Фаза и ноль как определить: Как найти фазу: простые и действенные способы

Содержание

Как определить фазу, ноль и заземление

Многие электроприборы требуют соблюдения полярности. Это не только мощные потребители электроэнергии, такие как посудомоечная машина или электрическая печь, но и привычные для нас переключатели для включения/выключения света. Даже подключение переключателя с размыкаемым нулем вместо фазы может стать причиной удара током.

Стабильная и безопасная работа электроприборов возможна только при правильном подключении. Для этого нужно определить, какой из проводников является фазным, нулевым и заземляющим. В этой статье мы подробно рассмотрим способы, как это сделать безопасно с использованием доступных инструментов, а также разберем, можно ли определить фазность без приборов.

Безопасность прежде всего!

Жизнь и здоровье человека являются наибольшей ценностью. Поэтому, прежде чем приступить к работе с электрооборудованием, следует убедиться, что все инструменты исправны: корпуса без повреждений, изоляция без переломов провода и повреждений, щупы не разболтаны и их корпуса не нарушены.

Не прикасайтесь к участкам без изоляции на инструментах и проводах при работе под напряжением!

При возникновении малейших сомнений в правильности действий, прекратите работу и обратитесь к профессионалу — это убережет вас, а также окружающих людей, от возможного поражения током.

Как определить ноль и фазу индикаторной отверткой

Одним из простейших способов выявления фазы и нуля является работа с отверткой-индикатором. Такой инструмент доступен по цене и несложный в использовании. Подробно рассмотрим его устройство для понимания принципа работы.

Этот прибор состоит из рукоятки и металлического жала, большая часть которого покрыта изоляцией. Внутри прозрачной рукоятки размещен резистор и неоновая лампа, а на торцевой части имеется второй контакт.

Работая с индикаторной отверткой, её жало должно касаться исследуемого элемента, а человек — второго контакта. Емкость и сопротивление человеческого тела здесь выступают частями цепи: если в цепи присутствует напряжение, то лампочка начинает светиться.

Для определения фазы и нуля отверткой-индикатором достаточно дотронуться сначала к одному, а затем к другому не изолированному концу провода или отверстию розетки. Если в исследуемом элементе есть напряжение, то лампочка загорится. Это явление соответствует фазному проводнику. Если свечения нет, то перед нами нулевой или заземляющий кабель.

Как определить фазу и ноль мультиметром

Индикаторной отверткой мы могли определить только наличие напряжения. При помощи тестера мы можем увидеть определенные показатели, отображающиеся на мониторе. Определение рабочего, заземляющего и нулевого рабочего элемента при помощи мультиметра происходит по схожему с сценариею (как с отверткой). Но это более сложный прибор, поэтому нужно быть предельно внимательным при выставлении его режимов. Если вместо режима вольтметра будет выставлен режим амперметра, вы можете получить значительный удар током.

Итак, устанавливаем переключатель устройства в режим вольтметра переменного тока «~», а предел измерения устанавливаем выше предполагаемого напряжения в сети. Перед началом работы необходимо убедиться, что мультиметр исправен. Для этого нужно измерить напряжение переменного тока в рабочей розетке и проконтролировать полученные значения. После этого можно приступать к определению фазы в исследуемом объекте. Одним из электрощупов касаемся до исследуемого элемента, а контактную часть второго электрощупа зажимаем между двух пальцев. Если на экране отображается какое-либо значение, значительно отличающееся от нуля (близкое к номинальному напряжению в сети), то перед нами рабочий проводник, если же оно равно нулю или очень низкое (до нескольких десятков вольт), то это нулевой или заземляющий проводник.

Как определить фазу и ноль без приборов

Единственный возможный способ различить проводники без использования приборов — при помощи маркировки проводников по цветам. Желто-зеленая окраска изоляции соответствует кабелю заземления, синяя или голубая — нулевому, а рабочий кабель может быть любого цвета. К сожалению, не все придерживаются ГОСТов, а также необходимых требований. Нередко случается, что электричество подключено либо немаркированными кабелями, либо маркировка не соблюдена. Поэтому доверять такому способу нельзя.

В интернете можно найти множество способов определения фазы при помощи подручных средств — картофеля, стакана с водопроводной водой, контрольной лампочки и пр. Эти способы использовать ни в коем случае нельзя — такие опыты могут закончиться фатально не только для вас, но также для окружающих!

Отдельно отметим рекомендуемую даже некоторыми электриками контрольную лампочку, т.е. патрон с лампой, к которому подсоединены два провода. Использование такого самодельного прибора запрещено Правилами Безопасной Эксплуатации Электроустановок, т.к. может причинить серьезный ущерб и нанести травмы.

Также опасно использовать способы, в которых рекомендуется соединение электросети с заземленными предметами — трубами центрального отопления, водоснабжения, газовыми трубами и пр. — если напряжение окажется на таких предметах, то прикосновение к ним может стать смертельным.

Если вы не имеете достаточно инструментов или опыта работы с электричеством, то не рискуйте жизнью и здоровьем, а доверьте подключение электроприборов профессионалу.

Как определить заземление

Часто в новых домах можно встретить проводку из трехжильного кабеля, т.е. в нем присутствует отдельно выведенное заземление. При неправильном подключении есть риск короткого замыкания, а также поражения током. Поэтому для подключения электрооборудования важно знать не только где находится фаза, но также выявить ноль и заземление.

Определить провод заземления сложно из-за того, что по своим параметрам он схож с нулевым.

В электросистемах типа ТТ, имеющих индивидуальный заземляющий контур, можно найти кабель заземления при помощи измерений мультиметром. Для этого нужно поочередно измерить напряжение между рабочим проводником и двумя другими. Большее значение соответствует нулю, меньшее — земле.

В других конфигурациях сети этот прием не работает, поэтому мы рекомендуем предпринять следующие шаги:

  1. Отключить всех потребителей электроэнергии на исследуемом участке цепи.
  2. В щитке определить, где находится сдвоенный УЗО на ввод.
  3. Внимательно осмотрев защитное устройство, определить нахождение нулевого, а также фазного проводника.
  4. Отключить это УЗО.
  5. Аккуратно отсоединить нуль от УЗО на время исследования.
  6. Включить защитное устройство.
  7. Тестером произвести измерения исследуемых элементов поочередно подключая каждый к фазному. Нулевой проводник отключен, поэтому показания измерений будут нулевыми, сочетание фаза-земля покажет около 220 В.
  8. Промаркировать проводники по установленным данным.
  9. Произвести повторное подключение нуля к УЗО.

Помните: неосторожное или неумелое обращение с электричеством может привести к непоправимым последствиям. Не рискуйте жизнью и здоровьем — доверьте дело профессиональным электрикам со стажем и необходимыми допусками.

Оцените новость:

Как определить фазу, ноль и заземление

Как узнать в домашних условиях, где фаза, ноль и заземление?
В наших инструкциях есть схемы подключения электроприборов к сети в домашних условиях, для чего и нужно знать, где у Вас фазный провод, рабочий ноль и заземление.
Безопасным методом определить заземление, фазу и ноль, можно с помощью цветов электрических проводов в соответствии с принятым стандартом IEC 60446 2004 года. Где синий, бело-синий провод означает рабочий ноль, зелено-желтый провод – защитный ноль (заземление). Другие цвета обозначают фазу.

 

Определяем, какой из проводов будет фазой возможно с использованием мультиметра.

 

С помощью индикаторной отвертки можно определить фазный провод. При прикосновении концом этой отвертки проводника под напряжением к контакту, на задней ее стороне, загорится индикаторная лампа и показывает напряжение. Таким способом определяется провод с фазой.
В отвертке индикаторной встроены лампа и резистор, при замыкании цепи загорится лампочка. Недостаток этого метода заключается в вероятности срабатывания отвертки, реагируя на наводки, определяя ток в том месте, где его нет.

 

Использование контрольной лампы.
Можно использовать устройство контрольная лампа. Используется патрон, в который вкручена лампочка, а в клемму патрона нужно прикрепить провода без изоляции на концах.
Как из двух проводов определить фазу и ноль.

 

Распознать с использованием контрольной лампы провод фазный из двух проводов можно только узнать есть ли фаза или нет. Подключив один конец, идущий от контрольной лампы, к уже определенному нулю, при прикосновении со вторым концом фазного провода, лампа загорится. Ноль соответствует последнему проводу.
Как определить из трех проводов фазу и ноль.

 

Нужно поочередно соединить контакты, которые идут от контрольно лампы к жилам кабеля. Исключения определяем положение, когда лампа загорается. Один провод фаза, а другой ноль. Изменяем положение контактов. Лампа загорается — свободный провод фаза, а остальные значит ноль и земля.

 

Если при изменении положения лампа ненадолго засверкает, а при реагировании УЗО или дифференциального автомата, значит оставшийся провод ноль, а проверяемые являются фазой и заземлением.
 

При загорании лампочки в двух положениях, а линия без защиты УЗО или дифференциального автомата, тогда определить какой провод рабочий ноль, а какой является заземлением, нужно отключив в щитке электричества вводный кабель от клеммы заземления. Проверяем контрольной лампой жилы и методом исключения определяем заземление, распознаем проводник заземления.

Как определить фазу и ноль: самые действенные способы

В домашнем хозяйстве возникают проблемы при монтаже розеток и выключателей, подключении систем освещения, бытовых электрических приборов и других подобных устройств. Обычно они питаются от однофазных источников, провода которых состоят из двух проводников — фазного и нулевого. В более безопасном варианте к ним добавляется третий провод — земля или заземление.

Большинство бытовой электрической техники нормально функционируют при строго определенном, согласно рабочей схеме, подключении проводников. Основой для успешного решения вопроса будут навыки определения, где фаза, а где ноль. Выполнить эту достаточно несложную работу можно самостоятельно, без привлечения электриков, а значит с экономией на финансовых затратах.

Способы, как найти фазу и ноль, имеют место, как с использованием приборов, так и без них.

Определение рабочей фазы и нуля с помощью приборов

Фазный проводник предназначен для подачи тока потребителю, поэтому на него подается рабочее напряжение ( в бытовой сети 220 В). В отличие от него нулевой проводник выполняет функции замыкания цепи и его потенциал близок к нулю. На этом отличии как раз основан принцип как идентифицировать фазу и ноль с помощью электрических приборов.

С использованием индикаторной отвертки

Основное предназначение индикаторных отверток проверка наличия/отсутствия напряжения. Данная техническая характеристика прибора позволяет определить фазный и нулевой провода питающей сети.

Устройство отвертки обеспечивает удобное и безопасное ее использование. Принципиальная схема представлена на изображении.

Токопроводящий металлический стержень с плоским жалом на конце выполняет функции непосредственно контактирующего элемента с испытуемым проводом. В схеме присутствует ограничивающий величину тока до безопасных значений для человека высокоомный резистор. Он соединяется с индикаторной лампочкой с помощью пружины.

Замыкается цепь из перечисленных элементов на колпачке с контактом. Колпачок располагается на корпусе отвертки изготовленной из прозрачного пластика с возможностью удобного касания рукой человека. Его тело после контакта с колпачком будет выступать в качестве элемента цепи, по нему ток сбрасывается в землю.

Загорание лампочки дает необходимую информацию, как определить фазу и ноль индикаторной отверткой. С касанием токопроводящим стержнем фазного провода лампочка индикатора горит, контакт с нулем оставляет ее потухшей.

Важно: при выполнении работ с помощью индикаторной отвертки с целью предотвращения получения электрической травмы запрещается касаться руками рабочего токопроводящего стержня.

Определение фазы и ноля мультиметром

В однофазной проводке из трех проводов с помощью индикаторной отвертки можно определить только фазу, ноль и землю отличить с ее помощью невозможно. Мультиметром или как он называется в быту тестером можно решить весь комплекс вопросов как проверить функциональную принадлежность всех трех проводов.

Мультиметры принадлежат к многофункциональным приборам, поэтому для определения принадлежности того или иного провода следует выбрать и установить рабочее состояние в положение «вольтметр». Предел измерения выставить больше 220 В.

  • Первое действие заключается в проверке напряжения на всех трех проводах щупом, который находится в гнезде тестера «V» (обозначение гнезд могут различаться, это самое распространенное). Провод с максимальным значением напряжения будет фазой.
  • Далее один из двух щупов соединяем с фазой, а другим касаемся поочередно двух оставшихся проводов.
  • В случае если напряжение на шкале мультиметра будет равно 220 В, то этот провод нулевой. При напряжении на проводе меньшем, чем 220 В, найдем заземляющий.

Как определить ноль и фазу без приборов

Согласно ПУЭ (Правил Устройства Электроустановок) каждому проводу имеющему свое функциональное назначение соответствует своя определенная цветовая маркировка:

  • фазный провод имеет изоляцию черного, белого, коричневого (наиболее часто используемого) цветов и их многочисленных оттенков;
  • нулевой провод имеет изоляцию синего цвета с любыми его оттенками;
  • земля находится в изоляции желто — зеленого цвета в полоску.

Если бы нормативные акты строго соблюдались, то проблем с определением, где фаза, где ноль, а где земля не существовало. Для того чтобы легче было ориентироваться в коммутационных схемах на многих электрических приборах вводятся обозначения фазы, ноля и земли. Все проводники обозначаются в соответствии с государственными стандартами:

  • L — этой латинской буквой обозначается фаза;
  • N — по этому знаку находят нулевой провод;
  • PE — этим сочетанием букв всегда обозначалась земля.

Однако визуальный метод имеет долю субъективизма, не всегда можно точно определить правильно цвет изоляции проводника. Кроме этого не все электрики придерживаются нормативных документов при проведении электромонтажных работ. В зданиях старой постройки, говорить о каких — либо стандартах цветовой маркировки проводки вообще не приходится.

Поэтому такой метод найти фазу и ноль без приборов существует с большой степенью условности, 100 % гарантии он не имеет. Однако он является единственным реальным способом среди других, типа применения сырой картошки, как определить фазу и ноль без приборов. Для получения достоверного результата лучше воспользоваться данными о соответствии проводов фазе, нулю или заземлению проверенных с помощью индикаторной отвертки или мультиметра.

Использование самодельной «контрольки»

Бывают случаи, когда необходимо срочно подключить электрическое устройство, а в домашнем хозяйстве отсутствуют необходимые приборы для определения фазы и нуля. Часто это происходит на даче вдали от благ цивилизации. Однако найти там электрическую лампочку, патрон от нее и кусок электрического провода не представляет больших проблем.

Изготовить самостоятельно контрольную лампочку не представляет труда. Достаточно подключить два провода к патрону и закрутить в него электрическую лампочку. Для удобства эксплуатации концы проводов оборудовать щупами (если такие удалось найти).

Принцип идентификации проводов «контролькой» не отличается от того как определить индикаторной отверткой фазу и ноль. Для определения фазы следует один из контактов «контрольки» подключить к любому из проверяемых проводов, а второй контакт соединить с заземлением. Если лампа будет светиться, то узнаете о принадлежности его к фазе.

Главный недостаток использования самодельной «контрольки» в отсутствии безопасности проведения работ. Существует реальная возможность получения удара электрическим током.

Видео по теме

Как самому определить фазу, ноль и заземление?

Смотрите также обзоры и статьи:

Любой человек, который запланировал выполнять любые электромонтажные работы во время ремонта в жилом или производственном помещении, рано или поздно столкнется с важнейшим вопросом: как самому определить где в электрической сети фаза, ноль и заземление. Ведь без этих знаний либо же придется воспользоваться услугами электрика, и нанимать его. Либо же самостоятельно, чтобы подключить люстру, бра, торшер, светильник, светодиодную ленту, любой электрический прибор, научится распознавать где защитный провод, где под напряжением, а где нулевой.

Определение по цветовой маркировке

Все современные кабели или электрические провода под своей изоляционной оболочкой содержат обычно три жилы, каждая из которых помечена изоляцией своего цвета. Таким образом, определить где какая жила можно и просто по цветовой маркировке. Так, обычно в новых проводах:

  • фаза отмечена черным, белым или коричневым цветами;
  • нейтральный провод, он же нулевой по мировым стандартам должен соответствовать синему или голубому цвету,
  • а заземление или защитный кабель обычно выполнен в двухцветном варианте – желто-зеленый, полосатый и т.п.

На постсоветском пространстве закреплен на законодательном уровне стандарт IEC 60446 2004 года, который и регламентирует какого цвета необходимо применять и изготавливать электроизоляцию проводов. Согласно нему в жилых квартирах:

  • синий или сине-белый провод – это ноль,
  • желто-зеленый – земля;
  • все остальные цвета могут быть фазой, как черный, так и красный.

Однако правило применимо в основном только для проводов, которые установлены в доме или офисе последние лет двадцать-тридцать. А как же быть с электросетями, которые были установлены раньше этого периода, где часто попадаются жилы с алюминиевым сечением? Или вам необходимо поменять часть какого-либо устройства или схемы, в которой данные цвета могли по стандартам и не быть использованы? Тогда вам пригодятся другие, более эффективные способы определения жил и напряжения в электропроводке.

Как определить ноль и фазу индикаторной отверткой

Одним из наиболее надежных, простых, доступных и не требующих особых затрат, и умений способом является определение ноль и фазы при помощи индикаторной отвертки. В чем заключается принцип работы индикаторной отвертки? Индикаторная отвертка – это ручной вспомогательный инструмент практически ничем не отличающийся от привычной нам плоской отвертки с пластиковой ручкой и металлическим наконечником, но есть одно «Но»: внутри рукояти есть индикационная лампочка или светодиод, который срабатывает свечением или загорается, если металлической частью коснутся фазы. На некоторых моделях для индикации следует также нажимать на специальную кнопку на рукояти, которая смыкает контакты и подает ток на индикатор. Однако в целях безопасности следует работать с такой отверткой только в резиновых перчатках электрика, чтобы избежать поражения электрическим током.

Как работать с индикаторной отверткой? В первую очередь, необходимо отключить напряжение в сети, и кусачками снять изоляцию на концах всех трех жил, оголив металлическую часть проводов, зачастую она будет медной. Дальше все три жилы необходимо развести между собой, так, чтобы они не соприкасались, чтобы избежать короткого замыкания при подаче на них напряжения.

После этого, одеть резиновые диэлектрические специальные перчатки и включить напряжение в сети. Хорошо, если ваш щиток имеет встроенный при монтаже устройства устройство защитного отключения. Или другими словами УЗО – он в аварийном режиме отключает питание в сети, если есть утечка тока на корпус.

Вооружившись индикаторной отверткой поочередно ее металлическим наконечником прикасаться к металлической оголенной части каждой жилы. Там, где лампочка индикаторной отвертки сработает и загорится – это фаза. Далее для работы с данными проводами следует изолентой после выключения напряжения замотать оголенные концы проводов.

Определение фазы, нуля и заземления контрольной лампой

Способ простой, однако не самый безопасный и требующий определенной ловкости и осторожности. Считается несколько кустарным и часто используется в грубых производственных условиях опытными мастерами, под рукой у которых не оказалось другого контрольного инструмента. Для того, чтобы воспользоваться данным методом, следует для начала собственно и собрать данную контрольную лампу. Для этого нужен патрон, два провода – фазы и нуля – и лампочка, можно самую обыкновенную, накаливания с вольфрамовой нитью. Это все необходимо скрутить, зачистить на концах его провода и поочередно скручивать с другими проводами в проводке, определить где фаза по тому, когда загорится лампа. Конечно же, скрутку нужно делать, отключив подачу напряжения на провода.

Если патрона не оказалось, можно задействовать часть светильника или настольной лампы, произведя ту же манипуляцию с концами его жил. Однако способ весьма сложный для неподготовленного и неопытного мастера, поскольку есть вероятность перепутать провода и пустить вместо постоянного тока, переменный, при котором лампочка тоже будет гореть. Лучше тогда основательно вывести жилу-землю, сделать ее нулем и тогда спокойно искать фазу.

Как определить фазу и ноль мультиметром

Мультиметры — универсальные многофункциональные приборы для измерения емкости, напряжения, сопротивления и силы тока, имеют отдельные выводы под щупы, укомплектованы самыми щупами, которыми легко и удобно пользоваться, точно определив напряжение. Это самый надежный и довольно простой способ определить фазу и ноль, без особых сложностей и безопасно для здоровья. Ведь все мультиметры имеют на своем корпусе прорезиненный диэлектрический чехол, который не только защищает от ударов тока, но и оставит прибор целым, если он случайно выскользнет из рук и упадет с высоты не более полутора метров. Универсальное мультифункциональное устройство для измерения силы тока, напряжения, сопротивления, емкости, частоты используется повсеместно, как автолюбителями, так и электронщиками, электриками, строителями, рабочими технических специальностей.

Есть целых пять причин, по которым стоит выбрать именно мультиметр для домашнего обихода и работы:

  • Высокая точность измерений – при максимальных значениях постоянного напряжения 0,8%, при больших позициях переменного — максимум 1,2%.
  • Возможность измерять переменное значение тока,
  • Одновременное измерение кроме постоянного и переменного напряжения, сопротивления, также такие величины как емкость, частота, скважность, а также температура благодаря термопаре.
  • Эргономический дизайн и большой мультифункциональный экран.
  • Усиленная индикация батареи и перегрузки.

Это надежный и добротный инструмент для качественного измерения всех требуемых показателей для проверки электрических показаний в цепи питания, а также замера целостности цепи, схемы, платы.

Как же определить фазу и ноль мультиметром? Для начала необходимо знать, что практически все современные мультифункциональные приборы данного типа имеют жидкокристаллический экран, на который выводятся показания в цифровом эквиваленте, однако не плавно, как это было в аналоговых устройствах, без экрана, а рывками.

Поэтому при измерении стоит выждать некоторое время, буквально секунду-две, чтобы прибор определил точное напряжение в сети. Кстати, на панельной панели мультиметра есть множество, свыше 20-30 режимов работы, которые выбираются поворотным рычагом. На этом круге нужно найти тот, что отвечает за переменное напряжение в сети и выглядит как обозначение вольт, также в большинстве мультиметров вручную нужно настроить и диапазон измерений, хотя многие могут это сделать и автоматически.

Далее один из щупов присоединяем к разъему мультиметра, а его другую сторону металлическим наконечником прикасаемся к проводу или в розетку. Если показания на экране прибора будут соответствовать 10-15 вольтам, то, скорее всего, вы попали не в фазу, а в ноль. Если показания в пределах от ста и до 250 вольт – то это и есть фаза.

Как определить фазу и ноль без приборов

Без никаких приборов, даже самых примитивных, искать фазу и ноль в сети не особо стоит. Но если у вас крайний случай, то, рискнуть, конечно можно, но нельзя сказать, что безопасность при этом будет выдержана. Есть несколько оригинальных, забавных, но в тоже время достаточно надежных и точных способа это сделать. Для первого из них стоит взять из подручных средств, которые скорее всего найдутся в каждом доме картофелину. Да-да! А помимо этого два провода на полметра и резистор на 1 мегаом. Все это необходимо собрать, чтобы один проводник был подключен к трубе, а второй – вставить в отрезанную половинку картофелины. Второй провод вставить в срез картофелины рядом с первым. Произведя подобную манипуляцию, только спустя минут пять-десять необходимо оценивать результат измерений.

Что же должно произойти? На том месте, где соприкасался проводник с фазой, должно появится сине-зеленый след от взаимодействия крахмалистых соединений с электричеством, т.е. окисление. Где его не окажется – это нулевой провод.

Второй такой же неоднозначный метод – использование чашки с обыкновенной водой. Тут срабатывает принцип, чем-то схожий с функционированием кипятильника – минус будет там, где вода возле проводника начнет пузырится. Соответственно, методом исключения – плюс будет находится на втором проводе.

Как определить заземление

Кроме очевидного способа по определению заземления, который заключается в идентификации земли по цвету изоляции в жиле, в частности желто-зеленого цвета по мировым стандартам, существует и несколько других, менее очевидных.

Например, если у вас в доме были случаи, что электроприборы, будь то стиральная машина, компьютер, микроволновка, бились током, то практически можно быть полностью уверенным, что заземление в вашей проводке отсутствует, поскольку именно оно должно ликвидировать остаточное напряжение на корпусы электроустройств.

Можно определить заземление мультиметром по принципу исключения, провод, в котором вовсе не будет наблюдаться отклонений по переменному напряжению – скорее всего и будет им.

Выводы

Очень важно научится самостоятельно понимать где в розетке в вашем доме фаза, ноль и заземление, ведь скорее всего доведется столкнуться с необходимостью замены или дополнительной установки каких-либо устройств, связанных с электричеством. Однако настоятельно рекомендуем пользоваться надежными методами, а нетрадиционными только в случае крайней необходимости! А лучше – воспользоваться мультиметром, индикаторной отверткой или вызвать опытного и надежного специалиста-электрика.

Опубликовано: 2020-07-13 Обновлено: 2020-07-13

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Фаза, ноль, заземление. Как их определить и что это такое

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Давайте для начала разберемся что такое фаза и что такое ноль, а потом посмотрим как их найти.

В промышленных масштабах у нас производится трехфазный переменный ток, а в быту мы используем, как правило, однофазный.

Это достигается за счет подключения нашей проводки к одному из трех фазовых проводов (рисунок 1), причем, какая именно фаза приходит в квартиру нам, для дальнейшего рассмотрения материала, глубоко безразлично. Поскольку этот пример очень схематичен, следует кратко рассмотреть физический смысл такого подключения (рисунок 2).

Электрический ток возникает при наличии замкнутой электрической цепи, которая состоит из обмотки (Lт) трансформатора подстанции (1), соединительной линии (2), электропроводки нашей квартиры (3). (Здесь обозначение фазы L, нуля — N).

Еще момент — чтобы по этой цепи протекал ток, в квартире должен быть включен хотя бы один потребитель электроэнергии Rн. В противном случае тока не будет, но НАПРЯЖЕНИЕ на фазе останется.

Один из концов обмотки Lт на подстанции заземлен, то есть имеет электрический контакт с грунтом (Змл). Тот провод, который идет от этой точки является нулевым, другой — фазовым.

Отсюда следует еще один очевидный практический вывод: напряжение между «нулем» и «землей» будет близко к нулевому значению (определяется сопротивлением заземления), а «земля» — «фаза», в нашем случае 220 Вольт.

Кроме того, если гипотетически (На практике так делать нельзя!) заземлить нулевой провод в квартире, отключив его от подстанции (рис.3), напряжение «фаза» — «ноль» у нас будет те же 220 Вольт.

Что такое фаза и ноль разобрались. Давайте поговорим про заземление. Физический смысл его, думаю уже ясен, поэтому предлагаю взглянуть на это с практической точки зрения.

При возникновении по каким- либо причинам электрического контакта между фазой и токопроводящим (металлическим, например) корпусом электроприбора, на последнем появляется напряжение.

При касании этого корпуса может возникнуть, протекающий через тело электрический ток. Это обусловлено наличием электрического контакта между телом и «землей» (рис.4).

Чем меньше сопротивление этого контакта (влажный или металлический пол, непосредственный контакт строительной конструкции с естественными заземлителями (батареи отопления, металлические водопроводные трубы) тем большая опасность Вам грозит.

Решение подобной проблемы состоит в заземлении корпуса (рисунок 5), при этом опасный ток «уйдет» по цепи заземления.

Конструктивно реализация этого способа защиты от поражения электрическим током для квартир, офисных помещений состоит в прокладке отдельного заземляющего проводника РЕ (рис.6), который впоследствии заземляется тем или иным образом.

Как это делается — тема для отдельного разговора, например, в частном доме можно самостоятельно сделать заземляющий контур. Существуют различные варианты со своими достоинствами, недостатками, но для дальнейшего понимания этого материала они не принципиальны, поскольку предлагаю рассмотреть нескольку сугубо практических вопросов.

КАК ОПРЕДЕЛИТЬ ФАЗУ И НОЛЬ

Где фаза, где ноль — вопрос, возникающий при подключении любого электротехнического устройства.

Для начала давайте рассмотрим как найти фазу. Проще всего это сделать индикаторной отверткой (рисунок 7).

Токопроводящим жалом индикаторной отвертки (1) касаемся контролируемого участка электрической цепи (во время работы контакт этой части отвертки с телом недопустим!), пальцем руки касаемся контактной площадки 3, свечение индикатора 2 свидетельствует о наличии фазы.

Помимо индикаторной отвертки фазу можно проверить мультиметром (тестером), правда это более трудоемко. Для этого мультиметр следует перевести в режим измерения переменного напряжения с пределом более 220 Вольт.

Одним щупом мультиметра (каким — безразлично) касаемся участка измеряемой цепи, другим — естественного заземлителя (батареи отопления, металлические водопроводные трубы). При показаниях мультиметра, соответствующим напряжению сети (около 220 В) на измеряемом участке цепи присутствует фаза (схема рис.8).

Обращаю Ваше внимание — если проведенные измерения показывают отсутствие фазы утверждать что это ноль нельзя. Пример на рисунке 9.

  1. Сейчас в точке 1 фазы нет.
  2. При замыкании выключателя S она появляется.

Поэтому следует проверить все возможные варианты.

Хочу заметить, что при наличии в электропроводке провода заземления отличить его от нулевого проводника методом электрических измерений в пределах квартиры невозможно.

Как правило, провод, которым выполнено заземление имеет желто зеленый цвет, но лучше убедиться в этом визуально, например снять крышку розетки и посмотреть какой провод подсоединен к заземляющим контактам.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Как определить фазу и ноль индикатором-пробником. Цвета фазного провода

Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.

Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!

Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник


для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.

Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.

Почему индикатор светится


при прикосновении к нулевому проводу

Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.

Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.

При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.

Как найти фазу и ноль с помощью контрольки электрика

Контролька электрика на лампочке накаливания

Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.

Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.

Контролька электрика на светодиоде

Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.

Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.

Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.

Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.

Поиск фазы при наличии нулевого и заземляющего проводников

Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.

Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.

Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.

Поиск фазы и нуля контролькой

Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.

Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.

Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.

В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.

Поиск фазы и ноля вольтметром или мультиметром

Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.

Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.

Поиск фазы и ноля с помощью картошки

Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.

Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.

Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.


Андрей 19.09.2012

Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.

Александр

В квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.

Как определить фазу и ноль без приборов?

Я электрик с большим стажем. Тридцать лет работаю с электричеством. Бывает, что меня спрашивают, как отличить фазу от нуля в отсутствии приборов. Вопрос не простой. Сейчас я попытаюсь рассказать все, что об этом знаю.

Фаза и ноль. В чем разница?

Строго говоря, фазный и нулевой проводники не имеют больших различий. В цепях переменного тока за одну секунду ток меняет направление пятьдесят раз. Как тут отличишь, какую функцию выполняет тот или иной провод? Единственное отличие между фазным и нулевым проводниками состоит в том, что «ноль» (нулевой проводник) соединен с Землей. Именно так. В землю закопан электрический контур и на подстанции один из выводов трансформатора соединен с этим контуром. Такая электрическая схема называется сетью с глухо заземленной нейтралью. В такой схеме нулевой провод имеет потенциал земли. Мы с вами тоже имеем потенциал земли. Поэтому, коснувшись заземленного проводника мы не получаем удар током.

Теперь, когда вы имеете представление о «нуле» перейдем к «фазе». Напряжение фазного проводника 50 раз в секунду меня меняет свою полярность относительно «нуля». В цепи фаза-ноль ток изменяет свое направление тоже 50 раз в секунду. Если ток потечет через тело человека, то это закончится очень плохо. Поэтому проявляйте крайнюю осторожность.

На самом деле нет ни одного прибора, который бы «чувствовал» «фазу». Все приборы фиксируют, течет ли ток от данного конкретного провода на «землю» или нет. Даже однополюсный пробник, которым часто пользуются для обнаружения фазных проводов, работает по этому принципу. Сейчас мы не станем вдаваться в подробности работы таких пробников.

Ищем «фазу»

Если нам необходимо отличить фазу от ноля, то мы должны создать электрическую цепь, при помощи которой мы будем однозначно знать, течет ли ток от выбранного нами провода на «землю» или нет. На ум приходит несколько приборов, которые смогут нам помочь:

  • лампочка,
  • еще одна лампочка, неоновая,
  • светодиод.

Есть еще один способ, очень ненадежный. В последнее время провода стали маркировать по расцветке изоляции. Нулевой провод имеет синий цвет, изоляция заземляющего провода имеет желто-зеленую расцветку. Но кто поручиться, что электрик выполнил подключение согласно правилам или он не был дальтоником?

«Дедовский» способ

Многие десятилетия электрики использовали электрическую лампочку в качестве измерительного прибора. Лампа накаливания, патрон и два провода. Этот прибор назывался «контролькой». Для определения «фазы» одним выводом контрольки касались провода, другим металлического предмета, который заведомо соединен с землей. Это мог быть корпус щитка освещения, или другого распределительного устройства. По правилам они все заземляются. К сожалению, найти заземленный предмет не всегда возможно. Встречал советы, когда в качестве земли предлагали использовать трубы отопления или водопровода. Не советую категорически! Можно ударить током ни чего не подозревающего человека. Поверьте на слово. Если вы в собственном доме, на даче роль «земли» может выполнить металлический штырь забитый в землю, другие металлические предметы, имеющие надежное соединение с землей.

Контрольку запрещено использовать потому, что ее можно присоединить к двум фазным проводам. В этом случае напряжение на ней будет 1.7 раза выше напряжения сети, лампочка может просто взорваться. Если вы уверены, что один из проводов контрольки присоединен к земле, то опасаться взрыва не стоит.

Существуют более безопасные приборы. Случайно под рукой может оказаться индикаторная лампа от старой связной аппаратуры. Эти лампочки, «инки», начинают светиться, если один из выводов присоединен к фазному проводу. Однополюсные пробники оснащены подобными лампами.

Более серьезным прибором будет комбинация светодиода и соединенного с ним последовательно токоограничительного резистора. Понятно, что этот случай для людей, дружащих с паяльником, например радиолюбителей. Резистор должен иметь сопротивление несколько десятков килоомм.

Во избежание поражения током нужно следовать одному простому правилу. Во время измерений не касаться проводов и металла ни одной частью тела.

От нулевой фазы до героя разработки продукта: практическое руководство

Блэр Эрбстойзер, руководитель проекта, Stratos Product Development

Все любят героев. В случае разработки продукта эти герои часто молчат, поскольку их проекты идут гладко, избегая минных мин тонущих проектов, которые потеряли свой путь. Эти герои также часто могут избегать прыжков через обруч в последнюю секунду, которые регулярно требуются их командам для доставки продукта.

Итак, как вы можете стать героем в разработке продукта и спасти свою команду от реактивной драмы, которая слишком часто встречается в процессе разработки? Чтобы увеличить шансы стать героем разработки продукта в вашей организации, подход, позволяющий сэкономить время, заключается в том, чтобы определить, есть ли у вашей идеи потенциал, еще до начала проекта. Это повторяющееся предварительное упражнение часто называют нулевой фазой.

Phase Zero — это деятельность на раннем этапе планирования для оценки инновационных возможностей при построении бизнес-обоснования для поддержки инвестиционного решения.Проекты, в которых используется этот этап, выполняются эффективно и имеют более высокую вероятность достижения целевых показателей производительности, бюджета и графика. Типичные цели Phase Zero включают создание первоочередной уверенности в том, что существует реальная возможность для бизнеса, и получение уверенности в том, что для ее решения можно разработать жизнеспособный продукт.

Если у вас уже есть обнадеживающие ответы или сценарии для достижения этих целей, вы, вероятно, готовы перейти к более традиционным этапам разработки продукта и стать героем.Если нет, попробуйте применить нулевую фазу, чтобы получить ответы на эти или подобные вопросы.

Phase Zero Essentials

Хотя провести время вперед может быть трудно, потому что люди полны энтузиазма и готовы приступить к делу, время, которое вы задаете важными вопросами, окупится с избытком для будущего успеха. На этом этапе важно включить кросс-функциональную команду, чтобы гарантировать, что проект с самого начала связан со всеми техническими и бизнес-дисциплинами, чтобы ответить на все вопросы.

Вот краткий обзор основных областей, по которым необходимо собрать ключевые отзывы перед запуском проекта:

  • Создание ИС и владение: многие проекты запускаются только для того, чтобы потом отказаться от них из-за юридических проблем, ранее существовавших патентов и т. Д. Проведите предварительное исследование и поймите, будет ли ваша инновация свободна в использовании.
  • Оценка технологий: насколько зрелая ваша технология? Как будет выглядеть коммерческая конфигурация? Если стратегия разработки продукта рискованна, потратьте время на испытательный прототип.Вы даже можете подумать о том, чтобы пойти еще дальше и провести прикладное исследование.
  • Нормативная стратегия
  • (если требуется): Непонимание или неполное понимание требований к возмещению расходов и нормативных требований, связанных с продуктом, является обычным местом, где можно споткнуться в дальнейшем. Найдите время, чтобы определить свою стратегию.
  • Бизнес-модель
  • : определите факторы, которые понадобятся вам для последующего расчета адекватной рентабельности инвестиций (ROI). На данном этапе годятся грубые концепции, но следует учитывать ожидания прибылей и убытков, предполагаемый доход и приемлемую норму прибыли.
  • Знание клиента и компании: убедитесь, что вы понимаете главные приоритеты своего клиента и определили ключевые результаты, которые будут результатом проекта. Спросите себя: «Соответствуют ли эти результаты потребностям клиента?» Кроме того, крайне важно определить, действительно ли ваша компания или организация может взяться за проект или вам нужно сотрудничать с кем-то еще. Быть оптимистом — это здорово, но слишком многообещающие или недовольные результаты редко заканчиваются хорошо для кого-либо.
  • Первоначальный черновик: Создайте начальный план разработки продукта и определите основные этапы и первый проход ресурсов, необходимых для успешного завершения проекта. На этом этапе уместны грубые идеи, поскольку этап более подробного планирования станет одним из следующих шагов, если проект получит зеленый свет.

В Phase Zero держите свои мысли и обсуждения на высоком уровне и не увязайте в гайках и болтах. Я имею в виду буквально, потому что очень легко потратить время и перейти к стадии детализации, которая, несомненно, изменится на этой ранней стадии.Если кто-то действительно начинает говорить о том, какие гайки или болты следует использовать для чего-либо, остановите их и верните разговор на соответствующий уровень.

Результатом Phase Zero является принятие решения о переходе на следующий уровень разработки продукта — ни больше, ни меньше. Начиная свой следующий проект, примите во внимание указанные выше моменты. Если ответы еще не очевидны, предложите нулевую фазу и привлеките необходимых участников для реализации стратегии.Попробуйте и не бойтесь быть героем.

Блэр Эрбстоезер (Blair Erbstoeszer) — руководитель проекта в Stratos Product Development. Он имеет 14-летний опыт разработки продуктов в качестве менеджера проектов / программ и инженера-механика, ранее работал в Guidant, Boston Scientific и Microsoft. Его внимание было сосредоточено на медицинских устройствах класса II и III и на передовых массовых потребительских товарах. Он имеет степень магистра среднего и среднего бизнеса Вашингтонского университета и степень бакалавра медицинских наук Калифорнийского университета в Санта-Барбаре.С ним можно связаться по адресу [электронная почта защищена].

Объяснение основных измерений трехфазной мощности

Время чтения: 7 минут

Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, системы трехфазного переменного тока почти повсеместно используются для распределения электроэнергии и подачи электричества непосредственно на оборудование с более высокой мощностью.

В этой технической статье описываются основные принципы трехфазных систем и различие между различными возможными соединениями для измерения.

  • Трехфазные системы
  • Соединение звездой или звездой
  • Соединение треугольником
  • Сравнение звезды и дельты
  • Измерения мощности
  • Подключение однофазного ваттметра
  • Однофазное трехпроводное соединение
  • Трехфазное трехпроводное соединение (метод двух ваттметров)
  • Трехфазное трехпроводное соединение (метод трех ваттметров)
  • Теорема Блонделя: необходимое количество ваттметров
  • Трехфазное, четырехпроводное соединение
  • Настройка измерительного оборудования

Трехфазные системы

Трехфазное электричество состоит из трех напряжений переменного тока одинаковой частоты и одинаковой амплитуды.Каждая фаза переменного напряжения отделена от другой на 120 ° (Рисунок 1).

Рис. 1. Форма сигнала трехфазного напряжения

Эту систему можно схематично представить как осциллограммами, так и векторной диаграммой (рис. 2).

Рисунок 2. Векторы трехфазного напряжения

Зачем нужны трехфазные системы? По двум причинам:

  1. Три разнесенных вектора напряжения могут использоваться для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
  2. Трехфазная система может быть подключена к нагрузке таким образом, чтобы количество необходимых медных соединений (и, следовательно, потери при передаче) было вдвое меньше, чем они были бы в противном случае.

Рассмотрим три однофазные системы, каждая из которых выдает 100 Вт на нагрузку (рисунок 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает через 6 проводов, и, таким образом, возникают 6 единиц потерь.

Рисунок 3. Три однофазных источника питания — шесть единиц потерь

В качестве альтернативы, три источника могут быть подключены к общей обратной линии, как показано на рисунке 4. Когда ток нагрузки в каждой фазе одинаков, нагрузка считается равной. сбалансированный. При сбалансированной нагрузке и трех токах, сдвинутых по фазе на 120 ° друг от друга, сумма тока в любой момент равна нулю, и ток в обратной линии отсутствует.

Рис. 4. Трехфазное питание, сбалансированная нагрузка — 3 единицы потерь

В трехфазной системе под углом 120 ° требуется только 3 провода для передачи энергии, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, а потери при передаче по проводам уменьшатся вдвое.

Соединение звездой или звездой

Трехфазная система с общим подключением обычно изображается, как показано на Рисунке 5, и называется соединением «звезда» или «звезда».

Рисунок 5. Соединение звездой или звездой — три фазы, четыре провода

Общая точка называется нейтральной точкой.Эта точка часто заземляется на источнике питания из соображений безопасности. На практике нагрузки не сбалансированы идеально, и четвертый нейтральный провод используется для передачи результирующего тока.

Нейтральный проводник может быть значительно меньше трех основных проводов, если это разрешено местными правилами и стандартами.

Рисунок 6. Сумма мгновенных напряжений в любой момент времени равна нулю.

Соединение треугольником

Три однофазных источника питания, о которых говорилось ранее, также могут быть подключены последовательно.Сумма трех сдвинутых по фазе напряжений на 120 ° в любой момент равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.

Соединение обычно выполняется, как показано на Рисунке 7, и называется соединением «треугольник» по форме греческой буквы «дельта», Δ.

Рисунок 7. Соединение треугольником — трехфазное, трехпроводное

Сравнение звездой и треугольником

Конфигурация «звезда» используется для распределения питания между однофазными бытовыми приборами в доме и офисе.Однофазные нагрузки подключаются к одной ветви звезды между линией и нейтралью. Полная нагрузка на каждую фазу распределяется в максимально возможной степени, чтобы обеспечить сбалансированную нагрузку на первичное трехфазное питание.

Конфигурация «звезда» также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения — это напряжения между фазой и нейтралью. Также доступно более высокое межфазное напряжение, как показано черным вектором на Рисунке 8.

Рисунок 8. Напряжение (фаза-фаза)

Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности.Различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме «треугольник», однако путем подключения или «ответвлений» вдоль обмоток трансформаторов питания.

В США, например, система с треугольником 240 В может иметь обмотку с расщепленной фазой или обмотку с центральным отводом для обеспечения двух источников питания 120 В (рисунок 9).

Рис. 9. Конфигурация треугольником с обмоткой «расщепленная фаза» или «отвод от средней точки»

Из соображений безопасности центральный отвод может быть заземлен на трансформаторе. 208 В также имеется между центральным ответвлением и третьей «верхней ветвью» соединения треугольником.

Измерения мощности

Мощность в системах переменного тока измеряется с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенных ватт, а затем берет среднее значение мгновенных ватт за один цикл для отображения истинной мощности.

Ваттметр обеспечивает точные измерения истинной мощности, полной мощности, реактивной мощности вольт-ампер, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.

Чтобы анализатор мощности давал хорошие результаты, вы должны уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.

Подключение однофазного ваттметра

Рисунок 10. Однофазные, двухпроводные измерения и измерения постоянного тока

Требуется только один ваттметр, как показано на рисунке 10. Системное подключение к клеммам напряжения и тока ваттметра несложно. Клеммы напряжения ваттметра подключены параллельно к нагрузке, и ток проходит через клеммы тока, которые включены последовательно с нагрузкой.

Однофазное трехпроводное соединение

В этой системе, показанной на рисунке 11, напряжения вырабатываются одной обмоткой трансформатора с центральным отводом, и все напряжения синфазны. Эта система широко распространена в жилых домах Северной Америки, где доступны один источник питания 240 В и два источника питания 120 В, которые могут иметь разную нагрузку на каждую ногу.

Для измерения общей мощности и других величин подключите два ваттметра, как показано на Рисунке 11 ниже.

Рисунок 11. Метод однофазного трехпроводного ваттметра

Трехфазное трехпроводное соединение (метод двух ваттметров)

При наличии трех проводов требуются два ваттметра для измерения общей мощности.Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены фаза с фазой.

Рис. 12. Трехфазный, трехпроводной, метод 2 ваттметра

Трехфазное трехпроводное соединение (метод трех ваттметров)

Хотя для измерения общей мощности в трехпроводной системе требуются только два ваттметра, как было показано ранее, иногда удобно использовать три ваттметра. В соединении, показанном на Рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.

Рисунок 13. Трехфазное, трехпроводное (метод трех ваттметров: установите анализатор в трехфазный, четырехпроводной режим).

Трехпроводное трехпроводное соединение имеет преимущества индикации мощности в каждой фазе (не возможно при подключении двух ваттметров) и фазных напряжений.

Теорема Блонделя: необходимое количество ваттметров

В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рисунке 14.

Рис. 14. Доказательство для трехпроводной системы «звезда»

В общем, количество требуемых ваттметров равно количеству проводов минус один.

Проба для трехпроводной системы звездой

Мгновенная мощность, измеренная ваттметром, является произведением мгновенных значений напряжения и тока.

  • Показание ваттметра 1 = i1 (v1 — v3)
  • Показание ваттметра 2 = i2 (v2 — v3)
  • Сумма показаний W1 + W2 = i1v1 — i1v3 + i2v2 — i2v3 = i1v1 + i2v2 — (i1 + i2) v3
  • (Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)
  • 2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.

Трехфазное, четырехпроводное соединение

Три ваттметра необходимы для измерения общей мощности в четырехпроводной системе. Измеренные напряжения представляют собой истинные напряжения между фазой и нейтралью. Междуфазные напряжения могут быть точно рассчитаны по амплитуде и фазе межфазных напряжений с использованием векторной математики.

Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.

Настройка измерительного оборудования

Для заданного количества проводов требуются N, N-1 ваттметров для измерения общих величин, таких как мощность.Вы должны убедиться, что у вас достаточно количества каналов (метод 3 ваттметра), и правильно их подключить.

Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как ватты, вольты, амперы, вольт-амперы и коэффициент мощности, напрямую с использованием соответствующих встроенных формул. Формулы выбираются в зависимости от конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения точных измерений общей мощности. Анализатор мощности с функцией векторной математики также преобразует величины между фазой и нейтралью (или звездой) в величины фаза-фаза (или дельта).

Коэффициент √3 может использоваться только для преобразования между системами или масштабирования измерений только одного ваттметра в сбалансированных линейных системах.

Понимание конфигурации проводки и выполнение правильных соединений имеет решающее значение для выполнения измерений мощности. Знакомство с обычными системами электропроводки и запоминание теоремы Блонделя поможет вам установить правильные соединения и получить результаты, на которые вы можете положиться.

Ссылки

Основы измерения трехфазной мощности — Рекомендации по применению от Tektronix

Ваттметр — это прибор для измерения электрической мощности (или скорости подачи электрической энергии) в ваттах любой данной цепи.Электромагнитные ваттметры используются для измерения полезной частоты и мощности звуковой частоты; другие типы требуются для радиочастотных измерений. Источник: Википедия

Источник: Портал электротехники

Определение фазы — SubSurfWiki

Наряду с амплитудой и частотой фаза является фундаментальным атрибутом сейсмических данных.

Сейсмические данные обычно обрабатываются для получения нулевой фазы, и мы обычно предполагаем, что фаза стабильна в пространстве и времени.Действительно, эти предположения являются центральными для большинства AVO и других количественных исследований.

Обзор

На основании рекомендаций Roden & Sepulveda 1999 [1] и Perz et al 2004 [2] , есть четыре простых способа помочь определить фазу:

  1. Осмотр
  2. Стяжка скважинная
  3. Мгновенная фаза
  4. Испытания на вращение

В общем, вы вряд ли сможете увидеть разность фаз 15 ° или меньше, и действительно, это, вероятно, не имеет значения для пикирования горизонта или даже количественной работы.Поворот фазы на 30 °, вероятно, стоит зафиксировать для количественной работы. Все, что больше 45 °, стоит зафиксировать даже для интерпретации.

Осторожно: отмена пикировки, которую вы делаете для повернутого по фазе объема, обременительна: выполняйте ротацию ваших данных только тогда, когда вы уверены, что это более геологично.

Инспекция

Простое исследование сильного сейсмического события, соответствующего изолированной геологической поверхности с известным контрастом импеданса. Помогает, если контраст, который должен быть пространственно согласованным по полярности, достаточно сильный.Хорошими примерами являются морское дно, Вабамун (в Западной Канаде) и Девонское несоответствие (в нефтеносных песках Атабаски). Единственное, что действительно нужно искать, — это последовательно симметричный вейвлет — вот почему отражатель должен быть изолирован, так как любые настройки или эффекты интерференции могут испортить симметрию.

В этом поможет шаблон из нескольких повернутых вейвлетов.

Стяжка скважинная

Хороший рабочий процесс — связать скважины с помощью вейвлета с нулевой фазой, по крайней мере, сначала.При привязке обратите внимание на фазовый дисбаланс в скважине — многие программные инструменты позволяют строить график коэффициента корреляции в зависимости от чередования фаз. Как только вы почувствуете дисперсию привязок скважин, вы сможете начать видеть, есть ли пространственные тренды в этой дисперсии. Возможно, большинство скважин лучше соединяются при чередовании фаз на 90 °.

Мгновенная фаза

Этот метод подробно описан в Perz et al (2004> ref name = perz />). Поскольку мы хотим выбрать горизонт, независимый от фазы, мы не можем просто измерить мгновенную фазу на горизонте.Мы должны сделать это:

  1. Начать с исходных данных, объем D
  2. Вычислить огибающую E (иногда называемую мгновенной амплитудой или абсолютной амплитудой)
  3. Выберите горизонт H на сильном пике на E
  4. Вычислить мгновенную фазу на H из объема D

Результат дает указание фазы в данных. Оно должно быть близко к нулю.

Этот метод упрощает регистрацию пространственной дисперсии, а если вы пробегаете несколько горизонтов, временной дисперсии тоже.

Испытания на вращение

Это простой, но неудобный метод. Поворачивайте данные на различную величину с шагом 15 ° (15 °, 30 °, 45 ° и т. Д.). Выберите сильное отражение и измерьте амплитуду на пике или впадине. Отражатель должен иметь самую высокую амплитуду, когда данные имеют нулевую фазу.

Проблема этого метода в том, что трудно уловить пространственную дисперсию.

Внешние ссылки

Ссылки

  1. ↑ Роден, Р. и Х. Сепульведа (1999).Значение фазы для переводчика; практические рекомендации по фазовому анализу The Leading Edge 18 (7), стр. 774–777.
  2. ↑ Перц, М., М. Сакки и А. О’Бирн (2004). Мгновенная фаза и обнаружение устойчивости бокового вейвлета. Передний край 23 (7), 639–643.

Дополнительная литература

  • Лайнер, C (2002). Фаза, фаза, фаза. The Leading Edge 21, стр. 456–7.
  • Симм, Р. и Р. Уайт (2002), Учебное пособие: Фаза, полярность и вейвлет интерпретатора.Первый перерыв 20 (5), стр. 277–281. Доступно онлайн.
  • White R и R Simm (2003). Учебник: Хорошая практика в хороших связях. Первый перерыв 21 (10), с. 75–83. Доступно онлайн.

Типы и фазы клинических исследований

Клинические испытания — это исследования новых лекарств, уже одобренных лекарств, устройств или других форм лечения. Во многих клинических испытаниях рассматриваются новые способы обнаружения, диагностики или измерения степени заболевания. Некоторые даже ищут способы предотвратить появление болезней.Исследователи до сих пор используют добровольцев для тестирования этих методов, и применяются те же правила.

Врачи используют клинические испытания, чтобы узнать, работает ли новое лекарство, лечение или комбинация, и безопасно ли их использовать для людей. Клинические испытания важны для разработки новых методов лечения серьезных заболеваний, таких как рак. Все новые методы лечения должны пройти клинические испытания, прежде чем они будут одобрены Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA). Для завершения клинических испытаний рака могут потребоваться годы. Могут потребоваться месяцы, если не годы, чтобы увидеть, дает ли лечение рака то, для чего оно предназначено.

Зачем нужны клинические испытания?

Клинические испытания показывают нам, что работает (а что нет) в медицине и здравоохранении. Это лучший способ узнать, что работает при лечении таких заболеваний, как рак. Клинические испытания призваны ответить на некоторые важные вопросы:

  • Работает ли новое лечение у людей? Если это так, врачи также будут проверять, насколько хорошо это работает. Это лучше, чем применяемое сейчас лечение? Если не лучше, так ли он хорош и вызывает меньше побочных эффектов? Или это работает у некоторых людей, которым текущие методы лечения не помогают?
  • Безопасно ли новое лечение? Ни одно лечение или процедура, даже если они уже широко используются, не обходятся без риска.Но перевешивают ли преимущества нового лечения риски?
  • Лучше ли это лечение, чем стандартное лечение этого заболевания? Клинические испытания помогают показать, работает ли новый препарат, лечение или новая комбинация лечения лучше, чем то, что используется сейчас.

Чтобы ответить на эти вопросы, давая как можно меньше людей неизвестное лечение, часто требуется несколько клинических испытаний на разных «фазах». Каждый этап предназначен для ответа на определенные вопросы, обеспечивая при этом максимальную безопасность участников.Результаты этих фаз показывают, является ли новое лекарство или лечение достаточно безопасным и эффективным.

Доклинические (или лабораторные) исследования

Клинические испытания проводятся только после того, как доклинические данные свидетельствуют о том, что новый препарат или лечение, вероятно, будут безопасными и будут работать на людях.

Доклинические исследования, также называемые лабораторными исследованиями, включают:

  • Клеточные исследования: часто это первые тесты нового лечения. Чтобы увидеть, может ли это сработать, исследователи ищут влияние нового лечения на раковые клетки, выращенные в лабораторной посуде или пробирке.Эти исследования могут проводиться на раковых клетках человека или раковых клетках животных.
  • Исследования на животных: методы лечения, которые выглядят многообещающими в клеточных исследованиях, проверяются на раковых заболеваниях у живых животных. Это дает исследователям представление о том, насколько безопасно новое лечение для живого существа.

Доклинические исследования дают много полезной информации, но не все, что необходимо. Люди и мыши могут сильно отличаться по способам усвоения, обработки и избавления от лекарств или лечения. Лечение, которое работает против рака у мышей, может работать или не работать у людей.Также могут быть побочные эффекты и другие проблемы, которые не проявлялись при лечении мышей, но могли проявляться у людей.

Если доклинические исследования завершены и лечение все еще кажется многообещающим, Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) должно дать разрешение, прежде чем лечение может быть проверено людьми.

Заявка на новый исследуемый препарат (IND)

Прежде чем можно будет начать клиническое испытание, оно должно быть одобрено. Если исследователи хотят изучить лекарство на людях, в FDA необходимо подать заявку на новый исследуемый препарат или IND.Приложение IND должно содержать определенную информацию, например:

  • Результаты исследований, чтобы FDA могло решить, безопасно ли лечение для тестирования на людях.
  • Как производится лекарство, кто его производит, что в нем содержится, насколько оно стабильно и т. Д.
  • Подробные схемы запланированных клинических исследований, называемые протоколами исследований, рассматриваются, чтобы увидеть, могут ли люди подвергаться ненужным рискам.
  • Подробная информация о группе клинических испытаний, чтобы узнать, обладают ли они знаниями и навыками для проведения клинических испытаний.

Спонсор исследования должен взять на себя обязательство получить информированное согласие от всех участников клинического исследования. Они также должны взять на себя обязательство о том, чтобы исследование было рассмотрено институциональным наблюдательным советом (IRB), и следовало всем правилам, необходимым для изучения исследуемых новых лекарств

Этапы клинических исследований

Клинические испытания обычно проводятся по этапам, которые дополняют друг друга. Каждый этап предназначен для ответа на определенные вопросы. Знание фазы клинического исследования важно, потому что это может дать вам некоторое представление о том, сколько известно об изучаемом лечении.Участие в каждом этапе клинического исследования сопряжено с преимуществами и рисками.

Несмотря на то, что проводятся клинические испытания устройств, а также других заболеваний и методов лечения, лекарства для онкологических больных используются в примерах фаз клинических испытаний, описанных здесь.

Клинические испытания фазы 0: изучение того, может ли и как новый препарат работать

Несмотря на то, что исследования фазы 0 проводятся на людях, этот тип исследований не похож на другие фазы клинических испытаний. Цель этого этапа — ускорить и упростить процесс утверждения лекарств.Исследования фазы 0 могут помочь исследователям выяснить, действуют ли лекарства так, как от них ожидают. Это может помочь сэкономить время и деньги, которые были бы потрачены на более поздние испытания.

Фаза 0 исследований использует только несколько небольших доз нового препарата у нескольких человек. Они могут проверить, достигает ли лекарство опухоли, как лекарство действует в организме человека и как раковые клетки в организме человека реагируют на лекарство. Людям, участвующим в этих исследованиях, могут потребоваться дополнительные тесты, такие как биопсия, сканирование и образцы крови, как часть процесса.

В отличие от других фаз клинических испытаний, у людей, участвующих в исследованиях фазы 0, почти нет шансов на пользу. Польза будет для других людей в будущем. А поскольку дозы лекарств низкие, риски для участников исследования меньше.

Исследования

фазы 0 не получили широкого распространения, и есть некоторые лекарства, для которых они не были бы полезны. Исследования фазы 0 очень малы, часто с участием менее 15 человек, и препарат назначают только на короткое время. Они не являются обязательной частью тестирования нового лекарства.

Фаза I клинических испытаний: безопасно ли лечение?

Фаза I исследования нового лекарства обычно первые, в которой участвуют люди. Исследования фазы I проводятся, чтобы найти самую высокую дозу нового лечения, которую можно безопасно применять, не вызывая серьезных побочных эффектов. Хотя лечение было протестировано в лабораторных условиях и на животных, побочные эффекты у людей неизвестны. Эти исследования также помогают решить, как лучше всего назначить новое лечение.

Ключевые моменты клинических испытаний I фазы

  • Первые несколько человек в исследовании получают очень низкую дозу лечения и за ними очень внимательно наблюдают.Если есть только незначительные побочные эффекты, следующие несколько участников получают более высокую дозу. Этот процесс продолжается до тех пор, пока врачи не найдут дозу, которая с наибольшей вероятностью подействует при приемлемом уровне побочных эффектов.
  • Испытания фазы I
  • также изучают, что препарат делает с организмом и что организм делает с ним.
  • Безопасность — главная забота. Исследовательская группа внимательно следит за людьми и следит за любыми серьезными побочными эффектами. Из-за небольшого числа людей в исследованиях фазы I редкие побочные эффекты могут не проявляться до более поздних фаз испытаний, когда лечение будет получать больше людей.
  • Хотя некоторым людям может быть выгодно их принимать, реакция на болезнь не является основной целью исследования фазы I,
  • Плацебо (неактивные препараты) не используются в исследованиях фазы I.
  • В исследованиях фазы I
  • обычно участвует небольшое количество людей (до нескольких десятков).
  • Исследования фазы I
  • чаще всего включают людей с разными типами рака.
  • Эти исследования обычно проводятся в крупных онкологических центрах.

Испытания фазы I несут наибольший потенциальный риск.Но исследования фазы I действительно помогают некоторым пациентам. Для людей с опасными для жизни заболеваниями важно тщательно взвесить потенциальные риски и преимущества. Иногда люди решают присоединиться к испытаниям фазы I, когда все другие варианты лечения уже испробованы.

Фаза II клинических испытаний: работает ли лечение?

Если в ходе клинических испытаний фазы I выясняется, что новый метод лечения безопасен, проводится клиническое испытание фазы II, чтобы выяснить, работает ли оно при определенных типах рака. Польза, которую ищут врачи, зависит от цели лечения.Это может означать, что рак уменьшится или исчезнет. Или это может означать, что есть долгий период времени, когда рак не становится больше, или есть больше времени, прежде чем рак вернется. Согласно некоторым исследованиям, преимуществом может быть улучшение качества жизни. Многие клинические испытания направлены на то, чтобы выяснить, живут ли люди, получающие новое лечение, дольше, чем большинство людей без лечения.

Ключевые моменты клинических испытаний II фазы

  • Группа от 25 до 100 пациентов с одним и тем же типом рака получает новое лечение в ходе исследования фазы II.Их лечат с использованием той дозы и метода, которые были признаны наиболее безопасными и эффективными в исследованиях фазы I.
  • Обычно в клинических испытаниях фазы II все получают одинаковую дозу. Но некоторые исследования фазы II случайным образом распределяют людей в разные группы лечения. Эти группы могут получать разные дозы или получать лечение по-разному, чтобы увидеть, какой из них обеспечивает наилучший баланс безопасности и ответа.
  • Плацебо (неактивные препараты) не использовались в исследованиях фазы II.
  • Фаза II исследований может проводиться в крупных онкологических центрах, общественных больницах или даже в кабинетах врачей.

Большее количество пациентов получают лечение в исследованиях фазы II, поэтому могут наблюдаться менее частые побочные эффекты. Если лечение принесло пользу достаточному количеству пациентов, а побочные эффекты не так уж и плохи, начинается III фаза клинических испытаний.

Фаза III клинических испытаний: лучше ли это того, что уже есть?

Лекарства, которые показали свою эффективность в клинических испытаниях фазы II, должны пройти еще одну фазу, прежде чем они будут одобрены для общего использования. Клинические испытания фазы III сравнивают безопасность и эффективность нового лечения с существующим стандартным лечением.

Поскольку врачи еще не знают, какое лечение лучше, участников исследования часто выбирают случайным образом (так называемые рандомизированные ), чтобы получить либо стандартное лечение, либо новое лечение. По возможности ни врач, ни пациент не знают, какое лечение получает пациент. Этот тип исследования называется двойным слепым исследованием . Более подробно рандомизация и ослепление обсуждаются позже.

Ключевые моменты клинических исследований III фазы

  • Большинство клинических исследований III фазы включают большое количество пациентов, по крайней мере, несколько сотен.
  • Эти исследования часто проводятся одновременно во многих местах по всей стране (или даже по всему миру).
  • Клинические испытания
  • фазы III, скорее всего, будут предлагаться в местных общественных больницах и кабинетах врачей.
  • Эти исследования, как правило, длятся дольше, чем исследования фаз I и II.
  • Плацебо
  • можно использовать в некоторых исследованиях фазы III, но они никогда не используются отдельно, если есть доступное лечение, которое работает. Иногда пациенту, которому случайным образом назначается плацебо для части исследования, в какой-то момент также будет предложено стандартное лечение.

Как и в других исследованиях, в клинических исследованиях III фазы за пациентами внимательно наблюдают на предмет выявления побочных эффектов, и лечение прекращают, если с ними слишком трудно справиться.

Подача на одобрение FDA: Заявка на новое лекарство (NDA)

В Соединенных Штатах, когда клинические испытания фазы III (или иногда испытания фазы II) показывают, что новое лекарство более эффективно или безопаснее, чем текущее лечение, в Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) подается заявка на новое лекарство (NDA). для утверждения.FDA рассматривает результаты клинических испытаний и другую важную информацию.

На основании обзора FDA решает, одобрять ли препарат для использования у пациентов с заболеванием, на котором проводилось тестирование препарата. В случае одобрения новое лечение часто становится стандартом лечения, и новые препараты могут быть протестированы против него, прежде чем они будут одобрены.

Если FDA считает, что необходимы дополнительные доказательства, чтобы показать, что преимущества нового лечения перевешивают его риски, оно может запросить дополнительную информацию или даже потребовать проведения дополнительных исследований.

Фаза IV клинических испытаний: что еще нам нужно знать?

Лекарства, одобренные FDA, часто наблюдаются в течение длительного периода времени в исследованиях фазы IV. Даже после тестирования нового лекарства на тысячах людей все эффекты лечения могут быть неизвестны. На некоторые вопросы, возможно, еще нужно ответить. Например, лекарство может получить одобрение FDA, поскольку было показано, что оно снижает риск рецидива рака после лечения. Но означает ли это, что те, кто его получит, с большей вероятностью проживут дольше? Есть ли редкие побочные эффекты, которые еще не наблюдались, или побочные эффекты, которые проявляются только после того, как человек принимает препарат в течение длительного времени? На ответы на эти вопросы может потребоваться гораздо больше времени, и они часто рассматриваются в клинических испытаниях фазы IV.

Ключевые моменты клинических исследований фазы IV

  • В исследованиях фазы IV изучаются препараты, уже одобренные FDA. Врачи могут выписывать лекарства пациентам, но для ответа на важные вопросы все же могут потребоваться исследования фазы IV.
  • В этих исследованиях могут участвовать тысячи человек.
  • Это часто самый безопасный тип клинических испытаний, потому что лечение уже много изучено и, вероятно, было назначено многим людям.Исследования фазы IV рассматривают безопасность с течением времени.
  • Эти исследования могут также рассматривать другие аспекты лечения, такие как качество жизни или экономическая эффективность.

Вы можете получить препараты, используемые в испытании фазы IV, не участвуя в исследовании. И лечение, которое вы получите в рамках исследования фазы IV, очень похоже на лечение, на которое вы могли бы рассчитывать, если бы вы получали лечение вне исследования. Но в исследованиях фазы IV вы помогаете исследователям больше узнать о лечении и оказании услуг будущим пациентам.

Руководство по системам с неминимальными фазами | автор: Эсмаил Ализаде

Теперь, когда мы знакомы с передаточными функциями, давайте посмотрим, как будет выглядеть система с неминимальными фазами, и ответим, почему вода сначала становится холоднее, а потом становится горячей!

Ниже представлены две системы с одинаковыми полюсами, но с разными нулями. Система 1 имеет ноль при s = -2, тогда как Система 2 имеет ноль при s = 2.

Блок-схема примеров систем MP и NMP (Изображение автора)

Давайте разделим полюсы и нули Системы 1 для нашего анализа.Как отмечалось ранее, вы можете рассматривать ноль как измененный ввод (назовем его U ’(s)). Как отмечалось ранее, в этой статье нас интересуют нули модели, поэтому мы сосредоточимся на зеленом блоке.

Блок-схема минимально-фазовой системы, разделенной полюсами и нулями (Изображение автора)

Давайте посмотрим, как измененный вход U ‘(s) Системы 1 находится во временной области, применив обратное преобразование L

Следуя той же процедуре для Системы 2, измененный вход для Системы 2 будет

Таким образом, единственная разница заключается в этом отрицательном знаке.Давайте изобразим входной и измененный входные сигналы для обеих систем и посмотрим, чем они отличаются.

Давайте используем в качестве входного сигнала u (t) (серая функция вверху). Поскольку входной сигнал является единичным шагом, выходной сигнал y (t) называется переходной характеристикой. Модифицированный вход u ’(t) проиллюстрирован ниже, который представляет собой сумму 2u (t) и производную от u (t). Производная компонента u ‘(t) синего цвета для Системы 1 и красного цвета для Системы 2.

Входные и модифицированные входные сигналы с направлениями производных для систем MP и NMP (Изображение автора)

Отрицательная производная u (t) в Система 2 заставляет ступенчатую характеристику Системы 2 сначала двигаться в направлении, противоположном ожидаемому отклику (установившееся значение), прежде чем двигаться к ожидаемому отклику (красная кривая).Это контрастирует с переходной характеристикой Системы 1 (синяя кривая), у которой вначале нет этого провала.

Переходные характеристики систем MP и NMP с переходным откликом NMP, имеющим отрицательное значение в начале (Изображение автора)

Хорошая иллюстрация доступна в Ref. [4].

Итак, следующий вопрос: что делать, если у нас система неминимальных фаз?

Решение — просто подождать ⌛. Придется подождать, пока недолет закончится. Мы также можем разработать контроллер / компенсатор для таких систем.Однако для систем NMP спроектировать контроллер сложнее по нескольким причинам, например из-за риска нестабильности системы или замедленного отклика.

А теперь вернемся к нашему вопросу в начале. Почему вода в душе сначала холодная, когда вы открываете подачу горячей воды, прежде чем она станет горячей?

Ответ заключается в том, что, когда вы открываете подачу горячей воды в душе, система испытывает недовыбор, поскольку это не минимальная фаза, прежде чем вода станет горячей. В этом случае лучше подождать несколько секунд, чтобы система оправилась (от недоработки).Вы не должны менять направление или открывать другую ручку, так как в конечном итоге это приведет к более холодному ливню!

Другой пример, который обычно используется в книгах систем управления, — это изменение высоты самолета в ответ на отклонение руля высоты. В этом случае, когда самолет пытается увеличить свою высоту с помощью руля высоты, высота немного уменьшается из-за того, что самолет идет вниз (что приводит к аэродинамической силе, направленной вниз), прежде чем он увеличит свою высоту. Этот пример доступен с математической моделью в главе 6 книги Франклина «Управление с обратной связью динамических систем» (7-е издание) [5].

В этой статье мы узнали, что такое система с неминимальной фазой и почему такая система сначала реагирует в неправильном направлении (вы поворачиваете ручку горячей воды, и вода сначала становится холодной!). Мы также поговорили о передаточной функции и о том, как она может быть полезна при анализе систем.

Записная книжка Jupyter, содержащая код, используемый для создания пошаговых ответов для тематического исследования, доступна здесь. Спасибо за прочтение!

Первоначально опубликовано на https: // www.ealizadeh.com .

Как рассчитать фазовую постоянную

Обновлено 28 декабря 2019 г.

Автор С. Хуссейн Атер

Для математической волны фазовая постоянная сообщает вам, насколько волна смещена из равновесного или нулевого положения. Вы можете рассчитать это как изменение фазы на единицу длины для стоячей волны в любом направлении. Обычно он пишется с использованием «фи», ϕ . Вы можете использовать его, чтобы вычислить, сколько колебаний волна претерпела за свои циклы.

Чтобы вычислить фазовую постоянную волны, используйте уравнение 2π / λ для длины волны «лямбда» λ. Длина волны — это длина полного цикла волны; например, если вы поместите точку на вершине «пика» на осциллограмме и другую точку в идентичном месте на соседнем «пике» той же формы волны, расстояние между этими двумя точками будет длиной волны. Фазовая постоянная не меняется со временем и описывает смещение волны вдоль оси, по которой она движется.

Полное уравнение для гармонической волны с положениями x и y со временем t :

y — y 0 = A sin (2πt / T ± 2πx / λ + ϕ)

In где y 0 — это положение y при x = 0 и t = 0 , A — амплитуда, T — период, а «phi» ϕ — фазовая постоянная.

Для этой синусоидальной волны период T = 1 / f для частоты ( f ), то есть сколько циклов волны проходит через данную точку в секунду. Левая часть y — y 0 — это смещение волны в направлении y от начального положения, а значение в скобках 2πt / T ± 2πx / λ + ϕ — это фаза.

Фазовая постоянная и разность фаз

Хотя вы можете вычислить скорость волны, умножив ее длину волны на временную частоту, v = fλ, вы также можете вычислить скорость как разницу между двумя фазами.Для двух разных пар x и t вы можете записать фазы ϕ 1 и ϕ 2 как 2πt 1 / T ± 2πx 1 / λ + ϕ и 2πt 2 / T ± 2πx 2 / λ + ϕ.

Вычитание одной фазы из другой и их перезапись дает 2π (t 2 — t 1 ) / T ± 2π (x 1 — x 2 ) / λ = 0, что можно записать с помощью «дельта» Δx и Δt для изменений положения и времени соответственно.Это дает 2πΔt / T ± 2πΔx / λ = 0.

Разделите обе части уравнения на и переставьте его так, чтобы получить Δx / Δt = ∓λ / T. Поскольку Δx / Δt — это скорость ( v ), вы получаете λ / T или λf для скорости волны в любом направлении (задаваемой знаком — или +).

Вывод Tbis означает, что ученые и инженеры могут использовать разность фаз между двумя волнами для определения расстояния между двумя волнами или их скорости относительно друг друга.В технологиях эхолокации и эхолокации звуковые волны через различные среды, такие как вода или воздух, позволяют ученым определять местонахождение объектов под водой.

Формула Excel для фазовой постоянной

Если у вас есть большой объем данных о волне, вы можете использовать методы расчета Microsoft Excel для определения фазовой постоянной. Назначьте каждую переменную определенному столбцу в электронной таблице Excel и используйте их для создания последнего столбца для расчета смещения. Если вам известна длина волны, вы можете вычислить фазовую постоянную как 2π / λ_._

Поскольку фазовая постоянная может варьироваться между разными волнами, полезно использовать формулу в Excel для сравнения различий. Формула процентной разницы — один из способов сделать это.

Если фазовая постоянная изменяется по нескольким волнам, вы также можете использовать формулу Excel для вычисления процента от общего общего смещения путем суммирования фазовых констант. Затем вы можете разделить это на количество волн, которые вам нужно, чтобы получить среднюю фазовую постоянную волны. Затем вы можете использовать формулу процентной разницы Excel, разделив значение того, насколько каждая волна отличается от среднего значения, на среднее значение.

Что такое ток нулевой последовательности? Определение и объяснение

Определение: Несбалансированный ток, протекающий в цепи во время замыкания на землю, известен как ток нулевой последовательности или постоянная составляющая тока короткого замыкания. Нулевая последовательность фаз означает, что величина трех фаз имеет нулевое смещение фаз. линии представляют ток нулевой последовательности, и он обнаруживается путем сложения вектора трехфазного тока. Уравнение ниже выражает ток нулевой последовательности,

Обмотка, соединенная треугольником

Обмотка, соединенная треугольником, показана на рисунке ниже.Ток нулевой последовательности фаз a, b и c равны по величине и синфазны друг с другом. Он циркулирует в фазных обмотках соединения треугольником, как показано на рисунке ниже. Токи нулевой последовательности возникают из-за наличия напряжения нулевой последовательности.

По KCL в узле a получаем

Аналогичным образом, применяя KCL в узлах B и C, мы получаем

Приведенное выше уравнение показывает, что в соединении треугольником отсутствует ток нулевой последовательности из-за отсутствия обратных путей этого тока.

Поскольку в линии нет обратного пути для тока нулевой последовательности, полное сопротивление цепи становится бесконечным. Это бесконечное сопротивление показано разомкнутой цепью в точке P в однофазной эквивалентной цепи нулевой последовательности для схемы, соединенной треугольником. с полным сопротивлением нулевой последовательности Z 0 .

Но для тока нулевой последовательности существует замкнутый контур в схеме треугольника. На это указывает соединение импеданса нулевой последовательности Z 0 с током нулевой последовательности.

Обмотка, соединенная звездой с нейтралью, изолированной от земли

Рассмотрим обмотку, соединенную звездой, без возврата нейтрали, как показано на рисунке ниже.

В данном случае

Приведенное выше уравнение показывает, что ток нулевой последовательности равен нулю в трехфазной трехпроводной системе без нейтрали.

Звезда подключена без нейтрали

На рисунке ниже показана обмотка, соединенная звездой с заземленной нейтралью.

Здесь,

Следовательно,

Приведенное выше уравнение показывает, что для трехфазной системы с заземлением ток нулевой последовательности будет течь как от фазной обмотки, так и по линиям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *