Генератор для ветряка: Тихоходный генератор для ветрогенератора на постоянных магнитах

Содержание

Как сделать генератор для ветряка к примеру из асинхронного дв

Как сделать генератор для ветрогенератора, к примеру из асинхронника или авто-генератора.

Сделать низко оборотный ветрогенератор на самом деле не так сложно как кажется, но везде есть свои нюансы. Да без изучения основ и имения некоторого опыта сразу сделать хороший генератор не у всех получается, но я постараюсь выделить все нюансы чтобы в дальнейшем было меньше ошибок.

Как обычно это бывает, сначала мы озадачиваемся поиском донора для будущего генератора. Если надо построить мощный генератор на 500ватт или 1-3 Кватт, то в качестве донора хорошо подходят асинхронные низко оборотистые двигатели, а если ветрячек небольшой мощности, то к примеру авто-генератор. Идеальный вариант это 12-ти полюсной асинхронник, так-как его можно не перематывать, а всего лишь ротор проточить и вклеить неодимовые магниты.

Допустим вы решили делать генератор из асинхронника, то перво на перво надо искать много-полюсной двигатель, если же такой не отыщется, то придется перематывать статор двух или четырех-полюсного двигателя — чаще всего такие встречаются.

Но перематывать не надо спешить, сначала надо переделать ротор под постоянные магниты, и об этом ниже.

Полюса и магниты

Как это сделать, сначала надо посчитать количество зубов на статоре где обмотки медные, если зубов например 36 то нужно делать 24 магнитных полюса на роторе при условии что вы будете мотать трехфазную обмотку с катушками на каждый зуб. А если 24 зуба, то 18 магнитных полюсов. В общем соотношение должно быть 2/3 где каждые два магнитных полюса на 3 катушки, так-же можно делать соотношение 4/3, но это зависит от размеров зубов статора и диаметра.

Например у нас статор на 36 зубов, значит нам надо 24 магнитных полюса, для этого исходя из финансовых возможностей приобретаем неодимовые магниты, размеры которых вы определяете сами. В принципе подойдут магниты любой конфигурации. Так например часто в ротор вклеивают много маленьких магнитов «шайбы» обычно 5*5 или 8*8 мм, или прямоугольные магниты разных размеров, или цельные.

Но у круглых магнитов есть существенный минус, ими трудно заполнить ротор как можно плотнее, а ведь чем больше влезет магнитов, тем мощнее генератор, поэтому для более плотного заполнения используют прямоугольные магниты, но при этом часто применяют именно круглые магниты, так-как их входит меньше и получается дешевле.

Делаем шубу под магниты

> > Для начала опишу технологию вживления круглых магнитов, а потом про прямоугольные, и как посчитать количество и расположение магнитов на роторе. Сначала ротор у токаря протачивается на толщину магнитов, а лучше чтобы ротор проточили и надели металлическую гильзу, на которую наклеивать магниты, так-как гильза замыкает магнитное поле магнитов и они подпитывают друг друга усиливая магнитные поля. Гильзу обычно делают толщиной равной толщине магнитов, или чуть тоньше. После того как ротор проточен и гильза надета и прочно приварена или вклеена, можно готовить шубу под магниты.
Шубу делают из обычного бинта пропитанного эпоксидной смолой. Ротор сначала оборачивается полиэтиленовой пленкой чтобы смола к нему не пристала, и на него наматывается толстым слоем бинт смоченный эпоксидной смолой. А потом на станке высохшая болванка стачивается до нужного диаметра, после этого готовую шубу нужно снять для дальнейшей работы. Шуба аккуратно, чтобы не треснула стягивается с ротора, и в ней сверлятся отверстия под магниты.

Магнитные полюса

Теперь про магниты, итак нужно ротор поделить на количество полюсов и получить площадь полюса, и в эту площадь нужно уместить как можно больше имеющихся магнитов. Например у вас получилась ширина полюса 15мм, а длинна по длине статора обычно. 15 мм это если вплотную то три ряда круглых магнитов 5*5мм , но в шубе не получится так плотно на-сверлить отверстия, значить два сверлить надо ряда магнитов. Если длинна ротора 100 мм. то получится каждый полюс по два ряда магнитов по 8 шт. в каждом, и того 16 шт. на полюс.
В полюсе магниты обращены одинаково, то-есть 16 магнитов северным полюсом, а следующий полюс клеится наоборот- южным полюсом, и так чередуются полюса север юг север юг. Магниты можно клеить и супер-клеем и эпоксидкой.

Залипание и скос

Как известно минус генераторов на постоянных магнитах это залипание, притяжение магнитов к зубам статора, которое затрудняет стартовый момент и в последствии мешает винту стартовать на малом ветру, а это не есть хорошо. Чтобы снизить залипание обычно делают скос на мнимый магнит ( полюс ), например если ширина полюса 10 мм, то скос делается на эту величину. Но на скосе теряется часть мощности генератора, это связано с потерей эффективности магнитов из-за скоса, и чем больше скос, тем больше потери, поэтому лучше делать вообще без скоса. Лучше сначала сделать шубу без скоса, поставить магниты и проверить стартовый момент, если он выше 0,4Нм, то лучше делать скос и снижать этим момент страгивания, так-как винт, особенно оборотистый винт будет стоять и не сможет стартовать на молом ветру.
А так вам решать что лучше , старт и работа на слабом ветру, или поздний старт и большая мощность на сильном ветру.

Переделываем ротор под прямоугольные магниты

Второй способ переделки ротора под магниты несколько проще и эффективнее в плане заполнения магнитами площади ротора. Так-же как в описании выше рассчитывается количество полюсов и по ширине полюса подбираются магниты. Лучше всего если они будут цельные, например если ширина полюса 15мм, а длинна 100мм, то можно применить магниты размерами 25*12*5мм, как раз получится 4 магнита пр длинне и ширина подходит максимально, так-как 15 мм все равно не влезет. Магниты в этом случае клеятся на ротор без всякой шубы просто на супер-клей. Потом обклеенный магнитами ротор обматывается скотчем и заливается эпоксидной смолой. Такими способами переделывают все генераторы под постоянные магниты. >
Так-же забыл упомянуть о вклейке круглых магнитов по шаблону, при наклейке по шаблону шубу делать не надо. На листе бумаги расчерчиваются отметки под магниты, после по диаметру магнитов в бумаге пробиваются отверстия. Готовый шаблон с дырками оборачивается на ротор, и магниты притягиваются в дырки, а потом бумага убирается, а ротор оборачивается скотчем и заливается эпоксидной смолой.

Обмотка и фазы

Теперь про обмотку генератора. У асинхронных двигателей обычно именно трехфазная обмотка статора, которая и без перемотки годится для выработки энергии, но в оборотистых двух четырех-полюсных двигателях обмотка слишком тонкая и имеет большое сопротивление, а это значит что она будет давать мало тока. К примеру если переделать четырех-полюсной двигатель под постоянные магниты, то он будет давать напряжение выше 12 вольт уже на 60-100об/м, но сопротивление обмоток съест всю силу тока и на выходе будет всего 1-2Ампера. Это обычно считается так, если сопротивление обмоток генератора 8 Ом, то к примеру если на холостых оборотах он дает 50 вольт, то под нагрузкой на аккумулятор 12 вольт пойдет 50v-12v=38v:8 Ом = 4,75А, это всего 60 ватт/ч.
, а в реале еще меньше, а если сопротивление обмотки 2 Ом, то при тех-же 50 вольт мощность составит порядка 230ватт/ч. Поэтому если сопротивление обмоток велико, то нужно перематывать генератор, и обычно обмотку сразу перематывают под нужное количество полюсов и мотают на каждый зуб. Увеличение количества катушек и полюсов повышает частоту генератора, в значит и мощность на меньших оборотах. Если к примеру у вас статор на 36 зубов, и вы переделали ротор под 24 полюса, а родная обмотка на 6 полюсов, то ее нужно перемотать под на 24 полюса, то-есть намотать в соотношении 2/3, это 36 катушек.

Тестовая катушка перед намоткой статора

Перед тем как мотать новую обмотку генератора нужно намотать тестовую катушку и покрутить генератор чтобы выяснить каким проводом и сколько витков мотать. К примеру вы намотали катушку проводом 2мм, покрутили на 300об/м и получили 1 вольт, то с генератора вы получите при соединении обмоток в звезду около 18 вольт, а при соединении в треугольник 12 вольт.
Кстати треугольник от звезды по мощности почти не отличается, только у звезды напряжение выше и следовательно зарядка начнется раньше, а у треугольника мощнее ток, но зарядка начнется на более высоких оборотах. Сдесь нужно выбрать балланс, что лучше, обмотка с малым сопротивлением под быстроходный трех-лопастной винт с началом зарядки на 200_300об/м, или мотать более тонким проводом для зарядки уже со 100-150об/м, под тихоходный винт для получения энергии даже на слабеньком ветру.

Если же планируется заряжать аккумуляторы общим напряжением на 24, или 48 вольт, то в большинстве случаев можно оставить и родную обмотку асинхронника, но надо искать как минимум шести-полюсной двигатель.

Намотка генератора

После всех расчетов можно приступать к перемотке, для этого удаляется старая обмотка статора, и перематывается статор одним из двух мне известных способов, это намотка прямо на зубы, и всыпная обмотка. Всыпная обмотка делается так, сначала на самодельном намоточном станочке наматываются катушки, и по одной заправляются в пазы статора. В качестве изоляции обычно используют пленкоэлектрокартон, но если его нет, то подойдет и обычный плотный картон. Второй способ намотки, это мотать каждую катушку непосредственно на зуб. Для меня этот способ проще чем заправка готовых катушек, но он кропотливее, так-как желательно мотать надо виток к витку и как можно плотнее. Так-же намотка прямо на зубы имеет ряд преимуществ, при такой намотке значительно меньше лобовые части обмоток, а значит ниже сопротивление, и при этом в пазы входит больше меди из-за плотной укладки провода. А чем больше меди в пазах, тем больше мощности в итоге можно получить. Даже лишние 5 витков на катушку в итоге дадут хороший прирост мощности.

Вот в общих чертах так переделывают асинхронники и другие двигатели под генераторы для ветряков. Я переделывал точно так-же свои автогенераторы для ветряков, об этом вы можете почитать в разделе «Мои самоделки». Более подробно в об этом всем деле в других статьях «Ветрогенераторы для начинающих.

Генератор для ветряка | Сделай сам своими руками

Приступим к сборке механической части генератора. Детали генератора показаны ниже. Все они изготовлены из стали. Для кольца использована лента из трансформаторной стали, но можно обойтись и стальной втулкой.


Пропустим провод от катушки в отверстие основания.


Закрепив гайку на оси, стянем пакет из уголка, круглой платы основания, катушки и крестообразного магнитопровода другой гайкой. Смотрите рисунки ниже.



Установим стальной магнитопровод в виде кольца поверх катушки и вставим 4 болта. Болты диаметром 6мм длиной 20мм.


Установим верхнюю пластину, притянув её болтами. Стягивайте болты без усилий, чтобы не повредить резьбу на пластине.


Подтягивая центральную гайку прижмём крестообразный магнитопровод к катушке таким образом, чтобы он не выступал за плоскость верхней пластины.


На этом сборку статора можно считать законченной. 

Приступаем к сборке ротора. Нам необходимо  8 шт постоянных магнитов и подшипники.


Далее, необходимо разметить места для присоединения магнитов. Для этого рисуем шаблон-рисунок


И наложив его на ротор…


маркером размечаем места крепления магнитов.


Магниты на роторе должны чередоваться по расположению полюсов. Поэтому перед их наклейкой нужно пометить одноименные полюса, например, маркером. Проще всего это сделать, собрав все магниты в столбик. В этом случае все одноименные полюса будут ориентированы в одну сторону.



Расположите магниты на роторе, чередуя полюса.



После установки магнитов, Вы можете промазать вокруг них клеем для окончательной фиксации. Однако, магниты даже без клея, держатся неплохо. 

Насадите ротор на ось и закрепите её.

Собственно, с механикой, закончили. Сейчас, вращая ротор рукой, Вы можете получить 3..4В переменного выходного напряжения. После выпрямителя получите 7…9В. 

Соберём выпрямитель и умножитель напряжения в два раза. Его схема показана на рисунке ниже. В качестве диодов можно взять любой диод на ток 1 А и выше и напряжение не менее 50В. Конденсаторы электролитические 47.0мкФ х 50В, или любые большей ёмкости.


Если умножения не нужно, то конденсатор соединяем между плюсом и минусом выхода и убираем их от диодов. 

В отсутствие паяльника, выпрямитель можно собрать так, как показано на рисунках ниже.



Подключим генератор к выпрямителю в точках АС.


А к выходу подключите мультиметр.


При быстром вращении на выходе можно получить почти 40 В без нагрузки. 

В дальнейшем этот генератор можно подключить к различным турбинам. 

Например, с вертикальной осью.


Либо, изготовив лопасти из тонкого алюминия, собрать вертушку с горизонтальной осью вращения.



Чертёж лопасти приведён на рисунке ниже. Все размеры даны в дюймах, 1 дюйм = 25.4 мм.


Собственно, всё. Дальше Вы можете использовать данный ветряк и генератор как Вам заблагорассудится.

Удачи!

Небольшой аксиальный генератор для ветряка

Вот и я решил выложить фотографии своего небольшого ветрогенератора. Данный ветряк я построил не преследуя ни каких особых целей в плане обеспечения себя электроэнергией, а просто для проверки возможностей вообще ветрогенераторов и в частности генераторов таких конфигураций на постоянных магнитах. Для своего генератора я заказал маленькие необходимые магниты, так как они очень мощные и позволяют делать генераторы с безжелезными статорами. Фотографирова все этапы в обратном порядке при демонтаже ветряка.

Задумка о построении ветрогенератора мне уже долго не давала покоя, но до дела всё как-то не доходило, то не было времени, то переезды, то ещё что. Сейчас проживаю в частном доме, имею участок земли для сада и города. С востока и юга открытая местность, но с севера и запада ветровые потоки закрывают небольшие возвышенности. Хоть ветра и не балуют, но дуют постоянно, и я подумал — всё-таки надо отвести душу и наконец воплотить мечту в жизнь.

Но когда дело дошло до практики оказалось все не так просто, во первых было очень мало информации о ветрогенераторах, книги дали более глубокое представление в генераторах и ответы на некоторые вопросы, но появились новые вопросы и проблемы на практике. Самое главное в ветряке это генератор, вот с его выбором я никак не мог определиться, первое, что приходило в голову это использовать автогенератор, но он не рассчитан под низкие обороты и на него надо было придумывать редуктор, а это влекло за собой сильное увеличение веса и размеров ветроустановки.

Так-же нужно было из чего то сделать лопастя и рассчитать из профиль и размеры, чтобы они могли хорошо работать и при этом быть прочными и немного весить. Да и защита от сильного ветра тоже нужна. Но надо было начинать, начал самого лёгкого, с мачты, а по ней всё остальное.

Для экономии трубы на мачту набрал в местном пункте здаче чермета, а в замен отдавал свой ненужный металлолом.Подбирал небольшие куски труб, начиная с диаметра 325 мм длинной примерно по 1,5 м,чтобы помещалась в багажнике моей машины. Из этих труб сварил мачту длинной 12м.. Для фундамента раздобыл бракованный фундаментный блок от высоковольтной опоры. Для него выкопал двухметровую яму и опустил блок, блок длинной 3 мета, таким образом на поверхности остался один метр, который и будет основой мачты. Закопал опору и утрамбовал грунт. Для крепления мачты надо было как-то закрепить кранштейны, для них я сварил обрамление из уголков на блоке.

На концы кронштейнов к анкерным болтам приварил пластинки из 16мм железа размером 50 х 50 см, соединенных между собой мощными петлями. Купил на рынке мягкие 10 мм тросы и талрепы, все анодированное, не ржавеет. Сварил и закопал анкер под съемную лебедку. Лебедку тоже пришлось делать самодельную, используя готовый червячный редуктор. Кроме того, установил П-образную подпорку высотой около 2м, на которую должна ложиться мачта. Так как спешить было некуда – мачта делалась без спешки и поэтому получилась, на мой взгляд, красивая и

И тут Бог, видя мои труды, благословил меня выйти на форум http://forum.ixbt.com/topic.cgi?id=48:4219-74#1829. Я его весь перечитал, зарегистрировался, и стал набираться опыта. Начал переделывать автогенератор, а когда перевел с английского «заморские» сайты (Хью Пигота и др.) по построению торцевых генераторов без железа в катушках, очень захотелось попробовать и самому это сделать, хотя бы в миниатюре. Решил построить действующую уменьшенную модель, чтобы выдавала до 1 ампера на 12-вольтовый аккумулятор.

Для изготовления ротора купил в Знаменке на предприятии «Акустика» http://akustika-ag.de/cgi-bin/p.cgi?a 24 шт. дисковых неодимовых магнита 20*5 мм. Нашел ступицу от колеса мотоблока, токарь по моим чертежам выточил два стальных диска диаметром по 105мм и толщиной 5мм, распорную втулку толщиной 15мм и вал. На диски наклеил и до половины залил эпоксидкой магниты по 12 шт на каждый, чередуя их полярность.

Ниже представлена фотосессия моего ветрячка.


Для изготовления статора намотал 12 катушек эмальпроволокой диаметром 0,5мм по 60 витков на катушку (взял проволоку с петли размагничивания старого негодного цветного кинескопа, там его достаточно). Распаял катушки последовательно конец с концом, начало с началом и т.д. Получилась одна фаза (боялся, что будет маловато напряжения). Выпилил из 4 мм фанеры форму, натер ее воском.

Жаль, вся форма в сборе не сохранилась. На нижнее основание положил вощеную бумагу (спер в жены на кухне, она выпечку на ней делает), на нее наложил форму с круглячком в центре. Потом вырезал со стеклоткани два кружка. Один постелил на вощеную бумагу нижнего основания формы. На него выложил распаянные между собой катушки. Выводы из многожильного изолированного провода проложил в выпиленные ножовкой неглубокие пазы.

Залил все это эпоксидкой. Подождал около часа, чтобы пузырьки воздуха все вышли, и эпоксидка разлилась равномерно по всей форме и пропитала катушки, долил, где надо, и накрыл вторым кружком стеклоткани. Сверху положил второй лист вощеной бумаги и прижал верхним основанием (куском ДСП). Главное, чтобы оба основания были строго плоскими. Утром разъединил форму и извлек красивый прозрачный статор толщиной 4мм.

Жаль, что для более мощного ветряка эпоксидка не годится, т.к. боится высокой температуры.

В ступицу вставил 2 подшипника, в них вал со шпонкой, на вал первый диск ротора с наклеенными и залитыми до половины эпоксидкой магнитами, потом распорную втулку толщиной 15мм. Толщина статора с залитыми катушками 4мм, толщина магнитов 5мм, итого 5+4+5=14мм. На дисках ротора оставлены бортики на краях по 0,5мм чтобы упирались магниты при центробежной силе (на всякий случай). Поэтому отнимем 1мм. Осталось 13мм. На зазоры остается по 1мм. Поэтому распорка 15мм.

Потом статор (прозрачный диск с катушками), который крепится к ступице тремя медными 5 мм болтами, их видно на фото. После ставится второй диск ротора, который упирается в распорную втулку. Нужно остерегаться, чтобы палец не попал под магниты – очень больно защемляют. (Противоположные магниты на дисках должны иметь разную полярность, т.е. притягиваться.)

Зазоры между магнитами и статором регулируются медными гайками, размещенными на медных болтах по обе стороны ступицы. На оставшуюся выступающую часть вала со шпонкой одевается пропеллер, который через шайбу (а если нужно то и втулку) и гровер прижимается гайкой к ротору. Гайку желательно закрыть обтекателем (я его так и не сделал). Зато сделал крышу-козырек над ротором и статором, распилив алюминиевую кастрюльку так, чтобы захватить часть донышка и часть боковой стенки.

Пропеллер изготовил из метрового куска дюралевой поливной трубы диаметром 220 мм с толщиной стенки 2,5мм. На ней нарисовал двухлопастный пропеллер и выпилил электролобзиком. (Из этого же куска я еще выпилил три лопасти длиной по 1м для ветряка на автогенераторе, и еще как видите осталось). Переднюю кромку лопастей я заокруглил «на глаз» радиусом, равным половине толщины дюрали, а зднюю заострил с фаской приблизительно 1см на концах и до 3см к центру.

В центре пропеллера сначала просверлил отверстие 1мм сверлом для балансировки. Балансировать можно прямо на сверле, положив дрель на стол, или подвесить на нить к потолку. Балансировать нужно очень тщательно. Я отдельно балансировал диски ротора и отдельно пропеллер. Ведь обороты доходят до 1500 об/мин.

</>

Так как магнитное залипание отсутствует, пропеллер весело вращается от малейшего ветерка, которого на земле даже не ощущаешь. При рабочем ветре развивает высокие обороты, у меня амперметр на 2А прямого включения, так он часто зашкаливает на 12 вольтовый старый автомобильный аккумулятор. Правда при этом начинает складываться и подниматься вверх хвост, т.е. срабатывает автоматическая защита от сильного ветра и чрезмерных оборотов.

Защита выполнена на основе наклонной оси вращения хвоста.
Далее о окончательной сборке ветрогенератора и мачте продолжение статьи о ветряке

Ветрогенераторы для яхт | ЭлектроФорс

Для владельцев парусных яхт ветрогенератор – это естественный и понятный способ увеличения электрической мощности. Он используют туже энергию,  что движет парусное судно, а технология, лежащая в основе его работы, надежна и хорошо изучена. Поэтому несмотря на растущую популярность гидрогенераторов и появление все более эффективных солнечных панелей, автономные ветрогенераторы по-прежнему широко распространены на яхтах.

Содержание статьи

Преимущества и недостатки ветрогенераторов

Для зарядки тяговых аккумуляторов от береговой электрической сети на яхте устанавливают комбинированный инвертор или  зарядное устройство. В межсезонье с этой задачей справляется небольшая солнечная панель. Ветряную турбину имеет смысл использовать, когда требуется дополнительный мощный источник зарядки, который будет работать на яхте совместно с солнечными батареями или гидрогенератором.

Яхтенные ветрогенераторы – это небольшие устройства относительно малой мощности. Однако вырабатываемой ими энергии достаточно, чтобы в течении суток зарядить 12-вольтовую аккумуляторную батарею емкостью 800 ампер-часов.  Плюс ветрогенератора в том, что он производит электрическую энергию практически постоянно — во время движения и на якорной стоянке, в солнечные и в пасмурные дни. Ветрогенератор не требует технического обслуживания, ремонта и дополнительного оборудования для запуска.

МодельD400Superwind 350Rutland 1200
Максимальная мощность при напряжении 12 В, Вт 600 350 483
Максимальная скорость ветра, узлов 37 24 29
Мощность при скорости ветра 20 узлов 192 180 255
Мощность при скорости ветра 12 узлов 48 20 60
Скорость включения, узлов 5 6,8 4
Вес, кг 17 11 8
Диаметр лопастей, м 1,09 1,19 1,22
Количество лопастей, шт 5 3 3
Коэффициент TSR 3,9 6,5 7
Регулятор напряжения в комплекте Нет Нет нет
Внешний регулятор PWM PWM PWM/MPPT

Но существуют и минусы. Яхтенные маршруты, проложенные по ветру отнимают у генератора часть его мощности. А поскольку энергия ветра зависит от третьей степени его скорости, то с уменьшением скорости, мощность ветрогенератора стремительно падает. Например, при реальной скорости ветра 20 узлов, для яхты идущей по ветру со скоростью 8 узлов наблюдаемая скорость ветра составит всего 12 узлов. При ветре 20 узлов большинство моделей малых ветрогенераторов вырабатывают около 200 Вт, а при 12 узлах мощность опускается до 40-50 Вт. Зависимость мощности турбины от скорости ветра необходимо учитывать и при планировании стоянок. Порты и якорные стоянки привлекают владельцев яхт именно потому, что обеспечивают защиту от стихии, значит скорость ветра там ниже, чем прогнозируется на расстоянии от берега.

Все небольшие ветрогенераторы имеют примерно одинаковую максимальная мощность — от 400 до 600 Вт. Однако более важная характеристика – это ток, отдаваемый турбиной при слабом ветре. Ведь именно с ним большинство владельцев яхт хотят иметь дело во время своих путешествий. Поэтому производительность ветрогенератора при относительной скорости ветра 12 или 20 узлов гораздо лучший показателем его зарядной способности

Кроме того, кривые мощности, которые приводят производители ветрогенераторов основаны на результатах испытания плавным, постоянным воздушным потоком в аэродинамической трубе. Реальные результаты могут оказаться гораздо ниже. Поэтому там где требуется гарантированно высокая мощность владельцы предпочитают устанавливать две турбины и подключать их параллельного через один регулятор.

Как установить ветрогенератор на яхте

Чтобы получить от ветрогенератора максимальную выходную мощность, необходимо выполнить два условия. Во-первых, конструкция на которой установлена турбина должна быть как можно более устойчивой, иначе любая качка или крен будут отворачивает ее от ветра. Во-вторых, ветрогенератору нужен свободный, ровный и гладкий воздушный поток

Многолопастной ветрогенератор D400 мощностью 600 Вт, установленный на корме яхты

В какой-то степени эти два требования противоречат друг другу. Скорость ветра на мачте может быть на 50 процентов выше, чем на уровне моря, поэтому чем выше вы поднимите ветрогенератор, тем больше энергии вы получите. С другой стороны турбина, ее крепление и кабельная разводка весят 20-30 кг. Такой дополнительный вес на движущейся яхте увеличивает маятниковый эффект, а значит возрастают тангаж и крен и снижается общая устойчивость

Существует множество успешных установок ветрогенераторов на мачтах. Однако для большинства владельцев яхт устанавливать турбину рекомендуется поверх кокпита. Там ее проще монтировать и обслуживать, а если возникнет неисправность, и другие способы торможения выйдут из строя, устройство можно будет отключить вручную.

Падение напряжения в кабеле существенно влияет на общую производительность системы зарядки. При установке турбины внизу кабель от нее до аккумуляторов окажется гораздо короче, а значит его сечение можно выбрать меньше и это не увеличит потери энергии .

Контроллер заряда ветрогенератора

На первый взгляд сохранение полученной электрической энергии в аккумуляторе  — это самая простая часть ветряной энергоустановки. Однако единого способа решения этой задачи среди производителей не существует и каждый из них придерживается собственных подходов.

Английская компания Marlec, использует MPPT регулятор. MPPT контроллеры получили распространение благодаря солнечным источникам энергии, у которых они повысили выходную мощность на целых 30 процентов. Контроллер регулирует напряжение генератора так, чтобы в каждый момент времени мощность установки была максимальной. Для снижения скорости турбины Marlec применяет широтно-импульсную модуляцию. Когда заряд аккумуляторной батареи приближается к 100% и ей требуется меньше энергии ШИМ-регулятор замыкает обмотки все более длинными импульсами, создавая растущий тормозной момент.

Зависимость тока, вырабатываемого ветрогенератором D400, от скорости ветра

Создатель ветрогенератора D400 Петер Андерсен из компании Eclectic Energy придерживается другого подхода. Он считает, что обеспечить структурированный выходной сигнал на основе такого входа как у ветряных турбин нельзя. Более того исследование показывают, что общая производительность системы с MPPT контроллером не возрастает, а иногда наоборот снижается.

Другие производители также считают, что MPPT регулятор не добавляет достоинств небольшой ветряной турбине с правильно спроектированным и оптимизированным для низких скоростей ветра генератором. Преимущества, достигаемые благодаря эффективности генератора, сводятся на нет потерями в электронике MPPT. Однако PWM регулятор  позволяет заряжать аккумулятор до 100 процентов, поскольку обеспечивает аккумулятор именно тем током, который батарея может принять на каждой стадии зарядки.

Некоторые производители вместо MPPT контроллера, устанавливают на выходе генератора DC-DC конвертер. Конвертер повышает выходное напряжение генератора и позволяет заряжать аккумуляторы при слабом ветре (скоростью менее 2 м /с ). Ветрогенераторы с DС-DС преобразователями начинают зарядку аккумуляторов при выходном напряжении от 2 вольт и обеспечивают зарядную мощность  3 — 5 Вт. Такие устройства подходят для заряда аккумуляторов на защищенных от ветра стоянках, однако дополнительное количество энергии, получаемое от них, не велико.

Многие намеренно не используют технологии MPPT или PWM, считая простоту и надежность ключевыми достоинствами своих изделий. Если турбины работают совместно с солнечными батареями, то ветрогенератор реализует этап быстрой зарядки, а до 100% аккумуляторы заряжают солнечные панели . Дополнительная электроника в этом случае лишь увеличивает сложность и повышает стоимость изделий

Дополнительно с внешним, часто используют разгрузочный регулятор. Его добавляют, чтобы контролировать мощность, поступающую от турбины. Когда заряженность аккумулятора возрастает, избыток энергии отводят через резистор, рассеивающий тепло. С таким регулятором турбина всегда работает при полной нагрузке, а ее лопасти вращаются с оптимальной частотой.

Системы имеющие только встроенный «регулятор» турбины, лучше не использовать. Такой регулятор представляет собой электронный тормоз, срабатывающий, когда напряжение аккумулятора поднялось слишком высоко, а турбина продолжает выдавать много энергии. После остановки генератора напряжение аккумулятора падает и регулятор перезапускает генератор вновь. Если аккумуляторов почти заряжен, то происходит многократная остановка и повторный запуск ветрогенератора. Этот метод регулирование далек от того, который нужен аккумуляторной батарее — по мере увеличения заряженности ток должен плавно понижаться.

Лопасти ветрогенератора

Конструкция лопастей турбины – это еще одна область в которой модели разных производителей отличаются друг от друга. Лопасть во время вращения подвергается тем же воздействиям, что и  крыло самолета. Однако в их работе существуют и небольшие отличия. Если у лопастей постоянный шаг, то их оптимальный режим работы достигается при одной заданной скорости вращения. Значит у слишком быстро или слишком медленно вращающейся турбины эффективность снижается

Комплект небольшого ветрогенератора для яхты — генератор, лопасти, резисторы для рассеивания мощности. Контроллер заряда приобретается отдельно

Немецкая компания Superwind выпускает ветрогенераторы с изменяемым шагом, величина которого зависит от скорости вращения. Чем быстрее вращается турбина, тем больше лопасти поворачиваются вокруг своей оси и сильнее замедляют вращение. Компания утверждает, что эта система реагирует очень быстро и может защитить систему в случае отказа электронного торможения.

Лопасти – основная причина шума и вибрации, исходящих от ветрогенератора. Если скорость вращения кончиков слишком высока, то обтекающий их поток воздуха становится нестабильным, возникает турбулентность и лопасти начинают вибрировать. Известен случай, когда лопасти установленного на яхте ветрогенератора издавали такой вой на высоких скоростях вращения, что соседние лодки были вынуждены покинуть якорную стоянку.

Существует специальный коэффициент (TSR), характеризующий во сколько раз кончик лопатки турбины движется быстрее, чем реальная скорость ветра. Например, если турбина имеет TSR равный 16 — при ветре в 20 узлов концы лопасти будут двигаться со скоростью 320 узлов, а при небольшом шторме их скорость приблизится к скорости звука. Для ветрогенератора D400 производитель указывает TSR всего 3,9. Это говорит о том, что турбина спроектирована для гораздо более медленного вращения, чем модели других производителей. D400 не самый легкий ветрогенератор, вес только чистой меди в его обмотках почти 1 кг. Но его преимущество в устойчивости, надежности и относительно низких оборотах вращения

Некоторые производители указывают для своих машин максимальную скорость ветра. Однако к этой характеристике следует относится с недоверием. В ветровом потоке наиболее разрушительным является  уровень турбулентности, а его нельзя не предсказать, ни легко измерить.

Мощность ветрогенератора

Перед установкой любого электрогенерирующего оборудования на яхте, в первую очередь считают потребление энергии. Расход вычисляют как для якорной стоянки, так и для движения под парусом. В результате появляется подобие некоторого энергетического бюджета, в котором перечислены как очевидные крупные потребители, такие как холодильники, дисплеи, водонагреватели и освещение, так и менее мощные устройства — ночные навигационные огни, насосы, газовые сигнализации, мониторы двигателей, развлекательные системы.

Для подруливающего устройства или электрической лебедки предусматривают дополнительный запас мощности. Если на яхте установлен кондиционер, маловероятно, что возобновляемые источники энергии удовлетворят его потребности. В этом случае лучше подумать о дизельном генераторе или топливных элементах.

После того как расход энергии подсчитан, оценивают стиль управления яхтой. Необходимо принять во внимание регулярную среднюю скорость на маршруте и понять двигается ли яхта чаще всего против ветра, или ей всегда сопутствует попутный? Дополнительно учитывают другие генерирующие мощности, установленные на борту — солнечные панели, гидрогенератор и зарядное устройство, работающее от генератора дизельного двигателя.

Подбор ветряка | ООО «Термодинамика»

Прежде, чем выбрать ту или иную ветроустановку, следует определить, как будет построена Ваша система:

• Для автономного использования, что не окупается в настоящее время (необходимость обслуживать и менять АКБ).

• Для работы непосредственно в собственную сеть.

• Один ветрогенератор большой мощности или несколько маленьких, общей мощностью большого — просчитайте цены этих вариантов, при этом учитывайте общестроительные работы на то и другое оборудование, его последующее обслуживание и ремонт.

Три основные величины, которые определяют работу ветряка

1. Выходная мощность ветроустановки (кВт), определяется только мощностью преобразователя (инвертора) и не зависит от скорости ветра, емкости аккумуляторов. Ещё её называют «пиковой нагрузкой». Этот параметр определяет максимальное количество электроприборов, которые могут быть одновременно подключены к вашей системе. Вы не сможете одновременно потреблять больше электроэнергии, чем позволяет мощность вашего инвертора. Если вы потребляете электроэнергию редко, но в больших количествах, то обратите внимание на более мощные инверторы. Для увеличения выходной мощности возможно одновременное подключение нескольких инверторов.

2. Время непрерывной работы при отсутствии ветра или при слабом ветре определяется емкостью аккумуляторных батарей (Ач или кВт) и зависит от мощности и длительности потребления. Если вы потребляете электроэнергию редко, но в больших количествах, обратите внимание на аккумуляторы с большой емкостью. При этом, если ветроустановка единственный источник энергии, общая емкость батарей ограничивается, так как батарея большой емкости (больше рекомендованной для определенного типа генератора) для ветряка в состоянии постоянного «недозаряда» быстро выйдет из строя.

3. Скорость заряда аккумуляторной станции (кВт/час) зависит от мощности самого генератора. Также этот показатель прямо зависит от скорости ветра, а косвенно от высоты мачты и рельефа местности. Чем мощнее и выше генератор ветряка, тем быстрее будут заряжаться аккумуляторные батареи, а это значит, что вы сможете быстрее потреблять электроэнергию из батарей и в больших объемах. Для увеличения скорости заряда аккумуляторов более мощный генератор следует брать в только в том случае, если ветра на месте установки постоянные и превышают 7 м/с, если ветра слабые и среднее значение составляет 4 м/с, более эффективно (а главное — значительно дешевле) установка нескольких генераторов мощностью 2 кВт и подключение их к одной аккумуляторной батарее.

Исходя из перечисленных выше факторов, для подбора ветрогенератора и сопровождающего оборудования вам необходимо знать:

1. Количество электроэнергии, необходимое вашему объекту ежемесячно (измеряется в киловаттах). Эти данные необходимы для подбора генератора. Их можно взять из коммунальных счетов на оплату электроэнергии или рассчитать самостоятельно, если объект находится в стадии строительства. Исходя, из этих данных рассчитывается среднее потребление в час, которое необходимо восполнять ветроустановкой. Далее оборудование подбирается с учетом среднегодовой скорости ветра и графиками производительности оборудования.

2. Желаемое время автономной работы вашей энергосистемы в безветренные периоды или периоды, когда ваше потребление энергии из аккумуляторов будет превышать скорость зарядки аккумуляторных батарей генератором. Данный параметр определяет количество и емкость аккумуляторных батарей, составляющих станцию.  В любом случае при выборе емкости, необходимо учитывать зарядный ток, величина которого должна быть не ниже 0,10 от емкости аккумуляторной станции. Если же емкость завышена и генератор не обеспечивает необходимый для зарядки ток, то в данном случае производиться только подзарядка аккумуляторов и необходимо производить периодическое восстановление заряда батарей от городской сети или от мотогенератора.

3. Максимальная нагрузка на вашу сеть в пиковые моменты (измеряется в киловаттах). Необходимо для подбора инвертора переменного тока. Чем мощнее ваш инвертор, тем больше ваши возможности по использованию ветроэлектростанции.

Российские генераторы для зарубежных ветряков

В Сочи состоялась выставка-конференция «Альтернативные источники мировой энергии» ARWE 2018.

Москва, 8 мая — ИА Neftegaz.RU. В Сочи состоялась выставка-конференция «Альтернативные источники мировой энергии» ARWE 2018, которая объединила представителей энергетических компаний, федеральных и региональных министерств и ведомств, регуляторов рынка для рассмотрения вопросов развития в стране отрасли добычи электроэнергии из возобновляемых источников.

По словам председателя Российской Ассоциации Ветроиндустрии (РАВИ) И. Брызгунова, «без создания производства ветрогенераторов нет ветроэнергетики». Поэтому на прошедшей ARWE 2018 ключевым стал «Форум поставщиков», организованный по инициативе Министерства промышленности и торговли Российской Федерации.

Состоялись закрытые консультации поставщиков оборудования с представителями крупнейших мировых производителей ветроэнергетических установок (ВЭУ) в России — Siemens Gamesa Renewable Energy, Vestas и Fuhrlaender. В ходе двусторонних встреч производители комплектующих для ВЭУ выяснили конкретные потребности заказчиков и обсудили порядок локализации производства в России.

Один из крупнейших в России разработчиков, производителей и поставщиков электрических машин для всех отраслей промышленности и сельского хозяйства — концерн РУСЭЛПРОМ — принял участие в конференции. Делегатом выступил ведущий менеджер А. Гайсин.

В рамках государственной программы развития альтернативной энергетики планируется, что девелоперы построят в России 43 ветропарка. Правительство Российской Федерации установило порядок локализации производства ВЭУ на территории страны в целях стимулирования развития у нас собственной научно-технической базы и производственных возможностей в этой отрасли.

В итоге, доля локализации растет каждый год и к 2019-му должна достичь 65%. Зарубежные производители ВЭУ в соответствии с требованием локализации целенаправленно подбирают российских партнеров, способных изготовить продукцию высокого качества в срок.

«Сердце» ветроэнергетической установки — это синхронный или асинхронный генератор мощностью от 2,5 МВт и выше. Производство таких мощных ветрогенераторов в России еще не освоено, и лишь несколько отечественных предприятий обладают необходимыми для этого возможностями.

В 2017 г РУСЭЛПРОМ вошел в состав Российской Ассоциации Ветроиндустрии, специалисты которой положительно оценили его производственные площадки, в частности, Ленинградский электромашиностроительный завод (ЛЭЗ), входящий в структуру концерна.

Здесь производятся крупные вертикальные и горизонтальные, синхронные и асинхронные двигатели и генераторы. Завод оснащен широким парком современного высокоэффективного оборудования. На ЛЭЗе работает установка вакуумно-нагнетательной пропитки «Монолит» — самая крупная в России и в Восточной Европе — для изоляции изделий до 4х метров в диаметре.

РУСЭЛПРОМ имеет богатый опыт конструирования уникальных крупных электрических машин, а его мощная производственная база позволяет создавать их на высоком уровне качества. Продукция концерна успешно эксплуатируется в 52 странах мира, в том числе в США, Италии, Швеции и других.

«Как отечественный производитель, идущий в ногу со временем, РУСЭЛПРОМ видит для себя перспективы в развитии российской ветроэнергетики, — заметил А. Гайсин. — Производство генераторов для ветроэнергетических установок позволит нам получить компетенции в данной отрасли и внести свой вклад в научно-технический прогресс нашей страны».

Так что вполне реально, что в импортных ветроустановках вскоре будут работать генерирующие «сердца» российского производства.

Генераторы

для ветряных турбин — Часть 2: Как выбрать один


Разные типы генераторов

Есть несколько типов генераторов, которые могут быть связаны с небольшими ветряными турбинами: наиболее важно типы постоянного или переменного тока, а также синхронные или асинхронные, которые работают с постоянными магнитами или возбуждением электрического поля соответственно. Выбор зависит от различных факторов, таких как применение (автономное или подключенное к сети), тип нагрузки, технологичность, номинальная выходная мощность, частота вращения турбины и стоимость.Тем не менее, все эти электрические машины являются электромеханическими устройствами, работающими по закону электромагнитной индукции Фарадея.


Синхронный и асинхронный

Как объяснялось в приквеле к этой статье, вращающаяся часть генератора содержит какой-то компонент, который создает магнитное поле. Следовательно, он представляет собой вращающиеся полюса. Есть два типа компонентов, которые могут выполнить эту задачу.

В так называемых синхронных генераторах мы найдем простые постоянные магниты.Они похожи на подковообразные магниты или на вид магнит, который можно прикрепить к холодильнику. Тип генератора, который использует постоянные магниты называются синхронными, потому что ротор и магнитные поля вращаются с одинаковой скоростью. Синхронные генераторы обычно обладают высокой удельной мощностью и малой массой, поэтому все чаще используются в ветряных турбинах. Эти генераторы создают проблемы, связанные с тем, что при сильном нагревании постоянные магниты могут размагничиваться, что генератор бесполезен, и что они не могут производить электричество с фиксированной частота.Это связано с изменчивостью скорости ветра и вращение с одинаковой скоростью. Следовательно, этим генераторам требуется выпрямляющая мощность. конвертеры.

Аналог синхронного — асинхронный генераторы. Они создают электрическое поле не с помощью постоянных магнитов, а с помощью дополнительные катушки. Закон Фарадея предполагает, что электрический ток и магнитное поле поля всегда существуют вместе. Это позволяет нам использовать магнитное поле для индукции электрический ток описанным здесь способом, но он также помогает нам создать магнитное поле, посылая ток через катушку.Это точно что делают асинхронные генераторы. Поэтому для этого типа генератора требуется питание. поставка специально для магнитов, но она менее подвержена повреждениям и может быть надежнее своего аналога. Более того, он имеет более высокую степень демпфирование, чтобы он мог легче поглощать колебания скорости ротора.


Динамо и генераторы переменного тока

Основное различие между динамо-машинами и генераторами переменного тока тип тока, который они производят: динамо-машины вырабатывают постоянный ток (DC), в то время как генераторы вырабатывают переменный ток (AC), который постоянно меняет поток направление.

Для очень простой настройки генератора мы узнали в приквеле к этой статье, что вырабатываемая выходная мощность будет электричеством переменного тока. Часть, которая позволяет динамо-машине вырабатывать мощность постоянного тока без полного изменения концепции, называется коммутатором. В простейшем случае это фиксированный переключатель, который подключает и отключает два разных концевых контакта силовой цепи генератора при вращении вала. Это позволяет коммутатору постоянно изменять полярность выходного тока, так что в конечном итоге выход всегда будет одной полярности.

Главное преимущество динамо-машин, вырабатывающих постоянный ток: что большинству наших электрических устройств для работы требуется питание постоянного тока. Это означает, что если вы генерируете мощность переменного тока, вам всегда понадобится преобразователь мощности для использования электричество в вашем доме.

Тем не менее, генераторы переменного тока далеки от более распространены сегодня. Причина этого в том, что электричество переменного тока намного проще. и более эффективен для передачи по огромным линиям электропередачи. Преобразование переменного тока в чрезвычайно высокое напряжение при транспортировке, а затем снова его снижение до приемлемого уровня. легко и без значительных потерь мощности.То же самое очень трудно сделать с постоянным током. Как только он прибыл в желаемое место для потребления мощность переменного тока может быть снова легко преобразована в постоянный ток.


Стандарт в ветроэнергетике: синхронные генераторы с постоянными магнитами

В ветряных турбинах чаще всего используются следующие типы генераторов: синхронные генераторы с постоянными магнитами. Это потому, что в последние годы они приобрели привлекательность за счет повышения производительности и снижения стоимости. Они конкурентоспособны, особенно для турбин с прямым приводом, потому что могут иметь большее число полюсов — 60 или более полюсов по сравнению с обычным асинхронный генератор. Это означает, что, несмотря на более низкие скорости вращения, может быть достигнута разумная выходная частота мощности.

При нормальной работе генераторы с постоянными магнитами стабильны и безопасны и, что самое главное, не требуют дополнительного питания питание цепи возбуждения для создания магнитного поля. Это делает конструкция и электрическое подключение намного проще и исключает возбуждение ротора потери, которые могут составлять 20-30% от общих потерь генератора. Как следствие, удельная мощность высока, а генератор остается небольшим и эффективным.Это привлекательным, потому что с учетом риска размагничивания должным образом, это обещает низкую стоимость в течение всего срока службы и небольшие проблемы или обслуживание.


Кривая мощности

Хотя это может показаться простым, связь между ветряной турбиной и генератором не только механическая с валом и коробкой передач. Для достижения удовлетворительной производительности кривые мощности ветряной турбины и генератора должны быть согласованы.

Вообще говоря, есть разные типы мощности, но у них есть физическая единица ватт.Там есть механическая сила, сначала содержащаяся в ветре, затем во вращающихся лопастях, а затем, есть электричество.

С одной стороны, ротационные механическая мощность, содержащаяся во вращающихся лопастях ветряной турбины, рассчитывается как скорость вращения ротора умножается на его вращательный момент. Скорость по сути, как часто вал поворачивается в течение фиксированного периода времени, в то время как импульс соответствует тому, какое «сопротивление» или момент инерции вал может обернуться. Чтобы визуализировать импульс, представьте, что вы поворачиваете карандаш в рука.Если держать его слабо, это будет очень легко сделать. Если вы возьмете более плотный захват, вам нужно будет приложить больше усилий, чтобы карандаш поворачивался на та же скорость, что и раньше. Что происходит, так это то, что вам нужно подать заявку на более высокую импульс к нему, потому что ваша плотная хватка останавливает вращательное движение, похоже на высокий момент инерции.

Итак, мощность ротора ветряной турбины выход зависит от скорости вращения и от текущего импульса в любой момент время. Конечно, выходная мощность не всегда бывает одинаковой.Это существенно меняется при увеличении или уменьшении скорости ветра. Эти шансы составляют так называемую кривую мощности.

С другой стороны, электрическая мощность рассчитывается как напряжение устройства, умноженное на его ток. Проще говоря, что происходит в генераторе заключается в том, что он извлекает часть энергии, содержащейся во вращении чтобы преобразовать его в электрическую энергию. Сколько энергии можно извлечь очевидно, зависит от количества присутствующей мощности. Проблема в что сам по себе генератор не знает, сколько в нем вращательной мощности.Однако он может получать данные от датчика ветра, чтобы знать текущая скорость ветра. Благодаря кривой мощности турбины ее текущее вращательное мощность может быть напрямую получена из указанной скорости ветра. Итак, теперь мы можем решить, как большую мощность, которую генератор должен извлекать при любой заданной скорости ветра, и запрограммировать ее сделать так. Таким образом, мы придаем ему собственную кривую мощности.


Энергия и выходная мощность — в чем разница?

Распространенное заблуждение, когда люди Говоря о ветряных турбинах, они путают мощность с выработкой энергии.В разница в следующем: выходная мощность говорит нам, сколько энергии производится по сравнению с определенным периодом времени. Выход энергии говорит нам, сколько энергии на самом деле произведено. Единица, которая используется для обозначения выхода энергии, обычно kWh — киловатт-час. Производство энергии в один киловатт-час может означать что в течение одного часа электрическое устройство произвело ровно тысячу ватт электричества или что в пределах половины нашего, он произвел две тысячи ватт электроэнергии.

Итак, если вы хотите рассказать кому-нибудь, как много энергии, которую ваша ветряная турбина произвела в прошлом году, вы можете сказать «моя турбина произвел 400 кВтч — разве не круто? ».В этом контексте, говоря о власти не имело бы смысла. Как правило, сравнение выходной мощности полезно для пример при сравнении двух разных типов турбин, которые работают под одинаковые условия окружающей среды. Имеет ли смысл говорить о власти или выход энергии сильно зависит от ситуации. Тем не менее, знайте свои единицы — используйте ватты, когда говорят о мощности, и киловатт-часы, когда говорят об энергии.

Типы ветряных генераторов и их функции

Большинство из нас видели ветряные турбины, но знаете ли вы, какие элементы помогают в бесперебойной работе этих турбин?

Один из таких элементов — ветряные генераторы.Прежде чем мы подробно поговорим о генераторах, расскажите нам об их функции в работе ветряных турбин.

Ветровые турбины вырабатывают электроэнергию, используя энергию ветра для привода электрогенератора.

Когда ветер проходит над лопастями, он создает вращающую силу. Вращающиеся лопасти заставляют вращаться вал внутри гондолы, переходящей в редуктор.

Затем коробка передач ускоряет вращение до уровня, подходящего для генератора, который использует магнитные поля для преобразования энергии вращения в электричество.

В основном ветряные турбины бывают двух типов — турбины с фиксированной скоростью и ветровые турбины с регулируемой частотой вращения.

Из этих двух типов ветряных турбин наиболее часто используются турбины с фиксированной скоростью, в которых индукционный генератор напрямую подключен к сети. Однако у этой системы есть свои недостатки, потому что она часто не может контролировать сетевое напряжение.

Чтобы избежать недостатков ветряной турбины с фиксированной скоростью, используются ветровые турбины с регулируемой скоростью. Эти турбины обеспечивают стабильность динамического поведения турбины и снижают шум при низких скоростях ветра.

Однако для работы ветряной турбины с регулируемой скоростью необходим электронный преобразователь, и именно здесь играет роль генератор ветряной турбины.

Для оснащения ветряной турбины любым трехфазным генератором, например синхронным генератором и асинхронным генератором, для обеспечения более стабильной работы.

В этой статье мы в основном поговорим о различных типах ветряных генераторов и их функциях.

Какие типы ветряных генераторов?

Существует четыре типа ветряных генераторов (WTG), которые можно рассматривать для различных систем ветряных турбин, а именно:

  1. Генераторы постоянного тока (DC)
  2. Синхронные генераторы переменного тока (AC)
  3. Асинхронные генераторы переменного тока и
  4. Импульсные генераторы сопротивления.

Каждый из этих генераторов может работать с фиксированной или переменной скоростью. Из-за динамического характера энергии ветра идеально использовать WTG с переменной скоростью.

Работа генератора с регулируемой скоростью снижает физическую нагрузку на лопатки и привод турбины, что улучшает аэродинамическую эффективность системы и переходные характеристики крутящего момента.

1. Генератор постоянного тока

Ветрогенератор постоянного тока состоит из ветряной турбины, генератора постоянного тока, инвертора на биполярном транзисторе с изолированным затвором (IGBT), трансформатора, контроллера и электросети.

Для генераторов постоянного тока с параллельной обмоткой ток возбуждения увеличивается с увеличением рабочей скорости, тогда как баланс между крутящим моментом привода ветряной турбины определяет фактическую скорость ветряной турбины.

Электричество извлекается через щетки, которые подключают комментатор, который используется для преобразования генерируемой мощности переменного тока в выход постоянного тока.

Эти генераторы требуют регулярного обслуживания и относительно дороги из-за использования коммутаторов и щеток.

Использование WTG постоянного тока необычно для ветряных турбин, за исключением ситуаций с низким энергопотреблением.

2. Синхронный генератор переменного тока Синхронные ветряные генераторы

переменного тока могут принимать постоянное или постоянное возбуждение от постоянных магнитов или электромагнитов.

Вот почему они оба называются «синхронными генераторами с постоянными магнитами (PMSG)» и «синхронными генераторами с электрическим возбуждением (EESG)» ».

Когда ветряная турбина приводит в движение ротор, трехфазная энергия вырабатывается в обмотках статора, которые подключены к сети через трансформаторы и преобразователи мощности.

В случае синхронных генераторов с фиксированной частотой вращения частота вращения ротора должна быть точно такой же, как и частота вращения синхронного генератора. В противном случае синхронизация будет потеряна.

При использовании синхронных генераторов с фиксированной частотой вращения случайные колебания скорости ветра и периодические возмущения возникают из-за эффектов затенения башни.

Более того, синхронные WTG имеют тенденцию к низкому демпфирующему эффекту, поэтому они не позволяют электрически поглощать переходные процессы трансмиссии.

Когда синхронные WTG интегрированы в электрическую сеть, синхронизация их частоты с сетью требует деликатной операции.

Кроме того, эти генераторы более сложны, дороги и подвержены отказам по сравнению с индукционными генераторами.

В течение последних десятилетий генераторы с постоянными магнитами все чаще использовались в ветряных турбинах из-за их высокой плотности мощности и малой массы.

Конструкция генераторов PM относительно проста. Прочные PM устанавливаются на ротор для создания постоянного магнитного поля, а произведенная электроэнергия собирается от статора с помощью коллектора, контактных колец или щеток.

Иногда PM интегрируются в цилиндрический литой алюминиевый ротор для снижения стоимости. Основной принцип работы генераторов PM аналогичен синхронным генераторам, за исключением того, что генераторы PM могут работать асинхронно.

Одним из преимуществ PMSG является отсутствие коммутатора, контактных колец и щеток, что делает машины прочными, надежными и простыми.

Из-за изменчивости фактических скоростей ветра PMSG не могут производить электричество с фиксированной частотой. Для этого генераторы должны быть подключены к электросети путем выпрямления переменного-постоянного-переменного тока преобразователями мощности.

Это означает, что генерируемая мощность переменного тока, содержащая переменную частоту и величину, сначала выпрямляется в постоянный постоянный ток, а затем преобразуется обратно в мощность переменного тока.

Кроме того, эти машины с постоянными магнитами могут быть полезны для применений с прямым приводом, поскольку в этом случае они могут избавиться от проблемных редукторов, которые вызывают отказы большинства ветряных турбин.

Одним из возможных вариантов синхронных генераторов является высокотемпературный сверхпроводящий генератор.

Сверхпроводящие генераторы имеют такие компоненты, как задняя часть статора, медная обмотка статора, катушки возбуждения HTS, сердечник ротора, опорная конструкция ротора, система охлаждения ротора и другие.

Сверхпроводящие катушки могут пропускать почти в 10 раз больший ток, чем традиционные медные провода с умеренным сопротивлением и потерями в проводнике.

Кроме того, использование сверхпроводников может остановить все потери мощности в цепи возбуждения. Кроме того, увеличение плотности тока позволяет создавать сильные магнитные поля, что приводит к значительному уменьшению массы и размеров генераторов ветряных турбин.

Таким образом, сверхпроводящие генераторы могут иметь больший потенциал в плане высокой мощности и снижения веса и могут лучше подходить для ветряных турбин мощностью 10 МВт или более.

В 2005 году компания Siemens запустила первый в мире сверхпроводящий ветрогенератор, представляющий собой синхронный генератор мощностью 4 МВт.

Наряду с более высокой мощностью синхронные генераторы могут создавать ряд технических проблем, особенно для долговечных ветряных турбин, не требующих особого обслуживания.

Одной из таких проблем, например, является охлаждение системы и восстановление работы после технической неполадки.

3. Асинхронные генераторы переменного тока

Когда традиционный способ производства электроэнергии использует синхронные генераторы, современные ветроэнергетические системы используют индукционные машины, широко применяемые в ветряных турбинах.

Индукционные генераторы подразделяются на двух типов : индукционных генераторов с фиксированной скоростью (FSIG), с короткозамкнутыми роторами и индукционных генераторов с двойным питанием (DFIG), с обмотанными роторами.

Как правило, индукционные генераторы просты, надежны, недороги и хорошо спроектированы.

Эти генераторы обладают высокой степенью демпфирования и могут поглощать колебания скорости ротора и переходные процессы трансмиссии.

В случае индукционных генераторов с фиксированной частотой вращения статор подключается к сети через трансформатор, а ротор подключается к ветряной турбине через редуктор.

До 1998 года большинство производителей ветряных турбин производили индукционные генераторы с фиксированной скоростью 1.5 МВт и менее.

Эти генераторы обычно работали со скоростью 1500 оборотов в минуту (об / мин) в энергосистеме с частотой 50 Гц вместе с трехступенчатой ​​коробкой передач.

Индукционные генераторы с короткозамкнутым ротором (SCIG) могут использоваться в ветряных турбинах с регулируемой скоростью, а также в управляющих синхронных машинах.

В таких случаях, однако, выходное напряжение невозможно контролировать, и требуется внешний источник реактивной мощности.

Это означает, что индукционные генераторы с фиксированной скоростью имеют ограничения, когда дело доходит до работы только в узком диапазоне дискретных скоростей.

Другими недостатками этих генераторов являются размер машины, низкий КПД, шум и надежность.

В наши дни более 85% установленных ветряных турбин используют DFIG, а самая большая мощность для коммерческих ветряных турбин увеличилась до 5 МВт.

Увеличенная мощность дает несколько преимуществ, в том числе высокий выход энергии, снижение механических нагрузок, колебаний мощности и управляемость реактивной мощности.

Индукционные генераторы также подвержены нестабильности напряжения. Кроме того, эффект демпфирования может привести к потерям мощности в роторе. Нет прямого контроля ни напряжения на клеммах, ни устойчивых токов короткого замыкания.

В этих случаях можно регулировать скорость и крутящий момент DFIG, управляя преобразователем на стороне ротора (RSC).

В подсинхронном режиме преобразователь на стороне ротора работает как инвертор, а преобразователь на стороне сети (GSC) — как выпрямитель.

С другой стороны, в случае суперсинхронной работы RSC работает как выпрямитель, а GSC как инвертор.

4. Ветрогенератор с переключаемым сопротивлением

Генераторы реактивных ветряных турбин с регулируемым сопротивлением имеют такие особенности, как прочные ротор и статор. При вращении ротора изменяется сопротивление магнитной цепи, соединяющей статор и ротор. Затем он, в свою очередь, наводит токи в обмотке якоря (статора).

Реактивный ротор изготовлен из многослойных стальных листов и не имеет обмоток электрического поля или постоянных магнитов.

По этой причине генератор сопротивления прост, его легко изготовить и собрать. Еще одна очевидная особенность этих генераторов — их высокая надежность. Это потому, что они могут работать в суровых или высокотемпературных условиях.

Из-за того, что крутящий момент реактивного сопротивления составляет лишь часть электрического крутящего момента, ротор переключаемого генератора реактивного сопротивления обычно больше, чем другой, с электрическими возбуждениями для данной скорости крутящего момента.

Когда генераторы сопротивления объединены с функциями прямого привода, машины будут довольно большими и тяжелыми, что сделает их менее полезными в ветроэнергетических установках.

Статья по теме: 10 крупнейших оффшорных ветряных электростанций в мире

Заключительные слова

Суть в том, что ветряные турбины работают по простому принципу — вместо того, чтобы использовать электричество для выработки ветра, как вентилятор, ветровые турбины используют ветер для выработки электроэнергии. Ветер вращает лопасти турбины вокруг ротора, который вращает генератор, вырабатывающий электричество.

Эту механическую мощность можно использовать для определенных задач (например, перекачивания воды), или генератор может преобразовывать эту мощность в электричество.

Ветровые турбины могут быть построены на суше или на море в крупных водоемах, таких как озера и океаны. Правительства многих стран мира финансируют такие проекты. Например, Министерство энергетики США в настоящее время финансирует проекты по развитию морских ветроэнергетических проектов в водных объектах страны.

Статья по теме: Статистика солнечной энергии в США, 2019

С самого начала Сумит был глубоко обеспокоен климатическим кризисом и всегда чувствовал себя обиженным, видя, как вмешательство человека нарушает экологический баланс.Он на 100% считает, что солнечная энергия — это недостающая загадка для нашего энергетического перехода, и мы должны приложить все усилия, чтобы внедрить это энергетическое решение во всем мире. Если вы хотите опубликовать свои статьи в журнале SolarFeeds, щелкните здесь.

Связанные

Как работает ветряная турбина?

Что такое ветряная турбина?

Ветряная турбина — это самая современная версия ветряной мельницы. Проще говоря, он использует силу ветра для производства электричества.Наиболее заметны большие ветряные турбины, но вы также можете купить небольшую ветряную турбину для индивидуального использования, например, для обеспечения энергией каравана или лодки.

Что такое ветряная электростанция?

Ветряная электростанция — это группа ветряных турбин. Довольно впечатляюще думать, что электричество, которое так сильно влияет на нашу жизнь — от зарядки наших телефонов до того, что позволяет нам приготовить чашку кофе и, все чаще, заправлять наши автомобилей — могло начаться с простого порыва ветра. .

Как работает ветряная турбина?

Сначала давайте начнем с видимых частей ветряной электростанции, которые мы все привыкли видеть — этих высоких белых или бледно-серых турбин. Каждая из этих турбин состоит из набора лопастей, коробки рядом с ними, называемой гондолой, и вала. Ветер — а это может быть просто легкий ветерок — заставляет лопасти вращаться, создавая кинетическую энергию. Вращающиеся таким образом лопасти также заставляют вращаться вал в гондоле, а генератор в гондоле преобразует эту кинетическую энергию в электрическую.

Что будет дальше с электричеством, вырабатываемым ветряной турбиной?

Для подключения к национальной сети электрическая энергия затем проходит через трансформатор на объекте, который увеличивает напряжение до уровня, используемого в национальной электроэнергетической системе.Именно на этом этапе электричество обычно направляется в передающую сеть Национальной энергосистемы, готовую к передаче, чтобы в конечном итоге ее можно было использовать в домах и на предприятиях. В качестве альтернативы, ветряная электростанция или отдельная ветряная турбина могут вырабатывать электроэнергию, которая используется частным образом отдельным лицом или небольшой группой домов или предприятий.


Почему ветряки обычно белые или бледно-серые?

Ветряные турбины обычно бывают либо белыми, либо очень бледно-серыми — идея состоит в том, чтобы сделать их визуально ненавязчивыми, насколько это возможно.Обсуждается, следует ли их перекрашивать в другие цвета, особенно в зеленый, в некоторых условиях, чтобы помочь им лучше вписаться в окружающую среду.

Насколько сильным должен быть ветер для работы ветряной турбины?

Ветровые турбины могут работать при любых скоростях ветра — от очень слабого до очень сильного. Они генерируют около 80% времени, но не всегда на полную мощность. При очень сильном ветре они отключаются, чтобы предотвратить повреждение.

Где расположены ветряные электростанции?

Ветряные электростанции, как правило, располагаются в самых ветреных местах, чтобы максимально использовать энергию, которую они могут производить — вот почему вы с большей вероятностью увидите их на склонах холмов или на побережье.Ветряные электростанции, расположенные в море, называются оффшорными ветряными электростанциями, а расположенные на суше — наземными ветряными фермами.

Где была первая ветряная турбина и первая ветряная электростанция?

Самая первая ветряная турбина, вырабатывающая электричество, была создана профессором Джеймсом Блайтом в своем доме отдыха в Шотландии в 1887 году. Она была 10 метров в высоту и имела парусину.

Первая в мире ветряная электростанция открылась в Нью-Гэмпшире в США в 1980 году.

Вредны ли ветряные электростанции для птиц?

Дело в том, что изменение климата представляет собой самую серьезную долгосрочную угрозу для птиц и других диких животных.А возобновляемые источники энергии, ключевым компонентом которых являются ветряные турбины, необходимы для сокращения парниковых газов .

Королевское общество защиты птиц Великобритании ( RSPB ) признает эту более широкую картину, говоря: «Переход на возобновляемые источники энергии сейчас, а не через 10 или 20 лет, необходим, если мы хотим стабилизировать выбросы парниковых газов в атмосфера на безопасном уровне ».

Разработчики ветряных электростанций работают в тесном сотрудничестве с RSPB и местными экологическими группами в рамках процесса консультаций по выбору ветровых электростанций, чтобы продолжить рост наземной и морской ветроэнергетики, сбалансировав любой потенциальный вред птицам из-за потери среды обитания, нарушения и столкновения. .

A В отчете США сделан вывод о том, что влияние энергии ветра на популяции птиц относительно невелико по сравнению с падением жертвой кошек и столкновениями с высотными зданиями.

Сколько энергии в Великобритании вырабатывается ветром?

Узнайте, сколько энергии в Великобритании вырабатывается ветром, с помощью приложения National Grid ESO для Google Play или Apple iOS .

Покупка небольшой ветряной турбины, руководство для потребителей и часто задаваемые вопросы | sfenvironment.org

В настоящее время в Сан-Франциско имеется (5) небольших ветряных турбин. Можно подумать о покупке небольшой ветряной турбины, если на предлагаемом участке скорость ветра не менее 10 миль в час или 4,4 м / с (метров в секунду), а средний счет за электроэнергию составляет более 150 долларов в месяц. Перед тем, как приступить к изучению небольшой ветряной турбины, важно внести какие-либо изменения в энергосбережение и эффективность на месте.

Американская ассоциация ветроэнергетики (AWEA) рекомендует получать и изучать литературу по продукции от нескольких производителей, а также изучать тех, кого вы хотите изучить, чтобы убедиться, что они являются признанными предприятиями.Важно выяснить, как долго длится гарантия и что она включает, и попросить рекомендовать клиентов с установками, аналогичными той, которую вы, возможно, рассматриваете. Спросите владельцев системы о требованиях к производительности, надежности, техническому обслуживанию и ремонту, а также о том, соответствует ли система их ожиданиям.

Часто задаваемые вопросы (FAQ)

1) Как работают ветряные турбины?
Лопасти ветряной турбины вращаются при прохождении через них ветра; это движение заставляет вал вращаться внутри генератора, который затем производит электричество.

2) Что такое малая ветряная турбина?
Небольшие ветряные турбины, также известные как «небольшие ветряные генераторы», используются в жилых и коммерческих зданиях. Город и округ Сан-Франциско определяют малые ветряные турбины как имеющие номинальную мощность 50 киловатт (кВт) или меньше.

3) Что такое «городской ветер»?
«Городской ветер» относится к ветроэнергетическим технологиям, подходящим для городской среды.

4) В чем разница между ветряными турбинами с горизонтальной осью и вертикальной осью?
Подавляющее большинство ветряных турбин представляют собой трехлопастные устройства в форме «пропеллера», которые вращаются вокруг оси, параллельной или горизонтальной по отношению к земле.Их называют «ветряными турбинами с горизонтальной осью» или «HAWT». «Ветряная турбина с вертикальной осью» или «VAWT» имеет ротор, который вращается вокруг оси, перпендикулярной — или вертикальной — земле, подобно шесту для парикмахерских или штопору. Многие варианты HAWT и VAWT существуют или находятся в стадии разработки. В HAWT используется горизонтально установленный вал ротора на вершине башни и лопасти, напоминающие пропеллеры. VAWT имеют валы ротора, которые ориентированы вертикально и часто производятся в конфигурациях Дарье (взбивание яиц) или Савониуса (ветряная совок).

5) Какой размер турбины мне нужен для моего здания?
Размер вашей турбины зависит от того, сколько электроэнергии вы потребляете. Односемейный дом в Сан-Франциско потребляет около 5 232 киловатт-часов (кВт-ч) электроэнергии в год (около 436 кВт-ч в месяц). Потребление электроэнергии в коммерческом здании может быть значительно выше, в зависимости от здания, и, следовательно, потребуются более мощные ветряные турбины. В зависимости от средней скорости ветра в районе потребуется ветряная турбина мощностью от 1 до 5 кВт, которая внесет значительный вклад в удовлетворение этого спроса.

6) Сколько стоит ветряная система?
Малые ветроэнергетические системы могут стоить от 5000 до 40 000 долларов в зависимости от мощности в кВт. Правильно расположенные небольшие ветряные турбины обычно окупаются в течение 15 лет, что составляет примерно половину их срока службы, если применяются правильные стимулы. VAWT являются относительно новым явлением на рынке, что означает, что цены на системы не всегда доступны, но цены могут варьироваться от 5000 до 15000 долларов, не включая затраты на установку.

7) Как определить ветровой ресурс на моем участке?
Эксперты по ветру рекомендуют установку анемометра, устройства, измеряющего направление и скорость ветра, в течение как минимум 12 месяцев. Анемометр обычно устанавливается на столб или башню, где может быть размещена небольшая ветряная турбина. Анемометры обычно устанавливаются на год, потому что ветер имеет сезонные изменения; например, когда ветры весной бывают сильнее. SF Environment в настоящее время разрабатывает карту ветров SF, чтобы помочь жителям Сан-Франциско лучше понять свои ветровые ресурсы в своем районе.

8) Как монтируются небольшие ветряные турбины?
Поскольку скорость ветра увеличивается с высотой, ветряную турбину следует устанавливать на мачте или мачте. Как правило, чем выше столб или башня, тем больше энергии может производить ветровая система. Столб или башня также могут поднять турбину над турбулентностью воздуха, которая может существовать близко к поверхности из-за препятствий, таких как здания, деревья и холмы.

9) Могу ли я подключить свою систему к электросети?
Небольшие ветроэнергетические системы могут быть подключены к системе распределения электроэнергии — они называются системами, подключенными к сети.Если турбина не может обеспечить необходимое количество энергии, разница компенсируется коммунальными предприятиями. Однако перед подключением к их распределительным линиям вам следует связаться с вашим коммунальным предприятием, чтобы решить любые проблемы, связанные с качеством электроэнергии и безопасностью. Ваша утилита может предоставить вам список требований для подключения вашей системы к сети.

10) Насколько надежны ветряки? Придется ли мне проводить много технического обслуживания?
Большинство небольших турбин имеют всего 2-3 движущихся части и рассчитаны на длительный срок службы (20–30 лет). Однако, как и с любой другой работоспособной машиной, она должна эксплуатироваться безопасно и в соответствии со спецификациями производителя, а детали должны обслуживаться и время от времени ремонтироваться.

11) Существуют ли какие-либо федеральные или государственные льготы для малых ветряных турбин?
Владельцы малых ветряных систем могут получить неограниченный федеральный инвестиционный налоговый кредит в размере 30% от общих затрат на установку. На уровне штата Программа стимулирования самопроизводства Калифорнийской энергетической комиссии (CEC) предлагает скидки на ветровые системы в размере 1 доллара.19 на ватт, до 3 МВт.

12) Как мне подать заявление на получение разрешения на малую ветряную турбину в Сан-Франциско?
Департамент строительной инспекции СФ (DBI) в настоящее время принимает заявки на получение разрешений на малые ветряные турбины. Разрешения для малых ветряных турбин были приоритетными для DBI, как написано в редакции AB-004. Жители могут подать заявку на получение разрешения на установку на крыше и на уровне земли. DBI также обязана проинспектировать предлагаемый участок перед выдачей разрешения. См. Стандарты Департамента панорамирования для проверки приложений здесь.Плата за разрешение на ветроэнергетику сообщается в диапазоне от 1000 до 5000 долларов, в зависимости от того, требуется ли публичное уведомление, поставщиками, завершившими проекты в Сан-Франциско.

13) Есть ли что-нибудь, на что мне следует обратить внимание при покупке небольшой ветряной турбины?
Большинство популярных моделей малых HAWT работают примерно с такой же эффективностью. Ожидаемое производство энергии будет тесно связано с рабочей площадью лопастей ротора, которая зависит от диаметра ротора.Если вам предлагают HAWT, который обещает привести весь ваш дом в действие турбиной, которая намного меньше, чем у обычных продуктов, запросите более подробную информацию. Поскольку VAWT только начинают выходить на рынок, их эффективность предсказать гораздо труднее. Всегда получайте несколько заявок от разных компаний и спрашивайте рекомендации от предыдущих клиентов.

Ветряная турбина — Музей науки и промышленности

Постройте ветряную турбину для выработки электроэнергии и исследуйте процесс преобразования энергии.

Материалы

  • Три трубы из ПВХ, одна длиной около 30 см, а другие длиной не менее 15 см
  • Три тройника из ПВХ
  • Одно колено из ПВХ
  • Двигатель
  • Провод (длиной около двух футов)
  • Провод фрезы
  • Ступица (можно приобрести у Kid Wind Project)
  • Деревянные дюбеля
  • Мультиметр
  • Зажимы типа «крокодил»
  • Ножницы
  • Лента
  • Фен или вентилятор
  • Материалы для лезвий, такие как проба, алюминиевая фольга, строительная бумага , палочки для мороженого и т. д.

Направления

  1. Вставьте 15-сантиметровую трубу из ПВХ в среднее отверстие тройника из ПВХ. Повторите то же самое с другой 15-сантиметровой трубой из ПВХ и тройником.
  2. Соедините две части вместе, вставив свободные концы труб в стороны третьего тройника так, чтобы среднее отверстие было направлено вверх.
  3. Вставьте оставшуюся трубу из ПВХ в тройниковое отверстие, направленное вверх, так, чтобы труба стояла вертикально.
  4. Поместите последний тройник на свободный конец башни.
  5. Подсоедините к двигателю два провода.Надежно установите двигатель в шарнир наверху башни. Пропустите провода по трубе башни и выведите из одного из тройников на основании. При необходимости используйте изоленту, чтобы надежно удерживать двигатель на месте.
  6. Прикрепите пластиковую круглую деталь, называемую ступицей, к прямой металлической детали на внешней стороне двигателя.
  7. Подсоедините провода к мультиметру с помощью зажимов типа «крокодил». Установите мультиметр на 20 вольт.
  8. Вставьте несколько небольших деревянных дюбелей в отверстия ступицы.Создайте ветер с помощью фена или вентилятора. Проверьте мультиметр, чтобы узнать, сколько энергии вырабатывается.
  9. Используя различные материалы, спроектируйте различные лопасти ветряной турбины. Учитывайте вес, гладкость поверхности и количество необходимых лезвий. Прикрепите лезвия к дюбелям с помощью скотча.
  10. Снова включите фен или вентилятор и протестируйте турбину с каждым типом лопастей, которые вы разработали. Чем отличается электрическая мощность? Протестируйте турбину с разными скоростями ветра, такими как низкие, средние и высокие настройки вентилятора.Влияет ли скорость ветра на выработку электроэнергии?

Что происходит?

Поскольку кинетическая механическая энергия движущегося ветра вращает лопасти ветряной турбины, генератор внутри турбины также вращается. Это заставляет спиральный провод вращаться вокруг магнита и создает электрический ток, который мы измеряем с помощью мультиметра.

Поскольку энергия не создается и не разрушается, чем больше энергия вводится, тем больше будет выход энергии.Следовательно, чем больше механической энергии вы начинаете — чем быстрее вращаются лопасти — тем больше электроэнергии будет вырабатывать турбина.

Справочная информация

Ветер возникает из-за разницы в давлении, создаваемой неравномерным нагревом поверхности Земли солнцем. Излучение солнца заставляет землю накапливать тепловую энергию. Воздух над землей также получает тепловую энергию и расширяется, становясь менее плотным и поднимаясь вверх.

Это движение вызывает область низкого давления на поверхности, создавая вакуум, который втягивает воздух.Более холодный и плотный воздух течет в область низкого давления на поверхности, заполняя пространство, оставшееся поднимающимся нагретым воздухом. Это создает конвекционный ток, а тепловая энергия преобразуется в кинетическую механическую энергию в виде движущегося воздуха или ветра.

Ветряная турбина преобразует механическую энергию ветра в электрическую. Турбина берет кинетическую энергию движущейся жидкости, в данном случае воздуха, и преобразует ее во вращательное движение. Когда ветер проходит мимо лопастей ветряной турбины, он перемещает или вращает лопасти. Эти лопасти вращают генератор. Генератор работает как инверсия электродвигателя; вместо того, чтобы применять электрическую энергию для поворота и создания механической энергии, он использует механическую энергию для поворота и создания электрической энергии. Генераторы вращают спиральную проволоку вокруг магнитов для создания электрического тока.

Установка вихревых генераторов ветряных турбин: стоит ли это того?

Вихревые генераторы ветряных турбин существуют уже давно, но действительно ли они стоят затрат на установку? Достаточно ли они улучшают аэродинамику и годовое производство энергии, чтобы оправдать модернизацию? Узнайте все о технологии вихревых генераторов в этой статье, посвященной эксплуатации и техническому обслуживанию ветряных электростанций.

Первое: что делает вихревой генератор ветряной турбины?

Вихревые генераторы вместе с крылышками и зазубренными задними кромками являются частью группы устройств, известных как обновления кривой мощности (PCU). Модернизация кривой мощности предназначена для улучшения годового производства энергии (AEP), и обычно они обеспечивают повышение AEP на 1-3%, в зависимости от устройства, турбины и других факторов.

Хотя 1-3% могут показаться малыми, это дает значительную экономию затрат в течение срока службы ветряной турбины.Некоторые лопатки турбины отправляются с завода с уже установленными вихревыми генераторами, зазубренной задней кромкой или крылышками. Тем не менее, операторы ветряных электростанций, которые приобрели турбины без этих опций, могут решить модернизировать их позже в течение срока службы турбины.

Для получения дополнительной информации об обновлении кривой мощности ознакомьтесь с другими нашими подробными статьями:

Как работает вихревой генератор

Вихревые генераторы — это, по сути, небольшие ребра, которые устанавливаются по направлению к основанию лопасти ветряной турбины. Они уменьшают разделение воздушного потока, создавая более плавный поток над лопастью, что приводит к меньшей турбулентности и большему крутящему моменту для вращения ротора и выработки мощности.

Простыми словами…

Если у вас нет опыта в аэродинамике, не волнуйтесь! Думайте о вихревом генераторе как об устройстве, которое «отключает» воздух.

Когда вы идете по улице и спотыкаетесь… что происходит? Вы спотыкаетесь, пытаясь встать на ноги. Спотыкаясь вперед, вы фактически приближаетесь к земле.

Когда воздух обрушивается на поверхность, он может отделиться от этой поверхности и стать турбулентным. Турбулентный воздух не оказывает давления и не создает подъемную силу, как это делает плавный воздушный поток, поэтому вихревой генератор «спотыкает» воздух непосредственно перед тем, как он становится турбулентным, заставляя его «спотыкаться» обратно вниз, продолжая прижиматься к гладкой поверхности лопасти ветряной турбины. где он может более эффективно вращать ротор.

Турбина с вихревыми генераторами | Фото: Оливье Клейнен / CC BY-SA (https: // creativecommons.org / licenses / by-sa / 3.0)

На лопасти выше показаны вихревые генераторы, установленные очень близко к основанию (ближе всего к гондоле), простираясь вниз к кончику. Аэродинамика корня получает наибольший прирост производительности от вихревых генераторов, поскольку их более округлая форма менее обтекаема и, следовательно, подвержена турбулентному воздушному потоку по сравнению с тонкими, высоко аэродинамическими наконечниками.

Это отличное видео ниже показывает больше об установке, а также объясняет, как работают вихревые генераторы ветряных турбин.

По мере того, как ветряные турбины становятся больше, каждый бит энергоэффективности помогает

GE Haliade X и Siemens Gamesa SG 14-222 DD — две самые большие ветряные турбины в мире, вырабатывающие невероятную мощность 12 МВт и 14 МВт соответственно. Эти машины огромны, высота обеих машин превышает 800 футов.

Лопасти ветряных турбин продолжают становиться еще больше | Фото: Грег Гебель из Лавленда, Колорадо, США / CC BY-SA (https://creativecommons.org/licenses/by-sa/2.0)

При таком огромном количестве генерируемой энергии даже небольшой выигрыш от модернизации кривой мощности, такой как вихревой генератор, может означать, что ежегодно будут снабжаться еще тысячи домов. Опять же, даже небольшой выигрыш в эффективности на 1-2% огромен, и операторы ветряных электростанций относятся к этому очень серьезно.

Что означает увеличение годовой выработки энергии на 2%?

Давайте возьмем для примера массивную ветряную турбину GE Haliade X. В этой статье, получившей оценку в 12 МВт, объясняется, что Haliade X произвел 288 МВт-ч (мегаватт-часов) за один 24-часовой период, что является самым высоким показателем из когда-либо зарегистрированных.В 2018 году среднее домохозяйство в США использовало 914 кВт / ч в месяц. Это означает, что дневная выработка электроэнергии от Haliade X может обеспечить электричество 315 домов в США в течение целого месяца. Это означает, что в месяц, производство одной турбины может поддерживать 9452 дома.

Морская ветряная турбина Ge Haliade X 12 МВт

Если бы мы увеличили выходную мощность этой турбины всего на 2%, это добавило бы еще 189 домов, которые могли бы поддерживаться только этой одной ветряной турбиной — это МНОГО домов: увеличение на четыре типовых подразделений жилых домов.

Помните, что большинство ветряных турбин — это , а не Haliade X, поэтому типичное увеличение годового производства энергии (AEP) на 2% для турбины мощностью 5-6 МВт — более типичный размер для морской ветряной турбины — будет примерно 75-100 домов. Но все же… бесплатное электричество для дополнительных 100 домов, просто установив небольшие пластиковые устройства? Это замечательное небольшое обновление.

Повышение эффективности большой ветряной турбины на 2% могло бы привести в действие около 200 дополнительных домов среднего размера.

Должны ли операторы ветряных электростанций устанавливать вихревые генераторы ветряных турбин?

Кажется, да, хотя, безусловно, каждое приложение уникально.Мы должны помнить, что выборочная установка по-прежнему необходима, потому что конфигурация, улучшающая один блейд-сервер до 3% повышения AEP, может дать повышение только 1,75% для другого.

Такие компании, как Smart Blade, ясно дают понять, что одного лишь навешивания на VG недостаточно — каждая уникальная конструкция лезвия должна подвергаться анализу, чтобы определить идеальную компоновку вихревых генераторов. Анализ воздушного потока выявит проблемные места, где наблюдается большее разделение и турбулентность воздушного потока, а конфигурация вихревых генераторов будет адаптирована с учетом уникальных аэродинамических свойств этой конструкции лопастей.

Хотя стоимость найма техников для лазания по лопастям может быть высокой (3000 долларов и более на команду техников в день, плюс материалы, консультации и дополнительные расходы), это можно относительно быстро компенсировать за счет увеличения производительности. Smart Blade поясняет, что затраты на установку и материалы обычно окупаются за 1-2 года.

Установка вихревых генераторов на ветряную электростанцию? Улучшайте свой LPS одновременно

Если вы оператор или техник ветряной электростанции, лучшее время для модернизации LPS (системы молниезащиты) ветряной турбины — это когда технические специалисты уже настроены подниматься по канатам и вносить другие улучшения, например, устанавливать вихревые генераторы.

Удары молнии ежегодно наносят значительный ущерб ветровым турбинам. Для многих ветряных турбин заводской LPS недостаточно, чтобы предотвратить это повреждение, особенно из-за того, что диэлектрик лопастей со временем ухудшается и накапливается износ.

Удлинители молний

StrikeTape значительно модернизируют LPS ветряной турбины одновременно с генератором вихрей или зазубренной задней кромкой и обеспечат годы безотказной защиты. Узнайте больше о ветряной турбине StrikeTape LPS , загрузите спецификации для нашей модернизации или свяжитесь с нами сейчас.

Часто задаваемые вопросы о вихревых генераторах

Есть вопросы, на которые мы можем ответить? Оставьте комментарий ниже или ознакомьтесь с нашими наиболее часто задаваемыми вопросами ниже.

Что такое вихревой генератор для ветряной турбины?

Вихревой генератор ветряной турбины — это небольшое устройство, обычно сделанное из термопласта. Они прикрепляются к лопасти турбины с помощью липкого клея, а иногда и эпоксидной смолы, в месте ближе к гондоле.Они помогают уменьшить «разделение потока» при прохождении воздуха над лопаткой турбины, что улучшает аэродинамику и может повысить годовое производство энергии (AEP) на 1-3%, в зависимости от области применения. Эти «обновления кривой мощности» часто устанавливаются операторами ветряных электростанций, которые могут увидеть окупаемость своих инвестиций через 1-2 года после установки.

Как работает вихревой генератор?

Генераторы вихрей, по сути, действуют, «спотыкая» воздух, когда он мчится по поверхности и начинает отделяться или подниматься от поверхности, где образует турбулентность.Генератор вихря говорит: «Не так быстро!» и заставляет воздух возвращаться на поверхность, где он снова течет у поверхности и обеспечивает подъемную или опускающую силу, в зависимости от области применения. Желателен плавный поток воздуха над поверхностью, а генераторы вихрей помогают предотвратить турбулентность, восстанавливая плавность воздушного потока до того, как возникнет турбулентность.

Увеличивает ли вихревой генератор годовое производство энергии (AEP) для ветряной турбины?

Да — правильно настроенная установка вихревых генераторов ветряных турбин может увеличить годовое производство энергии (AEP) на 1-3%, что может обеспечить очень существенный скачок в производстве.Хотя 1-3% могут показаться малыми, это может означать, что одна ветряная турбина мощностью 6 МВт может обеспечить электроэнергией еще 100 домов в месяц. Учитывая, что ветряная электростанция может иметь сотни ветряных турбин, это может означать, что установка на всей территории может обеспечивать электроэнергией до 10 000 дополнительных домов с установкой вихревых генераторов.

Ветряная турбина — Energy Education

Рисунок 1. Ветряная турбина. [1]

Ветряные турбины работают путем преобразования кинетической энергии ветра в механическую энергию, которая используется для выработки электроэнергии путем вращения генератора.Эти турбины могут быть наземными или морскими ветряными. [2]

Детали турбины

Рис. 2. Иллюстрация компонентов ветряной турбины (щелкните, чтобы увеличить). [3]

Современные ветряные турбины бывают разных размеров, но все типы обычно состоят из нескольких основных компонентов: [4]

  • Лопасти ротора — Лопасти ротора ветряной турбины работают по тому же принципу, что и крылья самолета. Одна сторона лезвия изогнута, а другая плоская.Ветер быстрее течет по изогнутому краю, создавая разницу в давлении с обеих сторон лезвия. Лопасти «толкаются» воздухом, чтобы уравновесить разницу давлений, в результате чего лопасти вращаются. [5]
  • Гондола — Гондола содержит комплект шестерен и генератор. Поворотные лопасти связаны с генератором шестернями. Шестерни преобразуют относительно медленное вращение лопастей в скорость вращения генератора примерно 1500 об / мин. [5] Затем генератор преобразует энергию вращения лопастей в электрическую энергию.
  • Башня — лопасти и гондола установлены на вершине башни. Башня сконструирована таким образом, чтобы удерживать лопасти ротора от земли и при идеальной скорости ветра. Башни обычно находятся на высоте 50-100 м над поверхностью земли или воды. Морские башни обычно крепятся к дну водоема, хотя исследования по разработке башни, плавающей на поверхности, продолжаются. [2]

Визуализация турбины

MidAmerican Energy Company имеет отличное видео о конструкции ветряной турбины , для просмотра щелкните здесь.

Видео ниже, созданное UVSAR, подробно показывает детали турбины.

Для дальнейшего чтения

Список литературы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *