Где используются диоды – Виды диодов, характеристики, применение

Содержание

Виды диодов, характеристики, применение

Официальное определение диода гласит, что это элемент, который имеет различную проводимость, в зависимости от того, в каком направлении течёт электрический ток. Его использование необходимо в цепях, нуждающихся в ограничении пути его следования. Данная статья более подробно расскажет об устройстве диода, а также о том, какие существуют виды и как их различать.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Карл Браун. Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов — di и odos. Первое с греческого переводится как «два», второе — «путь». Таким образом, слово «диод» означает «два пути».

Принцип работы и основные сведения о диодах

Диод имеет два электрода — анод и катод. Если анод обладает положительным потенциалом по отношению к катоду, то диод становится открытым. То есть, ток проходит и имеет малое сопротивление диода.

Если же на катоде находится положительный потенциал, то значит диод не раскрыт, обладает большим сопротивлением и не пропускает электрический ток.

Как устроен диод?

В основном, корпус элемента изготовлен из стекла, металла или керамических соединений. Под покрытием расположены два электрода. Самый простой диод содержит в себе нить малого диаметра.

Внутри катода может находится особая проволока. Она обладает свойством нагреваться под воздействием электрического тока и называется «подогреватель».

Вещества, используемые при изготовлении, чаще всего кремний или германий. Одна сторона элемента обладает нехваткой электронов, вторая — наоборот их переизбытком. Между ними существует граница, которая и обеспечивает p-n переход. Именно он позволяет проводить ток в нужном направлении.

Характеристики диодов

При выборе элемента в основном ориентируются на два показателя — предельное обратное напряжение и максимальная сила тока.

Использование диодов в быту

Один из ярких примеров использования диодов — автомобильный генератор. В нем размещён комплекс из нескольких таких элементов, который называется «диодный мост».

Также элементы активно применяются в телевизорах или радиоприёмниках. В соединении с конденсаторами диоды могут выделять частоты из разнообразных модулированных сигналов.

Очень часто комплекс из диодов используется в схемах для защиты потребителей от поражения электрическим током.

Также стоит сказать о том, что любой блок питания многих электронных устройств обязательно содержит диоды.

Виды диодов

В основном, элементы можно разделить на две группы. Первая — вид полупроводниковых диодов, вторая — не полупроводниковые.

Широкое распространение получила именно первая группа. Название происходит от материалов, из которых изготовлен диод: два полупроводника либо полупроводник с металлом.

Также имеется целый ряд специальных видов диодов, которые применяются в особых схемах и приборах.

Диод Зенера или стабилитрон

Данный вид характерен тем, что при возникновении пробоя происходит резкое увеличение тока с высокой точностью. Эту особенность применяют в стабилизации напряжения.

Туннельный

Если говорить простыми словами, то данный вид диодов образует отрицательное сопротивление на вольт-амперной характеристике. Применяется в основном в усилителях и генераторах.

Обращённый диод

Обладает свойством значительно понижать напряжение в открытом режиме. Это также основано на туннельном эффекте, подобному предыдущему диоду.

Варикап

Относится к виду диодов полупроводниковых, которые обладают повышенной ёмкостью, управляемой электрически в случае изменения обратного напряжения. Используется в настройке и калибровке колебательных контуров.

Светодиод

Особенность данного типа диодов заключается в том, что он излучает свет при течении тока в прямом направлении. В современном мире применяется практически везде, где требуется освещение с экономичным источником света.

Фотодиод

Имеет обратные предыдущему экземпляру свойства. То есть, начинает вырабатывать электрический заряд при попадании на него света.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Триоды

Данный вид электронных элементов чем-то схож с диодом, однако выполняет другие функции и имеет свою конструкцию.

Основное различие между диодом и триодом в том, что последний имеет три вывода и в его отношении чаще используется название «транзистор». Принцип работы основан на управлении токами в выходных цепях с помощью небольшого сигнала.

Диоды и триоды (транзисторы) применяются практически в каждом электронном устройстве. В том числе и процессорах.

Плюсы и минусы

Перед заключением можно обобщить всю информацию о диодах и составить список их преимуществ и недостатков.

Плюсы:

  • Невысокая цена диодов.
  • Отличный КПД.
  • Высокий ресурс работы.
  • Маленькие размеры, что позволяет удобно их размещать на схемах.
  • Возможность использования диода в переменном токе.

Из минусов, пожалуй, можно выделить то, что не существует полупроводникового типа для высоких напряжений в несколько киловольт. Поэтому придется применять более старые ламповые аналоги. Также воздействие высоких температур неблагоприятно сказывается на работе и состоянии элемента.

Немного интересных сведений о диодах

Первые экземпляры выпускались с применением малой точности. Поэтому разброс получившихся характеристик диодов был очень большим, вследствие чего уже готовые приборы приходилось, что называется, «разбраковывать». То есть, некоторые диоды, казалось бы, одной серии могли получить совершенно разные свойства. После отсева, элементы маркировались в соответствии с фактическими характеристиками.

Диоды, изготовленные в стеклянном корпусе, имеют одну интересную особенность — чувствительность к свету. То есть если прибор, в составе которого имеется такой элемент, имеет открывающуюся крышку, то работать вся схема может по-разному в закрытом и открытом состоянии.

Заключение

В общем, чтобы полностью понять и разобраться, как правильно применять и где использовать диоды, нужны изучить больше литературы. Для определения типа элемента на глазок потребуется соответствующий опыт. Ну а новичкам в этом могут помочь таблицы и справочники по маркировкам.

Также необходимо иметь хотя бы базовые представления об электрическом токе, его свойствах. Конечно, это все проходилось в школе, но кто сейчас навскидку сможет вспомнить даже закон Ома?

Поэтому без базовых знаний нырять в мир электроники будет очень проблематично.

fb.ru

Виды и классификация диодов по типам, назначению, конструкции, материалам

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. Электрод, подключенный к положительному полюсу прибора, называют анодом, к отрицательному – катодом. Если к прибору приложено прямое напряжение, то он находится в открытом состоянии, при котором сопротивление мало, а ток протекает беспрепятственно. Если прикладывается обратное напряжение, прибор, благодаря высокому сопротивлению, является закрытым. Обратный ток присутствует, но он настолько мал, что условно принимается равным нулю.

Содержание статьи

Общая классификация

Диоды делятся на большие группы – неполупроводниковые и полупроводниковые.

Неполупроводниковые

Одной из наиболее давних разновидностей являются ламповые (электровакуумные) диоды. Они представляют собой радиолампы с двумя электродами, один из которых нагревается нитью накала. В открытом состоянии с поверхности нагреваемого катода заряды движутся к аноду. При противоположном направлении поля прибор переходит в закрытую позицию и ток практически не пропускает.

Еще одни вид неполупроводниковых приборов – газонаполненные, из которых сегодня используются только модели с дуговым разрядом. Газотроны (приборы с термокатодами) наполняются инертными газами, ртутными парами или парами других металлов. Специальные оксидные аноды, используемые в газонаполненных диодах, способны выдерживать высокие нагрузки по току.

Полупроводниковые

В основе полупроводниковых приборов лежит принцип p-n перехода. Существует два типа полупроводников – p-типа и n-типа. Для полупроводников p-типа характерен избыток положительных зарядов, n-типа – избыток отрицательных зарядов (электронов). Если полупроводники этих двух типов находятся рядом, то возле разделяющей их границы располагаются две узкие заряженные области, которые называются p-n переходом. Такой прибор с двумя типами полупроводников с разной примесной проводимостью (или полупроводника и металла) и p-n-переходом называется

полупроводниковым диодом. Именно полупроводниковые диодные устройства наиболее востребованы в современных аппаратах различного назначения. Для разных областей применения разработано множество модификаций таких приборов.

Полупроводниковые диоды

Виды диодов по размеру перехода

По размерам и характеру p-n перехода различают три вида приборов – плоскостные, точечные и микросплавные.

Плоскостные детали представляют одну полупроводниковую пластину, в которой имеются две области с различной примесной проводимостью. Наиболее популярны изделия из германия и кремния. Преимущества таких моделей – возможность эксплуатации при значительных прямых токах, в условиях высокой влажности. Из-за высокой барьерной емкости они могут работать только с низкими частотами. Их главные области применения – выпрямители переменного тока, устанавливаемые в блоках питания. Эти модели называются выпрямительными.

Точечные диоды имеют крайне малую площадь p-n перехода и приспособлены для работы с малыми токами. Называются высокочастотными, поскольку используются в основном для преобразования модулированных колебаний значительной частоты.

Микросплавные модели получают путем сплавления монокристаллов полупроводников p-типа и n-типа. По принципу действия такие приборы – плоскостные, но по характеристикам они аналогичны точечным.

Материалы для изготовления диодов

При производстве диодов используются кремний, германий, арсенид галлия, фосфид индия, селен. Наиболее распространенными являются первые три материала.

Очищенный кремний – относительно недорогой и простой в обработке материал, имеющий наиболее широкое распространение. Кремниевые диоды являются прекрасными моделями общего назначения. Их напряжение смещения – 0,7 В. В германиевых диодах эта величина составляет 0,3 В. Германий – более редкий и дорогой материал. Поэтому германиевые приборы используются в тех случаях, когда кремниевые устройства не могут эффективно справиться с технической задачей, например в маломощных и прецизионных электроцепях.

Виды диодов по частотному диапазону

По рабочей частоте диоды делятся на:

  • Низкочастотные – до 1 кГц.
  • Высокочастотные и сверхвысокочастотные – до 600 мГц. На таких частотах в основном используются устройства точечного исполнения. Емкость перехода должна быть невысокой – не более 1-2 пФ. Эффективны в широком диапазоне частот, в том числе низкочастотном, поэтому являются универсальными.
  • Импульсные диоды используются в цепях, в которых принципиальным фактором является высокое быстродействие. По технологии изготовления такие модели разделяют на точечные, сплавные, сварные, диффузные.

Области применения диодов

Современные производители предлагают широкий ассортимент диодов, адаптированных для конкретных областей применения.

Выпрямительные диоды

Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении. В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока. По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.

  • Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
  • Диоды средней мощности могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
  • Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.

Диодные детекторы

Такие устройства получают комбинацией в схеме диодов с конденсаторами. Они предназначены для выделения низких частот из модулированных сигналов. Присутствуют в большинстве аппаратов бытового применения – радиоприемниках и телевизорах. В качестве детекторов излучения используются фотодиоды, преобразующие свет, попадающий на светочувствительную область, в электрический сигнал.

Ограничительные устройства

Защиту от перегруза обеспечивает цепочка из нескольких диодов, которые подключают к питающим шинам в обратном направлении. При соблюдении стандартного рабочего режима все диоды закрыты. Однако при выходе напряжения сверх допустимого назначения срабатывает один из защитных элементов.

Диодные переключатели

Переключатели, представляющие собой комбинацию диодов, которые применяются для мгновенного изменения высокочастотных сигналов. Такая система управляется постоянным электрическим током. Высокочастотный и управляющие сигналы разделяют с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Эффективную искрозащиту создают с помощью комбинирования шунт-диодного барьера, ограничивающего напряжение, с токоограничительными резисторами.

Параметрические диоды

Используются в параметрических усилителях, которые являются подвидом резонансных регенеративных усилителей. Принцип работы основан на физическом эффекте, который заключается в том, что при поступлении на нелинейную емкость разночастотных сигналов часть мощности одного сигнала можно направить на рост мощности другого сигнала. Элементом, предназначенным для содержания нелинейной емкости, и является параметрический диод.

Смесительные диоды

Смесительные устройства используются для трансформации сверхвысокочастотных сигналов в сигналы промежуточной частоты. Трансформация сигналов осуществляется, благодаря нелинейности параметров смесительного диода. В качестве смесительных СВЧ-диодов используются приборы с барьером Шоттки, варикапы, обращенные диоды, диоды Мотта.

Умножительные диоды

Эти СВЧ устройства используются в умножителях частоты. Они могут работать в дециметровом, сантиметровом, миллиметровом диапазонах длин волн. Как правило, в качестве умножительных приборов используются кремниевые и арсенид-галлиевые устройства, часто – с эффектом Шоттки.

Настроечные диоды

Принцип работы настроечных диодов основан на зависимости барьерной емкости p-n перехода от величины обратного напряжения. В качестве настроечных используются приборы кремниевые и арсенид-галлиевые. Эти детали применяют в устройствах перестройки частоты в сверхчастотном диапазоне.

Генераторные диоды

Для генерации сигналов в сверхвысокочастотном диапазоне востребованы устройства двух основных типов – лавинно-пролетные и диоды Ганна. Некоторые генераторные диоды при условии включения в определенном режиме могут выполнять функции умножительных устройств.

Виды диодов по типу конструкции

Стабилитроны (диоды Зенера)

Эти устройства способны сохранять рабочие характеристики в режиме электрического пробоя. В низковольтных устройствах (напряжение до 5,7 В) используется туннельный пробой, в высоковольтных – лавинный. Стабилизацию невысоких напряжений обеспечивают стабисторы.

Стабисторы

Стабиистор, или нормистор, — это полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации (примерно 0,7-2 V).

Диоды Шоттки

Устройства, применяемые в качестве выпрямительных, умножительных, настроечных, работают на базе контакта металл-полупроводник. Конструктивно они представляют собой пластины из низкоомного кремния, на которые наносится высокоомная пленка с тем же типом проводимости. На пленку вакуумным способом напыляется металлический слой.

Варикапы

Варикапы выполняют функции емкости, величина которой меняется с изменением напряжения. Основная характеристика этого прибора – вольт-фарадная.

Туннельные диоды

Эти полупроводниковые диоды имеют падающий участок на вольтамперной характеристике, возникающий из-за туннельного эффекта. Модификация туннельного устройства – обращенный диод, в котором ветвь отрицательного сопротивления выражена мало или отсутствует. Обратная ветвь обращенного диода соответствует прямой ветви традиционного диодного устройства.

Тиристоры

В отличие от обычного диода, тиристор, кроме анода и катода, имеет третий управляющий электрод. Для этих моделей характерны два устойчивых состояния – открытое и закрытое. По устройству эти детали разделяют на динисторы, тринисторы, симисторы. При производстве этих изделий в основном используется кремний.

Симисторы

Симисторы (симметричные тиристоры) – это разновидность тиристора, используется для коммутации в цепях переменного тока. В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания.

Динисторы

Динистором, или диодным тиристором, называется устройство, не содержащее управляющих электродов. Вместо этого они управляются напряжением, приложенным между основными электродами. Их основное применение – управление мощной нагрузкой при помощи слабых сигналов. Также динисторы используют при изготовлении переключающих устройств.

Диодные мосты

Это 4, 6 или 12 диодов, которые соединяются между собой. Число диодных элементов определяется типом схемы, которая бывает – однофазной, трехфазной, полно- или полумостовой. Мосты выполняют функцию выпрямления тока. Часто используются в автомобильных генераторах.

Фотодиоды

Предназначены для преобразования световой энергии в электрический сигнал. По принципу работы аналогичны солнечным батареям.

Светодиоды

Эти устройства при подключении к электрическому току излучают свет. Светодиоды, имеющие широкую цветовую гамму свечения и мощность, применяются в качестве индикаторов в различных приборах, излучателей света в оптронах, используются в мобильных телефонах для подсветки клавиатуры. Приборы высокой мощности востребованы в качестве современных источников света в фонарях.

Инфракрасные диоды

Это разновидность светодиодов, излучающая свет в инфракрасном диапазоне. Применяется в бескабельных линиях связи, КИП, аппаратах дистанционного управления, в камерах видеонаблюдения для обзора территории в ночное время суток. Инфракрасные излучающие устройства генерируют свет в диапазоне, который не доступен человеческому взгляду. Обнаружить его можно с помощью фотокамеры мобильного телефона.

Диоды Ганна

Эта разновидность сверхчастотных диодов изготавливается из полупроводникового материала со сложной структурой зоны проводимости. Обычно при производстве этих устройств используется арсенид галлия электронной проводимости. В этом приборе нет p-n перехода, то есть характеристики устройства являются собственными, а не возникающими на границе соединения двух разных полупроводников.

Магнитодиоды

В таких приборах ВАХ изменяется под действием магнитного поля. Устройства используются в бесконтактных кнопках, предназначенных для ввода информации, датчиках движения, приборах контроля и измерения неэлектрических величин.

Лазерные диоды

Эти устройства, имеющие сложную структуру кристалла и сложный принцип действия, дают редкую возможность генерировать лазерный луч в бытовых условиях. Благодаря высокой оптической мощности и широким функциональным возможностям, приборы эффективны в высокоточных измерительных приборах бытового, медицинского, научного применения.

Лавинные и лавинно-пролетные диоды

Принцип действия устройств заключается в лавинном размножении носителей заряда при обратном смещении p-n перехода и их преодолении пролетного пространства за определенный временной промежуток. В качестве исходных материалов используются арсенид галлия или кремний. Приборы в основном предназначаются для получения сверхвысокочастотных колебаний.

PIN-диоды

PIN-устройства между p- и n-областями имеют собственный нелегированный полупроводник (i-область). Широкая нелегированная область не позволяет использовать этот прибор в качестве выпрямителя. Однако зато PIN-диоды широко применяются в качестве смесительных, детекторных, параметрических, переключательных, ограничительных, настроечных, генераторных.

Триоды

Триоды – это электронные лампы. Он имеет три электрода: термоэлектронный катод (прямого или косвенного накала), анод и управляющую сетку. Сегодня триоды практически полностью вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен МГц — ГГц высокой мощности при маленьком числе активных компонентов, а габариты и масса не имеют большого значения.

Маркировка диодов

Маркировка полупроводниковых диодных устройств включает цифры и буквы:

  • Первая буква характеризует исходный материал. Например, К – кремний, Г – германий, А – арсенид галлия, И – фосфид индия.
  • Вторая буква – класс или группа диода.
  • Третий элемент, обычно цифровой, обозначает применение и электрические свойства модели.
  • Четвертый элемент – буквенный (от А до Я), обозначающий вариант разработки.

Пример: КД202К – кремниевый выпрямительный диффузионный диод.


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


www.radioelementy.ru

принцип действия, схемы, примеры и т.д.

Светодиод — диод с простым P-N переходом, главной особенностью которого является то, что он испускает свет, когда через него проходит ток. Используется во многих цифровых дисплеях, а также в других типах индикаторных устройств.

Светодиод
Обратите внимание на основы электричества и на приборы электроники.

Принцип работы светодиода

Основные рабочие характеристики любого светоизлучающего диода сходны с характеристиками обычного диода. Когда подается напряжение, то электроны двигаются от материала N-типа через P-N переход и соединяются с отверстиями в материале P-типа. В обычных диодах энергия, которая возникает в результате соединения электронов с отверстиями, выделяется в виде тепла. Однако, когда речь идет о светодиодах, то энергия в них выделяется в первую очередь в виде света.

Схема светодиода

Светодиоды могут изготавливаться таким образом, что будут испускать красный, зеленый, голубой, инфракрасный или ультрафиолетовый свет. Это достигается путем изменения количества и типа материалов, которые используются в качестве присадки. Яркость света также может изменяться, что осуществляется с помощью управления количеством тока, проходящего через светодиод. Однако, как и любой другой диод, СИД имеет предельные значения тока, которые он может выдержать.

Где используются светодиоды

Одной из основных областей применения светодиодов является использование их в качестве сигнальных лампочек. Например, этот прибор может использоваться для того, чтобы проконтролировать идет ли по цепи ток или она обесточена.

Цепь с сигнальной лампочкой представляет собой ряд приборов, последовательно соединенных между собой: светодиод, резистор, выключатель и источник постоянного тока.

Схема типичной цепи с сигнальной лампочкой

Когда выключатель цепи с сигнальной лампочкой замкнут, то напряжение прямого смещения от источника тока подается на светодиод (который разработан таким образом, чтобы срабатывать только, когда имеется прямое смещение). Электроны, которые прорываются через P-N переход, соединяются с отверстиями, в результате чего энергия высвобождается в виде света. Резистор, установленный в этой цепи, ограничивает протекание тока по ней, с тем, чтобы защитить светодиод от повреждений, которые может вызвать чрезмерный ток.

Светодиоды могут также использоваться в цифровых дисплеях, например, в наручных часах или калькуляторах.

С помощью высвечивания различных комбинаций из семи элементов на дисплее можно отображать любую цифру от нуля до девяти.

Цифровой дисплей на калькуляторе из семи элементов

Каждый светодиод соединен последовательно с резистором и выключателем, где каждый выключатель представляет собой внешнюю управляющую цепь. Выключатели имеют обозначения от А до G, чтобы соответствовать элементам дисплея. Семь последовательных проводов соединены параллельно с источником постоянного тока. Для того, чтобы подать питание на какой-либо светодиод, замыкается соответствующий выключатель. Каждый последовательно включенный в цепь резистор ограничивает ток, проходящий по проводу, и, тем самым, предотвращает повреждение светодиодов от чрезмерно большого тока.

Схема внешней цепи управления для цифрового дисплея калькулятора

Цифры появляются на цифровом дисплее в результате различных сочетаний семи выключателей. Например, если выключатели А и В замкнуты, то соответствующие элементы на дисплее загорятся и образуют цифру 1. Подобным же образом цифра 2 может быть образована с помощью выключателей A, C, D, F и G, которые будут замкнуты одновременно.

Замыкая соответствующие выключатели в определенных комбинациях, на дисплее можно получать цифры от 0 до 9. Если элементы расположить несколько иным образом, то на дисплее можно получить знак плюса, минуса, десятичные точки или же буквы алфавита.

Светодиоды могут использоваться даже для обеспечения искусственного освещения для роста растений. Основными преимуществами светодиодов в этом случае являются: низкое потребление электричества и тепловыделения, а также возможность настройки необходимого спектра излучения.

www.kipiavp.ru

применение и принцип работы, разновидности и способы проверки

В настоящее время элементная база электронных компонентов очень обширна и позволяет конструировать самые различные варианты сложных электротехнических решений. Отдельное место в этой базе занимают полупроводниковые приборы. Отдельным подклассом полупроводниковых приборов можно выделить раздел диодов.

Описание диода может быть достаточно объёмным, но вкратце — это полупроводниковый элемент, в основе работы которого лежит один p — n переход. В качестве рабочих электродов данного прибора выступают анод (положительный электрод) и катод (отрицательный электрод). Различные виды электрических диодов могут имеют разные области применения, основными из которых являются выпрямление, модуляция и преобразования электрических сигналов. Чаще всего прибор выглядит как стеклянный цилиндр. Конструктивно выглядит примерно как резистор, но устроен совершенно иначе.

Принцип работы

Опишем, как работает диод. В основе его работы лежат свойства движения электронов и «дырок» под действием электрического поля. Данный прибор может находиться в двух состояниях:

  1. Открытое.
  2. Закрытое.

Графически этот полупроводниковый элемент можно представить в виде прямоугольника, который состоит из двух частей, разделённых линией. В одной части находятся положительно заряженные частицы — ионы, которые называют «дырками». Электрод, подключённый к этой части, называется анодом. Во второй части находятся отрицательно заряженные частицы, называемые электронами. Электрод, подключённый к этой части, называют катодом.

Для того чтобы добиться открытого состояния, необходимо соединить катод с отрицательным полюсом источника тока, а анод — с положительным. При таком соединении однополярные заряды будут отталкиваться друг от друга, и на границе p — n перехода будет возникать процесс, названный электронно-дырочной проводимостью. Другими словами, через диод в направлении от анода к катоду будет протекать ток.

Для закрытия диода потребуется поменять полюса питания источника постоянного тока. В таком случае частицы с разноименными зарядами будут притягиваться друг к другу и электрический ток протекать не будет.

Следует заметить, что закрытое положение устройства не говорит о том, что ток через него совсем не идёт. Неосновные носители заряда всё же будут создавать небольшой обмен, но он во много раз меньше, чем ток при открытом состоянии. Такой ток называется обратным.

В случае повышения напряжения источника питания выше допустимого в закрытом диоде произойдёт пробой, и величина обратного тока многократно увеличится. Такой прибор в дальнейшем непригоден для работы.

Разновидности диодов

В настоящее время в зависимости от назначения бывают несколько типов подобных приборов:

  1. Выпрямительный диод. Из названия видно, что данный прибор используется для выпрямления постоянного тока.
  2. Диоды Шоттки. Отличаются более низкими значениями падения напряжения, чем обычные диоды. Используются в импульсных преобразователях и стабилизаторах.
  3. Стабилитроны. Работают для стабилизации напряжения в цепи схемы. Можно представить как ограничительный прибор.
  4. Варикапы. Разновидность диодов, имеющих ёмкость, как у конденсаторов. Барьерная емкость варикапов меняется от приложенного напряжения. Применяется в качестве управляемого конденсатора.
  5. Тиристоры и симистры. Первые представляют собой трёхэлектродный прибор, позволяющий управлять большими токами и часто использующийся для регулировок мощностей. Вторые представляют собой два тиристора, подключенные навстречу друг другу.
  6. Фотодиоды. Используются для преобразователя света, попадающего на данные элементы в электрический ток. По принципу работы можно сравнить с фоторезистором.
  7. Светодиоды и инфракрасные светодиоды. Данные элементы излучают свет при прохождении тока через них. В первом случае прибор излучает видимый свет, во втором — устройство, где свет идёт в ИК диапазоне. Светодиоды используются в качестве индикаторов. ИК диоды применяются для беспроводной связи и дистанционного управления.
  8. Делают и другие разновидности данного элемента, но они представляют собой очень специфические приборы и применяются достаточно редко.

Проверка тестером

Для проверки обычного прибора с помощью мультиметра не потребуется специальных знаний. Достаточно включить режим прозвонки на тестере, с помощью которого и производится определение проводимости, и подключить щупы к проверяемому прибору. При прямом включении на тестере можно увидеть пробивное напряжение диода, которое лежит в пределах от 100 до 800 мВ. В случае обратного включения значение не будет превышать единицу. Такая проверка даёт понять, что элемент работает, как надо. Также благодаря ей можно взять для использования нужный по характеристикам элемент.

Если же возникает вопрос о том, как проверить диод Шоттки мультиметром, то тут потребуется немного больше времени. При подключении первого анода к плюсу мультиметра и катода к минусу на экране должно быть пробивное напряжение. Такая же ситуация будет при подключении плюса мультиметра ко второму аноду и минуса к катоду. В случае смены полюсов на экране отобразится единица. Благодаря такой проверке можно выбрать качественный электродиод, какой сможет прослужить вам достаточно долго.

obinstrumentah.info

Полупроводниковый диод. Принцип его работы, параметры и разновидности.

Устройство, параметры и разновидности диодов

В самом начале радиотехники первым активным элементом была электронная лампа. Но уже в двадцатые годы прошлого века появились первые приборы доступные для повторения радиолюбителями и ставшие очень популярными. Это детекторные приёмники. Более того они выпускались в промышленном масштабе, стоили недорого и обеспечивали приём двух-трёх отечественных радиостанций работавших в диапазонах средних и длинных волн.

Именно в детекторных приёмниках впервые стал использоваться простейший полупроводниковый прибор, называемый вначале детектором и лишь позже получивший современное название – диод.

Диод это прибор, состоящий всего из двух слоёв полупроводника. Это слой “p”- позитив и слой “n”- негатив. На границе двух слоёв полупроводника образуется “p-n” переход. Анодом является область “p”, а катодом зона “n”. Любой диод способен проводить ток только от анода к катоду. На принципиальных схемах он обозначается так.

Как работает полупроводниковый диод.

В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс. Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока. Диод закрыт.

При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт.

Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник “n” типа и полупроводник “p” типа. Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge), кремний (Si) и арсенид галлия (GaAs). Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока.

При добавлении в расплав кремния ничтожно малого количества мышьяка (As) мы получаем полупроводник “n” типа, а легируя кремний редкоземельным элементом индием (In), мы получаем полупроводник “p” типа. Присадок для легирования полупроводниковых материалов достаточно много. Например, внедрение атомов золота в структуру полупроводника увеличивает быстродействие диодов, транзисторов и интегральных схем, а добавление небольшого числа различных примесей в кристалл арсенида галлия определяет цвет свечения светодиода.

Типы диодов и область их применения.

Семейство полупроводниковых диодов очень большое. Внешне они очень похожи за исключением некоторых групп, которые отличаются конструктивно и по ряду параметров. Наиболее распространены следующие модификации полупроводниковых диодов:

  • Выпрямительные диоды. Предназначены для выпрямления переменного тока.

  • Стабилитроны. Обеспечивают стабилизацию выходного напряжения.

  • Диоды Шоттки. Предназначены для работы в импульсных преобразователях и стабилизаторах напряжения. Например, в блоках питания персональных компьютеров.

  • Импульсные диоды отличаются очень высоким быстродействием и малым временем восстановления. Они применяются в импульсных блоках питания и в другой импульсной технике. К этой группе можно отнести и туннельные диоды.

  • СВЧ диоды имеют определённые конструктивные особенности и работают в устройствах на высоких и сверхвысоких частотах.

  • Диоды Ганна. Они предназначены для генерирования частот до десятков гигагерц.

  • Лавинно-пролётные диоды генерируют частоты до 180 ГГц.

  • Фотодиоды имеют миниатюрную линзу и управляются световым излучением. В зависимости от типа могут работать как в инфракрасном, так и в ультрафиолетовом диапазоне спектра.

  • Светодиоды. Излучают видимый свет практически любой длины волны. Спектр применения очень широк. Рассматриваются как альтернатива электрическим лампам накаливания и других осветительных приборов.

  • Твёрдотельный лазер так же представляет собой полупроводниковый диод. Спектр применения очень широк. От приборов военного назначения до обычных лазерных указок, которые легко купить в магазине. Его можно обнаружить в лазерных считывателях CD/DVD-плееров, а также лазерных уровнях (нивелирах), используемых в строительстве. Чтобы не говорили сторонники лазерной техники, как ни крути, лазер опасен для зрения. Так что, будьте внимательны при обращении с ним.

Также стоит отметить, что у каждого типа диодов есть и подгруппы. Так, например, среди выпрямительных есть и ультрабыстрые диоды. Могут называться как Ultra-Fast Rectifier, HyperFast Rectifier и т.п. Пример – ультрабыстрый диод с малым падением напряжения STTH6003TV/CW (аналог VS-60CPH03). Это узкоспециализированный диод, который применяется, например, в сварочных аппаратах инверторного типа. Диоды Шоттки являются быстродействующими, но не способны выдерживать больших обратных напряжений, поэтому вместо них применяются ультрабыстрые выпрямительные диоды, которые способны выдерживать большие обратные напряжения и огромные прямые токи. При этом их быстродействие сравнимо с быстродействием диодов Шоттки.

Параметры полупроводниковых диодов.

Параметров у полупроводниковых диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.

Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр. – допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.

  • U обр. – допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

    Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине. Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр. – прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.

  • I обр. – обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.

  • U стаб. – напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Светодиоды. Виды и устройство. Работа и применение. Особенности

Светодиоды для человечества стали одним из наиболее распространенных источников света для промышленных и бытовых нужд. Этот полупроводниковый прибор имеет один электрический переход, он преобразует электроэнергию в энергию видимого светового излучения. Явление открыто Генри Джозефом Раундом в 1907 году. Первые эксперименты были поставлены советским физиком-экспериментатором О.В. Лосевым, которому в 1929 году удалось получить рабочий прототип современного светодиода.

Первые современные светодиоды (СД, СИД, LED) были созданы в начале шестидесятых годов. У них было слабое красное свечение, их применяли в качестве индикаторов включения в самых разных приборах. В 90-х появились синие, желтые, зеленые и белые светодиоды. Их стали выпускать в промышленных масштабах многие компании. Сегодня LED-диоды применяются повсеместно: в светофорах, лампочках, автомобилях и так далее.

Устройство

Светодиод представляет полупроводниковый прибор с электронно-дырочным переходом, который создает оптическое излучение при прохождении через него тока в прямом направлении.

Стандартный индикаторный светодиод выполнен из следующих частей:

 

1 — Эпоксидная линза
2 — Проволочный контакт
3 — Отражатель
4 — Полупроводник (Определяет цвет свечения)
5 и 6 — Электроды
7 — Плоский срез

В основании светодиода закрепляются катод и анод. Все устройство сверху герметично закрыто линзой. На катоде установлен кристалл. На контактах имеются проводники, которые подсоединены к кристаллу p-n-переходом (проволока соединения для объединения двух проводников с различными типами проводимости). Для создания стабильной работы светодиода применяется теплоотвод, который необходим для осветительных приборов. В индикаторных приборах тепло не имеет решающего значения.

DIP-диоды имеют выводы, которые монтируются в отверстия печатной платы, они при помощи пайки подсоединяются на электрический контакт. Имеются модели с несколькими кристаллами различного цвета в одном корпусе.

SMD-светодиоды сегодня являются наиболее востребованными источниками света любых форматов.

  • Основа корпуса, куда крепится кристалл, является отличным проводником тепла. Благодаря этому в разы улучшился отвод тепла от кристалла.
  • В структуре белых светодиодов между линзой и полупроводником имеется слой люминофора, который нейтрализует ультрафиолет и задает необходимую цветовую температуру.
  • В SMD-компонентах, имеющих широкий угол излучения, линза отсутствует. При этом сам светодиод выделяется формой параллелепипеда.
Chip-On-Board (COB) представляют новейшее практическое достижение, которое должно занять в искусственном освещении лидерство в создании белых светодиодов.

 

Устройство светодиодов по технологии COB предполагает следующее:
  • На алюминиевую основу посредством диэлектрического клея крепят десятки кристаллов без подложки и корпуса.
  • Полученная матрица покрывается общим слоем люминофора. В итоге получается источник света, который имеет равномерное распределение светового потока без возможности появления теней.

Разновидностью Chip-On-Board является Chip-On-Glass (COG) технология, предусматривающая размещение на поверхности из стекла множества мелких кристаллов. К примеру, это филаментные лампы, где излучающим элементом является стеклянный стержень со светодиодами, которые покрыты люминофором.

Принцип действия
Несмотря на технологические особенности и разновидности, работа всех светодиодов основывается на общем принципе функционирования излучающего элемента:
  • Преобразование электроэнергии в световой поток осуществляется в кристалле, который выполнен из полупроводников с самым разным типом проводимости.
  • Материал с n­-проводимостью обеспечивают путем легирования его электронами, а материал с p-проводимостью при помощи дырок. В результате в сопредельных слоях появляются дополнительные носители заряда разной направленности.
  • При подаче прямого напряжения стартует движение электронов, а также дырок к p-n-переходу.
  • Заряженные частицы проходят барьер и начинают рекомбинировать, вследствие этого протекает электрический ток.
  • Процесс рекомбинации электрона и дырки в зоне p-n-перехода идет выделением энергии в качестве фотона.

В целом, указанное физическое явление свойственно всем полупроводниковым диодам. Однако длина волны фотона в большинстве случаев располагается за пределами видимого спектра излучения. Чтобы элементарная частица двигалась в диапазоне 400-700 нм, ученые проводили множество опытов и экспериментов с разными химическими элементами. В итоге появились новые соединения: фосфид галлия, арсенид галлия и более сложные формы. У каждой из них своя длина волны, то есть свой цвет излучения.
К тому же, кроме полезного света, который испускает светодиод, на p-n-переходе образуется некоторое количество теплоты, которое уменьшает эффективность полупроводникового прибора. Именно поэтому в конструкции мощных светодиодов предусматривается эффективный отвод тепла.

Разновидности
На текущий момент LED-диоды могут быть следующих видов:
  • Осветительные, то есть с большой мощностью. Их уровень освещенности равен вольфрамовым и люминесцентным источникам света.
  • Индикаторные – с небольшой мощностью, их применяют для подсветки в приборах.

Индикаторные LED-диоды по типу соединения делятся на:
  • Двойные GaP (галлий, фосфор) – имеют зеленый и оранжевый свет в структуре видимого спектра.
  • Тройные AIGaAs (алюминий, мышьяк, галлий) – имеют желтый и оранжевый свет в структуре видимого спектра.
  • Тройные GaAsP (мышьяк, галлий, фосфор) – имеют красный и желто-зеленый свет в структуре видимого спектра.
По типу корпуса светодиодные элементы могут быть:
  • DIP — устаревшая модель низкой мощности, их применяют для подсветки световых табло и игрушек.
  • «пиранья» или Superflux – аналоги DIP, но с четырьмя контактами. Они применяются для подсветки в автомобилях, меньше нагреваются и лучше крепятся.
  • SMD – самый распространенный тип, применяются во множестве источников света.
  • COB – это усовершенствованные светодиоды SMD.
Применение
Область применений светодиодов условно можно разделить на две широкие категории:
  • Освещение.
  • С использованием прямого света.

Светодиод в освещении применяется для освещения объекта, пространства или поверхности, вместо того, чтобы быть непосредственно видимым. Это интерьерная подсветка, фонарики, освещение фасадов зданий, освещение в автомобилях, подсветка клавиш мобильных телефонов и дисплеев и так далее. Широкое применение LED-диоды находят в коммуникаторах и сотовых телефонах.

Прямой светодиодный свет применяется для передачи информации, к примеру, в полноцветных видео дисплеях, в которых LED-диоды формируют пиксели дисплея, а также в алфавитно-цифровых табло. Прямой свет также применяется сигнальных устройствах. К примеру, это индикаторы поворота и стоп-сигналы автомобилей, светофоры и знаки.

Будущее светодиодов

Ученые создают светодиоды нового поколения, к примеру, на основе нано-кристаллических тонких пленок из перовскита. Они дешевые, эффективные и долговечные. Исследователи надеются, что такие LED-диоды будут применяться вместо обычных экранов ноутбуков и смартфонов, в том числе в бытовом и уличном освещении.

Создаются и волоконные LED-диоды, которые предназначены для создания носимых дисплеев. Ученые считают, что создаваемый метод производства волоконных светодиодов позволит наладить массовый выпуск и сделать интеграцию носимой электроники в одежду и текстиль совершенно недорогой.

Типичные характеристики

Светодиоды характеризуются следующими параметрами:

  • Цветовая характеристика.
  • Длина волны.
  • Сила тока.
  • Напряжение (тип применяемого напряжения).
  • Яркость (интенсивность светового потока).

Светодиодная яркость пропорциональна протекающему через него току, то есть чем напряжение будет выше, тем будет больше яркость. Единицей силы света служит люмен на стерадиан, она также измеряется в милликанделах. Бывают яркие (20-50 мкд.), а также сверх яркие (20000 мкд. и более) LED-диоды белого свечения.

Величина падения напряжения – характеристика допустимых значений прямого и обратного включений. Если подача напряжений выше этих значений, то наблюдается электрический пробой.

Сила тока определяет яркость свечения. Сила тока осветительных элементов обычно равняется 20 мА, для индикаторных светодиодов она составляет 20-40 мА.

Цвет излучения светодиода зависит от активных веществ, внесенных в полупроводниковый материал.

Длина волны света определяется разностью энергий при переходе электронов на этапе рекомбинации. Она определяется легирующими примесями и исходным полупроводниковым материалом.

Достоинства и недостатки
Среди достоинств светодиодов можно отметить:
  • Малое потребление электроэнергии.
  • Долгий срок службы, измеряемый 30-100 тысячами часов.
  • Высокая светоотдача. Светодиоды дают 10-250250 люменов светового потока на ватт мощности.
  • Нет ядовитых паров ртути.
  • Широкое применение.
Недостатки:
  • Низкие характеристики у некачественных светодиодов, созданных неизвестными производителями.
  • Сравнительно высокая цена качественных светодиодов.
  • Необходимость качественных источников питания.
Похожие темы:

electrosam.ru

Выпрямительный диод — виды, принцип работы и применение

Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

к содержанию ↑

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.

Принципиальная схема диодного мостак содержанию ↑

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.

к содержанию ↑

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.

к содержанию ↑

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

к содержанию ↑

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

к содержанию ↑

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Выпрямительный диод — виды, принцип работы и применение

220.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *