HydroMuseum – Фазное напряжение
Фазное напряжение
Фазное напряжение – элементы трехфазной цепи
Трехфазный генератор
В настоящее время электрическая энергия переменного тока вырабатывается, передается и распределяется между отдельными токоприемниками в системе трехфазных цепей.
Системой трехфазных цепей называют такую совокупность электрических цепей, в которой токоприемники получают питание от общего трехфазного генератора.
Рис. 1. Схема трёхфазного генератора
Трехфазным называется такой генератор, который имеет обмотку, состоящую из трех частей. Каждая часть этой обмотки называется фазой. Поэтому эти генераторы и получили название трехфазных.
Следует отметить, что термин «фаза» в электротехнике имеет два значения:
- в смысле определенной стадии периодического колебательного процесса;
- как наименование части электрической цепи переменного тока (например, часть обмотки электрической машины).
Для уяснения принципа действия трехфазного генератора обратимся к модели, схематически изображенной на рисунке 64. Модель состоит из статора, изготовленного в виде стального кольца, и ротора — постоянного магнита. На кольце статора расположена трехфазная обмотка с одинаковым числом витков в каждой фазе. Фазы обмотки смещены в пространстве одна относительно другой на угол 120°.
Представим себе, что ротор модели генератора приведен во вращение с постоянной скоростью против движения часовой стрелки. Тогда, вследствие непрерывного движения полюсов постоянного магнита относительно проводников обмотки статора, в каждой ее фазе будет наводиться ЭДС
Применяя правило правой руки, можно убедиться, что ЭДС, наводимая в фазе обмотки северным полюсом вращающегося магнита, будет действовать в одном направлении, а наводимая южным полюсом — в другом. Следовательно, ЭДС фазы генератора будет переменной.
Крайние точки (зажимы) каждой фазы генератора всегда размечают: одну крайнюю точку фазы называют началом, а другую — концом. Начала фаз обозначают латинскими буквами A, B, C, а концы их соответственно — X, Y, Z. Наименования «начало» и «конец» фазы дают, руководствуясь следующим правилом: положительная ЭДС генератора действует в направлении от конца фазы к ее началу.
ЭДС генератора условимся считать положительной, если она наведена северным полюсом вращающегося магнита. Тогда разметка зажимов генератора для случая вращения его ротора против движения часовой стрелки должна быть такой, как показано на рисунке 1.
При постоянной скорости вращения полюсов ротора амплитуда и частота ЭДС, создаваемых в фазах обмотки статора, сохраняются неизменными. Однако в каждое мгновение величина и направление действия ЭДС одной из фаз отличаются от величины и направления действия ЭДС двух других фаз. Это объясняется пространственным смещением фаз. Все явления во второй фазе повторяют явления в первой фазе, но с опозданием. Говорят, что ЭДС второй фазы отстает во времени от ЭДС первой фазы. Они, например, в разное время достигают своих амплитудных значений. Действительно, наибольшее значение ЭДС, – наведенной в какой-либо фазе, будет в тот момент, когда центр полюса ротора проходит середину этой фазы. В частности, для момента времени, соответствующего расположению ротора, показанному на рисунке 1, электродвижущая сила первой фазы генератора будет положительной и максимальной. Положительное максимальное значение ЭДС второй фазы наступит позже, когда ротор повернется на угол 120°. Поскольку за один оборот двухполюсного ротора генератора происходит полный цикл изменения ЭДС, то время T одного оборота является периодом изменения ЭДС Очевидно, что для поворота ротора на 120° необходимо время, равное одной трети периода (T/3).
Следовательно, все стадии изменения ЭДС второй фазы наступают позже соответствующих стадий изменения ЭДС первой фазы на одну треть периода. Такое же отставание в периодическом изменении ЭДС наблюдается в третьей фазе по отношению ко второй. Само собой разумеется, что по отношению к первой фазе периодические изменения ЭДС третьей фазы совершаются с опозданием на две трети периода ( 2/3 T).
Путем придания соответствующей формы полюсам магнитов можно добиться изменения ЭДС во времени по закону, близкому к синусоидальному.
Рис. 2. Кривые мгновенных значений трёхфазной системы ЭДС
Следовательно, если изменение ЭДС первой фазы генератора происходит по закону синуса
e1 = Eмsinωt ,
то закон изменения ЭДС второй фазы может быть записан формулой
e2 = Eм sinω (t − T/3) ,
а третьей — формулой
e3 = Eм sinω (t − 2/3 T) ,
Сказанное иллюстрирует график рисунка 2.
Таким образом, можно сделать следующий вывод: при равномерном вращении полюсов ротора во всех трех фазах генератора наводятся переменные ЭДС одинаковой частоты и амплитуды, периодические изменения которых по отношению друг к другу совершаются с запаздыванием на 1/3 периода.
Трехфазные токоприемники
Трехфазный генератор служит источником питания как однофазных, так и трехфазных электрических устройств. Однофазные токоприемники, как известно, имеют два внешних зажима. К ним относятся, например, осветительные лампы, различные бытовые приборы, электросварочные аппараты, индукционные печи, электродвигатели с однофазной обмоткой.
Трехфазные устройства в общем случае имеют шесть внешних зажимов. Каждое такое устройство состоит из трех, обычно одинаковых, электрических цепей, которые называются фазами. Примерами трехфазных токоприемников могут служить электрические дуговые печи с тремя электродами или электродвигатели с трехфазной обмоткой.
Способы соединения фаз генератора и токоприемника
Несвязанная и связанная трехфазные цепи
Рис. 3. Схема несвязанной трёхфазной цепи
Трехфазную цепь называют несвязанной, если каждая фаза генератора независимо от других соединена двумя проводами со своим токоприемником (рис. 3). Основной недостаток несвязанной трехфазной цепи заключается в том, что для передачи энергии от генератора к приемникам нужно применять шесть проводов. Число проводов может быть уменьшено до четырех или даже до трех, если фазы генератора и токоприемников соединить между собой соответствующим способом. В этом случае трехфазную цепь называют связанной трехфазной цепью.
На практике почти всегда применяют связанные трехфазные цепи, как более совершенные и экономичные. Существует два основных способа соединения фаз генератора и фаз приемников: соединение звездой и соединение треугольником.
При соединении фаз генератора звездой (рис. 4, а) все «концы» фазных обмоток X, Y, Z соединяют в одну общую точку 0, называемую нейтральной или нулевой точкой генератора.
На рисунке 4, б схематически показаны три фазы генератора в виде катушек, оси которых смещены в пространстве одна относительно другой на угол 120°.
Напряжение между началом и концом каждой фазы генератора называют фазным напряжением, а между началами фаз — линейным.
Поскольку фазные напряжения изменяются во времени по синусоидальному закону, то линейные напряжения также будут изменяться по синусоидальному закону. Условимся за положительное направление действия линейных напряжений считать то направление, когда они действуют: от зажима A первой фазы к зажиму B второй фазы; от зажима B второй фазы к зажиму C третьей фазы; от зажима C третьей фазы к зажиму A первой фазы. Эти три условно положительных направления действия линейных напряжений на рисунке 4, б показаны стрелками.
Рис. 4. Трёхфазная обмотка, соединённая звездой: а – схема соединения; б – схема обмотки.
Расчеты и измерения показывают, что действующее значение линейного напряжения генератора, три фазы которого соединены в звезду, в √3 раз больше действующего значения фазного напряжения.
Соединение фаз токоприемников звездой
Для передачи энергии от генератора, соединенного звездой, к однофазным или трехфазным токоприемникам, в общем случае нужны четыре провода. Три провода присоединяют к началам фаз генератора (A, B, C). Эти провода называют линейными проводами. Четвертый провод соединяют с нейтральной точкой (0) генератора и называют нейтральным (нулевым) проводом.
Трехфазная цепь с нейтральным проводом дает возможность использовать два напряжения генератора. Приемники в такой цепи можно включать между линейными проводами на линейное напряжение или между линейными проводами и нейтральным проводом на фазное напряжение.
Рис. 5. Четырёхпроводная трёхфазная цепь
На рисунке 5 показана схема включения токоприемников, рассчитанных на фазное напряжение генератора. В этом случае фазы токоприемников будут иметь общую точку соединения — нейтральную точку 0′, а токи в линейных проводах (линейные токи) будут равны токам в соответствующих фазах нагрузки (фазным токам).
Каждая фаза нагрузки может быть образована как одним токоприемником, так и несколькими токоприемниками, включенными между собой параллельно (рис. 6).
Если фазные токи и углы сдвига фаз этих токов по отношению к фазным напряжениям одинаковы, то такая нагрузка называется симметричной. Если хотя бы одно из указанных условий не соблюдается, то нагрузка будет несимметричной.
Симметричная нагрузка может быть создана, например, лампами накаливания одинаковой мощности. Допустим, что каждая фаза нагрузки образована тремя одинаковыми лампами (рис. 7).
Рис. 6. Схема включения однофазных токоприёмников в четырёхпроводную сеть
Рис. 7. Схема соединения симметричной нагрузки звездой
Путем непосредственных измерений можно убедиться, что при включении нагрузки звездой с нейтральным проводом напряжение на каждой фазе нагрузки Uф будет меньше линейного напряжения Uл в √3 раз, подобно тому, как это было при включении звездой фаз обмоток генератора
Uл = √3Uф.
На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях
Uл = 380 В; Uф = 220 В
или
Uл = 220 В; Uф = 127 В.
Из рисунка 70 видно, что ток в линейном проводе (Iл) равен току в фазе (Iф)
Iл = Iф.
Величина тока в нейтральном проводе при симметричной нагрузке равна нулю, в чем можно убедиться также путем непосредственного измерения.
Но если ток в нейтральном проводе отсутствует, то зачем же нужен этот провод?
Для выяснения роли нейтрального провода проделаем следующий опыт. Допустим, что в каждой фазе нагрузки имеется по три одинаковых лампы и одному вольтметру, а в нейтральный провод включен амперметр (см. рис. 7).
Рис. 8. Схема осветительной сети жилого дома при соединении фаз нагрузки звездой
Когда в каждой фазе включены по три лампы, то все они находятся под одним и тем же напряжением и горят с одинаковым накалом, а ток в нейтральном проводе равен нулю. Изменяя число включенных ламп в каждой фазе нагрузки, мы убедимся в том, что фазные напряжения не изменяются (все лампы будут гореть с прежним наклоном), но в нейтральном проводе появится ток.
Отключим нейтральный провод от нулевой точки приемников и повторим все изменения нагрузки в фазах. Теперь мы заметим, что большее напряжение будет приходиться на ту фазу, сопротивление которой больше других, то есть, где включено меньшее количество ламп. В этой фазе лампы будут гореть с наибольшим накалом и даже могут перегореть. Это объясняется тем, что в фазах нагрузки с большим сопротивлением происходит и большее падение напряжения.
Следовательно, нейтральный провод необходим для выравнивания фазных напряжений нагрузки, когда сопротивления этих фаз различны.
Благодаря нейтральному проводу, каждая фаза нагрузки оказывается включенной на фазное напряжение генератора, которое практически не зависит от величины тока нагрузки, так как внутреннее падение напряжения в фазе генератора незначительно. Поэтому напряжение на каждой фазе нагрузки будет практически неизменным при изменениях нагрузки.
Если сопротивления фаз нагрузки будут равными по величине и однородными, то нейтральный провод не нужен (рис. 7). Примером такой нагрузки являются симметричные трехфазные токоприемники.
Обычно осветительная нагрузка не бывает симметричной, поэтому без нейтрального провода ее не соединяют звездой (рис. 8). Иначе это привело бы к неравномерному распределению напряжений на фазах нагрузки: на одних лампах напряжение было бы выше нормального и они могли бы перегореть, а другие, наоборот, находились бы под пониженным напряжением и горели бы тускло.
По этой же причине никогда не ставят предохранитель в нейтральный провод, так как перегорание предохранителя может вызвать недопустимые перенапряжения на отдельных фазах нагрузки (см. рис. 8).
Рис. 9. Трёхпроводная трёхфазная цепь
Соединение фаз токоприемников треугольником
Если три фазы нагрузки включить непосредственно между линейными проводами, то мы получим такое соединение фаз токоприемников, которое называется соединением треугольником (рис. 9). Допустим, что первая фаза нагрузки R1 включена между первым и вторым линейными проводами; вторая R2 — между вторым и третьим проводами, а третья R3 — между третьим и первым проводами. Нетрудно видеть, что каждый линейный провод соединен с двумя различными фазами нагрузки.
Рис. 10. Схема осветительной сети жилого дома при соединении фаз нагрузки треугольником
Соединять треугольником можно любые нагрузки. На рисунке 9 дана более общая схема соединения фаз нагрузки треугольником. Соединение треугольником осветительной нагрузки жилого дома показано на рисунке 10. При соединении фаз нагрузки треугольником напряжение на каждой фазе нагрузки равно линейному напряжению
Uл = Uф.
Это соотношение сохраняется и при неравномерной нагрузке.
Линейный ток при симметричной нагрузке фаз, как показывают измерения, будет больше фазного тока в √3 раз
Iл = √3·Iф.
Однако следует иметь в виду, что при несимметричной нагрузке фаз это соотношение между токами нарушается.
Рис. 11. Схема включения однофазных токоприёмников в трёхпроводную сеть
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в √3 раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машины. Именно поэтому фазы трехфазных генераторов почти всегда соединяют звездой.
Приемники электрической энергии независимо от способа соединения обмоток генератора могут быть включены либо звездой, либо треугольником. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников.
Трёхфазная система. Фазное и линейное напряжение
Между двумя фазными проводами, иногда его упоминают как межфазное или междуфазное. Фазным считается напряжение между нулевым проводом и одним из фазных. В нормальных условиях эксплуатации линейные напряжения одинаковы и превосходят фазные в 1,73 раза.
Эксплуатационные напряжения трехфазной цепи
Трехфазные цепи обладают рядом преимуществ по сравнению с многофазными и однофазными, с их помощью можно легко получить вращательное круговое магнитное поле, которое обеспечивает работу асинхронных двигателей. Напряжение трехфазной цепи оценивают по ее линейному напряжению, для отходящих от подстанций линий его устанавливают 380 В, что соответствует фазному напряжению в 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используют обе величины — 380/220 В, подчеркивая этим, что к ней могут подключаться не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные — на 220 В.
Фазой называют часть многофазной системы, имеющую одинаковую характеристику тока. Вне зависимости от способа соединения фаз существуют три одинаковых по действующему значению напряжения трехфазной цепи. Они сдвинуты относительно друг друга по фазе на угол, составляющий 2π/3. У четырехпроводной цепи, помимо трех линейных напряжений, есть также три фазные.
Номинальные напряжения
Самыми распространенными номинальными напряжениями приемников переменного тока являются 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В — для бытовых. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети. Их наличие в четырехпроводной сети дает возможность подключать однофазные приемники, которые рассчитаны на 220 и 127 В или 380 и 220 В.
Различия систем распределения электроэнергии
Наибольшее распространение получила трехфазная система 380/220 В с заземленной нейтралью, однако встречаются другие способы распределения электроэнергии. Например, в ряде населенных пунктов можно найти трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.
В данном случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет незаземленной нейтрали. Трехфазные приемники подключаются к трем фазным проводам, а однофазные — на линейное напряжение между любой парой фазных проводов.
Содержание:Одним из вариантов систем многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях происходит действие синусоидальных электродвижущих сил с одинаковой частотой. Они отличаются друг от друга по фазе и создаются от общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, отличающиеся своими электрическими характеристиками.
Что такое фаза
Каждая часть многофазной системы, имеющая одинаковую характеристику тока, называется фазой. Поэтому определение фазы имеет двоякое значение в электротехнике. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет наименование цепей: двухфазные, шестифазные и т.д.
Самыми распространенными цепями в современной энергетике являются трехфазные. Они имеют ряд преимуществ перед другими видами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью достаточно просто образуется вращающееся круговое , обеспечивающее работу асинхронных двигателей. Данное явление известно, как ЭДС или по-другому, электродвижущая сила индукции.
Вращающийся магнит называется ротором, а катушки, расположенные вокруг него, образуют статор. Переменное напряжение получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.
Изменение магнитного потока происходит за счет вращения ротора, что и приводит к образованию переменного напряжения. В статоре имеется три катушки, в каждой из которых присутствует собственная отдельная электрическая цепь. Каждая катушка сдвинута относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита во всех катушках возникает одинаковое переменное напряжение между фазами в трехфазной сети.
Трехфазные цепи дают возможность получать два эксплуатационных напряжения на одной установке — фазное и линейное.
Фазное и линейное напряжение в трехфазных цепях
Фазное напряжение — возникает между началом и концом какой-либо фазы. По другому его еще определяют, как напряжение между одним из фазных проводов и нулевым проводом.
Линейное — определяется как межфазное или между фазное — возникающее между двумя проводами или одинаковыми выводами разных фаз.
Рассматривая фазные и линейные напряжения и токи, следует отметить, что показатель фазного напряжения составляет примерно 58% от параметров линейного. Таким образом, при нормальных условиях эксплуатации показатели линейных одинаковы и превышают фазные в 1,73 раза. То есть, если линейное напряжение 380, чему равно фазное можно определить с помощью этого коэффициента.
В трехфазной сети напряжение, как правило, оценивают по данным линейного напряжения. Для трехфазных линий, которые отходят от подстанции, устанавливается линейное напряжение номиналом 380 вольт. Это соответствует фазному в 220 вольт. В трехфазных четырех проводных сетях номинальное напряжение указывается с обозначением обеих величин — 380/220 В. Это означает, что в такую сеть подключаются как приборы с 380 вольт, так и однофазные — на 220 вольт.
Наибольшее распространение получила трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные электроприборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов. Трехфазные электроприборы подключаются к трем различным проводам фаз. В последнем случае не требуется использование нулевого провода, при этом повышает риск поражения током, когда нарушена изоляция.
Отличие линейного напряжения от фазного
Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем различаются между собой линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникнуть либо между двумя фазами, либо между одной из фаз и нулевым проводом. Подобное взаимодействие становится возможным из-за использования в схеме четырехпроводной трехфазной цепи. Ее основными характеристиками являются напряжение и частота.
Напряжение, возникающее между двумя фазными проводниками, считается линейным, а между фазным и нулевым возникает фазное. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам возможно подключение не только трехфазных контактов, но и однофазных, например, различных бытовых приборов. Номинальное значение линейного напряжения составляет 380 В. Иногда оно изменяется под действием различных факторов, появляющихся в локальной сети. Таким образом, все основные различия между обоими видами напряжений заключаются в способах соединения обмоток.
Наибольшее распространение получило линейное напряжение, из-за безопасного использования и удобного распределения сетей. Для его замеров достаточно мультиметра, тогда как определение характеристик фазного напряжения требует использования вольтметров, датчиков тока и других специальных приборов.
Контроль и выравнивание данного параметра осуществляется с помощью . Этот прибор обеспечивает поддержание этого показателя на нормативном уровне, в том числе он нормализует и повышенное напряжение.
Использование линейного и фазного напряжения
Классическим примером использования линейного и фазного напряжения считаются соединения, используемые при запуске трехфазного генератора. В его конструкцию входят первичные и вторичные обмотки, которые могут соединяться звездой или треугольником.
Схема «треугольник» предполагает соединение конца первой фазы с началом второй. Кроме того, каждый фазный проводник соединяется с линейными проводами источника тока. В результате, происходит выравнивание токов, а фазное напряжение становится равным линейному. По такой же схеме подключаются электродвигатели и трансформаторы.
Другим вариантом является схема «звезда». В этом случае начала всех обмоток подключаются к одной сети при помощи перемычек. Таким образом, в обмотки будет поступать ток с характеристиками этой сети, а межфазное напряжение вступит во взаимодействие со всеми активными контактами.
В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.
Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.
Действующее значение и амплитудное значение напряжения
Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?
Это значит, что на сомом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.
Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.
Фазное сетевой напряжение
Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.
Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.
В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .
Линейное напряжение трехфазной сети
Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.
Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.
В электротехнике часто применяют векторный метод изображения . Метод основан на положении, что при вращении некоторого вектора U вокруг начала координат с постоянной угловой скоростью ω, его проекция на ось Y пропорциональна синусу ωt, то есть синусу угла ω между вектором U и осью Х, который в каждый момент времени определен.
График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида U(ωt) отражает динамику напряжения.
Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.
Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.
В настоящее время во всём мире получила широчайшее распространение так называемая трехфазная система переменного тока, изобретённая и разработанная в 1888 г. русским электротехником Доливо-Добровольским. Он первым сконструировал и построил трехфазный генератор, трехфазный асинхронный электродвигатель и трехфазную линию электропередачи. Эта система обеспечивает наиболее выгодные условия передачи электрической энергии по проводам и позволяет построить простые по устройству и удобные в работе электродвигатели.
Трехфазной системой электрических цепей называют систему, состоящую из трёх цепей, в которых действуют переменные ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (j=120°). Каждую цепь такой системы называют фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют трёхфазным током.
Поддержание постоянного сдвига по фазе между колебаниями напряжений на выходе трёх независимых генераторов является довольно сложной технической задачей. На практике для получения трёх токов, сдвинутых по фазе, используются трехфазные генераторы. Индуктором в генераторе служит электромагнит, обмотка которого питается постоянным током. Индуктор является ротором, а якорь генератора-статором. Каждая обмотка генератора является самостоятельным генератором тока. Присоединив провода к концам каждой из них, как это показано на рисунке, мы получили бы три независимые цепи, каждая из которых могла бы питать энергией те или иные приемники, например электрические лампы. В этом случае для передачи всей энергии, которую поглощают приемники, требовалось бы шесть проводов. Можно, однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, то есть значительно сэкономить проводку. Первый из этих способов называется соединением звездой. При нём все концы фазных обмоток X, Y, Z соединяются в общий узел О (его называют нейтральной или нулевой точкой генератора), а начала служат зажимами для подключения нагрузки. Напряжение между нулевой точкой и началом каждой фазы называют фазным напряжением ( U ф ) , а напряжение между началами обмоток, то есть точками А и В, В и С, С и А, называют линейным напряжением ( U л ). При этом действующее значение линейного напряжения превышает действующее значение фазного напряжения вВ случае равномерной нагрузки всех трёх фаз ток в нулевом проводе равен нулю и его можно не использовать. При несимметричной нагрузке ток в нулевом проводе не равен нулю, но значительно слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем фазовые.
Обмотки трёхфазного генератора можно соединять треугольником. При этом конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам
Получение трехфазного тока.
Многофазной системой называют систему переменного тока, состоящую из нескольких цепей, в которых э.д.с. источников энергии имеют одинаковую частоту, но сдвинуты между собой по фазе. Однофазную цепь в такой системе называют фазой. Каждая э.д.с. может действовать в своей самостоятельной цепи и не быть связана с другими э.д.с. В этом случае электрическую систему называют несвязанной. Широкое применение на практике получили связанные многофазные системы, у которых отдельные фазы электрически соединены между собой.
По сравнению с однофазным многофазный ток имеет ряд преимуществ. Для передачи одной и той же мощности требуется меньшее сечение проводов. В работе двигателей и приборов переменного тока используется вращающееся магнитное поле, создаваемое неподвижными катушками или обмотками.
Рис. 1
Из всех систем многофазного тока широкое распространение на практике получил трехфазный ток. Цолучание трехфазного тока можно пояснить следующим образом. Если в однородном магнитном поле (рис. 1) поместить три витка, расположенных под углом 120° один к другому, и вращать их с постоянной угловой скоростью, в витках будут индуктироваться э.д.с., которые также будут сдвинуты по фазе на 120° . В промышленности для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, сдвинутые одна относительно другой на 120° . Такие обмотки называют фазами генератора.
Рис. 2
Соединения звездой. Соединив фазные обмотки генератора или потребителя таким образом, чтобы концы обмоток были замкнуты в одну общую точку, а начала обмоток подключив к линейным проводам, получим соединение, называемое звездой (рис. 2). Таким образом, мы видим, что при образовании из трех однофазных систем переменного тока трехфазной системы, соединенной в звезду, вместо шести проводов требуются только четыре. Условно соединение звездой обозначается знаком Y . Точки, в которых соединены концы фазных обмоток, называют нулевыми, а провод, соединяющий их, — нулевым или нейтральным. Три провода, соединяющих свободные концы фаз генератора с концами фаз потребителя, называют линейными.
При равномерно нагруженной трехфазной симметричной системе нулевой провод не нужен; вся мощность может передаваться по трем проводам. Однако при включении в электрическую цепь однофазных потребителей нельзя достигнуть равномерной загрузки фаз. Поэтому в таких случаях нулевой провод необходим, хотя сечение его равняется половине сечения линейного провода.
Рис. 3
При таком соединении конец первой фазы соединяется с началом второй, конец второй — с началом третьей, а конец третьей — с началом первой фазы, а к точкам соединения фаз подключаются линейные провода (рис. 3). Соединение треугольником условно обозначают знаком Δ .
При соединении треугольником фазы генератора образуют замкнутый контур с небольшим сопротивлением. При неправильном соединении обмоток э.д.с. может увеличиться вдвое. При малом сопротивлении контура может установиться режим, близкий к короткому замыканию.
При соединении треугольником каждая фазная обмотка создает линейное напряжение. Фазное напряжение в данном случае равно линейному. Соединение треугольником применяют для осветительной и силовой нагрузок.
В двигателях трехфазного тока обычно выводят все шесть концов трех обмоток, которые по желанию можно соединить звездой или треугольником.
Трехфазная нагрузка. Линейное напряжение
В каждой отрасли техники можно всегда найти своеобразное эхо давних времен, а именно названия, отражающие своего рода историю развития данного направления. И мало кто знает, что то или другое техническое понятие имеет длинный путь становления, привыкания, а в самом начале своего рождения знаменовало очередной, зачастую весьма значительный, шаг технического прогресса. Так, например, среди электрических терминов очень часто можно слышать выражения «трехфазное напряжение», «линейное напряжение», «постоянное» или «переменное напряжение» и множество других наименований со словом «напряжение».
Наибольшее распространение в электротехнике получили сети переменного напряжения синусоидальной формы. Максимальное значение напряжения при его колебании называется амплитудой Ua. Для такого напряжения применяют дополнительные единицы измерения — частота F и фаза ψ. Частота определяется количеством колебаний в единицу времени, а фаза — это временной сдвиг одинаковых точек колебания. Так уж сложилось исторически, что термином «фаза» стали называть и переменного напряжения, если она является частью системы из многих фаз — обычно трех. были очередным достижением электротехники и имеют так много достоинств, что пройти мимо просто невозможно. И самое главное из них — это возможность крайне просто, фактически без всяких усилий, получать вращающееся магнитное поле — основной принцип работы любого электродвигателя. В различают фазное и линейное напряжение, а ее особенность заключается в том, что каждая из фаз имеет сдвиг по отношению к остальным двум +/- 120 град. напряжения имеет выходные обмотки, в которых конструктивно задан сдвиг фаз. Каждая из обмоток имеет конец и начало: Н1-К1, Н2-К2, Н3-К3. В трехфазной системе возможны два варианта соединения фаз — «звезда» и «треугольник».
При соединении «звезда» все концы соединяются в одну точку — «вывод 0», а начала служат выводными концами для генератора и входными для запитанного им устройства. В такой системе линейное напряжение — это величина, измеренная между любой парой выходных концов Н1, Н2, Н3, и его обозначают Ulin. Есть и еще одна характеристика трехфазной сети — фазное напряжение. Его обозначают Uf и измеряют между точками «вывод 0» и любым из выходных концов К1, К2 и К3. Опуская подробности, следует отметить, что, исходя из векторной диаграммы для трехфазной сети, соотношения между этими напряжениями Ulin = Ѵ3 * Uf. При соединении «треугольник» концы обмоток соединяют по кольцу: К1-Н1-К2-Н2-К3-Н3-К1. Каждое соединение «конец — начало» является выводом, и при этом линейное напряжение не отличается от фазного, т.е. Ulin = Uf. Интересно сравнить между собой постоянное напряжение Udir и амплитуду переменного напряжения Ua, например, исходя из одинаковой энергии, выделяемой в нагрузке. Для этого случая Udir = Ѵ2 * Ua.
Вот так на протяжении десятилетий копились знания о сущности и природе электричества, и незаметно простое понятие «напряжение» обросло родственными терминами, расширяющими наши возможности в использовании природных явлений для нужд человека.
В электрических цепях бывают разные типы напряжения. Линейное напряжение можно наблюдать в трехфазной сети, где оно возникает между двумя фазовыми проводами. В большинстве случаев его уровень достигает 380 Вольт.
Отличие линейного от фазного напряжения
Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.
Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.
Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме :
- Однофазные отводы подключаются к фазным проводам;
- Трехфазные – к трехфазным, соответственно.
Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).
Некоторые особенности сети:
- При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
- При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
- Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
- Схема используется как для переменного тока, так и для постоянного;
- Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
- Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.
Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.
Для контроля и выравнивания этого параметра часто используется специальный прибор – линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.
Соединение
Линейное и фазное напряжение часто используется для запуска генератора. Рассмотрим, какие бывают соединения проводов на примере трехфазного генератора. Он состоит из первичных и вторичных обмоток. Их можно соединить звездой или треугольником.
Соединяя проводники в «треугольник» начало второй фазы соединяется с концом первой. Помимо этого, к каждому фазному проводнику подключаются линейные провода источника. Это выравнивает токи, исходя из чего, фазовое напряжение становится равным линейному. Аналогичная схема и для подключения трансформатора и двигателя.
Такое соединение также позволяет обеспечить нулевую электрическую движущую силу и постоянную частоту. Токи обмоток сдвигаются на 120 градусов, благодаря чему в общей схеме это соединение имеет вид трех отдельных токов, которые относительно друг друга сдвинуты на 2/3 периода. Это соотношение может изменяться в зависимости от типа подключаемого устройства и характеристик сети.
Аналогично можно подсоединить трехфазный асинхронный двигатель, стабилизатор или усилитель в сеть 220 вольт «звездой». Эта схема подразумевает подключение начала обмоток к сети. Тогда от входа начнет двигаться ток с характеристиками сети. Контакты выхода (концы обмоток), соединятся с началом при помощи специальных перемычек. Таким образом, межфазное напряжение будет протекать через все активные контакты.
В изолированной сети используются различные пусковые конденсаторы для запуска системы. Аналогично соединяются клеммы на обмотках. Это подключение часто используется для понижающих трансформаторов и различных двигателей, предусмотренных для работы в однофазной сети.
∑ Ik = 0;, которая говорит о том, что в любом узле цепи сила тока равна нулю.
И закон Ома:
I = U / R . Зная эти законы можно без проблем рассчитать любую характеристику определенного контакта или сети.
При разветвлении системы может понадобиться вычислить напряжение между фазовым проводом и нейтральным:
I L = I F – эти параметры могут изменяться в зависимости от подключения. Отсюда следует, что линейные параметры равняются фазовым.
Но, в определенных ситуациях, необходимо рассчитать, чем равно соотношение напряжения между фазовым и линейным проводниками.
Для этого используется формула: Uл=Uф∙√3, где:
Uл –линейное, Uф – фазовое. Формула справедлива только если I L = I F .
При включении в сеть дополнительных отводов, нужно отдельно вычислять фазовое напряжение каждого из подключений. Тогда вместо Uф подставляются данные этого конкретного отвода.
При работе с промышленными установками может потребоваться расчет реактивной трехфазной мощности. Он производится по формуле:
Q = Qа + Qb + Qс
Аналогичный вид имеет формула активной.
Электрические цепи трехфазного переменного тока
Трехфазный электрический ток
Трехфазная цепь представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э.д.с. одинаковой частоты, отличающиеся по фазе одна от другой (φ = 120 о) и создаваемые общим источником энергии. Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, слово фаза в электротехнике имеет два значения – угол φ и часть многофазной системы (отдельный фазный провод).
Основные преимущества трехфазной системы : возможность простого получения кругового вращающегося магнитного поля (это позволило создать электродвигатели переменного тока), экономичность и эффективность (мощность можно передать по трем фазным проводам без применения четвертого общего провода -нейтрали), а также возможность использования двух различных эксплуатационных напряжений в одной установке (фазного и линейного, которые обычно составляют 220 В и 380 В, соответственно).
История появления трехфазных электрических цепей связана с именем М.С. Доливо-Добровольского Петербургского ученого, который в 1886 г., доказав, что многофазные токи способны создавать вращающееся магнитное поле, предложил (запатентовал) конструкцию трехфазного электродвигателя.
Трехфазный ток является простейшей системой многофазных токов, способных создавать вращающееся магнитное поле. Этот принцип положен в основу работы трехфазных электродвигателей.
Предложив конструкцию электродвигателя переменного тока, М.С. Доливо-Добровольский разработал и все основные элементы трехфазной электрической цепи. Трехфазная цепь состоит из трехфазного генератора, трехфазной линии электропередач и трехфазных приемников.
В результате предложенной трехфазной системы электрического тока стало возможным эффективно преобразовывать электрический ток в механическую энергию.
Электрическую энергию трехфазного тока получают в синхронных трехфазных генераторах (рис. 27). Три обмотки 2 статора 1 смещены между собой в пространстве на угол 120°. Их начала обозначены буквами А , В , С , а концы – x , y , z . Ротор 3 выполнен в виде постоянного электромагнита, магнитное поле которого возбуждает постоянный ток I , протекающий по обмотке возбуждения 4. Ротор принудительно приводится во вращение от постороннего двигателя. При вращении магнитное поле ротора последовательно пересекает обмотки статора и индуктирует в них ЭДС, сдвинутые (но уже во времени) между собой на угол 120°.
Трехфазный синхронный генератор
Для симметричной системы ЭДС (рис. 28) справедливо
Волновая и векторная диаграммы симметричной системы ЭДС
На диаграмме изображена прямая последовательность чередования фаз (пересечение ротором обмоток в порядке А , В , С ). При смене направления вращения чередование фаз меняется на обратное — А , С , В . От этого зависит направление вращения трехфазных электродвигателей.
Существует два способа соединения обмоток (фаз) генератора и трехфазного приемника: «звезда» и «треугольник».
В генераторах трехфазного тока электрическая энергия генерируется в трех одинаковых обмотках, соединенных по схеме звезда. Чтобы сэкономить на проводах линии передачи электроэнергии от генератора к потребителю тянутся только три провода. Провод от общей точки соединения обмоток не тянется, т.к. при одинаковых сопротивлениях нагрузки (при симметричной нагрузке) ток в нем равен нулю.
Схема замещения трехфазной системы, соединенной «звездой»
Согласно первому закону Кирхгофа можно записать I O = I А + I В + I С.
При равенстве ЭДС в фазных обмотках генератора и при равенстве сопротивлений нагрузки (т.е. при равенстве значений токов I А,I В,I С)в представленной на рисунке системе, с помощью векторных диаграмм можно показать, что результирующий ток I O в центральном проводнике будет равен нулю. Таким образом, получается, что в симметричных системах (когда сопротивления нагрузок одинаковы), центральный провод может отсутствовать и линия для передачи системы трехфазного тока может состоять только из трех проводов.
В распределительных низковольтных сетях, в которых присутствует много однофазных потребителей, обеспечение равномерной нагрузки каждой фазы становится не возможным, такие сети делаются четырехпроводными.
Для обеспечения электробезопасносности принято низковольтные потребительские сети (сети
Напряжение между фазными проводами в линии принято называть линейным напряжением, а напряжение, измеренное между фазным проводом (фазой) и центральным – фазным напряжением.
В системах электроснабжения, в частности в генераторах и трансформаторах подстанций используется преимущественно соединения звездой.
Для низковольтных сетей (с напряжением менее 1000В) основным стандартным линейным (между фазными проводами) напряжением принимается напряжение 380 В, при этом фазное напряжение (между фазным проводом и центральным) будет составлять 220 В.
Низковольтные сети являются потребительскими сетями разного назначения, не обязательно питающими трехфазные двигатели. В таких сетях для питания различных потребителей могут быть использованы разные фазы по отдельности. В результате нагрузка разных фаз окажется неодинаковой. Кроме того, с целью техники безопасности, ПУЭ (правилами устройства электроустановок) устанавливается, что низковольтные трехфазные электрические сети должны устраиваться четырехпроводными, с глухозаземленной нейтралью. Для этого схема понижающего трансформатора (понижающей подстанции) обычно выглядит следующим образом.
(Высокое напряжение
Т.е. центральный, называемый при этом «нулевым», провод на вторичной обмотке трехфазного трансформатора подключается к заземляющему устройству и подводится к потребителям наряду с фазными проводами.
Страница 8 из 16
В трехфазной электрической сети различают линейное и фазное напряжения.
Линейное (его называют также междуфазным или межфазным) – это напряжение между двумя фазными проводами.
Фазное – между нулевым проводом и одним из фазных. Линейные напряжения при нормальных эксплуатационных условиях одинаковы и в 1,73 раза больше фазных, т. е. напряжение между нулевым и фазным проводом (фазное) составляет 58 % линейного напряжения. Напряжение трехфазной сети принято оценивать по линейному напряжению. Для отходящих от ТП трехфазных линий установлено номинальное линейное напряжение 380 В, что соответствует фазному 220 В. В обозначении номинального напряжения трехфазных четырехпроводных сетей указывают обе величины, т. е. 380/220 В. Этим подчеркивается, что к такой сети можно подключать не только трехфазные электроприемники на номинальное напряжение 380 В, но и однофазные на 220 В.
Трехфазная система 380/220 В с заземленной нейтралью получила наибольшее распространение, но в некоторых населенных пунктах и садовых кооперативах можно встретить иные системы распределения электроэнергии. Например, трехфазную с линейным напряжением 220 В и незаземленной (изолированной) нейтралью. Однофазные электроприемники 220 В подключают на линейное напряжение между любой парой фазных проводов, а трехфазные – к трем фазным проводам. При этой системе нулевой провод не требуется, а незаземленная нейтраль снижает вероятность поражения электрическим током в случае нарушения изоляции. Однако выявление нарушений изоляции в такой системе сложнее, чем при заземленной нейтрали.
Прохождение электрического тока по проводам сопровождается потерями и напряжение у потребителей оказывается несколько меньшим, чем в начале линии у ТП. Чтобы обеспечить приемлемые уровни напряжения вдоль всей линии, на ТП приходится поддерживать напряжение выше номинала, т. е. не 380/220 В, а 400/230 В. В электрических сетях сельских районов у потребителей, согласно действующим нормам, допускаются отклонения напряжения на 7,5 % от номинального значения. Значит, на трехфазном электроприемнике допускается напряжение в пределах 350–410 В, а на однофазном 200–240 В.
Отклонения напряжения. Однако бывают случаи, когда величина напряжения выходит за допустимые пределы. При понижении напряжения заметно падает интенсивность электрического освещения от ламп накаливания, уменьшается производительность электронагревательных приборов, нарушается устойчивость работы телевизоров и других радиоэлектронных приборов с электропитанием от сети. Повышение напряжения приводит к преждевременному выходу из строя электроламп и нагревательных приборов. Электродвигатели в меньшей степени чувствительны к отклонениям напряжения.
Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, линии передачи со всем необходимым оборудованием, приемников (потребителей). Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным . Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным . Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:
13. Симметричный и несимметричный приемники в трехфазных цепях, векторные диаграммы.
.
Векторная диаграмма при соединении приемника звездой в случае симметричной нагрузки .
14. Ток в нейтральном проводе в трехфазных цепях. Нейтральный (нулевой рабочий) провод — провод, соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях. При соединении обмоток генератора и приёмника электроэнергии по схеме «звезда» фазное напряжение зависит от подключаемой к каждой фазе нагрузки. В случае подключения, например, трёхфазного двигателя, нагрузка будет симметричной, и напряжение между нейтральными точками генератора и двигателя будет равно нулю. Однако, в случае, если к каждой фазе подключается разная нагрузка, в системе возникнет так называемое напряжение смещения нейтрали , которое вызовет несимметрию напряжений нагрузки. На практике это может привести к тому, что часть потребителей будет иметь пониженное напряжение, а часть повышенное. Пониженное напряжение приводит к некорректной работе подключённых электроустановок, а повышенное может, кроме этого, привести к повреждению электрооборудования или возникновению пожара . Соединение нейтральных точек генератора и приёмника электроэнергии нейтральным проводом позволяет снизить напряжение смещения нейтрали практически до нуля и выровнять фазные напряжения на приёмнике электроэнергии. Небольшое напряжение будет обусловлено только сопротивлением нулевого провода.
Трехфазные цепи с нейтральным проводе называют четерехпроводными цепями.
Обычно сопротивлением проводов не учитывается /
Тогда фазные напр. приемника будут равны фазн. напряжением генератора. .
При том что комплексные сопротивления равны , то токи определяются
В соответствии с 1 зак. Киргофа ток в нейтр. проводе
При симмет. напр.
При несим. напр.
Нейтр провод выравнивает фазные напряжения.
15И16 Режимы работы трехфазного премника.
Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.
Соединение в звезду
На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.
Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).
Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.
Все величины, относящиеся к фазам, носят название фазных переменных, к линии — линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи иравны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе. Если система фазных токов симметрична, то. Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.
Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А, В и С к нейтральной точке N; — фазные напряжения нагрузки.
Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать
Отметим, что всегда — как сумма напряжений по замкнутому контуру.
На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при осно. вании, равными 300), в этом случае
Обычно при расчетах принимается . Тогда для случаяпрямого чередования фаз , (приобратном чередовании фаз фазовые сдвиги у именяются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору(его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряженийиполучаем:;.
Соединение в треугольник
В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).
Для симметричной системы ЭДС имеем
.
Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.
Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.
Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями
Аналогично можно выразить линейные токи через фазные токи генератора.
На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов
В заключение отметим, что помимо рассмотренных соединений «звезда — звезда» и «треугольник — треугольник» на практике также применяются схемы «звезда — треугольник» и «треугольник — звезда».
1.7.2 Трехфазная цепь, соединенная звездой
В показанной на рис. 1.26 трехфазной цепи – вектор смещения нейтрали; N – нейтраль источника; n – нейтраль приемника.
Рис. 1.26. Трехфазная цепь при соединении источника
и приемников звездой
В трехфазных цепях различают фазные и линейные напряжения и токи.
Фазное напряжение – это напряжение между началом и концом фазы ( – фазные напряжения источника; – фазные напряжения приемника).
Линейное напряжение – это напряжение между фазами. В цепи, соединенной по типу «звезда», фазный ток равен линейному ( – линейные напряжения; – линейные (фазные) токи).
Связь между фазными Uф и линейными Uл напряжениями. Анализируя схему по второму закону Кирхгофа, имеем
- (3)
- Из векторной диаграммы (рис. 1.27) имеем
- Для источника это равенство справедливо всегда
Рис. 1.27. Векторная диаграмма напряжений (а)
и соотношение между Uли Uф(б)
Связь между фазным напряжением источника и фазным напряжением приемника. Из второго закона Кирхгофа для схемы на рис. 1.26 имеем
(4)
Вектор смещения нейтрали делает систему напряжений на фазах приемника несимметричной (рис. 1.28).
Вектор смещения нейтрали определяем методом узлового напряжения:
(5)
где – проводимости соответствующих фаз приёмника и цепи нулевого провода.
Случаи, когда вектор смещения нейтрали равен нулю:
а) при симметричной нагрузке
,
так как ;
б) при наличии нулевого провода
.
При симметричной нагрузке или при наличии нулевого провода (с ) , следовательно, система напряжений приемника совпадает с системой напряжений источника, и значит, она симметрична.
Только в этих случаях на нагрузке .
Токи в нагрузках определяются по закону Ома, а ток – по закону Кирхгофа:
(6)
При симметричной нагрузке токи образуют симметричную систему и , следовательно, нулевой провод не нужен.
Алгоритм расчета трехфазной цепи, соединённой звездой:
- Определяем линейные или фазные напряжения источника (1).
- По формуле (5) определяем напряжение .
- По формулам (4) определяем напряжения на фазах приемника.
- По формулам (6) определяем токи в фазах приемника и в нулевом проводе.
- Строим векторную диаграмму.
7.1. Основные определенияТрехфазная цепь является совокупностью трех электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты, сдвинутые относительно друг друга по фазе на 120o, создаваемые общим источником. Участок трехфазной системы, по которому протекает одинаковый ток, называется фазой. Трехфазная цепь состоит из трехфазного генератора, соединительных проводов и приемников или нагрузки, которые могут быть однофазными или трехфазными. Трехфазный генератор представляет собой синхронную машину. На статоре генератора размещена обмотка, состоящая из трех частей или фаз, пространственно смещенных относительно друг друга на 120o. В фазах генератора индуктируется симметричная трехфазная система ЭДС, в которой электродвижущие силы одинаковы по амплитуде и различаются по фазе на 120o. Запишем мгновенные значения и комплексы действующих значений ЭДС. Сумма электродвижущих сил симметричной трехфазной системы в любой момент времени равна нулю. Соответственно На схемах трехфазных цепей начала
фаз обозначают первыми буквами латинского алфавита (
А, В, С ), а концы — последними буквами (
X, Y, Z ). Направления ЭДС указывают от конца фазы обмотки
генератора к ее началу. 7.2. Соединение в звезду. Схема, определенияЕсли концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1. Рис. 7.1 Провода, идущие от источника к
нагрузке называют линейными проводами, провод, соединяющий нейтральные
точки источника Nи приемника N’ называют нейтральным (нулевым)
проводом. Iл = Iф. ZN — сопротивление нейтрального провода. Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений (7.1) На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника. Рис. 7.2 Из векторной диаграммы видно, что При симметричной системе
ЭДС источника линейное напряжение больше фазного Uл = √3 Uф 7.3. Соединение в треугольник. Схема, определения Если конец каждой фазы обмотки
генератора соединить с началом следующей фазы, образуется соединение
в треугольник. К точкам соединений обмоток подключают три линейных провода,
ведущие к нагрузке. Uл = Uф IA, IB, IC — линейные токи; Iab, Ibc, Ica— фазные токи. Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с. Рис. 7.3 Линейный ток равен геометрической
разности соответствующих фазных токов. Рис. 7.4 Из векторной диаграммы видно, что , Iл = √3 Iф при симметричной нагрузке. Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.7.4. Расчет трехфазной цепи, соединенной звездой Трехфазную цепь,
соединенную звездой, удобнее всего рассчитать методом двух узлов.
Нейтральный провод имеет конечное сопротивление
ZN . Рис.7.5 (7.2) Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви): (7.3) Ток в нейтральном проводе (7.4) Частные случаи. 1. Симметричная нагрузка. Сопротивления
фаз нагрузки одинаковы и равны некоторому активному сопротивлению
ZA = ZB = ZC = R. , потому что трехфазная система ЭДС симметрична, .Напряжения фаз нагрузки и генератора одинаковы: Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен. На рис. 7.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки. 2. Нагрузка несимметричная, RAB = RC, но сопротивление нейтрального провода равно нулю: ZN = 0. Напряжение смещения нейтрали рис. 7.6 Фазные напряжения нагрузки и генератора одинаковы Фазные токи определяются по формуламВектор тока в нейтральном проводе равен геометрической сумме векторов фазных токов. На рис. 7.7 приведена векторная диаграмма трехфазной цепи, соединенной звездой, с нейтральным проводом, имеющим нулевое сопротивление, нагрузкой которой являются неодинаковые по величине активные сопротивления. Рис. 7.7 3. Нагрузка несимметричная, RAB = RC, нейтральный провод отсутствует, В схеме появляется напряжение смещения нейтрали, вычисляемое по формуле: Система фазных напряжений
генератора остается симметричной. Это объясняется тем, что источник
трехфазных ЭДС имеет практически бесконечно большую мощность. Несимметрия
нагрузки не влияет на систему напряжений генератора.
На рис. 7.8 изображена векторная диаграмма трехфазной
цепи с несимметричной нагрузкой и оборванным нейтральным проводом. Векторы
фазных токов совпадают по направлению с векторами соответствующих фазных
напряжений нагрузки. Нейтральный провод с нулевым сопротивлением в схеме
с несимметричной нагрузкой выравнивает несимметрию фазных напряжений
нагрузки, т.е. с включением данного нейтрального провода фазные напряжения
нагрузки становятся одинаковыми. 7.5. Мощность в трехфазных цепях Трехфазная цепь является обычной
цепью синусоидального тока с несколькими источниками. (7.5) Формула (7.5) используется
для расчета активной мощности в трехфазной цепи при несимметричной нагрузке.
При соединении в треугольник симметричной нагрузки При соединении в звезду . В обоих случаях . |
Трёхфазный переменный ток
Трёхфазный переменный ток
- Подробности
- Категория: Электротехника
Трехфазная система переменного тока
Электростанции вырабатывают трехфазный переменный ток. Генератор трехфазного тока представляет собой как бы три объединенных вместе генератора переменного тока, работающих так, чтобы сила тока (и напряжение) изменялась у них не одновременно, а с отставанием на 1/3 периода. Это осуществляется за счет смещения катушек генераторов на 120° одна относительно другой (рис. справа).
Каждая часть обмотки генератора называется фазой. Поэтому генераторы, которые имеют обмотку, состоящую из трех частей, называют трехфазными.
Следует отметить, что термин «фаза» в электротехнике имеет два значения: 1) как величина, которая совместно с амплитудой определяет состояние колебательного процесса в данный момент времени; 2) в смысле наименования части электрической цепи переменного тока (например, часть обмотки электрической машины).
Некоторое наглядное представление о возникновении трехфазного тока дает установка, изображенная на рис. слева.
Три катушки от школьного разборного трансформатора с сердечниками размещаются по окружности под углом 120° по отношению друг к другу. Каждая катушка соединена с демонстрационным гальванометром. В центре окружности на оси укрепляется прямой магнит. Если вращать магнит, то в каждой из трех цепей «катушка — гальванометр» возникает переменный ток. При медленном вращении магнита можно заметить, что наибольшее и наименьшее значения токов и их направления будут в каждый момент во всех трех цепях различными.
Таким образом, трехфазный ток представляет совместное действие трех переменных токов одинаковой частоты, но сдвинутых по фазе на 1/3 периода относительно друг друга.
Каждая обмотка генератора может соединяться со своим потребителем, образуя несвязанную трехфазную систему. Выигрыша от такого соединения нет никакого по отношению к трем отдельным генераторам переменного тока, так как передача электрической энергии осуществляется с помощью шести проводов (рис. справа).
На практике получили два других способа соединения обмоток трехфазного генератора. Первый способ соединения получил название звезды (рис. слева, а), а второй — треугольника (рис. б).
При соединении звездой концы (или начала) всех трех фаз соединяются в один общий узел, а от начал (или концов) идут провода к потребителям. Эти провода называются линейными проводами. Общую точку, в которой соединяются концы фаз генератора (или потребителя), называют нулевой точкой, или нейтралью. Провод, соединяющий нулевые точки генератора и потребителя, называют нулевым проводом. Нулевой провод применяется в том случае, если в сети создается неравномерная нагрузка на фазы. Он позволяет уравнять напряжения в фазах потребителя.
Нулевой провод, как правило, применяется в осветительных сетях. Даже при наличии одинакового количества ламп равной мощности во всех трех фазах равномерная нагрузка не сохраняется, так как лампы могут включаться, выключаться не одновременно во всех фазах, могут перегорать, и тогда равномерность нагрузки фаз будет нарушена. Поэтому для осветительной сети применяется соединение в звезду, которая имеет четыре провода (рис. справа) вместо шести при несвязанной трехфазной системе.
При соединении в звезду различают два вида напряжения: фазное и линейное. Напряжение между каждым линейным и нулевым проводом равно напряжению между зажимами соответствующей фазы генератора и называется фазным (Uф), а напряжение между двумя линейными проводами — линейным напряжением (Uл).
Между фазными и линейными напряжениями можно установить соотношение:
Uл = √3 . Uф ≈ 1,73 . Uф ,
если рассмотреть треугольник напряжения (рис. Сф-л/2 + 2-со5б0° = л/3 -Ц,
На практике широкое распространение получили трехфазные цепи с нейтральными проводами при напряжениях UЛ = 380 В; UФ = 220 В.
Поскольку в нулевом проводе при симметричной нагрузке сила тока равна нулю, то ток в линейном проводе равен току в фазе.
При неравномерной нагрузке фаз по нулевому проводу проходит уравнительный ток относительно малой величины. Поэтому сечение этого провода должно быть значительно меньше, чем у линейного провода. В этом можно убедиться, если включить четыре амперметра в линейные и нулевой провода. В качестве нагрузки удобно использовать обычные электрические лампочки (рис. справа).
При одинаковой нагрузке в фазах ток в нулевом проводе равен нулю и надобность в этом проводе отпадает (например, равномерную нагрузку создают электродвигатели). В этом случае производят соединение в «треугольник», которое представляет собой последовательное соединение друг с другом начал и концов катушек генератора. Нулевой провод в этом случае отсутствует.
При соединении обмоток генератора и потребителей «треугольником» фазные и линейные напряжения равны между собой,
т.е. UЛ = UФ, а линейный ток в √3 раз больше фазного тока IЛ = √3.IФ
Соединение треугольником применяется как при осветительной, так и при силовой нагрузке. Например, в школьной мастерской станки можно включать в звезду или треугольник. Выбор того или иного способа соединения определяется величиной напряжения сети и номинальным напряжением приемников электрической энергии.
Принципиально можно соединять треугольником и фазы генератора, но обычно этого не делают. Дело в том, что для создания заданного линейного напряжения каждая фаза генератора при соединении треугольником должна быть рассчитана на напряжение, в раз большее, чем в случае соединения звездой. Более высокое напряжение в фазе генератора требует увеличения числа витков и усиленной изоляции для обмоточного провода, что увеличивает размеры и стоимость машин. Поэтому фазы трехфазных генераторов почти всегда соединяют звездой. Двигатели же иногда в момент пуска включают звездой, а затем переключают на треугольник.
Видео фазное и линейное напряжение в трехфазных
Главная › Новости
Опубликовано: 10.09.2017
Трехфазные цепи | Задача 1. Расчет трехфазной цепи соединенной звездойСамой популярной электрической цепью считается трехфазная линия, имеющая существенные преимущества перед другими видами подключения. По сравнению с многофазными цепями трехфазная линия более экономична в плане расхода материалов, а относительно однофазных линий – способна передавать большее напряжение, подробнее фазное и линейное напряжение в трехфазных цепях.
Кроме этого, такое подключение применяется для включения в цепь электродвигателей: с его помощью легко образуется магнитное поле, что активно применяется для запуска электродвигателей и генераторов. Еще одно преимущество трехфазной системы – возможность получать различное рабочее напряжение. В зависимости от способа подключения нагрузки различают линейное и фазное напряжение, получаемое от питающей линии.
Прежде всего, давайте вспомним некоторые определения.
Трехфазной системой является совокупность трех электрических цепей, которые генерируются одним источником, но при этом относительно друг друга сдвинуты по фазе.
При этом фазой называется каждая электрическая цепь многофазной системы. Началом фазы считается зажим или конец проводника, через который электроток поступает в данную цепь. При этом концы фаз можно соединить вместе. В этом случае, в электрической цепи начинает действовать суммарная ЭДС, а система называется связанной. Это получило широкое применение для запитывания электродвигателей.
Трехфазное подключение широко применяется для включения обмоток электродвигателей и генераторов. При этом используется два варианта соединения обмоток с токоведущими жилами.
Перекос фаз
Как из 380 получается 220 и куда подключать заземление?
3-х фазное напряжение. Линейное и фазное напряжение
Получение трехфазного тока. Многофазной системой называют систему переменного тока, состоящую из нескольких цепей, в которых действует ЭДС. источники энергии имеют одинаковую частоту, но сдвинуты по фазе. Однофазная цепь в такой системе называется фазной. Каждая ЭДС может действовать в своей собственной цепочке и не быть связана с другими ЭДС. В этом случае электрическая система называется несвязанной. Связанные многофазные системы, в которых отдельные фазы электрически соединены между собой, получили широкое распространение на практике.
По сравнению с однофазным многофазным током есть несколько преимуществ. Для передачи такой же мощности требуется провод меньшего сечения. В работе двигателей и устройств переменного тока используется вращающееся магнитное поле, создаваемое неподвижными катушками или обмотками.
Рис. Один
Из всех систем многофазного тока широкое распространение на практике получил трехфазный ток. Трехфазный ток можно объяснить следующим образом. Если в однородном магнитном поле (рис.1) расположить три витка под углом 120 ° друг к другу и вращать их с постоянной угловой скоростью, в катушках будет наведена ЭДС, которая также будет сдвинута по фазе. на 120 ° .В промышленности для получения трехфазного тока на статоре генератора переменного тока делают три обмотки, смещенные одна относительно другой на 120 ° . Такие обмотки называются фазами генератора.
Фиг.2
Звездообразные соединения. Соединив фазные обмотки генератора или потребителя так, чтобы концы обмоток замкнулись в одну общую точку, и соединив начала обмоток с линейными проводами, мы получим соединение, называемое звездой (рис.2). Таким образом, мы видим, что при образовании трехфазной системы, соединенной звездой из трех однофазных систем переменного тока, вместо шести проводов требуется только четыре. Обычно соединение звездой обозначается цифрой Y . . Точки, в которых соединяются концы фазных обмоток, называются нулевыми, а провод, соединяющий их, нулевым или нейтральным. Три провода, соединяющие свободные концы фаз генератора с концами фаз потребителя, называются линейными.
При равномерно нагруженной трехфазной симметричной системе нулевой провод не нужен; Вся мощность может передаваться по трем проводам. Однако при включении в электрическую цепь однофазных потребителей невозможно добиться равномерной нагрузки фаз. Поэтому в таких случаях нулевой провод необходим, хотя его сечение равно половине сечения линейного провода.
Фиг.3
При таком соединении конец первой фазы связан с началом второй, конец второй — с началом третьей, а конец третьей — с началом первой фазы, а линейные провода подключаются к точкам соединения фаз (рис.3). Соединение треугольником условно знаком Δ .
При соединении треугольником фазы генератора образуют замкнутый контур с низким сопротивлением. При неправильном подключении обмотки ЭДС могут увеличиваться вдвое. При небольшом сопротивлении цепи можно установить режим, близкий к короткому замыканию.
При соединении треугольником каждая фазная обмотка создает линейное напряжение. Фазное напряжение в этом случае линейно. Соединительный треугольник используется для освещения и силовых нагрузок.
В трехфазных двигателях обычно выводятся все шесть концов трех обмоток, которые при желании можно соединить звездой или треугольником.
В электрооборудовании жилых многоквартирных домов, а также в частном секторе, в трехфазных и однофазных сетях. Первоначально электрическая сеть идет от трехфазной электростанции, а чаще всего к жилым домам. Подключается трехфазное электроснабжение. Кроме того, он имеет разветвление на отдельные фазы.Этот метод используется для создания максимально эффективной передачи электрического тока от электростанции к месту назначения, а также для снижения потерь при транспортировке.
Чтобы определить количество фаз в вашей квартире, достаточно открыть распределительный щит, расположенный на лестничной площадке или прямо в квартире, и посмотреть, сколько проводов идет в квартиру. Если сеть однофазная, то будет 2 провода. Возможен еще один третий провод — заземление.
Трехфазные сети в квартирах редко используются в случаях подключения старых электроплит с тремя фазами, или мощных нагрузок в виде циркулярной пилы или нагревательных приборов.Количество фаз также можно определить по входному напряжению. В 1-фазной сети напряжение 220 вольт, в 3-х фазной тоже 220 вольт между фазой и нулем, между 2 фазами — 380 вольт.
ОтличияЕсли не учитывать разницу в количестве проводов сетей и схеме подключения, то можно определить некоторые другие особенности, которые имеют трехфазные и однофазные сети.
При трехфазном питании от сети возможен дисбаланс фаз из-за неравномерного разделения фаз нагрузки.На одну фазу можно подключить мощный обогреватель или печку, а на другую телевизор и стиральную машину. Затем возникает этот негативный эффект, сопровождающийся несимметрией напряжений и токов по фазам, что приводит к выходу из строя бытовых устройств. Чтобы не допустить подобных факторов, необходимо перед прокладкой проводов электрической сети предварительно распределить нагрузку по фазам.
Для трехфазной сети требуется больше кабелей, проводов и переключателей, а это означает, что это не слишком экономит деньги.
Возможности однофазной бытовой сети значительно меньше трехфазной по мощности. Если вы планируете использовать несколько мощных потребителей и бытовую технику, электроинструменты, желательно подвести к дому или квартире трехфазную электросеть.
Основным преимуществом трехфазной сети является небольшое падение напряжения по сравнению с однофазной сетью при одинаковой мощности. Это можно объяснить тем, что в 3-х фазной сети ток в фазном проводе в три раза меньше, чем в 1-фазной сети, а по нулевому проводу ток отсутствует.
Главное преимущество — эффективность его использования. В таких сетях используются трехпроводные кабели, по сравнению с тем, что в трехфазных сетях — пятипроводные. Для защиты оборудования в однофазных сетях необходимы однополюсные защитные, а в трехфазных сетях без трехполюсных автоматов не обойтись.
В связи с этим размеры устройств защиты также будут существенно отличаться.Даже на одной электрической машине уже есть экономия двух модулей. А по размеру он составляет порядка 36 мм, что существенно повлияет на размещение машин в нем. А при установке экономия места составит более 100 мм.
Трехфазные и однофазные сети для частного домаПотребление электроэнергии населением постоянно увеличивается. В середине прошлого века в частных домах было относительно мало бытовой техники.Сегодня это совсем другая картина. Бытовые потребители энергии в частных домах растут не по дням, а по часам. Поэтому в их частной собственности больше не стоит вопрос, какие электросети выбрать для подключения. Чаще всего в частных домах выполняют электросеть с тремя фазами, а от однофазной сети отказываются.
Но стоит ли трехфазная сеть такого преимущества при установке? Многие считают, что, соединив три фазы, можно будет использовать большое количество устройств.Но не всегда получается. Максимально допустимая мощность определяется техническими условиями на подключение. Обычно для всех частных домохозяйств этот параметр составляет 15 кВт. В случае однофазной сети этот параметр примерно такой же. Поэтому понятно, что особой выгоды по мощности нет.
Но необходимо помнить, что если трехфазная и однофазная сети имеют равную мощность, то для трехфазной сети это можно применить, так как мощность и ток распределяются по всем фазам, следовательно, она нагружает меньше отдельных фаз. проводники.Номинальный ток автоматического выключателя для 3-х фазной сети также будет ниже.
Большое значение имеет размер, который для трехфазной сети будет иметь размер значительно больше. Это зависит от размера трехфазного, который больше однофазного, и вводной автомат будет занимать больше места. Поэтому коммутатор для трехфазной сети будет состоять из нескольких ярусов, что является недостатком этой сети.
Но у трехфазного питания есть свои преимущества, которые выражаются в том, что можно подключать приемники трехфазного тока.Они могут быть и другими мощными устройствами, что является преимуществом трехфазной сети. Рабочее напряжение Трехфазная сеть составляет 380 В, что выше, чем в однофазной сети, а это значит, что вопросам электробезопасности придется уделять больше внимания. То же самое и с пожарной безопасностью.
Недостатки трехфазной сети для частного домаКак следствие, есть несколько недостатков использования трехфазной сети для частного дома:
- Необходимо получить технические условия и разрешение на подключение к сети от электросети.
- Повышается опасность поражения электрическим током, а также опасность возгорания из-за повышенного напряжения.
- Значительные габаритные размеры распределительного щита. Для владельцев загородных домов такой недостаток не имеет большого значения, так как в них достаточно места.
- Требуется установка в виде модулей на лицевую панель. В трехфазной сети это особенно актуально.
- Можно равномерно распределить нагрузку по фазам, чтобы избежать дисбаланса фаз.
- Может подключать к сети мощных трехфазных потребителей энергии. Это самая ощутимая ценность.
- Уменьшение номиналов входных защитных устройств, а также уменьшение входных.
- Во многих случаях можно получить разрешение от компании на продажу энергии для увеличения допустимого максимального уровня потребления электроэнергии.
В результате можно сделать вывод, что ввод в трехфазную сеть электроснабжения рекомендуется практически для частных домов и домов с жилой площадью более 100 м 2.Трехфазное питание особенно подходит тем владельцам, которые собираются установить циркулярную пилу, отопительный котел, различные приводы механизмов с трехфазными электродвигателями.
Остальным владельцам частных домов переходить на трехфазное питание не нужно, так как это может создать только дополнительные проблемы.
В настоящее время так называемая трехфазная система переменного тока, изобретенная и разработанная в 1888 году русским инженером-электриком Доливо-Добровольским, получила самое широкое распространение во всем мире.Он первым сконструировал и построил трехфазный генератор, трехфазный асинхронный электродвигатель и трехфазную линию электропередачи. Эта система обеспечивает наиболее благоприятные условия для передачи электрической энергии по проводам и позволяет встраивать простые в устройстве и удобные в эксплуатации электродвигатели.
Трехфазная система электрических цепей — это система, состоящая из трех цепей, в которой действуют переменные электродвижущие силы одинаковой частоты, сдвинутые по фазе друг относительно друга на 1/3 периода (j = 120 °).Каждая цепь такой системы называется фазой, а система из трех переменных токов, сдвинутых по фазе в таких цепях, называется трехфазным током.
Поддержание постоянного фазового сдвига между колебаниями напряжения на выходе трех независимых генераторов — довольно техническая задача. На практике трехфазные генераторы используются для выработки трех противофазных токов. Дроссель в генераторе представляет собой электромагнит, обмотка которого запитана постоянным током.Индуктор — это ротор, а якорь генератора-статора. Каждая обмотка генератора представляет собой отдельный генератор тока. Подключив провода к концам каждого из них, как показано на рисунке, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные приемники, например электрические лампы. В этом случае для передачи всей энергии, которую поглощают приемники, потребуется шесть проводов. Однако можно соединить между собой обмотки генератора трехфазного тока, чтобы уложиться в четыре или даже три провода, то есть значительно сэкономить проводку.Первый из этих методов называется звездой. При этом все концы фазных обмоток X, Y, Z соединяются с общим узлом O (он называется нейтральной или нулевой точкой генератора) и начинают служить зажимами для подключения нагрузки. Напряжение между нулевой точкой и началом каждой фазы называется фазным напряжением ( U f ) и напряжение между началами обмоток, то есть точками A и B, B и C, C и A, называется линейным напряжением ( U л ). В этом случае действующее значение линейного напряжения превышает действующее значение фазного напряжения вВ случае равномерной нагрузки всех трех фаз ток в нейтральном проводе равен нулю и его нельзя использовать. При несимметричной нагрузке ток в нейтральном проводе не равен нулю, а намного меньше, чем ток в линейных проводах. Поэтому нейтральный провод может быть тоньше фазы.
Обмотки трехфазного генератора можно соединять треугольником.Конец каждой обмотки соединяется с началом следующей, так что они образуют замкнутый треугольник, а линейные провода соединяются с вершинами
Содержимое:Одним из вариантов многофазных электрических цепей является трехфазная цепь. В многофазных электрических цепях синусоидальные электродвижущие силы действуют с той же частотой. Они отличаются друг от друга по фазе и созданы из общего источника энергии. В трехфазных цепях важными параметрами являются фазное и линейное напряжение, различающиеся своими электрическими характеристиками.
Что такое фаза
Каждая часть многофазной системы с одинаковой токовой характеристикой называется фазой. Следовательно, определение фазы в электротехнике имеет двоякое значение. Во-первых, как величина, изменяющаяся синусоидально, а во-вторых, как отдельная часть в системе многофазных электрических цепей. Количество фаз определяет название цепей: двухфазная, шестифазная и т. Д.
Наиболее распространенные цепи в современной энергетике — трехфазные.Они имеют ряд преимуществ перед другими типами цепей, как однофазными, так и многофазными. Они более экономичны при производстве и передаче электроэнергии. Трехфазное напряжение возникает в результате вращения магнита внутри катушки. С его помощью просто формируется вращающийся круг, обеспечивающий работу асинхронных двигателей. Это явление известно как ЭДС или иначе индукция электродвижущей силы.
Вращающийся магнит называется ротором, а расположенные вокруг него катушки образуют статор.Напряжение переменного тока получается путем преобразования постоянного напряжения, когда прямая линия принимает синусоидальную конфигурацию с изменяющимися положительными и отрицательными значениями.
Изменение магнитного потока происходит за счет вращения ротора, что приводит к образованию переменного напряжения. В статоре три катушки, каждая из которых имеет свою отдельную электрическую цепь. Каждая катушка смещена относительно друг друга на 120 градусов по окружности. Под действием вращающегося магнита то же самое происходит во всех катушках.Напряжение переменного тока между фазами в трехфазной сети.
Трехфазные цепи позволяют получить на одной установке два рабочих напряжения — фазное и линейное.
Фазное и линейное напряжение в трехфазных цепях
Фазное напряжение — возникает между началом и концом любой фазы. В противном случае оно также определяется как напряжение между одним из фазных проводов и нулевым проводом.
Линейный — определяется как межфазный или межфазный — возникает между двумя проводами или одними и теми же клеммами разных фаз.
Рассматривая фазные и линейные напряжения и токи, следует отметить, что индикаторное фазное напряжение составляет примерно 58% от линейных параметров. Таким образом, в нормальных условиях эксплуатации линейные показатели такие же и превышают фазовые в 1,73 раза. То есть, если линейное напряжение равно 380, которое равно фазному напряжению, можно определить с помощью этого коэффициента.
В трехфазной сети напряжение обычно оценивается по данным сетевого напряжения.Для трехфазных линий, отходящих от подстанции, устанавливается линейное напряжение 380 вольт. Это соответствует фазному напряжению 220 вольт. В трехфазных четырехпроводных сетях указывается номинальное напряжение с обозначением обеих величин — 380/220 В. Это означает, что к такой сети подключаются как устройства на 380 вольт, так и однофазные — 220 вольт.
Наиболее распространенная трехфазная система 380/220 вольт с заземленным нулевым проводом. Однофазные приборы на 220 вольт подключаются к линейному напряжению между любой парой фазных проводов.Трехфазные приборы подключаются к трем разным фазным проводам. В последнем случае использование нейтрального провода не требуется, при этом повышается риск поражения электрическим током при нарушении изоляции.
Разница линейного напряжения от фазы
Прежде чем рассматривать практическое значение этих параметров, необходимо точно знать, чем отличаются линейное и фазное напряжения. Определенное межфазное напряжение в трехфазной цепи может возникать либо между двумя фазами, либо между одной из фаз и нейтральным проводом.Такое взаимодействие становится возможным за счет использования в схеме четырехпроводной трехфазной схемы. Его основные характеристики — это напряжение и частота.
Предполагается, что напряжение, возникающее между двумя фазными проводниками, является линейным, а фаза находится между фазой и нулем. Линейное напряжение используется для расчета токов и других параметров трехфазной цепи. К таким схемам можно подключать не только трехфазные контакты, но и однофазные, например, различную бытовую технику.Номинальное значение сетевого напряжения составляет 380 В. Иногда оно меняется под воздействием различных факторов, возникающих в локальной сети. Таким образом, все основные различия между двумя типами напряжения заключаются в способах соединения обмоток.
Наиболее распространенное линейное напряжение, благодаря безопасному использованию и удобному распределению сетей. Для его измерения достаточно мультиметра, а для определения характеристик фазного напряжения необходимы вольтметры, датчики тока и другие специальные устройства.
Контроль и настройка этого параметра осуществляется с помощью. Этот прибор поддерживает этот показатель на стандартном уровне, в том числе нормализует и повышенное напряжение.
Использование линейного и фазного напряжения
Классическим примером использования линейного и фазного напряжений считается подключение при запуске. трехфазный генератор. В его конструкцию входят первичная и вторичная обмотки, которые могут быть соединены звездой или треугольником.
Схема «треугольник» предполагает соединение конца первой фазы с началом второй.Кроме того, каждый фазовый провод подключается к линейным проводам источника тока. В результате токи выравниваются, и фазное напряжение становится линейным. Таким же образом подключаются электродвигатели и трансформаторы.
Другой вариант — звездообразная схема. В этом случае пуск всех обмоток подключается к одной сети перемычками. Таким образом, ток с характеристиками этой сети будет течь в обмотки, и межфазное напряжение будет взаимодействовать со всеми активными контактами.
Между двумя фазными проводами его иногда называют межфазным или межфазным. Фаза — это напряжение между нулевым проводом и одной из фаз. В нормальных условиях эксплуатации линейные напряжения одинаковы и в 1,73 раза превышают фазное напряжение.
Рабочие напряжения трехфазной цепи
Трехфазные цепи имеют ряд преимуществ по сравнению с многофазными и однофазными цепями, с их помощью можно легко получить вращающееся круговое магнитное поле, обеспечивающее работу асинхронных двигателей. .Напряжение трехфазной цепи оценивается по ее линейному напряжению; для линий, отходящих от подстанций, устанавливается на 380 В, что соответствует фазному напряжению 220 В. Для обозначения номинального напряжения трехфазной четырехпроводной сети используются оба значения — 380/220 В, Подчеркивая, что подключайте не только трехфазные устройства, рассчитанные на номинальное напряжение 380 В, но и однофазные — на 220 В.
Фаза — это часть многофазной системы, имеющая такую же токовую характеристику.Независимо от способа подключения фаз, существует три действующих значения напряжения трехфазной цепи. Они сдвинуты друг относительно друга по фазе на угол 2π / 3. Четырехпроводная схема, помимо трех линейных напряжений, имеет еще и трехфазную.
Номинальное напряжение
Наиболее распространенные номинальные напряжения приемников переменного тока составляют 220, 127 и 380 В. Напряжения 220 и 380 В чаще всего используются для питания промышленных устройств, а 127 и 220 В используются для бытовых приборов. Все они (127, 220 и 380 В) считаются номинальными напряжениями трехфазной сети.Их наличие в четырехпроводной сети дает возможность подключать однофазные приемники, рассчитанные на 220 и 127 В или 380 и 220 В.
Различия в системах распределения питания
Трехфазные 380/220 В трехфазные Наиболее распространена фазовая система с заземленной нейтралью, но есть и другие способы распределения электроэнергии. Например, в некоторых населенных пунктах можно встретить трехфазную систему с незаземленной изолированной нейтралью и линейным напряжением 220 В.
В этом случае нулевой провод не требуется, а вероятность поражения электрическим током при нарушении изоляции снижается за счет к незаземленной нейтрали.Трехфазные приемники подключаются к трем фазным проводам, а однофазные проводники подключаются к линейному напряжению между любой парой фазных проводов.
Мощность и среднеквадратичные значения
В последней строке мы использовали стандартное тригонометрическое тождество, которое cos (2A) = 1-2 sin 2 A. Теперь синусоидальный член усредняет к нулю за любое количество полных циклов, поэтому интеграл прост и мы получаем Этот последний набор уравнений полезен, потому что они в точности те, которые обычно используется для резистора в электричестве постоянного тока.Однако следует помнить, что P — средняя мощность, а V = V м / √2 и I = I м / √2. Посмотрев на интеграл выше и разделив на R, мы увидим, что I равно к квадратному корню из среднего значения i 2 , поэтому I называется среднеквадратичное значение или RMS значение . Аналогично V = V м / √2 ~ 0,71 * В м — среднеквадратичное значение напряжения. Когда речь идет о переменном токе, значения RMS используются настолько часто, что, если не указано иное заявлено, вы можете предположить, что среднеквадратичные значения предназначены *.Например, нормальный Внутренний переменный ток в Австралии составляет 240 вольт переменного тока с частотой 50 Гц. Среднеквадратичное значение напряжения составляет 240 вольт, поэтому пиковое значение V м = V.√2 = 340 вольт. Таким образом, активный провод идет от +340 вольт до -340 вольт и обратно снова 50 раз в секунду. (Это ответ на тизер-вопрос на сайте верх страницы: выпрямление сети 240 В может дать как + 340 Vdc и -340 Vdc.) * Исключение: производители и продавцы оборудования HiFi иногда используют пиковые значения, а не среднеквадратичные значения, из-за чего оборудование кажется более мощным чем это есть. Мощность в резисторе. В резисторе R пиковая мощность (достигается мгновенно 100 раз в секунду для переменного тока 50 Гц) составляет В м 2 / R = i м 2 * R. Как обсуждалось выше, напряжение, ток и мощность проходят через ноль. 100 раз в секунду, поэтому средняя мощность меньше этой. Среднее точно как показано выше: P = V м 2 / 2R = V 2 / R. Мощность в катушках индуктивности и конденсаторах. В идеальных катушках индуктивности и конденсаторах, синусоидальный ток создает напряжения, которые соответственно на 90 опережают и за фазой тока. Таким образом, если i = I m sin wt, напряжения на катушке индуктивности и конденсаторе равны V m cos wt. и -V m cos мас. соответственно. Теперь интеграл cos * sin по целому количество циклов равно нулю. Следовательно, идеальные катушки индуктивности и конденсаторы в среднем не забирают мощность из цепи. Трехфазный переменный ток
|
Типичный трехфазный в разных странах
Чтобы заказать панель управления, укажите как минимум количество фаз, линейное напряжение и мощность, требуемую от панели (кВт).
MHI свяжется с вами для получения подробной информации о SCR, плавном пуске и рейтингах, таких как UL, cUL, CE
.ТРЕХФАЗНЫЕ НАГРУЗКИ
Существует два типа цепей, используемых для поддержания одинаковой нагрузки на трех проводах под напряжением в трехфазной системе — треугольник и звезда. В конфигурации «Дельта» три фазы соединены треугольником, тогда как в конфигурации «звезда» (или «звезда») все три нагрузки подключены к одной нейтральной точке.
Дельта-конфигурация
R = R1 = R2 = R3 (сбалансированная нагрузка)
Мощность = 3 (VP 2 ) / R = 3 (VL 2 ) / R Мощность -Delta = 1.73 х ВЛ х ИЛ
IP = IL / 1,73
VP = VL
Конфигурация тройника
R = R1 = R2 = R3 (сбалансированная нагрузка)
Мощность = (VL 2 ) / R = 3 (VP 2 ) / R Мощность-звезда = 1,73 x VL x IP
IP = IL
VP = VL / 1,73
3 фазы разомкнутый треугольник (разомкнутый треугольник, 6 проводов) 3 фазы замкнутый треугольник (3 провода)
СистемыDelta имеют четыре провода — три «горячих» и один заземляющий.В звездообразных системах имеется пять проводов: три «горячих», один нейтральный и один заземляющий.
В основном Delta используется для любых больших двигателей или обогревателей, которым не нужна нейтраль. Примечание выше для мощности звезды и треугольника. Пожалуйста, изучите приведенные выше диаграммы для систем Delta и Wye (также называемых звездой). Системы звезды также могут предлагать 120/208 В между любым горячим проводом и нейтралью, а также 240/415 В (VP = VL / 1,73). Нейтральный провод системы «звезда» может позволить обеспечить два разных напряжения и запитать как трехфазные, так и однофазные устройства, когда это необходимо.Delta может использоваться при передаче электроэнергии, однако трансформаторы часто подключаются по схеме Delta-Wye. Затем создается нейтраль, которая позволяет трансформатору обеспечивать питание однофазных нагрузок.
Приведенные ниже значения являются только типичными. Уточняйте это у местных специалистов и у электриков.
Страна | Трехфазное напряжение (Вольт) | Частота (Герцы) | Количество проводов (без учета заземляющего провода) |
---|---|---|---|
США | 120/208 В // 277/480 В // 120/240 В // 240/415 В // 277 В / 480 В | 60 Гц | 3,4 (округ Чек) |
Абу-Даби | 400 В | 50 Гц | 3, 4 |
Афганистан | 380 В | 50 Гц | 4 |
Албания | 400 В | 50 Гц | 4 |
Алжир | 400 В | 50 Гц | 4 |
Американское Самоа | 208 В | 60 Гц | 3, 4 |
Андорра | 400 В | 50 Гц | 3, 4 |
Ангола | 380 В | 50 Гц | 4 |
Ангилья | 120/208 В / 127/220 В / 240/415 В | 60 Гц | 3, 4 |
Антигуа и Барбуда | 400 В | 60 Гц | 3, 4 |
Аргентина | 380 В | 50 Гц | 3, 4 |
Армения | 400 В | 50 Гц | 4 |
Аруба | 220 В | 60 Гц | 3, 4 |
Австралия | 400 В, 240/415 В | 50 Гц | 3, 4 |
Австрия | 400 В | 50 Гц | 3, 4 |
Азербайджан | 380 В | 50 Гц | 4 |
Азорские острова | 400 В | 50 Гц | 3, 4 |
Багамы | 208 В | 60 Гц | 3, 4 |
Бахрейн | 400 В | 50 Гц | 3, 4 |
Балеарские острова | 400 В | 50 Гц | 3, 4 |
Бангладеш | 380 В | 50 Гц | 3, 4 |
Барбадос | 200 В | 50 Гц | 3, 4 |
Беларусь | 380 В | 50 Гц | 4 |
Бельгия | 400 В | 50 Гц | 3, 4 |
Белиз | 190 В / 380 В | 60 Гц | 3, 4 |
Бенин | 380 В | 50 Гц | 4 |
Бермудские острова | 208 В | 60 Гц | 3, 4 |
Бутан | 400 В | 50 Гц | 4 |
Боливия | 400 В | 50 Гц | 4 |
Бонайре | 220 В | 50 Гц | 3, 4 |
Босния и Герцеговина | 400 В | 50 Гц | 4 |
Ботсвана | 400 В | 50 Гц | 4 |
Бразилия | 220 В / 380 В | 60 Гц | 3, 4 |
Британские Виргинские острова | 190 В | 60 Гц | 3, 4 |
Бруней | 415 В | 50 Гц | 4 |
Болгария | 400 В | 50 Гц | 4 |
Буркина-Фасо | 380 В | 50 Гц | 4 |
Бирма (официально Мьянма) | 400 В | 50 Гц | 4 |
Бурунди | 380 В | 50 Гц | 4 |
Камбоджа | 400 В | 50 Гц | 4 |
Камерун | 380 В | 50 Гц | 4 |
Канада | 120/208 В / 240 В / 480 В / 347/600 В | 60 Гц | 3, 4 |
Канарские острова | 400 В | 50 Гц | 3, 4 |
Кабо-Верде | 400 В | 50 Гц | 3, 4 |
Каймановы острова | 240 В | 60 Гц | 3 |
Центральноафриканская Республика | 380 В | 50 Гц | 4 |
Чад | 380 В | 50 Гц | 4 |
Нормандские острова (Гернси и Джерси) | 415 В | 50 Гц | 4 |
Чили | 380 В | 50 Гц | 3, 4 |
Китай, Народная Республика | 380 В | 50 Гц | 3, 4 |
Колумбия | 220 В / 440 В | 60 Гц | 3, 4 |
Коморские Острова | 380 В | 50 Гц | 4 |
Конго, Демократическая Республика | 380 В | 50 Гц | 3, 4 |
Конго, Народная Республика | 400 В | 50 Гц | 3, 4 |
Острова Кука | 415 В | 50 Гц | 3, 4 |
Коста-Рика | 240 В | 60 Гц | 3, 4 |
Кот-д’Ивуар (Кот-д’Ивуар) | 380 В | 50 Гц | 3, 4 |
Хорватия | 400 В | 50 Гц | 4 |
Куба | 190 В | 60 Гц | 3 |
Кюрасао | 220 В / 380 В | 50 Гц | 3, 4 |
Кипр | 400 В | 50 Гц | 4 |
Чешская Республика | 400 В | 50 Гц | 3, 4 |
Дания | 400 В | 50 Гц | 3, 4 |
Джибути | 380 В | 50 Гц | 4 |
Доминика | 400 В | 50 Гц | 4 |
Доминиканская Республика | 120/208 В / 277/480 В | 60 Гц | 3, 4 |
Дубай | 400 В | 50 Гц | 3, 4 |
Восточный Тимор (Тимор-Лешти) | 380 В | 50 Гц | 4 |
Эквадор | 208 В | 60 Гц | 3, 4 |
Египет | 380 В | 50 Гц | 3, 4 |
Сальвадор | 200 В | 60 Гц | 3 |
Англия | 415 В | 50 Гц | 4 |
Эритрея | 400 В | 50 Гц | 4 |
Эстония | 400 В | 50 Гц | 4 |
Эфиопия | 380 В | 50 Гц | 4 |
Фарерские острова | 400 В | 50 Гц | 3, 4 |
Фолклендские острова | 415 В | 50 Гц | 4 |
Фиджи | 415 В | 50 Гц | 3, 4 |
Финляндия | 400 В | 50 Гц | 3, 4 |
Франция | 400 В | 50 Гц | 4 |
Французская Гвиана | 380 В | 50 Гц | 3, 4 |
Габон (Габонская Республика) | 380 В | 50 Гц | 4 |
Гамбия | 400 В | 50 Гц | 4 |
Газа | 400 В | 50 Гц | 4 |
Грузия | 380 В | 50 Гц | 4 |
Германия | 400 В | 50 Гц | 4 |
Гана | 400 В | 50 Гц | 3, 4 |
Гибралтар | 400 В | 50 Гц | 4 |
Великобритания (GB) | 415 В | 50 Гц | 4 |
Греция | 400 В | 50 Гц | 4 |
Гренландия | 400 В | 50 Гц | 3, 4 |
Гренада | 400 В | 50 Гц | 4 |
Гваделупа | 400 В | 50 Гц | 3, 4 |
Гуам | 190 В | 60 Гц | 3, 4 |
Гватемала | 208 В | 60 Гц | 3, 4 |
Гвинея | 380 В | 50 Гц | 3, 4 |
Гвинея-Бисау | 380 В | 50 Гц | 3, 4 |
Гайана | 190 В | 60 Гц | 3, 4 |
Гаити | 190 В | 60 Гц | 3, 4 |
Голландия (официально Нидерланды) | 400 В | 50 Гц | 3, 4 |
Гондурас | 208 В / 230 В / 240 В / 460 В / 480 В | 60 Гц | 3, 4 |
Гонконг | 380 В | 50 Гц | 3, 4 |
Венгрия | 400 В | 50 Гц | 3, 4 |
Исландия | 400 В | 50 Гц | 3, 4 |
Индия | 400 В | 50 Гц | 4 |
Индонезия | 400 В | 50 Гц | 4 |
Ирак | 400 В | 50 Гц | 4 |
Ирландия (Eire) | 415 В | 50 Гц | 4 |
Ирландия, Северная | 415 В | 50 Гц | 4 |
Остров Мэн | 415 В | 50 Гц | 4 |
Израиль | 400 В | 50 Гц | 4 |
Италия | 400 В | 50 Гц | 4 |
Ямайка | 190 В | 50 Гц | 3, 4 |
Япония | 200 В | 50 Гц / 60 Гц | 3 |
Иордания | 400 В | 50 Гц | 3, 4 |
Казахстан | 380 В | 50 Гц | 3, 4 |
Кения | 415 В | 50 Гц | 4 |
Корея, Северная | 380 В | 50 Гц | 3, 4 |
Корея, Южная | 380 В | 60 Гц | 4 |
Косово | 230 В / 400 В | 50 Гц | 3 |
Кувейт | 415 В | 50 Гц | 4 |
Кыргызстан | 380 В | 50 Гц | 3, 4 |
Лаос | 400 В | 50 Гц | 4 |
Латвия | 400 В | 50 Гц | 4 |
Ливан | 400 В | 50 Гц | 4 |
Лесото | 380 В | 50 Гц | 4 |
Либерия | 208 В | 60 Гц | 3, 4 |
Ливия | 400 В | 50 Гц | 4 |
Лихтенштейн | 400 В | 50 Гц | 4 |
Литва | 400 В | 50 Гц | 4 |
Люксембург | 400 В | 50 Гц | 4 |
Макао | 380 В | 50 Гц | 3 |
Македония | 400 В | 50 Гц | 4 |
Мадагаскар | 380 В | 50 Гц | 3, 4 |
Мадейра | 400 В | 50 Гц | 3, 4 |
Малави | 400 В | 50 Гц | 3, 4 |
Малайзия | 415 В | 50 Гц | 4 |
Мальдивы | 400 В | 50 Гц | 4 |
Мали | 380 В | 50 Гц | 3, 4 |
Мальта | 400 В | 50 Гц | 4 |
Мартиника | 380 В | 50 Гц | 3, 4 |
Мавритания | 220 В | 50 Гц | 3, 4 |
Маврикий | 400 В | 50 Гц | 4 |
Мексика | 220 В / 480 В | 60 Гц | 3, 4 |
Молдова | 400 В | 50 Гц | 4 |
Монако | 400 В | 50 Гц | 4 |
Монголия | 400 В | 50 Гц | 4 |
Черногория | 400 В | 50 Гц | 3, 4 |
Монтсеррат | 400 В | 60 Гц | 4 |
Марокко | 380 В | 50 Гц | 4 |
Мозамбик | 380 В | 50 Гц | 4 |
Мьянма (ранее Бирма) | 400 В | 50 Гц | 4 |
Намибия | 380 В | 50 Гц | 4 |
Науру | 415 В | 50 Гц | 4 |
Непал | 400 В | 50 Гц | 4 |
Нидерланды | 400 В | 50 Гц | 3, 4 |
Новая Каледония | 380 В | 50 Гц | 3, 4 |
Новая Зеландия | 400 В | 50 Гц | 3, 4 |
Никарагуа | 208 В | 60 Гц | 3, 4 |
Нигер | 380 В | 50 Гц | 4 |
Нигерия | 415 В | 50 Гц | 4 |
Северная Ирландия | 415 В | 50 Гц | 4 |
Норвегия | 230 В / 400 В | 50 Гц | 3, 4 |
Оман | 415 В | 50 Гц | 4 |
Пакистан | 400 В | 50 Гц | 3 |
Палау | 208 В | 60 Гц | 3 |
Панама | 240 В | 60 Гц | 3 |
Папуа-Новая Гвинея | 415 В | 50 Гц | 4 |
Парагвай | 380 В | 50 Гц | 4 |
Перу | 220 В | 60 Гц | 3 |
Филиппины | 380 В | 60 Гц | 3 |
Польша | 400 В | 50 Гц | 4 |
Португалия | 400 В | 50 Гц | 3, 4 |
Пуэрто-Рико | 480 В | 60 Гц | 3, 4 |
Катар | 415 В | 50 Гц | 3, 4 |
Реюньон | 400 В | 50 Гц | 4 |
Румыния | 400 В | 50 Гц | 4 |
Россия | 380 В | 50 Гц | 4 |
Руанда | 400 В | 50 Гц | 4 |
Сент-Люсия | 400 В | 50 Гц | 4 |
Синт-Эстатиус | 220 В | 60 Гц | 3, 4 |
Синт-Мартен | 220 В | 60 Гц | 3, 4 |
Сент-Винсент и Гренадины | 400 В | 50 Гц | 4 |
Самоа | 400 В | 50 Гц | 3, 4 |
Сан-Марино | 400 В | 50 Гц | 4 |
Сан-Томе и Принсипи | 400 В | 50 Гц | 3, 4 |
Саудовская Аравия | 400 В | 60 Гц | 4 |
Шотландия | 415 В | 50 Гц | 4 |
Сенегал | 400 В | 50 Гц | 3, 4 |
Сербия | 400 В | 50 Гц | 3, 4 |
Сейшельские Острова | 240 В | 50 Гц | 3 |
Сьерра-Леоне | 400 В | 50 Гц | 4 |
Сингапур | 400 В | 50 Гц | 4 |
Словакия | 400 В | 50 Гц | 4 |
Словения | 400 В | 50 Гц | 3, 4 |
Сомали | 380 В | 50 Гц | 3, 4 |
Сомалиленд | 380 В | 50 Гц | 3, 4 |
Южная Африка | 400 В | 50 Гц | 3, 4 |
Южная Корея | 380 В | 60 Гц | 4 |
Южный Судан | 400 В | 50 Гц | 4 |
Испания | 400 В | 50 Гц | 3, 4 |
Шри-Ланка | 400 В | 50 Гц | 4 |
Суринам | 220 В / 400 В | 60 Гц | 3, 4 |
Свазиленд | 400 В | 50 Гц | 4 |
Швеция | 400 В | 50 Гц | 3, 4 |
Швейцария | 400 В | 50 Гц | 3, 4 |
Сирия | 380 В | 50 Гц | 3 |
Таити | 380 В | 50 Гц / 60 Гц | 3, 4 |
Тайвань | 220 В | 60 Гц | 4 |
Таджикистан | 380 В | 50 Гц | 3 |
Танзания | 415 В | 50 Гц | 3, 4 |
Таиланд | 400 В | 50 Гц | 3, 4 |
Того | 380 В | 50 Гц | 4 |
Тонга | 415 В | 50 Гц | 3, 4 |
Тринидад и Тобаго | 115/230 В / 230/400 В | 60 Гц | 4 |
Тунис | 380 В, 400 В (возможно также 208/380 В) | 50 Гц | 4 |
Турция | 400 В | 50 Гц | 3, 4 |
Туркменистан | 380 В | 50 Гц | 3 |
Острова Теркс и Кайкос | 240 В | 60 Гц | 4 |
Уганда | 415 В | 50 Гц | 4 |
Украина | 400 В | 50 Гц | 4 |
Объединенные Арабские Эмираты (ОАЭ) | 400 В | 50 Гц | 3, 4 |
Соединенное Королевство (UK) | 415 В | 50 Гц | 4 |
США | 120/208 В, 277/480 В, 120/240 В, 240 В / 415 В | 60 Гц | 3, 4 |
Виргинские острова США | 190 В | 60 Гц | 3, 4 |
Уругвай | 380 В | 50 Гц | 3 |
Узбекистан | 380 В | 50 Гц | 4 |
Вануату | 400 В | 50 Гц | 3, 4 |
Венесуэла | 120 В | 60 Гц | 3, 4 |
Вьетнам | 380 В | 50 Гц | 4 |
Виргинские острова (Британские) | 190 В | 60 Гц | 3, 4 |
Виргинские острова (США) | 190 В | 60 Гц | 3, 4 |
Уэльс | 415 В | 50 Гц | 4 |
Йемен | 400 В | 50 Гц | 4 |
Замбия | 400 В | 50 Гц | 4 |
Зимбабве | 415 В | 50 Гц | 3, 4 |
Интернет-курсы PDH.PDH для профессиональных инженеров. ПДХ Инжиниринг.
«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии
курсов. «
Russell Bailey, P.E.
Нью-Йорк
«Он укрепил мои текущие знания и научил меня еще нескольким новым вещам
, чтобы познакомить меня с новыми источниками
информации.»
Стивен Дедак, П.Е.
Нью-Джерси
«Материал был очень информативным и организованным. Я многому научился, и они были
.очень быстро отвечает на вопросы.
Это было на высшем уровне. Будет использовать
снова. Спасибо. «
Blair Hayward, P.E.
Альберта, Канада
«Простой в использовании сайт.Хорошо организовано. Я действительно буду снова пользоваться вашими услугами.
проеду по вашей роте
имя другим на работе «
Roy Pfleiderer, P.E.
Нью-Йорк
«Справочные материалы были превосходными, а курс был очень информативным, особенно с учетом того, что я думал, что уже знаком с вами.
с деталями Канзас
Городская авария Хаятт.»
Майкл Морган, P.E.
Техас
«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс
.информативно и полезно
на моей работе »
Вильям Сенкевич, П.Е.
Флорида
«У вас большой выбор курсов, а статьи очень информативны.Вы
— лучшее, что я нашел ».
Russell Smith, P.E.
Пенсильвания
«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр
материал. «
Jesus Sierra, P.E.
Калифорния
«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле
человек узнает больше
от отказов »
John Scondras, P.E.
Пенсильвания
«Курс составлен хорошо, и использование тематических исследований является эффективным.
способ обучения »
Джек Лундберг, P.E.
Висконсин
«Я очень впечатлен тем, как вы представляете курсы; i.е., позволяя
студент, оставивший отзыв по курсу
материалов до оплаты и
получает викторину «
Арвин Свангер, П.Е.
Вирджиния
«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и
получил огромное удовольствие «
Мехди Рахими, П.Е.
Нью-Йорк
«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.
на связи
курсов.»
Уильям Валериоти, P.E.
Техас
«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о
обсуждаемых тем »
Майкл Райан, P.E.
Пенсильвания
«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»
Джеральд Нотт, П.Е.
Нью-Джерси
«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было
информативно, выгодно и экономично.
Очень рекомендую
всем инженерам »
Джеймс Шурелл, П.Е.
Огайо
«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и
не на основании какой-то непонятной секции
законов, которые не применяются
по «нормальная» практика.»
Марк Каноник, П.Е.
Нью-Йорк
«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор
организация «
Иван Харлан, П.Е.
Теннесси
«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».
Юджин Бойл, П.E.
Калифорния
«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,
а онлайн-формат был очень
доступный и простой
использовать. Большое спасибо ».
Патрисия Адамс, P.E.
Канзас
«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»
Joseph Frissora, P.E.
Нью-Джерси
«Должен признаться, я действительно многому научился. Помогает напечатанная викторина во время
обзор текстового материала. Я
также оценил просмотр
предоставлено фактических случаев »
Жаклин Брукс, П.Е.
Флорида
«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.Модель
тест действительно потребовал исследований в
документ но ответов
в наличии. «
Гарольд Катлер, П.Е.
Массачусетс
«Я эффективно использовал свое время. Спасибо за то, что у вас есть широкий выбор.
в транспортной инженерии, что мне нужно
для выполнения требований
Сертификат ВОМ.»
Джозеф Гилрой, П.Е.
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».
Ричард Роудс, P.E.
Мэриленд
«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.
Надеюсь увидеть больше 40%
курсов со скидкой.»
Кристина Николас, П.Е.
Нью-Йорк
«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще
курсов. Процесс прост, и
намного эффективнее, чем
вынуждены путешествовать. «
Деннис Мейер, P.E.
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов
Инженеры получат блоки PDH
в любое время.Очень удобно ».
Пол Абелла, P.E.
Аризона
«Пока все отлично! Поскольку я мать двоих детей на полную ставку, у меня мало
время исследовать где на
получить мои кредиты от «
Кристен Фаррелл, P.E.
Висконсин
«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями
и графики; определенно делает это
проще поглотить все
теорий. «
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по
.мой собственный темп во время моего утра
метро
на работу.»
Клиффорд Гринблатт, П.Е.
Мэриленд
«Просто найти интересные курсы, скачать документы и взять
викторина. Я бы очень рекомендовал
вам на любой PE, требующий
единиц CE «
Марк Хардкасл, П.Е.
Миссури
«Очень хороший выбор тем из многих областей техники.»
Randall Dreiling, P.E.
Миссури
«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь
по ваш промо-адрес который
сниженная цена
на 40%. «
Конрадо Казем, П.E.
Теннесси
«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».
Charles Fleischer, P.E.
Нью-Йорк
«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику
кодов и Нью-Мексико
правил. «
Брун Гильберт, П.E.
Калифорния
«Мне очень понравились занятия. Они стоили потраченного времени и усилий».
Дэвид Рейнольдс, P.E.
Канзас
«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng
при необходимости дополнительных
Сертификация . «
Томас Каппеллин, П.E.
Иллинойс
«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали
мне то, за что я заплатил — много
оценено! «
Джефф Ханслик, P.E.
Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы.
для инженера »
Майк Зайдл, П.E.
Небраска
«Курс был по разумной цене, а материалы были краткими и
хорошо организовано. «
Glen Schwartz, P.E.
Нью-Джерси
«Вопросы подходили для уроков, а материал урока —
хороший справочный материал
для деревянного дизайна. «
Брайан Адамс, П.E.
Миннесота
«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»
Роберт Велнер, P.E.
Нью-Йорк
«У меня был большой опыт работы в прибрежном строительстве — проектирование
Building курс и
очень рекомендую .»
Денис Солано, P.E.
Флорида
«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими
хорошо подготовлены. «
Юджин Брэкбилл, П.Е.
Коннектикут
«Очень хороший опыт. Мне нравится возможность загрузить учебные материалы на номер
.обзор где угодно и
всякий раз.»
Тим Чиддикс, P.E.
Колорадо
«Отлично! Поддерживаю широкий выбор тем на выбор».
Уильям Бараттино, P.E.
Вирджиния
«Процесс прямой, без всякой ерунды. Хороший опыт».
Тайрон Бааш, П.E.
Иллинойс
«Вопросы на экзамене были зондирующими и продемонстрировали понимание
материала. Полная
и комплексное »
Майкл Тобин, P.E.
Аризона
«Это мой второй курс, и мне понравилось то, что мне предложили этот курс
поможет по телефону
работ.»
Рики Хефлин, П.Е.
Оклахома
«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».
Анджела Уотсон, P.E.
Монтана
«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».
Кеннет Пейдж, П.E.
Мэриленд
«Это был отличный источник информации о солнечном нагреве воды. Информативный
и отличный освежитель ».
Luan Mane, P.E.
Conneticut
«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем
вернуться, чтобы пройти викторину «
Алекс Млсна, П.E.
Индиана
«Я оценил объем информации, предоставленной для класса. Я знаю
это вся информация, которую я могу
использование в реальных жизненных ситуациях »
Натали Дерингер, P.E.
Южная Дакота
«Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне
успешно завершено
курс.»
Ира Бродская, П.Е.
Нью-Джерси
«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться
и пройдите викторину. Очень
удобно и на моем
собственный график «
Майкл Глэдд, P.E.
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.»
Деннис Фундзак, П.Е.
Огайо
«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH
свидетельство. Спасибо за изготовление
процесс простой. »
Fred Schaejbe, P.E.
Висконсин
«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел
один час PDH в
один час. «
Стив Торкильдсон, P.E.
Южная Каролина
«Мне понравилось загружать документы для проверки содержания
и пригодность, до
имея для оплаты
материал .»
Ричард Вимеленберг, P.E.
Мэриленд
«Это хорошее напоминание об EE для инженеров, не занимающихся электричеством».
Дуглас Стаффорд, П.Е.
Техас
«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем
процесс, требующий
улучшение.»
Thomas Stalcup, P.E.
Арканзас
«Мне очень нравится удобство участия в викторине онлайн и получение сразу
сертификат . «
Марлен Делани, П.Е.
Иллинойс
«Учебные модули CEDengineering — это очень удобный способ доступа к информации по номеру
.многие различные технические зоны за пределами
по своей специализации без
надо ехать.»
Гектор Герреро, П.Е.
Грузия
Распределительное устройство — однофазное и трехфазное распределительное оборудование
Когда электроэнергия распределяется в точку ее использования, она обычно бывает однофазным или трехфазным переменным. ток (AC) напряжение. Однофазное переменное напряжение распределяется по жилым домам. и небольшие коммерческие здания. Обычно трехфазное переменное напряжение составляет распространяется на промышленные предприятия и крупные коммерческие здания.Таким образом основные типы систем распределения электроэнергии — жилые (однофазные) и промышленные или коммерческие (трехфазные).
Важный аспект как однофазного, так и трехфазного распределения системы заземления. Два способа заземления, системное заземление и оборудование заземление, будет обсуждаться в этом разделе, наряду с замыканием на землю. защитное снаряжение.
ТЕРМИНОЛОГИЯ
В этом разделе (Раздел 10) однофазное и трехфазное распределение электроэнергии системы обсуждаются.Изучив этот раздел, вы должны иметь понимание следующих терминов:
- Жилое распределение
- Коммерческое распространение
- Промышленное распределение
- Однофазная двухпроводная распределительная система
- Однофазная трехпроводная распределительная система
- Горячая линия
- нейтральный
- Заземление системы
- Земля для оборудования
- Идентификация цвета изоляции
- Подключение трехфазного трансформатора треугольник-треугольник
- Подключение трехфазного трансформатора треугольником
- Подключение трехфазного трансформатора звезда-звезда
- Подключение трехфазного трансформатора звезда-треугольник
- Подключение трехфазного трансформатора с открытым треугольником
- Трехфазная трехпроводная распределительная система
- Трехфазный, трехпроводной, с системой распределения нейтрали
- Трехфазная, четырехпроводная распределительная система
- «Дикая» фаза
- Электрод заземления
- Прерыватель замыкания на землю (GFI)
- Защита тела от рук
- Национальный электротехнический кодекс (NEC)
- Электротехническая инспекция
- Падение напряжения в параллельной цепи
- Ответвление цепи
- Заземляющий провод
- Кабель в неметаллической оболочке (NMC)
- Кабель в металлической оболочке
- Жесткий трубопровод
- Электрические металлические трубки (EMT)
ОДНОФАЗНЫЕ СИСТЕМЫ
Большая часть электроэнергии, производимой на электростанциях, производится как трехфазное переменное напряжение.Электроэнергия также передается в форма трехфазного напряжения по магистральным линиям электропередачи.
По назначению трехфазное напряжение может быть изменено на три отдельных однофазные напряжения для распределения по жилым помещениям.
Хотя однофазные системы используются в основном для электроснабжения жилых помещений. системы распределения, есть некоторые промышленные и коммерческие применения однофазных систем.Однофазное распределение мощности обычно возникает от трехфазных линий электропередач, поэтому системы электроснабжения способны питания как трехфазных, так и однофазных нагрузок от одной и той же мощности линий. ИНЖИР. 1 показана типичная система распределения электроэнергии от силовой станции (источника) на различные однофазные и трехфазные нагрузки, которые подключены к системе.
РИС. 1. Типовая система распределения электроэнергии.
РИС.2. Однофазные системы распределения электроэнергии: (A) Однофазные,
двухпроводная система, (B) Однофазная трехпроводная система (взятая из двух
горячие линии), (C) Однофазная, трехпроводная система (взятая от одной горячей
линия и одна заземленная нейтраль).
Однофазные системы могут быть двух основных типов — однофазные двухпроводные. системы или однофазные трехпроводные системы. Однофазный двухпроводной система показана на фиг. 2А (верхняя диаграмма). Эта система использует 10 кВ Трансформатор, вторичная обмотка которого производит одно однофазное напряжение, например, 120 или 240 вольт.Эта система имеет одну горячую линию и одну нейтральную линия.
В бытовых распределительных системах этот тип чаще всего использовался несколько лет назад обеспечивали работу при напряжении 120 вольт. Однако, поскольку мощность прибора требования возросли, необходимость в системе с двумя напряжениями стала очевидной.
Для удовлетворения спроса на увеличение мощности в жилых домах однофазные трехпроводные система сейчас используется. Домашний служебный вход может быть запитан напряжением 120/240 вольт. энергии методами, показанными на фиг. 2B и 10 2C (в центре и внизу диаграммы).Каждая из этих систем получена от трехфазного источника питания. линия. Однофазная трехпроводная система имеет две горячие линии и нейтраль. линия. Горячие линии, изоляция которых обычно черная и красная, подключен к внешним выводам вторичных обмоток трансформатора. Нейтральная линия (белый изолированный провод) подключается к центральному отводу. распределительного трансформатора. Таким образом, с нейтрального на любую горячую линию, Может быть получено 120 вольт для освещения и требований малой мощности.
По горячим линиям подается 240 вольт для повышенных требований к мощности.
Таким образом, текущая потребность в крупномасштабном энергоемком оборудовании сокращается вдвое, поскольку используется 240 вольт, а не 120 вольт. Или однофазная двухпроводная или однофазная трехпроводная система может использоваться для подачи однофазного питания для промышленного или коммерческого использования. Однако эти однофазные системы в основном предназначены для бытового электроснабжения. распределение.
ТРЕХФАЗНЫЕ СИСТЕМЫ
Поскольку промышленные предприятия и коммерческие здания используют преимущественно трехфазное питание, они полагаются на трехфазные распределительные системы для подачи этой энергии. Большие трехфазные распределительные трансформаторы обычно располагаются на подстанциях. прилегающие к промышленным предприятиям или коммерческим зданиям.
Их цель состоит в том, чтобы подавать правильное напряжение переменного тока, чтобы соответствовать необходимым требованиям. требования к нагрузке.Напряжения переменного тока, которые передаются в распределительную подстанции находятся под высоким напряжением, которое необходимо понизить на три фазы. трансформаторы.
РИС. 3. Основные способы подключения трехфазного трансформатора: (A)
соединение дельта-треугольник, (B) соединение треугольник-звезда, (C) соединение звезда-звезда
соединение, (D) соединение звезда-треугольник и (E) соединение разомкнутый треугольник.
Подключение трехфазного трансформатора
Есть пять способов, которыми первичная и вторичная обмотки возможно подключение трехфазных трансформаторов.Это дельта-дельта, соединения по схеме «треугольник», «звезда-звезда», «звезда-треугольник» и «открытый треугольник». Эти основные методы проиллюстрированы на фиг. 3. Соединение дельта-дельта. (Рис. 3A) используется для некоторых приложений с более низким напряжением.
Метод «треугольник-звезда» (фиг. 3B) обычно используется для повышения напряжения, так как вольт-фарадная характеристика вторичной обмотки, соединенной звездой, приводит к с внутренним повышающим коэффициентом в 1,73 раза. Соединение звезда-звезда фиг.3C обычно не используется, в то время как метод звезда-дельта (фиг. 3D) можно выгодно использовать для понижения напряжения. Открытая дельта соединение (фиг. 3E) используется в случае повреждения одной обмотки трансформатора, или выведен из эксплуатации. Трансформатор по-прежнему будет трехфазным. мощность, но при меньшем токе и мощности. Эта связь может также желательно, когда полная мощность трех трансформаторов не нужно на потом.Два идентичных однофазных трансформатора могут использоваться для подачи питания на нагрузку до третьего трансформатор необходим для удовлетворения повышенных требований к нагрузке.
Типы трехфазных систем
Трехфазные системы распределения электроэнергии, обеспечивающие промышленное и коммерческие здания, классифицируются по количеству фаз и количество необходимых проводов. Эти системы, показанные на фиг. 4, являются трехфазная трехпроводная система, трехфазная трехпроводная система с нейтраль и трехфазная четырехпроводная система.Подключение первичной обмотки здесь не рассматривается. Трехфазная трехпроводная система, показанная на ИНЖИР. 4A, может использоваться для питания нагрузки двигателя 240 или 480 вольт. Его основным недостатком является то, что он подает только один вольт, так как только К нагрузке подведены три горячие линии.
Обычный код цвета изоляции для этих трех горячих линий — черный, красный или синий, как указано в NEC.
РИС. 4. Промышленные системы распределения электроэнергии: (A) Трехфазные, трехпроводные.
система, (B) трехфазная, трехпроводная система с нейтралью, (C) трехфазная,
четырехпроводная система.
Недостатком трехфазной трехпроводной системы может быть частично за счет добавления одной обмотки с центральным отводом, как показано в трехфазном трехпроводная система с нейтралью, показанная на фиг. 4Б. Эта система может использоваться как питание на 120/240 вольт или 240/480 вольт. Если предположить, что это используется для питания 120/240 вольт, напряжение от горячей линии в точке 1 и горячая линия в точке 2 к нейтрали будет 120 вольт, потому что обмотки с центральным отводом.
Однако 240 В по-прежнему будут доступны на любых двух горячих линиях. Нейтральный провод имеет цветовую маркировку с белой или серой изоляцией. В Недостатком этой системы является то, что при замене проводки она можно подключить нагрузку 120 вольт между нейтралью и точкой 3 (иногда называемая «дикой» фазой). Напряжение присутствует здесь будет комбинация трехфазных напряжений между точками 1 и 4 и пункты 1 и 3.Это будет напряжение более 300 вольт! Хотя существует ситуация «дикой фазы», эта система способен питать как нагрузки большой мощности, так и нагрузки низкого напряжения, например, используются для освещения и небольшого оборудования.
Наиболее широко используемой трехфазной системой распределения электроэнергии является трехфазная четырехпроводная система. Эта система, показанная на фиг. 4C, обычно поставляет 120/208 вольт и 277/480 вольт для требований промышленной или коммерческой нагрузки.Здесь проиллюстрирована система на 120/208 вольт. От нейтрального до любого горячего линии, можно получить 120 вольт для освещения и маломощных нагрузок. Через любые две горячие линии, 208 вольт для питания двигателей или других высокомощные нагрузки. Самая популярная система для промышленных и коммерческих Распределение питания — это система на 277/408 В, которая способна обеспечить как трехфазные, так и однофазные нагрузки. Система 240/416 вольт иногда используется для промышленных нагрузок, в то время как система на 120/208 вольт часто используется для подземного распространения в городских районах.Обратите внимание, что эта система на основе характеристик напряжения трехфазного соединения звездой, и что соотношение VL = VP × 1,73 существует для каждого приложения этой системы.
ЗАЗЕМЛЕНИЕ РАСПРЕДЕЛИТЕЛЬНЫХ СИСТЕМ
Концепция заземления в системе распределения электроэнергии очень важно. Системы распределения должны иметь непрерывную бесперебойную работу. основания. Если заземленный провод разомкнут, земля больше не функциональный.В условиях открытого грунта могут возникнуть серьезные проблемы с безопасностью. и вызвать ненормальную работу системы.
Распределительные системы должны быть заземлены на подстанциях, а в конце линий электропередач до подачи питания на нагрузку. Заземление необходим на подстанциях для безопасности населения и энергетики обслуживающий персонал компании. Заземление также дает точки для соединения нейтрали трансформатора для заземления оборудования. Безопасность и оборудование Основания будут рассмотрены более подробно позже.
На подстанциях все внешние металлические части должны быть заземлены, а все трансформатор, автоматический выключатель и корпуса переключателей должны быть заземлены. А также металлические заборы и любой другой металл, входящий в состав подстанции. конструкция должна быть заземлена. Заземление гарантирует, что любой человек, который прикосновение к любой из металлических частей не вызовет поражения электрическим током. Следовательно, если высоковольтная линия соприкоснется с любым из заземленные части, система будет открыта защитным оборудованием.Таким образом существенно снижается опасность появления высоких напряжений на подстанциях. заземлением. Фактическое заземление выполняется сваркой, пайкой, или привинчивание проводника к металлическому стержню или стержню, который затем физически помещен в землю. Это стержневое устройство называется заземляющим электродом. Правильные методы заземления необходимы для безопасности, а также для производительность схемы. Есть два типа заземления: (1) заземление системы, и (2) заземление оборудования.Еще один важный фактор заземления — это замыкание на землю. защитное снаряжение.
ЗАЗЕМЛЕНИЕ СИСТЕМЫ
Заземление системы включает в себя фактическое заземление токоведущей проводник (обычно называемый нейтралью) системы распределения электроэнергии.
Трехфазные системы могут быть звездообразными или треугольными. Звездообразная система имеет очевидное преимущество перед дельта-системой, так как по одной стороне каждого фазная обмотка подключена к земле.Мы определим землю как ориентир точка нулевого напряжения, которая обычно является фактическим подключением на землю. Общие выводы звездообразной системы при подключении к земле, стать нейтральным проводом трехфазного четырехпроводного система.
Дельта-система не поддается заземлению, так как она не имеет общей нейтрали. Проблема замыканий на землю (линейный замыкания на землю), возникающие в незаземленных системах треугольника, намного больше чем в звездообразных системах.Распространенным методом заземления дельта-системы является использовать соединение трансформатора звезда-треугольник и заземлить общие клеммы первичной обмотки, соединенной звездой. Тем не менее, звездообразная система теперь используется больше. часто для промышленного и коммерческого распределения, так как вторичный легко заземляется и обеспечивает защиту от перенапряжения от молнии или шорты на землю.
Однофазные системы на 120/240 В или 240/480 В заземлены в аналогично трехфазному заземлению.Нейтраль однофазной трехпроводная система заземляется металлическим стержнем (заземляющим электродом), приводимым в действие в землю в месте расположения трансформатора. Провода заземления системы изолированы белым или серым материалом для облегчения идентификации.
Заземление оборудования
Второй тип заземления — это заземление оборудования, которое, как термин подразумевает, размещает рабочее оборудование с потенциалом земли. Дирижер для этой цели используется либо неизолированный провод, либо зеленый изолированный провод. провод.NEC описывает условия, при которых требуется фиксированное электрическое оборудование. быть заземленным. Обычно все стационарное электрооборудование, расположенное в промышленных заводы или коммерческие здания должны быть заземлены. Типы оборудования которые должны быть заземлены, включая корпуса для коммутации и защиты оборудование для регулирования нагрузки, корпуса трансформаторов, корпуса электродвигателей, и стационарное электронное испытательное оборудование. Промышленные предприятия должны использовать 120 вольт, однофазные дуплексные розетки заземленного типа для всех переносных инструменты.Заземление этих розеток можно проверить с помощью плагин-тестер.
ЗАЩИТА ОТ ЗАЗЕМЛЕНИЯ
Прерыватели замыкания на землю (GFI) широко используются в промышленности, коммерческие и жилые системы распределения электроэнергии. Требуется NEC, что все 120-вольтовые, однофазные, 15- или 20-амперные розетки розетки, установленные на открытом воздухе или в ванных комнатах, имеют замыкание на землю к ним подключены прерыватели.Эти устройства также называются устройствами защиты от замыканий на землю. прерыватели цепи (GFCI).
GFI Operation
Эти устройства разработаны таким образом, чтобы исключить опасность поражения электрическим током. от людей, контактирующих с горячей линией переменного тока (фаза-земля короткая). Прерыватель цепи предназначен для обнаружения любых изменений в цепи. условия, например, возникшие при коротком замыкании между линией и землей.
Один тип GFI имеет провода управления, проходящие через магнитный тороидальный петля (см. фиг.5). Обычно переменный ток, протекающий через два проводники внутри петли равны по величине и противоположны по направлению. Любое изменение в этом равном и противоположном состоянии воспринимается магнитным полем. тороидальная петля. Когда происходит короткое замыкание на землю, мгновенное происходит изменение условий цепи. Изменение вызывает магнитное поле индуцировать в тороидальную петлю. Индуцированный ток усиливается до уровня, достаточного для размыкания механизма выключателя.Таким образом, любое замыкание на землю вызовет прерыватель замыкания на землю. открыть.
Скорость работы GFI настолько высока, что опасность поражения электрическим током людей значительно сокращается, так как только минутный ток открывает схема.
РИС. 5. Упрощенная схема прерывателя замыкания на землю
Приложения GFI
Требуются строительные площадки, на которых устраивается временная проводка. использовать GFI для защиты работников, использующих электрооборудование.Защита от замыканий на землю частных лиц и коммерческого оборудования должна Предусмотрено для систем с соединением звездой от 150 до 600 вольт на каждую распределительный щит с номиналом более 1000 ампер. В этой ситуации, GFI откроет все незаземленные проводники на щитке при короткое замыкание на землю. Теперь GFI используются для всех типов жилых домов, коммерческое и промышленное применение.
Типы систем защиты от замыканий на землю
Используются четыре основных типа систем защиты от замыканий на землю. Cегодня.К ним относятся: применение в больницах, применение в жилых помещениях, электродвигатель. приложения защиты и специальное распределение электроэнергии системные приложения. Эти системы защиты от замыканий на землю можно разделить на по тому, что они должны защищать, или по типу защиты, которую они должны предоставлять. Разработаны приложения для больниц и жилых помещений. чтобы уберечь людей от чрезмерных ударов. Двигатель и электрическая мощность приложения предназначены для защиты электрооборудования.
Другой метод классификации — в зависимости от силы тока. требуется перед срабатыванием системы охранной сигнализации или отключением электрического цепь происходит. Типичные значения тока, которые вызовут срабатывание сигнализации или отключение для активации 0,002 ампера (2 мА) для больничных приложений, 0,005 амперы (5 мА) для жилых помещений, от 5 до 100 ампер для защиты электродвигателей схемы применения и от 200 до 1200 ампер для распределения электроэнергии применение оборудования.
Необходимость защиты от замыканий на землю
Чтобы понять необходимость прерывателя цепи замыкания на землю (для защиты людей) сначала необходимо понять некоторые основные факты.
Эти факты относятся как к людям, так и к замыканиям на землю.
Важным фактом является то, что сопротивление тела человека зависит от количество влаги, присутствующей на коже, мышечная структура тело, и напряжение, которому подвергается тело.Эксперименты Показано, что сопротивление тела из одной руки в другую немного где от 1000 до 4000 Ом. Эти оценки основаны на нескольких предположения относительно влажности и мышечной структуры. Мы также знаем что сопротивление тела (из рук в руки) ниже при более высоком напряжении возрастов. Это связано с тем, что более высокое напряжение способно «сломать» вниз »внешние слои кожи. Таким образом, более высокое напряжение более опасный.
Мы можем использовать закон Ома, чтобы оценить, что типичный результирующий ток от среднего сопротивления тела (из рук в руки) около 115 мА при 240 вольт переменного тока и около 40 мА при 120 вольт переменного тока. Эффекты 60 Гц AC на теле человека принято принимать, как указано в ТАБЛИЦЕ. 1.
Фибрилляция желудочков — это патология сокращения сердце. Как только возникает фибрилляция желудочков, она будет продолжаться и наступит смерть. произойдет в течение нескольких минут.Реанимационные методы, если они применяются немедленно, может спасти жертву. Смерть от поражения электрическим током из-за высокого процента смертей, происходящих дома и на производстве. Многие из этих смертей происходят из-за контакта с цепями низкого напряжения (600 вольт и ниже), в основном системы на 120 и 240 вольт.
=========
ТАБЛИЦА 1. Реакция тела на переменный ток
Величина воздействия тока на тело 1 мА или меньше Нет ощущений (не ощущается).
Более 5 мА Болезненный шок.
Более 10 мА Сокращения мышц; может вызвать «замораживание» электрическая схема для некоторых людей.
Более 15 мА Сокращения мышц; может вызвать «замораживание» электрическая схема для большинства людей.
Более 30 мА затрудненное дыхание; может вызвать потерю сознания.
от 50 до 100 мА Возможна фибрилляция желудочков сердца.
От 100 до 200 мА Фибрилляция желудочков сердца определена.
Более 200 мА Сильные ожоги и мышечные сокращения; сердце больше склонен к прекращению биений, чем к фибрилляции.
1 ампер и выше: необратимое повреждение тканей тела.
========
Защита от замыканий на землю для дома
Прерыватели замыкания на землю для дома бывают трех типов: (1) контурные. прерыватель, (2) розетки и (3) вставные типы. Защита от замыканий на землю устройства сконструированы в соответствии со стандартами, разработанными Андеррайтером. Лаборатории.Автоматические выключатели GFI сочетают в себе защиту от замыканий на землю. и прерывание цепи при той же перегрузке по току и коротком замыкании защитное оборудование, как и стандартный автоматический выключатель. Схема GFI автоматический выключатель занимает то же место, что и стандартный автоматический выключатель. Он обеспечивает такую же защиту разветвленной цепи, что и стандартный автоматический выключатель, а также защита от замыканий на землю. Чувство GFI система постоянно контролирует текущий баланс в незаземленных (горячих) провод и заземленный (нейтральный) провод.Ток в нейтрали провод становится меньше тока в горячем проводе при замыкании на землю развивается. Это означает, что часть тока в цепи возвращается заземлить другим способом, кроме нулевого провода. Когда дисбаланс при возникновении тока датчик (дифференциальный трансформатор тока) посылает сигнал на твердотельную схему, которая активирует механизм отключения. Это действие открывает горячую линию. Дифференциальный ток всего 5 мА приведет к тому, что датчик отправит сигнал неисправности и вызовет автоматический выключатель чтобы прервать цепь.
Обычно розетки GFI обеспечивают защиту от замыканий на землю на 120-, Системы переменного тока на 208 или 240 вольт. Розетки GFI бывают на 15 и 20 ампер. конструкции. 15-амперный блок имеет конфигурацию розетки для использования с Только вилки на 15 ампер. Устройство на 20 ампер имеет конфигурацию розетки. для использования с 15- или 20-амперными вилками. Эти розетки GFI имеют подключения для проводов под напряжением, нейтрали и заземления. Все розетки GFI имеют двухполюсный механизм отключения, который отключает как горячий, так и подключения нейтральной нагрузки в момент возникновения неисправности.
Вставные розетки GFI обеспечивают защиту путем подключения к стандартному настенная розетка. Некоторые производители предлагают устройства, которые тоже не будут двух- или трехпроводные розетки. Главное преимущество этого типа единицы в том, что ее можно перемещать из одного места в другое.
Защита от замыканий на землю для распределительного оборудования
Замыкания на землю могут вывести из строя электрооборудование, если продолжить работу.Междуфазные короткие замыкания и некоторые типы замыканий на землю обычно высокий ток. Обычно они адекватно обрабатываются обычными защитное оборудование от сверхтоков. Однако некоторые замыкания на землю производят эффект искрения из-за относительно слабых токов, которые недостаточно велики для срабатывания обычных защитных устройств. Электрическая дуга может вызвать ожоги. оборудование. Система с напряжением 480 или 600 вольт более восприимчива к образованию дуги. возраст, чем система на 120, 208 или 240 вольт, потому что более высокие напряжения выдерживают эффект искрения.Быстро обнаруживаются сильноточные неисправности обычными устройствами максимального тока. Должны быть обнаружены слаботочные значения GFIs.
Замыкания на землю, вызывающие искрение в оборудовании, вероятно, самые частые неисправности. Они могут возникнуть в результате повреждения или порчи. изоляция, грязь, влага или неправильные соединения. Они обычно случаются между одним токоведущим проводом и заземленным корпусом оборудования, кабелепроводом, или металлический корпус.Напряжение между фазой и нейтралью источника вызовет ток, протекающий по горячему проводнику, по пути дуги и обратно через наземный путь. Импеданс проводника и заземления путь (корпус, кабелепровод или корпус) зависит от многих факторов. Как В результате невозможно предсказать значение тока короткого замыкания. Это также может увеличить или уменьшаться по мере продолжения неисправности.
Очевидно, что многие факторы влияют на величину, продолжительность, и эффект дугового замыкания на землю.В некоторых условиях возникает большой величина тока короткого замыкания, в то время как другие ограничивают ток короткого замыкания относительно небольшое количество. Величина дугового тока и время, в течение которого дуга сохраняется. может нанести очень большой ущерб оборудованию. Наверное, важнее коэффициент — это период времени дугового напряжения, так как чем дольше время дуги, тем больше вероятность того, что дуги распространятся на разные области внутри оборудования.
Реле тока заземления — это один из методов защиты оборудования от замыкания на землю.Ток протекает через нагрузку или короткое замыкание по горячим и нейтральные проводники и возврат к источнику на этих проводниках-а, в некоторой степени по наземной дорожке. Нормальный ток пути заземления очень маленький. Следовательно, практически весь ток, текущий из источник также возвращается по той же горячей линии и нейтральным проводникам. Однако, если происходит замыкание на землю, ток заземления увеличится. до точки, где ток уйдет через неисправность и вернется через наземный путь.
В результате ток возвращается в токоведущий и нейтральный проводники. меньше, чем выходящая сумма. Разница указывает на количество тока в пути заземления. Реле, которое это чувствует разность токов, может действовать как устройство защиты от замыканий на землю.
Защита электродвигателей от замыканий на землю
Системы защиты двигателей обеспечивают защиту в диапазоне от 5 до 100 ампер.Этот тип системы защиты от замыканий на землю обеспечивает защиту от замыкания на землю как в однофазных, так и в трехфазных системах. Многие отказы системы изоляции начинаются с небольшого тока утечки, который накапливается со временем, пока не возникнет повреждение. Эти системы защиты от замыканий на землю обнаруживать токи утечки на землю, пока они еще малы, и, таким образом, предотвратить серьезное повреждение двигателей.
РАЗРАБОТКА ЭЛЕКТРОПРОВОДОВ ДЛЯ СИСТЕМ РАСПРЕДЕЛЕНИЯ
Схема электропроводки систем распределения электроэнергии может быть очень сложный.При подключении необходимо учитывать множество факторов. дизайн системы распределения, установленной в здании. Электропроводка стандарты указаны в Национальном электротехническом кодексе (NEC), который опубликовано Национальной ассоциацией электрозащиты (NEP А). NEC, местные стандарты электропроводки и правила проверки электрооборудования следует учитывать при проектировании электропроводки. рассмотрение.
Есть несколько соображений по проектированию электропроводки распределительной системы. которые специально указаны в NEC.В этом разделе мы будем занимается расчетом падения напряжения, проектированием ответвлений, фидерной цепью дизайн и дизайн систем заземления.
Национальный электротехнический кодекс (NEC) Использование
NEC устанавливает минимальные стандарты для электропроводки в Соединенные Штаты. Стандарты, содержащиеся в NEC, соблюдаются, поскольку включены в различные городские и общественные постановления, касающиеся с электропроводкой в жилых домах, на промышленных предприятиях и в коммерческих здания.Таким образом, эти местные постановления соответствуют стандартам изложено в НЭК.
В большинстве регионов США лицензия должна быть получена любым физическое лицо, занимающееся электромонтажом. Обычно нужно пройти тест управляется городом, округом или штатом, чтобы получить это лицензия.
Эти тесты основаны на местных постановлениях и NEC. Правила для электрическая проводка, установленная местной электросетью компании также иногда включаются в лицензионный тест.
Осмотр электрооборудования
Когда строятся новые здания, они должны быть проверены, чтобы убедиться, что электропроводка соответствует нормам местных постановлений, NEC и местная энергетическая компания. Организация, поставляющая Электроинспекторы варьируются от одного населенного пункта к другому. Обычно местная энергетическая компания может посоветовать людям, с кем связаться для получения информации об электротехнических обследованиях.
Падение напряжения в электрических проводниках
Хотя сопротивление электрических проводников очень низкое, длина провода может вызвать значительное падение напряжения. Это проиллюстрировано на фиг. 6. Помните, что падение напряжения — это ток, умноженный на сопротивление. (I × R). Следовательно, всякий раз, когда через систему протекает ток, напряжение капля создается. В идеале падение напряжения, вызванное сопротивлением проводника будет очень мало.
Однако более длинный отрезок электрического проводника имеет большее сопротивление. Поэтому иногда необходимо ограничить расстояние, на котором проводник может распространяться от источника питания до нагрузки, которую он питает. Много типы нагрузок не работают должным образом, когда значение меньше полного имеется напряжение источника.
На РИС. 6 видно, что по мере увеличения падения напряжения (VD) напряжение, приложенное к нагрузке (VL), уменьшается.Как ток в системе увеличивается, VD увеличивается, вызывая уменьшение VL, так как напряжение источника остается такой же.
ТАБЛИЦА 2. Размеры медных и алюминиевых проводников
РИС. 6. Падение напряжения в электрической цепи
Расчет падения напряжения с использованием таблицы проводников
При проектировании электропроводки важно уметь для определения величины падения напряжения, вызванного сопротивлением проводника.
ТАБЛИЦА 2 используется для выполнения этих расчетов. NEC ограничивает сумму падения напряжения, которое может иметь система. Это означает, что длинные серии проводников обычно следует избегать. Помните, что дирижер с большая площадь поперечного сечения вызовет меньшее падение напряжения, так как его сопротивление меньше.
Чтобы лучше понять, как определить размер необходимого проводника чтобы ограничить падение напряжения в системе, мы рассмотрим пример проблемы.
Пример задачи:
Дано: 200-амперная нагрузка, расположенная в 400 футах (121,92 метра) от 240-вольтной однофазный источник. Ограничьте падение напряжения до 2 процентов от источника.
Находка: размер правого медного проводника, необходимый для ограничения напряжения. падение системы.
Решение:
1. Допустимое падение напряжения составляет 240 В, умноженное на 0,02 (2%). Этот равно 4.8 вольт.
2. Определите максимальное сопротивление для 800 футов (243,84 метра). Этот эквивалентно 400 футов (121,92 метра) × 2, поскольку есть два токопроводящие жилы для однофазной системы.
3. Определите максимальное сопротивление для 1000 футов (304,8 метра) дирижер.
4. Используйте ТАБЛИЦУ 2, чтобы найти сечение медного проводника, у которого сопротивление постоянному току (DC) (Ом на 1000 футов) значение, равное до или меньше значения, рассчитанного в пункте 3 выше.Выбранный дирижер размер проводника 350 MCM, RH Медь.
5. Проверьте этот провод по таблице допустимых значений тока, чтобы убедиться, что он достаточно большой, чтобы выдерживать 200 ампер. ТАБЛИЦА 3 показывает, что 350 MCM, Правый медный проводник выдерживает ток 310 ампер; поэтому используйте Проводники 350 MCM. (Всегда не забывайте использовать самый большой проводник, если Шаги 4 и 5 дают противоречивые значения.)
6. Если сила тока больше, чем указано в таблицах, используйте больше, чем один провод такого же размера для проектных расчетов.
ТАБЛИЦА 3. Значения амплитуды проводов в дорожке качения или кабеле (не более 3)
Альтернативный метод расчета падения напряжения
В некоторых случаях более простой метод определения сечения проводника для ограничение падения напряжения заключается в использовании одной из следующих формул для Найдите площадь поперечного сечения (см) проводника.
… где:
p = удельное сопротивление из ТАБЛИЦЫ 2
I = ток нагрузки в амперах,
VD = допустимое падение напряжения, а
d = расстояние от источника до груза в футах.
Пример задачи для однофазной системы, приведенный выше. раздел можно настроить следующим образом:
Следующий по величине размер — провод 350 MCM.
РАЗРАБОТКА ОТВЕТСТВЕННОЙ ЦЕПИ
Ответвленная цепь определяется как цепь, идущая от последнего устройство защиты от перегрузки по току энергосистемы. Ответвительные цепи, согласно NEC, их мощность составляет 15,20,30,40 или 50 ампер.Нагрузки более 50 ампер не должны подключаться к ответвленной цепи.
В NEC существует множество правил, применимых к проектированию ответвленных цепей.
Следующая информация основана на NEC. Во-первых, каждая схема должны быть спроектированы таким образом, чтобы исключить случайное короткое замыкание или заземление. вызвать повреждение любой части системы. Затем предохранители или автоматические выключатели должны использоваться в качестве устройств защиты от перегрузки по току параллельной цепи. Должен короткое замыкание или заземление, защитное устройство должно открыть и прервать прохождение тока в ответвленной цепи.Один важный Согласно правилу NEC, провод № 16 или № 18 (удлинитель) может быть отключен. от проводов № 12 или № 14, но не от проводников больше, чем №12. Это означает, что удлинитель провода №16 не должен быть подключенным к розетке с проводом № 10. Ущерб меньше провода (из-за эффекта нагрева) до того, как устройство максимального тока сможет open устраняется применением этого правила. Цепи освещения составляют единое целое наиболее распространенных типов ответвлений.Обычно они либо Схемы на 15 или 20 ампер.
Максимальный номинал отдельной нагрузки (например, переносного устройства). подключен к параллельной цепи) составляет 80 процентов тока параллельной цепи рейтинг. Следовательно, на 20-амперную схему не может быть одной нагрузки. который потребляет более 16 ампер. Если нагрузка постоянно подключена прибора, его текущий рейтинг не может превышать 50 процентов от емкость ответвительной цепи — если подключены переносные приборы или фонари к той же схеме.
Падение напряжения в цепях ответвлений
Ответвительные цепи должны быть спроектированы так, чтобы подавалось достаточное напряжение. подключены ко всем частям схемы. Расстояние, на которое ответвление цепи может выходить из источника напряжения или панели распределения питания, поэтому ограничено. Падение напряжения на 3 процента указывается NEC как максимально допустимый для параллельных цепей в электропроводке дизайн.
Метод расчета падения напряжения в параллельной цепи: пошаговый процесс, который иллюстрируется следующей задачей.Обратитесь к принципиальной схеме, представленной на фиг. 7.
Пример задачи:
Дано: 120-вольтная 15-амперная ответвленная цепь питает нагрузку, состоящую из из четырех ламп. Каждая лампа потребляет от источника 3 ампера тока.
Лампы расположены на расстоянии 10 футов (3,05 метра) от источника питания. распределительный щит.
Найти: напряжение на лампе номер 4.
Решение:
1.Найдите сопротивление для 20 футов (6,1 м) проводника (такое же как для 10-футового проводника × 2). Медный провод №14 применяется на 15 ампер. ответвленные цепи. Из ТАБЛИЦЫ 2 мы находим, что сопротивление 1000 футов (304,8 метра) медного провода № 14 составляет 2,57 Ом. Следовательно, сопротивление 20 футов провода составляет: [не показано]
РИС. 7. Схема для расчета падения напряжения в ответвленной цепи
Обратите внимание, что напряжение на лампе номер 4 значительно снижено. от значения источника 120 В из-за падения напряжения в проводниках.Также обратите внимание, что сопротивления, используемые для расчета падений напряжения представлены оба провода (горячий и нейтральный) ответвленной цепи. Обычно 120-вольтовые параллельные цепи не могут превышать 100 футов (30,48 метра). от распределительного щита. Предпочтительное расстояние — 75 футов. (22,86 метра). Падение напряжения в проводниках параллельной цепи может быть уменьшается за счет уменьшения длины цепи или использования большего проводники.
При проектировании электропроводки жилых помещений падение напряжения во многих отраслях схемы сложно рассчитать, так как осветительные и переносные розетки прибора размещаются в одних и тех же ответвленных цепях.С переносная техника и «вставные» фонари используются не все время, падение напряжения будет варьироваться в зависимости от количества огней и используемая техника.
Эта проблема обычно не встречается в промышленных или коммерческих схема разводки светильников, так как осветительные блоки обычно больше и постоянно устанавливаются в ответвленных цепях.
Электромонтаж параллельных цепей
Ответвительная цепь обычно состоит из кабеля с неметаллической оболочкой, который подключается к распределительному щиту.Каждая ответвленная цепь, которая подключен к распределительному щиту, защищен плавким предохранителем или автоматический выключатель.
На силовой панели также есть главный выключатель, который управляет всеми ответвлениями. цепи, которые к нему подключены.
РИС. 8. Схема распределительного щита на однофазный,
трехпроводная ветвь
Однофазные ответвительные цепи
Схема однофазного трехпроводного (120/240 В) распределения питания панель показана на фиг.8. Обратите внимание, что восемь цепей на 120 В и одна 240-вольтовая цепь доступны от силовой панели. Этот тип системы используется в большинстве домов, где есть несколько 120-вольтных параллельных цепей. и, как правило, требуются три или четыре ответвления на 240 вольт. Обратите внимание на фиг. 8 что на каждой горячей линии есть автоматический выключатель, а на нейтральная линия подключается непосредственно к ответвленным цепям. Нейтралы должны никогда не открываться (плавиться). Это мера предосторожности при электромонтаже. дизайн.
Трехфазные ответвительные цепи
Схема трехфазного четырехпроводного (120/208 В) распределения питания панель показана на фиг. 9. Есть три однофазных 120-вольтовых ветви показаны две трехфазные 208-вольтовые цепи. Однофазный филиалы сбалансированы (по одной горячей линии от каждого филиала). Каждая горячая линия имеет индивидуальный автоматический выключатель. Необходимо подключить трехфазные линии. так что перегрузка в ответвленной цепи приведет к тому, что все три линии открыть.Это достигается за счет использования трехфазного автоматического выключателя, который расположен внутри, как показано на фиг. 9.
РИС. 9. Схема распределительного щита для трехфазного, четырехпроводного
ответвленная цепь.
УЧЕТ КОНСТРУКЦИИ КОНТУРА ПИТАТЕЛЯ
Цепи фидера используются для распределения электроэнергии для распределения энергии панели. Многие фидерные цепи простираются на очень большие расстояния; следовательно, Падение напряжения необходимо учитывать при проектировании цепи фидера.В высшем в цепях фидера снижается падение напряжения. Однако многие Для цепей фидера более низкого напряжения требуются проводники большого диаметра для обеспечения допустимый уровень падения напряжения. Сильноточные фидерные цепи также представляют проблему с точки зрения массивной защиты от перегрузки, которая иногда требуется. Эта защита обычно обеспечивается системным распределительным устройством. или центры нагрузки, где берут начало фидерные цепи.
РИС.10. Схема трехфазного выключателя
Определение размера контуров подачи
Величина тока, на которую должна быть рассчитана фидерная цепь. зависит от фактической нагрузки, требуемой распределением мощности параллельной цепи панели, которые он поставляет. Каждая панель распределения питания будет иметь отдельный фидерный контур. Кроме того, каждая фидерная цепь должна иметь свою собственную перегрузку. защита.
Следующая задача — это пример расчета размера питателя. схема.
Пример задачи:
Дано: подключены три люминесцентных светильника мощностью 15 кВт к трехфазной четырехпроводной (277/480 вольт) системе. Осветительные блоки имеют коэффициент мощности 0,8.
Найдите: необходимый размер алюминиевых фидеров THW для обеспечения этой нагрузки.
Решение:
1. Найдите линейный ток:
PT
IL = ——- 1.73 × ВЛ × пф
45 000 Вт
= ——— 1,73 × 480 В × 0,8
= 67,74 ампера
2. Из ТАБЛИЦЫ 3 мы находим, что размер проводника, который выдерживает 67,74 Ампер тока — это алюминиевый провод № 3 AWG THW.
Расчет падения напряжения для цепей фидера
При проектировании цепи фидера необходимо учитывать падение напряжения на проводнике. Падение напряжения в цепи фидера должно быть минимальным. так что максимальная мощность может быть доставлена к нагрузкам, подключенным к система подачи.NEC допускает падение напряжения не более 5%. совмещение ответвления и фидерной цепи; однако 5-процентное напряжение уменьшение представляет собой значительную потерю мощности в цепи. Мы можем рассчитать потери мощности из-за падения напряжения как V2 / R, где V2 — падение напряжения цепи, а R — сопротивление проводников цепи.
Расчет сечения фидера аналогичен расчету для ответвления. падение напряжения в цепи.Размер жилы должен быть достаточно большим. чтобы: (1) иметь требуемую допустимую нагрузку и (2) поддерживать падение напряжения ниже указанный уровень. Если второе требование не выполняется, возможно, потому что длинной фидерной цепи выбираемые проводники должны быть больше, чем требуется рейтинг допустимой нагрузки. Следующая проблема иллюстрирует расчет сечения фидера по падению напряжения в однофазная схема.
Пример задачи:
Дано: взрывозащищенная однофазная 240-вольтовая нагрузка на заводе рассчитана на 85 кг. Вт.Питатели (две горячие линии) будут иметь длину 260 футов (79,25 метра). медной жилы RHW. Максимально допустимое падение напряжения на проводе составляет 2 процента.
Найдите: требуемый размер проводника фидера.
Решение:
1. Найдите максимальное падение напряжения в цепи.
VD =% × Нагрузка
= 0,02 × 240
= 4,8 вольт
2. Найдите ток, потребляемый нагрузкой.
Мощность
I = —- Напряжение
85 000
= — 240
= 354,2 ампера
3. Найдите минимальную требуемую площадь проводника в миле. Используйте формулу дан для определения площади поперечного сечения проводника в однофазном систем, который ранее был приведен в «Альтернативном методе расчета падения напряжения »п.
см / дюйм = p × I × 2d
—— VD
10.4 × 354,2 × 2 × 260
= ———- 4,8
= 399 065,33 см
4. Определите сечение фидера. Следующий провод большего размера в ТАБЛИЦЕ 2 также 400 млн м3. Посмотрите ТАБЛИЦУ 3, и вы увидите, что 400 Медный провод MCM RHW выдерживает 335 ампер. Это меньше, чем требуется 354,2 ампера, поэтому используйте следующий больший размер, то есть 500 Проводник МСМ.
Размер жилы для трехфазной фидерной цепи определяется в аналогично.В этой задаче размер кормушки будет определяться на основу цепи падения напряжения.
Пример задачи:
Дано: ex 480-вольтовая, трехфазная, трехпроводная (треугольник) цепь фидера обеспечивает сбалансированную нагрузку 45 киловатт в коммерческое здание. Загрузка работает с коэффициентом мощности 0,75. Питающий контур (три горячие линии) будет длиной 300 футов (91,44 метра) правого медного проводника. В максимальное падение напряжения составляет 1 процент.
Найдите: требуемый размер фидера (исходя из падения напряжения в цепи).
Решение:
1. Найдите максимальное падение напряжения в цепи.
VD = 0,01 × 480
= 4,8 вольт
2. Найдите линейный ток, потребляемый нагрузкой.
-П
IL = —— 1,73 × V × pf
45000 Вт = ——- 1,73 × 480 × 0,75
= 72.25 ампер
3. Найдите минимальную требуемую площадь проводника в миле. Используйте формулу для нахождения cmil в трехфазных системах, что было дано в более ранней раздел.
p × I × 1,73 d
см = —— VD
10,4 × 72,25 × 1,73 × 300
= ———— 4,8
= 81 245 см
4. Определите сечение фидера. Ближайший и следующий по размеру размер проводника в ТАБЛИЦЕ 3 — No.1 AWG. Проверьте ТАБЛИЦУ 3, и вы видите, что медный провод № 1 AWG RH выдержит ток 130 ампер, что значительно больше требуемых 72,25 ампер. Поэтому используйте медь № 1 AWG RH. проводники для фидерной цепи.
ОПРЕДЕЛЕНИЕ РАЗМЕРА ЗАЗЕМЛЕНИЯ
Обсуждены вопросы заземления при проектировании электропроводки. ранее. Еще одна необходимость при проектировании электропроводки — определение размера необходимого в цепи заземляющего проводника.Все схемы, которые работать при напряжении 150 вольт или меньше должен быть заземлен; поэтому все жилые электрические системы должны быть заземлены. Системы высокого напряжения, используемые в промышленные и коммерческие здания имеют требования к заземлению, которые определены NEC и местными кодами. Земля на службе вход в здание обычно представляет собой металлическую водопроводную трубу, которая идет непрерывно, под землей, или заземляющий электрод, вбитый в землю возле служебного входа.
Размер заземляющего проводника определяется номинальным током. системы. В ТАБЛИЦЕ 4 перечислены сечения заземляющих проводов оборудования. для внутренней проводки, а в ТАБЛИЦЕ 5 указаны минимальные заземляющие провода. размеры для системного заземления служебных входов. Размеры заземления проводники, перечисленные в ТАБЛИЦЕ 4, предназначены для заземления оборудования, которое соединяет к кабельным каналам, кожухам и металлическим каркасам в целях безопасности. Примечание что нет.12 или кабель № 14, такой как 12-2 WG NMC, может иметь площадку для оборудования № 18. Земля содержится в том же оболочка кабеля в качестве токоведущих проводников. ТАБЛИЦА 5 используется для нахождения минимального размер заземляющих проводов, необходимых для служебных входов, в зависимости от размер проводов горячей линии, используемых с системой.
ЧАСТИ ВНУТРЕННЕЙ ЭЛЕКТРОПРОВОДКИ
Обсуждались некоторые детали внутренних систем распределения электроэнергии. ранее.Такие виды оборудования, как трансформаторы, распределительные устройства, проводники, изоляторы и защитное оборудование являются частями внутренней электропроводки. Однако есть определенные части внутренней системы распределения электроэнергии. системы, которые уникальны для самой системы электропроводки. Эти части включают кабели с неметаллической оболочкой (NMC), кабели с металлической оболочкой, жесткие кабелепровод и электрические металлические трубки (EMT).
ТАБЛИЦА 4. Размеры заземляющих проводов оборудования для внутренней обмотки
ТАБЛИЦА 5.Сечения заземляющих проводов для служебных входов
Кабель в неметаллической оболочке (NMC)
Кабель с неметаллической оболочкой — это распространенный тип используемых электрических кабелей. для внутренней проводки. Используется NMC, иногда называемый кабелем Romex. почти исключительно в жилых системах электропроводки. Самый распространенный вид используется № 12-2 WG, который проиллюстрирован на фиг. 11. Этот тип NMC поставляется в рулонах по 250 футов для внутренней проводки.Кабель имеет тонкий пластик. внешнее покрытие с тремя проводниками внутри. Проводники окрашены изоляция, указывающая, следует ли использовать провод в качестве провод под напряжением, нейтраль или заземляющий провод оборудования. Например, дирижер подключенный к горячей стороне системы имеет черную или красную изоляцию, а нейтральный провод имеет изоляцию белого или серого цвета. Оборудование заземляющий провод имеет зеленую изоляцию или не имеет изоляции (неизолированный дирижер).Есть несколько разных размеров втулок и соединителей. используется для установки NMC в зданиях.
РИС. 11. Кабель в неметаллической оболочке (MNC)
Обозначение № 12-2 WG означает, что (1) используемые медные жилы имеют калибр № 12 AWG, как измерено американским калибром проводов (AWG), (2) там два токоведущих проводника, и (3) кабель поставляется с провод заземления (WG). Для сравнения, кабель № 14-3 WG будет иметь три Нет.14 проводников и заземляющий провод. Размер NMC варьируется от Медные проводники с № 14 по № 1 AWG и от № 12 до № 2 AWG. алюминиевые проводники.
Кабель в металлической оболочке
Кабель в металлической оболочке аналогичен NMC, за исключением того, что имеет гибкую спираль. металлическое покрытие, а не пластиковое покрытие. Распространенный вид металла кабель с оболочкой называется кабелем BX. Как и NMC, кабель BX содержит два или три проводники. Также есть несколько размеров разъемов и втулок. используется при установке кабеля BX.Основное преимущество этого Тип кабеля с металлической оболочкой заключается в том, что он заключен в металлический корпус это гибкий, так что его можно легко согнуть. Прочие металлические корпуса обычно труднее сгибать.
Жесткий кабелепровод
Внешний вид жесткого водовода похож на водопроводную трубу. Он используется в специальные места для изоляции электрических проводов. Жесткий канал поставляется в 10-футовой длине, которая должна иметь резьбу для соединения частей вместе.Кабелепровод крепится к металлическим монтажным коробкам с помощью контргаек и втулки. Он громоздкий в обращении и требует много времени для установки.
Электрические металлические трубки (EMT)
EMT, или тонкостенный канал, чем-то похож на жесткий канал, за исключением того, что его можно согнуть с помощью специального инструмента для гибки труб.