Гальванические: Гальваническое покрытие: свойства, разновидности, альтернативы

Содержание

Гальваническое покрытие: свойства, разновидности, альтернативы

В данной статье рассматриваются особенности процесса гальванизации, виды и области применения гальванических покрытий, а также альтернативы, которые в некоторых случаях вполне оправданно заменяют этот метод защиты металлов.

Гальванизация – это электрохимический метод нанесения металлической пленки, которая препятствует коррозии и окислению поверхностей. Она придает им эстетичный внешний вид, износостойкость и увеличивает твердость.

Данный метод обработки улучшает термостойкость металлов, поэтому его широко применяют в таких отраслях промышленности, в которых присутствуют высокотемпературные процессы.


Как появилось гальваническое покрытие?

Открытием гальванического покрытия мир обязан русскому физику Борису Якоби. В 1836 году в ходе экспериментов он пропускал металлы через соляные и водные растворы, которые находились под воздействием электрического тока.

При прохождении через солевые растворы металлы разделялись на разнозарядные ионы. Положительные оседали на катоде, а отрицательные – на аноде.


Технология гальванизации

Гальванические покрытия требовательны к подготовке поверхностей. Перед началом работ требуется провести тщательную очистку и обезжиривание деталей.

Для металлических поверхностей рекомендуется использовать органические растворители, которые не вызывают коррозии, например Очиститель металла MODENGY

Он эффективно удаляет нефтепродукты, силиконовые масла, консервационные составы, адсорбированные пленки, газы, влагу и другие виды загрязнений. Испаряется быстро и без остатка.

Однако одной очистки и обезжиривания в большинстве случаев бывает недостаточно. Помимо этого проводится пескоструйная обработка и последующая шлифовка наждачной бумагой, специальными пастами.

Гальваническое покрытие выделяет все сколы, царапины и раковины поверхностей, поэтому обрабатываемое изделие должна быть идеально подготовленным.

Далее рассмотрим технологию гальванизации.

На деталь, погруженную в емкость с электролитом, подается отрицательный заряд, в результате чего она становится катодом. Отдельно стоящая металлическая пластина получает положительный заряд и берет на себя функцию анода.

Именно эта пластина служит для образования покрытия. При замыкании электрической сети металл с нее растворяется в электролите и направляется к катоду, где образует равномерную тонкую пленку.

Данный способ гальванизации называется анодным. Благодаря ему при возникновении очагов коррозии разрушается именно гальваническая изоляция, а защищаемый металл в течение длительного времени остается нетронутым.

Существует еще один метод гальванизации – катодное напыление. Он применяется гораздо реже. При нарушении целостности такого покрытия возрастает интенсивность разрушения металла под ним. Этому способствует сама технология нанесения.

Электролит – это проводящий раствор, благодаря которому металлы попадают на катод с анода. Размер емкостей для этой жидкости может быть разным и зависит от производственных задач.


Детали больших размеров находятся в объемных ваннах в подвешенном состоянии. На более мелкие изделия гальваническое покрытие наносится в барабанных емкостях, где отрицательный заряд подается на барабан, который вращается в электролите. Для обработки деталей очень маленького размера (метизы, крепежные элементы) используются колокольные наливные ванны. В процессе работы они вращаются с низкой скоростью, в результате чего детали равномерно покрываются защитным покрытием.

Большое значение имеет плотность тока, который проходит через электролит. Он влияет на структуру формируемого осадка. Данная величина измеряется отношением силы тока к единице поверхности обрабатываемой детали.

При слишком большой величине плотности порошковых отложений много, а при низкой – его вообще не образуется. Это сказывается на качестве конечного покрытия. Именно поэтому процесс гальванизации требует постоянного контроля.

Толщина гальванического покрытия на деталях составляет 6-20 мкм и определяется особенностями металлов, участвующих в гальванизации. Уровень адгезии металлического сплава с поверхностями определяется при помощи специальных тестов.

Совместимость металлов

Совместимость материалов при гальванизации очень важна. Все металлы в соединениях корродируют. В некоторых случаях процесс протекает замедленно. Однако существуют материалы, которые соединять вместе крайне не рекомендуется.

С определенными трудностями связана работа с алюминием и его сплавами. Это связано с тем, что на поверхностях этих материалов присутствует окисная пленка, которая затрудняет процесс гальванизации.

Для алюминия можно использовать следующие сочетания материалов: никель-хром, медь-никель-хром, медь-олово, свинец-олово. Допускается также цинкование и латунирование алюминия.


Области применения гальванических покрытий

Прочность и износостойкость гальванических покрытий позволяет использовать данный вид защиты:

  • В авиастроении

  • В машиностроении

  • В радиотехнической промышленности

  • В электронной промышленности

  • В строительстве


Альтернатива гальваническому покрытию

Повысить прочность и антикоррозионные характеристики металлов можно не только с помощью гальванизации, но и другими методами: закалкой, рекристаллизацией, чеканкой, обкатыванием, газопламенным напылением, наплавкой и т.д.

Одним из наиболее простых и эффективных способов повышения износостойкости металлических изделий, предотвращения их коррозии и защиты от агрессивных внешних факторов является применение специальных твердосмазочных покрытий. Внешне они напоминают лакокрасочные материалы, только вместо пигмента содержат частицы твердых смазочных веществ.

Такие покрытия создают на поверхностях тонкую сухую пленку, которая обладает высокой несущей способностью и низким коэффициентом трения. Это особенно важно для металлических деталей, которые являются частью подвижных механизмов, работают при очень высоких нагрузках, давлениях и температурах.


Рассмотрим особенности антифрикционных твердосмазочных покрытий на примере материалов MODENGY. Их основу составляют неорганические и органические связующие вещества, а также твердые смазочные материалы: графит, дисульфид молибдена, политетрафторэтилен (ПТФЭ), нитрид бора, дисульфид вольфрама, фториды бария и кальция.

Эти материалы формируют на поверхностях прочный композиционный слой. Он представляет собой полимерную матрицу с равномерно распределенными в ней частицами твердых смазочных веществ. Они заполняют и сглаживают микронеровности поверхностей, тем самым увеличивая их опорную площадь и несущую способность.

Покрытия MODENGY обладают высоким сопротивлением сжатию и малым сопротивлением сдвигу, поэтому их коэффициент трения достигает значений в несколько сотых при контактных давлениях, соизмеримых с пределом текучести материала основы.

Многие из материалов MODENGY доказали свою работоспособность в условиях радиации и вакуума. Их несущая способность достигает 2500 МПа, диапазон рабочих температур составляет от -200 до +560 °C. Благодаря технологии сухой смазки, которую они реализуют, покрытия эффективно работают в запыленных условиях.

Жидкие покрытия наносятся стандартными методами окрашивания: распылением, окунанием, центрифугированием. Составы в аэрозольной фасовке не требуют какого-либо оборудования. Краткую видеоинструкцию по их нанесению смотрите на примере работы с покрытием MODENGY Для деталей ДВС.


Виды гальванических покрытий

В зависимости от назначения гальванические покрытия подразделяются на следующие виды:

  • Защитные: служат для изоляции металлических изделий от механических повреждений и воздействия агрессивных сред

  • Защитно-декоративные: предназначены для защиты деталей от агрессивных и разрушающих внешних факторов, а также для придания им эстетичного внешнего вида

  • Специальные: служат для улучшения определенных характеристик поверхностей, например, повышения износостойкости и твердости, электроизоляционных, магнитных свойств

В некоторых случаях гальванизация применяется для восстановлении изначального вида изделий после их длительной эксплуатации.

Гальваническое покрытие позволяет создавать точные копии деталей, которые обладают даже очень высокой сложностью рельефа. Данный процесс называется гальванопластикой.

В зависимости от используемых в качестве покрытий материалов выделяют следующие виды гальванизации.

Меднение

В качестве покрытия используется медный купорос. Такая обработка способствует повышению прочности металлических изделий и повышению их токопроводящих свойств. Металлы с медным покрытием используются для производства электропроводников.


Хромирование

Данная процедура повышает прочностные характеристики металлов, а также их сопротивляемость различным агрессивным воздействиям. Помимо этого, она улучшает внешней вид деталей и восстанавливает поврежденные элементы.

В зависимости от технологии выполнения хромированное покрытие может обладать различными свойствами и параметрами. Например, серое матовое увеличивает твердость металла, блестящее повышает его износостойкость, молочное пластичное придает эстетичный внешний вид и усиливает стойкость к коррозии.


Цинкование

Самая популярная операция гальванизации. Тонкий слой цинка придает металлам блеск и предотвращает образование коррозии. Цинкование особенно популярно в строительной и автомобильной индустрии. Цинк используется для обработки трубопрокатных изделий, емкостей, опорных и кровельных конструкций, кузовных деталей автомобилей.



Железнение

Используется для усиления прочностных характеристик легкоизнашиваемых деталей, например, из меди. Такое покрытие практически не подвержено воздействию коррозии.


Никелирование

Данный метод обработки является оптимальным для придания металлам устойчивости к воздействиям окружающей среды. Слой никеля надежно защищает изделия от коррозии, возникающей вследствие загрязнения щелочами, кислотами, солями. Никелированные детали отличаются очень высокой стойкостью к истиранию и механическим повреждениям.


Латунирование

Используется для защиты металлов от воздействия коррозии. Кроме того, слой латуни обеспечивает лучшую адгезию металлических деталей с резиной.


Серебрение и золочение

Эти операции применяются в ювелирном деле, радиоэлектронной и электротехнической отраслях. Серебро и золото придают поверхностям презентабельный внешний вид, высокие отражающие свойства, предотвращают коррозию, улучшают токопроводящие свойства, повышают твердость и защищают от агрессивных внешних факторов.


Родирование

Слой родия увеличивает сопротивляемость деталей воздействию химически агрессивных сред, а также придает им дополнительную механическую стойкость. Родирование предотвращает окисление, потускнение изделий из серебра.


Покрытие оловом

Олово увеличивает прочность и твердость металлических деталей. Гальванизация этим материалом применяется для алюминия, цинка, стали и меди.


Гальванические элементы. Виды и устройство. Работа и особенности

В первых опытах ученых в емкость с кислотой опускали две металлические пластины: медную и цинковую. Пластины соединяли проводником, после чего на медной пластине появлялись газовые пузырьки, а цинковая пластина стала растворяться. Было доказано, что по проводнику проходит электрический ток. Это исследование начинал итальянский ученый Гальвани, от него и получили название гальванические элементы.

После этого ученый Вольта разработал цилиндрическую форму этого элемента в виде вертикального столбика, включающего в себя набор колец меди, цинка и сукна, соединенных друг с другом, и пропитанных кислотой. Разработанный Вольтом вертикальный элемент полуметровой высоты вырабатывал напряжение, которое мог почувствовать человек.

Гальванические элементы — это источники электрической энергии, вырабатывающие электрический ток методом химического взаимодействия двух металлов в электролите. Химическая энергия в гальванических элементах преобразуется в электрический ток.

Виды и особенности устройства
Батарейки широко используются для питания разных электронных устройств, приборов, цифровой техники и делятся на три основных вида:
  1. Солевые.
  2. Щелочные.
  3. Литиевые.
 Солевые гальванические элементы

Такие батарейки относятся к марганцево-цинковым элементам питания, и являются наиболее применяемыми в настоящее время.

Достоинствами солевых батареек являются:
  • Приемлемые электрические параметры для многих областей использования.
  • Удобство применения.
  • Малая цена ввиду небольших расходов на изготовление.
  • Простая технология изготовления.
  • Дешевое и доступное сырье.

Длительное время этот вид батареек является наиболее популярным, благодаря соотношению качества и цены. Однако в последние годы заводы изготовители уменьшают производство солевых гальванических элементов, и даже отказываются от выпуска, так как требования к источникам питания повышаются производителями электронной техники.

Недостатками солевых батареек являются:
  • Малый срок хранения, не более 2-х лет.
  • Резкое падение свойств при снижении температуры.
  • Резкое уменьшение емкости при повышении рабочего тока до эксплуатационных значений современных потребителей.
  • Быстрое уменьшение напряжения во время работы.

Солевые гальванические элементы в конце своего разряда могут потечь, что связано с вытеканием электролита из-за увеличения объема положительного электрода, который выдавливает электролит. Активная масса плюсового электрода состоит из диоксида марганца и электролита. Сажа и графит, добавленный в активную смесь, повышают электропроводность активной смеси. Их доля равна от 8 до 20% в зависимости от марки батарейки. Для увеличения срока работы окислителя активную смесь насыщают электролитом.

Минусовой электрод изготавливают из очищенного цинка, устойчивого к коррозии. В нем остается небольшая доля кадмия или свинца, являющегося ингибиторами коррозии. Раньше в батарейках в качестве электролита использовали хлорид аммония. Он участвует в реакции образования тока, создает проходимость ионов. Но такой электролит не показал хороших результатов, и его заменили хлоридом цинка с примесями хлорида кальция. Марганцево-кислые элементы работают дольше, и показывают лучшие результаты при пониженных температурах.

В солевых гальванических элементах отрицательным полюсом является цинковый корпус 7. Плюсовой электрод 6 изготовлен из активной прессованной массы, пропитанной электролитом. По центру этой массы находится угольный стержень 5, обработанный парафином для удержания влаги в электролите. Верхняя часть стержня закрыта металлическим колпаком. В сепараторе 4 находится густой электролит. В газовую камеру 1 поступают газы, образованные при работе батарейки. Сверху батарейку закрывают прокладкой 3. Весь гальванический элемент заключают в футляр 2, выполненный из картона или фольги.

Щелочные батарейки

Щелочные элементы питания появились в середине прошлого века. В них в качестве окислителя выступает диоксид марганца, а в качестве восстановителя порошковый цинк. Это дает возможность увеличить поверхность. Для предохранения от коррозии раньше применялось амальгамирование. Но после запрета на ртуть используют очищенные цинковые порошки с добавлением других металлов и ингибиторов коррозии.

Активным веществом анода щелочной (алкалиновой) батарейки стал очищенный цинк в виде порошка с добавлением алюминия, индия или свинца. Активная смесь катода включает в себя диоксид марганца, ацетиленовую сажу или графит. Электролит алкалиновых батареек состоит из едкого натра или калия с добавлением оксида цинка.

Порошковый анод позволяет значительно повысить использование активной смеси, в отличие от солевых батареек. Алкалиновые батарейки обладают значительно большей емкостью, чем солевые, при равных габаритных размерах. Они хорошо себя показали в работе на морозе.

Особенностью устройства алкалиновых элементов является порошковый цинк, поэтому вместо цинкового стакана используют стальной корпус для положительного вывода. Активная смесь положительного электрода находится возле внутренней стенки стального корпуса. В алкалиновой батарейке есть возможность разместить больше активной смеси положительного электрода, в отличие от солевой.

В активную смесь вставляется целлофановый сепаратор, смоченный электролитом. По центру батарейки проходит латунный отрицательный электрод. Остальной объем между сепаратором и отрицательным токоотводом заполняется анодной пастой в виде порошкового цинка, пропитанного густым электролитом. Обычно в качестве электролита используют щелочь, насыщенную специальными соединениями цинка. Это дает возможность предотвратить потребление щелочи в начале работы элемента, и снизить коррозию. Масса щелочных батареек выше солевых из-за стального корпуса и большей плотности активной смеси.

По многим основным параметрам алкалиновые гальванические элементы превосходят солевые элементы. Поэтому в настоящее время увеличивается объем производства щелочных батареек.

Литиевые элементы питания

Литиевые гальванические элементы применяются в различных современных устройствах. Они выпускаются различных типоразмеров и видов.

Существуют литиевые батарейки и литиевые аккумуляторы, имеющие между собой большие отличия. Батарейки имеют в составе твердый органический электролит, в отличие от других видов элементов. Литиевые элементы используются в местах, где требуются средние и малые токи разряда, стабильное рабочее напряжение. Литиевый аккумулятор можно перезаряжать определенное количество раз, а батарейки не предназначены для этого, и используются только один раз. Их запрещается вскрывать или перезаряжать.

Основные требования к производству
  • Надежная герметизация корпуса. Нельзя допускать утечки электролита и проникновения внутрь других веществ из внешней среды. Нарушение герметичности приводит к их возгоранию, так как литий является высоко активным элементом. Гальванические элементы с нарушенной герметичностью не годятся для эксплуатации.
  • Изготовление должно проходить в герметичных помещениях с аргоновой атмосферой и контролем влажности.

Форма литиевых аккумуляторов бывает цилиндрической, дисковой или призматической. Габариты практически не отличаются от других видов батареек.

Область использования
Литиевые гальванические элементы обладают более длительным сроком работы, по сравнению с другими элементами. Область применения очень широка:
  • Космическая промышленность.
  • Авиационное производство.
  • Оборонная промышленность.
  • Детские игрушки.
  • Медицинская техника.
  • Компьютеры.
  • Фото- и видеокамеры.
Преимущества
  • Широкий интервал рабочих температур.
  • Компактные размеры и масса.
  • Длительная эксплуатация.
  • Стабильные параметры в различных условиях.
  • Большая емкость.
Недостатки
  • Возможность внезапного возгорания при несоблюдении правил пользования.
  • Высокая цена, по сравнению с другими видами батареек.
Принцип работы

Действие гальванических элементов основано на том, что два разных металла в среде электролита взаимодействуют между собой, в результате чего во внешней цепи образуется электрический ток.

Такие химические элементы сегодня называют батарейками. Величина напряжения батарейки зависит от применяемых видов металлов и от числа элементов, находящихся в ней. Все устройство батарейки расположено в металлическом цилиндре. Электроды представляют собой металлические сетки с напылением восстановителя и окислителя.

Батарейки не могут восстанавливать утраченные свойства, так как в них осуществляется прямое преобразование химической энергии окислителя и восстановителя в электрическую. Химические реагенты при функционировании батарейки постепенно расходуются, а электрический ток уменьшается.

Отрицательный вывод батарейки выполнен из цинка или лития, он теряет электроны и является восстановителем. Другой положительный вывод играет роль окислителя, его изготавливают из оксида магния или солей металлов. Состав электролита в обычных условиях не пропускает через себя электрический ток. При замыкании электрической цепи начинается распад электролита на ионы, что обуславливает появление его электрической проводимости. Электролит состоит чаще всего из раствора кислоты или солей натрия и калия.

Похожие темы:

Гальваническое хромирование: классификация, оборудование, проведение

Чтобы придать металлическим поверхностям блеск, улучшить внешний вид, их подвергают хромированию. Эта технология наиболее популярна в автомобилестроении. Она необходима не только для улучшения вида, но и повышения прочности заготовки. Среди наиболее эффективных технологий обработки специалисты выделяют гальваническое хромирование.

Гальваническое хромирование

Суть процесса

Хромирование — технологический процесс металлизации изделий хромом. Благодаря ему улучшаются технические характеристики материала, укрепляются поверхностные слои.

Главные достоинства процедуры:

  1. Основание восстанавливается, становится более прочным. Повышается показатель износоустойчивости.
  2. Закрываются трещины, не превышающие по толщине 1 мм.
  3. Грязь, пыль хуже липнут к хромированной поверхности.
  4. Улучшаются декоративные качества обработанных деталей.

Изделие погружается в ванную с хромовой кислотой, через которую пропускается напряжение. Обрабатываемая заготовка выполняет роль катода. Пассивными анодами являются стенки емкости, дополнительные пластины, которые изготавливаются из сплава сурьмы с оловом.

Многие начинающие автолюбители сравнивают хромирование с никелированием, пытаются найти отличия, путаются в преимуществах, недостатках. Покрытие на основе никеля лучше только по внешнему виду. Показатели прочности, износоустойчивости у него гораздо хуже.

Хромированный диск (Фото: Instagram / funchrome)

Классификация

Покрытие хромом может проводиться несколькими способами:

  1. Гальванический. Бывает двух типов — диффузным, электролитическим. Первый вариант подразумевает нанесение хрома с помощью гальванической кисти. Электролитический тип подразумевает применение раствора хромового ангидрида, в который погружается обрабатываемая заготовка.
  2. Вакуумный. Заготовки помещаются в вакуумную камеру, в которую подаются пары хрома, которые оседают на металлические поверхности, создавая защитный слой.
  3. Химический. Технология не требует применения электрического тока. Смесь для обработки готовят из лимоннокислого натрия, фосфора, едкого натрия, уксусной ледяной кислоты.
  4. Каталитический способ. Его можно отнести к химической обработке. На поверхность деталей наносится рабочий состав, не содержащий кислот. Он состоит из серебра в щелочном растворе аммиака. Дополнительно применяется восстановитель — гидразин или формалин.
  5. Термохромирование. Изделия нагревают, покрывают рабочей смесью — хромом в порошке или феррохромом.

Необходимое оборудование

Инструменты и оборудование:

  1. Источник постоянного тока с возможностью регулировки выходного напряжения. Обработку деталей малого размера допустимо проводить при использовании зарядного устройства для мобильных телефонов.
  2. Гальваническая ванна. Должна изготавливаться из термоустойчивого пластика или стекла. Главное условие — устойчивость к высоким температурам.
  3. Термометр — необходим для контроля температуры при проведении рабочего процесса.
  4. Нагревательный элемент. Лучший вариант — тэн из керамики. Нагреватель должен выдерживать длительное воздействие кислот.

Для обработки нужно устанавливать не менее двух гальванических ванн, чтобы постоянно не менять реактивы в одной емкости.

Гальваническая ванна (Фото: Instagram / galvaprom)

Как правильно подготовить изделие к процедуре?

Качество гальванического хромирования зависит от подготовки рабочих поверхностей. Этапы:

  1. Очистка от грязи, налета, ржавчины. Для этого применяется наждачная бумага, угловые шлифовальные машинки.
  2. Обезжиривание поверхностей кальцинированной водой. Для изготовления средства необходимо смешать 1000 мл простой воды с 50 мл кальцинированной. К готовой жидкости добавить 5 г силикатного клея, 0,15 кг гидроокиси натрия. Тщательно перемешать и нагреть смесь.

Детали погружаются в жидкость для обезжиривания на 20 минут.

Проведение

Хромирование в домашних условиях должно выполняться с соблюдением ряда правил, техники безопасности. Изначально необходимо подготовить оборудование, сделать рабочую смесь — электролит. Инструкция по изготовлению:

  1. Купить большую емкость с дистиллированной водой. Необходимое количество жидкости перелить в емкость для нагревания. Разогреть до 60°C.
  2. Добавить 250 г хромового ангидрида (на 1 литр воды). Тщательно перемешать.
  3. Перелить жидкость в гальваническую ванну.
  4. Добавить 2,5 грамма серной кислоты.

Чтобы выровнять плотность электролита, необходимо пропустить через нее номинальный ток, выдержать жидкость в темном помещении 24 часа.

Для гальванического хромирования необходимы 3 элемента:

  1. Анод — в качестве этого элемента выступает обрабатываемая заготовка. Нельзя допускать, чтобы анод касался катода.
  2. Катод — изготавливается из олова со свинцом или чистого свинца. Представляет собой металлическую пластину, которая по площади должна превышать анод.
  3. Электролит — рабочий состав, без которого невозможно осуществить хромирование.

Процесс хромирования:

  1. Разогреть электролит до 52°C.
  2. Заготовку поместить в гальваническую ванну.
  3. Подать рабочее напряжение. Деталь должна обрабатываться до 1 часа. Чем сложнее форма, тем дольше проводится обработка.

После проведения рабочего процесса деталь сушится 3 часа. К ней нельзя прикасаться руками.

Процедура гальванического хромирования (Фото: Instagram / galvaprom)

Техника безопасности

Чтобы не навредить своему организму, следует соблюдать технику безопасности:

  1. Перед хромированием нужно наладить вентиляцию, убрать из рабочей зоны горючие смеси.
  2. При приготовлении электролита, рабочем процессе использовать защитные перчатки, очки, респиратор.
  3. Купить специальные пакеты для химических отходов, в которые нужно упаковывать остающийся мусор после обработки.
  4. Помещение должно быть очищено от любой органики. В противном случае предметы будут испорчены.

Врачи рекомендуют смазывать внутреннюю часть носа ланолином с вазелином. Компоненты смешиваются в пропорции 1:2. Это поможет защитить организм от воздействия вредных испарений.

Гальваническое хромирование применяется в разных сферах промышленности. С его помощью восстанавливается внешний вид изделий, улучшаются их технические характеристики. Обработку можно провести в домашних условиях, но важно правильно смешивать химические компоненты.

ГАЛЬВАНИЧЕСКИЙ — это… Что такое ГАЛЬВАНИЧЕСКИЙ?


ГАЛЬВАНИЧЕСКИЙ
ГАЛЬВАНИЧЕСКИЙ

Содержащий в себе гальванизм или действующий посредством его. — Гальванический свет происходит от гальванического тока, проходящего между двумя сближенными заостренными угольками и накаляющего эти угольки.

Словарь иностранных слов, вошедших в состав русского языка.- Чудинов А.Н., 1910.

гальвани́ческий

(по имени ит. ученого Гальвани (Galvani), 1737-1798) г. элемент — источник электрического тока, в котором электрическая энергия выделяется в результате хим. реакций между электролитом и электродами — основными компонентами элемента;

г-ая батарея — соединение нескольких г-их элементов;

г. ток — устарелое название постоянного электрического тока.

Новый словарь иностранных слов.- by EdwART, , 2009.

гальванический

[] – гальванический элемент, сухой элемент – прибор, служащий источником электрической энергии, получаемой за счёт химической энергии входящих в него веществ; гальваническая батарея – соединение нескольких гальванических элементов для получения электрического (гальванического) тока

Большой словарь иностранных слов.- Издательство «ИДДК», 2007.

гальванический

ая, ое (нем. galvanisch, фр. galvanique Galvani — фамилия ит. физиолога (1737—1798)).
1. Возбужденный путем химических реакций (об электрическом токе) или предназначенный для получения электрического тока путем таких реакций. Г. ток. Гальванические элементы.
2. Относящийся к гальванизации. Гальванические процедуры.

Толковый словарь иностранных слов Л. П. Крысина.- М: Русский язык, 1998.

.

Синонимы:
  • ГАЛЬВАНИЧЕСКАЯ ЦЕПЬ
  • ГАЛЬВАНИЧЕСКОЕ ГРАВИРОВАНИЕ

Смотреть что такое «ГАЛЬВАНИЧЕСКИЙ» в других словарях:

  • ГАЛЬВАНИЧЕСКИЙ — ГАЛЬВАНИЧЕСКИЙ, гальваническая, гальваническое (физ.). 1. прил., по значению связанное с гальванизмом. Гальванический ток. Гальваническая батарея (соединение нескольких гальванических элементов). Гальванический элемент (прибор, в котором… …   Толковый словарь Ушакова

  • гальванический — ая, ое. galvanique? 1. устар. Электрический; подобный действию электрического тока. БАС 2. Гальванический столб, один ил несколько электрометров, весьма чувствительных, как то Кулона и Вольты; .. несколько эвдиометров.., гигрометр Соссюров..,… …   Исторический словарь галлицизмов русского языка

  • гальванический — электрический Словарь русских синонимов. гальванический прил., кол во синонимов: 3 • микрогальванический (1) • …   Словарь синонимов

  • ГАЛЬВАНИЧЕСКИЙ — ГАЛЬВАНИЧЕСКИЙ, ая, ое. Относящийся к получению электрического тока путём химических реакций. Гальванические элементы. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • гальванический — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN galvanic …   Справочник технического переводчика

  • Гальванический — прил. 1. Связанный с получением электрического тока путём химических реакций; предназначенный для этой цели. 2. Связанный с гальванотехникой. 3. Связанный с гальванизацией. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

  • гальванический — гальванический, гальваническая, гальваническое, гальванические, гальванического, гальванической, гальванического, гальванических, гальваническому, гальванической, гальваническому, гальваническим, гальванический, гальваническую, гальваническое,… …   Формы слов

  • гальванический — гальван ический …   Русский орфографический словарь

  • гальванический — …   Орфографический словарь русского языка

  • гальванический — Syn: электрический …   Тезаурус русской деловой лексики


Принцип работы гальванического элемента

Все о гальваническом элементе

Концентрационный гальванический элемент – это источник тока в состав которого входит 2 однотипных металлических электродов помещенных в смесь солей этого металла в различных концентрациях.

Цинк и медь обладают разной активностью и поэтому их заряд по величине будет различным. В итоге уровень электродов также не однозначен. Это позволяет им перемещаться и производить электрический или гальванический ток. Он начинает протекать, когда любой человек или изобретатель тока хранящего аппарата присоединяет нагрузку. В качестве нее может быть лампочка, приемник, компьютерная мышка и другие электрические устройства.

Схема гальванического элемента

Под схемой подразумевают его состав и устройство. Он может быть выполнен из нескольких химических элементов с применением вспомогательных приспособлений. Ниже об строение гальванического элемента будет рассказано кратко. Подробнее о нем читайте в этой статье!

Устройство гальванического элемента

Самый простой энергетический накопитель состоит из:

  1. Стрежня из угля.
  2. Двух разнородных металлов.
  3. Электролита.
  4. Смола или пластик.
  5. Изолятора.

Устройство и принцип работы гальванического элемента

Металл, погруженный в раствор электролита, называется электродом.

Электроды — это система двух токопроводящих тел — проводников первого и второго рода.

К проводникам первого рода относятся металлы, сплавы, оксиды с металлической проводимостью, а также неметаллические материалы, в частности графит; носители заряда — электроны.

К проводникам второго рода относятся расплавы и растворы электролитов; носители заряда — ионы.

Устройство, состоящее из двух электродов, называется гальваническим элементом.

Рис. 2. Схема медно-цинкового гальванического элемента

Рассмотрим гальванический элемент Якоби—Даниэля (схема приведена на рис. 2). Он состоит из цинковой пластины, погруженной в раствор сульфата цинка, и медной пластины, погружен­ной в раствор сульфата меди. Для предотвращения прямого взаимодействия окислителя и восстановителя электроды отделены друг от друга пористой перегородкой.

В гальваническом элементе электрод, сделанный из более активного металла, т.е. металла, расположенного левее в ряду напряжений, называют анодом, а электрод, сделанный из менее активного металла — катодом.

На поверхности цинкового электрода (анода) возникает двойной электрический слой и устанавливается равновесие:

Zn0 – 2ē Zn2+.

В результате протекания этого процесса возникает электродный потенциал цинка.

На поверхности медного электрода (катода) также возникает двойной электрический слой и устанавливается равновесие:

Cu2+ + 2ē Cu0.

В результате возникает электродный потенциал меди.

Так как потенциал цинкового электрода имеет более отрицательное значение, чем потенциал медного электрода, то при замыкании внешней цепи, т.е. при соединении цинка с медью металлическим проводником, электроны будут переходить от цинка к меди. В результате этого процесса равновесие на цинковом электроде смещается вправо, поэтому в раствор перейдет дополнительное количество ионов цинка. В то же время равновесие на медном электроде сместится влево и произойдет разряд ионов меди.

Таким образом, при замыкании внешней цепи возникают самопроизвольные процессы растворения цинка на цинковом электроде и выделения меди на медном электроде. Данные процессы будут продолжаться до тех пор, пока не выровняются потенциалы или не растворится весь цинк или не высадится на медном электроде вся медь.

Итак, при работе гальванического элемента Якоби—Даниэля протекают следующие процессы:

1. Анодный процесс, процесс окисления:

Zn0 – 2ē → Zn2+.

2. Катодный процесс, процесс восстановления:

Cu2+ + 2ē → Cu0.

3. Движение электронов во внешней цепи.

4. Движение ионов в растворе: анионов SO42– к аноду, катионов Cu2+ к катоду. Движение ионов в растворе замыкает электрическую цепь гальванического элемента.

Суммируя электродные реакции, получим:

Zn + Cu2+ = Zn2+ + Cu.

В результате протекании данной реакции в гальваническом элементе возникает движение электронов во внешней цепи и ионов внутри элемента, т.е. электрический ток. Поэтому суммарную химическую реакцию, протекающую в гальваническом элементе, называют токообразующей реакцией.

Электрический ток в гальваническом элементе возникает за счет окислительно-восстановительной реакции, протекающей так, что окислительные и восстановительные процессы оказываются пространственно разделенными: на отрицательном электроде (аноде) происходит процесс окисления, на положительном электроде (катоде) — процесс восстановления.

Необходимым условием работы гальванического элемента является разность потенциалов электродов. Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента. Она равна разности между потенциалом катода и потенциалом анода элемента:

ЭДС = Eк – Ea . (1)

ЭДС элемента считается положительной, если токообразующая реакция в данном направлении протекает самопроизвольно. Положительной ЭДС отвечает и определенный порядок в записи схемы элемента: записанный слева электрод должен быть отрицательным. Например, схема элемента Якоби—Даниэля записывается в виде:

Zn │ ZnSO4 ║ CuSO4 │ Cu .

Гальванический элемент: схема, принцип работы, применение

Для того чтобы составить схему гальванического элемента, необходимо понять принцип его действий, особенности строения.

Потребители редко обращают внимание на аккумуляторы и батарейки, при этом именно эти источники тока являются самыми востребованными.

Химические источники тока

Что собой представляет гальванический элемент? Схема его основывается на электролите. В устройство входит небольшой контейнер, где располагается электролит, адсорбируемый материалом сепаратора. Кроме того, схема двух гальванических элементов предполагает наличие катода и анода. Как называется такой гальванический элемент? Схема, связывающая между собой два металла, предполагает наличие окислительно-восстановительной реакции.

Простейший гальванический элемент

Он подразумевает наличие двух пластин либо стержней, выполненных из разных металлов, которые погружены в раствор сильного электролита. В процессе работы данного гальванического элемента, на аноде осуществляется процесс окисления, связанный с отдачей электронов.

На катоде – восстановление, сопровождающееся принятием отрицательных частиц. Происходит передача электронов по внешней цепи к окислителю от восстановителя.

Пример гальванического элемента

Для того чтобы составить электронные схемы гальванических элементов, необходимо знать величину их стандартного электродного потенциала. Проанализируем вариант медно-цинкового гальванического элемента, функционирующего на основе энергии, выделяющейся при взаимодействии сульфата меди с цинком.

Этот гальванический элемент, схема которого будет приведена ниже, называют элементом Якоби-Даниэля. Он включает в себя медную пластинку, которая погружена в раствор медного купороса (медный электрод), а также он состоит из цинковой пластины, находящейся в растворе его сульфата (цинковый электрод). Растворы соприкасаются между собой, но для того, чтобы не допускать их смешивания, в элементе используется перегородка, выполненная из пористого материала.

Принцип действия

Как функционирует гальванический элемент, схема которого имеет вид Zn ½ ZnSO4 ½½ CuSO4 ½ Cu? Во время его работы, когда замкнута электрическая цепь, происходит процесс окисления металлического цинка.

На его поверхности соприкосновения с раствором соли наблюдается превращение атомов в катионы Zn2+. Процесс сопровождается выделением «свободных» электронов, которые передвигаются по внешней цепи.

Реакцию, протекающую на цинковом электроде, можно представить в следующем виде:

Zn = Zn2+ + 2e-

Восстановление катионов металла осуществляется на медном электроде. Отрицательные частицы, которые попадают сюда с цинкового электрода, объединяются с катионами меди, осаждая их в виде металла. Данный процесс имеет следующий вид:

Cu2+ + 2e- = Cu

Если сложить две реакции, рассмотренные выше, получается суммарное уравнение, описывающее работы цинково-медного гальванического элемента.

В качестве анода выступает цинковый электрод, катодом служит медь. Современные гальванические элементы и аккумуляторы предполагают применение одного раствора электролита, что расширяет сферы их применения, делает их эксплуатацию более комфортной и удобной.

Разновидности гальванических элементов

Самыми распространенными считают угольно-цинковые элементы. В них применяется пассивный угольный коллектор тока, контактирующий с анодом, в качестве которого выступает оксид марганца (4). Электролитом является хлорид аммония, применяемый в пастообразном виде.

Он не растекается, поэтому сам гальванический элемент называют сухим. Его особенностью является возможность «восстанавливаться» на протяжении работы, что позитивно отражается на продолжительности их эксплуатационного периода. Такие гальванические элементы имеют невысокую стоимость, но невысокую мощность. При понижении температуры они снижают свою эффективность, а при ее повышении происходит постепенное высыхание электролита.

Щелочные элементы предполагают использование раствора щелочи, поэтому имеют довольно много областей применения.

В литиевых элементах в качестве анода выступает активный металл, что позитивно отражается на сроке эксплуатации. Литий имеет отрицательный электродный потенциал, поэтому при небольших габаритах подобные элементы имеют максимальное номинальное напряжение. Среди недостатков подобных систем можно выделить высокую цену. Вскрытие литиевых источников тока является взрывоопасным.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Гальваническое покрытие: назначение, виды, нанесение

Что такое гальванизация?

Гальванизация – это электрохимический процесс, где участвует электролит, электрический ток, два электрода и обрабатываемая деталь. При этом металлический слой не просто наносится на поверхность, а проникает на молекулярном уровне в основание детали.

Для гальванизации необходимо, чтобы обрабатываемое изделие было идеально чистым. Для очистки и обезжиривания поверхностей можно использовать специальные органические растворители, которые не приведут к образованию коррозии.

Например, для этих целей подойдет очиститель металла MODENGY. Он хорошо удаляет разнородные загрязнения, такие как нефтепродукты, силиконовые, минеральные, синтетические масла, консервационные составы, адсорбированные пленки газов, влагу и т.д. Средство быстро испаряется и не оставляет следов.

В большинстве случаев для подготовки поверхности к гальванизации достаточно очистить и обезжирить поверхности. Можно также выполнить пескоструйную обработку и последующую шлифовку с применением специальных паст и наждачной бумаги.


Очень важно, чтобы покрываемая деталь имела идеальную поверхность без каких-либо раковин, царапин и сколов.

Рассмотрим сам процесс гальванизации. Подготовленное изделие погружается в раствор электролита и на него подается отрицательный заряд, который превращает деталь в катод. В электролите также находится специальная пластина из металла, который в дальнейшем и станет покрытием. Она является анодом. При подаче электричества металл с анода растворяется в растворе и переносится на отрицательно заряженный катод, в роли которого выступает обрабатываемая деталь. Таким образом на поверхностях образуется равномерный тонкий слой гальванического покрытия.

Данный метод гальванизации называется анодным. Благодаря ему при образовании коррозии в первую очередь разрушается само покрытие, а металл под ним в течение длительно времени сохраняет целостность.

Существует и другой способ – катодное напыление. Он используется гораздо реже, так как при нарушении защитного слоя разрушение металла под ним происходит более интенсивно, что обусловлено самой технологией нанесения.

Средой для перемещения металла с анода на катод выступает электролит. Он находится в специальных емкостях, объем которых зависит от производственных задач.

Крупногабаритные изделия подвешиваются в объемных ваннах. Небольшие детали покрываются в барабанных емкостях, где отрицательный заряд имеет сам барабан, который вращается в электролите. Для покрытия очень мелких изделий используются наливные ванны колокольного типа, которые при работе медленно вращаются, благодаря чему детали равномерно покрываются защитным слоем.

Большое значение играет плотность тока, проходящего через электролит. Она влияет на структуру формируемого слоя. Данная величина измеряется как отношение силы тока к единице поверхности обрабатываемой детали.

Если плотность тока слишком низкая, осадок вообще не образуется, а при слишком большой количество отложений превысит допустимую норму, что отрицательно скажется на качестве покрытия. Именно поэтому при осуществлении гальванизации следует постоянно контролировать данную величину.

Толщина готового гальванического покрытия может варьироваться от 6 до 20 микрон. Она зависит от особенностей материалов, которые участвуют в процессе нанесения. Адгезия металлического покрытия с основанием детали определяется при помощи специальных тестов.

Совместимость материалов

Для проведения гальванизации очень важно помнить о совместимости материалов. Все металлы в соединениях корродируют. В некоторых случаях этот процесс протекает с низкой скоростью. Но существуют материалы, которые нельзя соединять вместе.

Например, при работе с алюминием и его сплавами достаточно сложно работать, так как их поверхность покрыта окисной пленкой, затрудняющей нанесение гальванического покрытия.

Для гальванизации алюминия можно использовать следующие сочетания материалов:

Область применения гальванических покрытий

Гальванические покрытие отличаются высокой прочностью и износостойкостью. Благодаря этим качествам их широко применяют:

  • В авиастроении

  • В машиностроении

  • В радиоэлектронной промышленности

  • В электронной промышленности

  • В строительстве

Виды гальванических покрытий

Гальванические покрытия разделяются на защитные, защитно-декоративные и специальные. Первые служат для защиты металлических деталей от воздействия агрессивных сред. Вторые дополнительно придают изделиям эстетичный внешний вид. Специальные наделяют поверхности новыми улучшенными свойствами: электроизоляционными, магнитными, увеличивают твердость и износостойкость.

В некоторых случаях гальванические покрытия наносятся с целью восстановления изначального вида деталей после их длительной эксплуатации. Они также могут использоваться для создания точных копий изделий, даже тех, у которых очень высокая сложность рельефа поверхности. Данную операцию называют гальванопластикой.


Рассмотрим основные виды операций по нанесению гальванических покрытий.

Меднение


В данном процессе используется медный купорос. Получаемое покрытие увеличивает прочность металлических деталей и их проводящих свойств. Такие металлы используются на производстве электрических проводников.

Но в чистом виде покрытие медью не используется, так как обработанные изделия подвержены коррозии и со временем окисляется. Поэтому меднение – это промежуточный процесс, после которого наносится слой другого покрытия.


Хромирование


Хром увеличивает прочность и стойкость металлов к агрессивному воздействию внешней среды. Он также улучшает внешний вид поверхностей и восстанавливает поврежденные детали до заводских параметров.

В зависимости от особенностей технологического процесса хромирование позволяет получить покрытия со своими характеристиками: блестящее усиливает твердость и износостойкость, серое матовое повышает твердость, но не придает износостойкости, молочное пластичное придает антикоррозионные свойства и эстетичный внешний вид, но не наделяет твердостью.

Цинкование


Покрытие металлов цинком – самая популярная разновидность гальванизации. Цинк придает поверхностям блеск и наделяет их высокими антикоррозионными свойствами. Особенно популярно цинкование в автомобильной промышленности и строительстве. Им обрабатывают различные емкости, опорные и кровельные конструкции, трубопрокатную продукции, кузова автомобилей.


Железнение


Данный вид покрытий служит для повышения прочности легкоизнашиваемых изделий, например, изготовленных из меди. Железное гальваническое покрытие отличается очень высокой износостойкостью.

Никелирование


Благодаря данному методу обработки металлические поверхности получают высокую стойкость к агрессивным воздействиям окружающей среды. Слой никеля защищает детали от коррозии, возникающей вследствие воздействий агрессивной среды, а также солей, кислот и щелочей. Никелированные детали также устойчивы к истиранию и механическим повреждениям.


Латунирование


Латунные покрытия защищают металлические изделия от коррозии, а также улучшают их сцепление с резиной.

Золочение и серебрение


Такие покрытия в основном используются в ювелирном деле, радиоэлектронной и электротехнической промышленности. Серебро и золото придают поверхностям высокие отражающие свойства, предотвращают коррозию, повышают твердость, придают эстетичный внешний вид, а также усиливают токопроводящую способность.

Родирование


Родий повышает стойкость металлов к агрессивным химикатам и механическим повреждениям. Родирование предотвращает потускнение и окисление серебра, а также придает изделиям декоративные свойства.

Покрытие оловом


Олово увеличивает прочность и твердость металлических изделий. Данный материал можно использовать для меди, цинка, алюминия и стали.

К защитным покрытиям можно отнести и антифрикционные твердосмазочные покрытия. Они являются достаточно простым и эффективным способом обеспечить износостойкость и прочность металлических изделий, предотвратить их коррозию и разрушение под воздействием внешних агрессивных факторов.

Для этих целей подойдут антифрикционные твердосмазочные покрытия MODENGY. Они изготавливаются на основе мелкодисперсных частиц твердых смазок (графита, дисульфида молибдена, политетрафторэтилена и т.д.), равномерно распределенных в среде растворителей и связующих веществ.

АТСП MODENGY отличаются:

  • Низким коэффициентом трения

  • Широким диапазоном рабочих температур от -200 до +560 °C

  • Работоспособностью в запыленной среде, вакууме и условиях радиации

  • Высокой несущей способностью до 2500 МПа

  • Высокими противозадирными и противоизносными свойствами

  • Стойкостью к агрессивным химикатам

Получение гальванического покрытия в домашних условиях

Для нанесения гальванических покрытий не обязательно обращаться в специализированные фирмы. Их можно получить и в домашних условиях, но при наличии знаний процесса электролиза, наличия необходимых материалов и оборудования.

И

Гальваника — Химия LibreTexts

Гальваника — это процесс нанесения одного металла на другой путем гидролиза, чаще всего в декоративных целях или для предотвращения коррозии металла. Существуют также особые виды гальваники, такие как меднение, серебряное покрытие и хромирование. Гальваника позволяет производителям использовать недорогие металлы, такие как сталь или цинк, для большей части продукта, а затем наносить различные металлы снаружи, чтобы учесть внешний вид, защиту и другие свойства, желаемые для продукта.Поверхность может быть металлической или даже пластиковой.

Введение

Иногда отделка носит исключительно декоративный характер, например, изделия, которые мы используем в помещении или в сухой среде, где они вряд ли пострадают от коррозии. На эти типы продуктов обычно наносится тонкий слой золота или серебра, что делает их привлекательными для потребителя. Гальваника широко используется в таких отраслях, как автомобилестроение, самолеты, электроника, ювелирные изделия и игрушки. В общем процессе гальваники используется электролитическая ячейка, которая заключается в нанесении отрицательного заряда на металл и погружении его в раствор, содержащий соли металла (электролиты), содержащие положительно заряженные ионы металлов.Затем из-за отрицательного и положительного зарядов два металла притягиваются друг к другу.

Цели гальваники:

  1. Внешний вид
  2. Защита
  3. Особые свойства поверхности
  4. Технические или механические свойства

Фон

Катодом будет деталь, которую нужно покрыть, а анодом будет либо расходуемый анод, либо инертный анод, обычно либо платиновый, либо углеродный (форма графита).Иногда покрытие наносится на стеллажи или бочки для большей эффективности при нанесении покрытия на многие продукты. Пожалуйста, обратитесь к электролизу для получения дополнительной информации. На рисунке ниже ионы Ag + притягиваются к поверхности ложки, и в конечном итоге она покрывается металлическими покрытиями. Процесс проводится с использованием серебра в качестве анода и винта в качестве катода. Электроны переносятся с анода на катод и проходят через раствор, содержащий серебро.

Рисунок 1 : Гальваника серебра на ложке.

История гальваники

Гальваника была впервые открыта Луиджи Бругнателли в 1805 году с помощью процесса электроосаждения для гальваники золота. Однако его открытие не было отмечено, поскольку он был проигнорирован Французской академией наук, а также Наполеоном Бонапартом. Но пару десятилетий спустя Джону Райту удалось использовать цианид калия в качестве электролита для золота и серебра. Он обнаружил, что цианид калия на самом деле является эффективным электролитом.Позже в 1840 году двоюродные братья Элкингтоны использовали цианид калия в качестве электролита и сумели создать возможный метод гальваники для золота и серебра. Они получили патент на гальваническое покрытие, и этот метод получил широкое распространение по всему миру из Англии. Метод гальваники постепенно стал более эффективным и усовершенствованным за счет использования более экологичных формул и источников питания постоянного тока.

Выбор электролитов

Существует множество различных металлов, которые можно использовать в гальванических покрытиях, поэтому выбор правильного электролита важен для качества покрытия.Некоторые электролиты представляют собой кислоты, основания, соли металлов или расплавленные соли. При выборе типа электролита следует помнить о некоторых вещах: коррозии, стойкости, яркости или отражательной способности, твердости, механической прочности, пластичности и износостойкости.

Подготовка поверхности

Целью подготовки поверхности перед началом наклеивания на нее другого металла является обеспечение ее чистоты и отсутствия загрязнений, которые могут помешать склеиванию. Загрязнение часто препятствует отложению и отсутствию адгезии.Обычно это делается в три этапа: очистка, обработка и ополаскивание. Очистка обычно заключается в использовании определенных растворителей, таких как щелочные очистители, вода или кислотные очистители, чтобы удалить слои масла с поверхности. Обработка включает модификацию поверхности, которая заключается в упрочнении деталей и нанесении металлических слоев. Ополаскивание приводит к конечному продукту и является последним штрихом к нанесению гальванических покрытий. Два определенных метода подготовки поверхности — это физическая очистка и химическая очистка. Химическая очистка заключается в использовании растворителей, которые являются поверхностно-активными химическими веществами или химическими веществами, которые вступают в реакцию с металлом / поверхностью.При физической очистке используется механическая энергия для удаления загрязнений. Физическая очистка включает абразивную чистку щеткой и ультразвуковое перемешивание.

Типы гальванических покрытий

Существуют различные процессы, с помощью которых люди могут наносить гальванические покрытия на металлы, такие как нанесение металлического покрытия массой (также гальваническое покрытие цилиндра), гальваническое покрытие на стойке, непрерывное покрытие и нанесение покрытия на линии. Каждый процесс имеет свой собственный набор процедур, позволяющих получить идеальное покрытие.

Таблица 1: Методы нанесения гальванических покрытий
Массовое покрытие Это не идеальный вариант для детализированных предметов, поскольку он неэффективен для предотвращения царапин и запутывания.Однако этот процесс эффективно обрабатывает огромное количество объектов.
Обшивка стойки Дороже, чем массовое покрытие, но эффективен как для больших, так и для хрупких деталей. Часто детали погружены в растворы со «стойками».
Сплошное покрытие Такие детали, как провода и трубки, постоянно проходят через аноды с определенной скоростью. Этот процесс немного дешевле.
Покрытие линии Дешевле, поскольку используется меньше химикатов и используется производственная линия для изготовления листовых деталей.

Металлы покрытия

Большинство гальванических покрытий можно разделить на следующие категории:

Жертвенное покрытие Декоративное покрытие Функциональные покрытия Незначительные металлы Необычное металлическое покрытие Покрытия из сплавов
используется в основном для защиты.Металл, используемый для покрытия, жертвуется, поскольку он расходуется в реакции. К обычным металлам относятся: цинк и кадмий (сейчас запрещены во многих странах). используется в основном в привлекательных и привлекательных целях. Обычные металлы включают: медь, никель, хром, цинк и олово. — это покрытия, сделанные в зависимости от необходимости и функциональности металла. Обычные металлы включают: золото, серебро, платину, олово, свинец, рутений, родий, палладий, осмий и иридий. обычно представляют собой железо, кобальт и индий, потому что их легко покрыть пластинами, но они редко используются для нанесения покрытия. — это металлы, которые даже реже используются для нанесения покрытия, чем второстепенные металлы. К ним относятся: As, Sb, Bi, Mn, Re, Al, Zr, Ti, Hf, V, Nb, Ta, W и Mo. Сплав — это вещество с металлическими свойствами, состоящее из двух или более элементов. Эти покрытия создаются путем нанесения двух металлов в одну ячейку. Обычные комбинации включают: золото – медь – кадмий, цинк – кобальт, цинк – железо, цинк – никель, латунь (сплав меди и цинка), бронзу (медь – олово), олово – цинк, олово – никель и олово– кобальт.

Ссылки

  1. Канани, Н. Гальваника: основные принципы, процессы и практика; Elsevier Advanced Technology: Oxford, UK, 2004.
  2. .
  3. Lowenheim, Фредерик Адольф. Современное гальваническое покрытие . 3-е изд. Нью-Йорк, Нью-Йорк: J. Wiley and Sons, 1974.
  4. .
  5. Блюм, Уильям и Джордж Б. Хогабум. Принципы гальваники и гальванопластики (гальванопластики) . 3-е изд. Нью-Йорк, штат Нью-Йорк: McGraw-Hill Book Company Inc., 1949.Распечатать.
  6. Петруччи, Ральф Х., Харвуд, Уильям С., Херринг, Ф. Г. и Мадура Джеффри Д. Общая химия: принципы и современные приложения. 9 изд. Верхняя река Сэдл: Pearson Education, Inc., 2007.

Проблемы

  1. Каковы цели гальваники?
  2. Как работает гальваника?
  3. Почему так важно подготовить поверхность перед нанесением гальванических покрытий?
  4. Какие бывают виды гальваники?
  5. Какие разные металлы можно использовать? (название 5)

ответы

  1. Обычно гальваника используется в декоративных или функциональных целях, а также для предотвращения коррозии металла.
  2. Гальваника работает через электролитическую ячейку с катодом и анодом. Катод — это металл, на который нужно нанести покрытие.
  3. Важно подготовить поверхность перед началом процедуры, потому что иногда на поверхности есть загрязнения, которые могут привести к плохим результатам гальваники.
  4. К различным типам гальванического покрытия относятся: массовое покрытие (также гальваническое покрытие цилиндра), гальваническое покрытие в стойке, непрерывное гальваническое покрытие и нанесение покрытия в линию.
  5. Пять металлов, которые можно использовать в гальванике: цинк, кобальт, железо, олово и платина

Авторы и указание авторства

  • Вайшали Миттал (Калифорнийский университет в Дэвисе)

Что нужно знать каждому инженеру> ИНЖИНИРИНГ.com

Обработка металлов за несколько десятилетий превратилась из того, что когда-то было эмпирическим ремеслом, в ключевую технологию, основанную на научных принципах. 1

Современное гальваническое покрытие — это форма отделки металла, используемая в различных отраслях промышленности, включая авиакосмическую, автомобильную, военную, медицинскую, радиочастотную микроволновую, космическую, электронную и аккумуляторную. Это электрохимический процесс, при котором ионы металлов в растворе связываются с металлической подложкой посредством электроосаждения.

Перед нанесением гальванического покрытия детали необходимо очистить и обработать в химических ваннах для их подготовки или активации, чтобы в процессе электроосаждения создавалась прочная связь и, следовательно, сильная адгезия.

Гальваническая ванна включает в себя множество переменных и компонентов, за которыми необходимо внимательно следить. Источник питания обеспечивает подачу постоянного тока к деталям и электрическим соединениям в ванне для нанесения покрытий. Этот ток вызывает притяжение ионов в растворе к поверхности металлической части.

На каждый моль электронов, переносимых на деталь, один моль ионов металлов в растворе будет прилипать к детали. Кроме того, на поверхности детали происходит химическая реакция, включающая восстановление и окисление ионов.

(Фото любезно предоставлено The Time Preserve / watchplating.com)


Что следует учесть инженеру или проектировщику перед нанесением гальванических покрытий

  • Раскрой деталей в процессе гальваники.Поскольку гальваника включает в себя как электрическую, так и химическую реакцию на поверхности детали, воздействие химического состава покрытия имеет решающее значение для общих характеристик конечного продукта. Вложение деталей приведет к отсутствию адгезии или покрытия на поверхности готовой детали.
  • Допуск на критические размеры детали следует определять с учетом толщины покрытия. Это также означает, что необходимо учитывать соответствие конструкции в целом сборке.
  • Среда, которой будут подвергаться готовые детали. Это поможет определить толщину покрытия, необходимую, например, для устойчивости детали к коррозии или повторяющимся циклам износа.
  • Поскольку гальваника включает использование тока для инициирования реакции на поверхности детали, общая геометрия детали будет влиять на распределение тока, часто называемое плотностью тока, по поверхности детали. Покрытие имеет тенденцию образовываться на таких деталях, как острые углы, изгибы или резьба.Существуют усовершенствованные процессы гальваники, которые могут предотвратить возникновение этой проблемы .
  • Слив гальванического раствора (подготовка поверхности или химические составы гальванической ванны) таким образом, чтобы внутренние поверхности деталей были достаточно покрыты, а гальваническое покрытие имело адекватную прочность сцепления. Для некоторых деталей это означает добавление дренажного отверстия на этапе проектирования.
  • Использование по назначению и требуемые характеристики (например, проводимость, низкое трение, высокая прочность и устойчивость к коррозии, износу и т. Д.)). Этих критериев должно быть достаточно для определения типа металла , который следует использовать для отделки каждой конкретной детали.


Каковы преимущества гальваники?

Гальваника улучшает или изменяет свойства металлической детали.

В зависимости от использования детали производителю может потребоваться лучшая износостойкость и стойкость к истиранию, защита от коррозии, большая смазывающая способность и меньшее трение, улучшенное экранирование EMI ​​/ RFI, термостойкость и ударопрочность, улучшенная проводимость, улучшенная паяемость, уменьшенная пористость. твердость или прочность или наращивание толщины на мелких или малоразмерных деталях.

Помимо механических или функциональных свойств, которые могут быть изменены в процессе гальваники, часто также важна общая эстетика готовой детали.


Виды и методы нанесения гальванических покрытий

Специализированные гальванические установки могут наносить покрытие на различные основные материалы с использованием различной отделки поверхности:

Общие базовые материалы

  • Бериллиевая медь
  • Латунь
  • Холоднокатаная сталь
  • Медь
  • Никель
  • Фосфорная бронза
  • Нержавеющая сталь
  • Теллур Медь
  • Нейзильбер

Обычная отделка поверхности

  • Золото
  • Серебро
  • Никель, нанесенный химическим способом
  • Медь
  • Никель электролитический
  • Совместный депозит сплава

Материал покрытия, метод покрытия и детали, которые необходимо покрыть, будут варьироваться в зависимости от области применения.

Покрытие из золота обеспечивает отличную электропроводность, что делает его одним из лучших вариантов для электродов, токоведущих контактов и компонентов печатных плат. Золото идеально подходит для защиты от сильного нагрева и коррозии в широком диапазоне окружающей среды и климата.

Серебряное покрытие также часто используется для электроники (поверх медной «вспышки») из-за его более низкого электрического сопротивления.

Никель — это обычное дело, поскольку оно обеспечивает превосходную химическую и коррозионную стойкость, а также большую износостойкость, что увеличивает срок службы продукта.Никель может заменять серебро в электронике или использоваться в качестве покрытия на стали в качестве альтернативы изделиям из более дорогой нержавеющей стали. Никель также обеспечивает блестящую поверхность, которую можно регулировать в соответствии с требованиями заказчика.

Медь обычно используется в качестве слоя покрытия перед нанесением последнего слоя металла. Эта обработка поверхности обычно используется в печатных платах, автомобильных деталях или в оборонной промышленности. Добавление меди в деталь перед наплавкой окончательного металла также может улучшить общий эстетический вид готовой детали.

Если один металл не обеспечивает требуемых свойств, также возможно совместное осаждение двух или более металлов для нанесения гальванического покрытия сплава. Одним из примеров этого является сплав медь / олово / цинк, также известный как Tri-Metal или Tri-M3, предлагаемый компанией Electro-Spec, Inc., специализирующейся на гальванике,

.


Поиск подходящей гальванической компании для ваших нужд

При поиске компании по нанесению покрытий необходимо учитывать множество критериев в зависимости от требований вашего проекта и возможностей компании, занимающейся нанесением покрытий, в том числе:

  • Размер деталей
  • Объем штук (от прототипа до серийного производства)
  • Металлическое покрытие для достижения желаемого результата
  • Бюджет проекта
  • Соответствие отраслевым стандартам
  • Лабораторные и испытательные возможности / сертификаты

Еще одно соображение — метод нанесения гальванических покрытий, поскольку не все предприятия обязательно предлагают одинаковые процессы.

Гальваническое покрытие «цилиндр» может эффективно обрабатывать большие и малые объемы деталей, где адекватная замена раствора и оборачиваемость имеют решающее значение для удовлетворения требований к толщине. Плотность тока в нагрузке на детали в стволе обычно оптимизируется за счет межчастичного контакта во время вращения.

Однако есть некоторые типы деталей, которые не подходят для большинства обычных стволов. Например, детали, которые могут поцарапаться, поцарапаться или поцарапаться в результате контакта детали с деталью, гораздо более восприимчивы к повреждению в большинстве типов стволов.И наоборот, некоторые плоские детали не идеальны для цилиндра из-за слипания деталей во время обработки, что приводит к отсутствию покрытия или неравномерной толщине покрытия.

В зависимости от геометрии некоторых деталей и допусков, детали также более склонны к «вложению» друг в друга во время металлизации ствола.

Вибрационное покрытие для мелких или хрупких деталей. (Фото любезно предоставлено Electro-Spec, Inc.)

Вибрационное покрытие используется для небольших деталей с глубоким внутренним диаметром, зенковкой, хрупкими наконечниками / концами или деталями, которые могут прогнуться через покрытие цилиндра.За счет включения вибрирующей или пульсирующей корзины, которая передает кинетическую энергию нагрузке, детали перемещаются по часовой стрелке через контакты кнопок на дне корзины. Эти контакты передают ток на нагрузку деталей и обеспечивают стабильную силу тока во время обработки.

Более крупные детали, которые имеют чрезмерный вес, или детали, которые могут запутаться или легко складываться вместе, не могут быть помещены в вибрационную корзину, поскольку они не будут двигаться равномерно. И наоборот, меньшие детали, которые не имеют достаточного веса, также не могут быть помещены в вибрационную корзину.

Покрытие стойки подходит как для деликатных, так и для крупных деталей. Он работает, удерживая детали в фиксированном положении на раме стойки, пока они подвешены в растворе. Это предотвращает повреждение деталей во время обработки и облегчает обработку гораздо более крупных деталей, на которые нельзя было нанести гальваническое покрытие.

Самая большая проблема с покрытием стойки состоит в том, что прямое соединение с деталями в стойке приводит к снижению эффективности распределения покрытия из-за областей с высокой и низкой плотностью тока по всем частям и стойке.Детали, размещенные на стойке, также плохо перемещаются по раствору, что необходимо для контроля толщины, и они более склонны к образованию пятен от ополаскивания и высыхания.

Селективное покрытие При процессах покрытие изолируется на выбранной области детали. Этот процесс осуществляется посредством металлизации с контролируемой глубиной, которая включает в себя фиксацию детали таким образом, чтобы обеспечить непрерывный электрический контакт и погружение области покрытия на определенную глубину через раствор для нанесения покрытия.

Селективное покрытие идеально подходит для конкретных применений, где требуется функциональное покрытие для повышения производительности и / или экономии затрат на драгоценный металл за счет уменьшения площади поверхности, необходимой для покрытия.

Хотя это эффективный метод нанесения покрытия на отдельные детали и снижения затрат, он требует затрат инструмента и рабочей силы для загрузки деталей. Существуют также некоторые ограничения на размер и геометрию деталей, которые могут помешать выборочной металлизации некоторых деталей.

Выборочное покрытие отдельных деталей. (Фото любезно предоставлено Electro-Spec, Inc.)

Электрод с носиком (SBE) Покрытие предназначено для небольших деталей, плоских деталей, деталей с зенковкой, деталей с выступами, деталей, которые входят в гнездо или имеют сложную геометрию, что делает невозможным или непрактичным использование вибрационного покрытия или обычного покрытия цилиндра.

Процесс SBE выполняется в камере с ультразвуковым воздействием, и непрерывный раствор закачивается в камеру и из нее для облегчения движения детали и подачи свежего электролита для покрытия во время процесса нанесения покрытия. SBE обеспечивает очень равномерное покрытие покрытия в областях с высокой и низкой плотностью тока детали, а также в расточенных отверстиях.

Единственное ограничение SBE — это размер деталей, поскольку камеры SBE могут соответствовать только определенным размерам и весу, которые позволяют перемещаться внутри камер.

Покрытие электрода с носиком. (Фото любезно предоставлено Джорджем Градилем / Technic, Inc.)

Electro-Spec, Inc., является одним из примеров специализированного оборудования для нанесения покрытия, обеспечивающего высококачественное и надежное гальваническое покрытие золота, серебра, никеля (электролитическим и химическим способом), меди и Tri-M3 (три сплава), а также пассивирование, термообработка / отжиг и услуги контроля качества.

Компания

Electro-Spec вместе со своим поставщиком также разработала революционный процесс погружения штифтов под названием SAMs или Self Assembled Molecules, который обеспечивает повышенную коррозионную стойкость и контактную стойкость, а также отличную паяемость при сокращении использования драгоценных металлов и стоимости.SAM — это обработка поверхности, которая образует защитный слой на золоте, серебре, Tri-M3 и других металлах с покрытием.

Для получения дополнительной информации об Electro-Spec, Inc. посетите их веб-сайт здесь или их видео ниже.

1 Основные принципы, процессы и практика гальваники Нассера Канани. Atotech Deutschland GmbH Берлин, Германия; Опубликовано Elsevier Kidlington, Oxford, 2004


Electro-Spec, Inc.спонсировал этот пост. У него нет редакционных материалов для этого сообщения. Все мнения мои. –Меган Браун

Что такое гальваника? (с фотографиями)

Любой, кто приобрел недорогие украшения с тонким покрытием из драгоценного металла, стал свидетелем конечного результата гальваники. Это электрохимическая реакция, используемая для нанесения тонкого металлического покрытия на объект. Помимо изготовления ювелирных изделий, этот процесс находит важное применение в автомобильной промышленности для хромирования, а также в электронной промышленности для оптики и датчиков.

Алюминиевые бидоны для пищевых продуктов гальванизированы.

Процесс гальваники (также называемый электроосаждением) довольно прост. Для начала на объект, на который будет нанесено покрытие, помещается отрицательный заряд. Затем объект погружают в солевой раствор металла, который будет использоваться для пластинчатого покрытия объекта.Оттуда это просто вопрос притяжения; Ионы металлов соли заряжены положительно и притягиваются к отрицательно заряженному объекту. Как только они соединяются, положительно заряженные ионы снова возвращаются к своей металлической форме, в результате чего возникает новый гальванический объект.

Многие автомобильные детали, включая колесные диски, имеют гальваническое покрытие.

Контроль толщины покрытия обычно достигается изменением времени, в течение которого объект находится в растворе соли. Чем дольше он остается внутри ванны, тем толще становится раковина. Конечно, в ванне также должно быть достаточное количество ионов металла, чтобы продолжить покрытие объекта. Форма объекта также будет влиять на толщину, а острые углы будут покрыты более толстым слоем, чем углубленные области.Это происходит из-за электрического тока в ванне и того, что он более плотно течет по углам.

Гальванику можно использовать для создания недорогих украшений.

Перед нанесением гальванического покрытия объект необходимо тщательно очистить и отполировать все пятна и царапины.Как уже упоминалось, углубленные области будут покрывать менее острые углы, поэтому царапина станет более заметной, а не будет сглажена покрытием.

Процесс был разработан в начале 20 века и продолжает развиваться сегодня. Многие обычные предметы, такие как жестяные банки, на самом деле представляют собой гальваническую сталь с защитным слоем олова.Медицинская наука экспериментировала с этой техникой, а также для создания синтетических соединений с гальваническими покрытиями, и новые достижения в электронике были сделаны с гальваническими материалами.

В гальванике используются положительные и отрицательные электрические заряды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *