Электронный балласт для люминесцентных ламп схема – Электронный балласт — устройство, ремонт и схема подключения для люминисцентных ламп

Содержание

для люминесцентных ламп, схема, описание работы и ремонта

Электронный балласт (ЭБ) — это устройство, которое ограничивает ток через электрическую нагрузку осветительного прибора. Он чаще всего используется, когда нагрузка, например, дуговой разряд, испытывает падение напряжения на клеммах при увеличении тока. Если этому процессу не препятствовать, он будет протекать, пока источник тока или сам прибор не будет выведен из строя. Чтобы этого не произошло, в схему включают балласт, обеспечивающий положительное или реактивное сопротивление, ограничивающее ток.

Пускорегулирующее устройство для люминесцентных ламп можно использовать для ограничения тока в обычной цепи с положительным сопротивлением. До появления твердотельного зажигания автомобильные системы зажигания обычно включали балластный резистор для регулирования напряжения, подаваемого на систему зажигания. Сегодня в современных устройствах освещения последовательные резисторы используются в качестве ЭБ для управления током через светодиоды.

Модель ЭБ

Что такое

Электронный балласт использует твердотельные электронные схемы, чтобы обеспечить надлежащие пусковые и рабочие электрические условия для питания газоразрядных лампочек. Они часто основаны на топологии SMPS, сначала выпрямляя входную мощность, а затем прерывая ее с высокой частотой. Усовершенствованные ЭБ могут позволить регулировать яркость с помощью широтно-импульсной модуляции или путем изменения частоты на более высокое значение. Балласты, включающие микроконтроллер или цифровые схемы могут предлагать дистанционное управление и мониторинг через сети или простое аналоговое управление с использованием сигнала управления яркостью 0-10 В постоянного тока.

Конструкция ЭБ

Применение электронных балластов для HID освещения становится все более популярным. Большинство ЭБ нового поколения могут работать как с натриевыми (HPS) лампами высокого давления, так и с металлогалогенными устройствами, что снижает затраты систем освещения, которые используют оба типа ламп. Первоначально балласт работает как пускатель для дуги, подавая импульс высокого напряжения, а затем он функционирует как ограничитель/регулятор электрического потока внутри цепи. ЭБ работают намного холоднее и легче, чем их магнитные аналоги.

Принцип действия

Электронный балласт для люминесцентных ламп схема 36w получает питание при 50 — 60 Гц. Сначала он преобразует напряжение переменного тока в постоянный. После этого фильтрация этого постоянного напряжения осуществляется с помощью конфигурации конденсатора. Теперь отфильтрованное напряжение подается на каскад высокочастотных колебаний, они обычно представляют собой прямоугольные волны, а диапазон частот составляет от 20 кГц до 80 кГц.

Принцип ЭБ

Следовательно, выходной ток имеет очень высокую частоту. Небольшая индуктивность обеспечена, чтобы быть связанной с высокой скоростью изменения тока на большой частоте. Как правило, более 400 В требуется для запуска процесса газового разряда в свете люминесцентных светильников. Когда переключатель включен, начальное напряжение на лампе становится равным 1000 В из-за высокого значения, следовательно, разряд газа происходит мгновенно.

Как только процесс разрядки начат, напряжение на светильнике падает с 230 В до 125 В, балласт для ламп позволяет ограниченному току течь через нее. Это управление напряжением и током осуществляется блоком управления ЭБ. В рабочем состоянии люминесцентного светильника ЭБ действует, как диммер для ограничения тока и напряжения.

Простейший ЭБ использует общий принцип выпрямления входной мощности и сглаживания формы волны, пропуская его через простой фильтр, такой как электролитический конденсатор. Схемы электронных балластов для люминесцентных ламп демонстрируют принцип их работы.

Схема построения электронного балласта

Выпрямитель преобразует переменный ток в постоянный сигнал. Первым шагом является выпрямление входной мощности, а затем сигнал прерывается для увеличения частоты. Этот тип балластов работает от 20 до 60 кГц. Другие типы, такие как магнитные балласты, обычно работают на частоте линии, которая составляет около 50-60 Гц. Они страдают от таких проблем, как мерцание и жужжащий звук, который иногда создает неудобства для окружающих.

Обоснование увеличения частоты в ЭБ заключается в том, что эффективность лампы быстро возрастает при изменении частоты от 1 кГц до 20 кГц, а затем постепенно повышается до 60 кГц. По мере того как рабочая частота устройства увеличивается, величина тока, необходимого для создания такого же количества света, уменьшается по сравнению с линейной частотой. Таким образом, повышая эффективность лампы.

График эффективности лампы

Важно! Повышенная производительность на более высоких частотах заключается в том, что период времени цикла переменного тока становится короче, чем время релаксации между последовательной ионизацией и деионизацией газа переменным током. Таким образом, плотность ионизации в лампе поддерживается практически постоянной вблизи оптимальных условий работы в течение всего периода переменного тока. Следовательно, он действует как омический резистор, который увеличивает коэффициент мощности. В то время как на низких частотах плотность ионизации колеблется больше относительно оптимального уровня, вызывая плохие средние условия разряда.

Разновидности балласта

Различные типы балластов группируются по типам реализации: электронная и электромагнитная реализация. Кроме того модели классифицируются по области применения для устройств освещения, среди которых выделяют:

  • Высокочастотный электронный балласт для люминесцентных светильников, с предварительным и без предварительного нагрева. Первая модель повышает производительность и срок службы устройства, а также снижает шумовой эффект. Балласт без предварительного нагрева потребляет меньше энергии.
    Высокочастотный балласт для натриевых ламп. Это менее громоздкий балласт, чем обычные модели, установленные на светильниках низкого давления, простой в установке, с небольшим расходом энергии на собственные нужды.
  • Электронный балласт для газоразрядных устройств. Эта модель обычно предназначена для натриевых и металлических ламп высокого давления, что увеличивает их срок службы до 20% по сравнению со стандартом. Время запуска уменьшается, как и мигающие эффекты. Следует отметить, что эти балласты подходят не для всех светильников.
  • Многоламповый балласт. Он обладает тем преимуществом, что его можно использовать с несколькими типами люминесцентных устройств, в том числе в аквариумном освещении, создавая оптимальный праймер. Он имеет функцию записи всех параметров освещения в своей памяти.
  • Балласт с цифровым управлением. Это модель последнего поколения, предлагающая множество возможностей гибкости и модульности при установке светильников. Это улучшает экономический аспект светодиодной лампы и комфорт яркости. При этом, он является самой дорогой моделью.

Электромагнитная реализация

Магнитные балласты (МБ) — это устройства со старой технологией. Они используются для семейства флуоресцентных ламп и некоторых металлогалогенных устройств.
Они, как правило, являются причиной гудения и мерцания, потому что регулируют ток постепенно. МБ используют трансформаторы для преобразования и контроля электроэнергии. Когда ток образует дугу через светильник, он ионизирует больший процент молекул газа. Чем больше их ионизировано, тем ниже сопротивление газа. Таким образом, без МБ ток будет подниматься так высоко, что лампа будет нагреваться и разрушаться.

Электромагнитная реализация

Трансформатор, который в МБ называют «дросселем», представляет собой проволочную катушку — индуктор, создающий магнитное поле. Чем больше протекает ток, тем больше магнитное поле, тем больше замедляет рост тока. Поскольку процесс протекает в среде переменного тока, ток течет в одном направлении только в течение 1/60 или 1/50 секунды, а затем падает до нуля, прежде чем будет протекать в противоположном направлении. Следовательно, трансформатор должен только замедлять течение тока на мгновение.

Электронная реализация

Производительность электронных балластов измеряется по разным параметрам. Наиболее важным является балластный фактор. Это отношение светоотдачи светильника, управляемой рассматриваемым ЭБ, к светоотдаче того же устройства, управляемой эталонным балластом. Это значение находится в диапазоне от 0,73 до 1,50 для ЭБ. Значимость такого широкого диапазона заключается в уровнях светоотдачи, которые могут быть получены с использованием одного ЭБ. Это находит большое применение в схемах диммирования. Однако установлено, что слишком высокий и слишком низкий балластные факторы ухудшают срок службы светильника из-за износа люмена в результате высокого и низкого тока соответственно.

Электронная реализация

Когда ЭБ должны сравниваться внутри одной и той же модели и производителя, часто используется коэффициент эффективности балласта, который представляет собой отношение коэффициента балласта выраженного в процентах к мощности и дает относительное измерение эффективности системы всей комбинации. Мера эффективности работы балласта с параметром коэффициент мощности (PF) — это мера эффективности, с которой ЭБ преобразует напряжение питания и ток в полезную мощность, подаваемую на лампу с идеальным значением 1.

Достоинства и недостатки

Благодаря прогрессу в технологических особенностях электронных балластов, эти аксессуары стали широко использоваться в люминесцентных лампах (ЛЛ).

Блок подключения ЭБ

Важные преимущества:

  • Гибкость конструкции и отличные характеристики управления. Существуют различные типы балластов с регулируемыми функциями, которые могут работать с ЛЛ на разных выходных уровнях. Есть балласты для слабой освещенности и снижения энергопотребления. Для более высокой освещенности имеются балласты с высокой светоотдачей, которые можно использовать с меньшим количеством ламп и более высоким коэффициентом мощности.
  • Большая эффективность. Электронные дроссели редко выделяют много внутреннего тепла, и поэтому они считаются более продуктивными. Эти ЭБ обеспечивают флуоресцентные лампы без мерцания и постоянной мощности, что является одним из наиболее заметных преимуществ.
  • Меньшая охлаждающая нагрузка. Поскольку ЭБ не включают в себя катушку и сердечник, выделяемое тепло сводится к минимуму и, следовательно, охлаждающая нагрузка уменьшается.
  • Способность одновременно эксплуатировать больше устройств. Один ЭБ может использоваться для управления 4 светильниками.
  • Легче по весу. Благодаря использованию электронных балластов светильники имеют меньший вес. Поскольку он не включает в себя сердечник и катушку, он сравнительно легкий по весу.
  • Меньшее мерцание лампочки. Одним из величайших преимуществ использования этих компонентов является уменьшение этого фактора.
  • Тихая работа. Еще одна полезная особенность — ЭБ работают тихо, в отличие от магнитных балластов.
  • Превосходные сенсорные возможности — ЭБ обладают сенсорными возможностями, так как они обнаруживают окончание срока службы лампы и выключают ее до того, как она перегреется и выйдет из строя.
  • Электронные дроссели доступны в огромном ассортименте во многих онлайн магазинах электроники по доступным ценам.

К недостаткам можно отнести тот факт, что у электронных балластов переменные токи могут генерировать пики тока вблизи максимумов напряжения, создавая высокий гармонический ток. Это проблема не только для системы освещения, но также может вызвать дополнительные проблемы, такие как паразитные магнитные поля, коррозия труб, помехи от радио и телевизионного оборудования и даже неисправность ИТ-оборудования.

Высокое содержание гармоник также вызывает перегрузку трансформаторов и нейтральных проводов в трехфазных системах. Более высокая частота мерцания может оставаться незамеченной человеческим глазом, тем не менее, она вызывает проблемы с инфракрасными пультами дистанционного управления, используемыми в домашних мультимедийных устройствах, например, таких как телевизоры.

Дополнительная информация! Электронные балласты не имеют схемы, чтобы выдержать скачки напряжения и перегрузки.

Как правильно выбрать

Перед тем как выбрать устройство для ламп освещения обращают внимание на такие характеристики:

  • Тип, мощность и количество ламп в схеме освещения. В листе спецификаций для электронного флуоресцентного балласта будет указано, какие типы и конфигурации светильников предназначены для работы балласта.
  • Тип запуска — мгновенный или запрограммированный. Если система освещения характеризуется частым переключением из-за датчиков присутствия или других факторов, выбирают «запрограммированный запуск». В противном случае — «мгновенный», который является лучшим выбором.
  • Балластный фактор. Обычный балластный коэффициент (от 0,77 до 1,1) является значением по умолчанию для большинства общего освещения. Низкий балластный коэффициент (<0,77) может быть наиболее подходящим балластным фактором для применений, где полная световая мощность светильников не требуется, тогда он уместен как способ экономии энергии.
  • Высокий балластный коэффициент (> 1.1) полезен, когда целью является увеличение световой мощности для таких помещений, как склады или крупные розничные магазины. В этом случае пользователь получит примерно 10% увеличение светового потока по сравнению с номинальной освещенностью прибора.
  • Входное напряжение. Некоторые ЭБ обеспечивают универсальное напряжение, другие удельное. В любом случае, проверяют требования к входному напряжению — 120/277/347 В.
  • Минимальная начальная температура. Листы спецификации балласта включают температуры, которые будут варьироваться в зависимости от типа светильника, управляемой балластом. Например, ЭБ может показывать минимальную начальную температуру с −17 С до +30 С. Очевидно, что вариации довольно значительные. Поэтому при выборе ЭБ исходят из минимальной и максимальной температуры воздуха в помещении.
  • Нормальная схема подключение — параллель. Это позволяет другим светильникам оставаться зажженными, даже если одна лампа в приборе гаснет.
  • Контроль анти-стратификации: страты — это нежелательные яркие и тусклые области, которые могут образовывать структуру стоячей волны по всей длине светильника. Полоски более вероятны, когда лампа работает при низких температурах. Производители разработали способы минимизации этих зон и часто ссылаются на функцию защиты от зачистки в спецификации на ЭБ.
  • Оценка звука. ЭБ с рейтингом «А» будет тихо гудеть, с рейтингом «D» вызовет ярко выраженный шум. Важность оценки звука зависит от назначения помещений.
  • В библиотеках устанавливают ЛЛ с максимально тихим балластом, в то время как этот параметр, не так важен для складов.
  • Светодиодный переход: у некоторых производителей ЭБ есть списки мгновенных и запрограммированных стартовых балластов, которые они называют «LED Ready».
  • Гарантия производителя.

Как подключить электронный балласт своими руками к люминесцентной лампе

Замена люминесцентного балласта не слишком сложна, но, поскольку связана с электрическим напряжением, лучше доверить эту работу квалифицированному специалисту, если пользователь не имеет простейших навыков безопасной работы с электрооборудованием. Процедура замены балласта осветительного прибора зависит от типа установленной лампы.

Подключение ЭБ

Алгоритм замены ЭБ своими руками:

  1. При установке проводки или замене балласта люминесцентного света сначала отключают электрическое питание на светильник и отсоединяют его от сети.
  2. Снимают пластину рассеивателя, закрывающую лампу.
  3. Снимают сам светильник.
  4. После того, как появится доступ к балласту, снимают его крышку, которая может отличаться по конструкции и способу крепления.
  5. Отсоединяют все провода, ведущие в балласт. Перед этим лучше сфотографировать подключение, чтобы не перепутать провода при обратной сборке устройства.
  6. Перед началом работ с ЭБ. Еще раз проверяют тестером отсутствие напряжения на нем.
  7. Снимают ЭБ, ослабив и удалив гайки, удерживающие его на месте, одновременно поддерживая его свободной рукой, чтобы предотвратить падение.

Схема подключения ЭБ

Обратите внимание! Замену производят на совместимую марку и модель балласта, собирая схему в обратном направлении. После тщательной проверки правильности подключения подают напряжение на светильник.

Правильно установленные и функционирующие электрические осветительные балласты должны хорошо работать и обеспечивать безопасный, регулируемый ток для светильников без раздражающего мерцания и гудения, такого как в старых, магнитных или неисправных балластах.

rusenergetics.ru

Современные электронные балласты своми руками.

РадиоКот >Лаборатория >Аналоговые устройства >

Современные электронные балласты своми руками.

        Освещение лампами дневного света имеет значительное преимущество перед лампами накаливания: экономичность, более длительный срок службы, высокий КПД, малое количество тепла рассеиваемого лампой, спектр света излучаемого данными лампами более близок к естественному, по сравнению со столь привычными накальными. И естественно имеют недостатки, это: сложность включения ламп дневного освещения, возникновение стробоскопических эффектов на движущихся механизмах, сравнительная дороговизна.
        Несмотря на сильное развитие современных электронных балластов для питания ламп дневного освещения (ЛДС), стандартной схемой включения ЛДС принято считать схему изображенную на рисунке.

Принцип действия прост, но всё таки требует определённых условий для нормального эксплуатирования ЛДС. Для зажигания люминесцентной лампы и ее нормальной работы требуется стартер (пусковое устройство), дроссель (ПРА — пускорегулирующий аппарат), конденсаторы. Стартер служит для автоматического включения и выключения предварительного накала электродов. Он представляет собой баллон из стекла, наполненный инертным газом, в котором находятся металлический и биметаллический электроды, выводы которых соединены с выступами в цоколе для крепления в схеме лампы. При включении лампы согласно вышеуказанной схеме, а на электроды лампы и стартера подается напряжение сети, которое достаточно для образования тлеющего разряда между электродами стартера. Поэтому в цепи протекает ток тлеющего разряда стартера, примерно 0,01… 0,04 А. Тепло, выделяемое при протекании тока через стартер, нагревает биметаллический электрод, который выгибается в сторону другого электрода. Через промежуток времени тлеющего разряда 0,2… 0,4 с контакты стартера замыкаются, и по цепи начинает течь пусковой ток, величина которого определяется напряжением сети и сопротивлениями дросселя и электродов лампы. Этого тока не достаточно для нагревания электродов стартера, и биметаллический электрод стартера разгибается, разрывая цепь пускового тока. Предварительно пусковой ток разогревает электроды лампы. Благодаря наличию в цепи индуктивности, при размыкании контактов стартера в цепи возникает импульс напряжения зажигающий лампу. Время разогрева электродов лампы составляет 0,2… 0,8 секунд что в большинстве случаев недостаточно, и лампа может не загореться с первого раза, и весь процесс может повториться. Общая длительность пускового режима лампы составляет 5… 15 с. Длительность пускового импульса при размыкании контактов стартера составляет 1… 2 мкс, что недостаточно для надежного зажигания лампы, поэтому параллельно контактам стартера включают конденсатор емкостью 5… 10 пФ. Дроссель, представляющий собой обмотку, намотанную на сердечник из листовой электротехнической стали, облегчает зажигание лампы, а также ограничивает ток и обеспечивает ее устойчивую работу (иногда дроссель заменяют компенсирующим конденсатором, лампочкой накаливания небольшой мощности). На рисунке 1, приведена простейшая схема стартерного зажигания люминесцентной лампы, включенной в сеть 127—220 В. Проблема рассматриваемой схемы в том что в момент размыкания стартера не всегда совпадает с полуволной напряжения сети, и срабатывание стартера происходит вхолостую. Схема конечно куда проще, чем те которые будут описываться ниже. Но всё таки схемы рассматриваемые далее находят своё применение в действительно качественных и экономичных системах освещения.
        И так…

        Что же относительно конкретных схемных решений, то я постараюсь осветить решения на основе микросхем фирмы-производителя International Rectifier.
        Схема представленная на рисунке, представляет собой преобразователь сетевого напряжения 220 В, 50 Гц в 160 В 33 кГц. Именно полученные выходные параметры и являются теми факторами, значительно повышающими эксплуатационные характеристики источников света на основе ЛДС.
        Первый фактор: Полностью исключается беспорядочное мерцание лампы в момент первоначального запуска.
        Второй: Возникающий во время старта потенциал, достаточный для гарантированного поджога лампы с первого раза. Время запуска составляет примерно 0,5 сек.
        Третий: Благодаря высокочастотной коммутации, газ в лампе не успевает деионизироваться в периодах спадания синусоиды питающего тока до нуля, а значит для нормальной работы лампы требуется меньшее напряжение. Это основная экономия электроэнергии.
        Четвёртый: Полное отсутствие стробоскопического эффекта на движущихся механизма, вследствии отсутствия 100Гц (удвоенной частоты сети) пульсаций света.
        Пятый: Требуется дроссель с меньшей индуктивностью, а значит и с меньшими размерами, весом, тепловыми, омическими потерями и стоимость.
        Перед выше перечисленым можно смело ставить знак «+»
        Ну и куда же деться от недостатков, они у нас таковы:
        Первый: Относительная сложность схемы.
        Второй: Относительно высокая стоимость изготовления такого аппарата (если речь идёт о питании одной лишь лампы).
        Третий: Высокий уровень ЭМИ.
        
        Схема состоит из основных узлов: фильтр питающего напряжения, выпрямитель сетевого напряжения, генератор-драйвер управления высоковольтными MOSFET транзисторами, полумост ключей и нагрузка в роли которой выступает лампа с балластным дросселем.
        Ничего особо необычного схема не содержит и не является сложной.
        Сетевое напряжение подаётся через сетевой фильтр L1, C2. Поступает на выпрямитель VD1, C3. Сформированные на конденсаторе С3 310В напрямую запитывают полумост транзисторов VT1, VT2 и через гасящий резистор R2 получаем необходимые для работы микросхемы 9-10В.
        После подключения к сети примерно через 0,5 секунды на выходе схемы (правая по схеме обкладка конденсатора С8) появляется меандр в 165В с небольшой «полочкой» между открытыми состояниями транзисторов. Поданное на лампу ВЧ напряжение в течении ещё примерно 0,5 сек. прогревает катоды. Проявляется это в виде кратковременного тусклого оранжевого свечения катодов, после достаточной ионизации газа в колбе лампы, за счёт высоковольтных выбросов с дросселя L2, газовый промежуток пробивается. И, как же без последствий — лампа зажглась! Дальнейшая работа сопровождается прогревом лампы и индуктивности в результате чего яркость несколько увеличивается.
        «Двигателем» схемы является микросхема генератор-драйвер. В содержимом которой можно разобраться исходя из вот этого рисунка:

        Микросхема содержит подобие 555-го таймера, фазорасщепляющий триггер, формирователь «мёртвого» промежутка позволяющий избежать сквозного тока в выходных ключах, схему питания драйвера верхнего ключа, схему контроля заниженного напряжения, стабилитрон основного питания и даже цепь задержки, позволяющая выровнять время распространения сигналов по каналам верхнего и нижнего ключа, а также ещё несколько дополнительных узлов, в которых разбираться нет смысла.

Элемент

Номинал

Примечание

R1

18K

0,125Вт

R2

68K

2Вт

R3, R4

36Ом

0,125Вт

С1, С2, С8

0,1

Плёнка

C3

47,0 x 400V

Электролитический

C4

1nF (1000пФ)

Только плёнка!

C5

220,0 х 25В

Электролитический

C6

2700… 4000пФ х 1кВ

Только керамика

C7

22,0 х 25В

Электролит. Можно зашунтировать керамикой 0,1мкФ

DA1

IR2153

Или IR2153D при этом VD2 может отсутствовать

VT1, VT2

IRF840

IRF840G, IRF720, IRF720G

VD1

RB157

Не менее 1А, 400В

VD2

10DF4

1N4937

L2

1,65… 1,85 млГн

(Заводской) Ток насышения не менее 0,5А.

        Что из этого всего вышло смотрим на этом фото.

        По воле случая, на данной конструкции, элементы С8 и L2 «переехали» на отдельную плату располагаемую непосредственно вблизи ламп. Так же с целью уменьшения устройства удалён фильтр питания.
        Смотрим. Кликабельно.

        Схема о которой идёт речь, превосходно питает две лампы. При этом транзисторы обходятся без таплоотводов. При большем значении потребляемой мощности, может потребоваться теплоотвод.

        О изготовлении дросселей поговорим в следующей части.
        А вот так выглядит схема в корпусе.

        На этом не всё. Ждём часть вторую.

О результатах удачно/неудачно запущенной схемы, сообщаем в форум, тут же принимаются вопросы и комментарии.
Удачи.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

как работает + схемы подключения

Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Содержание статьи:

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых , как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Электромагнитный пускорегуляторЭлектромагнитный пускорегулятор

Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда)

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Стартер люминесцентной лампыСтартер люминесцентной лампы

Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Электронный пускорегуляторЭлектронный пускорегулятор

Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Относительно мощная люминесцентная лампаОтносительно мощная люминесцентная лампа

Примерно на такие приборы света (мощностью от 100 ватт) рассчитаны пускорегулирующие модули, выполненные по мостовой схеме. Которая, кроме поддержки мощности, оказывает положительное влияние на характеристики питающего напряжения

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Внутреннее содержимое ЭПРАВнутреннее содержимое ЭПРА

Вид рабочей электронной платы одной из моделей пускорегулирующего модуля на полупроводниковых элементах. Эта небольшая легкая плата полностью заменяет функционал массивного дросселя и добавляет ряд улучшенных свойств

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Принципиальная схема ЭПРАПринципиальная схема ЭПРА

Принципиальная схема полумостового устройства запуска и регулировки параметров люминесцентных светильников. Однако это далеко не единственное схемное решение, какие применяются для изготовления ЭПРА

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

Схемы приборов на мощность до 20 ваттСхемы приборов на мощность до 20 ватт

На качество работы схемы оказывает влияние правильный подбор электронных элементов. Нормальная работа характеризуется параметром тока на плюсовом выводе конденсатора С1. Длительность импульса розжига светильника определяется конденсатором С4

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Мостовая схема инвертораМостовая схема инвертора

Узел схемы инвертора, собранный по мостовой схеме. Здесь в работе узла участвуют не два, а четыре ключевых транзистора. Причем зачастую предпочтение отдается полупроводниковым элементам полевой структуры. На схеме: VT1…VT4 – транзисторы; Tp – трансформатор тока; Uп, Uн – преобразователи

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном . Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Включение электромагнитного пускорегулятораВключение электромагнитного пускорегулятора

Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

Подключение двух лампПодключение двух ламп

Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

Подключение двух ламп на ЭПРАПодключение двух ламп на ЭПРА

Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 – светильники; L – фазная линия питания; N – нулевая линия; 1…6 – контакты интерфейса

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Подключение четырех ламп на ЭПРАПодключение четырех ламп на ЭПРА

Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 – контакты интерфейса устройства пуска и регулирования

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Подключение управляемого светильникаПодключение управляемого светильника

Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 – контакты интерфейса устройства пуска и регулирования

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Выводы и полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

Вы разбираетесь в вопросах принципа работы и схем подключения ЭПРА и хотите дополнить изложенный выше материал личными наблюдениями? Или хотите поделиться полезными рекомендациями по нюансам ремонта, замены или выбора пускорегулирующего аппарата? Пишите, пожалуйста, свои комментарии к этой записи в блоке ниже.

sovet-ingenera.com

Как выбрать балласт для люминесцентных ламп: устройство, как работает, виды

Когда балласт для люминесцентных ламп (ЛЛ) выходит из строя, осветительный прибор прекращает корректное функционирование. Вернуть его в обычный режим может только быстрая замена испортившегося элемента на исправный.

Купить деталь можно в специализированном магазине, главное – выбрать модуль правильной модификации. Решению этого вопроса и посвящена наша статья.

Мы расскажем вам, что такое балласт, какие задачи он выполняет в работе люминесцентной лампы. Приведем подробную классификацию, а также опишем специфику функционирования и применения разных модулей. Мы поможем вам подобрать подходящий балласт с учетом параметров лампы и компании изготовителя регулирующего устройства.

Содержание статьи:

Особенности подключения ЛЛ к сети

Люминесцентная лампа – практичный и экономный модуль, предназначенный для организации осветительных систем в бытовых, промышленных и технических помещениях.

Единственная сложность состоит в том, что напрямую подключить прибор к централизованным электроподающим коммуникациям не представляется возможным.

Люминесцентная лампаЛюминесцентная лампа

Электромагнитный балласт потребляет около 25% мощности осветительного прибора, таким образом на четверть снижая его эффективность и уровень КПД

Это обусловлено тем, что создание стойкого активирующего разряда в и последующее ограничение возрастающего тока требуют организации некоторых специфических физических условий. Именно эти проблемы решает установка балластного прибора.

Что такое балласт

Балласт представляет собой устройство, регулирующее пусковые функции и подключающее к электрическим коммуникациям люминесцентные осветительные приборы.

Используется для поддержания корректного режима функционирования и эффективного ограничения рабочего тока.

Приобретает повышенную актуальность, когда в сети наблюдается недостаточная электрическая нагрузка и отсутствует необходимое ограничение при потреблении тока.

Общий принцип работы элемента

Внутри ламп дневного света находится электропроводная газовая среда, обладающая отрицательным сопротивлением. Это проявляется в том, что при повышении тока между электродами существенно снижается напряжение.

Компенсирует этот момент и обеспечивает корректную работу осветительного прибора, подключающийся в систему управления балластник.

Основа для люминесцентной лампыОснова для люминесцентной лампы

Когда большая по величине сила тока поступает на любой люминесцентный прибор, он может выйти из строя. Чтобы этого не случилось, в конструкцию лампы включается балласт, исполняющий функции преобразователя

Он же на краткий период повышает общее напряжение и помогает люминесцентам зажечься, когда в центральной сети для этого не хватает ресурса. Дополнительные функции модуля варьируются в зависимости от его конструкционных особенностей и типа исполнения.

Разновидности и характеристики балластов

Сегодня максимально широко распространены электромагнитные и электронные балластные устройства. Они надежно работают и обеспечивают долгое правильное функционирование и комфортность эксплуатации люминесцентных ламп всех типов. Имеют одинаковый общий принцип действия, но несколько отличаются по отдельным возможностям.

Особенности электромагнитных изделий

Балласты электромагнитного типа используются для ламп, подключающихся к центральной электросети с применением стартера.

Подача напряжения в таком варианте сопровождается разрядом, последующим интенсивным разогревом и замыканием биметаллических электродных элементов.

Балласты для люминесцентных лампБалласты для люминесцентных ламп

Электромагнитный балласт от электронного отличается даже по внешнему виду. Первый имеет более массивную, высокую конструкцию, а второй представляет собой удлиненную тонкую плату, на которой располагаются все рабочие элементы

В момент, когда происходит замыкание стартерных электродов, рабочий ток резко увеличивается. Это объясняется ограничением максимального сопротивления дроссельной катушки.

После полного остывания стартера происходит размыкание биметаллических электродов.

Установка балласта в люминесцентную лампуУстановка балласта в люминесцентную лампу

Если в конструкции электромагнитного балласта выходит из строя стартер, в работе люминесцента появляется фальстарт. При этом, в момент включения и непосредственно до полноценного розжига лампа 3-4 раза мигает и только потом начинает гореть. Это приводит к потреблению лишней энергии и существенно снижает общий рабочий ресурс источника света

Когда цепь люминесцента размыкается стартером, в индукционной катушке немедленно образуется активный импульс высокого напряжения и происходит розжиг осветительного прибора.

К достоинствам устройства относятся:

  • высокий уровень надежности, доказанный временем;
  • эксплуатационная комфортность электромагнитного модуля;
  • простота сборки;
  • доступная цена, делающая изделие привлекательным для производителей источников света и потребителей.

Кроме позитивных моментов, пользователи отмечают обширный перечень минусов, которые портят общее впечатление о приборе.

Среди них отмечаются такие позиции, как:

  • наличие эффекта стробирования, при котором лампа мерцает с частотой 50 Гц и вызывает повышение уровня утомляемости у человека — это значительно снижает работоспособность, особенно когда осветительный прибор располагается в рабочем или учебном помещениях;
  • более длительное время, требующееся для запуска осветительного прибора – от 2-3 секунд вначале и до 5-8 к середине-концу эксплуатационного срока;
  • слышимый специфический гул ;
  • повышенное потребление электроэнергии, влекущее за собой неизбежное увеличение счетов за коммунальные платежи;
  • низкая надежность ;
  • громоздкость конструкции и ее существенный вес.

При покупке все эти условия обязательно нужно учитывать, чтобы понимать, во что в будущем обойдется эксплуатация бытовой осветительной системы, оснащенной люминесцентами.

Электронные балластные модули

Балласт электронного типа используется для тех же самых целей, что и электромагнитный модуль. Однако, конструкционно и по принципу исполнения своих обязанностей эти приборы существенно отличаются друг от друга.

Электронный балласт из бюджетной серииЭлектронный балласт из бюджетной серии

Дешевый электронный балласт, имеет простую автогенераторную схему с трансформатором и базовым выходным каскадом, функционирующим на биполярных транзисторах. Большой минус этих приборов – отсутствие защиты от аномальных рабочих режимов

Широкая популярность к изделиям пришла в начале 90-х. В это время их начали использовать в комплексе с разнообразными источниками света.

Изначально высокую по сравнению с электромагнитными изделиями стоимость производители компенсировали хорошей экономичностью приборов и прочими полезными характеристиками, свойствами.

Использование электронных балластов позволяло уменьшить общее потребление электрической энергии на 20-30%, сохранив при этом в полном объеме насыщенность, мощность и силу светопотока.

Этого эффекта удалось достичь путем увеличения базовой светоотдачи самой лампы на повышенной частоте и существенно более высоким КПД электронных модулей по сравнению с электромагнитными.

Как выглядит балластКак выглядит балласт

Самые уязвимые элементы электронного балластника это предохранитель (1), конденсатор (2) и транзисторы (3). Именно они обычно выходят из строя по различным объективным причинам и приводят лампу в нерабочее состояние

Мягкий запуск и щадящий рабочий режим дали возможность почти наполовину продлить люминисцентам жизнь, понизив таким способом общие эксплуатационные расходы на осветительную систему. Лампы требовалось менять значительно реже, а нужда в стартерах пропала вообще.

Кроме того, с помощью электронных балластов удалось избавиться от рабочих фоновых шумов и выраженного раздражающего мерцания, параллельно добившись стабильного и равномерного освещения помещений даже при колебаниях напряжения в сети в пределах 200-250 В.

Люминесцентные лампы в помещенииЛюминесцентные лампы в помещении

Чтобы люминесцентная лампа не гудела и не мерцала, необходимо питать ее только высокочастотным током от 20 кГц и более. Для реализации этой задачи в схему включения должны входить выпрямитель, ВЧ генератор высокого напряжения и балласт, играющий роль импульсного источника питания

Дополнительно появилась возможность управлять яркостью лампы, подстраивая светопоток под индивидуальные желания и потребности пользователя.

Среди основных плюсов изделий выделились следующие критерии:

  • малый вес и компактность конструкции;
  • практически мгновенное, очень плавное включение, не оказывающее излишней нагрузки на люминесцентную лампу;
  • полное отсутствие видимого глазу моргания и различаемого шумового эффекта;
  • высокий коэффициент рабочей мощности, составляющий 0,95;
  • прямая экономия электрического тока в размере 22% — электронный модуль практически не греется по сравнению с электромагнитным и не расходует лишнего ресурса;
  • дополнительная защита, вмонтированная в блок, для обеспечения высокого уровня пожаробезопасности, и понижения потенциальных рисков, возникающих в процессе эксплуатации;
  • существенно увеличившаяся продолжительность службы люминесцентов;
  • светопоток с хорошей плотностью цвета, без перепадов даже при длительном горении не провоцирует утомляемость глаз людей, находящихся в комнате;
  • высокая эффективность функционирования осветительного прибора при отрицательных температурных показателях;
  • способность балласта автоматически подстроиться под параметры лампы, таким образом создавая оптимальный режим работы для себя и осветительного прибора.

Некоторые производители комплектуют свои электронные балласты специальным предохранителем. Он защищает устройства от перепадов напряжения, колебаний в центральной сети и ошибочной активации светильника без лампы.

Офис, освященный люминесцентными лампамиОфис, освященный люминесцентными лампами

Сегодня органы, занимающиеся охраной труда, рекомендуют с целью улучшения условий работы и повышения производительности, оснащать люминесцентные лампы, установленные в офисных помещениях, именно электронными, а не электромагнитными пусковыми устройствами

Из минусов электронных изделий обычно упоминают только стоимость, значительно более высокую по сравнению с электромагнитными модулями. Однако, это может иметь значение лишь в момент покупки.

В будущем, в процессе интенсивной эксплуатации, электронный балласт полностью отработает свою цену и даже начнет приносить выгоду, серьезно экономя электрический ресурс и снимая часть нагрузки с источника света.

Балласты для компактных ламп

Люминесцентные представляют собой приборы, аналогичные традиционным лампам накаливания с резьбовым цоколем E14 и E27.

Могут размещаться в современных и раритетных люстрах, бра, торшерах и прочих осветительных приборах.

Компактная люминесцентная лампаКомпактная люминесцентная лампа

Из-за конструкционных особенностей компактных люминесцентов к электронной «начинке» предъявляются повышенные требования. Бренды всегда учитывают их при производстве, а неизвестные изготовители, с целью удешевления, меняют многие элементы на более простые. Это существенно снижает эффективность и срок службы модуля

Комплектуются приборы такого класса, как правило, прогрессивным электронным балластом, который встраивается непосредственно во внутреннюю конструкцию и обычно располагается на плате лампового изделия.

На что смотреть при выборе

Выбирая балласт для люминесцентной лампы, первоочередно необходимо обращать внимание на такой параметр, как мощность модуля.

Она должна полностью совпадать с мощностью осветительного прибора, иначе лампа просто не сможет полноценно функционировать и выдавать светопоток в требуемом режиме.

Процесс подключения балластаПроцесс подключения балласта

Включать балласт в сеть без нагрузки категорически запрещено. Устройство может сразу же перегореть и придется его ремонтировать либо покупать новое

Далее нужно определить, какой именно балласт требуется приобрести. По цене более выгодны электромагнитные элементы. Их стоимость невелика и с установкой обычно не бывает сложностей.

Правда, такие приборы считаются устаревшим, имеют громоздкие габариты и потребляют дополнительный энергоресурс. Это заметно снижает их привлекательность, даже несмотря на доступную изначальную цену.

Осциллограф для проверки работоспособности балластаОсциллограф для проверки работоспособности балласта

Чтобы проверить исправность электронного балласта, пригодится специальный измерительный прибор – карманный осциллограф

Электронные устройства стоят значительно дороже. Особенно этот пункт касается изделий, выпущенных крутыми брендовыми производителями. Но их цена с лихвой компенсируется энергоэкономичностью, практичностью, безупречной сборкой и высоким уровнем общего качества приборов.

Подбор балласта по производителю

Завод-производитель – это еще один значимый критерий при покупке. Не стоит ориентироваться исключительно на цену и приобретать самую дешевую модель из всех, что предлагаются в магазине.

Особенности брендовых балластов

Безымянное изделие китайского изготовления может очень быстро выйти из строя и повлечь за собой последующие проблемы с работой самой лампочки и даже светильника.

Балласт от известного брендаБалласт от известного бренда

Брендовые производители комплектуют балласты качественными, устойчивыми к износу деталями, которые обеспечивают корректную работу модуля в течение всего эксплуатационного периода

Лучше отдать предпочтение торговым маркам с надежной репутацией, отлично зарекомендовавшим себя длительной работой на рынке осветительного оборудования и сопутствующих элементов.

Такие устройства надежно отработают весь положенный срок, обеспечив полноценное функционирование люминесцента в любом осветительном приборе.

Балластные изделия, выпущенные на предприятиях популярных торговых марок, специализирующихся на изготовлении электрооборудования и сопутствующих элементов, имеют крепкий и прочный внешний корпус из термостойкого, несклонного к деформации пластикового состава.

Стоящая на изделиях маркировка  IP2 показывает, что прибор имеет хороший уровень общей защищенности и предохраняется от попадания внутрь коробки посторонних деталей размером более 12,5 мм.

Эксплуатация устройства комфортна и абсолютно безопасна. Конструкция полностью исключает возможность контакта пользователя с токопроводящими элементами.

Балласт с маркировкой IP2Балласт с маркировкой IP2

Балластные модули с маркировкой IP2 надежны, практичны и удобны в бытовом применении, однако, уязвимы к проникновению внутрь пыли. Из-за этого небольшого минуса ставить их в лампы, освещающие запыленные рабочие помещения, нецелесообразно

Нормальный температурный диапазон для эффективной и продолжительной работы устройства довольно широк.

Брендовые балласты качественно справляются с поставленными задачами при морозах, доходящих до -20°C и отлично чувствуют себя в жаркие дни, когда воздух раскаляется до +40°C.

Лучшие производители электромагнитных аппаратов

Большой популярностью у клиентов пользуются электромагнитные балластные устройства, изготовленные под брендом E.Next.

Это обусловлено тем, что компания предлагает по-настоящему качественные, надежные и прогрессивные модули, выполненные на самом высоком уровне в четком соответствии с требованиями, предъявляемыми к оборудованию такого класса.

Сотрудница call-центраСотрудница call-центра

Помимо гарантий и обслуживания, фирма E.Next предлагает клиентам пользовательскую техподдержку через call-центры. Позвонив туда, потребитель может задать оператору вопрос любой сложности и в течение нескольких минут получить профессиональный, понятный ответ

На все товары компания дает фирменную гарантию и предлагает покупателям высококачественный сервис на всех этапах сотрудничества.

Не меньшим спросом пользуются электромагнитные балласты, созданные известным и уважаемым европейским производителем электротехнического оборудования и сопутствующих элементов – компанией Philips.

Товары этого бренда считаются одними из самых качественных, надежных и эффективных.

Электромагнитный балласт PhilipsЭлектромагнитный балласт Philips

Электромагнитные модули от Филипс представлены на рынке в самом широком ассортименте. Подобрать нужный вариант для лампы любой конфигурации не составит никакого труда

Балласты Филипс помогают экономить энергоресурс и нейтрализуют нагрузку, возникающую в процессе эксплуатации люминесцентных ламп.

Актуальные электронные модули

Изделия электронного типа относятся к современному виду оборудования и, помимо традиционных, имеют еще и дополнительные функции. В этом сегменте лидерские позиции занимают товары от немецкой компании Osram.

Их стоимость несколько выше, чем у китайских или отечественных аналогов, но значительно ниже по сравнению с таким конкурентами, как Philips и Vossloh-Schwabe.

Электронный балласт OsramЭлектронный балласт Osram

У электронных балластов Osram есть целый ряд преимуществ. Они имеют аккуратную форму и скромные габариты, могут работать в температурном режиме -15…+50 °C и надежно служат в течение 100 000 часов

Среди бюджетных брендовых модулей ярко выделяются на фоне конкурентов электронные балласты Horos.

Несмотря на лояльную стоимость, эти предметы демонстрируют высокую рабочую эффективность и хороший уровень КПД, устраняют задержку при розжиге, снижают до минимума потребление энергии и повышают светоотдачу самой лампы.

С помощью этих средств можно устранить раздражающее мерцание в люминесцентных лампах и сделать осветительные приборы максимально удобными и эксплуатационно-комфортными.

Не отстает от маститых старожилов рынка и молодая, перспективно развивающаяся фирма Feron. Она предлагает пользователям продукцию европейского уровня по очень небольшой, разумной цене.

Электронные балласты ФеронЭлектронные балласты Ферон

Балласты Feron сделаны аккуратно. Все детали имеют сертификаты соответствия. Внешний корпус, изготовленный из пластика, представляет собой удлиненный плоский прямоугольник. Изделие мало весит и легко монтируется в люминесцентные источники света любой конфигурации

Устройства балластного типа от Ферон предохраняют лампы от неожиданных электромеханических помех и перепадов напряжения, устраняют раздражающее глаза мерцание и помогают сэкономить более 30% электрической энергии.

Управляемый балластом от Feron люминесцент включается/выключается мгновенно. Фоновой звуковой эффект в процессе работы не наблюдается. Освещение получается мягким, равномерным и создает вокруг приятную, спокойную атмосферу.

Выводы и полезное видео по теме

Как работает электронный прибор в люминесцентной лампе. Подробное описание устройства и принципа работы изделия:

Чем отличаются друг от друга электромагнитный и электронный балласты. Особенности каждого из модулей и специфические нюансы их использования в бытовых осветительных приборах:

Особенности работы светильников, оснащенных балластами разных типов. Какие элементы более эффективны и почему. Практические рекомендации и полезные советы из личного опыта мастера:

Чтобы правильно подобрать балласт для бытовых ламп люминесцентного типа, нужно знать, как устроен этот элемент и какую функцию выполняет. Имея такую информацию, а также разбираясь в разновидностях прибора, приобрести нужную модификацию удастся без всяких сложностей.

Стоимость модуля зависит от завода-изготовителя, но даже брендовые изделия имеют вполне лояльную цену и ущерба бюджету среднестатистического потребителя не наносят.

Есть опыт выбора и замены балласта в люминесцентной лампе? Пожалуйста, расскажите читателям, какому модулю вы отдали предпочтение, и довольны ли покупкой. Комментируйте публикацию и участвуйте в обсуждениях. Блок обратной связи расположен ниже.

sovet-ingenera.com

Схема эпра для люминесцентных ламп 18 w

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Стандартная модель включает в себя трансформатор, динистор и транзистор. Довольно часто для защиты системы устанавливается предохранитель. Для подключения ламп предусмотрены специальные каналы. Также в устройстве имеются выходы, на которые подается электроэнергия.

схема эпра для люминесцентных ламп 18 w

Принцип работы

Принцип работы электронного балласта построен на преобразовании тока. Весь процесс начинается после подачи электроэнергии на канал. Далее в работу вступает дроссель. На этом этапе предельная частота устройства значительно снижается. При этом отрицательное сопротивление в цепи, наоборот, возрастает. Далее ток проходит через динистор и попадает на транзистор. В результате осуществляется преобразование тока. В конечном счете через трансформатор проходит напряжение нужного диапазона для люминесцентной лампы.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для люминесцентной лампы отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов энергосберегающих ламп включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.

схема эпра для люминесцентных ламп 18 w

Схема балласта «Эпра» 18 Вт

Данная схема электронного балласта для люминесцентной лампы включает в себя понижающий трансформатор, а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт «Эпра» 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов «Эпра» 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.

схема эпра для люминесцентных ламп 18 w

Схема балласта «Эпра» 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.

схема эпра для люминесцентных ламп 18 w

Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.

схема эпра для люминесцентных ламп 18 w

Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.

схема эпра для люминесцентных ламп 18 w

Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

схема эпра для люминесцентных ламп 18 w

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

схема эпра для люминесцентных ламп 18 wОсновные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

схема эпра для люминесцентных ламп 18 wГруппа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Оценка статьи:

(

оценок, среднее:

из 5)

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.

Люминесцентная лампа, С1 и С2 – конденсаторы

Электрическая схема ЭПРА

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.

Фото внутреннего устройства ЭПРА

Фото типового устройства ЭПРА

Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Лампа OSRAM с цоколем E27

Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Простейший светильник из двух ламп

otoplenie-help.ru

Схема подключения эпра 4х18 пошагово. Подключение люминесцентных ламп

Лампы дневного света уже достаточно прочно и давно вошли в жизнь большинства людей. Сейчас они становятся все более популярными, ведь постоянно дорожает электроэнергия и пользованием обычными лампами накаливания слишком дорогое удовольствие. Также известно, что компактные энергосберегающие лампы могут приобрести далеко не все, кроме того, большинство современных люстр нуждаются в большом количестве подобных ламп, из-за чего возникают сомнения в их экономичности. Именно поэтому во многих современных квартирах устанавливают люминесцентные дневного света, в чем помогает схема лампы дневного света, на которой можно увидеть принципы ее работы.

Устройство люминесцентных ламп

Для понятия принципов работы лампы дневного света необходимо изучить ее устройство. Она состоит из тонкой цилиндрической колбы из стекла, которая имеет разные формы и диаметры. Люминесцентные лампы бывают нескольких видов:

  • U-образные;
  • прямые;
  • кольцевые;
  • компактные (со специальными цоколями Е14, а также Е27).

Все они имеют разный внешний вид, однако их объединяет наличие электродов, люминесцентного покрытия и закачанного инертного газа с парами ртути внутри. Электроды являются небольшими спиралями, раскаляющимися на небольшой временной промежуток, зажигая, таким образом, газ, благодаря которому тот люминофор, который нанесен на стенки лампы светиться. Известно, что спирали для розжига небольшого размера, поэтому стандартное напряжение, которое есть в домашней электросети, не подходит для них. Поэтому, в этих целях пользуются специализированными приборами под названием дроссели, с их помощью ограничивается сила тока до нужного значения, благодаря их индуктивному сопротивлению. Кроме того, чтобы спираль сумела быстро разогреться, однако не перегореть, схема лампы дневного света показывает еще и стартер, отключающий накал электродов после того, как газ в трубках лампы зажигается.

Принципы работы ламп дневного света

Во время работы на клеммы подается напряжение 220В, проходящее через дроссель прямо на первую спираль данной лампы. Потом она переходит на стартер, срабатывающий, а также пропускающий ток на спираль, которая подключена к сетевой клемме. Это демонстрирует схема подключения ламп дневного света.

Достаточно часто на входных клеммах может устанавливаться конденсатор, который играет роль специализированного сетевого фильтра. Именно благодаря его работе, частица реактивной мощности, вырабатываемой в процессе работы дросселем, гасится. В результате получается, что лампа потребляет меньшее количество электроэнергии.

Проверка ламп дневного света


Если ваша лампа перестала зажигаться, вероятная причина данной неисправности – обрыв вольфрамовой нити, разогревающей газ и заставляющей светиться люминофор. Во время работы вольфрам со временем испаряется, начиная оседать на стенках лампы. В процессе, стеклянная колба на краях имеет темный налет, который предупреждает о возможном выходе из строя данного устройства.

Проверить целостность вольфрамовой нити очень просто, нужно взять обычный тестер, измеряющий сопротивление проводника, после чего надо прикоснуться щупами к выводным концам данной лампы. Если прибор покажет, например, сопротивление, составляющее 9.9 Ом, тогда это будет значить, что нить цела. Если же во время проверки пары электродов тестер покажет полный ноль, данная сторона имеет обрыв, поэтому включение ламп дневного света не совершиться.

Спираль может оборваться из-за того, что на протяжении времени ее использования нить истончается, поэтому постепенно возрастает напряжение, которое сквозь нее проходит. Благодаря тому, что напряжение постоянно возрастает, стартер выходит из строя, что можно увидеть по характерному «морганию» данных ламп. После того, как будут заменены сгоревшие лампы и стартеры, схема будет работать без наладок.

Если же во время включения ламп слышны посторонние звуки либо же ощутим запах гари, тогда необходимо сразу же обесточить светильник, проверив работоспособность его элементов. Может быть, что на самих клеммных соединениях появилась слабина и подключение проводов прогревается. Кроме этого, в случае некачественного изготовления дросселя, может случиться витковое замыкание обмоток, что приведет к выходу ламп из строя.

Как подключить люминесцентную лампу?

Подключение лампы дневного света является очень простым процессом, схема его предназначается для розжига только одной лампы. Чтобы подключить пару ламп дневного света, нужно слегка изменить схему, действуя при этом по единому принципу последовательного соединения элементов.

В подобном случае необходимо пользоваться парой стартеров, по одному на лампу. Во время подключения пары ламп к единому дросселю, необходимо обязательно учитывать его номинальную мощность, указанную на корпусе. К примеру, если его мощность составляет 40 Вт, тогда есть возможность подключить к нему пару одинаковых ламп, максимальная нагрузка которых равна 20 Вт.

Кроме того, бывает подключение лампы дневного света, в котором не используются стартеры. Благодаря применению специализированных электронных балл

les74.ru

ЭПРА на дискретных элементах для ламп Т8

Светотехника

Главная  Радиолюбителю  Светотехника



В статье предложен простой электронный пускорегулирующий аппарат для люминесцентных ламп Т8, собранный на дискретных элементах.

Люминесцентные лампы на протяжении многих десятилетий являются самым популярным источником света после ламп накаливания. Как известно, для их работы необходим пускорегулирующий аппарат (ПРА) — устройство, обеспечивающее стабильный розжиг и поддерживающее необходимый рабочий ток в лампе. Электронным пускорегулирующим аппаратам (ЭПРА), или электронным балластам, посвящено множество книг и публикаций, например [1, 2]. Универсальный ЭПРА, описанный в [1], обеспечивает «тёплый» старт для ламп и очень низкий коэффициент пульсаций светового потока (около 1 %). Но подобные устройства довольно сложны для повторения в радиолюбительских условиях, требуют редких компонентов и «чувствительны» к трассировке печатной платы, особенно к разводке общего провода. В предлагаемой статье рассмотрен более простой вариант электронного балласта, собранный из распространённых радиодеталей. Схема ЭПРА приведена на рис. 1. Он рассчитан на работу с четырьмя лампами Т8 мощностью 18 Вт либо с двумя лампами по 36 Вт (рис. 2).

Рис. 1. Схема ЭПРА

Рис. 2. Схема расположения ламп

Основные технические характеристики

Напряжение питания, В …..155…240

Максимальный потребляемый ток (4 лампы по 18 Вт), мА……………………..330

Коэффициент мощности (4 лампы по 18 Вт), не менее…………………….0,96

Коэффициент пульсаций светового потока, %, не более ……………………18

КПД, не менее……………….0,9

Частота преобразователя, кГц………………………65

За основу взят полумостовой автогенератор «электронного трансформатора» для галогенных ламп, описанный в [3]. Отличия заключаются в выходном каскаде, в наличии пассивного корректора мощности (в «электронном трансформаторе» для галогенных ламп [3] он не нужен) и изменённой цепи запуска. В остальном принцип его работы аналогичен.

Выходной каскад — это два последовательных LC-контура, включённых параллельно: Т2 (обмотка I), С11 и Т3 (обмотка I), С12. Каждый контур рассчитан на нагрузку 36 Вт, т. е. две лампы по 18 Вт либо одна лампа мощностью 36 Вт. Резонансная частота контуров — около 60 кГц.

Пассивный корректор мощности собран на диодах VD5-VD8 и конденсаторах C5, C6. Он служит для корректировки формы потребляемого устройством тока. Это обеспечивает коэффициент потребляемой мощности близким к единице. При желании корректор можно исключить, но в этом случае коэффициент мощности не будет превышать 0,5…0,6.

Запуск автогенератора осуществляется без «привычного» в подобных устройствах динистора. Это позволило упростить устройство и избежать главного недостатка динисторного запуска, связанного, по мнению автора, с разбросом параметров самого динистора, который может приводить к нестабильному запуску автогенератора при пониженном напряжении сети. Запуск осуществляется подачей напряжения смещения «напрямую» на базу транзистора VT2 через резисторы R3, R4, а также на колебательный контур, образованный элементами С9, L2, обмоткой II трансформатора T1. Возникающие в нём колебания в сумме с приложенным напряжением смещения и приводят к открыванию транзистора VT2. Сопротивление резисторов R3, R4 подобрано так, что протекающий через них ток недостаточен для удержания в открытом состоянии VT2 в момент возникновения в обмотке II трансформатора T1 напряжения обратной полярности, т. е. в момент, когда откроется транзистор VT1.

Изменение цепи запуска и увеличение рабочей частоты преобразователя с 35 кГц (в «электронном трансформаторе» для галогенных ламп) до 65 кГц позволило добиться устойчивого пуска балласта при понижении напряжения в сети до 145…155 В, а также несколько уменьшить габариты выходных трансформаторов Т2 и Т3.

Балласт собран на печатной плате размерами 116×42 мм из фольгированного с одной стороны стеклотекстолита. Чертёж проводников показан на рис. 3, расположение элементов — на рис. 4. Все элементы для поверхностного монтажа (VD1-VD4, R2-R5) расположены со стороны печатных проводников, выводные — на противоположной стороне платы. Конденсаторы С2-С4, С7, С10, С13 — любые плёночные, подходящих габаритов на номинальное напряжение не менее 400 В (постоянного тока — VDC), С11, С12 — на 1600 В (VDC), С1 — керамический на напряжение 1500 В (VDC), но лучше применить помехопо-давляющий конденсатор Y-класса на номинальное напряжение не менее 275 В (переменноготока — VAC). Диоды FR107 (VD5-VD12) можно заменить любыми быстродействующими выпрямительными с обратным напряжением не менее 600 В и прямым током не менее 300 мА. Трансформатор T1 намотан на кольцевом магнитопроводе (магнитная проницаемость — 2300) с внешним диаметром 9, внутренним — 5 и высотой кольца — 3,5 мм. Обмотки I и II содержат по четыре витка, обмотка III имеет два витка одножильного провода диаметром 0,3 мм. Направление всех обмоток должно быть одинаковым. Обмотки I и II должны иметь индуктивность 16 ±15 % мкГн, обмотка III — 4 мкГн. Выходные трансформаторы Т2 и Т3 намотаны на магнитопроводах Е20/10/6 из материала N27 (Epcos) или аналогичных с немагнитным зазором около 1 мм. Первичные обмотки содержат по 130 витков жгута из шести проводов диаметром 0,1…0,15 мм. При отсутствии шестижильного жгута можно использовать одножильный провод диаметром 0,25…0,35 мм, однако при этом нагрев трансформаторов увеличится на 10…15 оС. Вторичные обмотки имеют по 13 витков одножильного провода диаметром 0,3 мм. Индуктивность первичных обмоток должна быть 1±15 % мГн. Дроссели L1, L2 — стандартные, например ЕС24.

Рис. 3. Чертёж проводников

Рис. 4. Расположение элементов

Фотографии печатной платы собранного устройства приведены на рис. 5, рис. 6. Фотографии работающего балласта с лампами — на рис. 7 и рис. 8. Правильно собранное устройство начинает работать сразу и налаживания не требует.

Рис. 5. Печатная плата устройства в сборе

Рис. 6. Печатная плата устройства в сборе

Рис. 7. Работающий балласт с лампами

Рис. 8. Работающий балласт с лампами

Литература

1. Лазарев В. Универсальный ЭПРА с «тёплым» стартом для люминесцентных ламп Т8. — Радио, 2015, № 9, с. 31-35.

2. Давиденко Ю. Н. Настольная книга домашнего электрика: люминесцентные лампы. — СПб.: Наука и Техника, 2005.

3. Лазарев В. «Электронные трансформаторы» для галогенных ламп 12 В. — Радио, 2015, №8, с. 32-36.

Автор: В. Лазарев, г. Вязьма Смоленской обл.

Дата публикации: 27.02.2016

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *