Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.
Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.
Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.
Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.
Схема генератора из асинхронного двигателя
схема генератора на базе асинхронного двигателя
В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:
- Обмотка возбуждения, которая находится на специальном якоре.
- Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.
Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:
- Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
- Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
- Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
- Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.
При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.
Устройство генератора
Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:
- Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
- Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
- Контактные кольца имеют надежный крепеж к валу ротора.
- В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
- Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
- Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.
Изготовление генератора из двигателя
Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.
Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:
- Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
- Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
- Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
- Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
- Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
- Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
- После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
- Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
- Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
- Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
- Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
- Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.
После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.
Оценка уровня эффективности – выгодно ли это?
Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?
Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.
Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.
Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.
Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.
Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:
- В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
- Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
- При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.
Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.
Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.
Функционирование асинхронного двигателя как генератора
В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:
- После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
- Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
- Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.
Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.
Применение
В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:
- Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
- Работа в качестве ГЭС с небольшой выработкой.
- Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
- Выполнение основных функций сварочного генератора.
- Бесперебойное оснащение переменным током отдельных потребителей.
Советы по изготовлению и эксплуатации
Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:
- Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
- В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
- Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
- Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
- Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.
Статья была полезна?
0,00 (оценок: 0)
Желание разработать автономный источник по производству электроэнергии позволил соорудить генератор из обычного асинхронного мотора. Разработка отличается надежность и относительной простотой.
Виды и описание асинхронного двигателя
Существует два вида моторов:
- Короткозамкнутый ротор. Он включает в себя статор (недвижимый элемент) и ротор (вращающийся элемент), движущийся за счет работы подшипников, прикрепленных к двум щиткам мотора. Сердечники изготовлены из стали, а также они изолированы друг от друга. По пазам статорного сердечника расположен изолированный провод, а по пазам роторного устанавливается стержневая обмотка либо льется растопленный алюминий. Специальные кольца-перемычки играют роль замыкающего элемента роторной обмотки. Самостоятельные разработки преобразовывают механические движения мотора и создают электроэнергию переменного напряжения. Их преимущество – нет в наличии коллекторно-щелочного механизма, что делает их более надежными и долговечными.
- Фазный ротор – дорогой прибор, требующий специализированного сервиса. Состав такой же, как и у ротора с коротким замыканием. Единственное исключение роторная и статорная обмотка сердечника выполнена из заизолированного провода, а ее концы подсоединяют к кольцам, прикрепленным к валу. По ним проходят специальные щетки, которые объединяют провода с регулировочным либо пусковым реостатом. Из-за низкого уровня надежности его используют лишь для тех отраслей производства, для которых он предназначен.
Область применения
Устройство используется в разных отраслях:
- Как обычный двигатель для электростанций, работающих от ветра.
- Для собственного независимого питания квартиры либо дома.
- Как небольшие ГЭС-станции.
- Как альтернативный инверторный тип генератора (сварочный).
- Для создания бесперебойной системы питания от переменного тока.
Преимущества и недостатки генератора
К положительным качествам разработки принадлежат:
- Простая и быстрая сборка с возможностью избежать разборки электродвигателя и перемотки обмотки.
- Способность осуществлять вращение электротока с помощью ветряной либо гидротурбины.
- Применение устройства в системах мотор-генератор, чтобы преобразовать однофазную сеть (220В) на трехфазную (380 В).
- Способность использовать разработку в местах отсутствия электричества, применяя для раскрутки двигатель внутреннего сгорания.
Минусы:
- Проблематичность расчета емкости конденсата, который присоединяется к обмоткам.
- Сложно достичь максимальной отметки мощности, на которую способна самостоятельная разработка.
Самодельный генератор из асинхронного двигателя
Принцип работы
Генератор вырабатывает электрическую энергию при условии, что количество оборотов ротора несколько выше синхронной скорости. Самый простой тип вырабатывает порядка 1800 об/мин., учитывая, что уровень его синхронной скорости становится 1500 оборотов.
Его принцип действия основывается на переработке механической энергии в электроэнергию. Заставить ротор вращаться, и производить электричество можно с помощью сильного крутящегося момента. В идеальном варианте – постоянный холостой ход, который способен поддерживать одинаковую скорость движения.
Все виды моторов, работающие от силы непостоянного тока, называются асинхронными. У них магнитное поле статора кружится скорее, чем поле ротора, соответственно направляя его в сторону своего движения. Чтобы изменить электромотор на функционирующий генератор понадобится повысить скорость передвижения ротора, чтобы он не следовал за магнитным полем статора, а начал двигаться в другую сторону.
Получить подобный результат можно, подключив прибор к электросети, конденсатор с большой емкостью или целую группу конденсаторов. Они заряжаются и скапливают энергию от магнитных полей. Фаза конденсатора имеет заряд, который противоположен источнику тока мотора, из-за чего происходит замедление работы ротора, и начинается выработка тока статорной обмоткой.
Схема генератора
Схема очень простая и не нуждается в наличии специальных знаний и умений. Если запустить разработку не подключая ее к сети, начнется вращение и, после выхода на синхронную частоту, статорная обмотка станет образовывать электрическую энергию.
Прикрепив к ее зажимам специальную батарею из нескольких конденсаторов (С) можно получить опережающий емкостный ток, который будет создавать намагничивание. Емкость конденсаторов должна быть выше критического обозначения С0, которое зависит от габаритов и характеристик генератора.
В данной ситуации происходит процесс самостоятельного запуска, а на статорной обмотке монтируется система с симметричным трехфазным напряжением. Показатель создаваемого тока напрямую зависит от емкости для конденсаторов, а также характеристики машины.
Простейшая схема включения асинхронного двигателя
Делаем своими руками
Чтобы преобразовать электромотор в работоспособный генератор понадобиться применять неполярные конденсаторные батареи, поэтому электролитические конденсаторы лучше не использовать.
В трехфазном моторе подключить конденсатор можно по таким схемам:
- «Звезда» – дает возможность провести генерацию при меньшем количестве оборотов, но с более низким выходным напряжением;
- «Треугольник» – вступает в работу при большом количестве оборотов, соответственно вырабатывает больше напряжения.
Можно создать собственное устройство из однофазного мотора, но при условии, что он оборудован ротором с коротким замыканием. Чтобы запустить разработку следует воспользоваться фазосдвигающим конденсатором. Однофазный мотор коллекторного типа для переделки не подходит.
Внешний вид простейшего ветрогенератора с применением асинхронного двигателя
Необходимые инструменты
Создать собственный генератор несложно, главное иметь все необходимые элементы:
- Асинхронный мотор.
- Тахогенератор (прибор для измерения тока) или же тахометр.
- Емкость под конденсаторы.
- Конденсатор.
- Инструменты.
Пошаговое руководство
- Поскольку понадобится перенастроить генератор таки образом, чтобы скорость вращений превышала обороты мотора, первоначально необходимо подсоединить двигатель к электросети и завести. Затем с помощью тахометра определить скорость его вращений.
- Узнав скорость, следует к полученному обозначению прибавить еще 10%. Например, технический показатель мотора 1000 об/мин, то у генератора должно быть порядка 1100 об/мин (1000*0,1%=100, 1000+100=1100 об/мин).
- Следует подобрать емкость под конденсаторы. Чтобы определиться с размерами используйте данные таблицы.
Таблица конденсаторных емкостей
Мощность генератора КВ А | Холостой ход | Полная нагрузка | ||||
ЕмкостьМкф | Реактивная мощность Квар | COS=1 | COS=0.8 | |||
Емкость Мкф | Реактивная мощность Квар | Емкость Мкф | Реактивная мощность Квар | |||
2,0 | 28 | 1,27 | 36 | 1,63 | 60 | 2,72 |
3,5 | 45 | 2,04 | 56 | 2,54 | 100 | 4,53 |
5,0 | 60 | 2,72 | 75 | 3,4 | 138 | 6,25 |
7,0 | 74 | 3,36 | 98 | 4,44 | 182 | 8,25 |
10,0 | 92 | 4,18 | 130 | 5,9 | 245 | 11,1 |
15,0 | 120 | 5,44 | 172 | 7,8 | 342 | 15,5 |
Важно! Если емкость будет большой, то генератор начнет нагреваться.
Подберите соответствующие конденсаторы, которые смогут обеспечить требуемую скорость вращений. Будьте осторожны при установке.
Важно! Все конденсаторы должны быть заизолированы специальным покрытием.
Устройство готово и может использоваться в качестве источника электроэнергии.
Важно! Прибор с короткозамкнутым ротором создает высокое напряжение, поэтому если необходим показатель в 220В, следует дополнительно установить понижающий трансформатор.
Генератор на магнитах
Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.
Особенности создания генератора:
- Необходимо открутить обе крышки двигателя.
- Понадобится устранить ротор.
- Ротор необходимо проточить, сняв верхний слой нужной толщины (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
- Сделайте шаблон для круглых магнитиков на листе бумаги, исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см2. Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-200 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
- У вас должно выйти 4 группы полос, каждая по 5 полосок. Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
- Установив все магниты, следует залить ротор специальной эпоксидной смолой. Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
- Просушив ротор, его можно установить на место и прикрутить обе крышки двигателя.
- Провести испытания. Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.
Переделывать или нет
Чтобы определить, эффективна ли работа самостоятельно сделанного генератора, следует просчитать, насколько оправданы усилия по преобразованию устройства.
Нельзя сказать, что устройство очень простое. Двигатель асинхронного двигателя не уступает по сложности синхронному генератору. Единственное отличие отсутствие электрической цепи для возбуждения работы, но она заменяется батареей конденсаторов, что ничем не упрощает устройство.
Преимущество конденсаторов в том, что они не требуют дополнительного обслуживания, а энергию получают от магнитного поля ротора или производимого электрического тока. Из этого можно сказать, что единственный плюс от этой разработки – отсутствие необходимости в обслуживании.
Еще одно положительное качество – эффект клирфактора. Он заключается в отсутствии высших гармоник в генерируемом токе, то есть чем ниже его показатель, тем меньше расходуется энергии на обогрев, магнитное поле и иные моменты. У трехфазного электромотора этот показатель составляет около 2%, в то время когда у синхронных машин он минимум 15%. К сожалению, учет показателя в быту, когда в сеть включены разнотипные электроприборы, нереален.
Другие показатели и свойства разработки отрицательные. Он не способен обеспечивать номинальную промышленную частоту производимого напряжения. Поэтому устройства применяют вместе с выпрямительными машинами, а также для зарядки аккумулятора.
Генератор чувствителен к малейшим перепадам электричества. В промышленных разработках для возбуждения применяется аккумулятор, а в самодельном варианте часть энергии уходит на батарею конденсаторов. В случае, когда нагрузка на генератор выше номинала, ему не достаточно электричества для подзарядки, и он останавливается. В некоторых случаях применяют емкостные батареи, которые меняют свой динамический объем в зависимости от нагрузки.
Просчитать, учесть и компенсировать изменения тока, которые происходят случайно, к сожалению, нереально, поэтому устройству характерна нестабильная работа.
Блиц-советы
- Устройство очень опасно, поэтому не рекомендуется использовать напряжение в 380 В, разве что при крайней необходимости.
- Согласно с мерами предосторожности и техникой безопасности необходимо дополнительно установить заземление.
- Следите за тепловым режимом разработки. Ему не присуще работать при холостом ходу. Чтобы уменьшить тепловое воздействие следует хорошо подобрать конденсаторную емкость.
- Правильно просчитайте мощность производимого электрического напряжения. Например, когда в трехфазном генераторе функционирует лишь одна фаза, значит, мощь составляет 1/3 от общей, а если работает две фазы соответственно 2/3.
- Есть возможность косвенным образом контролировать частоту непостоянного тока. Когда прибор работает вхолостую выходящее напряжение начинает увеличиваться, и превышает показатели промышленного (220/380В) на 4-6%.
- Лучше всего изолировать разработку.
- Следует оснастить самодельное изобретение тахометром и вольтметром, чтобы фиксировать его работу.
- Желательно предусмотреть специальные кнопки для включения и выключения механизма.
- Уровень КПД будет понижаться на 30-50%, данное явление неизбежно.
Данная задача требует выполнения ряда манипуляций, которые должны сопровождаться четким пониманием принципов и режимов функционирования такого оборудования.
Что собой представляет и как работает
Эл двигатель асинхронного типа – это машина, в которой происходит трансформация электрической энергии в механическую и тепловую. Такой переход становится возможным благодаря явлению электромагнитной индукции, которая возникает между обмотками статора и ротора. Особенностью асинхронных двигателей является тот факт, что частота вращения этих двух ключевых его элементов отличается.
Конструктивные особенности типичного эл двигателя можно видеть на иллюстрации. И статор, и ротор представляют собой соосные круглого сечения объекты, изготавливаются путем набора достаточного количества пластин из специальной стали. Пластины статора имеют пазы на внутренней части кольца и при совмещении образуют продольные канавки, в которые наматывается обмотка из медной проволоки. Для ротора, ее роль играют алюминиевые прутки, они также вставляются в пазы сердечника, но с обеих сторон замыкаются стопорными пластинами.Во время подачи напряжения на обмотки статора, на них возникает и начинает вращаться электромагнитное поле. В связи с тем, что частота вращения ротора заведомо меньше, между обмотками наводится ЭДС и центральный вал начинает двигаться. Не синхронность частот связана не только с теоретическими основами процесса, но и с фактическим трением опорных подшипников вала, оно будет его несколько тормозить относительно поля статора.
Что такое электрический генератор?
Генератор представляет собой эл машину, преобразовывающую механическую и тепловую энергии в электрическую. С этой точки зрения он является устройством прямо противоположным по принципу действия и режиму функционирования к асинхронному двигателю. Более того, наиболее распространенным типом электрогенераторов являются индукционные.
Как мы помним из выше описанной теории, такое становится возможным только при разности оборотов магнитных полей статора и ротора. Из это следует один закономерный вывод (учитывая также принцип обратимости, упомянутый вначале статьи) – теоретически возможно сделать генератор из асинхронника, кроме того, это задача, решаемая самостоятельно за счет перемотки.
Работа двигателя в режиме генератора
Любой асинхронный электрогенератор используется в качестве некоего трансформатора, где механическая энергия от вращения вала двигателя, преобразуется в переменный ток. Такое становится возможным тогда, когда его скорость становится выше синхронной (порядка 1500 об/мин). Классическую схему переделки и подключения двигателя в режиме электрогенератора с выработкой трехфазного тока можно легко собрать своими руками:
Чтобы достичь такой стартовой частоты вращения, необходимо приложить довольно большой крутящий момент (например, за счет подключения двигателя внутреннего сгорания в бензогенераторе или крыльчатки в ветряке). Как только частота вращения достигает значения синхронной, начинает действовать конденсаторная батарея, создающая емкостный ток. За счет этого происходит самовозбуждение обмоток статора и выработка электрического тока (режим генерирования).
Необходимым условием устойчивой работы такого электрогенератора с промышленной частотой сети 50 Гц, является соответствие его частотных характеристик:
- Скорость его вращения должна превышать асинхронную (частоту работы самого двигателя) на процент скольжения (от 2 до 10%),
- Значение скорости вращения генератора должно соответствовать синхронной скорости.
Как самостоятельно собрать асинхронный генератор?
Обладая полученными знаниями, смекалкой и умением работать с информацией, можно своими руками собрать/переделать работоспособный генератор из двигателя. Для этого необходимо совершить точные действия следующей последовательности:
- Вычисляется реальная (асинхронная) частота вращения двигателя, который планируется применить в качестве электрогенератора. Для определения оборотов на подключенном к сети агрегате можно использовать тахограф,
- Определяется синхронная частота двигателя, которая одновременно будет асинхронной для генератора. Здесь учитывается величина скольжения (2-10%). Допустим, измерения показали скорость вращения на уровне 1450 об/мин. Требуемая частота работы электрогенератора будет составлять:
nГЕН = (1,02…1,1)nДВ= (1,02…1,1)·1450 = 1479…1595 об/мин,
- Подбор конденсатора необходимой емкости (используются стандартные сравнительные таблицы данных).
На этом можно и поставить точку, но если требуется напряжение однофазной сети 220В, то режим функционирования такого устройства потребует внедрения в приведенную ранее схему понижающего трансформатора.
Виды генераторов на базе двигателей
Покупка штатного готового эл генератора – удовольствие отнюдь не из дешевых и вряд ли по карману практическому большинству наших сограждан. Прекрасной альтернативой может послужить самодельный генератор, его можно собрать при достаточных познаниях в области электротехники и слесарного дела. Собранное устройство может успешно использоваться в качестве:
- Электрогенератора с самозапиткой. Пользователь может своими руками получить устройство для выработки электроэнергии с длительным периодом действия вследствие самостоятельной подпитки,
- Ветрогенератора. В качестве движителя, необходимого для пуска двигателя, используется ветряк, который вращается под воздействием ветра,
- Генератора на неодимовых магнитах,
- Трехфазного бензогенератора,
- Однофазного маломощного генератора на двигателях электроприборов и т. д.
Переделка своими руками стандартного мотора в действующее генерирующее устройство – занятие увлекательное и очевидно экономящее бюджет. Таким образом можно переделать обычный ветряк, соединив его с двигателем для автономной выработки энергии.
как переделать ветромотор своими руками
Не всегда покупка заводского генератора является целесообразной. Иногда проще использовать подручные материалы и инструменты, чтобы сделать его самостоятельно. Устройства мощностью до 1 кВт будет достаточно для подключения уличного освещения на даче или любых других бытовых приборов. Можно соорудить такой генератор из асинхронного двигателя.
Конструктивные особенности
Изготовление асинхронного генератора своими руками дает множество преимуществ. Это бесплатный источник электричества, который можно использовать в разных целях. К тому же сделать такую работу может даже начинающий мастер.
Конструктивно схема электрогенератора будет состоять из нескольких ключевых элементов:
- Ротор. Он имеет лопасти, турбину и хвост, который позволяет монтировать конструкцию против направления ветра.
- Мачта. Может быть с растяжками или без, которые нужны для установки ротора. Как правило, высота мачт составляет около 5—6 метров, хотя это зависит от ветров в определённом регионе.
- Аккумуляторы. Можно взять старые свинцовые агрегаты.
- Электрогенератор переменного тока. Для этого нужно подготовить двигатель для последующей переделки.
- Устройство с дисплеем, чтобы регулировать уровень заряда аккумулятора.
- Преобразователь электричества. Достаточно мощности в 1 тыс. Вт.
- Система заземления.
Принцип работы устройства
Принцип работы самодельных генераторов переменного тока на 220 В ничем не отличается от устройств, которые применяются в промышленных целях. И те и другие перерабатывают кинетическую энергию в электрическую.
В конструкциях, изготовленных своими руками, сила ветра крутит ветряк, который закреплён на роторе. Таким образом, кинетическая энергия передаётся генератору. Он и производит электроэнергию. В качестве генератора зачастую используется переделанный асинхронный двигатель.
Вырабатываемая генератором электроэнергия передаётся в аккумуляторы. Последние должны оснащаться модулем контроля заряда. Из аккумуляторов электроэнергия поступает в инвертор постоянного напряжения. Таким образом, можно создать переменное напряжение. Оно будет подходить для использования в бытовых целях, то есть с параметрами 220 В и 50 Гц.
Чтобы преобразовать переменное напряжение в постоянное, необходимо установить специальный контроллер. Именно благодаря ему аккумуляторы заряжаются. Иногда инверторы могут выполнять функцию источника бесперебойного питания. То есть в случае отсутствия централизованного электричества или перебоев в его работе асинхронный генератор переменного тока можно использовать для бытовых целей, питания различных приборов, работающих на 220 В.
Необходимые материалы и инструменты
Для изготовления мотора-генератора своими руками достаточно иметь антисинхронный двигатель. Остальные материалы можно найти в хозяйстве или на специализированных рынках радиотехники.
Могут понадобиться такие инструменты и материалы:
- Труба из стали с толщиной стенок не менее 3 мм и общим диаметром 6 см и больше. Высоту нужно подбирать индивидуально, в зависимости от скорости ветров в регионе. Но нужно помнить, что чем выше будет мачта, тем сильнее будет дуть ветер и, соответственно, вырабатываться больше электричества.
- Для изготовления лопастей можно использовать различные материалы, но лучше купить готовую деталь заводского производства, так как она будет идеально откалибрована. Самостоятельно изготовить её можно из труб или листов ПВХ, металла. Кроме этого, может подойти деревянная доска, профиль из стеклоткани.
- В качестве основы (опоры для мачты) подойдёт бетонная стяжка. С другой стороны, можно использовать металл или дерево. Нужно только помнить, что за надёжность конструкции отвечает основа. Если опора будет слабой, то мачта со временем рухнет от ветра.
- Дрель и набор свёрл.
- Ножовка.
- Разводной ключ.
- Рулетка.
- Лист металла, который будет служить материалом для изготовления мачты.
- Стальная рама. Она будет выполнять функцию основы для ветрогенератора, поворотного механизма и лопастей.
- Весь необходимый дополнительный инструмент, включая сварку, с помощью которого можно изготовить устройство.
- Хомуты для фиксации растяжек.
- Металлический трос с сечением 12 мм.
Характеристики ветрогенератора
Сначала необходимо определиться с желаемым итоговым результатом. Характеристики электродвигателя, выполняющего роль генератора, могут быть разными, и от этого зависит, сколько электроэнергии устройство будет вырабатывать за единицу времени.
Для производства среднего количества энергии генератор должен иметь приблизительно такие характеристики:
- Минимальная мощность установки — 1.3 кВт.
- Желательны неодимовые магниты в конструкции. Их функция заключается в обеспечении электромагнитной движущейся силы. Для этого может применяться и стальная гильза, которая устанавливается на ротор.
- Расположение магнитов на роторе должно соответствовать схеме. Это значит, что их полюсы должны быть развёрнуты в правильную сторону.
- Предварительно вал ротора нужно проточить и подогнать размеры под диаметр магнитов.
- При установке магнитов не всегда требуется переделывать обмотку. Если она состоит из проводов с большим сечением — ничего страшного, это только увеличит мощность. Самым лучшим вариантом обмотки будет устройство, имеющее шесть полюсов, провод с сечением не более 1.2 мм и максимум 24 витка на катушке.
Нюансы монтажа
Как правило, для изготовления ветро генератора из асинхронного двигателя своими руками применяется ветряк с тремя лопастями, которые в диаметре достигают двух метров. Если увеличить количество лопастей или их длину, то улучшение характеристик не произойдёт. Перед тем как выбирать модификацию устройства, тип, характеристики, габариты, необходимо осуществить правильный расчёт.
Для начала нужно рассчитать мощность самой мачты. Она должна устанавливаться на бетонную основу толщиной полметра. Предварительно следует вырыть яму, также учитывая при этом состояние и тип почвы.
Подключать к электросети каждый из приборов нужно в определённом порядке. Сначала идут аккумуляторы, а потом уже и ветрогенератор. Вращаться вал электромотора может либо горизонтально, либо вертикально. Как правило, устанавливают в вертикальном положении, это связано с конструктивными особенностями. Для обеспечения защиты от влаги генератор оборудуют прокладками или колпаком.
Для установки мачты необходимо выбрать открытое место, где будет максимальное количество ветров. Высота монтажа генераторного устройства должна быть достаточно большой. Переделанный асинхронник в идеальном варианте устанавливается на высоте 15 метров, но на практике мачты более 7 метров никто не использует.
В качестве основного источника электрического питания дома устройство лучше не использовать. Такое тихоходное устройство следует устанавливать для страховки от ситуаций с перебоями в электричестве или для экономии семейного бюджета, поскольку счёт за централизованную подачу существенно уменьшается.
Стоит отметить, что установки подобного типа можно использовать не во всех регионах. Минимальная скорость ветра для целесообразности использования должна постоянно держаться на отметке 7 метров за секунду. Если этот показатель меньше, то и электроэнергии будет вырабатываться очень мало.
Перед установкой проводятся необходимые расчёты. В некоторых ситуациях могут возникнуть сложности с обработкой узлов асинхронного движка. Ветряк нельзя изготовить без соответствующих модулей, а также проведения предварительных испытаний устройства. Подключение такого оборудования осуществить невозможно.
Переделка своими руками
Конечно, можно купить асинхронный генератор заводского производства, но вариант самостоятельного изготовления значительно экономнее и не занимает много времени. В процессе не должно возникнуть никаких сложностей даже у неопытного человека.
Для переделки коллекторного двигателя переменного тока необходимо подготовить некоторые инструменты. Выполнять работу нужно с учётом определённых правил:
- Основной особенностью работы устройства является более высокая скорость вращения вала генератора, нежели двигателя. Поэтому сначала следует выяснить количество оборотов мотора за определённое время. Сделать можно такую операцию тахометром.
- Зная этот показатель, к полученой цифре требуется прибавить 10%. То есть при оборотах мотора в 1200 оборотов за минуту генератор должен иметь вращение 1310 оборотов.
- Для производства однофазного устройства или трёхфазного на 380 вольт необходимо подготовить ёмкость для конденсаторов. Следует учесть, что все конденсаторы системы не должны отличаться фазами.
- Ёмкость лучше подбирать средних размеров. Если она будет очень большой, то моторчик может перегреваться.
- К выбору и установке конденсаторов нужно подойти особо тщательно. Они должны обеспечивать нужное вращение вала двигателя. Их изоляция также важна во избежание попадания влаги.
Генератор можно взять и с других устройств, к примеру, от автомобиля ВАЗ. После этого требуется переходить к его монтажу на мачту. Следует помнить, что в случае использования ротора, работающего в короткозамкнутом режиме, устройство будет вырабатывать ток с высоким напряжением.
Для получения 220 вольт следует оснастить устройство понижающим трансформатором. Устройство не нужно подключать к электросети, поскольку оно работает по методу самозапитки.
Таким образом, сделать генератор из асинхронного двигателя не является сложной задачей даже для начинающего мастера. Если учесть все возможности устройства, то можно сделать вывод, что в определённых ситуациях оно поможет с перебоями электричества, а при установлении очень мощного ветрогенератора будет основным источником энергии в доме.
Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.
Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.
Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.
Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.
Схема генератора из асинхронного двигателя
В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:
- Обмотка возбуждения, которая находится на специальном якоре.
- Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.
Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:
- Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
- Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
- Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
- Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.
При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.
Устройство генератора
Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:
- Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
- Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
- Контактные кольца имеют надежный крепеж к валу ротора.
- В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
- Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
- Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.
Изготовление генератора из двигателя
Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.
Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:
- Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
- Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
- Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
- Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
- Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
- Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
- После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
- Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
- Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
- Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
- Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
- Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.
После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.
Оценка уровня эффективности – выгодно ли это?
Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?
Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.
Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.
Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.
Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.
Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:
- В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
- Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
- При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.
Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.
Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.
Функционирование асинхронного двигателя как генератора
В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:
- После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
- Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
- Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.
Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.
Применение
В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:
- Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
- Работа в качестве ГЭС с небольшой выработкой.
- Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
- Выполнение основных функций сварочного генератора.
- Бесперебойное оснащение переменным током отдельных потребителей.
Советы по изготовлению и эксплуатации
Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:
- Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
- В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
- Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
- Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
- Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.
Самодельный генератор. Все способы своими руками
Способ 1
В Интернете нашел статью о том, как переделать генератор автомобиля на генератор с постоянными магнитами. Можно ли использовать этот принцип и переделать генератор своими руками из асинхронного электродвигателя? Возможно, что будут большие потери энергии, не такое расположение катушек.
Двигатель асинхронного типа у меня на напряжение 110 вольт, обороты – 1450, 2,2 ампера, однофазный. При помощи емкостей я не берусь делать самодельный генератор, так как будут большие потери.
Предлагается пользоваться простыми двигателями по такой схеме.
Если изменять двигатель или генератор с магнитами округлой формы от динамиков, то надо их устанавливать в крабы? Крабы – это две металлические детали, стоят на якоре снаружи катушек возбуждения.
Если магниты надевать на вал, то вал будет шунтировать магнитные силовые линии. Как тогда будет возбуждение? Катушка тоже расположена на валу из металла.
Если поменять подсоединение обмоток и сделать параллельное соединение, разогнать до оборотов выше нормальных значений, то получается 70 вольт. Где взять механизм для таких оборотов? Если перематывать его на уменьшение оборотов и ниже питание, то слишком упадет мощность.
Двигатель асинхронного типа с замкнутым ротором – это железо, которое залито алюминием. Можно взять самодельный генератор от автомобиля, у которого напряжение 14 вольт, сила тока 80 ампер. Это неплохие данные. Двигатель с коллектором на переменный ток от пылесоса или стиральной машины можно применить для генератора. На статор установить подмагничивание, напряжение постоянного тока снимать со щеток. По наибольшему ЭДС поменять угол щеток. Коэффициент полезного действия стремится к нулю. Но, лучше, чем генератор синхронного типа, не изобрели.
Решил испытать самодельный генератор. Однофазный асинхронный мотор от стиралки малютки крутил дрелью. Подключил к нему емкость 4 мкФ, получилось 5 вольт 30 герц и ток 1,5 миллиампера на короткое замыкание.
Не каждый электромотор можно использовать в качестве генератора таким методом. Есть моторы со стальным ротором, имеющие малую степень намагниченности на остатке.
Необходимо знать разницу между преобразованием электрической энергии и генерацией энергии. Преобразовать 1 фазу в 3 можно несколькими способами. Один из них – это механическая энергия. Если электростанцию отсоединить от розетки, то пропадает все преобразование.
Откуда возьмется движение провода с повышением скорости, ясно. Откуда магнитное поле будет для получения ЭДС в проводе – не понятно.
Объяснить это просто. Из-за механизма магнетизма, который остался, образуется ЭДС в якоре. Возникает ток в статорной обмотке, который замкнут на емкости.
Ток возник, значит, дает усиление на электродвижущую силу на катушках роторного вала. Появившийся ток дает усиление электродвижущей силы. Электроток статорный образует электродвижущую силу намного больше. Это идет до установления равновесия статорных магнитных потоков и ротора, а также дополнительные потери.
Размер конденсаторов рассчитывают так, что на выводах напряжение достигает номинального значения. Если оно маленькое, то снижают емкость, то повышают. Были сомнения по поводу старых моторов, которые якобы не возбуждаются. После разгона ротора мотора или генератора надо ткнуть быстро в любую фазу малым количеством вольт. Все придет в нормальное состояние. Зарядить конденсатор до напряжения равному половину емкости. Включение производить выключателем с тремя полюсами. Это относится с 3-фазному мотору. Такая схема используется для генераторов вагонов пассажирского транспорта, так как у них ротор короткозамкнутый.
Способ 2
Самодельный генератор сделать можно и по-другому. Статор имеет хитрую конструкцию (имеет специальное конструкторское решение), имеется возможность регулировки напряжения выхода. Я сделал генератор своими руками такого вида на строительстве. Двигатель брал мощностью 7 кВт на 900 оборотов. Обмотку возбуждения я подключил по схеме треугольника на 220 В. Запустил его на 1600 оборотов, конденсаторы были на 3 на 120 мкФ. Включались они контактором с тремя полюсами. Генератор действовал как выпрямитель с тремя фазами. С этого выпрямителя питалась электрическая дрель с коллектором на 1000 ватт, и пила дисковая на 2200 ватт, 220 В, болгарка 2000 ватт.
Приходилось изготавливать систему мягкого пуска, другой резистор с закороченной фазой через 3 секунды.
Для моторов с коллекторами это неправильно. Если в два раза повысить вращающую частоту, то уменьшится и емкость.
Также повысится и частота. Схема емкостей отключалась в автоматическом режиме, чтобы не использовать тор реактивности, не расходовать горючее.
Во время работы надо нажать на статор контактора. Три фазы разобрал их по ненужности. Причина кроется в высоком зазоре и увеличенном рассеивании поля полюсов.
Специальные механизмы с двойной клеткой для белки и косыми глазами для белки. Все-таки я получил с моторчика стиралки 100 вольт и частоту 30 герц, лампа на 15 ватт не хочет гореть. Очень слабая мощность. Надо мотор брать сильнее, или конденсаторов больше ставить.
Под вагонами используется генератор с ротором короткозамкнутым. Его механизм приходит от редуктора и на ременную передачу. Обороты вращения 300 оборотов. Он находится как дополнительный генератор нагрузки.
Способ 3
Можно сконструировать самодельный генератор, электростанцию на бензине.
Вместо генератора использовать 3-фазный асинхронный мотор на 1,5 кВт на 900 оборотов. Электродвигатель итальянский, подключаться может треугольником и звездой. Сначала я поставил мотор на основание с мотором постоянного тока, присоединил к муфте. Стал крутить двигатель на 1100 оборотов. Появилось напряжение 250 вольт на фазах. Подключил лампочку на 1000 ватт, напряжение сразу упало до 150 вольт. Наверное, это от фазного перекоса. На каждую фазу надо включать отдельную нагрузку. Три лампочки по 300 ватт не смогут снизить напряжение до 200 вольт, теоретически. Можно конденсатор поставить больше.
Обороты двигателя надо делать больше, при нагрузке не снижать, тогда питание сети будет постоянным.
Необходима значительная мощность, автогенератор такую мощность не даст. Если перемотать большой камазовский, то с него не выйдет 220 В, так как магнитопровод будет перенасыщен. Он был сконструирован на 24 вольта.
Сегодня собирался пробовать подсоединить нагрузку через 3-фазный блок питания (выпрямитель). В гаражах свет отключили, не получилось. В городе энергетиков систематически отключают свет, поэтому надо делать источник постоянного питания электричеством. Для электросварки есть навеска, подцепляется к трактору. Для подключения электрического инструмента нужен постоянный источник напряжения на 220 В. Была мысль сконструировать самодельный генератор своими руками, и инвертор к нему, но, на аккумуляторных батареях не долго можно проработать.
Недавно включили электричество. Подключал двигатель асинхронный из Италии. Поставил его с мотором бензопилы на раму, скрутил вместе валы, поставил муфту резиновую. Катушки соединил по схеме звезды, конденсаторы треугольником, по 15 мкФ. Когда запустил моторы, то на выходе питания не получилось. Присоединял конденсатор, заряженный к фазам, напряжение появилось. Свою мощность в 1,5 кВт двигатель выдал. При этом питающее напряжение снизилось до 240 вольт, на холостых оборотах было 255 вольт. Шлифмашинка от него нормально работала на 950 ватт.
Пробовал повысить обороты двигателя, но не получается возбуждение. После контакта конденсатора с фазой напряжение возникает сразу. Буду пробовать ставить другой двигатель.
Какие конструкции систем за границей производятся для электростанций? На 1-фазных понятно, что ротор владеет обмоткой, перекоса фаз нет, потому что одна фаза. В 3-фазных имеется система, которая дает регулировку мощности при подсоединении к ней моторов с наибольшей нагрузкой. Еще можно подсоединить инвертор для сварки.
В выходные хотел сделать самодельный генератор своими руками с подключением асинхронного двигателя. Удачной попыткой сделать самодельный генератор оказалось подключение старого двигателя с корпусом из чугуна на 1 кВт и на 950 оборотов. Мотор возбуждается нормально, с одной емкостью на 40 мкФ. А я установил три емкости и подключил их звездой. Этого хватило для запуска электродрели, болгарки. Хотел, чтобы получилась выдача напряжения на одной фазе. Для этого подключал три диода, полумост. Сгорели лампы люминесцентные для освещения, и подгорели пакетники в гараже. Буду наматывать трансформатор на три фазы.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.
Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:
- более высокую степень надёжности;
- длительный срок эксплуатации;
- экономичность;
- минимальные затраты на обслуживание.
Эти и другие свойства асинхронных генераторов заложены в их конструкции.
Устройство и принцип работы
Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.
Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.
Рис. 1. Ротор и статор асинхронного генератораАсинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.
Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).
Рис. 2. Асинхронный генератор в сбореПринцип действия
По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.
В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.
При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.
Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.
На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.
Рис. 3. Схема сварочного асинхронного генератораСуществуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.
Рисунок 4. Схема устройства с индуктивностямиОтличие от синхронного генератора
Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).
Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.
Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:
- ИБП;
- регулируемые зарядные устройства;
- современные телевизионные приёмники.
Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.
Классификация
Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.
На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.
Рис. 5. Типы асинхронных генераторовНаличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.
Область применения
Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.
Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.
Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.
Сфера применения довольно обширная:
- транспортная промышленность;
- сельское хозяйство;
- бытовая сфера;
- медицинские учреждения;
Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.
Асинхронный генератор своими руками
Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):
Рис. 6. Заготовка с наклеенными магнитамиВы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.
Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.
Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.
Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.
Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U2·C·10-6.
При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.
Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
Часть 2
Часть 3
Часть 4
Часть 5
Часть 6
Для упрощения подбора конденсаторов воспользуйтесь таблицей:
Таблица 1
Мощность альтернатора (кВт-А) | Ёмкость конденсатора (мкФ) на холостом ходу | Ёмкость конденсатора (мкФ) при средней нагрузке | Ёмкость конденсатора (мкФ) при полной нагрузке |
2 | 28 | 36 | 60 |
3,5 | 45 | 56 | 100 |
5 | 60 | 75 | 138 |
На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.
Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.
Рис. 7. Схема подключения конденсаторовСоветы по эксплуатации
Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.
Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.
При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.
Электродвигатели, генераторы, генераторы переменного тока и динамики объясняются с использованием анимации и схем. Это страница ресурса от Physclips, многоуровневого мультимедийного введения в физику (загрузите анимацию на этой странице). Двигатели постоянного токаПростой двигатель постоянного тока имеет катушку провода, которая может вращаться в магнитном поле. ток в катушке подается через две щетки, которые соприкасаются с разрезное кольцо.Катушка лежит в устойчивом магнитном поле. Приложенные силы на токоведущих проводах создают крутящий момент на катушке. Сила F на проволоке длиной L, несущей ток i в магнитном поле B — это iLB, умноженное на синус угла между B и i, который был бы равен 90 °, если поля были равномерно вертикальными. Направление F исходит справа Правило руки *, как показано здесь. Две силы, показанные здесь, равны и противоположны, но они смещены вертикально, поэтому они оказывают крутящий момент.(Силы на две другие стороны катушки действуют вдоль одной и той же линии и, следовательно, не имеют крутящего момента.)
Обратите внимание на влияние щеток на разрезное кольцо . Когда плоскость вращающейся катушки достигает горизонтали, щетки разорвут контакт (не так много потеряно, потому что это точка нулевого момента в любом случае — силы действовать внутрь).Момент импульса катушки переносит его за этот разрыв точка и ток затем течет в противоположном направлении, которое меняет направление магнитный диполь. Итак, после прохождения точки останова, ротор продолжает повернуть против часовой стрелки и начинает выравниваться в противоположном направлении. в следующий текст, я буду в основном использовать изображение «крутящий момент на магните», но знать, что использование щеток или переменного тока может привести к электромагнит, о котором идет речь, для изменения положения, когда ток меняет направление. Крутящий момент, создаваемый в течение цикла, изменяется в зависимости от вертикального разделения две силы. Поэтому он зависит от синуса угла между ось катушки и поля. Тем не менее, из-за разрезного кольца, это всегда в том же смысле. Анимация ниже показывает его изменение во времени, и вы можете остановить его на любом этапе и проверить направление, применяя правую руку править. Моторы и генераторыТеперь двигатель постоянного тока также является генератором постоянного тока.Посмотрите на следующую анимацию. катушка, разрезное кольцо, щетки и магнит — это то же оборудование, что и мотор выше, но катушка поворачивается, что генерирует ЭДС.Если вы используете механическую энергию, чтобы вращать катушку (N витков, область A) равномерно угловая скорость ω в магнитном поле B , это произведет синусоидальную ЭДС в катушке. ЭДС (ЭДС или электродвижущая сила — почти то же самое, что и напряжение). Пусть θ будет угол между B и нормалью к катушке, поэтому магнитный поток φ равен NAB.сов θ. Закон Фарадея дает: Анимация выше будет называться генератором постоянного тока. Как в двигателе постоянного тока, концы катушки соединяются с разрезным кольцом, две половины которого контактируют кистями. Обратите внимание, что кисти и разрезное кольцо «исправляют» произведенную ЭДС: контакты организованы так, что ток всегда будет течь в одном и том же направление, потому что, когда катушка поворачивает мимо мертвой точки, где щетки встретить зазор в кольце, соединения между концами катушки и внешние клеммы меняются местами.ЭДС здесь (пренебрегая мертвой точкой, которая обычно происходит при нулевом напряжении) | NBAω грех ωt |, как набросал.генератор переменного токаЕсли мы хотим AC, нам не нужно исправление, поэтому нам не нужны разделительные кольца. (Это Это хорошая новость, потому что разрезные кольца вызывают искры, озон, радиопомехи и дополнительный износ. Если вы хотите DC, часто лучше использовать генератор переменного тока и выпрямлять с диодами.)В следующей анимации две кисти касаются двух непрерывных колец, так что две внешние клеммы всегда подключены к одним и тем же концам катушки.В результате получается неопознанная синусоидальная ЭДС, заданная NBAω sin ωt, что показано в следующей анимации. Это генератор переменного тока. Преимущества переменного и постоянного тока генераторы сравниваются в разделе ниже. Мы видели выше, что двигатель постоянного тока также генератор постоянного тока. Аналогично, генератор переменного тока также является двигателем переменного тока. Тем не мение, это довольно негибкий. (Смотри как настоящие электромоторы работают более подробно.) Обратный ЭДСТеперь, как показывают первые две анимации, двигатели и генераторы постоянного тока могут быть то же самое.Например, моторы поездов становятся генераторами, когда поезд замедляется: они преобразуют кинетическую энергию в электрическую и власть обратно в сетку. Недавно несколько производителей начали производить автомобили рационально. В таких автомобилях также используются электродвигатели для управления автомобилем. используется для зарядки аккумуляторов, когда автомобиль остановлен — это называется регенеративным торможения.Итак, вот интересное следствие. Каждый двигатель — это генератор . Это правда, в некотором смысле, даже когда он функционирует как мотор.ЭДС это мотор генерирует называется обратно ЭДС . ПротивоЭДС увеличивается с скорость, из-за закона Фарадея. Итак, если двигатель не имеет нагрузки, он очень быстро и ускоряется до обратной эдс, плюс падение напряжения из-за потерь, равное напряжение питания. Обратный ЭДС можно рассматривать как «регулятор»: он останавливает двигатель бесконечно быстро (тем самым, избавляя физиков от смущения). Когда двигатель загружен, то фаза напряжения становится ближе к фазе тока (начинает выглядеть резистивным), и это кажущееся сопротивление дает напряжение.Итак, спина ЭДС требуется меньше, и двигатель вращается медленнее. (Добавить обратно ЭДС, которая является индуктивной, к резистивному компоненту, вам нужно добавить напряжения которые не в фазе. См AC схемы.) Катушки обычно имеют сердечники На практике (и в отличие от нарисованных нами диаграмм) генераторы и постоянный ток двигатели часто имеют сердечник с высокой проницаемостью внутри катушки, так что большие магнитные поля создаются скромными токами. Это показано слева в нижеприведенный рисунок статоров (магниты статические) являются постоянными магнитами. «Универсальные» моторыМагниты статора тоже могут быть выполнены в виде электромагнитов, как показано выше справа Два статора намотаны в одном направлении, чтобы дать поле в том же направлении, и ротор имеет поле, которое дважды меняет за цикл, потому что он связан с кистями, которые здесь опущены. Один Преимущество наличия статоров в двигателе состоит в том, что можно создать двигатель который работает от переменного или постоянного тока, так называемый универсальный двигатель .Когда вы едете такой двигатель с переменным током, ток в катушке меняется дважды в каждом цикле (помимо изменений от кистей), но полярность статоров изменения в то же время, поэтому эти изменения отменяются. (К сожалению, однако, есть еще кисти, хотя я спрятал их в этом наброске.) Для преимуществ и Недостатки статора с постоянным магнитом по сравнению со статорами с обмоткой см. ниже. Также увидеть больше на универсальных моторах. Сборка простого мотораЧтобы построить этот простой, но странный мотор, вам понадобятся два довольно сильных магнита. (редкоземельные магниты диаметром около 10 мм будут в порядке, как и более крупный стержень магниты), немного жесткой медной проволоки (не менее 50 см), два провода с крокодилом зажимы на каждом конце, батарея фонаря на шесть вольт, две банки безалкогольного напитка, два блока дерева, немного липкой ленты и острый гвоздь.Сделайте катушку из жесткого медного провода, чтобы он не нуждался в внешнем служба поддержки. Заверните от 5 до 20 витков в круг диаметром около 20 мм и два конца направлены радиально наружу в противоположных направлениях. Эти концы будут быть осью и контактами. Если провод имеет лаковую или пластиковую изоляцию, раздеть его на концах.
Двигатели переменного токаС помощью переменного тока мы можем менять направление поля без использования щеток.Это хорошие новости, потому что мы можем избежать искрения, производства озона и омическая потеря энергии, которую могут повлечь за собой щетки. Далее, потому что щетки контакт между движущимися поверхностями, они изнашиваются.Первое, что нужно сделать в двигателе переменного тока, это создать вращающееся поле. «Обычный» Переменный ток от 2 или 3-контактного разъема является однофазным переменным током — он имеет один синусоидальный Разность потенциалов генерируется только между двумя проводами — активным и нейтральным. (Обратите внимание, что заземляющий провод не проводит ток, кроме как в случае электрические неисправности.) С однофазным переменным током можно создать вращающееся поле генерируя два тока, которые не совпадают по фазе, используя, например, конденсатор. В показанном примере два тока сдвинуты по фазе на 90 °, поэтому вертикальное компонент магнитного поля является синусоидальным, а горизонтальный — косусоидальным, как показано. Это дает поле, вращающееся против часовой стрелки. (* меня попросили объяснить это: от простого кондиционера Теория, ни катушки, ни конденсаторы не имеют напряжения в фазе с электрический ток.В конденсаторе напряжение является максимальным, когда заряд закончил течь на конденсатор, и собирается начать течь. Таким образом, напряжение отстает от тока. В чисто индуктивной катушке падение напряжения является наибольшим, когда ток меняется наиболее быстро, что также когда ток равен нулю. Напряжение (падение) опережает ток. В моторных катушках фазовый угол меньше 90, потому что электрический энергия преобразуется в механическую энергию.) В этой анимации графики показывают изменение во времени течений в вертикальных и горизонтальных катушках. Участок поля составляющих B x и B y показывает, что векторная сумма этих двух полей является вращающейся поле. Основное изображение показывает вращающееся поле. Это также показывает полярность магнитов: как указано выше, синий представляет северный полюс, а красный — южный полюс. Если мы поместим постоянный магнит в этой области вращающегося поля, или если мы положим в катушке, ток которой всегда идет в одном направлении, то это становится синхронный двигатель .При широком диапазоне условий двигатель будет повернуть со скоростью магнитного поля. Если у нас много статоров, вместо только из двух пар, показанных здесь, то мы могли бы рассматривать его как шаговый двигатель: каждый импульс перемещает ротор на следующую пару задействованных полюсов. Пожалуйста, помните мое предупреждение об идеализированной геометрии: настоящие шаговые двигатели есть десятки полюсов и довольно сложной геометрии! Асинхронные двигателиТеперь, поскольку у нас есть изменяющееся во времени магнитное поле, мы можем использовать индуцированную ЭДС в катушке — или даже только вихревые токи в проводнике — чтобы сделать ротор магнит.Это верно, когда у вас есть вращающееся магнитное поле, вы можете просто вставьте проводник, и он получится. Это дает некоторые из преимуществ асинхронные двигатели : нет щеток или коммутатора, что упрощает производство, нет износ, отсутствие искр, образование озона и отсутствие потерь энергии с ними. Внизу слева приведена схема асинхронного двигателя. (Для фотографий реальные асинхронные двигатели и более подробную информацию, см. Индукционные двигатели).Анимация справа представляет короткозамкнутого двигателя .Белка клетка имеет (в этой упрощенной геометрии, во всяком случае!) два круглых проводника, соединенных на несколько прямых баров. Любые два стержня и дуги, которые соединяют их, образуют катушка — как показано синей чертой в анимации. (Только два из для простоты было показано много возможных схем.) Эта схема показывает, почему их можно назвать двигателями с короткозамкнутым ротором. Реальность другая: фотографии и подробности см. В разделе «Индукция». моторы. Проблема с асинхронными и короткозамкнутыми двигателями показана в этой анимации, что конденсаторы высокого значения и высокого напряжения дорогиеОдним из решений является двигатель с «затененным полюсом», но его вращающийся поле имеет некоторые направления, где крутящий момент мал, и он имеет тенденцию бежать назад при некоторых условиях. Самый лучший способ избежать этого использовать многофазные двигатели. Трехфазные асинхронные двигатели переменного токаЕдинственная фаза используется в домашних условиях для приложений с низким энергопотреблением, но у него есть некоторые недостатки. Во-первых, он выключается 100 раз в секунду (вы не обратите внимание, что флуоресцентные лампы мерцают на этой скорости, потому что ваши глаза слишком медленные: даже 25 кадров в секунду на телевизоре достаточно быстры, чтобы иллюзия непрерывного движения.) Во-вторых, это делает его неловким производить вращающиеся магнитные поля. По этой причине некоторая высокая мощность (несколько кВт) бытовые устройства могут потребовать трехфазной установки. Промышленные применения широко использовать три фазы, а трехфазный асинхронный двигатель является стандартным рабочая лошадка для мощных применений. Три провода (не считая земли) несут три возможных разности потенциалов, которые не в фазе с каждым другой на 120 °, как показано на анимации ниже. Таким образом три статора дают плавно вращающееся поле.(Посмотри это ссылка для получения дополнительной информации о трехфазном питании.)Если положить в такой набор статоров постоянный магнит, он становится синхронным трехфазный двигатель . Анимация показывает клетку белка, в которой для простота показана только одна из множества индуктированных токовых петель. С нет механическая нагрузка, она вращается практически в фазе с вращающимся полем. Ротор не должен быть короткозамкнутым: фактически любой проводник, который будет несущие вихревые токи будут вращаться, стремясь следовать вращающемуся полю.Такое расположение может дать асинхронный двигатель , способный к высокой эффективности, высокая мощность и высокий крутящий момент в диапазоне скоростей вращения. Линейные моторыНабор катушек может быть использован для создания магнитного поля, которое переводит, скорее чем вращается. Пара катушек в анимации ниже пульсирует от слева направо, поэтому область магнитного поля перемещается слева направо. постоянный или электромагнит будет стремиться следовать за полем. Так бы простой плита из проводящего материала, потому что вихревые токи, индуцированные в нем (не показаны) содержат электромагнит.В качестве альтернативы, мы могли бы сказать, что из Фарадея закон, ЭДС в металлической плите всегда вызывается, чтобы противостоять любым изменениям в магнитном потоке, и силы на токах, вызванных этой эдс, сохраняют поток в плите почти постоянный. (Вихревые токи не показаны в этой анимации.)В качестве альтернативы, мы могли бы иметь наборы катушек с электропитанием в подвижной части, и вызвать вихревые токи в рельсе. В любом случае мы получаем линейный двигатель, который был бы полезен, скажем, в поездах Маглев.(В анимации геометрия как обычно на этом сайте, высоко идеализирован, и только один вихревой ток показано.) Некоторые заметки о двигателях переменного и постоянного тока для мощных применений
Однофазные асинхронные двигатели имеют проблемы для комбинирования приложений высокая мощность и гибкие условия нагрузки. Проблема заключается в создании вращающееся поле. Конденсатор может быть использован для помещения тока в один набор Катушки впереди, но конденсаторы высокого напряжения высокого напряжения стоят дорого. Затенение вместо этого используются полюса, но крутящий момент мал под некоторыми углами. Если не можешь создать плавно вращающееся поле, и если нагрузка «скользит» далеко позади поле, то крутящий момент падает или даже меняет направление. В электроинструментах и некоторых приборах используются щеточные двигатели переменного тока. Щетки вводят потери (плюс искрение и производство озона). Полярности статора меняются местами 100 раз в секунду. Даже если материал сердечника выбран для минимизации гистерезиса потери («потери в железе»), это способствует неэффективности и возможности от перегрева. Эти моторы можно назвать «универсальными» двигатели, потому что они могут работать на постоянном токе. Это решение дешево, но сыро и неэффективно. Для приложений с относительно низким энергопотреблением, таких как электроинструменты, неэффективность обычно не является экономически важной. Если доступен только однофазный переменный ток, можно выпрямить переменный ток и использовать Двигатель постоянного тока. Сильноточные выпрямители раньше были дорогими, но становятся менее дорогой и более широко используемый. Если вы уверены, что понимаете принципы, пришло время перейти к Как настоящие электромоторы работы Джона Стори. Или продолжайте здесь, чтобы найти о громкоговорителях и трансформаторах. ГромкоговорителиГромкоговоритель — это линейный двигатель с небольшим диапазоном.Имеет один движущийся катушка, которая постоянно, но гибко подключена к источнику напряжения, так что есть нет кистей.
Громкоговорители как микрофоныНа рисунке выше вы можете видеть, что картонная диафрагма (диффузор громкоговорителя) соединена с катушкой провода в магнитном поле. Если звуковая волна перемещает диафрагму, катушка будет двигаться в поле, генерируя напряжение. Это принцип динамического микрофона — хотя в большинстве микрофонов диафрагма немного меньше, чем диффузор громкоговорителя. Итак, динамик должен работать как микрофон. Это хороший проект: все, что вам нужно — это динамик и два провода для подключения его к входу осциллографа или микрофонному входу вашего компьютера.Два вопроса: как вы думаете, что масса конуса и катушки будет делать с частотной характеристикой? Как насчет длины волны используемых вами звуков?
ТрансформаторыНа фотографии показан трансформатор, предназначенный для демонстрационных целей: первичная и вторичная катушки четко разделены и могут быть удалены и заменили, подняв верхнюю часть сердечника. Для наших целей, обратите внимание что катушка слева имеет меньше катушек, чем справа (вставки показать крупные планы). На схеме и схеме показан повышающий трансформатор. Чтобы сделать понижающий трансформатор, нужно только поместить источник справа и нагрузку слева. ( Важно Указание по безопасности : для настоящего трансформатора вы можете «только вставить его назад» только после проверки, что номинальное напряжение было соответствующим.) Итак, как же трансформатор работает?Сердцевина (затененная) обладает высокой магнитной проницаемостью, т.е. материалом, который образует магнитное поле намного легче, чем свободное пространство, благодаря ориентации атомных диполей.(На фотографии ядро из ламинированного мягкого железа.) В результате поле сосредоточено внутри ядра, и почти никакие полевые линии не покидают ядро. Если следует, что магнитные потоки φ через первичный и вторичный примерно равны, как показано. Из Фарадея закон, ЭДС в каждом витке, будь то в первичной или вторичной катушке, составляет -dφ / dt. Если пренебречь сопротивлением и другими потерями в трансформаторе, терминал напряжение равно ЭДС. Для N р оборотов первичного дает Для N с витков вторичной обмотки это дает Разделив эти уравнения, получим уравнение для трансформатора где r — коэффициент поворотов.А как насчет тока? Если мы пренебрегаем потерями в трансформатор (см. раздел ниже по эффективности), и если мы предположим, что напряжение и ток имеют одинаковые фазовые отношения в первичной и вторичный, то из сохранения энергии мы можем написать в устойчивом состоянии:
V p I p = V s I s , откуда I с / I р = N р / N с = 1 / р. В некоторых случаях уменьшение тока является целью упражнения. В силе линий электропередачи, например, потери мощности при нагреве проводов из-за их ненулевое сопротивление пропорционально квадрату тока.Таким образом, это экономит много энергии для передачи электроэнергии от электростанции в город при очень высоких напряжениях, так что токи только скромные. Наконец, и снова, предполагая, что трансформатор идеален, давайте спросим, что резистор во вторичной цепи «похож» на первичную цепь. В первичной цепи:
V p / I p = V с / r 2 I с = Р / р 2 . КПД трансформаторовНа практике реальные трансформаторы менее чем на 100% эффективны.
Подробнее о трансформаторах: генераторы переменного и постоянного токаТрансформаторы работают только на переменном токе, что является одним из больших преимуществ переменного тока. трансформеры позвольте 240 В понизиться до удобных уровней для цифровой электроники (всего несколько вольт) или для других приложений с низким энергопотреблением (обычно 12 В). трансформеры увеличьте напряжение для передачи, как указано выше, и уменьшите для безопасного распределение. Без трансформаторов, трата электроэнергии в распределении сети, уже высокие, были бы огромными.Есть возможность конвертировать напряжения в постоянном токе, но сложнее, чем в переменном. Кроме того, такие преобразования часто неэффективно и / или дорого. AC имеет еще то преимущество, что его можно использовать на двигателях переменного тока, которые обычно предпочтительнее двигателей постоянного тока для применений с высокой мощностью.Другие ресурсы от насНекоторые внешние ссылки на веб-ресурсы по двигателям и генераторам
Какая разница между постоянными магнитами а наличие электромагнитов в двигателе постоянного тока? Это делает его более эффективным или более могущественный? Или просто дешевле? Когда я получил этот вопрос на Высшем Школьная доска объявлений по физике, я отправил ее Джону Этаж, а также выдающийся астроном, строитель электромобилей.Вот его ответ: В целом, для небольшого мотора гораздо дешевле использовать постоянные магниты. Материалы с постоянными магнитами продолжают улучшаться и стали такими недорогими что даже правительство будет присылать вам бессмысленные магниты на холодильник через почту. Постоянные магниты также более эффективны, потому что нет питания тратится впустую, создавая магнитное поле. Так зачем использовать рану Двигатель постоянного тока? Вот несколько причин:
Мнения, выраженные в этих примечаниях, являются моими и не обязательно отражают политика Университета Нового Южного Уэльса или Школы физики. анимации были сделаны Джорджем Hatsidimitris. Джо Wolfe / [email protected]/ 61-2-9385 4954 (UT + 10, +11 октябрь-март) |
Как работают электродвигатели?
Крис Вудфорд. Последнее обновление: 14 мая 2019 года.
Щёлкните по переключателю и получите мгновенную власть — как любили бы наши предки электродвигатели! Вы можете найти их во всем, от электропоезда с дистанционным управлением автомобили — и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы есть в комнате с тобой прямо сейчас? Есть, вероятно, два в твоем компьютере для начала, крутишь ездить и еще один привод вентилятора охлаждения.Если вы сидите в спальне, вы найдете моторы в фенах и многие игрушки; в ванной они оснащены вытяжными вентиляторами и электробритвами; на кухне моторы есть практически в каждом приборе — от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя как одни из величайших изобретения всех времен. Давайте разберем некоторых и выясним, как они работай!
Фото: даже маленькие электродвигатели на удивление тяжелые.Это потому, что они заполнены плотно намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Медная вещь к Передняя часть оси с прорезями в ней является коммутатором, который удерживает двигатель вращается в том же направлении (как описано ниже).
Электричество, магнетизм и движение
Основная идея электродвигателя очень проста: вы включаете в него электричество с одной стороны и ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то.Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, мы имеем вернуться в прошлое почти на 200 лет.
Предположим, вы берете длину обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной, постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод прыгнет вкратце. Удивительно, когда вы видите это в первый раз. Это как волшебство! Но есть совершенно научный объяснение.Когда электрический ток начинает ползти по проводу, он создает магнитное поле вокруг него. Если вы поместите провод возле постоянного магнит, это временное магнитное поле взаимодействует с постоянным магнитное поле. Вы узнаете, что два магнита расположены рядом друг с другом либо привлекать, либо отталкивать. Точно так же временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку прыгать.
Правило левой руки Флеминга
Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (помощь памяти), называемая правилом левой руки Флеминга (иногда Мотор называется правилом).
Протяните большой, первый и второй пальцы левой руки
рука, так что все три под прямым углом. Если вы указываете пальцем Секонд
в направлении течения
(который течет от положительного к
отрицательная клемма аккумулятора), и первый
палец в
направление поля (которое
течет с севера на южный полюс
магнит), твоя чёрт будет
показать направление, в котором провод
Ходы.
Это …
- Первый палец = Поле
- SeCond finger = Текущий
- ThuMb = движение
Быстрое слово о текущем
Если я вас смущаю, говоря, что ток течет от положительного к отрицательному, это просто случается историческое соглашение.Такие люди, как Бенджамин Франклин, который помог выяснить тайна электричества еще в 18 веке, полагал, что это был поток положительных зарядов, так что это перешло от положительного к отрицательному. Мы называем эту идею обычным током и до сих пор его используют в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению к обычному току.Когда вы пытаетесь выяснить вращение двигателя или генератора, обязательно помните, что ток означает условного тока , а не поток электронов.
Как работает электродвигатель — в теории
Фото: электрика ремонтирует электродвигатель на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.
Связь между электричеством, магнетизмом и движением была изначально обнаружен в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это основная наука об электромоторе.Но если мы хотим превратить это удивительное научное открытие в более практичное немного технологий для питания наших электрических косилок и зубных щеток, мы должны сделать это немного дальше. Изобретателями, которые это сделали, были англичане Майкл Фарадей (1791–1867) и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878). Вот как они достиг их блестящего изобретения.
Предположим, что мы сгибаем наш провод в квадратную U-образную петлю, так что есть фактически два параллельных провода, проходящие через магнитное поле.Один из них отнимает у нас электрический ток через провод, а другой один возвращает ток снова. Потому что ток течет в В противоположных направлениях в проводах левое правило Флеминга говорит нам два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов будет двигаться вверх и другой будет двигаться вниз.
Если бы катушка проволоки могла продолжать движение вот так, она бы вращалась постоянно — и мы были бы на пути к созданию электрического двигатель.Но это не может произойти с нашей нынешней установкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко достаточно, что-то еще случится. Как только катушка достигла вертикали положение, оно перевернется, поэтому электрический ток течь через него в обратном направлении. Теперь силы на каждом сторона катушки будет обратная. Вместо того, чтобы постоянно вращаться в в том же направлении, он будет двигаться в том направлении, в котором он только что пришел! Представьте себе электричку с таким мотором: перетасовывать назад и вперед на месте, даже не собираясь везде.
Как работает электродвигатель — на практике
Есть два способа преодолеть эту проблему. Одним из них является использование своего рода электрический ток, который периодически меняет направление, которое известно в качестве переменного тока (переменного тока). В виде маленьких, с батарейным питанием моторы, которые мы используем по дому, лучшее решение — добавить компонент называется коммутатором к концы катушки. (Не беспокойтесь о бессмысленных технических Название: это слегка старомодное слово «коммутация» немного похоже на слово «коммутировать».Это просто означает, чтобы измениться вперед и назад в том же путь, которым добираются, означает путешествовать назад и вперед.) В его самой простой форме коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его работа заключается в том, чтобы инвертировать электрический ток в катушке каждый раз, когда Катушка вращается через пол оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от батареи подключается к электрическим клеммам двигателя. Они подают электроэнергию в коммутатор через пару свободных разъемы, называемые кистями, сделали либо из кусочков графита (мягкий карбон, похожий на карандаш «свинец») или тонкие отрезки пружинящего металла, который (как название подсказывает) «кисть» против коммутатора.С коммутатор, когда электричество течет по цепи, Катушка будет постоянно вращаться в одном и том же направлении.
Работа: упрощенная схема деталей в электрическом двигатель. Мультработа: как это работает на практике. Обратите внимание, как коммутатор меняет ток каждый раз, когда катушка поворачивается наполовину. Это означает, что сила на каждой стороне катушки всегда толкает в том же направлении, что удерживает катушку, вращающуюся по часовой стрелке.
Простой экспериментальный двигатель, подобный этому, не способен много сил.Мы можем увеличить поворотную силу (или крутящий момент) что Мотор можно создать тремя способами: либо мы можем иметь больше мощный постоянный магнит, или мы можем увеличить электрический ток течет через провод, или мы можем сделать катушку, чтобы она имела много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки. На практике двигатель также имеет постоянный магнит, изогнутый в круглая форма, так что он почти касается катушки проволоки, которая вращается внутри него. Чем ближе магнит и катушка, тем больше сила, которую может создать мотор.
Несмотря на то, что мы описали несколько различных частей, вы можете представить себе, что двигатель состоит из двух основных компонентов:
- По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому он называется статором двигателя.
- Внутри статора есть катушка, установленная на оси, которая вращается с большой скоростью — и это называется ротором. Ротор также включает в себя коммутатор.
Универсальные моторы
Подобные двигатели постоянного токаотлично подходят для игрушек с батарейным питанием (таких как модельные поезда, радиоуправляемые вагоны или электробритвы), но вы не найдете их во многих бытовых приборах.Небольшие бытовые приборы (такие как кофемолки или электрические блендеры), как правило, используют так называемые универсальные двигатели , которые могут работать от переменного или постоянного тока. В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы вводите:
- При подаче постоянного тока электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении.Коммутатор меняет ток катушки каждый раз, когда катушка переворачивается, как в обычном двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
- Однако при подаче переменного тока ток, протекающий через электромагнит, и ток, протекающий через катушку , и , обращаются в обратном направлении, точно в шаге, поэтому сила на катушке всегда в одном и том же направлении, и двигатель всегда вращается в любом направлении по часовой стрелке. или против часовой стрелки. А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда находятся в шаге, фактически не имеет значения, в каком положении находится коммутатор в любой данный момент.
Анимация: как работает универсальный двигатель: источник питания питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как обычный двигатель постоянного тока, как указано выше. При использовании источника переменного тока магнитное поле и ток катушки меняют направление каждый раз, когда ток питания меняется на противоположный. Это означает, что сила на катушке всегда указывает одинаково.
Фото: внутри типичного универсального мотора: основные части внутри мотора среднего размера от кофемолки, которая может работать от постоянного или переменного тока.Серый электромагнит по краю — это статор (статическая часть), который питается от катушек оранжевого цвета. Обратите внимание также на щели в коммутаторе и угольные щетки, толкающие его, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения, а не постоянного тока низкого напряжения или бытового переменного тока умеренно низкого напряжения. который питает универсальные двигатели.
Другие виды электродвигателей
В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, соединенную с источником электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают несколько иначе: они пропускают переменный ток через противоположные пары магнитов, создавая вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это крутиться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его, чтобы статор был эффективно разложен на длинной непрерывной гусенице, ротор мог катиться вдоль него по прямой линии. Этот оригинальный дизайн известен как линейный двигатель, и вы найдете его в таких вещах, как заводские машины и плавучие железные дороги «маглев».
Другой интересный дизайн — бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются друг от друга, при этом несколько статических железных катушек находятся в центре, а постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой.Вы можете прочитать больше в нашей основной статье на моторы эпицентра деятельности. Шаговые двигатели, которые поворачиваются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.