Фотодиоды инфракрасного и видимого диапазонов: Ошибка 404. Страница не найдена!

Содержание

Инфракрасный светодиод: как проверить, где используют, виды

Чтобы проверить светодиод и узнать его параметры, нужно иметь в своем арсенале мультиметр, «Цэшку» или универсальный тестер. Давайте научимся ими пользоваться.

Прозвонка отдельных светодиодов

Начнем с простого, как прозвонить светодиод мультиметром. Переведите тестер в режим проверки транзисторов – Hfe и вставьте светодиод в разъём, как на картинке ниже.

Как проверить светодиод на работоспособность? Вставьте анод светодиода в разъём C зоны обозначенной PNP, а катод в E. В PNP разъёмах C – это плюс, а E в NPN – минусовой вывод. Вы видите свечение? Значит проверка светодиода выполнена, если нет – ошибись полярностью или диод не исправен.

Разъём для проверки транзисторов выглядит по-разному, часто это синий круг с отверстиями, так будет если проверить светодиод мультиметром DT830, как на фото ниже.

Теперь о том, как проверить светодиод мультиметром в режиме проверки диодов.

Для начала взгляните на схему проверки.

Режим проверки диода так и обозначен – графическим изображением диода, подробнее об обозначениях в статье. Этот способ подойдёт не только для светодиодов с ножками, но и для проверки smd светодиода.

Проверка светодиодов тестером в режиме прозвонкипоказана на рисунке ниже, а еще можете увидеть один из видов разъёма для проверки транзисторов, описанного в предыдущем способе. Пишите в х о том какой у вас тестер и задавайте вопросы!

Этот способ хуже, от тестера возникает яркое свечение диода, а в данном случае — едва заметно красное свечение.

Теперь обратите внимание как проверить светодиод тестером с функцией определения анода. Принцип тот же, при правильной полярности светодиод загорится.

Проверка инфракрасного диода

Действительно, почти в каждом доме есть такой LED. В пультах дистанционного управления они нашли широчайшее применение. Представим ситуацию, что пульт перестал переключать каналы, вы уже почистили все контакты клавиатуры и заменили батареи, но он все равно не работает.

Значит нужно смотреть диод. Как проверить ИК-светодиод?

Человеческий глаз не видит инфракрасного излучения, в котором пульт передаёт информацию телевизору, но его видит камера вашего телефона. Такие светодиоды используются в ночной подсветке камер видео наблюдения. Включите камеру телефона и нажмите на любую кнопку пульта – если он исправен вы должны увидеть мерцания.

Методы проверки мультиметром ИК светодиода и обычного — одинаковы. Еще один способ как проверить инфракрасный светодиод на исправность – подпаять параллельно ему LED красного свечения.

Он будет служить наглядным показателем работы ИК диода. Если он мерцает, значит сигналы на диод поступают и нужно менять ИК диод.

Если красный не мерцает, значит сигнал не поступает и дело в самом пульте, а не в диоде.

В схеме управления с пульта есть еще один важный элемент, принимающий излучение — фотоэлемент. Как проверить фотоэлемент мультиметром? Включите режим измерения сопротивления. Когда на фотоэлемент попадает свет – состояние его проводимости изменяется, тогда изменяется и его сопротивление в меньшую сторону. Понаблюдайте этот эффект и убедитесь в исправности или поломке.

Проверка диода на плате

Как проверить светодиод мультиметром не выпаивая? В принципах его проверки всё остаётся также, а способы изменяются. Удобно проверять светодиоды, не выпаивая с помощью щупов.

Стандартные щупы не влезут в разъём для транзисторов, режима Hfe. Но в него влезут швейные иглы, кусочек кабеля (витая пара) или отдельные жилки из многожильного кабеля. В общем любой тонкий проводник. Если его припаять к щупу или фольгированному текстолиту и присоединить щупы без штекеров, то получится такой переходник.

Теперь вы можете прозвонить светодиоды мультиметром на плате.

Как проверить светодиоды в фонарике? Открутите блок линз или переднее стекло на фонаре, аккуратно отпаяйте плату от батарейного блока, если длина проводников не позволяет её свободно рассмотреть и изучить.

В таком положении вы легко проверите исправность каждого светодиода на плате описанным выше методом. Подробнее о светодиодах в фонариках.

Как прозвонить светодиодную лампу?

Любой электрик много раз «звонил» лампу накаливания, но как проверить ЛЕД-лампу тестером?

Для этого нужно снять рассеиватель, обычно он приклеен. Чтобы отделить его от корпуса вам нужен медиатор, или пластиковая карта, её нужно засунуть между корпусом и рассеивателем.

Если не удаётся этого сделать попробуйте немного погреть феном место склейки.

Как теперь проверить светодиодную лампочку мультиметром? Перед вами окажется плата со светодиодами, нужно прикоснуться щупами тестера к их выводам. Такие SMD в режиме проверки диодов загораются тусклым светом (но не всегда). Еще один способ проверки исправности  — прозвонка от батареи типа «крона».

Крона выдает напряжение 9-12В, потому проверяйте диоды кратковременными скользящими прикосновениями к их полюсам. Если LED не загорается при правильно подобранной полярности — требуется его замена.

Проверка LED прожектора

  • Для начала взгляните какой светодиод установлен в прожекторе, если вы видите один желтый квадрат, как на фотографии ниже, то тестером его проверить не получится, напряжение таких источников света велико – 10-30 Вольт и более.
  • Проверить работоспособность светодиода такого типа можно, используя заведомо исправный драйвер на соответствующий ток и напряжение.

Если установлено много мелких SMD – проверка такого прожектора мультиметром возможна. Для начала его нужно разобрать. В корпусе вы обнаружите драйвер, влагозащитные прокладки и плату с LED. Конструкция и процесс проверки аналогичен LED лампе, который описан выше.

Как проверить светодиодную ленту на работоспособность

На нашем сайте есть целая статья о том, как проверить светодиодную ленту, тут рассмотрим экспресс-методы проверки.

Сразу скажу, что засветить ее целиком мультиметром не удастся, в некоторых ситуациях возможно лишь лёгкое свечение в режиме Hfe. Во-первых можно проверять каждый диод по отдельности, в режиме проверки диодов.

Во-вторых иногда происходит перегорание не диодов, а токоведущих частей. Для проверки этого нужно перевести тестер в режим прозвонки и прикоснуться к каждому выводу питания на разных концах проверяемого участка.

Так вы определите целую часть ленты и поврежденную.

Красной и синей линией выделены полосы, которые должны звонится от самого начала до конца светодиодной ленты.

Как проверить светодиодную ленту батарейкой? Питание ленты – 12 Вольт. Можно использовать автомобильный аккумулятор, однако он большой и не всегда есть под рукой. Поэтому на помощь придет батарейка на 12В. Используется в дверных радиозвонках и пультах управления. Ее можно использовать как источник питания при прозвонке проблемных участков LED ленты.

Другие способы проверки

Разберем как проверить светодиод батарейкой. Нам понадобится батарейка от материнской платы — типоразмера CR2032. Напряжение на ней порядка 3-х вольт, достаточное для проверки большинства светодиодов.

Другой вариант — это использовать 4,5 или 9В батарейку, тогда нужно использовать сопротивление 75Ом в первом случае и 150-200Ом во втором. Хотя от 4,5 вольт проверка светодиода возможна без резистора кратковременным касанием. Запас прочности LED вам это простит.

Определяем характеристики диодов

Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.

Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:

  1. Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
  2. Переведите потенциометр в положение максимального сопротивления. Плавно убавляйте его, следите за свечением диода и ростом тока.
  3. Узнаём номинальный ток
    : как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов. После выхода диода на номинальный ток яркость свечения почти не изменяется.
  4. Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
  5. Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.
  6. Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.

Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.

Таблицы в помощь

Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.

Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость.

Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться.

Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).

Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.

После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.

В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.

Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.

Оцените, пожалуйста, статью. Мы старались:) Загрузка…

Источник: https://SvetodiodInfo.ru/voprosy-o-svetodiodax/kak-proverit-svetodiod-multimetrom.html

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме.

Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы.

В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра.

Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.   

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности.  Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).   

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света.
    Dip светодиоды
  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам.
    Smd
  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором.  Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.  
    Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. 
    Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий.
    Filament
  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. 
    Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор.

 Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока.

 По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

Источник: https://ArduinoMaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/

Разновидности, характеристики и сфера применения инфракрасных светодиодов

Одним из
распространенных и широко применяемых в различных областях радиоэлектроники
лед-элементов является инфракрасный
светодиод.

Спектр его свечения находится в невидимом человеческому глазу
диапазоне длин волн электромагнитного излучения.

Рассмотрим, какие
разновидности светоисточников подобного типа бывают, каковы их главные
технические характеристики, какие самые мощные их модификации существуют и в
каких сферах все они используются.

Разновидности ИК излучающих диодов

На современном рынке
радиодеталей светодиодные
излучатели представлены в достаточно широком ассортименте. Существует
несколько десятков позиций, различающихся по следующим основным параметрам:

  1. Мощности излучаемого потока света (или, как вариант, наибольшему проходящему через лэд-кристалл току).
  2. Прямому назначению.
  3. Форм-фактору.

Инфракрасные светодиоды светосилой до 100 мВт работают на номинале тока, не превышающем значение в 50 мА. Импортные аналоги несколько отличаются от отечественных.

Их лед-кристаллы заключены в 3- или 5-милиметровый корпус овальной формы. Внешне они похожи на стандартный led-элемент с двумя выводами.

По цвету линзы модели различаются от чисто прозрачного до желтого и голубого оттенка.

Российские компании уже
много лет изготавливают инфракрасные светодиоды в характерном мини-корпусе.
Примером являются экземпляры: 3Л107А или АЛ118А. В противоположность им более
мощные версии диодов производят на DIP-матрице по
технологии smd, как например, модель
SFh5715S линейки Osram.

Обратите внимание! Ввиду того, что ИК диод излучает в незаметном невооруженному глазу диапазоне, проверить его работоспособность можно посредством изображения, полученного съемкой цифровой видеокамеры, например, через мобильный телефон.

Технические характеристики

Так как инфракрасное
излучение невидно зрению человека и диапазон его длин волн распространен
достаточно широко – 0,75-2000 микрометров – то характерный для обычных
светодиодов набор технических параметров не применяется для них. Вместо этого
для лед-элементов, работающих в ИК-сегменте спектра, используются следующие
главные обозначения их свойств:

  1. Мощность в
    единицу времени (Вт/ч), либо дополнительно указывается на какую площадь
    излучателя она приходится.
  2. Интенсивность
    потока в пределах пространственного/телесного угла, выражаемая в Вт/ср
    (стерадианах).

  Суть и разница LCD и LED

Однако далеко не всегда требуется постоянное инфракрасное излучение, поэтому для светодиодов конкретного применения указываются характеристики не только в непрерывном, но и в импульсном режиме функционирования. При этом в последнем случае мощность сигнала на выходе может в несколько раз превышать аналогичный показатель, свойственный для первого варианта.

Помимо выше
рассмотренных специфических параметров, для инфракрасных светодиодов характерны
и общие показатели эксплуатации, также указываемые в паспортных данных:

  1. Диапазон длин волн.
  2. Номинальный прямой ток.
  3. Наивысший импульсный ток.
  4. Величина падения напряжения.
  5. Значение обратного напряжения.

Следует знать! Все существующие виды лед-элементов (лампы, светодиоды), в том числе излучающие в инфракрасной области, характеризуются различным углом рассеивания, даже в рамках одной серии – от узкого в 15 до широкого в 80. Поэтому при их выборе для конкретного применения нужно обращать внимание и на этот параметр, указанный в маркировке.

Мощные инфракрасные светодиоды

Для изготовления
мощного инфракрасного светодиода требуется большой лед-кристалл. В связи с этим
возникает несколько технологических проблем:

  1. С увеличением площади лэд-кристалла существенно возрастает его стоимость.
  2. При работе на полную мощность такого led-элемента выделяется настолько много энергии, что возникает сильный перегрев его основания и, как следствие, последующее быстрое разрушение.

Если же объединить
несколько близко установленных лед-кристаллов, возникает значительная потеря
мощности из-за повышения нерабочей боковой площади. Ввиду выше рассмотренных
обстоятельств, разработчики предложили несколько компромиссных вариантов:

  1. На данный момент
    допустимо изготавливать кристаллы размером до 1 мм2. До этого
    порогового значения можно существенно повысить силу тока, а значит, и мощность
    – в результате снижения сопротивления в лэд-материале из-за его нагрева.
  2. Внедряются все
    более совершенные рефлекторы, собирающие боковое излучение к центру.
  3. Производятся
    линзы с высоким коэффициентом преломления, что заставляет лучше собирать и
    направлять в пучок боковые волны.

Важно! Инфракрасные светодиоды и лазерные их модификации – это совершенно различные по принципу действия и техническим характеристикам светильники. В основе последних применяются квантоворазмерные гетероструктуры.

Область применения

Инфракрасные светодиоды
применяют далеко не только для
дистанционных пультов
управления бытовыми и технологическими приборами (телевизорами,
кондиционерами, котельной аппаратурой), но также во многих других областях:

  1. В создании направленной системы подсветки медицинского оборудования.
  2. В видеонаблюдении – для скрытого или дополнительного освещения охраняемых объектов и территорий. Здесь применяются различные типы инфракрасных прожекторов.
  3. В приборах ночного видения.
  4. В устройствах передачи данных посредством оптоволоконной сети.
  5. В научно-исследовательских направлениях (твердотельный лазер, подсветка и т. д.).
  6. В военно-промышленной сфере.
  7. В детекторах, датчиках, сигнализациях.
  8. В конвейерных сушилках на мукомольных и зерноперерабатывающих предприятиях.
  9. Для стерилизации капиллярно-пористых пищевых продуктов.
  10. В качестве компонентов контрольно-измерительного и прочего оборудования.

Добиться максимально качественно инфракрасного излучения от светодиодов, работающих в импульсном режиме, можно только при строгом контроле параметров напряжения.

Небольшое отклонение от нормы приведет к изменениям мощности излучения в несколько раз! Так, например, если на приборах, работающих в непрерывном режиме, указывается 5 Вт/ср, то при переходе их в импульсный режим – порядка 125 Вт/ср.

Поэтому для стабильности работы таких систем рекомендуется периодически уделять внимание их сервису и необходимому обслуживанию.

Основные выводы

Инфракрасные светодиоды
излучают в невидимой для глаза человека области спектра, и потому для
обозначения их главных параметров используют несколько отличные от обычных
лед-элементов характеристики:

  1. Мощность за период времени или с конкретной площади излучателя.
  2. Интенсивность в границах определенного пространственного угла.

Существуют десятки
модификаций инфракрасных светодиодов. Все они различаются не только по силе
излучения, но также назначению и форм-фактору. Чем мощнее лед-кристалл, тем
больше он нагревается и разрушается.

Поэтому производители при изготовлении
мощных моделей прибегают к некоторым ухищрениям, а не идут по пути прямого
увеличения их размеров.

Сфера применения ИК-диодов обширна – от индикации в
пультах ДУ бытовой техники до сложных военно-промышленных и медицинских приборов.

Если вы владеете
информацией о том, какие еще инфракрасные светодиоды существуют и где они
применяются, обязательно напишите об этом в х.

ПредыдущаяСледующая

Источник: https://svetilnik.info/svetodiody/infrakrasnyj-svetodiod.html

Инфракрасный светодиод-сфера применения ИК диодов

Инфракрасный светодиод (ИК-светодиод) представляет собой специальный светодиод, излучающий инфракрасные лучи длиной от 700 до 1 мм.

 Различные ИК-светодиоды могут создавать инфракрасный свет с разными длинами волн, так же как разные светодиоды производят свет разных цветов.

 ИК-светодиоды обычно изготавливают из арсенида галлия или арсенида галлия алюминия. В дополнение к ИК-приемникам они обычно используются в качестве датчиков.

Внешний вид ИК-светодиода аналогичен общему светодиоду. Поскольку человеческий глаз не может видеть инфракрасное излучение, человеку невозможно определить, работает ли ИК-светодиод. Эта проблема устранена камерой на сотовой телефоне.  ИК-лучи от ИК-светодиода в цепи показаны в камере.

Пин-схема инфракрасный светодиод

Инфракрасный светодиод представляет собой диод или простой полупроводник. Электрический ток пропускается только в одном направлении в диодах. По мере протекания тока электроны падают с одной части диода в отверстия на другой части. Чтобы попасть в эти дыры, электроны должны пролить энергию в виде фотонов, которые производят свет.

Необходимо модулировать излучение от Инфракрасного светодиода, чтобы использовать его в электронном приложении для предотвращения ложного срабатывания. Модуляция делает сигнал от Инфракрасного светодиода выше шума.

 Инфракрасные диоды имеют рассеиватель, который непрозрачен для видимого света, но прозрачен для инфракрасного излучения.

 Массовое использование Инфракрасных светодиодов в пульте дистанционного управления и системах охранной сигнализации резко сократило цены на Инфракрасные светодиоды на рынке.

ИК-датчик инфракрасный светодиод

ИК-датчик — это устройство, которое обнаруживает, что на него падает ИК-излучение.

 Датчики приближения (используются в телефонах с сенсорным экраном и исключая роботы), контрастные датчики (используемые в линейных следящих роботах) и счетчики / датчики препятствий (используемые для подсчета товаров и в охранной сигнализации) — это некоторые приложения, в которых используются ИК-датчики.

Принцип работы

ИК-датчик состоит из двух частей: схемы эмиттера и схемы приемника. Это коллективно известно как фотосоединитель или оптрон.

Эмиттер — это инфракрасный светодиод, а детектор — ИК-фотодиод. ИК-фотодиод чувствителен к ИК-лучу, излучаемому ИК-светодиодом. Сопротивление фотодиода и выходное напряжение изменяются пропорционально полученному ИК-лучу. Это основной принцип работы ИК-датчика.

Тип заболеваемости может быть прямой или косвенной. При прямом падении инфракрасный светодиод помещается перед фотодиодом без препятствия между ними. При косвенном падении оба диода располагаются рядом с непрозрачным предметом перед датчиком. Свет от ИК-светодиода попадает на непрозрачную поверхность и возвращается обратно к фотодиоду.

ИК-датчики находят широкое применение в различных областях. Давайте посмотрим на некоторые из них.

Датчики приближения

Датчики приближения используют рефлексивный принцип косвенного падения. Фотодиод получает излучение, излучаемое ИК-светодиодом, когда оно отражено обратно объектом. Чем ближе объект, тем выше будет интенсивность падающего излучения на фотодиоде.

 Эта интенсивность преобразуется в напряжение для определения расстояния. Датчики приближения находят применение в телефонах с сенсорным экраном, среди других устройств.

 Дисплей отключен во время вызовов, так что, даже если щека контактирует с сенсорным экраном, эффекта нет.

Роботы-последователи

В линейке следующих роботов ИК-датчики определяют цвет поверхности под ним и посылают сигнал микроконтроллеру или основной цепи, который затем принимает решения в соответствии с алгоритмом, установленным создателем бота.

 Линейные последователи используют рефлексивные или не отражающие косвенные случаи.  ИК отражается обратно к модулю с белой поверхности вокруг черной линии. Но ИК-излучение полностью поглощается черным цветом.

 Нет никакого отражения инфракрасного излучения, возвращающегося к сенсорному модулю черного цвета.

Счетчик предметов

Счетчик элементов реализован на основе прямого падения излучения на фотодиод.

 Всякий раз, когда предмет препятствует невидимой линии ИК-излучения, значение хранимой переменной в компьютере / микроконтроллере увеличивается.

 Это показывают светодиоды, семисегментные дисплеи и ЖК-дисплеи. Системы мониторинга крупных заводов используют эти счетчики для подсчета продукции на конвейерных лентах.

Охранная сигнализация

Прямая частота излучения на фотодиоде применима в схеме охранной сигнализации. ИК-светодиод установлен на одной стороне дверной коробки, а фотодиод — на другой.

 ИК-излучение, излучаемое инфракрасным светодиодом, попадает на фотодиод непосредственно в обычных условиях. Как только человек препятствует ИК-тракту, будильник гаснет.

 Этот механизм широко используется в системах безопасности и реплицируется в меньших масштабах для небольших объектов, таких как экспонаты на выставке.

Какие светодиоды стоят?

Как проверить светодиод?

Лучшие светодиоды

Источник: https://lightru.pro/infrakrasnyj-svetodiod/

Инфракрасные светодиоды – виды, область применения, характеристики

Инфракрасный (ИК) излучающий диод представляет собой полупроводниковый прибор, рабочий спектр которого расположен в ближней области инфракрасного излучения: от 760 до 1400 нм. В интернете часто встречается термин «ИК светодиод», хотя свет, видимый человеческим глазом, он не излучает.

То есть в рамках физической оптики этот термин неверен, в широком же смысле название применимо. Стоит отметить, что во время работы некоторых ИК излучающих диодов можно наблюдать слабое красное свечение, что объясняется размытостью спектральной характеристики на границе с видимым диапазоном.

Не стоит путать ИК светодиоды с лазерными диодами инфракрасного излучения. Принцип действия и технические параметры этих приборов сильно отличаются.

Область применения

На том, какими бывают инфракрасные светодиоды и где применяются, остановимся подробнее. Многие из нас ежедневно сталкиваются с ними, не подозревая об этом. Конечно же, речь идёт о пультах дистанционного управления (ПДУ), одним из важнейших элементов которого является ИК излучающий диод.

Благодаря своей надёжности и дешевизне метод передачи управляющего сигнала с помощью инфракрасного излучения получил огромное распространение в быту. Главным образом такие пульты применяются для управления работой телевизоров, кондиционеров, медиа проигрывателей.

В момент нажатия кнопки на ПДУ ИК светодиод излучает модулированный (зашифрованный) сигнал, который принимает и затем распознаёт фотодиод, встроенный в корпус бытовой техники. В охранной сфере большой популярностью пользуются видеокамеры с инфракрасной подсветкой.

Видеонаблюдение, дополненное ИК подсветкой, позволяет организовать круглосуточный контроль охраняемого объекта, независимо от погодных условий. В данном случае ИК светодиоды могут быть встроены в видеокамеру либо установлены в её рабочей зоне в виде отдельного прибора – инфракрасного прожектора.

Применение в прожекторах мощных ИК светодиодов позволяет осуществлять надёжный контроль прилегающей территории.

На этом их сфера применения не ограничивается. Весьма эффективным оказалось применение ИК излучающих диодов в приборах ночного видения (ПНВ), где они выполняют функцию подсветки. С помощью такого прибора человек может различать предметы на достаточно большом расстоянии в тёмное время суток. Устройства ночного видения востребованы в военной сфере, а также для скрытого ночного наблюдения.

Разновидности ИК излучающих диодов

  • мощности излучения или максимальному прямому току;
  • назначению;
  • форм-фактору.

Слаботочные ИК светодиоды предназначены для работы на токах не более 50 мА и характеризуются мощностью излучения до 100 мВт. Импортные образцы изготавливаются в овальном корпусе 3 и 5 мм, который в точности повторяет размеры обычного двухвыводного индикаторного светодиода. Цвет линзы – от прозрачного (water clear) до полупрозрачного голубого или жёлтого оттенка. ИК излучающие диоды российского производства до сих пор производят в миниатюрном корпусе: 3Л107А, АЛ118А. Приборы большой мощности выпускают как в DIP корпусе, так и по технологии smd. Например, SFh5715S от Osram в smd корпусе.

Технические характеристики

На электрических схемах ИК излучающие диоды обозначают так же, как и светодиоды, с которыми они имеют много общего. Рассмотрим их основные технические характеристики.

Рабочая длина волны – основной параметр любого светодиода, в том числе инфракрасного. В паспорте на прибор указывается её значение в нм, при котором достигается наибольшая амплитуда излучения.

Так как ИК светодиод не может работать только на одной длине волны, принято указывать ширину спектра излучения, которая свидетельствует об имеющемся отклонении от заявленной длины волны (частоты). Чем уже диапазон излучения, тем больше мощности сконцентрировано на рабочей частоте.

Номинальный прямой ток – постоянный ток, при котором гарантирована заявленная мощность излучения. Он же является максимально допустимым током.

Максимальный импульсный ток – ток, который можно пропускать через прибор с коэффициентом заполнения не более 10%. Его значение может в десять раз превышать постоянный прямой ток.

Прямое напряжение – падение напряжения на приборе в открытом состоянии при протекании номинального тока. Для ИК диодов его значение не превышает 2В и зависит от химического состава кристалла. Например, UПР АЛ118А=1,7В, UПР L-53F3BT=1,2В.

Обратное напряжение – максимальное напряжение обратной полярности, которое может быть приложено к p-n-переходу. Существуют экземпляры с обратным напряжением не более 1В.

ИК излучающие диоды одной серии могут выпускаться с разным углом рассеивания, что отображается в их маркировке. Необходимость в однотипных приборах с узким (15°) и широким (70°) углом распределения потока излучения вызвана их различной сферой применения.

Кроме основных характеристик, существует ряд дополнительных параметров, на которые следует обращать внимание при проектировании схем для работы в импульсном режиме, а также в условиях окружающей среды, отличных от нормальных.

Перед проведением паяльных работ следует ознакомиться с рекомендациями производителя о соблюдении температурного режима во время пайки.

О допустимых временных и температурных интервалах можно узнать из datasheet на инфракрасный светодиод.

Источник: https://ledjournal.info/spravochnik/infrakrasnye-svetodiody.html

Советские фотодиоды технические характеристики и схемы включения. Фотодиоды. фотодиод схема

Фотодиод может работать в фотодиодном и гальваническом режиме.

В фотодиодном режиме p-n переход смещается обратным напряжением величина которого зависит от конкретного фотодиода от единиц до сотни вольт, чем больше смещение тем быстрее он будет работать, и больше токи через него будут течь.

Недостаток фотодиодного режима в том, что с ростом обратного тока, в последствии увеличения напряжения или освещения, увеличивается уровень шумов, а уровень полезного сигнала в целом остается постоянным, считается, что в этом режиме диод имеет меньшую постоянную времени.

В фотогальваническом режиме к диоду не прикладывается ни какое напряжение, он сам становится источником ЭДС с большим внутренним сопротивлением.

Фотодиодная схема включения.

Приведенная схема (рис.1.) включения фотодиода является универсальной и подходит для тестирования и выбора, применительно к окончательной схеме своей конструкции.

Изменяя положение подстроечного резистора, в приведенной схеме, можно протестировать и выбрать оптимальный режим работы фотодиода.

Изменяя сопротивление резистора от минимального до максимального, можно подобрать наилучший режим смещения на фотодиоде.

Вывернув резистор на минимум, замкнув подвижный контакт на землю, мы переведем схему в фотогальванический режим.

Можно попробовать работу фотодиода и в прямом смещении (он все равно будет реагировать на свет), для этого надо поменять схему включения, перевернув диод.

Сопротивление в 50 Ком, не должно дать повредить фотодиод, а по переменной составляющей оно оказывается включенным параллельно с нагрузкой (меньше 5 КОм), и полезный сигнал практически не ослабляет. Конденсатор избавляет нас от постоянной составляющей. Если мы принимаеи импульсный сигнал то от постоянной составляющей, которая меняется в зависимости от фоновой засветки, лучше избавится сразу, смысла ее усиливать нет.

Еще одна стандартная схема включения фотодиода показана на рис.2.


В данной установке для уменьшения влияния шумов и наводок в схему добавлены буферные конденсаторы в цепи питания, накопительный конденсатор С3 и интегрирующая цепочка R2С4 на выходе.

C1- электролитический конденсатор большой ёмкости С = 100 мкФ, С2 — быстрый керамический 0,1 мкФ, С3, С4 — керамические по 100 пФ, R1 — 8 кОм, R2- 5,6 кОм.

Нагрузкой для достижения максимального быстродействия должен бы

ПРИЁМНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ • Большая российская энциклопедия

  • В книжной версии

    Том 27. Москва, 2015, стр. 475-476

  • Скопировать библиографическую ссылку:


Авторы: В. В. Шувалов

ПРИЁМНИКИ ОПТИ́ЧЕСКОГО ИЗЛУ­ЧЕ́НИЯ, уст­рой­ст­ва, ис­поль­зуе­мые для об­на­ру­же­ния по­то­ка оп­тич. из­лу­че­ния (све­та) и из­ме­ре­ния его па­ра­мет­ров (обыч­но энер­ге­ти­че­ских). Др. па­ра­мет­ры оп­тич. из­лу­че­ния (угол при­хо­да и уг­ло­вая рас­хо­ди­мость, дли­на вол­ны и спек­траль­ная по­ло­са, по­ля­ри­за­ция из­лу­че­ния) из­ме­ря­ют­ся П. о. и. с по­мо­щью до­пол­нит. дис­пер­си­он­ных эле­мен­тов (лин­зо­вых сис­тем, про­стран­ст­вен­ных фильт­ров, призм, ди­фрак­ци­он­ных ре­шё­ток, по­ля­ри­за­торов).

П. о. и. реа­ги­ру­ют толь­ко на по­ток энер­гии из­лу­че­ния, т. к. их ре­ак­ция оп­ре­де­ля­ет­ся про­цес­са­ми пе­ре­но­са и ре­лак­са­ции, ко­то­рые про­ис­хо­дят за вре­мя, на­мно­го боль­шее, чем пе­ри­од ко­ле­ба­ний све­то­во­го по­ля. Дей­ст­вие П. о. и. ос­но­ва­но на пре­об­ра­зо­ва­нии по­то­ка энер­гии, пе­ре­но­си­мо­го из­лу­че­ни­ем, в др. ви­ды энер­гии, бо­лее удоб­ные для ре­ги­ст­ра­ции. Это мо­жет быть те­п­ло­вая энер­гия (из­ме­не­ние темп-ры), энер­гия раз­де­ле­ния элек­трич. за­ря­дов, по­ро­ж­дае­мых кван­та­ми из­лу­че­ния (по­яв­ле­ние элек­трич. сиг­на­ла в фор­ме ре­ги­ст­ри­руе­мо­го за­ря­да, то­ка или на­пря­же­ния), хи­мич. энер­гия (из­ме­не­ние кон­цен­тра­ции к. -л. ве­ще­ст­ва), энер­гия оп­тич. из­лу­че­ния в др. об­лас­ти спек­тра (ре­ги­ст­ра­ция ви­ди­мо­го изо­бра­же­ния) и др.

Ре­ги­ст­ри­руе­мый по­сле та­ко­го пре­об­ра­зо­ва­ния ин­фор­мац. сиг­нал обыч­но ли­ней­но свя­зан с вход­ным сиг­на­лом. Свой­ст­во ли­ней­но­сти яв­ля­ет­ся след­ст­ви­ем за­ко­нов со­хра­не­ния (со­хра­не­ние энер­гии в замк­ну­тых сис­те­мах, со­хра­не­ние чис­ла час­тиц при их транс­фор­ма­ции, со­хра­не­ние пол­но­го им­пуль­са), ко­то­рые и оп­ре­де­ля­ют три раз­ных ти­па П. о. и.: те­п­ло­вые, кван­то­вые (фо­тон­ные) и пон­де­ро­мо­тор­ные (ос­но­ван­ные на дав­ле­нии све­та). Ли­ней­ность пре­об­ра­зо­ва­ния не­об­хо­ди­ма для ис­поль­зо­ва­ния прин­ци­па су­пер­по­зи­ции, и в ча­ст­но­сти для реа­ли­за­ции про­це­ду­ры вы­чи­та­ния шу­мов.

Тепловые приёмники

Рис. 1. Различные типы ФЭУ производства фирмы «Hamamatsu Photonics» (Япония). Hamamatsu Photonics

Те­п­ло­вые при­ём­ни­ки ра­бо­та­ют на ос­но­ве из­ме­не­ния темп-ры чув­ст­вит. эле­мен­та (аб­со­лют­но чёр­ное те­ло) при по­гло­ще­нии им энер­гии оп­тич. из­лу­че­ния. Из­ме­ре­ние темп-ры про­во­дит­ся разл. ме­то­да­ми: с ис­поль­зо­ва­ни­ем тер­мо­пар (ка­ло­ри­мет­ры), тер­мо­со­про­тив­ле­ний (бо­ло­мет­ры, вклю­чая сверх­про­во­дя­щий), пи­ро­элек­трич. эф­фек­та (пи­ро­мет­ры), дат­чи­ка дав­ле­ния (мик­ро­фо­на) в замк­ну­том объ­ё­ме с по­гло­щаю­щим из­лу­че­ние га­зом (оп­тоа­ку­стич. при­ём­ни­ки) и др. Те­п­ло­вые П. о. и. яв­ля­ют­ся спек­траль­но не­се­лек­тив­ны­ми и срав­ни­тель­но мед­лен­ны­ми (ха­рак­тер­ные вре­ме­на бо­лее 1 мс). Час­то па­ру иден­тич­ных при­ём­ни­ков вклю­ча­ют сим­мет­рич­но в т. н. мос­то­вые схе­мы (см. Мост из­ме­ри­тель­ный), что обес­пе­чи­ва­ет вы­чи­та­ние син­фаз­ных по­мех.

Квантовые приёмники

Рис. 2. Кремниевый фотодиод (а) и ИК-фотодиоды (б) фирмы ООО «Аиби» (С.-Петербург). ООО «Аиби»

В кван­то­вых (фо­тон­ных) при­ём­ни­ках (фо­то­при­ём­ни­ках) ис­поль­зу­ют­ся внеш­ний фо­то­эф­фект [фо­то­эле­мент, фо­тоэлек­трон­ный ум­но­жи­тель (ФЭУ, рис.  1), в т. ч. мик­ро­ка­наль­ный, элек­трон­но-оп­ти­че­ский пре­об­ра­зо­ва­тель (ЭОП)] и внутр. фо­то­эф­фект [фо­то­со­про­тив­ле­ние, фо­то­ди­од (рис. 2), в т. ч. ла­вин­ный, фо­то­тран­зи­стор, ПЗС-мат­ри­ца и др.]. При об­лу­че­нии чув­ст­вит. эле­мен­та (ме­тал­лич. фо­то­ка­тод, тон­кий слой по­лу­про­вод­ни­ка, слож­ная по­лу­про­вод­ни­ко­вая струк­ту­ра и др.) по­то­ком кван­тов оп­тич. из­лу­че­ния с дос­та­точ­ной энер­ги­ей (боль­ше т. н. крас­ной гра­ни­цы фо­то­эф­фек­та) в ре­зуль­та­те фо­то­эф­фек­та че­рез при­ём­ник на­чи­на­ет про­те­кать элек­трич. ток. Кван­то­вые П. о. и. не тре­бу­ют замк­ну­то­сти сис­те­мы, они все­гда спек­траль­но се­лек­тив­ны, по­сколь­ку ин­фор­мац. сиг­нал в них (за­ряд, ток, на­пря­же­ние) пря­мо про­пор­цио­на­лен чис­лу по­гло­щён­ных кван­тов оп­тич. из­лу­чения – фо­то­нов. Пе­ре­счёт в энер­ге­тич. ха­рак­те­ри­сти­ки тре­бу­ет до­пол­нит. ин­фор­ма­ции об энер­гии кван­тов. Вслед­ст­вие бы­ст­рой ре­ком­би­на­ции элек­тро­нов кван­то­вые П.  о. и. су­ще­ст­вен­но бо­лее бы­ст­рые; их ха­рак­тер­ные вре­ме­на мо­гут со­став­лять ⩽ 100 пс. Бы­ст­ро­дей­ст­вие кван­то­вых П. о. и. оп­ре­де­ля­ет так­же раз­брос вре­мён про­лё­та но­си­те­лей за­ря­да до мес­та ре­ги­ст­ра­ции. Их дос­то­ин­ст­вом яв­ля­ет­ся так­же воз­мож­ность эф­фек­тив­но уси­ли­вать сиг­нал; в про­цес­се уси­ле­ния ге­не­ри­руе­мый за счёт по­гло­ще­ния фо­то­на сво­бод­ный но­си­тель за­ря­да ус­ко­ря­ет­ся внеш­ним элек­трич. по­лем до энер­гий, дос­та­точ­ных для ла­вин­ной ио­ни­за­ции (ФЭУ, мик­ро­ка­наль­ный ФЭУ, ЭОП, ла­вин­ный фо­то­ди­од). Ко­эф. уси­ле­ния мо­жет дос­ти­гать 300 (ла­вин­ный фо­тоди­од), 103–104 (ЭОП) и да­же 105–107 (ФЭУ, мик­ро­ка­наль­ный ФЭУ). К кван­то­вым П. о. и. от­но­сят­ся так­же сис­те­мы с хи­мич. пре­об­ра­зо­ва­ни­ем (напр., фо­то­эмуль­сия), в ко­то­рых про­те­ка­ние хи­мич. ре­ак­ции обу­слов­ле­но дис­со­циа­ци­ей мо­ле­ку­лы при по­гло­ще­нии ею фо­то­на с дос­та­точ­ной для это­го энер­ги­ей.

Пон­де­ро­мо­тор­ные П. о. и. на прак­ти­ке поч­ти не ис­поль­зу­ют­ся из-за их низ­кой чув­ст­ви­тель­но­сти.

Инфракрасное излучение — Википедия. Что такое Инфракрасное излучение

Изображение собаки, полученное в инфракрасном излучении

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами[2].

Весь диапазон инфракрасного излучения условно делят на три области:

  • ближняя: λ = 0,74—2,5 мкм;
  • средняя: λ = 2,5—50 мкм;
  • дальняя: λ = 50—2000 мкм[3].

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн — терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым излучением», так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика

Эксперимент Гершеля

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением[4].

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте[4].

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов[4].

Диапазоны инфракрасного излучения

Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

Обычная схема деления

Чаще всего разделение на более мелкие диапазоны производится следующим образом:[5]

Аббревиатура Длина волны Энергия фотонов Характеристика
Near-infrared, NIR 0,75—1,4 мкм 0,9—1,7 эВ Ближний ИК, ограниченный с одной стороны видимым светом, с другой — прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
Short-wavelength infrared, SWIR 1,4—3 мкм 0,4—0,9 эВ Поглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530—1560 нм преобладает в области дальней связи.
Mid-wavelength infrared, MWIR 3—8 мкм 150—400 мэВ В этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры.
Long-wavelength infrared, LWIR 8—15 мкм 80—150 мэВ В этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
Far-infrared, FIR 15— 1000 мкм 1,2—80 мэВ

CIE схема

Международная комиссия по освещённости (англ. International Commission on Illumination) рекомендует разделение инфракрасного излучения на следующие три группы[6]:

  • IR-A: 700 нм — 1400 нм (0,7 мкм — 1,4 мкм)
  • IR-B: 1400 нм — 3000 нм (1,4 мкм — 3 мкм)
  • IR-C: 3000 нм — 1 мм (3 мкм — 1000 мкм)

ISO 20473 схема

Международная организация по стандартизации предлагает следующую схему:

Обозначение Аббревиатура Длина волны
Ближний инфракрасный диапазон NIR 0,78—3 мкм
Средний инфракрасный диапазон MIR 3—50 мкм
Дальний инфракрасный диапазон FIR 50—1000 мкм

Астрономическая схема

Астрономы обычно делят инфракрасный спектр следующим образом[7]:

Обозначение Аббревиатура Длина волны
Ближний инфракрасный диапазон NIR (0. 7…1) — 5 мкм
Средний инфракрасный диапазон MIR 5 — (25…40) мкм
Дальний инфракрасный диапазон FIR (25…40) — (200…350) мкм

Тепловое излучение

Теплово́е излуче́ние или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн, излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме. Примером теплового излучения является свет от лампы накаливания. Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана. Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа. Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.

Инфракрасное зрение

Органы восприятия человека и других высших приматов не приспособлены под инфракрасное излучение (проще говоря, человеческий глаз его не видит), однако, некоторые биологические виды способны воспринимать органами зрения инфракрасное излучение. Так, например, зрение некоторых змей позволяет им видеть в инфракрасном диапазоне и охотиться на теплокровную добычу ночью (когда её силуэт обладает наиболее выраженным контрастом на фоне остывшей местности). Более того, у обыкновенных удавов эта способность имеется одновременно с нормальным зрением, в результате чего они способны видеть окружающее одновременно в двух диапазонах: нормальном видимом (как и большинство животных) и инфракрасном. Среди рыб способностью видеть под водой в инфракрасном диапазоне отличаются такие рыбы как пиранья, охотящаяся на зашедших в воду теплокровных животных, и золотая рыбка. Среди насекомых инфракрасным зрением обладают комары, что позволяет им с большой точностью ориентироваться на наиболее насыщенные кровеносными сосудами участки тела добычи[8].

Применение

Прибор ночного видения

Существует несколько способов визуализировать невидимое инфракрасное изображение:

  • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
  • Электронно-оптический преобразователь — вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
  • Болометр — тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3—14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

Термография

Изображение девушки, полученное в инфракрасном диапазоне

Инфракрасная термография, тепловое изображение или тепловое видео — это научный способ получения термограммы — изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900—14000 нанометров) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела, термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение

Инфракрасная головка самонаведения — головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель

Инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасный обогреватель — отопительный прибор, отдающий тепло преимущественно излучением, а не конвекцией — используется для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды)[9].

Инфракрасный обогреватель в быту иногда неточно называется рефлектором. Лучистая энергия поглощается окружающими поверхностями, превращаясь в тепловую энергию, нагревает их, которые в свою очередь отдают тепло воздуху. Это дает существенный экономический эффект по сравнению с конвекционным обогревом, где тепло существенно расходуется на обогрев неиспользуемого подпотолочного пространства. Кроме того, при помощи ИК обогревателей появляется возможность местного обогрева только тех площадей в помещении, в которых это необходимо без обогрева всего объёма помещения; тепловой эффект от инфракрасных обогревателей ощущается сразу после включения, что позволяет избежать предварительного нагрева помещения. Эти факторы снижают затраты энергии.

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект: процесс идёт гораздо быстрее, а энергии, при этом, затрачивается гораздо меньше, чем при традиционных методах.

Инфракрасная астрономия

Раздел астрономии и астрофизики, исследующий космические объекты, видимые в инфракрасном излучении. При этом под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Инфракрасное излучение находится в диапазоне между видимым излучением, длина волны которого колеблется от 380 до 750 нанометров, и субмиллиметровым излучением.

Инфракрасная астрономия начала развиваться в 1830-е годы, спустя несколько десятилетий после открытия инфракрасного излучения Уильямом Гершелем. Первоначально прогресс был незначительным и до начала 20 века отсутствовали открытия астрономических объектов в инфракрасном диапазоне помимо Солнца и Луны, однако после ряда открытий, сделанных в радиоастрономии в 1950-х и 1960-х годах, астрономы осознали наличие большого объёма информации, находящегося вне видимого диапазона волн. С тех пор была сформирована современная инфракрасная астрономия.

Инфракрасная спектроскопия

Инфракрасная спектроскопия — раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.

По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др. ) находятся в терагерцевом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцевого диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрометры.

Передача данных

Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам, и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств, низкие скорости передачи (обычно не превышает 5—10 Мбит/с, но при использовании инфракрасных лазеров возможны существенно более высокие скорости). Кроме этого, не обеспечивается скрытность передачи информации[источник не указан 84 дня]. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров, но наиболее удобен он для связи компьютеров, находящихся в одной комнате, где отражения от стен комнаты дает устойчивую и надежную связь. Наиболее естественный тип топологии здесь — «шина» (то есть переданный сигнал одновременно получают все абоненты). Инфракрасный канал не смог получить широкого распространения, его вытеснил радиоканал.

Тепловое излучение применяется также для приема сигналов оповещения[10].

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата.

Медицина

Наиболее широко инфракрасное излучение в медицине находит в различных датчиках потока крови (PPG).

Широко распространенные измерители частоты пульса (ЧСС, HR — Heart Rate) и насыщения крови кислородом (SpO2) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Инфракрасные лучи применяются в физиотерапии.

Влияние длинноволнового инфракрасного излучения:

  • Стимуляция и улучшение кровообращения. При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
  • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции[источник не указан 84 дня].

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа и мука, на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесённые на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность[источник не указан 2754 дня]. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно[источник не указан 84 дня]. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надёжной защитой от подделок[источник не указан 84 дня].

Опасность для здоровья

Очень сильное инфракрасное излучение в местах высокого нагрева может высушивать слизистую оболочку глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких ситуациях необходимо надевать специальные защитные очки для глаз[11].

Инфракрасное излучение с длиной волны 1.35 мкм, 2.2 мкм при достаточной пиковой мощности в лазерном импульсе может вызывать эффективное разрушение молекул ДНК, более сильное, чем излучение в ближнем ИК-диапазоне[12].

Земля как инфракрасный излучатель

Поверхность Земли и облака поглощают видимое и невидимое излучение от Солнца и переизлучают большую часть энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом капли воды и водяной пар, а также диоксид углерода, метан, азот, гексафторид серы и хлорфторуглерод поглощают это инфракрасное излучение и вновь излучают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект удерживает атмосферу и поверхность в более нагретом состоянии, чем если бы инфракрасные поглотители отсутствовали в атмосфере[13][14].

См. также

Примечания

Ссылки

Видимый и инфракрасный спектр Глава 10

Видимый и инфракрасный спектр Глава 10
10. 1 ЦЕЛИ

1. Ознакомьтесь с видимой и инфракрасной частью электромагнитный частотный спектр.

2. Разберитесь в следующих терминах: термический и селективный. радиаторы, черное тело, серое тело, поглощающая способность, отражательная способность, коэффициент пропускания и излучения.

3. Уметь применять закон Стефана-Больцмана и Вейна. Закон смещения в электрооптических расчетах.

4. Поймите универсальную кривую черного тела, связанную с полоса пропускания детектора.

5. Изучите электрооптическое распространение через атмосфера, океан и жидкости / твердые вещества, а также наложенные ограничения окнами, растеканием, абсорбцией и рассеянием аэрозолей.

6. Понять основные тактически важные источники электрооптическая энергия.

7. Ознакомьтесь с основными видами электрооптики. датчики и детекторы, в том числе LLLTV и FLIR.

8. Знайте значение температуры детектора и отношение сигнал / шум в отношении электрооптического обнаружения.

9. Уметь использовать принципы плотности мощности и луча. разбрасывания с помощью представленных в этой главе для расчета дальность обнаружения тепловизионного прибора.

10. Поймите следующие термины, связанные с лазерами:

вынужденное излучение, фотоны, накачка, когерентность, уровни энергии, активная среда, расходимость и монохроматичность, вынужденное поглощение, спонтанное излучение.

11. Ознакомиться с военным применением лазеров и соображения по их использованию.

12. Ознакомьтесь с эффектами распространения высоких энергий в включают: поглощение, рассеяние, турбулентность и тепловое размытие.

ВВЕДЕНИЕ

Первым важным для ВМФ оптическим датчиком был человеческий глаз. В значительной степени глаз все еще остается последним оптический датчик, но теперь и другие оптические и электрооптические системы увеличить его.

В прошлом оптика играла важную роль военно-морского флота. последние достижения в электрооптике, он будет и дальше важный инструмент в будущем. Недавно развивающаяся технология не включает только устройства и методы для пассивного обнаружения видимое и инфракрасное излучение цели, но также распространяется на активное, «радарные» техники за счет использования лазеров. Общение устройства с чрезвычайно высокой скоростью передачи данных теперь доступны на этих частоты, а оружие направленной энергии ближе к практическая реальность.

Понятно, что использование оптики ограничивает широкий спектр функций, платформ и задач. Преимущества, полученные от использование оптических и инфракрасных частот (включая точное отображение, отслеживание, местоположение и дальность) часто компенсируют недостатки связанные с ограниченными диапазонами и погодой. Мы должны развивать эти системы для дополнения других технологий, используемых сегодня, чтобы недостатки одной системы будут «покрыты» недостатками другой системы. преимущества.

10.2 ОСНОВЫ

Прежде чем приступить к обсуждению новой темы, необходимо необходимо понимать основы и термины. Этот раздел касается на важные для электрооптики.

10.2.1 Спектр

В увеличенном масштабе на Рисунке 10-1 показана часть Электромагнитный частотный спектр важен для нашего обсуждения. Поскольку частоты в этой части спектра находятся в миллионы мегагерц, принято называть длину волны а не частота при их описании.Единица, наиболее часто используемая для описания длин волн. видимого и инфракрасного излучения микрон (м или) длиной 10-6 метров. Видимый свет простирается примерно от 0,4 до 0,76 мкм и разрушается на полосы по цвету. Инфракрасный (ИК) простирается от 0,76 до 1000 мкм и разделен на полосы, называемые ближним (NIR), средним (MIR), дальний (FIR) и экстремальный (XIR) инфракрасный. На самом деле есть нет четких границ для различных частей электромагнитный спектр. Используемые пределы несколько произвольны, и может варьироваться от публикации к публикации.

Еще один термин, часто используемый для описания света длины волны — это ангстрем (A), определяемый как 10-10 метров. Мы будем используя микрон в наших обсуждениях.

10.2.2 Тепловые и селективные радиаторы

Оптические частоты генерируются двумя типами источников: тепловые радиаторы и селективные радиаторы.Рисунок 10-2 показывает спектральные характеристики каждого. Мы обсудим каждый тип радиатора, охватывая некоторые важные фундаментальные концепции, которые помогите описать их.

10.2.2.1 Тепловые излучатели. Источник тепла излучает непрерывный спектр частот. Типовые тепловые радиаторы включая раскаленный металл реактивного двигателя или выхлопной трубы ракеты, аэродинамически нагретые поверхности, автомобили, персонал, местность, корабли и космические аппараты. Другой тепловой радиатор — солнце — самый значительный источник оптические длины волн.

Кирхгоф заявил, что объект, который является хорошим поглотителем энергии на определенной длине волны тоже хороший излучатель на той же длина волны. Термин «черное тело» был придуман для обозначения инфракрасной астрономии

| Определение, спутники и длины волн

Инфракрасная астрономия , изучение астрономических объектов посредством наблюдений за инфракрасным излучением, которое они излучают.Различные типы небесных объектов, включая планеты солнечной системы, звезды, туманности и галактики, излучают энергию на длинах волн в инфракрасной области электромагнитного спектра (то есть от одного микрометра до одного миллиметра). Методы инфракрасной астрономии позволяют исследователям исследовать многие такие объекты, которые иначе нельзя увидеть с Земли, потому что излучаемый ими свет с оптическими длинами волн блокируется проникающими частицами пыли.

Орион в видимом и инфракрасном свете

Созвездие Ориона в видимом (слева) и инфракрасном свете (справа).Инфракрасное изображение было получено с помощью инфракрасного астрономического спутника.

Изображение в видимом свете, слева, Акира Фуджи; Инфракрасное изображение, справа, Инфракрасный астрономический спутник / NASA

Инфракрасная астрономия возникла в начале 1800-х годов благодаря работе британского астронома сэра Уильяма Гершеля, который обнаружил существование инфракрасного излучения при изучении солнечного света. Первые систематические инфракрасные наблюдения звездных объектов были выполнены американскими астрономами В.В. Кобленц, Эдисон Петтит и Сет Б.Николсоном в 1920-е годы. Современные инфракрасные методы, такие как использование криогенных детекторных систем (для устранения препятствий инфракрасным излучением, испускаемым самим детекторным оборудованием) и специальные интерференционные фильтры для наземных телескопов, были внедрены в начале 1960-х годов. К концу десятилетия Джерри Нойгебауэр и Роберт Лейтон из Соединенных Штатов обследовали небо в относительно короткой инфракрасной длине волны 2,2 микрометра и идентифицировали примерно 20 000 источников только в небе северного полушария.С тех пор воздушные шары, ракеты и космические аппараты использовались для наблюдений в инфракрасном диапазоне длин волн от 35 до 350 микрометров. Излучение на таких длинах волн поглощается водяным паром в атмосфере, поэтому телескопы и спектрографы необходимо переносить на большие высоты над большинством поглощающих молекул. Специально оборудованные высоколетающие летательные аппараты, такие как воздушная обсерватория Койпера и стратосферная обсерватория для инфракрасной астрономии, были разработаны для облегчения инфракрасных наблюдений вблизи микроволновых частот.

Галактика Андромеды

Изображение галактики Андромеды, сделанное НАСА Wide-field Infrared Survey Explorer (WISE). Синим цветом обозначены зрелые звезды, а желтым и красным — пыль, нагретая новорожденными массивными звездами.

NASA / JPL-Caltech / UCLA

В январе 1983 года Соединенные Штаты в сотрудничестве с Соединенным Королевством и Нидерландами запустили инфракрасный астрономический спутник (IRAS), беспилотную орбитальную обсерваторию, оснащенную 57-сантиметровым (22- дюйм) инфракрасный телескоп, чувствительный к длинам волн от 8 до 100 микрометров.IRAS сделал ряд неожиданных открытий за короткий период службы, закончившийся в ноябре 1983 года. Наиболее значительными из них были облака твердого мусора вокруг Веги, Фомальгаута и нескольких других звезд, наличие которых убедительно свидетельствует о формировании планетных систем. подобен Солнцу. Другие важные открытия включали различные облака межзвездного газа и пыли, в которых формируются новые звезды, и объект, Фаэтон, который, как считается, является родительским телом для роя метеороидов, известных как Геминиды.

центр галактики Млечный Путь

Изображение центра Галактики Млечный Путь, полученное по наблюдениям, сделанным с помощью инфракрасного астрономического спутника (IRAS). Выпуклость в полосе — это центр Галактики. Желтые и зеленые пятна и капли — это гигантские облака межзвездного газа и пыли. Самый теплый материал выглядит синим, а более холодный — красным. IRAS был запущен 25 января 1983 года.

NASA

IRAS сменила в 1995–1998 годах Инфракрасная космическая обсерватория Европейского космического агентства, у которой был 60-сантиметровый (24-дюймовый) телескоп с камерой, чувствительной к длинам волн в диапазоне из 2.5–17 микрометров, фотометр и пара спектрометров, которые между ними расширяли диапазон до 200 микрометров. Он провел важные наблюдения протопланетных дисков из пыли и газа вокруг молодых звезд, и результаты показали, что отдельные планеты могут формироваться в течение столь коротких периодов, как 20 миллионов лет. Было установлено, что эти диски богаты силикатами, минералами, которые составляют основу многих распространенных типов горных пород. Он также обнаружил большое количество коричневых карликов — объектов в межзвездном пространстве, которые слишком малы, чтобы стать звездами, но слишком массивны, чтобы считаться планетами.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Самой совершенной на сегодняшний день инфракрасной космической обсерваторией был спутник США, космический телескоп Спитцера, который был построен на основе полностью бериллиевого 85-сантиметрового (33-дюймового) главного зеркала, которое фокусировало инфракрасный свет на трех инструментах — инфракрасном спектре общего назначения. камера, спектрограф, чувствительный к средним длинам волн инфракрасного диапазона, и фотометр для измерения изображений в трех дальних инфракрасных диапазонах.Вместе инструменты охватывали диапазон длин волн от 3,6 до 180 мкм. Наиболее поразительные результаты наблюдений спутника Spitzer касались внесолнечных планет; Спитцер определил температуру и структуру атмосферы, состав и динамику нескольких внесолнечных планет. Телескоп работал с 2003 по 2020 год.

Крабовидная туманность: инфракрасное изображение

Крабовидная туманность на инфракрасном изображении, полученном космическим телескопом Спитцера.

НАСА / Лаборатория реактивного движения-Калтех / Р. Герц (Университет Миннесоты) Узнайте об образовании звезд с помощью инфракрасного глаза космического телескопа Джеймса Уэбба.

Как космический телескоп Джеймса Уэбба будет наблюдать формирование звезд.

НАСА / Центр космических полетов Годдарда и Национальный центр приложений суперкомпьютеров См. Все видео к этой статье

Планируется, что на смену Спитцеру придут два больших космических телескопа. Космический телескоп Джеймса Уэбба (JWST) будет самым большим космическим телескопом на любой длине волны с диаметром главного зеркала 6,5 метра (21,3 фута). JWST будет изучать формирование звезд и галактик, запуск которого запланирован на 2021 год. Римский космический телескоп Нэнси Грейс будет иметь 2,4-метровый (7.9 футов) зеркало, запуск которого запланирован на 2025 год.

Ультрафиолетовые фотодиоды — SiC — Boston Electronics

Контакты
  • Продукты Категории
    • Детекторы ИК, УФ, видимого и ТГц диапазонов
    • Источники ИК и УФ
    • ИК и ТГц изображения
    • Подсчет фотонов
    • Приборы
    • Квантовые каскадные лазеры
    Обзор фотодетекторов ИК, УФ, видимого и ТГц диапазонов ИК-детекторы — высокая производительность, высокая скорость Инфракрасные (ИК) датчики комнатной температуры на термоэлементах Детекторы ультрафиолета (УФ) — высоконадежный карбид кремния (SiC) Системы обнаружения терагерцового (ТГц) диапазона — сверхпроводящие
.

Добавить комментарий

Ваш адрес email не будет опубликован.