Где используется резонанс: Резонанс — друг и враг

Содержание

Резонанс — друг и враг

Резонанс — это явление резкого возрастания амплитуды вынужденных колебаний системы, которое наступает при приближении частоты внешнего воздействия к определенным значениям (резонансных частот), обусловленным свойствами системы. Таким образом, причиной резонанса является совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы.

Резонанс встречается в механике, электронике, оптике, акустике, астрофизике.

Явление резонанса лежит в основе проектирования музыкальных инструментов: рояля, скрипки, флейты …

Используется явление резонанса и в электронике. Колебательный контур, состоящий из емкости и индуктивности, используется в элементах настройки и электрических фильтрах. Однако резонанс может быть и вредным, если он вызывает искажение сигнала или паразитные шумы.

Наблюдается резонанс и в космосе, когда два небесных тела, которые имеют периоды обращения, относящихся друг с другом как небольшие целые числа, делают регулярное гравитационное воздействие друг на друга, которое может стабилизировать их орбиты (орбитальный резонанс в небесной механике).

Однако наиболее часто резонанс бывает в классической и строительной механике, а также гидро- и аэромеханике. И, к ​​сожалению, во многих случаях именно тогда, когда он совершенно нежелателен.

… Известно, что военным подразделениям при прохождении мостов приписывается «сбивать ногу» и идти не строевым, а свободным шагом. Горький опыт некоторых катастроф научил военнослужащих в подобных ситуациях отходить от многовековых традиций.

Так, 12 апреля 1831 разрушился Бротонский подвесной мост через реку Ирвелл в Англии, когда по нему шел военный отряд. Частота шагов воинов, шагавших в ногу, совпала с частотой собственных колебаний моста, через которые амплитуда резко возросла, цепи оборвались, и мост рухнул в реку. Именно этот случай, в результате которого два десятка человек были травмированы, способствовал принятию в британской армии правила «идти не в ногу» при прохождении войсками мостов. По той же причине в 1850 году неподалеку от французского города Анже был разрушен подвесной цепной мост над рекой Мин длиной более ста метров, что привело к многочисленным жертвам. Также существует версия, что 1905 году в результате прохождения кавалерийского эскадрона через резонанс разрушился и Египетский мост через реку Фонтанку в Петербурге. Однако эта версия, скорее всего, безосновательна, поскольку не существует методов дрессировки значительного количества лошадей для их движения «в ногу».

Причиной разрушения мостов из-за резонанса могут стать не только пешеходы, но и железнодорожные поезда. Для исключения резонанса моста поезд может двигаться или медленно, или на максимальной скорости (вспомните, как замедляют ход поезда метрополитена во время их движения через мост Метро в Киеве). Это обычно делается для исключения совпадения частоты ударов колес по стыкам рельсов с собственной частотой колебаний моста (по этой же причине участок рельсов на мосту часто выполняют сплошной, т.е. без стыков).

Катастрофические последствия для мостов могут послужить также и от воздействия ветра. Так, 7 ноября 1940 через игнорирование действия ветровой нагрузки на мост при его проектировании и вследствие возникновения резонанса разрушился Такомский подвесной мост общей длиной 1800 м и длиной центрального пролета 850 м (США).

С резонансом можно столкнуться не только на суше, но и на море и в воздухе. Так, при некоторых частотах вращения гребного вала в резонанс входили даже корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания элементов самолета, что он полностью разрушался в воздухе.

Причиной резонанса элементов летательных аппаратов и их разрушение может стать и флаттер — сочетание самовозбуждающиеся незатухающих изгибающих и крутильных автоколебаний элементов конструкции (главным образом крыла самолета или несущего винта вертолета). Одним из путей борьбы с этим явлением является использование так называемых протифлатерных грузов.

Интересно, что крепления двигателей на пилонах крыльев самолетов — это не прихоть конструкторов и дизайнеров, а насущная необходимость, поскольку двигатели демпфирующие колебания крыла в полете воздушного судна, будучи при этом своеобразным протифлатерним грузом.

Также известны случаи, когда во время выступлений знаменитого русского певца Федора Ивановича Шаляпина часто лопались плафоны в люстрах. И происходило это опять же через резонанс, когда частота собственных колебаний стекла совпадала с частотой акустических волн, воспроизводимых певцом.

Еще более интересным фактом является то, что во время Великой Отечественной войны все тот же резонанс едва не поставил под угрозу существование единой ниточки, проходившей по льду Ладожского озера и связывала блокадный Ленинград с «большой землей».

… Во время наведения участка Дороги жизни по Ладожскому озеру защитники Ленинграда неожиданно столкнулись с необычным явлением, когда после нормального прохождения по льду тяжелого грузовика, легкая машина, которая шла по тому же пути, нередко проваливалась под лед.

Перед учеными была поставлена ​​задача срочно разобраться с ситуацией, сложившейся и предоставить рекомендации по преодоления автомобилями ледяного покрова. В южной части Ладожского озера, под артиллерийским и минометным огнем врага гидрограф и гидротехники проводили эксперименты по определению предельных нагрузок на лед. Все выводы ученых поступали в Ледовую службу Морской обсерватории. Было изучено деформационную устойчивость льда под статической нагрузкой и данные про упругие деформации льда при распространении по льду взрывной волны. При проведении автоколонн по Ладоге наблюдались и неизвестные ранее колебания ледяного покрова: водяной волна, образовавшаяся под льдом проседала, двигалась с постоянной для определенной толщины льда и глубины водоема скоростью. Она могла опережать приложенную нагрузку или отставать от нее, но опасным было совпадения этих скоростей — тогда вода прекращала поддержку ледяного покрова, и поддержка обеспечивалась только упругими свойствами льда. При этом наступал резонанс, что приводило к разрушению льда. Это проявление резонанса было названо изгибно-гравитационной волной.

По результатам исследований для автомобилей, которые двигались по льду, были установлены определенные скорости и дистанции. Ежедневно по ледяному покрову в обе стороны перевозилось около 6 тыс. Тонн грузов, а общее количество доставленных в Ленинград по Дороге жизни грузов за весь период ее существования составила более 1 млн 615 тыс. Тонн. Также за это же время с осажденного города было эвакуировано около 1 млн 376 тыс. Его жителей.

С учетом приобретенного опыта позже был разработан резонансный метод разрушения льда, энергоемкость которого в несколько раз меньше энергоемкости традиционного разрушения ледяного покрова с помощью ледоколов и ледокольного навесного оборудования.

Как видим, резонанс может быть достаточно коварным, но укротить его и вернуть на пользу человеку вполне по силам!

Применение резонанса: эффект, понятие и виды

Из курса школьной или университетской физики многие помнят такое понятие, как «резонанс» – явление постепенного или резкого возрастания колебательной амплитуды определенного тела в момент прикладывания к нему внешней силы определенной частоты.

Практически ответить на вопрос о резонировании или его применении могут не все. Именно поэтому в сегодняшнем материале будет рассказано, в чем заключается явление резонанса, каково применение резонанса в технике и какие виды резонанса существуют.

Зависимость амплитуды от частоты колебаний

Резонанс – что это такое

Резонанс в физике – это частотно-избирательный отклик системы колебаний на внешние силы, которые периодически воздействуют на систему. Проявляется это воздействие в резком увеличении амплитуды движений этих колебаний, когда частота внешней воздействующей силы совпадает с некоторыми, характерными для данной колебательной системы, частотами.

Важно! Суть резонирования заключается в резком увеличении амплитуды колебаний при совпадении значения частоты силы, воздействующей на систему извне, с собственной частотой колебаний этой системы.

Тупое и острое резонирование

Чтобы далее говорить о явлении резонирования, следует понять, что такое колебания и частота. Колебания – это процесс изменения состояний колебательной системы, который повторяется через определенные промежутки времени и происходит вокруг точки равновесия. В пример можно привести раскачивание на качелях. Произойти резонирование частот может только там, где есть колебательные движения. Причем совсем неважно, к какому именно виду относятся колебания: электрические, звука, механические.

Виды колебательных движений

Процесс колебаний характеризуют частота и амплитуда. Простыми словами, на примере качели можно сказать, что амплитуда – это высшая точка, которую они достигают. Частота колебаний отвечает за скорость достижения качелями этой точки.

Возвращаясь к примеру с качелями, можно сказать, что когда они раскачиваются, система колебаний совершает вынужденные колебания. Увеличить амплитуду этих колебаний можно путем воздействия на эту систему определенным образом. То есть, если толкать качели с определенной силой и в определенное время, то можно сильно раскачать их без применения больших усилий.

Это явление и будет называться резонансом: частота воздействий извне будет совпадать с частотой колебаний в системе, и вследствие этого будет увеличиваться амплитуда.

Резонирование напряжений в электроцепи

Как определяется резонанс

На примере электричества и резонирования напряжений определить его можно специальными приборами: вольтметром или осциллографом. Для этого делают измерения напряжений во время настройки резонирования. При максимальном напряжении резонанс будет достигнут. Важно понимать, в какой именно системе достигается резонанирование. Например, в трансформаторе «Тесла» напряжение может достигать миллионов вольт и для настройки достаточно поднести щупы на небольшое расстояние к нему и менять параметры, смотря на изменение напряжения. Когда настройка будет достигнута и напряжение будет максимальным – это и будет резонирование.

Прибор для демонстрации резонанса маятников

Принципы действия

Теперь ясно, что резонирование – это процесс возбуждения колебаний одного объекта колебаниями другого тела такой же частоты. Это явление присуще всему, что есть на планете. Это может быть человек или камень. Резонирование может возникать между всеми телами вне зависимости от их природы и устройства. Но есть одно условие – работа тела на одном виде энергии и на совпадающей частоте и гармонике.

 

Качели – одно из основных механических проявлений резонирования

Этот принцип соответствия и дает возможность происходить обменным энергетическим и информационным процессам, позволяя представителям живого и неживого производить общение друг с другом. Резонанс, который лежит в любом взаимодействии, способен разрушать и создавать, убивать и исцелять. Неизвестно, в какой области он проявляется более полно и сильно. Согласно физическим законам, в области чувств явление и принцип резонирования должны проявляться сильнее, так как именно в этой области несущими сигнал являются более короткие волны, обладающие более высокой энергией.

Интерферометр Фабри-Перо

Вхождение в резонанс или антирезонанс с тем или иным объектом, процессом или телом на уровне действий и ощущений может способствовать или препятствовать исходу того или иного события любого масштаба (локального и глобального). Это могут быть и природные катастрофы, и техногенные аварии.

Токовое резонирование

Типы резонанса

В физике существует большое количество видов резонанса. Все они чем-то схожи и чем-то различны, а именно – своими признаками и природой появления. Среди них можно выделить:

  • механический и акустический резонансы;
  • электрический;
  • оптический;
  • орбитальные колебания;
  • атомный, частичный и молекулярный.
График процесса в колебательном контуре

В следующих подразделах будет более подробно описан каждый из этих видов.

Механический и акустический

Наиболее популярным и очевидным механическим видом будут резонирующие качели, которые были упомянуты раньше. Если толкать их в определенные моменты с учетом их частоты, то размах их движения увеличится или затухнет, если силу не прикладывать.

Основаны механические резонаторы на преобразовании потенциальной энергии в кинетическую и обратно. Если рассматривать маятник, то вся его энергия – потенциальная в состоянии покоя. Она преобразуется в кинетическую, когда он проходит нижнюю точку на своей максимальной скорости.

Приборы для организации резонанса

Важно! Некоторые механические системы способны запасать потенциальную энергию и использовать ее в различных формах. В пример можно привести пружину, которая запасет сжатие, являющееся энергией связи атомов.

Акустический тип резонирования можно встретить в некоторых музыкальных инструментах по типу гитары, скрипки, пианино. Они имеют основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.

Акустическое резонирование помогает людям найти дефекты в трубопроводе

Кроме основной частоты, струны этих музыкальных инструментов обладают резонансом на высших гармонических колебаниях основной частоты. Если струну дернуть, то она начнет колебаться на всех частотах, которые присущи данному импульсу, но частоты, несовпадающие с резонансом, очень быстро затухнут, и человеческое ухо услышит только гармонические колебания, являющиеся нотами.

Акустические системы, микрофоны и громкоговорители не терпят резонанса отдельных частей своего корпуса, так как это снижает равномерность их амплитудно-частотной характеристики и ухудшает качество воспроизведения звуков.

Струны создают акустический резонанс

Резонанс электрический 

В электронике резонанс также имеется. Им называется состояние или режим пассивной электроцепи, содержащей катушки и конденсаторы, при котором ее входное реактивное электросопротивление и проводимость будут нулевыми. Это означает, что при резонансе ток на входе в цепь, если он есть, будет совпадать по фазе с напряжением.

Колебательный контур

В электричестве резонирование достигается тогда, когда индукция и емкость реакции уравновешиваются. Это равенство и позволяет энергии производить циркуляцию между индуктивными элементами и их магнитным полем, и полем электрического типа в конденсаторе.

Сам механизм резонанса основан на том, что МП индуктивности создает электроток, который заряжает конденсатор, разрядка его и создает это магнитное поле. Простейшее устройство, основанное на этом взаимодействии, – колебательный контур, способный производить резонанс напряжений и токов.

Модель светового оптического резонирования

Оптический резонанс

И в оптическом диапазоне есть резонанс. Один из самых популярных его примеров – резонатор Фабри-Перо. Он образован несколькими зеркалами, между которыми устанавливается так называемая резонирующая стоячая волна. Кроме этого используются кольцевые системы резонирования с бегущей волной и микроскопические резонаторы со стоячими волнами.

Схема колебательного контура

Орбитальные колебания

Колебания в астрофизике представляют собой ситуации, когда есть два или более небесных объекта, которые имеют некоторые периоды обращения, соотносящиеся, как небольшие натуральные числа. В результате этого воздействия небесные объекты оказывают друг на друга постоянное гравитационное притяжение. Оно и производит стабилизацию их орбит.

Колебания есть и на орбитах небесных тел

Резонанс: атомный, частичный и молекулярный

Атомный резонанс – это поглощение электромагнитных волн ядрами атома, которое происходит, когда изменяется вектор его момента движения. Особенно часто АР проявляется в атомах, которые помещают в сильное магнитное поле. При этом на них должно воздействовать небольшое электромагнитное поле, характеризующееся радиочастотным диапазоном.

График ядерного магнитного резонанса

В этом области существует и теория резонанса. Согласно ей, химические соединения имеют электронное строение, а распределение электронов в молекулах вещества есть комбинация или резонанс структуры с различным строением.

Важно! Это означает, что структура молекулы описывается не только одной возможной структурной формулой, сочетанием (резонансом) других структур. Теория резонанса позволяет путем химической терминологии и классических формул визуализировать построение мат. модели волновой функции какой-либо сложной молекулы.

Резонирование применяется в частотомере

Где применяется резонанс, как он используется в технике

Механический резонанс используется в акустике для анализа звуков и при их усилении. В сооружениях и устройствах, которые подвергаются периодически изменяющимся нагрузкам, резонанс весьма опасен, ведь он способен вызвать их разрушение вследствие значительного возрастания амплитуды колебаний.

Так, например, подвижные элементы двигателя внутреннего сгорания по типу шатунов действуют на валы с периодически изменяющимися силовыми нагрузками. Их период неразрывно связан с угловой скоростью вращения валов. Они вызывают колебательные движения коленчатого вала и при скорости вращения, которая соответствует резонансу, могут привести вал в негодность.

Важно! Учитывать механическое резонирование важно еще и в электронной аппаратуре, так как она часто подвергается вибрациям и ударам.

В технических моментах резонирование играет как положительные, так и отрицательные роли, то есть оно может как навредить, так и создать прибор. Например, явление механического резонирования используется в технических приборах типа частотомеров для подсчета частоты колебаний. В них элементом чувствительности предстает резонатор, собственная частота которого легко изменяется. Положительные стороны резонанс дает и в акустике, оптике или радиотехнике.

Таким образом, эффект резонирования присущ огромному количеству объектов планеты. Вне зависимости от его определения, он всегда означает одно и то же: система, на которую производят воздействие, повышает свою амплитуду. Определять резонирование можно огромным количеством методов. Все они зависят от вида и природы взаимодействий.

Резонанс токов: применение, принцип резонса тока, расчет контура

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Соединение двух ветвей при резонансе

Признаки резонанса:

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:

Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.

Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.

Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср= I2конт * R = (V2конт / Z2) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

ω0 = 1 / √L*C

Нулевой импеданс в резонансе определяется при помощи такой формулы:

Fрез = 1 / 2π √L*C

Резонансная частота колебаний может быть аппроксимирована следующим образом:

F = 1/2 р (LC) 0.5

Где: F = частота

L = индуктивность

C = емкость

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

R = 2 (L / C) 0.5

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

Резонанс: польза и вред

В нашей жизни происходит много удивительных и порой непонятных явлений. Однако объяснение многих из них может быть достаточно простым, но сразу не бросающимся в глаза. Например, одна из любимейших детских забав – качание на качелях. Казалось бы, что тут сложного – все ясно и понятно. Но задумывались ли вы, почему, если правильно действовать на качели, то размах качаний будет становиться все больше и больше? Все дело в том, что действовать нужно строго в определенные моменты времени и в определенном направлении, иначе результатом действия может быть не раскачивание, а полная остановка качелей. Чтобы этого не произошло, нужно, чтобы частота внешнего воздействия совпадала с частотой колебаний самих качелей, в этом случае размах качания будет увеличиваться. Это явление называется резонансом. Давайте попробуем разобраться, что такое резонанс, где он встречается в нашей жизни и что об этом явлении нужно знать.

С точки зрения физики «резонанс» – это резкое увеличение амплитуды вынужденных колебаний при совпадении собственной частоты колебательной системы с частотой внешней вынуждающей силы. Это только внешнее проявление резонанса. Внутренняя причина заключается в том, что увеличение амплитуды колебаний свидетельствует об увеличении энергии колебательной системы. Это может происходить только в том случае, если физической системе сообщается энергия извне согласно закону сохранения и изменения энергии. Следовательно, внешняя сила должна совершать положительную работу, увеличивая энергию системы. Это возможно только, когда внешняя сила является периодически изменяющейся с частотой, равной собственной частоте колебательной системы. Самый простой вариант – вариант с качелями, который мы уже описали, и который возникает во всех маятниковых системах и устройствах. Но это далеко не единственный случай применения человеком эффекта резонанса.

Резонанс, как и любое другое физическое явление, имеет как положительные, так и отрицательные последствия. Среди положительных можно выделить использование резонанса в музыкальных инструментах. Особенная форма скрипки, виолончели, контрабаса, гитары способствует резонансу стоячих звуковых волн внутри корпуса инструмента, составляющих гармонику, и музыкальный инструмент дарит любителям музыки необыкновенное звучание. Известнейшие мастера музыкальных инструментов, такие как Николо Амати, Антонио Страдивари и Андреа Гварнери, совершенствовали форму, подбирали редкие породы древесины и изготавливали специальный лак, чтобы усилить резонирующий эффект, сохранив при этом мягкость и нежность тембра. Именно поэтому каждый такой инструмент имеет свой особенный, неповторимый звук.

Помимо этого, известен способ резонансного разрушения при дроблении и измельчении горных пород и материалов. Это происходит так. При движении дробимого материала с ускорением силы инерции будут вызывать напряжения и деформации, периодически меняющие свой знак, – так называемые вынужденные колебания. Совпадение соответствующих частот вызовет резонанс, а силы трения и сопротивления воздуха будет сдерживать рост амплитуды колебаний, однако все равно она может достичь величины, значительно превышающей деформации при ускорениях, не меняющих знак. Резонанс сделает дробление и измельчение горных пород и материалов существенно эффективнее. Такую же роль резонанс играет при сверлении отверстий в бетонных стенах при помощи электрической дрели с перфоратором.

Явление резонанса мы также используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Радио- или телесигнал, транслируемый передающей станцией, имеет очень маленькую амплитуду. Поэтому, чтобы увидеть изображение или услышать звук, необходимо их усилить и, вместе с тем, понизить уровень шума. Это и достигается при помощи явления резонанса. Для этого нужно настроить собственную частоту приемника, в основе представляющего собой электромагнитный колебательный контур, на частоту передающей станции. При совпадении частот наступит резонанс, и амплитуда радио- или телесигнала существенно вырастет, а сопутствующие ему шумы останутся практически без изменений. Это обеспечит достаточно качественную трансляцию.

Один из видов магнитного резонанса, электронный парамагнитный резонанс, открытый в 1944 году русским физиком Е.К. Завойским, применяется при исследовании кристаллической структуры элементов, химии живых клеток, химических связей в веществах и т. д. Электроны в веществах ведут себя как микроскопические магниты. В разных веществах они переориентируются по-разному, если поместить вещество в постоянное внешнее магнитное поле и воздействовать на него радиочастотным полем. Возврат электронов к исходной ориентации сопровождается радиочастотным сигналом, который несет информацию о свойствах электронов и их окружении. Этот метод представляет собой один из видов спектроскопии.

Несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать разрушения части зданий или даже зданий целиком. Кроме того, землетрясения могут привести к образованию огромных резонансных волн – цунами с очень большой разрушительной силой.

Также резонанс может стать причиной разрушения мостов. Существует версия, что один из деревянных мостов Санкт-Петербурга (сейчас он каменный) действительно был разрушен воинским соединением. Как сообщали газеты того времени, подразделение двигалось на лошадях, которых пришлось впоследствии извлекать из воды. Естественно, что лошади гвардейцев двигались строем, а не как попало. Еще один мост – Такомский – висячий мост через пролив Такома-Нэрроуз в США был разрушен 7 ноября 1940 года. Причиной обрушения центрального пролета стал ветер со скоростью около 65 км/ч.

 

В наше время резонансные колебания, вызванные ветром, чуть не стали причиной обрушения волгоградского моста, теперь неофициально называемого «Танцующим мостом». 20 мая 2010 года ветер и волны раскачали его до такой степени, что его пришлось закрыть. При этом был слышен оглушающий скрежет многотонных металлических конструкций. Дорожное покрытие моста через Волгу в течение часа было похоже на развивающееся на ветру полотнище. Бетонные волны, по словам очевидцев, были высотой около метра. Когда мост «затанцевал», по нему ехало несколько десятков автомашин. К счастью, мост устоял, и никто не пострадал.

Таким образом, резонанс – это очень эффективный инструмент для решения многих практических задач, но и одновременно может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.

Автор: Матвеев К.В., методист ГМЦ ДО г. Москвы

Матвеева Е.В., учитель физики

ГБОУ Школа № 2095 «Покровский квартал» 

Электрический резонанс применение. Резонанс в электрической цепи — Гипермаркет знаний. Элементы резонансной цепи

Резонансом в физике называют явление, при котором амплитуды колебания системы резко возрастают. Это происходит при совпадении собственной и внешней возмущающей частот. В механике примером может служить маятник часов. Подобное поведение характерно и для электрических схем, включающих в себя элементы активной, индуктивной и емкостной нагрузки. Резонанс токов и напряжений очень важен, это явление нашло применение в таких областях науки, как радиосвязь и промышленное электроснабжение.

Векторы и теория

Для понимания смысла процессов, происходящих в цепях, включающих катушки индуктивности, конденсаторы и активные сопротивления, следует рассмотреть схему простейшего колебательного контура. Подобно тому, как обычный маятник попеременно переводит энергию из потенциального в кинетическое состояние, электрический заряд в RCL-цепочке, накапливаясь в емкости, перетекает в индуктивность. После этого процесс происходит в обратном направлении, и все начинается сначала. При этом векторная диаграмма выглядит следующим образом: ток емкостной нагрузки опережает на угол π/2 направление напряжения, индуктивная нагрузка отстает на такой же угол, а активная совпадает по фазе. Результирующий вектор имеет наклон по отношению к абсциссе, обозначаемый греческой буквой φ. Резонанс в цепи переменного тока наступает тогда, когда φ=0, соответственно, cos φ = 1. В переводе с языка математики эта выкладка означает, что ток, проходящий по всем элементам, по фазе совпадает с током в активной составляющей электросхемы.

Практическое применение в системах электроснабжения

Теоретически все эти выкладки понятны, но что они значат для практических вопросов? Очень многое! Всем известно, что полезная работа в любой схеме выполняется активной составляющей мощности. При этом большая часть потребления энергии приходится на электродвигатели, которых на любом предприятии немало, а они содержат в своей конструкции обмотки, представляющие собой индуктивную нагрузку и создающие угол φ, отличный он нуля. Для того чтобы возник резонанс токов, необходимо скомпенсировать реактивные сопротивления таким образом, чтобы их векторная сумма стала нулевой. На практике это достигается включением конденсатора, который создает противоположный сдвиг вектора тока.

Резонанс токов в радиоприемных устройствах

Резонанс токов имеет и другое, радиотехническое применение. Колебательный контур, составляющий основу каждого приемного устройства, состоит из катушки индуктивности и конденсатора. Меняя величину электрической емкости, можно добиться того, что сигнал с требуемой несущей частотой будет приниматься избирательно, а остальные всеволновые составляющие, принимаемые на антенну, включая и помехи, окажутся подавленными. На практике такой переменный конденсатор выглядит как два набора пластин, один из которых при вращении входит или выходит из другого, увеличивая или уменьшая при этом электрическую емкость. При этом создается резонанс токов, а радиоприемник оказывается настроенным на нужную частоту.

Мы убедились в совпадении законов свободных механических и электрических колебаний. Но столь же полное сходство законов имеется и в случае вынужденных колебании, вызываемых действием внешней периодической силы. В случае электрических колебаний роль силы играет, как мы видели в предыдущем параграфе, электродвижущая сила (сокращенно э. д. с). Просмотрите вновь § 12, где мы описали вынужденные колебания, § 13, в котором говорится о явлении резонанса, и § 14, в котором рассмотрено влияние затухания на резонансные явления в колебательной системе. Все сказанное там о механических вынужденных колебаниях целиком относится и к электрическим. И здесь частота вынужденных колебаний в колебательном контуре равна частоте действующей в этом контуре э. д. с. Амплитуда вынужденных колебаний тем больше, чем ближе частота э. д. с. к частоте свободных колебаний в контуре. При совпадении этих частот амплитуда становится наибольшей, получается электрический резонанс: ток в контуре и напряжение на его конденсаторе могут очень сильно превышать те, которые получаются при отстройке, т. е, вдали от резонанса. Резонансные явления выражены тем сильнее и резче, чем меньше сопротивление контура, которое, таким образом, и здесь играет такую же роль, как трение в механической системе.

Все эти явления легко наблюдать, использовав для получения гармонической э. д. с. городской переменный ток и построив колебательный контур, собственную частоту которого можно менять в обе стороны от частоты тока (). Чтобы избежать при этом высоких резонансных напряжений в контуре, которые (при напряжении в городской сети ) могут достичь нескольких киловольт, следует воспользоваться понижающим трансформатором.

На рис. 53 показано расположение приборов и электрическая схема опыта (обозначения на рисунке и на схеме одинаковые). В схему включены понижающий трансформатор 1, конденсатор 2, дроссели 3 и 4, представляющие собой катушки индуктивности с железными сердечниками, которые нужны для получения требуемой большой индуктивности. Для удобства настройки контура индуктивность его составлена из индуктивностей двух отдельных катушек. Настройка осуществляется тем, что у одного из дросселей (4) сердечник имеет воздушный зазор, ширину которого можно плавно менять в пределах , меняя тем самым общую индуктивность. Чем шире зазор, тем меньше индуктивность. В подписи к рис. 53 указаны примерные значения всех величин. Напряжение на конденсаторе измеряется вольтметром переменного тока , а амперметр переменного тока позволяет следить за током в контуре.

Опыт показывает следующее: при малой индуктивности контура напряжение на конденсаторе составляет немногим более, чем наводимая в контуре э. д. с, т. е. несколько вольт. Увеличивая индуктивность, мы увидим, что напряжение растет; это нарастание становится все более и более резким по мере приближения к резонансному значению индуктивности. При тех числовых данных, которые указаны в подписи к рис. 53, напряжение поднимается выше . При дальнейшем увеличении индуктивности напряжение вновь падает. Ток в контуре изменяется пропорционально напряжению на конденсаторе и при резонансе может дойти до .

Этот опыт соответствует механическому опыту с грузом на пружине, который был описан в § 12. Там нам было удобней менять частоту действующей силы, здесь же мы проходим через резонансную настройку, меняя собственную частоту колебательной системы — нашего контура. Сущность явления резонанса от этого не меняется.

Рис. 53. Получение электрического резонанса на частоту городского тока: 1 — трансформатор, понижающий напряжение, например с до , 2 — конденсатор емкости , 3 — дроссель, индуктивность которого , а сопротивление обмотки равно , 4 — дроссель с переменным воздушным зазором, индуктивность которого при ширине и изменяется при изменении ширины зазора на в обе стороны от указанного (резонансного) значения

Роль электрического резонанса в технике огромна. Приведем лишь один пример. По существу на резонансе основана техника радиоприема. Многочисленные радиостанции излучают электромагнитные волны, которые наводят в антенне радиоприемника переменные э. д. с. (электрические колебания), причем каждая радиостанция наводит колебания своей определенной частоты. Если бы мы не умели выделить из этой сложнейшей смеси колебаний колебания, наводимые интересующей нас радиостанцией, то никакой радиоприем не был бы возможен. Здесь и приходит на помощь электрический резонанс.

Мы соединяем с антенной колебательный контур, например через индуктивность, как показано на рис. 54.

Емкость конденсатора можно плавно изменять, меняя тем самым собственную частоту контура. Если мы настроим контур на желательную частоту, например , то э. д. с. с частотой , вызовет в контуре сильные вынужденные колебания, а все остальные э. д. с.- слабые. Следовательно, резонанс позволяет по желанию настраивать приемник на частоту выбранной станции.

Рис. 54. Резонанс позволяет настраиваться на желаемую станцию и отстраиваться от всех остальных. Стрелка на конденсаторе указывает на то, что емкость конденсатора можно менять

Разумеется, в электротехнике, как и в машиностроении, резонанс может явиться величайшим злом там, где его не должно быть. Если электрическая цепь рассчитана на работу в отсутствие резонанса, то возникновение резонанса вызовет аварию: провода раскалятся от чрезмерно сильных токов, изоляция будет пробита из-за высоких резонансных напряжении, и т. п. В прошлом веке, когда электрические колебания были еще недостаточно изучены, такие аварии случались. Теперь же мы умеем в зависимости от условий либо использовать резонанс, либо устранять его.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Резонанс. Его применение

Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

резонанс напряжение электрический медицина

Использование Резонанса

В медицине

Магнитно-резонансная томография, или ее сокращенное название МРТ, считается одним из самых надежных методов лучевой диагностики. Очевидным плюсом использования такого способа проверить состояние организма является то, что оно не является ионизирующим излучением и дает довольно точные результаты при исследовании мышечной и суставной системы организма, помогает с высокой вероятностью диагностировать различные заболевания позвоночника и центральной нервной системы.

Сам процесс обследования довольно прост и абсолютно безболезненный — все, что вы услышите, лишь сильный шум, но от него хорошо защищают наушники, которые выдаст вам перед процедурой врач. Возможны только два вида неудобств, которых не получится избежать. В первую очередь это касается тех людей, которые боятся замкнутых пространств — диагностируемый пациент ложится на горизонтальную лежанку и автоматические реле передвигают его внутрь узкой трубы с сильным магнитным полем, где он находится примерно в течение 20 минут. Во время диагностики не следует шевелиться, чтобы результаты получились как можно точнее. Второе неудобство, которое вызывает резонансная томография при исследовании малого таза, это необходимость наполненности мочевого пузыря.

Если ваши близкие желают присутствовать при диагностировании, они обязаны подписать информационный документ, согласно которому они ознакомлены с правилами поведения в диагностическом кабинете и не имеют никаких противопоказаний для нахождения рядом с сильным магнитным полем. Одной из причин невозможности нахождения в помещении управления МРТ является наличие в организме посторонних металлических компонентов.

Испол ьзование резонанса в радиосвязи

Явление электрического резонанса широко используется при осуществлении радиосвязи. Радиоволны от различных передающих станций возбуждают в антенне радиоприемника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте. С антенной индуктивно связан колебательный контур (рис. 4.20). Вследствие электромагнитной индукции в контурной катушке возникают переменные ЭДС соответствующих частот и вынужденные колебания силы тока тех же частот. Но только при резонансе колебания силы тока в контуре и напряжения в нем будут значительными, т. е. из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте. Настройка контура на нужную частоту обычно осуществляется путем изменения емкости конденсатора. В этом обычно состоит настройка радиоприемника на определенную радиостанцию. Необходимость учета возможности резонанса в электрической цепи. В некоторых случаях резонанс в электрической цепи может принести большой вред. Если цепь не рассчитана на работу в условиях резонанса, то его возникновение может привести к аварии.

Чрезмерно большие токи могут перегреть провода. Большие напряжения приводят к пробою изоляции.

Такого рода аварии нередко случались еще сравнительно недавно, когда плохо представляли себе законы электрических колебаний и не умели правильно рассчитывать электрические цепи.

При вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.

Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления). Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е. Это обеспечивается, если общее сопротивление схемы Z = R+J(WL — 1/WС) будет лишь активным, т.е. Z=R. Равенство:

(L — 1/WС) = 0 (1),

является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:

В этом выражении W — является резонансной частотой контура.

Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:

UL = U = WL * I = WLE/R

Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.

Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:

Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.

Применение резонанса напряжений

Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.

В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями. Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии. В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.

Размещено на Allbest.ru

Подобные документы

    Биологическое влияние электрических и магнитных полей на организм людей и животных. Суть явления электронного парамагнитного резонанса. Исследования с помощью ЭПР металлсодержащих белков. Метод ядерного магнитного резонанса. Применение ЯМР в медицине.

    реферат , добавлен 29.04.2013

    Электрические цепи переменного тока, их параметры. Понятие и основные условия явления резонанса. Особенности изменения индуктивного и емкостного сопротивления. Анализ зависимости фазового сдвига между током и напряжением на входе контура от частоты.

    контрольная работа , добавлен 16.01.2010

    Схема цепи с активным, индуктивным и емкостным сопротивлениями, включенными последовательно. Расчет значений тока и падения напряжения. Понятие резонанса напряжений. Снятие показаний осциллографа. Зависимость сопротивления от частоты входного напряжения.

    лабораторная работа , добавлен 10.07.2013

    Возбуждение ядер в магнитном поле. Условие магнитного резонанса и процессы релаксации ядер. Спин-спиновое взаимодействие частиц в молекуле. Схема устройства ЯМР-спектрометра. Применение спектроскопии ЯМР 1H и 13CРазличные методы развязки протонов.

    реферат , добавлен 23.10.2012

    Особенности вынужденных колебаний. Явление резонанса, создание неразрушающихся конструкций. Использование колебаний в строительстве, технике, для сортировки сыпучих материалов. Вредные действия колебаний. Качка корабля и успокоители; антирезонанс.

    курсовая работа , добавлен 21.03.2016

    Определение влияния активного, индуктивного и емкостного сопротивления на мощность и сдвиг фаз между током и напряжением в электрической цепи переменного тока. Экспериментальное исследование резонансных явлений в параллельном колебательном контуре.

    лабораторная работа , добавлен 11.07.2013

    Исследование асинхронного трехфазного двигателя с фазным ротором. Схема последовательного и параллельного соединения элементов для исследования резонанса напряжений. Резонанс напряжений, токов. Зависимость тока от емкости при резонансе напряжений.

    лабораторная работа , добавлен 19.05.2011

    Электрическая цепь при последовательном и параллельном соединении элементов с R, L и C, их сравнительные характеристики. Треугольник напряжений и сопротивлений. Понятие и свойства резонанса токов и напряжений, направления и особенности его регулирования.

    реферат , добавлен 27.07.2013

    Практическая проверка и определение физических явлений, происходящих в цепи переменного тока при последовательном соединении резистора, индуктивной катушки и конденсатора. Получение резонанса напряжений, построение по опытным данным векторной диаграммы.

    лабораторная работа , добавлен 12.01.2010

    Квантовая механика как абстрактная математическая теория, выражающая процессы с помощью операторов физических величин. Магнитный момент и ядерный спин, их свойства и уравнение. Условия термодинамического равновесия и применение резонансного эффекта.

Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.

Что такое резонанс?

Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.

Признаки резонанса :

  1. Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
  2. Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.

Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:

  1. Последовательный;
  2. Параллельный.

Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.

Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.

Применение

Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.

Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.

Принцип резонанса токов

Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:


Схема для питания конденсатора

Переключатель будет отвечать за направление колебаний.


Схема: переключатель резонансной схемы

Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.


Схема: ток в резонансной схеме равен нулю

Направленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.

Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.

Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.

В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.

Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.

Расчет резонансного контура

Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.

Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:

R ср = I 2 конт * R = (V 2 конт / Z 2) * R.

При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1

Сама же формула резонанса имеет следующий вид:

ω 0 = 1 / √L*C

Нулевой импеданс в резонансе определяется при помощи такой формулы:

F рез = 1 / 2π √L*C

Резонансная частота колебаний может быть аппроксимирована следующим образом:

F = 1/2 р (LC) 0.5

Где: F = частота

L = индуктивность

C = емкость

Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:

R = 2 (L / C) 0.5

Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.

В колебательном контуре, обладающем индуктивностью L, емкостью C и сопротивлением R, свободные электрические колебания имеют тенденцию к затуханию. Чтобы колебания не затухали, необходимо периодически пополнять контур энергией, тогда возникнут вынужденные колебания, которые не будут затухать, ведь внешняя переменная ЭДС станет теперь поддерживать колебания в контуре.

Если колебания поддерживать источником внешней гармонической ЭДС, частота которой f очень близка к резонансной частоте колебательного контура F, то амплитуда электрических колебаний U в контуре станет резко возрастать, то есть наступит явление электрического резонанса .


Рассмотрим сначала поведение конденсатора C в цепи переменного тока. Если к генератору, напряжение U на выводах которого меняется по гармоническому закону, присоединить конденсатор C, то заряд q на обкладках конденсатора станет меняться также по гармоническому закону, как и ток I в цепи. Чем больше емкость конденсатора, и чем выше частота f, прикладываемой к нему гармонической ЭДС, тем больше окажется ток I.

С этим фактом связано представление о так называемом емкостном сопротивлении конденсатора XC, которое он вносит в цепь переменного тока, ограничивая ток подобно активному сопротивлению R, но в сравнении с активным сопротивлением, конденсатор не рассеивает энергию в виде тепла.

Если активное сопротивление рассеивает энергию, и таким образом ограничивает ток, то конденсатор ограничивает ток просто из-за того, что в нем не успевает уместиться больше заряда, чем генератор может дать за четверть периода, к тому же в следующую четверть периода конденсатор отдает энергию, которая накопилась в электрическом поле его диэлектрика, обратно генератору, то есть хоть ток и ограничен, энергия не рассеивается (потерями в проводах и в диэлектрике пренебрежем).


Теперь рассмотрим поведение индуктивности L в цепи переменного тока. Если вместо конденсатора присоединить к генератору катушку, обладающую индуктивностью L, то при подаче от генератора синусоидальной (гармонической) ЭДС на выводы катушки, — в ней начнет возникать ЭДС самоиндукции , поскольку при изменении тока через индуктивность, увеличивающееся магнитное поле катушки стремится препятствовать росту тока (закон Ленца), то есть получается, что катушка вносит в цепь переменного тока индуктивное сопротивление XL — дополнительное к сопротивлению провода R.

Чем больше индуктивность данной катушки, и чем выше частота F тока генератора, тем выше индуктивное сопротивление XL и меньше ток I, ведь ток просто не успевает устанавливаться, потому что ЭДС самоиндукции катушки ему мешает. И каждые четверть периода энергия, накопленная в магнитном поле катушки, возвращается к генератору (потерями в проводах пока пренебрежем).


В любом реальном колебательном контуре последовательно соединены индуктивность L, емкость C и активное сопротивление R.

Индуктивность и емкость действуют на ток противоположно в каждую четверть периода гармонической ЭДС источника: на обкладках конденсатора , хотя уменьшается ток, а при нарастании тока через индуктивность ток хоть и испытывает индуктивное сопротивление, но нарастает и поддерживается.

И во время разряда: разрядный ток конденсатора сначала большой, напряжение на его обкладках стремится установить большой ток, а индуктивность препятствует увеличению тока, и чем больше индуктивность, тем меньший разрядный ток будет иметь место. При этом активное сопротивление R вносит чисто активные потери. То есть полное сопротивление Z, последовательно включенных L, C и R, при частоте источника f, будет равно:

Из закона Ома для переменного тока очевидно, что амплитуда вынужденных колебаний пропорциональна амплитуде ЭДС и зависит от частоты. Полное сопротивление цепи будет наименьшим, а амплитуда тока будет наибольшей при условии, что индуктивное сопротивление и емкостное при данной частоте равны между собой, в этом случае наступит резонанс. Отсюда же выводится формула для резонансной частоты колебательного контура :

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой последовательно, то резонанс в такой цепи называется последовательным резонансом или резонансом напряжений. Характерная черта резонанса напряжений — значительные напряжения на емкости и на индуктивности, по сравнению с ЭДС источника.

Причина появления такой картины очевидна. На активном сопротивлении по закону Ома будет напряжение Ur, на емкости Uc, на индуктивности Ul, и составив отношение Uc к Ur можно найти величину добротности Q. Напряжение на емкости будет в Q раз больше ЭДС источника, такое же напряжение окажется приложенным к индуктивности.

То есть резонанс напряжений приводит к возрастанию напряжения на реактивных элементах в Q раз, а резонансный ток будет ограничен ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, сопротивление последовательного контура на резонансной частоте минимально.

Явление резонанса напряжений используют в , например если необходимо устранить из передаваемого сигнала составляющую тока определенной частоты, то параллельно приемнику ставят цепочку из соединенных последовательно конденсатора и катушки индуктивности, чтобы ток резонансной частоты этой LC-цепочки замкнулся бы через нее, и не попал к бы приемнику.

Тогда токи частоты далекой от резонансной частоты LC-цепочки будут проходить в нагрузку беспрепятственно, и только близкие к резонансу по частоте токи — будут находить себе кротчайший путь через LC-цепочку.

Или наоборот. Если необходимо пропустить только ток определенной частоты, то LC-цепочку включают последовательно приемнику, тогда составляющие сигнала на резонансной частоте цепочки пройдут к нагрузке почти без потерь, а частоты далекие от резонанса окажутся сильно ослаблены и можно сказать, что к нагрузке совсем не попадут. Данный принцип применим к радиоприемникам, где перестраиваемый колебательный контур настраивают на прием строго определенной частоты нужной радиостанции.

Вообще резонанс напряжений в электротехнике является нежелательным явлением, поскольку он вызывает перенапряжения и выход из строя оборудования.

В качестве простого примера можно привести длинную кабельную линию, которая по какой-то причине оказалась не подключенной к нагрузке, но при этом питается от промежуточного трансформатора. Такая линия с распределенной емкостью и индуктивностью, если ее резонансная частота совпадет с частотой питающей сети, просто будет пробита и выйдет из строя. Чтобы предотвратить разрушение кабелей от случайного резонанса напряжений, применяют вспомогательную нагрузку.

Но иногда резонанс напряжений играет нам на руку и не только в радиоприемниках. Например, бывает, что в сельской местности напряжение в сети непредсказуемо упало, а станку нужно напряжение не менее 220 вольт. В этом случае явление резонанса напряжений спасает.

Достаточно последовательно со станком (если приводом в нем является асинхронный двигатель) включить по несколько конденсаторов на фазу, и таким образом напряжение на обмотках статора поднимется.

Здесь важно правильно подобрать количество конденсаторов, чтобы они точно скомпенсировали своим емкостным сопротивлением вместе с индуктивным сопротивлением обмоток просадку напряжения в сети, то есть слегка приблизив цепь к резонансу — можно поднять упавшее напряжение даже под нагрузкой.


Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой параллельно, то резонанс в такой цепи называется параллельным резонансом или резонансом токов. Характерная черта резонанса токов — значительные токи через емкость и индуктивность, по сравнению с током источника.

Причина появления такой картины очевидна. Ток через активное сопротивление по закону Ома будет равен U/R, через емкость U/XC, через индуктивность U/XL, и составив отношение IL к I можно найти величину добротности Q. Ток через индуктивность будет в Q раз больше тока источника, такой же ток будет течь каждые пол периода в конденсатор и из него.

То есть резонанс токов приводит к возрастанию тока через реактивные элементы в Q раз, а резонансная ЭДС будет ограничена ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, на резонансной частоте сопротивление параллельного колебательного контура максимально.

Аналогично резонансу напряжений, резонанс токов применяется в различных фильтрах. Но включенный в цепь, параллельный контур действует наоборот, чем в случае с последовательным: установленный параллельно нагрузке, параллельный колебательный контур позволит току резонансной частоты контура пройти в нагрузку, поскольку сопротивление самого контура на собственной резонансной частоте максимально.

Установленный последовательно с нагрузкой, параллельный колебательный контур не пропустит сигнал резонансной частоты, поскольку все напряжение упадет на контуре, а на нагрузку придется мизерная доля сигнала резонансной частоты.

Так, основное применение резонанса токов в радиотехнике — создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.

В электротехнике резонанс токов используется с целью достижения высокого коэффициента мощности нагрузок, обладающих значительными индуктивными и емкостными составляющими.

Например, представляют собой конденсаторы, подключаемые параллельно обмоткам асинхронных двигателей и трансформаторов, работающих под нагрузкой ниже номинальной.

К таким решениям прибегают как раз с целью достижения резонанса токов (параллельного резонанса), когда индуктивное сопротивление оборудования делается равным емкостному сопротивлению подключаемых конденсаторов на частоте сети, чтобы реактивная энергия циркулировала между конденсаторами и оборудованием, а не между оборудованием и сетью; чтобы сеть отдавала энергию только тогда, когда оборудование нагружено и потребляет активную мощность.

Когда же оборудование работает в холостую, сеть оказывается подключена параллельно резонансному контуру (внешние конденсаторы и индуктивность оборудования), который представляет для сети очень большое комплексное сопротивление и позволяет снизиться .

Определение резонанса простыми словами: проявления в природе

Явление — резонанс

Явление резонанса в цепи, содержащей нелинейные элементы, имеет существенные особенности. Рассмотрим резонанс в последовательной цепи, содержащей нелинейную емкость.

Явление резонанса часто имеет значение для нагрузки, так как внезапные изменения тока нагрузки также возбуждают резонанс. Это регулируется ( не всегда успешно) посредством выходного сопротивления нагрузки и сопротивления дросселя. Нагрузка будет получать резонансное напряжение, а не резонансный ток, создаваемый выпрямителями. Резонанс трудно подавить, и он может иногда вызывать нарушение действия питаемого от него стабилизатора напряжения при переходных явлениях в токе нагрузки.

Явление резонанса в электрической цепи обеспечивает возможность радиосвязи и используется при настройке радиоприемников на частоту той или иной радиостанции.

Явление резонанса нередко служит причиной поломки коленчатых валов. Для прочности корпуса судна, который также обладает определенным числом свободных колебаний, явление резонанса также может быть опасным.

Явления резонанса возникают в цепях переменного тока при равенстве индуктивного и емкостного сопротивлений или при равенстве индуктивной и емкостной проводимости. В этих случаях контур по отношению внешней цепи является безиндуктивным, как бы состоящим из одного активного сопротивления.

Явление резонанса имеет место в турбинных лопатках и в лопастях вентиляторов и пропеллеров в тех случаях, когда по длине лопатки или лопасти ( от ступицы до края) укладывается четверть звуковой волны.

Явление резонанса широко используется в различных устройствах радиоэлектроники и электротехники. Режим резонанса в цепи из R -, L — и С-элементов состоит в том, что при некоторых значениях частоты, называемых резонансными частотами, входное сопротивление ( или проводимость) становится чисто резистив-ным — с нулевой реактивной составляющей, так, что напряжение и ток на входе цепи совпадают по фазе.

Явление резонанса может проявляться в лопатках ГТД, в лопастях воздушных винтов и вентиляторов в тех случаях, когда по длине лопатки или лопасти ( от ступицы до края) укладывается четверть звуковой волны.

Явление резонанса и вместе с этим разжижение цементного геля наблюдается только в том случае, когда за время установления вынужденных колебаний резонаторов внешнее гармоническое воздействие не прекращается и его динамические параметры не изменяются.

Явление резонанса в электрических цепях весьма широко используется в современной электротехнике, и особенно в технике высокой частоты.

Явление резонанса используется в радиотехнике для измерения частоты колебаний или отвечающей ей длины электромагнитной волны с помощью измерительных приборов, называемых волномерами. Волномер содержит колебательный контур с градуированными индуктивной катушкой и конденсатором и прибором, указывающим ток в контуре. Колебательный контур волномера связывается индуктивно с контуром устройства, в котором необходимо измерить частоту тока. При плавном изменении емкости волномера добиваются максимума тока в контуре волномера и по значению индуктивности и емкости контура волномера судят о частоте.

Явление резонанса широко используется и в других электроизмерительных устройствах, а также в устройствах электроавтоматики.

Явление резонанса наиболее ярко проявляется при малом значении коэффициента затухания и возникает на частотах, близких к частоте собственных колебаний звена ш0 — ЦТ.

Явление резонанса используется для выделения из сложного напряжения нужной составляющей.

Явление резонанса в механизмах передвижения возникает не только при частоте вращения, равной пкр, но и при частоте, кратной критической частоте.

Механические колебания маятника

Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные. Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия. Данная энергия может быть как кинетической, так и потенциальной.

Здесь не имеет значение насколько сильно или нет качается сам маятник, — время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.

А вот частота в свою очередь напрямую зависит от величины длины нити маятника. Чем короче нить, тем выше частота и наоборот.

Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.

Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку». Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом. Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.

В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом. Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт. Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.

Марш по мосту

В учебниках по физике приводится пример обвала Египетского моста через Фонтанку в Санкт-Петербурге. История относится к 1906 году. Конструкция подверглась двойному внешнему воздействию. Сначала по ней прошел кавалерийский отряд. Чуть позже мост обвалился после ритмично прошагавшего по нему полка пехоты.

Египетский мост, Санкт-Петербург. Фото: ru.wikipedia.org

В первом случае крепления расшатались под воздействием лошадиных копыт. Пехота раскачала, как качели, ослабевшие опоры моста дружным шагом в ногу. Этим она довершила начатое кавалерией разрушение.

Известны другие случаи обрушения мостов в других странах мира. Сегодня военным запрещено идти в ногу по мостам любой сборки и конструкции, даже самым современным и надежным объектом. Общепринятой командой перед входом на мост является: «Вольно!». Солдаты идут по переправе не в ногу. При свободном передвижении частота шагов солдат не совпадет с частотой колебаний мостовых креплений. Не возникает дополнительная вибрация. Конструкция не подвергается дополнительному внешнему воздействию.

В чем польза или вред явления

Примеров, где используется явления резонанс, множество. Звуковая волна – это колебания воздуха. Инструменты имеют возможность звучать красиво в случае, если размеры, очертания и материал приведут к созданию условий для резонанса. Все духовые, язычковые инструменты звучат благодаря совпадению звуковых частот.

При проектировании и возведении концертных залов используют эффект акустического резонанса. Звучание музыки, голосов артистов полностью зависит от свойств колебательных движений. Древние зодчие Средневековья отлично владели искусством строительства сооружений с сильным акустическим эффектом. В соборе Святого Павла (Лондон) есть галерея, где любой звук или шепот слышен отчетливо.

В горной промышленности при разрушении или дроблении твердых пород применяют метод резонансного разрушения. Это позволяет выполнять большой объем в сжатые сроки с большой эффективностью. Сверление отверстий в бетонных конструкциях облегчает дрель с функцией перфоратора.

Резонанс, как и любое другое физическое явление, сам по себе не является ни плохим, ни хорошим, так как может приносить как пользу, так и вред. Например, именно резонанс помогает вытащить автомобиль, застрявший в грязи или снегу – планомерное раскачивание авто, то взад, то вперед с увеличением амплитуды колебаний помогает освободить его из плена.

А вот хрестоматийный негативный пример действия резонанса описан в самом начале нашей статьи, и связан с мостами. Если рота солдат строевым шагом пройдет по мосту, то может если и не обрушить его, то значительно повредить, потому, что вызовет сильный резонанс собственных колебаний поверхности моста с колебаниями от марша «нога в ногу» сотен солдат.

С тех пор технологии строительства мостов претерпели значительные изменения, а инженеры, конструкторы и архитекторы при проектировании своих объектов обязательно принимают в расчет явление резонанса. Этот феномен необходимо учитывать не только при строительстве мостов, но и при возведении высотных зданий, антенн, высоких опор, словом всего того, что теоретически может войти в резонанс с воздушными потоками.

Типы явления

В описании резонанса Г

Галилей как раз обратил внимание на самое существенное — на способность механической колебательной системы (тяжелого маятника) накапливать энергию, которая подводится от внешнего источника с определенной частотой. Проявления резонанса имеют определенные особенности в различных системах и поэтому выделяют разные его типы

Механический и акустический

Это тенденция механической системы поглощать больше энергии, когда частота ее колебаний соответствует собственной частоте вибрации системы. Это может привести к сильным колебаниям движения и даже катастрофическому провалу в недостроенных конструкциях, включая мосты, здания, поезда и самолеты. При проектировании объектов инженеры должны обеспечить безопасность, чтобы механические резонансные частоты составных частей не соответствовали колебательным частотам двигателей или других осциллирующих частей во избежание явлений, известных как резонансное бедствие.

Электрический резонанс

Возникает в электрической цепи на определенной резонансной частоте, когда импеданс схемы минимален в последовательной цепи или максимум в параллельном контуре. Резонанс в схемах используется для передачи и приема беспроводной связи, такой как телевидение, сотовая или радиосвязь.

Оптический резонанс

Оптическая полость, также называемая оптическим резонатором, представляет собой особое расположение зеркал, которое образует резонатор стоячей волны для световых волн
. Оптические полости являются основным компонентом лазеров, окружающих среду усиления и обеспечивающих обратную связь лазерного излучения. Они также используются в оптических параметрических генераторах и некоторых интерферометрах.

Свет, ограниченный в полости, многократно воспроизводит стоячие волны для определенных резонансных частот. Полученные паттерны стоячей волны называются «режимами». Продольные моды отличаются только частотой, в то время как поперечные различаются для разных частот и имеют разные рисунки интенсивности поперек сечения пучка. Кольцевые резонаторы и шепчущие галереи являются примерами оптических резонаторов, которые не образуют стоячих волн.

Орбитальные колебания

В космической механике возникает орбитальный отклик
, когда два орбитальных тела оказывают регулярное, периодическое гравитационное влияние друг на друга. Обычно это происходит из-за того, что их орбитальные периоды связаны отношением двух небольших целых чисел. Орбитальные резонансы значительно усиливают взаимное гравитационное влияние тел. В большинстве случаев это приводит к нестабильному взаимодействию, в котором тела обмениваются импульсом и смещением, пока резонанс больше не существует.

При некоторых обстоятельствах резонансная система может быть устойчивой и самокорректирующей, чтобы тела оставались в резонансе. Примерами является резонанс 1: 2: 4 лун Юпитера Ганимед, Европа и Ио и резонанс 2: 3 между Плутоном и Нептуном. Неустойчивые резонансы с внутренними лунами Сатурна порождают щели в кольцах Сатурна. Частный случай резонанса 1: 1 (между телами с аналогичными орбитальными радиусами) заставляет крупные тела Солнечной системы очищать окрестности вокруг своих орбит, выталкивая почти все остальное вокруг них.

Атомный, частичный и молекулярный

Ядерный магнитный резонанс (ЯМР)
— это имя, определяемое физическим резонансным явлением, связанным с наблюдением конкретных квантовомеханических магнитных свойств атомного ядра, если присутствует внешнее магнитное поле. Многие научные методы используют ЯМР-феномены для изучения молекулярной физики, кристаллов и некристаллических материалов. ЯМР также обычно используется в современных медицинских методах визуализации, таких как магнитно-резонансная томография (МРТ).

В чем заключается явление резонанса напряжений

Как известно, в сети переменного тока домашней сети разность потенциалов изменяется с частотой 50 Гц. То есть, каждую секунду производится 50 полных колебаний. Такое явление несложно замерить даже бытовым частотомером, который определить точное значение этого параметра именно по эффекту электромагнитного поля, образованного вокруг проводника с током. Катушка с металлическим сердечником, которая устанавливается в измерительный прибор, будет колебаться с частотой электромагнитного поля домашней электросети.

Частотомер

Таким образом, вырабатывается переменное напряжение, которое затем может быть увеличено, а его частота подсчитана микропроцессорным либо аналоговым устройством, после чего информация может быть выведена на экран.

Разобравшись, в чем заключается явление резонанса электрического напряжения, необходимо стараться всячески избегать этого явления, когда одновременные колебательные движения полей являются нежелательными. Если же в каком-либо устройстве такой эффект применяется с целью получения определенных физических явлений, то схема должна быть изготовлена с высокой добротностью, чтобы на поддержание процесса тратилось как можно меньше энергии (таким образом повышается КПД устройства).

Использование резонанса напряжений для передачи радиосигнала

Явление резонанса напряжений является не только любопытнейшим физическим феноменом. Оно играет исключительную роль в технологии беспроводных коммуникаций – радио, телевидении, сотовой телефонии. Передатчики, используемые для беспроводной передачи информации, в обязательном порядке содержат схемы, предназначенные для резонирования на определенной для каждого устройства частоте, называемой несущей частотой. При помощи передающей антенны, подключенной к передатчику, он излучает электромагнитные волны на несущей частоте.

Антенна на другом конце приемо-передающего тракта получает этот сигнал и подает его на приемный контур, предназначенный для резонирования на частоте несущей. Очевидно, что антенна принимает множество сигналов на различных частотах, не говоря уже о фоновом шуме. Благодаря наличию на входе приемного устройства, настроенного на несущую частоту резонансного контура, приемник выбирает единственно правильную частоту, отсеивая все ненужные.

После детектирования амплитудно-модулированного (AM) радиосигнала, выделенный из него низкочастотный сигнал (НЧ) усиливается и подается на звуковоспроизводящее устройство. Это простейшая форма радиопередачи очень чувствительна к шумам и помехам.

Для повышения качества принимаемой информации разработаны и успешно используются другие, более совершенные способы передачи радиосигнала, которые также базируются на использовании настроенных резонансных систем.

Частотная модуляция или FM-радио решает многие из проблем радиопередачи с амплитудно-модулированным передающим сигналом, однако это достигается ценой существенного усложнения системы передачи. В FM-радио системные звуки в электронном тракте превращаются в небольшие изменения несущей частоты. Часть оборудования, которое выполняет это преобразование, называется «модулятор» и используется с передатчиком.

Соответственно, к приемнику должен быть добавлен демодулятор для преобразования сигнала обратно в форму, которая может быть воспроизведена через громкоговоритель.

Как правильно рассчитать

Токовый резонанс очень важно правильно рассчитать, если есть параллельное соединение, предотвращающая появление помех около системы. Для правильного расчета необходимо понять, какие показатели мощности в электросети

Средняя стандартная мощность, рассеивающаяся при резонансном контуре, выражается при помощи среднеквадратичных токовых показателей и напряжения. При резонансе мощностный коэффициент равен единице и формула имеет вид, как на картинке.

Формула расчета

Чтобы правильно определить нулевой импеданс, понадобиться воспользоваться стандартной формулой, которая дана ниже.

Формула резонансных кривых

Что касается аппроксимирования резонанса колебательных частот, это можно выяснить по следующей формуле.

Расчет колебательного контура

Обратите внимание! Для получения максимально точных данных по приведенным формулам, округлять данные не нужно. Благодаря этому получится грамотный расчет, который приведет к достойной экономии переменного тока, если речь идет о подсчете в целях снижения счетов

В целом, резонанс токов — это то, что происходит в части параллельного колебательного контура, в случае его подключения к источнику напряжения, частота какого может совпадать с контурной. Возникает при условиях, когда цепь, имеющая параллельное соединение резисторной катушки и конденсатора, равна проводимости BL=BC. Правильно сделать весь необходимый подсчет можно по специальной формуле или, прибегая к использованию специальных измерительных инструментов в виде мультиметра.

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся. Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Резонанс тока в электрических цепях

Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества. Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура. Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.

В электросети простейший колебательный контур состоит из конденсатора и катушки индуктивности.

Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.

Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур, может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.

Колебания электрического тока внутри контура возникает под действием внешнего источника электроэнергии. Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура. Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.

Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения. Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника. Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.

Пример электрического резонанса в процессе настройки ТВ и радиоприемников

В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения — настройка ТВ и радиопрограмм в приемниках.

Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.

В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.

Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.

Признаки явления

Базовый показатель резонанса — когда реактивные сопротивления одинаковые, то есть AA = AB. Тогда ток не разветвленной части контура отсутствует, а в каждой отдельно взятой из ветвей будет протекать ток с максимальной амплитудой, и наступает обсуждаемое явление.

В ходе изысканий ученые пришли к выводу, который кажется очень странным. Действительно, генератор нагружают двумя реактивными нагрузками, а ток в не разветвленной его части отсутствует, более того, через каждую из них протекают ток равной силы и с максимальной амплитудой токи. Объяснить такое явление можно удивительными свойствами магнитных полей на индуктивных нагрузках и свойствами электрического поля емкости.

При явлении резонанса происходит обмен энергетическими колебаниями между этими полями в индуктивности и емкости. Генерирующая установка, передав энергию в контур, оказывается как бы «не у дел». Его даже можно совсем выключить, а ток в этой части контура будет поддерживаться без генератора, таким, как и был в самом начале. А напряжение останется точно таким, какое было подано с генератора.

Что такое резонанс

Резонанс – это колебательный отклик системы на внешнее воздействие, которое сопровождается резкими амплитудными движениями. Происходит от французского «resonance» — отзываться. Люди используют понятие в разных областях деятельности:

1. Наука и техника

Первым на резонанс обратил внимание средневековый ученый Торичелли. Галилео Галилей дал точное определение резонансу на примере струн и работы маятника

Основоположник современной электродинамики Джеймс Максвелл объяснил, что такое электромагнитный резонанс.

Разрушенный в 1850 году французский мост через реку Луара. Фото: ru.wikipedia.org

2. Риторика и полемика. В сфере гуманитарных наук понятие определяет отклик общественности на явления, происшествие или высказывание. Слово помогает повысить значимость происходящего. Критики часто употребляют фразу: «Картина (пьеса, книга, стиль) вызвала положительный (отрицательный) резонанс у публики». Явление может стать бестселлером или полностью провалиться.

3. Летное дело. Летчики опасаются воздушной разновидности резонанса флаттера. Попадая в зону турбулентности не очень крепкие машины могут развалиться в воздухе.

Люди встречаются с резонансом в повседневной жизни. Обычные качели демонстрируют механический резонанс. Разогревая еду в микроволновке, человек сталкивается с его электромагнитной разновидностью. Акустический резонанс встречается в горах на примере эха или в комнатах с плохой звукоизоляцией. В строительных работах всегда учитывается процент возможного резонанса. В противном случае высотные здания, ЛЭП-опоры, принимающие и передающие антенны подвергнутся воздействию порывов ветра, которые расшатают их и разрушат.

Явление резонанса в жизни и в технике.

Явление резонанса
может играть как положительную, так и отрицательную роль.

Известно, например, что тяжелый «язык» большого колокола может раскачать даже ребенок, но при условии, что будет тянуть за веревку в такт со свободными колебаниями «языка».

На применении резонанса основано действие язычкового частотомера. Этот прибор представляет собой набор укрепленных па общем основании упругих пластин различной длины. Собствен-ная частота каждой пластины известна. При контакте частотомера с колебательной системой , частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.

С явлением резонанса можно встретиться и тогда, когда это совершенно нежелательно. Так, на-пример, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи ко-лебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.

В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.

В 1906 г. из-за резонанса разрушился Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.

Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу», идти не строевым, а вольным шагом.

Если же через мост проезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).

Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.

Явление резонанса встречается не только на суше, но и в море, и даже в воздухе. Так, например, при некоторых частотах гребного вала в резонанс входили целые корабли. А на заре разви-тия авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.

Определение понятия резонанса (отклика) в физике возлагается на специальных техников, которые обладают графиками статистики, часто сталкивающихся с этим явлением. На сегодняшний день резонанс представляет собой частотно-избирательный отклик, где вибрационная система или резкое возрастание внешней силы вынуждает другую систему осциллировать с большей амплитудой на определенных частотах.

Оцените статью:

Резонанс токов — это… Что такое Резонанс токов?

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Описание явления

Пусть имеется колебательный контур с частотой собственных колебаний a, и пусть он подключен к генератору переменного тока такой же частоты f.

В момент подключения конденсатор заряжается от источника. После чего он начинает разряжаться на катушку, причем разряжается с такой же скоростью, с какой убывает напряжение на генераторе. Через некоторое время энергия конденсатора полностью переходит в энергию магнитного поля катушки. Напряжение на клеммах генератора в этот момент равно нулю.

Далее магнитное поле катушки начинает убывать, так как не может существовать стационарно — на выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе, причем с той же скоростью, с какой катушка заряжает конденсатор. Но ток от генератора не может течь через колебательный контур — как только на клеммах генератора появляется напряжение, точно такое же напряжение появляется на выводах конденсатора вследствие перезаряда его катушкой. Напряжения конденсатора и генератора друг друга компенсируют.

Далее энергия магнитного поля катушки полностью переходит в энергию электрического поля конденсатора. Напряжение генератора в этот момент достигает максимума. Далее конденсатор разряжается на катушку, цикл повторяется в обратном направлении. В результате, в колебательном контуре циркулируют весьма большие токи, но за его пределы не выходят — выходить им мешает точно такое же, только противоположно направленное напряжение на генераторе. Большой ток от генератора течет через контур только короткое время после включения, когда заряжается конденсатор. Далее генератор работает почти вхолостую — как только на его клеммах появляется напряжение, точно такое же противоположно направленное напряжение появляется на конденсаторе и не пропускает ток от внешнего источника через контур.

Вышесказанное справедливо для контура с очень хорошей добротностью (низкими потерями энергии за цикл).

Ситуация изменится, если отбирать от контура во время его работы некоторую мощность. Тогда за цикл часть энергии контура будет теряться и конденсатор будет перезаряжаться контурной катушкой до меньшего напряжения, чем напряжение внешнего генератора. В этом случае генератор будет дозаряжать конденсатор, компенсируя таким образом потери за цикл. Через контур потечет переменный ток, который, однако, может быть меньше того, что циркулирует в самом контуре.

Замечания

  • Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности.

Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки.

  • Если генератор слабый, большой ток подзарядки может сжечь его. Выйти из положения можно, постепенно повышая напряжение на клеммах генератора, «раскачивая» контур.
  • Колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией (образует короткое замыкание по катушке), что может привести к выходу из строя задающего генератора. Для повышения добротности колебательного контура нужно по возможности увеличить L и уменьшить C.

Если увеличить L с помощью увеличения витков катушки или увеличения длины провода не представляется возможным, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т п.

Применение

  • Высокодобротный колебательный контур оказывает току определенной частоты f значительное сопротивление. Вследствие чего явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту.
  • Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции.
  • Колебательный контур, работающий в режиме резонанса токов, является одним из основных узлов электронных генераторов.

См. также

Резонанс напряжений

Колебательный контур

Литература

  • Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 928.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.

Ссылки

Резонанс токов

Circuits. A/C Circuits. Parallel Resonance

9 повседневных примеров резонанса — StudiousGuy

Вы когда-нибудь задумывались, как радио выбирает определенные частоты, чтобы вы могли включить ваш любимый канал, или почему на концерте оркестра разбивается стекло? Вы когда-нибудь чувствовали, что мост вибрирует, когда вы идете по нему? Как вы думаете, почему вы попадаете в такие ситуации? Ответ кроется в явлении резонанса.

Резонанс — это явление, при котором внешняя сила и вибрирующая система заставляют другую систему вокруг себя вибрировать с большей амплитудой при определенной рабочей частоте.Частота, при которой второе тело начинает колебаться или вибрировать с большей амплитудой, называется резонансной частотой тела.

Давайте посмотрим на примеры резонанса, которые встречаются в нашей повседневной жизни.

1. Качели

Детские качели — один из хорошо известных примеров резонанса. Когда мы толкаем качели, они начинают двигаться вперед и назад. Если дать качелям серию регулярных толчков, можно построить их движение.Человек, который толкает тетиву, должен синхронизировать время взмаха. Толкатель должен синхронизироваться с временем качания. Это приводит к увеличению амплитуды качания, чтобы достичь большего. Когда качели достигают собственной частоты колебаний, легкое нажатие на качели помогает сохранить его амплитуду из-за резонанса. Мы называем это синхронизированное движение «Резонансом». Но, если толчок нерегулярный, качели почти не будут вибрировать, и это несинхронизированное движение никогда не приведет к резонансу, и колебание не будет увеличиваться.

2. Гитара

Гитара производит звук исключительно за счет вибрации. В акустической гитаре, когда вы дергаете струну, она вибрирует и передает звуковую энергию в полый деревянный корпус гитары, заставляя ее (и воздух внутри) резонировать и усиливая звук (делая его значительно громче).

В то время как в электрогитаре, когда музыкант ударяет по струне, она колеблется, и электромагнитное устройство в гитаре превращает это колебание в электрический сигнал, который отправляется на усилитель.Усилитель посылает колебания на динамик. Если частота динамиков соответствует вибрации гитары, это приводит к звуку, который называется звуковой обратной связью.

3. Маятник

Маятник работает по тому же принципу, что и качели. Если мы толкаем маятник, он будет двигаться вперед и назад. Продолжительное нажатие через равные промежутки времени вызовет увеличение движения маятника. Если маятник регулярно толкать, его движение может быть значительно увеличено.

4. Певица, разбивающая бокал

Вы когда-нибудь видели или слышали о разбивании бокала в оркестре? Если да, то это все из-за явления резонанса. Собственная частота стекла или любого другого объекта определяется его формой и составом. Если голос певца попадает на резонансную частоту бокала с вином, происходит передача энергии. Однако полная передача энергии может вызвать разбитие стекла.

5.Мост

Группу солдат во время марша по мосту очень часто просят ломать ступеньки. Их ритмичный марш может вызвать экстремальные вибрации на собственной частоте моста. Если их синхронизированные шаги резонируют с собственной частотой моста, это может расшатать мост. Таким образом, при проектировании таких конструкций инженеры следят за тем, чтобы резонансные частоты компонентов отличались от резонансных частот других колеблющихся компонентов. Самый крупный пример того же — Tacoma Bridge Collapse , в котором частота потока воздуха совпадала с частотой моста, что приводило к его разрушению.

6. Музыкальная система, играющая в высоком тяжелом ритме

Вы когда-нибудь замечали, что стены и мебель вашего дома вибрируют, когда вы играете музыку в тяжелом ритме? Это потому, что собственная частота мебели резонирует с частотой звука музыки и, следовательно, заставляет их вибрировать.

7. Поющий в душе

Люди, которые не очень хорошо поют, звучат намного лучше во время пения в душе, потому что излучаемые чистые ноты резонируют в душевой кабине.Санузел закрытый и иногда небольшой; когда вы поете, звуковые волны чаще ударяют о стены, заставляя стену вибрировать, поскольку стены параллельны друг другу. Отраженные звуки ударяются друг о друга, заставляя стену вибрировать с вашей собственной частотой, и передается более громкий звук.

8. Радио

Когда мы поворачиваем ручку радио на наш любимый канал, мы меняем собственную частоту приемника. Тогда собственная частота приемника совпадает с частотой передачи радиостанции.Когда две частоты совпадают, происходит передача энергии, и мы слушаем выбранный канал.

9. Микроволновая печь

Пища быстро нагревается в микроволновой печи из-за резонанса. Излучение, испускаемое микроволновой печью, имеет определенную длину волны и частоту. И, как и все другие объекты, молекулы воды и жира также имеют резонансную частоту. На определенной частоте молекулы поглощают длины волн и начинают вибрировать, вызывая приготовление и нагрев пищи.

Учебное пособие по физике: Резонанс

Цель урока 11 учебного курса по физике — развить понимание природы, свойств, поведения и математики звука и применить это понимание к анализу музыки и музыкальных инструментов. До сих пор в этом модуле принципы звуковых волн применялись к обсуждению ударов, музыкальных интервалов, акустики концертного зала, различий между шумом и музыкой, а также воспроизведения звука музыкальными инструментами.В Уроке 5 основное внимание будет уделено применению математических соотношений и концепций стоячей волны к музыкальным инструментам. Будут исследованы три основные категории инструментов: инструменты с вибрирующими струнами (которые будут включать струны гитары, струны скрипки и струны фортепиано), инструменты с открытой воздушной колонной (которые будут включать медные инструменты, такие как тромбон, и деревянные духовые инструменты, такие как флейта и блок-флейта), а также инструменты с воздушной колонной закрытого типа (которые будут включать в себя органную трубу и флаконы поп-бутылочного оркестра ).Четвертая категория — вибромеханические системы (в которую входят все ударные инструменты) — обсуждаться не будет. Эти категории инструментов могут быть необычными для некоторых; они основаны на общности их моделей стоячих волн и математических соотношениях между частотами, производимыми инструментами.

Резонанс

Как упоминалось в Уроке 4, музыкальные инструменты приводятся в колебательное движение с их естественной частотой, когда человек ударяет, ударяет, звенит, щиплет или как-то мешает объекту.Каждая собственная частота объекта связана с одним из множества паттернов стоячих волн, с помощью которых этот объект может вибрировать. Собственные частоты музыкального инструмента иногда называют гармониками инструмента. Инструмент можно заставить вибрировать на одной из своих гармоник (с одной из его моделей стоячих волн), если другой взаимосвязанный объект толкает его с одной из этих частот. Это известно как резонанс , — когда один объект вибрирует с той же собственной частотой, что и второй объект, заставляет этот второй объект совершать колебательные движения.

Слово «резонанс» происходит от латинского и означает «звучать» — звучать вместе с громким звуком. Резонанс — частая причина звукоизвлечения музыкальных инструментов. Одна из наших лучших моделей резонанса в музыкальном инструменте — это резонансная трубка (полая цилиндрическая трубка), частично заполненная водой и вызываемая вибрацией с помощью камертона. Камертон — это объект, который заставил воздух внутри резонансной трубки войти в резонанс. Поскольку зубцы камертона вибрируют на своей собственной частоте, они создают звуковые волны, которые сталкиваются с отверстием резонансной трубки.Эти падающие звуковые волны, создаваемые камертоном, заставляют воздух внутри резонансной трубки вибрировать с той же частотой. Тем не менее, в отсутствие резонанса звук этих вибраций недостаточно громкий, чтобы его можно было различить. Резонанс возникает только тогда, когда первый объект вибрирует с собственной частотой второго объекта. Таким образом, если частота, на которой вибрирует камертон, не идентична одной из собственных частот воздушного столба внутри резонансной трубки, резонанса не произойдет, и два объекта не будут издавать звук вместе с громким звуком.Но расположение уровня воды можно изменить, поднимая и опуская резервуар с водой, тем самым уменьшая или увеличивая длину столба воздуха. Как мы узнали ранее, увеличение длины колебательной системы (здесь воздух в трубке) увеличивает длину волны и снижает собственную частоту этой системы. И наоборот, уменьшение длины колебательной системы уменьшает длину волны и увеличивает собственную частоту. Таким образом, повышая и понижая уровень воды, собственная частота воздуха в трубке может быть согласована с частотой, с которой вибрирует камертон.Когда согласование достигается, камертон заставляет столб воздуха внутри резонансной трубки вибрировать на собственной частоте, и достигается резонанс. Результатом резонанса всегда является сильная вибрация, то есть громкий звук.


Еще одна распространенная физическая демонстрация, которая служит отличной моделью резонанса, — это знаменитая демонстрация «поющего жезла». В центре держится длинный полый алюминиевый стержень. Будучи профессиональным музыкантом, учитель достает канифольный пакет, чтобы подготовиться к мероприятию.Затем с большим энтузиазмом он / она медленно проводит рукой по алюминиевому стержню, заставляя его издавать громкий звук. Это пример резонанса. Когда рука скользит по поверхности алюминиевого стержня, трение между рукой и стержнем вызывает колебания алюминия. Колебания алюминия заставляют воздушный столб внутри стержня колебаться с собственной частотой. Согласование колебаний столба воздуха с одной из собственных частот поющего стержня вызывает резонанс.Результатом резонанса всегда является сильная вибрация, то есть громкий звук.

Знакомый шум моря , который слышится, когда морская ракушка подносится к уху, также объясняется резонансом. Даже в кажущейся тихой комнате есть звуковые волны с разными частотами. Эти звуки в основном неслышны из-за их низкой интенсивности. Этот так называемый фоновый шум наполняет морскую ракушку, вызывая вибрацию внутри ракушки.Но у морской ракушки есть набор собственных частот, на которых она будет вибрировать. Если одна из частот в комнате заставляет воздух внутри ракушки вибрировать с собственной частотой, возникает резонансная ситуация. И всегда результатом резонанса является сильная вибрация, то есть громкий звук. На самом деле звук достаточно громкий, чтобы его можно было услышать. Поэтому в следующий раз, когда вы услышите звук моря в морской раковине, помните, что все, что вы слышите, — это усиление одной из множества фоновых частот в комнате.

Резонансные и музыкальные инструменты

Музыкальные инструменты воспроизводят выбранные звуки таким же образом. Медные инструменты обычно состоят из мундштука, прикрепленного к длинной трубке, наполненной воздухом. Трубку часто изгибают, чтобы уменьшить размер инструмента. Металлическая трубка служит лишь контейнером для столба воздуха. Именно вибрации этой колонны производят звуки, которые мы слышим.Длину вибрирующего столба воздуха внутри трубки можно регулировать, сдвигая трубку для увеличения и уменьшения ее длины, или открывая и закрывая отверстия, расположенные вдоль трубки, чтобы контролировать, где воздух входит и выходит из трубки. Медные духовые инструменты включают в себя вдувание воздуха в мундштук. Вибрации губ относительно мундштука создают диапазон частот. Одна из частот в диапазоне частот соответствует одной из собственных частот воздушного столба внутри медного инструмента.Это заставляет воздух внутри колонны испытывать резонансные колебания. Результатом резонанса всегда является сильная вибрация, то есть громкий звук.

Деревянные духовые инструменты работают аналогичным образом. Только источником вибраций являются не губы музыканта, соприкасающиеся с мундштуком, а вибрация трости или деревянной полоски. Работа деревянных духовых инструментов часто моделируется на уроках физики с помощью пластиковой соломинки. Концы соломки обрезаются ножницами, образуя конический язычок .Когда воздух проходит через тростник, тростник вибрирует, создавая турбулентность с диапазоном частот колебаний. Когда частота вибрации язычка совпадает с частотой вибрации столба воздуха в соломе, возникает резонанс. И еще раз, результатом резонанса является сильная вибрация — язычок и столб воздуха излучаются вместе, создавая громкий звук. Как будто этого было недостаточно, длину соломинки обычно сокращают, отрезая небольшие кусочки от противоположного конца. По мере того как соломинка (и столб воздуха, который в ней содержится) укорачивается, длина волны уменьшается, а частота увеличивается.По мере укорачивания соломы наблюдаются все более высокие шаги. Деревянные духовые инструменты издают звуки, похожие на соломенную демонстрацию. Вибрирующий язычок заставляет столб воздуха вибрировать на одной из собственных частот. Только для духовых инструментов длина столба воздуха регулируется путем открытия и закрытия отверстий в металлической трубе (поскольку трубы немного трудно разрезать и их слишком дорого заменять каждый раз, когда их разрезают).

Резонанс — причина образования звука в музыкальных инструментах.В оставшейся части Урока 5 математика стоячих волн будет применена для понимания того, как резонирующие струны и воздушные колонны создают свои определенные частоты.



Резонанс

: определение, типы, частота и примеры

Обновлено 5 декабря 2019 г.

Ли Джонсон

Всем известен старый образ, когда мощный оперный певец бьет нужную ноту, а хрустальное стекло разбивается от шума, но так ли это? действительно возможно? Ситуация может показаться надуманной, как что-то, что вы с большей вероятностью увидите в фильмах или мультфильмах, чем в реальной жизни.

Фактически, явление резонанса означает, что это технически возможно в реальной жизни, независимо от того, создается ли резонансная частота (та, которая соответствует собственной частоте стекла) чьим-то голосом или одним или несколькими музыкальными инструментами.

Изучение резонанса дает вам понимание того, как работает звук, принципов, лежащих в основе многих музыкальных инструментов, и того, как увеличить или уменьшить движение в механической системе, такой как качели или веревочный мост.

Определение резонанса

Слово резонанс первоначально происходит от латинского резонантия , что означает «эхо», и оно тесно связано с резонансом, что означает возвращать эхо или «звук снова». Эти два определения уже относятся к звуковым волнам и дают вам общее представление о значении этого слова в физике.

Однако, более конкретно, определение резонанса в физике — это когда частота внешнего колебания или вибрации совпадает с собственной частотой объекта (или полости) и в результате либо заставляет его вибрировать, либо увеличивает амплитуду колебаний. .

В механических системах под резонансом понимается усиление, усиление или продление звука или других вибраций. Как и в приведенном выше определении, это требует приложения внешней периодической силы с частотой, равной собственной частоте движения объекта, которую иногда называют резонансной частотой.

Все объекты имеют собственную частоту или резонансную частоту, которую вы можете представить как частоту, на которой объект «любит» вибрировать. Например, если вы постучите ногтем по хрустальному стеклу, он начнет вибрировать на своей резонансной частоте и будет издавать «звон» с соответствующей высотой звука.Частота вибрации зависит от физических свойств объекта, и вы можете довольно хорошо предсказать это для некоторых вещей, таких как натянутая струна.

Примеры резонанса — Звуковой резонанс

Изучение некоторых примеров резонанса поможет вам понять различные формы резонанса, с которыми вы сталкиваетесь в повседневной жизни. Самый распространенный и простой пример — звуковые волны, потому что, когда вы вибрируете голосовые связки на нужной частоте (для полости горла и рта), вы можете воспроизводить тоны речи и музыкальные тона, которые могут слышать другие люди.

Вибрация ваших голосовых связок создает звуковые волны, которые на самом деле представляют собой волны давления в воздухе, состоящие из чередующихся сжатых участков (с плотностью выше средней) и разрежений (с плотностью ниже средней).

Большинство музыкальных инструментов работают одинаково. Например, в медном инструменте вибрация губ игрока относительно мундштука создает начальную вибрацию, и когда она совпадает с резонансной частотой (или кратной ей) для размера трубы, в которую он или она дует, возникает резонанс, и амплитуда колебаний заметно увеличивается и дает слышимый тон.

В деревянных духовых инструментах есть «трость», которая вибрирует, когда над ней проходит воздух, и снова тот же самый процесс резонанса и усиления превращает эту небольшую вибрацию в слышимый музыкальный тон. Струнные инструменты, такие как гитара, немного отличаются, но струны имеют резонансную частоту вибрации, а производимые звуковые волны резонируют в полости (например, в пространстве в корпусе акустической гитары), делая шум громче.

Более простой пример: вы уронили инструмент или тарелку на землю.Звук возникает из-за того, что инструмент или пластина вибрируют на своей резонансной частоте. Этот более простой способ генерации звука используется тщательно разработанными камертонами, которые сконструированы таким образом, чтобы воспроизводить определенную высоту звука в качестве собственной частоты, на которую музыканты могут затем настраивать свои инструменты.

Примеры резонанса — Механический резонанс

Хотя резонанс обычно используется для обозначения звуковых волн, механический резонанс в некотором смысле легче понять. Простой пример — ребенок впервые учится качать качели.Колебательное движение качелей имеет собственную частоту, и когда ребенок учится толкать (то есть прикладывать периодическую силу) с собственной частотой качелей, его толчки становятся намного более эффективными. В результате этого амплитуда колебаний качелей увеличивается, и человек, сидящий на них, с каждым разом становится все выше.

Однако попадание в собственную частоту объекта не всегда хорошо. Например, солдаты, идущие по веревочному мосту в унисон, могут заставить его выйти из-под контроля и, возможно, даже упасть, если они наступят на его собственную частоту.В подобных случаях генерал может попросить их «сломать ступеньку», чтобы они не применяли периодическую силу с собственной частотой моста.

Даже более стабильные конструкции мостов имеют резонансные частоты, но это вызывает проблемы только в редких случаях (например, с Бротонским подвесным мостом, мостом в Англии, который рухнул в 1831 году, предположительно из-за солдат, шагающих по мосту).

Аналоговые часы также зависят от механического резонанса и собственной частоты компонента, чтобы отследить время.Например, маятниковые часы используют собственную частоту колебаний маятника, чтобы отсчитывать время, а балансовое колесо работает по тому же основному принципу. Даже часы на кварцевом кристалле зависят от резонансной частоты, но в этом случае кристалл регулирует колебания от электронного генератора, что приводит к значительному повышению точности по сравнению с более простыми конструкциями.

Другие примеры резонанса

Есть много других форм резонанса, и все они работают по одному и тому же основному принципу.Два других примера резонанса, с которыми вы будете знакомы, связаны с электромагнитными колебаниями, а не с механическими. Во-первых, ваша микроволновая печь.

Волны, создаваемые микроволновой печью, выделяют тепло в вашей пище, потому что их частота совпадает с резонансной частотой молекул внутри продукта (например, молекул воды и жира), что заставляет их колебаться и впоследствии выделять энергию в виде тепла.

Другой пример — антенна для телевизора или даже радиоантенна.Эти устройства предназначены для максимального поглощения электромагнитного излучения, и когда вы «настраиваете» антенну на определенную частоту, вы регулируете резонансную частоту устройства. Когда частота антенны совпадает с частотой входящего сигнала, она резонирует, и ваш телевизор или радио «улавливает» сигнал.

Так как же ломается кристалл?

Теперь, когда вы понимаете ключевые моменты определения резонанса и того, что такое резонансная частота, вы можете понять классический пример певца, которому удалось разбить хрустальное стекло, петь с правильной тональностью.Стекло имеет резонансную частоту, и если певец издает звук с совпадающей частотой, стакан начинает вибрировать. Это называется симпатической вибрацией , потому что до того, как певец издал звук, стекло было совершенно неподвижным.

Сначала может возникнуть небольшая вибрация в стекле, но для того, чтобы заставить его разбиться, требуется длительная и громкая нота на нужной частоте. Если певец может это сделать, амплитуда колебаний стекла увеличивается и в конечном итоге начинает нарушать структурную целостность стекла.Только в этот момент — когда нота держится достаточно долго, чтобы вибрация стекла достигла максимальной амплитуды, которую оно может выдерживать, — стекло действительно разбивается.

Вход в резонанс | Природа Физика

Понятие «резонанс» — одна из самых известных идей в науке. Два маятниковых часа в резонансе синхронизируются, звуковые волны нужной частоты вызывают сильные колебания в барабане, а фотоны, настроенные на атомные переходы, переводят атомы в возбужденное состояние.Физики элементарных частиц часто обнаруживают новые частицы по появлению резонансов в данных рассеяния. И все мы, конечно же, рассчитываем на резонанс в использовании беспроводной связи.

В 1965 году в своих знаменитых лекциях по физике Ричард Фейнман предположил, что концепция резонанса стала настолько влиятельной, что каждый новый том Physical Review будет содержать по крайней мере одну резонансную кривую — характерный пик поглощения в спектральном спектре. область вокруг собственной внутренней частоты некоторой исследуемой колебательной системы.И тем не менее, современное знакомство с концепцией скрывает необычную историю чрезвычайно медленного распознавания, полное понимание которого занимает около 300 лет. Как отмечает Йорн Блек-Нойхаус из Бременского университета в недавнем историческом обзоре (препринт на https://arxiv.org/abs/1811.08353; 2018), немногие научные идеи сопоставимой важности стали оцениваться так медленно.

В середине семнадцатого века Галилей заметил, что один человек, правильно тянувший тяжелый маятник, мог привести его в такое большое движение, что он мог легко поднять в воздух шесть человек.Несомненно, другие видели подобные эффекты раньше; Галилей записал это. Однако он не смог предложить математической обработки и пришел к очень неправильным выводам о том, что происходит, когда периодическая сила приводит в движение естественную колебательную систему. В частности, он пришел к выводу, что результирующее движение никогда не может отклоняться от собственной собственной частоты колебательной системы. Эта точка зрения, по-видимому, соответствовала его убеждению, что приливы не могут быть вызваны воздействием Луны, а должны иметь какое-то другое происхождение.

Несмотря на то, что он основал классическую и небесную механику, Исаак Ньютон никогда напрямую не занимался проблемой управляемого движения неастрономической гармонической механической системы. Первое современное понимание этого вопроса — и исправление ошибки Галилея — ожидало развития исчисления в восемнадцатом веке, когда Леонард Эйлер решил проблему, используя дифференциальное уравнение, очень похожее на то, что мы записываем сегодня. Он пришел к выводу, что в нерезонансном состоянии движение ведомой колебательной системы без трения или демпфирования будет иметь два компонента на разных частотах — вынужденную частоту и собственную частоту ведомой системы.Он также рассмотрел случай резонансного согласования двух частот и пришел к выводу, что амплитуда колебаний будет линейно увеличиваться во времени и потенциально неограниченно.

Можно было ожидать, что этот прорыв в механике продвинул явление резонанса в центр физики и инженерии, но этого не произошло. Возможно, как отмечает Блек-Нейгауз, это связано с тем, что сам Эйлер рассматривал эту проблему только как математическое любопытство, не имеющее практического значения. Затем результаты Эйлера игнорировались более века, пока не были получены снова независимо в девятнадцатом веке Томасом Янгом.Однако, как ни странно, Янг рассматривал проблему только в связи с анализом приливов, поэтому его работа также впоследствии была проигнорирована и не оказала никакого влияния на механику в целом, ни в физике, ни в технике.

Действительно, все время, вплоть до самого конца девятнадцатого века, ученые неохотно использовали термин «резонанс» в связи с чем-либо, кроме акустических явлений, от которых он возник. Использование этого слова в других областях — особенно в механике и анализе вибраций в машинах — всегда включало некоторую оговорку о том, что связь была «только по аналогии», несмотря на формальную эквивалентность фундаментальных динамических уравнений.

Использование концепции распространилось только с признанием резонансных эффектов в общих акустических системах Рэлеем и Гельмгольцем в 1860-х годах, за которыми последовали эксперименты Уильяма Томсона, демонстрирующие естественное резонансное поведение LC-контуров. В 1885 году немецкий физик Антон Овербек озаглавил статью «О явлении электрических колебаний, которое похоже на резонанс». Как оказалось, Овербек был первым ученым, когда-либо записавшим знаменитую резонансную кривую, показывающую напряжение, возбуждаемое на разных частотах, и пик, обусловленный резонансным взаимодействием.

Не скоро Генрих Герц связал такие резонансные явления с генерацией распространяющихся электромагнитных волн, и Гульельмо Маркони вскоре использовал их для реализации беспроводной связи. Но все это, как выясняется, произошло до того, как инженеры по-настоящему начали осознавать роль резонанса в более осязаемых механических системах. Постепенное признание резонанса как механического явления произошло только потому, что драматические отказы мостов и машин заставили инженеров болезненно осознать неадекватность статического анализа сил и необходимость учитывать удивительные эффекты взаимодействий на одинаковых частотах.

Работая в основном с первоисточниками в Германии, Блек-Нойгаус с готовностью признает, что его история концепции резонанса ориентирована на немецких ученых. Мне это было интересно. Мои знания об Арнольде Зоммерфельде, который изучал в качестве студента физики в Соединенных Штатах, в основном благодаря его появлению в учебниках по квантовой механике, сосредоточены на его релятивистских усовершенствованиях модели атома Бора, сыгравшей важную роль в раннем или « старом » мире. ‘ квантовая теория. Возможно, это был его самый важный вклад.Но интересно узнать, что в 1902 году, будучи молодым профессором ключевого технологического института в Аахене, Зоммерфельд сыграл важную роль в том, чтобы подтолкнуть инженеров к осознанию практической важности механического резонанса — тогда в значительной степени неизвестного.

Зоммерфельд сделал это отчасти благодаря драматическому эксперименту. В эксперименте он устроил шаткий стол для поддержки тяжелой машины. Увеличение подаваемой мощности могло заставить машину работать быстрее, но только до определенного предела. По мере того, как возрастающая мощность толкала машину все быстрее и быстрее, приближаясь к резонансной частоте стола, наблюдатели могли видеть, что дополнительная энергия только заставляла стол вибрировать более яростно.Зоммерфельд, как отмечает Блек-Нойхаус, «не преминул сказать, что это будет означать увеличение счета за топливо без чего-либо, кроме риска повреждения машины и здания». Это явление стало известно как «эффект Зоммерфельда». Только позже Зоммерфельд перешел в Мюнхенский университет и основал свою чрезвычайно влиятельную школу теоретической физики.

Одна из самых удивительных вещей в науке — это то, насколько очевидными могут казаться определенные принципы, однажды понятые, хотя раньше они были совсем не очевидны.Эта история резонанса — еще один хороший пример — идея очевидна сейчас для любого студента инженерного факультета, но она бросала вызов лучшим умам в науке на протяжении более трех столетий.

Информация об авторе

Принадлежность

  1. Nature Physics

    Марк Бьюкенен

Автор, ответственный за переписку

Марк Бьюкенен.

Об этой статье

Цитируйте эту статью

Buchanan, M.Входя в резонанс. Нат. Phys. 15, 203 (2019). https://doi.org/10.1038/s41567-019-0458-z

Скачать цитату

Дополнительная литература

  • Долгоживущие внутренние уединенные волны второй моды в Андаманском море

    • J. M. Magalhaes
    • , J. C. B. da Silva
    • & M.К. Буйсман

    Научные отчеты (2020)

Smithsonian — Resonance

В физике термин «резонанс» относится к естественной тенденции многих объектов вибрировать на одних частотах сильнее, чем на других. Частоты, на которых это происходит, называются резонансными частотами объекта. В акустике широко используется особый вид резонанса, называемый воздушный резонанс .Это происходит, когда воздух в контейнере начинает вибрировать и издавать звук. Примером этого является звук, издаваемый, когда вы дуете через горлышко пустой бутылки. Когда воздух в вашем дыхании ударяется о край отверстия бутылки, он создает волны давления в бутылке, которые, в свою очередь, заставляют воздух внутри вибрировать быстро и в унисон. Эта быстро колеблющаяся масса воздуха и издает звук. Форма и размер контейнера — вот что определяет его частоту. Более сильный или слабый дует влияет только на его громкость.В 1850-х годах немецкий ученый Герман Гельмгольц использовал этот принцип для создания нового мощного научного инструмента — акустического «резонатора». Он по-прежнему включал движущуюся массу воздуха, но вместо , производящего звук, этот инструмент использовался для обнаружения звука. Гельмгольц смог сконструировать сосуды, которые реагировали бы только на определенную частоту звука и значительно усиливали этот звук, когда он присутствовал. Резонаторы также могли продлить время на , когда звучал тон, что в эпоху отсутствия микрофонов и динамиков было важным достижением.

Резонаторы Гельмгольца

Набор из 16 резонаторов Гельмгольца. Изготовленные из кусочков латуни, которые были скручены на токарном станке, они удивительно легкие и удобные в обращении. Гельмгольц разработал их, чтобы продемонстрировать свою теорию о том, что все гласные и музыкальные звуки состоят из комбинаций простых чистых нот («Теория тембра» Гельмгольца). Он правильно заметил, что музыкальные звуки, особенно высокие, часто воспринимаются как единая масса звука.Но с этими резонаторами даже люди без музыкального образования могли легко различать простые чистые тона, даже когда они были слабыми и смешивались с другими звуками.

Каждый резонатор был тщательно настроен, чтобы реагировать только на одну частоту. Для человека, использующего его, резонанс возникнет довольно внезапно, с безошибочным усилением определенного звука. Чтобы использовать эти резонаторы, маленький конец вставляли прямо в ухо и запечатывали небольшим количеством теплого воска. Другое ухо также было закрыто восковой пробкой.Как только это было сделано, Гельмгольц писал: «Большинство тонов, производимых в окружающем воздухе, будут значительно приглушены; но если звучит правильный тон резонатора, он сильнее всего проникает в ухо ».

Колокол и резонатор Савара

Во второй четверти XIX века французский ученый Феликс Савар изобрел этот прибор для демонстрации резонанса. Он состоит из «колокола» (или латунной чаши) и подвижного деревянного резонатора. В демонстрации колокол приводился в действие либо при поклоне, либо при ударе.Когда звонок прозвенел, его громкость можно было увеличить или уменьшить, перемещая резонатор ближе или дальше. Когда звук колокола стал едва слышным, эффективной демонстрацией было быстрое перемещение резонатора прямо рядом с ним. Увеличение громкости — «резонансный эффект» — поразительно.

Резонансные стержни

Этот набор резонансных планок, каждая со своим собственным резонатором, можно использовать в интересной демонстрации. Во-первых, поскольку стержни физически идентичны, они имеют одинаковую резонансную частоту.И этот звук сильно усиливается деревянными резонаторами, на которых установлены штанги. В демонстрации два инструмента расположены на некотором расстоянии друг от друга, и по первому такту резко ударяют, чтобы получить звук. Поскольку две полосы идентичны, вторая полоса будет реагировать на звук первой одинаковой тональностью. Если первая полоса демпфирована, так что она больше не издает звука, будет замечено, что звук теперь издается (слабо) второй полоской. Вторая полоса «резонирует» со звуком первой.

Резонанс

: определение и передача волн — видео и стенограмма урока

Резонансная частота

Мы уже знаем, что волны возникают из-за вибраций. Звуковые волны возникают в результате механических колебаний твердых тел, жидкостей и газов. Световые волны возникают из-за вибрации заряженных частиц.

Объекты, заряженные частицы и механические системы обычно имеют определенную частоту, с которой они склонны колебаться. Это называется их резонансной частотой или их собственной частотой.

Некоторые объекты имеют две или более резонансных частоты. Вы знаете, когда вы едете по ухабистой дороге, и ваша машина начинает подпрыгивать вверх и вниз? Ваш автомобиль колеблется на своей резонансной частоте; или действительно резонансная частота амортизаторов. Вы можете заметить, что когда вы едете в автобусе, частота подпрыгивания немного ниже. Это потому, что амортизаторы автобуса имеют более низкую резонансную частоту.

Когда звуковая или световая волна ударяет по объекту, он уже вибрирует с определенной частотой.Если эта частота совпадает с резонансной частотой объекта, в который он попадает, вы получите так называемый резонанс . Резонанс возникает, когда амплитуда колебаний объекта увеличивается за счет соответствующих колебаний другого объекта.

Эти отношения сложно представить без примера. Итак, давайте рассмотрим резонанс дальше в контексте световых волн.

Прохождение и резонанс световых волн

Возьмем типичную световую волну.Мы скажем, что это поток белого света, исходящий от солнца. И возьмем темный объект, например, западную крысиную змею, скользящую по вашему двору.

Молекулы в коже змеи имеют набор резонансных частот. То есть электроны в атомах имеют тенденцию колебаться на определенных частотах.

Свет, исходящий от солнца, — это белый свет. Итак, у него не одна, а множество частот волн. Он имеет частоты красного и зеленого, синего и желтого, оранжевого и фиолетового цветов. Каждая из этих частот поражает кожу змеи.

И каждая частота заставляет колебаться свой электрон. Желтая частота резонирует с электронами, резонансная частота которых желтая. Синяя частота резонирует с электронами, резонансная частота которых синего цвета. Итак, кожа змеи в целом резонирует с солнечным светом.

Змея кажется черной, потому что ее кожа поглощает все частоты солнечного света.

Когда световые волны резонируют с объектом, они заставляют электроны колебаться с большой амплитудой.Световая энергия поглощается объектом, и мы вообще не видим, как этот свет возвращается к нам. Объект кажется черным. Поскольку западная крысиная змея поглощает все частоты солнечного света, она выглядит как черная змея.

Что делать, если объект не поглощает солнечный свет? Что, если ни один из его электронов не резонирует со световыми частотами? Если резонанса не происходит, то вы получите передачу , прохождение световых волн через объект.

Стекло кажется прозрачным, потому что оно не поглощает солнечный свет.

Свет по-прежнему вызывает колебания электронов. Но, поскольку это не соответствует резонансным частотам электронов, колебания очень малы, и они проходят от атома к атому на всем протяжении объекта. Объект без резонанса будет демонстрировать нулевое поглощение и 100% пропускание. Итак, объект в этом случае не был бы белым; он был бы прозрачным, как стекло или вода.

Мы поговорим больше о передаче и поглощении на следующем уроке.А пока давайте переключимся и поговорим о том, как работает резонанс в звуковых волнах.

Музыка и резонанс звуковых волн

Резонанс звука работает так же, как и свет. Когда один объект вибрирует с резонансной частотой второго объекта, тогда первый объект заставляет второй вибрировать с высокой амплитудой.

Допустим, вы собираетесь играть на трубе. Вы прижимаете губы к мундштуку трубы и готовите пальцы. Когда вы играете, ваши губы вибрируют относительно мундштука, создавая целую группу звуковых волн малой амплитуды на самых разных частотах.Звуки из ваших губ очень мягкие, поэтому их никто не слышит. Но одна из тех частот, которые вы производите, будет резонировать с молекулами воздуха внутри трубы.

Когда вы заставляете пальцы играть одну ноту, вы создаете столб воздуха определенной длины и ширины. Этот столб воздуха имеет собственную резонансную частоту, и она соответствует одной из частот, исходящих от ваших губ. Энергия ваших вибраций поглощается столбом воздуха. Он усиливается воздушным столбом и издает громкий звук.Если вы измените аппликатуру, столбец сбрасывается, и теперь у вас есть другая резонансная частота для соответствия.

Резонанс вызывает настолько сильное увеличение амплитуды этой частоты, что люди слышат громкий одночастотный звук вашей трубы. Этот звук — лишь одна из многих частот, которые вы производите. Но это единственный звук, который мы слышим, потому что он единственный, который усиливается за счет своего резонанса с воздушным столбом.

Резонанс увеличивает амплитуду частоты, что приводит к появлению звука.

Вы когда-нибудь пробовали заставить бокал петь? Вы можете сделать это, просто намочив палец и проведя им по краю стакана. Это движение вызывает небольшие вибрации, потому что ваш палец на самом деле скользит по стеклу в чередующемся порядке.

Эффект скольжения создает звуковые волны многих частот, одна из которых резонирует с самим бокалом. Из стекла раздается чистый, звонкий звук, который соответствует резонансной частоте стекла.Некоторые люди могут использовать эти тона для создания красивой музыки!

Теперь, если хотите, можете попробовать разбить стекло своим голосом! Просто найдите резонансную частоту, спойте ноту как можно громче и отчетливее и подождите, пока бокал не разобьется. Вибрации высокой амплитуды, которые вы создаете своим голосом, вызовут еще более сильные вибрации в стекле. В какой-то момент стекло будет так сильно вибрировать, что не сможет сохранять форму. Вибрации деформируют стекло до разрыва, и вы сможете поразить своих друзей своими талантами! Только не забудьте потом забрать разбитое стекло.

Резюме урока

Принцип резонанса влияет на то, как мы воспринимаем звуковые и световые волны. Все объекты обладают естественной или резонансной частотой, на которой они склонны колебаться. Когда колебания от одного объекта совпадают с резонансной частотой другого объекта, говорят, что оба объекта резонируют, потому что первый объект усиливает колебания второго объекта.

Резонанс в световых волнах приводит к поглощению световой частоты. Когда резонанса нет, свет проходит через объект.Для звуковых волн резонанс дает громкий звук, соответствующий резонансной частоте инструмента. В любом случае резонанс всегда возникает из-за того, что один объект вибрирует на резонансной частоте другого.

Результаты обучения

После этого урока вы сможете:

  • Определить резонанс и резонансную частоту
  • Объясните, почему некоторые объекты кажутся черными, а другие прозрачными из-за резонанса
  • Опишите, как громкие звуки создаются с помощью резонанса

вынужденных колебаний и резонанса | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Наблюдайте за резонансом гребного мяча на струне.
  • Наблюдайте за амплитудой затухающего гармонического осциллятора.

Рис. 1. Струны пианино могут вибрировать, просто создавая звуковые волны своим голосом. (Источник: Мэтт Биллингс, Flickr)

Сядьте как-нибудь перед пианино и спойте на нем короткую громкую ноту с отключенными демпферами. Он пропоет вам ту же ноту — струны, имеющие те же частоты, что и ваш голос, резонируют в ответ на силы звуковых волн, которые вы им послали.Ваш голос и струны пианино — хороший пример того факта, что объекты — в данном случае струны пианино — можно заставить колебаться, но лучше всего они колеблются на своей собственной частоте. В этом разделе мы кратко рассмотрим применение периодической движущей силы , действующей на простой гармонический осциллятор. Движущая сила вводит энергию в систему с определенной частотой, не обязательно такой же, как собственная частота системы. Собственная частота — это частота, с которой система будет колебаться, если бы не было движения и демпфирующей силы.

Большинство из нас играли с игрушками, в которых использовался объект, поддерживаемый на резинке, что-то вроде шарика, подвешенного к пальцу на рисунке 2. Представьте, что палец на рисунке — это ваш палец. Сначала вы держите палец ровно, а мяч подпрыгивает вверх и вниз с небольшим демпфированием. Если вы медленно двигаете пальцем вверх и вниз, мяч будет следовать за ним, не подпрыгивая сам по себе. Когда вы увеличиваете частоту, с которой вы двигаете пальцем вверх и вниз, мяч будет колебаться с возрастающей амплитудой.Когда вы ведете мяч с собственной частотой, колебания мяча увеличиваются по амплитуде с каждым колебанием, пока вы им управляете. Явление возбуждения системы с частотой, равной ее собственной частоте, называется резонансом . Говорят, что система, работающая на собственной частоте, резонирует с . По мере того, как частота возбуждения постепенно становится выше, чем резонансная или собственная частота, амплитуда колебаний становится меньше, пока колебания почти не исчезнут, и ваш палец будет просто перемещаться вверх и вниз, практически не влияя на мяч.

Рис. 2. Шарик на резиновой ленте перемещается в ответ на палец, поддерживающий его. Если палец движется с собственной частотой f0 мяча на резиновой ленте, то достигается резонанс, и амплитуда колебаний мяча резко возрастает. На более высоких и более низких частотах движения энергия передается к шару менее эффективно, и он реагирует колебаниями с меньшей амплитудой.

На рис. 3 показан график зависимости амплитуды затухающего гармонического осциллятора от частоты движущей им периодической силы.На графике есть три кривые, каждая из которых представляет разную величину демпфирования. Все три кривые достигают пика в точке, где частота движущей силы равна собственной частоте гармонического осциллятора. Самый высокий пик или самый высокий отклик — для наименьшего количества демпфирования, потому что демпфирующая сила снимает меньше энергии.

Рис. 3. Амплитуда гармонического осциллятора как функция частоты движущей силы. Кривые представляют один и тот же генератор с одинаковой собственной частотой, но с разной степенью демпфирования.Резонанс возникает, когда частота возбуждения равна собственной частоте, а наибольший отклик — при наименьшем затухании. Самый узкий ответ также соответствует наименьшему демпфированию.

Интересно, что ширина резонансных кривых, показанных на рисунке 3, зависит от затухания: чем меньше затухание, тем уже резонанс. Суть в том, что если вы хотите, чтобы управляемый генератор резонировал на очень определенной частоте, вам нужно как можно меньше демпфирования. Небольшое демпфирование характерно для струн фортепиано и многих других музыкальных инструментов.И наоборот, если вам нужны колебания малой амплитуды, например, в системе подвески автомобиля, вам нужно сильное демпфирование. Сильное демпфирование снижает амплитуду, но компромисс заключается в том, что система реагирует на большем количестве частот.

Эти особенности управляемых генераторов гармоник применимы к огромному количеству систем. Например, когда вы настраиваете радио, вы настраиваете его резонансную частоту так, чтобы оно колебалось только на радиовещательной (движущей) частоте желаемой радиостанции. Чем более избирательно радио различает станции, тем меньше его демпфирование.Магнитно-резонансная томография (МРТ) — широко используемый медицинский диагностический инструмент, в котором атомные ядра (в основном ядра водорода) заставляют резонировать приходящими радиоволнами (порядка 100 МГц). Ребенок на качелях приводится в движение родителями на собственной частоте качелей для достижения максимальной амплитуды. Во всех этих случаях эффективность передачи энергии от движущей силы к генератору лучше всего при резонансе.

Рис. 4. В 1940 году обрушился мост Такома-Нэрроуз в штате Вашингтон.Сильный поперечный ветер приводил мост к колебаниям на его резонансной частоте. Демпфирование уменьшалось, когда опорные тросы отрывались и начинали скользить по опорам, что увеличивало амплитуду до тех пор, пока конструкция не разрушилась (кредит: PRI’s Studio 360, через Flickr)

Неровности и гравийные дороги доказывают, что даже система подвески автомобиля не застрахована от резонанса. Несмотря на тщательно спроектированные амортизаторы, которые обычно преобразуют механическую энергию в тепловую почти так же быстро, как она приходит, лежачие полицейские по-прежнему вызывают колебания большой амплитуды.На гравийных дорогах с рифленым покрытием вы, возможно, заметили, что если вы едете с «неправильной» скоростью, неровности очень заметны, тогда как на других скоростях неровности вообще могут быть не ощутимы. На рис. 4 показана фотография известного примера (моста Tacoma Narrows Bridge) деструктивного воздействия возбужденного гармонического колебания. Мост Миллениум в Лондоне был закрыт на короткое время по той же причине, пока проводились проверки.

В нашем организме полость грудной клетки является ярким примером системы, находящейся в резонансе.Диафрагма и грудная стенка вызывают колебания грудной полости, в результате чего легкие раздуваются и сдуваются. Система критически демпфирована, и мышечная диафрагма колеблется с резонансным значением для системы, что делает ее высокоэффективной.

Проверьте свое понимание

В известном фокусе исполнитель поет ноту в сторону хрустального стекла, пока стекло не разобьется. Объясните, почему этот трюк работает с точки зрения резонанса и собственной частоты.

Решение

Исполнитель должен петь ноту, соответствующую собственной частоте стекла.Когда звуковая волна направлена ​​на стекло, стекло резонирует с той же частотой, что и звуковая волна. Когда в систему вводится достаточно энергии, стекло начинает вибрировать и в конечном итоге разбивается.

Сводка раздела

  • Собственная частота системы — это частота, с которой система будет колебаться, если на нее не действуют движущие или демпфирующие силы.
  • Периодическая сила, приводящая в движение гармонический осциллятор на его собственной частоте, вызывает резонанс.Говорят, что система резонирует.
  • Чем меньше демпфирование в системе, тем выше амплитуда вынужденных колебаний вблизи резонанса. Чем больше демпфирование у системы, тем более широкий отклик она имеет на изменение частот движения.

Концептуальные вопросы

  1. Почему солдатам обычно приказывают «шагать шагом» (идти не в ногу) через мост?

Задачи и упражнения

  1. Сколько энергии должны рассеять амортизаторы автомобиля массой 1200 кг, чтобы погасить отскок, изначально имеющий скорость 0.800 м / с в положении равновесия? Предположим, автомобиль возвращается в исходное вертикальное положение.
  2. Если у автомобиля есть система подвески с силовой константой 5,00 × 10 4 Н / м, сколько энергии должны отводить амортизаторы автомобиля, чтобы гасить колебания, начиная с максимального смещения 0,0750 м?
  3. (a) Насколько пружина с силовой постоянной 40,0 Н / м будет растянута объектом массой 0,500 кг, когда она неподвижно подвешена на пружине? (б) Рассчитайте уменьшение гравитационной потенциальной энергии 0.Объект весом 500 кг, когда он спускается на это расстояние. (c) Часть этой гравитационной энергии уходит в пружину. Вычислите энергию, запасенную в пружине на этом участке, и сравните ее с потенциальной энергией гравитации. Объясните, куда может уйти остальная энергия.
  4. Предположим, у вас есть объект весом 0,750 кг на горизонтальной поверхности, соединенный с пружиной, имеющей силовую константу 150 Н / м. Между объектом и поверхностью существует простое трение со статическим коэффициентом трения μ s = 0.100. а) Как далеко можно растянуть пружину без перемещения груза? (b) Если объект приводится в колебание с амплитудой, вдвое превышающей расстояние, указанное в части (a), и кинетический коэффициент трения составляет μ k = 0,0850, какое общее расстояние он проходит до остановки? Предположим, что он начинается с максимальной амплитуды.
  5. Инженерное приложение. Подвесной мост колеблется с постоянной эффективной силы 1,00 × 10 8 Н / м. (а) Сколько энергии нужно, чтобы заставить его колебаться с амплитудой 0.100 м? (b) Если солдаты маршируют по мосту с частотой, равной собственной частоте моста, и каждую секунду передают 1,00 × 10 4 Дж энергии, сколько времени потребуется, чтобы колебания моста достигли амплитуды от 0,100 м до 0,500 м.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *