производству контроллеров электромагнитного двигателя, Изготовитель OEM / ODM по индивидуальному заказу, производственная компания

Всего найдено 403 фабрики и компании по производству контроллеров электромагнитных двигателей с 1 209 продуктами. Получите высококачественный электромагнитный контроллер двигателя из нашего огромного ассортимента надежных заводов по производству электромагнитных контроллеров двигателя. Бриллиантовый член
Тип бизнеса: Производитель / Завод
Основные продукты: Детали генератора
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем исследований и разработок: ODM, OEM
Расположение: Ниндэ, Фуцзянь
Золотой член
Тип бизнеса: Производитель / Завод , Торговая компания
Основные продукты: Комплект для электрического велосипеда, Электрическая инвалидная коляска, Электрический велосипед, Электрический велосипед Мотор , Аккумулятор для электрического велосипеда
Mgmt.Сертификация:

ISO 9001

Собственность завода: Общество с ограниченной ответственностью
Объем исследований и разработок: Собственный бренд, ODM, OEM
Расположение: Чанчжоу, Цзянсу
Золотой член
Тип бизнеса: Производитель / Завод
Основные продукты: Насос для аквариума, нагреватель для аквариума, фильтр для аквариума, освещение для аквариума, воздушный насос для аквариума
Собственность завода: Общество с ограниченной ответственностью
Объем исследований и разработок: OEM, ODM
Расположение: Чжуншань, Гуандун
Производственные линии: Больше 10
Бриллиантовый член
Тип бизнеса: Производитель / Завод , Торговая компания
Основные продукты: Устройство плавного пуска, Термостат, Нагреватель, Импульсный источник питания, Бесконтактный переключатель
Mgmt.Сертификация:

ISO 9000, ISO 14001

Собственность завода: Общество с ограниченной ответственностью
Объем исследований и разработок: Собственный бренд, OEM
Расположение: Вэньчжоу, Чжэцзян
Золотой член
Тип бизнеса: Производитель / Завод
Основные продукты: Реле, Таймер, Датчик, Переключатели, Измерители
Mgmt.Сертификация:

ISO9001: 2008, ISO14001: 2004

Собственность завода: Общество с ограниченной ответственностью
Объем исследований и разработок: Собственный бренд, OEM
Расположение: Вэньчжоу, Чжэцзян
Бриллиантовый член
Тип бизнеса: Производитель / Завод

Электромагнитный ротационный аппарат Майкла Фарадея (двигатель)

Этот простой на вид объект был создан Майклом Фарадеем в 1822 году.Его простота маскирует его истинное значение как первого выжившего электродвигателя.

В 1820 году Ганс Кристиан Эрстед объявил о своем открытии, согласно которому электрический ток, протекающий по проводу, создает вокруг него магнитное поле. Андре-Мари Ампер продолжил и показал, что магнитная сила, по-видимому, была круговой, создавая, по сути, цилиндр магнетизма вокруг провода. Такой круговой силы раньше не наблюдалось.

Британский ученый-самоучка Майкл Фарадей (1791–1867) был первым, кто понял, что означают эти открытия.Если магнитный полюс может быть изолирован, он должен постоянно перемещаться по кругу вокруг токоведущего провода.

В 1821 году Фарадей попытался понять работу Эрстеда и Ампера, разработав свой собственный эксперимент с использованием небольшой ртутной ванны. Это устройство, преобразовывающее электрическую энергию в механическую, было первым электродвигателем.

Этот прибор - единственный сохранившийся оригинальный образец, сделанный Фарадеем на следующий год после его открытия в 1822 году.

Двигатель имеет жесткий провод, который свешивается в стеклянный сосуд, на дне которого закреплен стержневой магнит.Тогда стеклянный сосуд будет частично заполнен ртутью (металл, который является жидким при комнатной температуре и является отличным проводником). Фарадей подключил свой аппарат к батарее, которая передавала электричество по проводу, создавая вокруг него магнитное поле. Это поле взаимодействовало с полем вокруг магнита и заставляло проволоку вращаться по часовой стрелке.

Это открытие привело Фарадея к размышлениям о природе электричества. В отличие от своих современников, он не был убежден, что электричество представляет собой материальную жидкость, которая течет по проводам, как вода по трубе.Вместо этого он думал об этом как о вибрации или силе, которые каким-то образом передаются в результате напряжения, создаваемого в проводнике.

Электромагнитные двигатели по лучшей цене - Отличные предложения на электромагнитные двигатели от мировых продавцов электромагнитных двигателей

Отличные новости !!! Вы попали в нужное место для электромагнитных двигателей. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress.У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эти лучшие электромагнитные двигатели в кратчайшие сроки станут одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили электромагнитные моторы на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в электромагнитных двигателях и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести электромагнитные двигатели по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Электромагнитный двигатель по лучшей цене - Отличные предложения на электромагнитный двигатель от глобальных продавцов электромагнитных двигателей

Отличные новости !!! Вы попали в нужное место для электромагнитного двигателя.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший электромагнитный двигатель вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили свой электромагнитный мотор на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в электромагнитном двигателе и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести электромагнитный двигатель по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *