Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.
Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:
Формула параллельного соединения резисторов
Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:
Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:
Параллельное соединение резисторов — расчет
Пример №1
При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.
Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:
Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:
Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.
Пример расчета №2
Найти общее сопротивление R из трех параллельно соединенных резисторов:
Общее сопротивление R рассчитывается по формуле:
Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.
Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.
Как рассчитать сложные схемы соединения резисторов
Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:
Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).
Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:
В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:
Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.
Ток, протекающий в цепи параллельно соединенных резисторах
Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.
Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).
Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .
Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».
Таким образом, протекающий общий ток в цепи можно определить как:
I = I1 + I2
Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
Таким образом, общий ток будет равен:
I = 0,545 мА + 0,255 мА = 0,8 мА
Это также можно проверить, используя закон Ома:
I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.
Параллельное соединение резисторов — онлайн калькулятор
Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:
Подведем итог
Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.
Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора, входящего в параллельное соединение.
Как правильно соединять резисторы?
О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.
Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!
Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.
Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно. Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.
Последовательное соединение резисторов.
В жизни последовательное соединение резисторов имеет вид:
Последовательно соединённые резисторы серии МЛТ
Принципиальная схема последовательного соединения выглядит так:
На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.
Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.
Общее номинальное сопротивление составного резистора обозначено как Rобщ.
Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.
Применяя последовательное соединение, стоит помнить одно простое правило:
Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.
Что это значит?
Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом. Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом. Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.
Параллельное соединение резисторов.
Можно соединять резисторы и параллельно:
Два резистора МЛТ-2, соединённых параллельно
Принципиальная схема параллельного соединения выглядит следующим образом:
Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:
Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:
Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.
Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.
Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:
Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.
Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.
Проверим справедливость показанных здесь формул на простом эксперименте.
Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.
Замер общего сопротивления при последовательном соединении
Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.
Измерение сопротивления при параллельном соединении
Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:
При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.
Что ещё нужно учитывать при соединении резисторов?
Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?
Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.
Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.
Подробнее о мощности рассеивания резистора читайте тут.
Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Соединение резисторов, при котором одноименные выводы каждого из элементов собираются в одну точку, называется параллельным. При этом ко всем резисторам подводится один и тот же потенциал, но величина тока через каждый из них будет отличаться. Для составления схем или при замене резисторов в уже существующих цепях важно знать их суммарное сопротивление, как показано на рисунке:
Параллельное соединение резисторовДанный калькулятор позволяет рассчитать суммарное сопротивление параллельно соединенных резисторов с любым количеством элементов.
Для этого вам необходимо:
- Указать в графе «количество резисторов» их число, в нашем примере их три;
- После того, как вы укажите количество элементов, в поле ниже появится три окошка для ввода значения сопротивления каждого из элементов, к примеру, у вас резисторы сопротивлением 20, 30 и 60 Ом;
- Далее нажмите кнопку «рассчитать» и в окошке «параллельное сопротивление в цепи» вы получите значение сопротивления в 10 Ом.
Чтобы рассчитать другую цепь или при подборе других элементов, нажмите кнопку «сбросить», чтобы обнулить значение параллельно включенных элементов калькулятора.
Для расчета суммарного сопротивления калькулятором используется такое соотношение:
Где,
- Rсум — суммарное сопротивление параллельно соединенных элементов
- R1 — сопротивление первого резистора;
- R2 — сопротивление второго резистора;
- R3 — сопротивление третьего резистора;
- Rn — сопротивление n-ого элемента.
Таким образом, в рассматриваемом примере параллельно включены три резистора, поэтому формула для определения суммарного сопротивления будет иметь такой вид:
Чтобы выразить величину суммарного сопротивления необходимо умножить обе половины уравнения на произведение сопротивлений всех трех резисторов. После этого перенести составляющие элементы по правилу пропорции и получить значение сопротивления:
Как видите, расчет параллельного сопротивления резисторов вручную требует немалых усилий, поэтому куда проще его сделать на нашем онлайн калькуляторе.
Обратите внимание, при наличии элементов с сопротивлением в разной размерности Ом, кОм, МОм, их необходимо привести к одной величине, прежде чем производить расчет. К примеру, в Ом и указывать в поле калькулятора для расчета параллельного соединения резисторов значение непосредственно в Омах.
Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей – проводников.
Для начала давайте вспомним, что такое проводник? Проводник – это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:
формула сопротивление проводникаρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м2
l – длина проводника, м
Более подробно об этом я писал здесь.
Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.
обозначение резистора на схемахПоследовательное соединение проводников
Сопротивление при последовательном соединении проводников
Последовательное соединение проводников – это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.
последовательное соединение резисторовЧему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.
Получается, можно записать, что
формула при последовательном соединении резисторовПример
У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.
Решение
Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.
То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .
показать на реальном примере с помощью мультиметра
Сила тока через последовательное соединение проводников
Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.
Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .
сила тока через последовательное соединение проводниковПолучается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .
Напряжение при последовательном соединении проводников
Давайте еще раз рассмотрим цепь с тремя резисторами
Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?
Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.
Пусть у нас будет цепь с такими параметрами.
Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.
Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.
Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?
Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.
Следовательно,
UR1 = IR1 =1×2=2 Вольта
UR2 = IR2 = 1×3=3 Вольта
UR3 = IR3 =1×5=5 Вольт
Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.
Получается
U=UR1+UR2+UR3
Мы получили самый простой делитель напряжения.
Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.
Параллельное соединение проводников
Параллельное соединение проводников выглядит вот так.
параллельное соединение резисторовНу что, думаю, начнем с сопротивления.
Сопротивление при параллельном соединении проводников
Давайте пометим клеммы как А и В
В этом случае общее сопротивление RAB будет находиться по формуле
Если же мы имеем только два параллельно соединенных проводника
То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.
Напряжение при параллельном соединении проводников
Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.
Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn
Сила тока при параллельном соединении проводников
Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.
Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.
Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
В этом случае, сила тока в цепи будет равна:
Задача
Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.
Решение
Воспользуемся формулами, которые приводили выше.
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
Следовательно,
I1 = U/R1 = 10/2=5 Ампер
I2 = U/R2 = 10/5=2 Ампера
I3 = U/R3 = 10/10=1 Ампер
Далее, воспользуемся формулой
чтобы найти силу тока, которая течет в цепи
I=I1 + I2 + I3 = 5+2+1=8 Ампер
2-ой способ найти I
I=U/Rобщее
Чтобы найти Rобщее мы должны воспользоваться формулой
Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.
I=U/Rобщее = 10/1,25=8 Ампер.
Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.
Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.
Похожие статьи по теме “последовательное и параллельное соединение”
Закон Ома
Проводник (электрический проводник)
Что такое резистор
Делитель напряжения
Делитель тока
Что такое напряжение
Что такое сила тока
При проектировании электрических схем возникает необходимость использования последовательного и параллельного соединений резисторов. Соединения применяются также и при ремонтах электрооборудования, поскольку в некоторых ситуациях невозможно найти эквивалентный номинал резистора. Выполнить расчет просто, и справиться с этой операцией может каждый.
Типы проводников
Проводимость веществом электрического тока связана с наличием в нем свободных носителей заряда. Их количество определяется по электронной конфигурации. Для этого необходима химическая формула вещества, при помощи которой можно вычислить их общее число. Значение для каждого элемента берется из периодической системы Дмитрия Ивановича Менделеева.
Электрический ток — упорядоченное движение свободных носителей заряда, на которые воздействует электромагнитное поле. При протекании тока по веществу происходит взаимодействие потока заряженных частиц с узлами кристаллической решетки, при этом часть кинетической энергии частицы превращается в тепловую энергию. Иными словами, частица «ударяется» об атом, а затем снова продолжает движение, набирая скорость под действием электромагнитного поля.
Процесс взаимодействия частиц с узлами кристаллической решетки называется электрической проводимостью или сопротивлением материала. Единицей измерения является Ом, а определить его можно при помощи омметра или расчитать. Согласно свойству проводимости, вещества можно разделить на 3 группы:
- Проводники (все металлы, ионизированный газ и электролитические растворы).
- Полупроводники (Si, Ge, GaAs, InP и InSb).
- Непроводники (диэлектрики или изоляторы).
Проводники всегда проводят электрический ток, поскольку содержат в своем атомарном строении свободные электроны, анионы, катионы и ионы. Полупроводники проводят электричество только при определенных условиях, которые влияют на наличие или отсутствие свободных электронов и дырок. К факторам, влияющим на проводимость, относятся следующие: температура, освещенность и т. д. Диэлектрики вообще не проводят электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда. При выполнении расчетов каждый радиолюбитель должен знать зависимость сопротивления от некоторых физических величин.
Зависимость сопротивления
Значение электропроводимости зависит от нескольких факторов, которые необходимо учитывать при расчетах, изготовлении элементов резистивной нагрузки (резисторов), ремонте и проектировании устройств. К этим факторам необходимо отнести следующие:
- Температура окружающей среды и материала.
- Электрические величины.
- Геометрические свойства вещества.
- Тип материала, из которого изготовлен проводник (полупроводник).
К электрическим величинам можно отнести разность потенциалов (напряжение), электродвижущую силу (ЭДС) и силу тока. Геометрией проводника является его длина и площадь поперечного сечения.
Электрические величины
Зависимость величины электропроводимости от параметров электричества определяется законом Ома. Существует две формулировки: одна — для участка, а другая — для полной цепи. В первом случае соотношение определяются, исходя из значений силы тока (I) и напряжения (U) простой формулой: I = U / R. Из соотношения видна прямо пропорциональная зависимость тока от величины напряжения, а также обратно пропорциональная от сопротивления. Можно выразить R: R = U / I.
Для расчета электропроводимости всего участка следует воспользоваться соотношением между ЭДС (e), силой тока (i), а также внутренним сопротивлением источника питания (Rвн): i = e / (R+Rвн). В этом случае величина R вычисляется по формуле: R = (e / i) — Rвн. Однако при выполнении расчетов необходимо учитывать также геометрические параметры и тип проводника, поскольку они могут существенно повлиять на вычисления.
Тип и геометрические параметры
Свойство вещества к проводимости электричества определяется структурой кристаллической решетки, а также количеством свободных носителей. Исходя из этого, тип вещества является ключевым фактором, который определяет величину электропроводимости. В науке коэффициент, определяющий тип вещества, обозначается литерой «р» и называется удельным сопротивлением. Его значение для различных материалов (при температуре +20 градусов по Цельсию) можно найти в специальных таблицах.
Иногда для удобства расчетов используется обратная величина, которая называется удельной проводимостью (σ). Она связана с удельным сопротивлением следующим соотношением: p = 1 / σ. Площадь поперечного сечения (S) влияет на электрическое сопротивление. С физической точки зрения, зависимость можно понять следующим образом: при малом сечении происходят более частые взаимодействия частиц электрического тока с узлами кристаллической решетки. Поперечное сечение можно вычислить по специальному алгоритму:
- Измерение геометрических параметров проводника (диаметр или длину сторон) при помощи штангенциркуля.
- Визуально определить форму материала.
- Вычислить площадь поперечного сечения по формуле, найденной в справочнике или интернете.
В случае когда проводник имеет сложную структуру, необходимо вычислить величину S одного элемента, а затем умножить результат на количество элементов, входящих в его состав. Например, если провод является многожильным, то следует вычислить S для одной жилы. После этого нужно умножить, полученную величину S, на количество жил. Зависимость R от вышеперечисленных величин можно записать в виде соотношения: R = p * L / S. Литера «L» является длиной проводника. Однако для получения точных расчетов необходимо учитывать температурные показатели внешней среды и проводника.
Температурные показатели
Существует доказательство зависимости удельного сопротивления материала от температуры, основанное на физическом эксперименте. Для проведения опыта нужно собрать электрическую цепь, состоящую из следующих элементов: источника питания, нихромовой спирали, соединительных проводов амперметра и вольтметра. Приборы нужны для измерения значений силы тока и напряжения соответственно. При протекании электричества происходит нагревание нихромовой пружины. По мере ее нагревания, показания амперметра уменьшаются. При этом происходит существенное падение напряжения на участке цепи, о котором свидетельствуют показания вольтметра.
В радиотехнике уменьшение величины напряжение называется просадкой или падением. Формула зависимости р от температуры имеет следующий вид: p = p0 * [1 + a * (t — 20)]. Значение p0 — удельное сопротивление материала, взятого из таблицы, а литера «t» — температура проводника.
Температурный коэффициент «а» принимает следующие значения: для металлов — a>0, а для электролитических растворов — a<0. Для получения формулы, определяющей все зависимости, необходимо подставить все соотношения в общую формулу зависимости R от типа материала, температуры, длины и сечения: R = p0 * [1 + a * (t — 20)] * L / S. Формулы используются только для расчетов и изготовления резисторов. Для быстрого измерения величины сопротивления применяется омметр.
Объединение резистивных радиокомпонентов
Для получения необходимого номинала сопротивления применяются два типа соединения резисторов: параллельное и последовательное. Если их соединить параллельно, то нужно два вывода одного резистора подключить к двум выводам другого. Если соединение является последовательным, то один вывод резистора соединяется с одним выводом другого резистора. Соединения используются для получения необходимых номиналов сопротивлений, а также для увеличения рассеивания мощности тока, протекающего по цепи.
Каждое из соединений обладает определенными характеристиками. Кроме того, последовательно или параллельно могут объединяться несколько резисторов. Соединения также могут быть смешанными, т. е. применяться оба типа объединения радиокомпонентов.
Параллельное соединение
При параллельном подключении значение напряжения на всех резисторах одинаковое, а сила тока — обратно пропорциональна их общему сопротивлению. В интернете web-разработчики создали для расчета величины общего сопротивления параллельного соединения резисторов онлайн-калькулятор.
Рассчитывается общее сопротивление при параллельном соединении по формуле: 1 / Rобщ = (1 / R1) + (1 / R2) + …+ (1 / Rn). Если выполнить математические преобразования и привести к общему знаменателю, то получится удобная формула параллельного соединения для расчета Rобщ. Она имеет следующий вид: Rобщ = (R1 * R2 * … * Rn) / (R1 + R2 + … + Rn). Если необходимо рассчитать величину Rобщ только для двух радиокомпонентов, то формула параллельного сопротивления имеет следующий вид: Rобщ = (R1 * R2) / (R1 + R2).
При ремонте или проектировании схемы устройства возникает задача объединения нескольких резистивных элементов для получения конкретной величины сопротивления. Например, значение Rобщ для определенной цепочки элементов равно 8 Ом, которое получено при расчетах. Перед радиолюбителем стоит задача, какие нужно подобрать номиналы для получения нужного значения (в стандартном ряду резисторов отсутствует радиокомпонент с номиналом в 8 Ом, а только 7,5 и 8,2). В этом случае нужно найти сопротивление при параллельном соединении резистивных элементов. Посчитать значение Rобщ для двух элементов можно следующим образом:
- Номинал резистора в 16 Ом подойдет.
- Подставить в формулу: R = (16 * 16) / (16 + 16) = 256 / 32 = 8 (Ом).
В некоторых случаях следует потратить больше времени на подбор необходимых номиналов. Можно применять не только два, но и три элемента. Сила тока вычисляется с использованием первого закона Кирхгофа. Формулировка закона следующая: общее значение тока, входящего и протекающего по цепи, равен выходному его значению. Величина силы тока для цепи, состоящей из двух резисторов (параллельное соединение) рассчитывается по такому алгоритму:
- Ток, протекающий через R1 и R2: I1 = U / R1 и I2 = U / R2 соответственно.
- Общий ток — сложение токов на резисторах: Iобщ = I1 + I2.
Например, если цепь состоит из 2 резисторов, соединенных параллельно, с номиналами в 16 и 7,5 Ом. Они запитаны от источника питания напряжением в 12 В. Значение силы тока на первом резисторе вычисляется следующим способом: I1 = 12 / 16 = 0,75 (А). На втором резисторе ток будет равен: I2 = 12 / 7,5 = 1,6 (А). Общий ток определяется по закону Кирхгофа: I = I1 + I2 = 1,6 + 0,75 = 2,35 (А).
Последовательное подключение
Последовательное включение резисторов также применяется в радиотехнике. Методы нахождения общего сопротивления, напряжения и тока отличаются от параллельного подключения. Основные правила соединения следующие:
- Ток не изменяется на участке цепи.
- Общее напряжение равно сумме падений напряжений на каждом резисторе.
- Rобщ = R1 + R2 + … + Rn.
Пример задачи следующий: цепочка, состоящая из 2 резисторов (16 и 7,5 Ом), питается от источника напряжением 12 В и током в 0,5 А. Необходимо рассчитать электрические параметры для каждого элемента. Порядок расчета следующий:
- I = I1 = I2 = 0,5 (А).
- Rобщ = R1 + R2 = 16 + 7,5 = 23,5 (Ом).
- Падения напряжения: U1 = I * R1 = 0,5 * 16 = 8 (В) и U2 = I * R2 = 0,5 * 7,5 = 3,75 (В).
Не всегда выполняется равенство напряжений (12 В не равно 8 + 3,75 = 11,75 В), поскольку при этом расчете не учитывается сопротивление соединительных проводов. Если схема является сложной, и в ней встречается два типа соединений, то нужно выполнять расчеты по участкам. В первую очередь, рассчитать для параллельного соединения, а затем для последовательного.
Таким образом, параллельное и последовательное соединения резисторов применяются для получения более точных значений сопротивлений, а также при отсутствии необходимого номинала радиокомпонента при проектировании или ремонте устройств.
Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.
Последовательное соединение резисторов.
Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:
Здесь у нас классический случай последовательного соединения – два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:
I = I_1 = I_2
А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:
U = U_1 + U_2
В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:
U_1 = I_1R_1 = IR_1
U_2 = I_2R_2 = IR_2
Тогда для вычисления общего напряжения можно будет использовать следующее выражение:
U = U_1 + U_2 = IR_2 + IR_2 = I(R_1 + R_2)
Но для общего напряжение также справедлив закон Ома:
U = IR_0
Здесь R_0 – это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:
R_0 = R_1 + R_2
Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.
Например для следующей цепи:
Общее сопротивление будет равно:
R_0 = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 + R_8 + R_9 + R_{10}
Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление будем работать в любом случае 🙂 А если при последовательном соединении все сопротивления равны (R_1 = R_2 = … = R), то общее сопротивление цепи составит:
R_0 = nR
В данной формуле n равно количеству элементов цепи. С последовательным соединением резисторов мы разобрались, давайте перейдем к параллельному.
Параллельное соединение резисторов.
При параллельном соединении напряжения на проводниках равны:
U_1 = U_2 = U
А для токов справедливо следующее выражение:
I = I_1 + I_2
То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:
I_1 = \frac{U_1}{R_1} = \frac{U}{R_1}
I_2 = \frac{U_2}{R_2} = \frac{U}{R_2}
Подставим эти выражения в формулу общего тока:
I = \frac{U}{R_1} + \frac{U}{R_2} = U\medspace (\frac{1}{R1} + \frac{1}{R2})
А по закону Ома ток:
I = \frac{U}{R_0}
Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:
\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2}
Данную формулу можно записать и несколько иначе:
R_0 = \frac{R_1R_2}{R_1 + R_2}
Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:
\frac{1}{R_0} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}
Смешанное соединение резисторов.
Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:
Давайте рассчитаем общее сопротивление цепи. Начнем с резисторов R_1 и R_2 – они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_{1-2}:
R_{1-2} = \frac{R1\cdot R2}{R1 + R2} = 1
Теперь у нас образовались две группы последовательно соединенных резисторов:
Заменим эти две группы двумя резисторами, сопротивление которых равно:
R_{1-2-3} = R_{1-2} + R_3 = 5
R_{4-5} = R_4 + R_5 = 24
Как видите, схема стала уже совсем простой 🙂 Заменим группу параллельно соединенных резисторов R_{1-2-3} и R_{4-5} одним резистором R_{1-2-3-4-5}:
R_{1-2-3-4-5}\enspace = \frac{R_{1-2-3}\medspace\cdot R_{4-5}}{R_{1-2-3} + R_{4-5}} = \frac{5\cdot24}{5 + 24} = 4.14
И в итоге у нас на схеме осталось только два резистора соединенных последовательно:
Общее сопротивление цепи получилось равным:
R_0 = R_{1-2-3-4-5}\medspace +\medspace R_6 = 4.14 + 10 = 14.14
Таким вот образом достаточно большая схема свелась к простейшему последовательному соединению двух резисторов!
Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление – для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте!
как подключить резистор в цепь
Резистор — это прибор, который обладает устойчивым, стабильным показателем сопротивления. Это помогает производить регулировку параметров на любом участке схемы. В этой статье говорится о том, как подключить резистор в цепь и какие методы для этого существуют. Также продемонстрированы несколько простых, но полезных схем, которые могут пригодиться при работе с электрикой.
Что такое соединение резисторов
Подключение приборов различными методами помогает получить нужное число мощности одной единицы цепи. Есть три основных метода подключения прибора — последовательное, параллельное и смешанное. Ниже подробно рассказано о каждом из них.
Как выглядят резисторыВнимание! Для работы необходимо использовать только качественные приборы, на которые действует гарантия.
Как подключить резистор в цепь
Для сборки составного устройства необходимо соединить несколько элементов одним из основных методов и таким образом получить нужный номинальный показатель. В практике это используется очень часто. Навыки правильного подключения устройств и расчета их общего сопротивления используются мастерами для ремонта проводки или радиолюбителями при сборке устройства. В интернете можно найти много схем с различным видом подключения. Ниже описано какое соединение резисторов называется параллельным.
Параллельное соединение резисторов схемаПараллельно
Параллельное — это одно из двух типов электрических соединений, когда два вывода единственного устройства соединены с соответствующими выводами других элементов. Очень часто их могут соединять последовательно или параллельно, чтобы сделать более усложненные электрические схемы.
При этом виде соединения напряжение на всех устройствах будет равным, а проходящий через них ток — пропорционален их сопротивлению.
Такой вариант подключения один из простых, очень часто именно его рекомендуют использовать тем, кто не имеет опыта работы с электрикой.
Последовательно
Формула расчета достаточно легкая. Общее сопротивление при параллельном соединении формула:
Rобщ. = R1+R2+R3+…+Rn.
Сопротивление двух и более параллельно соединенных резисторов указано как Rобщ.
Последовательный способ подключенияОстальные элементы указываются как R, R2, R3 и так далее.
Обратите внимание! Используя последовательное соединение, необходимо запомнить один важный нюанс. Из общего количества компонентов, соединённых последовательным методом, основную роль занимает тот, у которого самое высокое сопротивление.
Как это понять? Для примера, если необходимо соединить три устройства, номинал которых будет равняться 1, 10 и 100 Ом, то в итоге получится составной на 111 Ом.
Смешанный тип подключенияЕсли исключить прибор на 100 Ом, то все сопротивление схемы резко снизится до 11 Ом. А если исключить, например, на 1 Ом, то показатель получится уже 110 Ом. В итоге устройства с небольшим сопротивлениями в последовательной цепочке почти не влияют на все показатели.
Какая мощность тока при последовательном и параллельном соединении
При соединении устройств последовательным методом ток будет проходить через каждое сопротивление. Показатель тока в любом месте цепочки будет равным. Это правило определяется при помощи закона Ома. Если суммировать все показатели в цепи, получится такое выражение:
Образец цепиR = 200+100+51+39 = 390 Ом.
Напряжение на схеме равняется 100 В, по правилу Ома сила тока будет выражаться:
I = U/R = 100/390 = 0,256 A.
Теперь с помощью этих уравнений можно посчитать мощность при последовательном подключении, используя это выражение:
P = I2 x R = 0,2562×390 = 25,55 Вт.
При параллельном соединении все основания нужно подсоединить к одному узлу цепи, а концы — к другому. В таком варианте получается разветвление тока, и он будет проходить по каждому узлу. По правилу Ома, сила тока будет обратно пропорциональна всем имеющимся устройствам, а показатель напряжения везде одинаковый.
При смешанном подключении используются свойства обоих видов соединений.
Закон Ома для участка цепиКак правильно рассчитать сопротивление
Для выбора и установки элементов в цепь нужно заранее просчитать номинал и мощность составных частей.
Применяют для этого правило Ома для участка цепи, чтобы рассчитать сопротивление, выражение выглядит так:
R = U/I.
U — будет напряжением на выводах компонента.
I — показатель тока на участке цепи.
Это выражение используется для токов постоянного направления.
Если трудно самостоятельно рассчитать этот показатель, то существуют специальные онлайн-калькуляторы. Туда необходимо вставить имеющиеся значения и можно получить результат за секунды. Но поскольку закон Ома изучается еще в школе, то не составит проблем провести вычисления самостоятельно.
Внимание! Если нет опыта в работе с электрикой, желательно не выполнять ремонт проводки самостоятельно, потому что при неправильной работе может случиться короткое замыкание, что чревато возникновением пожара. Также необходимо помнить, что при работе с проводкой нужно полностью обесточить сеть.
Подключение для светодиодовВ заключении необходимо отметить, что подключать резисторы можно тремя способами: параллельно, последовательно и смешанно. Для тех, кто не имеет особых навыков работы с электрикой, рекомендуется выбирать последовательный метод соединения.
R всего | Формула: R всего = R1 × R2 / (R1 + R2) |
Пожалуйста, введите два значения резистора , будет рассчитано третье значение параллельной цепи.
Вы даже можете ввести общее сопротивление R всего и одно известное сопротивление R 1 или R 2 .
Формула (уравнение) для расчета двух сопротивлений R 1 и R 2 , соединенных параллельно:
Расчет необходимого параллельного резистора R 2 , когда R 1 и полное сопротивление R всего дается:
Решение по формуле R итого = ( R 1 × R 2 ) / ( R 1 + R 2 ) для R 1 : Первый шаг — очистить все дроби, умножив на самое низкое значение . общий знаменатель, то есть R т × R 1 × R 2 … так мы получаем: 1/ R всего = 1/ R 1 + 1/ R 2 R всего × R 1 × R 2 [1/ R всего = 1/ R 1 + 1/ R 2 ] R 1 × R 2 = R всего × R 2 + R всего × R 1 , затем соберите члены с R 1 и решить R 1 × R 2 — R всего × R 1 = R всего × R 2 R 1 ( R 2 — R всего ) = R 2 × R всего Последний шаг: R 1 = R 2 × R всего / ( R 2 — R всего ) или: R 2 = R 1 × R всего / ( R 1 — R всего ) |
Примечание: Этот калькулятор также может решать другие математические задачи.Расчет резисторов параллельно составляет
точно так же, как расчеты, необходимые для параллельных индукторов или последовательно соединенных конденсаторов.
Два резистора параллельно и полученное суммарное сопротивление: два одинаковых значения, также покажите уравнение, что результаты всегда наполовину. Это облегчает, когда проектирование схем или прототипирование. С заглавными буквами он всегда двойной, потом опять заглавные буквы просто просто сложить параллельно. |
• Поисковые сопротивления R 1 и R 2 , когда известно целевое сопротивление (эквивалентное сопротивление) •
Расчет: резисторные пары — обратный инженерный калькулятор
Поиск R 1 и R 2 с известным сопротивлением цели
● Рассчитать много резисторов параллельно ●
Этот калькулятор определяет сопротивление от до 10 резисторов параллельно . Введите сопротивления в поля ниже и, когда все значения были введены, нажмите на кнопку «Рассчитать», и результат появится в поле под этой кнопкой. В качестве теста, если мы введем сопротивления 4, 6 и 12 Ом, ответ должен быть 2 Ом. Примечание: очистка полей вручную не сбрасывает сохраненные значения. Используйте «сброс». |
закон Ома — калькулятор и формулы
Два резистора параллельно и полученное суммарное сопротивление
Сопротивление в диапазоне от 1 Ом до 100 Ом
R2 | R1 | |||||||||||
1 | 1.5 | 2,2 | 3,3 | 4,7 | 6,8 | 10 | 15 | 22 | 33 | 47 | 68 | |
1 | 0,5 | 0,6 | 0.69 | 0,77 | 0,83 | 0,87 | 0,91 | 0,93 | 0,95 | 0,97 | 0,98 | 0,99 |
1,5 | 0,6 | 0,75 | 0,89 | 1,03 | 1,14 | 1,22 | 1,30 | 1,36 | 1,40 | 1.43 | 1,45 | 1,46 |
2,2 | 0,69 | 0,89 | 1,1 | 1,32 | 1,50 | 1,66 | 1,82 | 1,92 | 2,0 | 2,06 | 2,10 | 2,13 |
3,3 | 0,77 | 1.03 | 1,32 | 1,65 | 1,94 | 2,22 | 2,48 | 2,70 | 2,87 | 3,00 | 3,08 | 3,14 |
4,7 | 0,83 | 1,14 | 1,50 | 1,94 | 2,35 | 2,78 | 3,20 | 3,58 | 3.87 | 4,12 | 4,27 | 4,39 |
6,8 | 0,87 | 1,22 | 1,66 | 2,22 | 2,78 | 3,40 | 4,05 | 4,68 | 5,19 | 5,64 | 5,94 | 6,18 |
10 | 0.91 | 1,30 | 1,82 | 2,48 | 3,20 | 4,05 | 5,0 | 6,0 | 6,9 | 7,7 | 8,3 | 8,7 |
15 | 0,93 | 1,36 | 1,92 | 2,70 | 3,58 | 4,68 | 6,0 | 7.50 | 8,9 | 10,3 | 11,4 | 12,2 |
22 | 0,95 | 1,40 | 2,00 | 2,87 | 3,87 | 5,19 | 6,9 | 8,9 | 11,0 | 13,2 | 15.0 | 16,6 |
33 | 0.97 | 1,43 | 2,06 | 3,0 | 4,12 | 5,64 | 7,7 | 10,3 | 13,2 | 16,5 | 19,4 | 22,2 |
47 | 0,98 | 1,45 | 2,1 | 3,08 | 4,27 | 5,94 | 8,3 | 11.4 | 15,0 | 19,4 | 23,5 | 27,8 |
68 | 0,99 | 1,46 | 2,13 | 3,14 | 4,39 | 6,18 | 8,7 | 12,2 | 16,6 | 22,2 | 27,8 | 34,0 |
Примечание: Этот калькулятор также может решать другие математические задачи.Расчет резисторов параллельно составляет
точно так же, как расчеты, необходимые для параллельных индукторов или последовательно соединенных конденсаторов.
Мощность, рассеиваемая в резисторе: P = В × I , P = В 2 / R , P = I 2 × R . |
Примечание: Для последовательно включенных резисторов ток для каждого резистора равен , и для параллельных резисторов напряжение одинаково для каждого резистора. |
,
Рассчитайте общее сопротивление в омах резисторов, которые включены параллельно, введя значение каждого ниже.
Хотите рассчитать резисторы последовательно?
Как рассчитать резисторы параллельно
Резистор — это устройство, которое добавляет сопротивление в электрическую цепь. Сопротивление измеряется в омах (Ω), и это также показатель, используемый этим калькулятором.
Когда резисторы добавляются параллельно в цепи, они соединяются в тех же точках, что и друг с другом, таким образом, есть несколько путей, которые может пройти напряжение.Из-за этого, обратная величина каждого значения сопротивления должна быть сложена вместе, чтобы найти полное сопротивление цепи.
Параллельный резистор Формула
Когда несколько резисторов добавляются в цепь параллельно, общее сопротивление может быть найдено с помощью этой формулы.
1R T = 1R 1 + 1R 2 + 1R 3 +… + 1R n
Таким образом, обратная величина полного сопротивления резисторов, соединенных параллельно, является суммой обратной величины каждого сопротивления.
Схема, показывающая цепь с 3 резисторами, соединенными параллельно.Например, , давайте найдем полное сопротивление цепи с параллельно подключенными резисторами 200 Ом, 400 Ом и 500 Ом.
1R T = 1200 Ом + 1400 Ом + 1500 Ом
1R T = 0,005 + 0,0025 + 0,002
1R T = 0,0095
R T = 1 ÷ 0,0095
R T = 105,263 Ω
и параллельные резисторы
- Изучив этот раздел, вы сможете:
- Рассчитать значения полного сопротивления в последовательных сетях сопротивления.
- Используйте соответствующие формулы для расчета сопротивления в параллельных сетях сопротивления.
- • Взаимный от суммы взаимных.
- • Товар сверх суммы.
- Рассчитать значения полного сопротивления в последовательных / параллельных сетях.
Расчеты в последовательных и параллельных резисторных сетях
Компоненты, включая резисторы в цепи, могут быть соединены вместе двумя способами:
В СЕРИИ, так что через все компоненты протекает один и тот же ток, но для каждого из них может существовать разная разность потенциалов (напряжение).
В ПАРАЛЛЕЛЬНОМ, так что одинаковая разность потенциалов (напряжение) существует во всех компонентах, но каждый компонент может нести различный ток.
Рис. 4.2.1 Резисторы в серии
Рис. 4.2.2 Параллельные резисторы
В любом случае (для резисторов) общее сопротивление этой части цепи, содержащей резисторы, можно рассчитать, используя методы, описанные ниже.
Способность рассчитать комбинированное (общее) значение резисторов таким способом позволяет легко вычислять неизвестные значения сопротивления, тока и напряжения для довольно сложных цепей, используя относительно простые методы.Это очень полезно для поиска неисправностей.
ПЕРЕД ПОЛУЧЕНИЕМ ДАЛЕЕ, ПРАКТИКА С ИСПОЛЬЗОВАНИЕМ ФОРМУЛ ДЛЯ РАСЧЕТА ВСЕГО ЗНАЧЕНИЯ СЕРИИ И ПАРАЛЛЕЛЬНЫХ РЕЗИСТОРОВ.
Для резисторов в серии:
Полное сопротивление двух или более резисторов, соединенных последовательно , дается простым сложением отдельных значений резисторов, чтобы найти общую сумму (R TOT ):
Для резисторов параллельно:
Для расчета полного сопротивления цепи с параллельными резисторами можно использовать следующую формулу.
Обратите внимание, однако, что эта формула НЕ дает вам полное сопротивление R TOT . Это дает вам Взаимное R TOT или:
Это совсем другое значение — и НЕ является полным сопротивлением. Это 1 делится на R TOT . Чтобы получить правильное значение для R TOT (которое будет равно 1 / R TOT , то есть R TOT /1, просто нажмите ответную клавишу на вашем калькуляторе (отмечено 1 / x или x-1) ,
Еще один способ расчета параллельных цепей.
Общее сопротивление двух резисторов в параллельном соединении , которое не связано с взаимными ответами, определяется как:
Эта формула часто упоминается как «Продукт над суммой».
Он рассчитывает только два резистора параллельно? Ну да, но это не большая проблема. Если имеется более двух параллельных резисторов, просто выберите два из них и определите общее сопротивление для этих двух — затем используйте это общее значение, как если бы это был один резистор, и создайте другую пару с третьим резистором.Отрабатывайте новый итог и так далее, пока не включите все параллельные резисторы в эту конкретную сеть.
О, еще одна вещь, которую нужно помнить о продукте над суммой, см. Скобки вокруг суммы (нижняя часть) формулы? Это означает, что вы должны решить это, прежде чем использовать его, чтобы разделить продукт (верхняя часть) на. Если вы этого не сделаете, ваш ответ будет неверным.
Звучит сложно? Не совсем, это просто вопрос повторения, и на практике вы не часто сталкиваетесь со многими параллельными сетями с более чем двумя резисторами.Тем не менее, какая формула вы выбираете, зависит от вас, взаимных или переоценки продукта.
Советы
по взаимному методу
Если вы используете Взаимный метод для параллельных цепей, НЕ ЗАБУДЬТЕ, когда вы добавили ответные сигналы отдельных резисторов — Вы должны снова найти ответные сигналы.1 / R1 + 1 / R2 + 1 / R3 = 1 / R TOT и чтобы найти R TOT вы должны найти обратную величину 1 / R TOT .
Упрощающие схемы
Для комбинированных последовательных и параллельных цепей сначала определите участок цепи (последовательный или параллельный).Затем заново нарисуйте схему, заменив участок, сопротивление которого вы нашли, одним резистором. Теперь у вас есть упрощенная схема, в которой можно найти R TOT .
Вы можете использовать формулу «продукт сверх суммы»:
Для цепей с более чем двумя параллельными резисторами, просто отработайте два параллельных резистора одновременно, используя формулу произведения по сумме, а затем заново проведите схему, заменив два резистора одним резистором, значение которого представляет собой объединенное сопротивление двух ,
Теперь вы можете использовать ваше первое объединенное значение как один резистор со следующим параллельным резистором и так далее. Таким образом, можно рассчитать большое количество параллельных резисторов, используя произведение на сумму.
Когда все параллельные резисторы имеют одинаковое значение.
Если подключено несколько идентичных параллельных резисторов, общее сопротивление будет значением резистора, умноженным на величину, обратную количеству резисторов.
, т. Е. Два параллельных резистора 12 кОм имеют суммарное сопротивление
12K x 1/2 = 6K
Три параллельных резистора 12K имеют суммарное сопротивление
12K x 1/3 = 4K и т. Д.
Проверка вашего ответа
Суммарное значение любого количества параллельных резисторов всегда будет МЕНЬШЕ, чем значение наименьшего отдельного резистора в сети. Используйте этот факт, чтобы проверить свои ответы.
серии и параллельные комбинированные
Попробуйте несколько расчетов на основе последовательных и параллельных резисторных сетей. Для этого вам просто нужно использовать информацию на этой странице и страницу «Советы по расчету резисторов». Вас просят определить общее сопротивление для каждой цепи.Вы можете выбрать, какую формулу использовать
Вы также можете найти помощь по математике, загрузив нашу бесплатную брошюру Maths Tips.
Прежде чем начать, подумайте об этих нескольких советах. Они облегчат проблемы, если вы будете внимательно следить за ними.
1. Отработайте ответы, используя карандаш и бумагу; перерисовать схему, над которой вы работаете.
2. Конечно, ответ — это не просто число, это будет определенное количество Ом, не забудьте указать правильную единицу измерения (например,грамм. Ω, KΩ или MΩ) или ваш ответ не имеет смысла.
3. Когда вы вводите значения в свой калькулятор, преобразуйте все значения KΩ или MΩ в Ом, используя клавишу EXP. Если вы проскользнете сюда, это даст действительно глупые ответы, тысячи раз слишком большие или слишком маленькие.
Итак, теперь вы прочитали эти инструкции, вы готовы начать. Вот способ решить типичную проблему на бумаге, чтобы (с практикой) вы не запутались.
Серияи пример параллельной цепи.
Хорошо, хорошо, что стоит вспомнить, так почему бы не попробовать некоторые практические вопросы в модуле 4.5 резисторов по нахождению полного сопротивления некоторых резисторных сетей?
,Серии & Параллельные Резисторы | Расчеты Формулы
Описание способа последовательного и параллельного размещения резисторов для получения других значений сопротивления.
Сопротивление Учебник включает в себя:
Что такое сопротивление
Закон Ома
удельное сопротивление
Таблица удельного сопротивления для обычных материалов
Температурный коэффициент сопротивления
Электрическая проводимость
Последовательные и параллельные резисторы
Таблица параллельных резисторов
Параллельный калькулятор резисторов
Резисторы
могут быть размещены во многих конфигурациях в электрической или электронной цепи.
В некоторых случаях резисторы могут быть расположены последовательно, тогда как в других они могут быть расположены параллельно.
Когда они размещены в этих конфигурациях, важно иметь возможность рассчитать общее сопротивление. Этого легко добиться, если использовать правильные формулы — существуют простые формулы как для последовательных, так и для параллельных резисторов.
Резисторы в серии
Если резисторы размещены последовательно, то общее сопротивление — это просто сумма отдельных резисторов.
Резисторы в серииЭто можно выразить математически следующим образом:
RTOTAL знак равно р 1 + р 2 + р 3 + , , , , , ,
В качестве примера, если три резистора, имеющие значения 1 кОм, 2 кОм и 3 кОм, расположены последовательно, то общее сопротивление составляет 1 + 2 + 3 кОм = 6 кОм.
Резисторы параллельно
Если резисторы расположены параллельно, они делят ток, и ситуацию немного сложнее вычислить, но все же довольно легко.
1 RTOTAL знак равно 1 R1 + 1 R2 + 1 R3 + , , , , , ,
Пример
Для примера, если есть три резистора параллельно со значениями 1 кОм, 2 кОм и 3 кОм, тогда можно рассчитать общее значение комбинации:
1 / R Итого = 1/1000 + 1/2000 + 1/3000
1 / R Итого = 1/1000 + 1/2000 + 1/3000
1 / R Итого = 6/6000 + 3/6000 + 2/6000
1 / R Итого = 11/6000
R Итого = 6000/11 Ом или 545 Ом
Корпус только двух параллельных резисторов
Иногда это может быть довольно утомительным для расчета.К счастью, когда параллельно работают только два резистора, формула упрощается до:
р общее количество знак равно р 1 р 2 р 1 + р 2
Эта формула действительно упрощает расчет стоимости двух резисторов параллельно.
Более основные понятия:
Напряжение
Текущий
сопротивление
емкость
Мощность
трансформеры
РЧ шум
Децибел, дБ
Q, добротность
Возврат в меню основных понятий., ,