Генераторы переменного тока устройство и принцип действия: Устройство и принцип работы генератора переменного тока — урок. Физика, 9 класс.

Содержание

Устройство и принцип работы генератора переменного тока — урок. Физика, 9 класс.

Проведём опыт по получению индукционного тока. Будем вдвигать и выдвигать постоянный магнит в катушку, соединённую с гальванометром.

 

 

Рисунок \(1\). Опыт по получению индукционного тока

 

Можно наблюдать отклонение гальванометра в одну и другую стороны. Это значит, что по катушке течёт индукционный ток, у которого изменяется как модуль, так и направление с течением времени. Такой ток называется переменным током.


Переменный ток создаётся и в замкнутом контуре изменяющимся магнитным потоком, пронизывающим его площадь. Изменение магнитного потока связано с изменением индукции магнитного поля. Величину магнитного потока можно изменить, поворачивая контур (или магнит), то есть меняя его ориентацию по отношению к линиям магнитной индукции.

 

 

Рисунок \(2\). Изменение магнитного потока при вращении постоянного магнита


Этот принцип получения переменного электрического тока используется в механических индукционных генераторах — устройствах, преобразующих механическую энергию в электрическую. Основные части: статор (неподвижная часть) и ротор (подвижная часть).

 

 

Рисунок \(3\). Схема генератора: \(1\) — корпус; \(2\) — статор; \(3\) — ротор; \(4\) — скользящие контакты (щётки, кольца)


В промышленном генераторе статором является цилиндр с прорезанными внутри него пазами, в которые уложен витками провод из меди с большой площадью поперечного сечения (аналогично рамке). Переменный магнитный поток в таких витках порождает переменный индукционный электрический ток.


Ротор — это постоянный магнит или электромагнит. Электромагнит представляет собой обмотку с железным сердечником внутри, по которому течёт постоянный электрический ток. Он подводится от внешнего источника тока через щётки и кольца.

 

Какая-либо механическая сила (паровая или водяная турбина) вращает ротор. Вращающееся одновременно с ним магнитное поле образует изменяющийся магнитный поток в статоре, в котором возникает переменный электрический ток.

 

 

Рисунок \(4\). Устройство гидрогенератора: \(1\) — статор; \(2\) — ротор; \(3\) — водяная турбина

Генератор переменного тока — Генератор переменного тока состоит он из неподвижной части, которая называется статор или якорь и вращающейся части — ротор или индуктор

В 1832-м году неизвестным изобретателем был создан первый однофазный синхронный многополюсный генератор переменного тока. Но в самых первых электронных устройствах применялся только постоянный ток, в то время как переменный ток долгое время не мог найти своего практического применения. Тем не менее, вскоре выяснили, что намного практичнее использовать не постоянный, а переменный ток, то есть тот ток, который периодически меняет свое значение и направление. Преимущества переменного тока, состоят в том, что его удобнее вырабатывать при помощи электростанций, генераторы переменного тока экономичнее и проще в обслуживании, чем аналоги, работающие на постоянном токе. Поэтому были собраны надежные электрические двигатели переменного тока, которые сразу нашли свое широкое применение в промышленных и бытовых сферах. Надо отметить, что благодаря существованию переменного тока, его особенным физическим явлениям, смогли появиться такие изобретения, как радио, магнитофон и прочая автоматика и электротехника, без которой сложно представить современную жизнь.

Устройство генератора переменного тока

Генератор переменного тока – это устройство, которые преобразует механическую энергию, в электрическую.

Состоит он из неподвижной части, которая называется статор или якорь (см. рисунок) и вращающейся части — ротор или индуктор. В генераторе переменного тока ротор — это электромагнит, который обеспечивает магнитное поле, которое передается на статор. На внутренней поверхности статора есть осевые впадины, так называемые пазы, в которых расположена обмотка переменного тока (проводник). Статор генератора изготавливается из 0.35 мм спрессованных стальных листов, которые изолированы покрытой лаком пленкой. Эти листы устанавливаются в станине устройства. Ротор крепится внутри статора и вращается посредством двигателя.

Вал – одна из деталей, для передачи крутящего момента под действием расположенных на нём опор. На общем валу с генератором, располагается так называемый возбудитель постоянного тока, который питает постоянным током обмотки ротора. Аккумулятор в генераторе переменного тока выполняет функции стартерной батареи, которая имеет свойство накапливать и хранить электроэнергию при нехватке в отсутствии работы двигателя и при нехватке мощности, которую развивает генератор.

Применение генераторов переменного тока в жизни

В течении последних лет, популярность использования электростанций и генераторов переменного тока значительно возросла. Используются они как в промышленных, так и в бытовых сферах. Промышленные генераторы являются наилучшим вариантом для использования на производстве, в больницах, школах, магазинах, офисах, бизнес центрах, а так же на строительных площадках, значительно упрощая строительство в тех зонах, где электрификация полностью отсутствует. Бытовые генераторы, более практичные, компактные и идеально подходят для использования в коттедже и загородном доме.

Генераторы переменного тока широко применяются в различных областях и сферах благодаря тому, что могут решить множество важных проблем, которые связаны с нестабильной работой электричества или полным его отсутствием.

Обслуживание

Практически любая дизельная электростанция в независимости от ее мощности и производителя имеет 2 главные составляющие. Это генератор переменного тока и двигатель внутреннего сгорания. Так как поддерживать данные узлы необходимо в рабочем исправном состоянии, в ходе их эксплуатации нужен определенный перечень обязательных работ по их техническому обслуживанию. К сожалению, подавляющее большинство владельцев считает, что можно ограничиться лишь своевременной заменой масла и фильтра, при этом «техническое обслуживание» можно провести и самостоятельно. Но результатом этого зачастую становится полный отказ работы устройства. В результате чего, не сложно сделать вывод, что проще и дешевле, доверить оборудование профессионалам, которые благодаря знаниям и огромному опыту, смогут увеличить срок службы ДГУ и сократить расходы при аварийных ситуациях.


устройство и принцип работы генераторов

Переменный ток промышленной частоты вырабатывается на электростанциях специально предназначенными для этих целей электромашинными синхронными генераторами. Принцип действия этих агрегатов основан на явлении электромагнитной индукции. Производимая паровой или гидравлической турбиной механическая энергия преобразовывается в электроэнергию переменного тока.

Вращающейся частью привода или ротором является электрический магнит, который и передает вырабатываемое магнитное поле на статор. Это – внешняя часть устройства, состоящая из трех катушек с проводами.

Передача напряжения осуществляется через коллекторные щетки и кольца. Медные роторные кольца вращаются одновременно с коленвалом и ротором, в результате чего к ним прижимаются щетки. Те, в свою очередь, остаются на месте, позволяя электротоку передаваться от неподвижных элементов генератора его вращающейся части.

Произведенное таким образом магнитное поле, вращаясь поперек статора, производит электропотоки, которые и осуществляют зарядку аккумулятора.

Однако для передачи импульса от генератора переменного тока к аккумулятору постоянного используется дополнительный диодный мост, который располагается в задней части устройства. Диод представляет собой деталь с двумя контактами, через которые в одном направлении проходит ток. А мост, как правило, состоит из 10 таких элементов.

Диоды делятся на две группы:

  • Основные — необходимы для выпрямления напряжения и соединены с выводами статора.
  • Дополнительные — направляют мощность на регулятор напряжения и контролирующую зарядку лампу.

Последняя крайне необходима в генераторе, потому что является контролирующим исправность привода контуром. Без лампы генератор переменного тока ни в коем случае не запустится на стандартных оборотах.

Для большего понимания, советуем
посмотреть популярные модели дизельных генераторов >>

Видео: принцип работы генератора переменного тока

Виды генераторов переменного тока

В зависимости от вырабатываемой энергии, генераторы подразделяются по мощности – на высокомощные и маломощные.

В быту наиболее оптимальными считается маломощное генераторное оборудование. Чаще всего, такие генераторы используют в качестве резервного электроснабжения. Также пользуются популярностью сварочные генераторы переменного тока. Однако с бензиновыми моделями следует проявлять крайнюю осторожность, используя их только по назначению. Иначе их моторесурс значительно сокращается. Ремонт такого оборудования, как и замена на новое устройство, сопряжен с внушительными финансовыми затратами.

Рекомендуем следующие модели генераторов переменного тока:

С целью создания автономного электроснабжения загородного участка, дома либо коттеджа в большинстве случаев применяется дизельный генератор. Данный агрегат рассчитан на выполнение таких задач, которые соответствуют его моторесурсу и мощности. Благодаря уникальным техническим характеристикам дизельгенераторы могут работать без перерывов в течение нескольких лет, что также положительно влияет на популярность этого оборудования.

Автомобильные генераторы переменного тока.


Генераторы переменного тока




Развитие автомобилестроения сопровождалось ростом требований к безотказности и увеличению срока службы автомобилей, комфорту их эксплуатации, снижению эксплуатационных затрат на техническое обслуживание и ремонт, а также соответствие все возрастающим требованиям безопасности движения.
В связи с этим появилась необходимость существенного увеличения мощности и срока службы автомобильных генераторов, как основных источников электрического тока, улучшения их эксплуатационных характеристик и снижения эксплуатационных затрат. Появилась необходимость уменьшения габаритных размеров и массы генераторов, как, впрочем, и многих других агрегатов и устройств, что позволяло гибко проектировать компоновку и внешний дизайн автомобилей, а также получать экономию дорогостоящих металлов.

Удовлетворение перечисленных требований путем совершенствования конструкции и технологии производства генераторов постоянного тока, учитывая низкую надежность и малый срок службы щеточно-коллекторного узла, а также габаритные размеры и массу генераторов постоянного тока, стало неосуществимо. Поэтому было выбрано новое направление в развитии автомобильных генераторов – создание генераторов переменного тока.

Название «генератор переменного тока» несколько условно, и касается в основном особенностей конструкции генератора, поскольку они оснащены встроенными полупроводниковыми выпрямителями и питают потребители постоянным (выпрямленным) током.
В генераторах постоянного тока таким выпрямителем является щеточно-коллекторный узел, осуществляющий выпрямление переменного тока, полученного в обмотках якоря.
Развитие полупроводниковой техники позволило применить в генераторах переменного тока более совершенный и надежный выпрямитель на полупроводниковых диодах, в котором отсутствовали механические детали и узлы, подверженные износу и отказам.

***

Преимущества и недостатки генераторов переменного тока

К основным преимуществам генераторов переменного тока по сравнению с генераторами постоянного тока можно отнести следующие свойства:

  • при одинаковой мощности их масса в 1,8…2,5 раза меньше, причем примерно в три раза меньше расходуется ценного цветного металла – меди;
  • при одинаковых габаритах генераторы переменного тока выдают большую мощность;
  • ток начинает вырабатываться при меньшей частоте вращения ротора;
  • проще схема и конструкция регулирующего устройства вследствие отсутствия элемента ограничения силы тока и реле обратного тока;
  • проще и надежнее конструкция токосъемного устройства, особенно, в бесконтактных генераторах переменного тока;
  • меньше эксплуатационные затраты из-за высокой надежности работы и увеличения срока службы.

С практической точки зрения преимущества генератора переменного тока проявляются в том, что вырабатываемый им ток снимается с неподвижных обмоток, закрепленных на корпусе-статоре. Обмотка возбуждения, выполненная на вращающемся роторе, существенно легче неподвижных обмоток статора, поэтому ротор можно вращать с большей скоростью, не опасаясь явлений дисбаланса вращающихся масс. Да и ток возбуждения в этом случае подвести проще, поскольку он небольшой. В результате щетки и контактные кольца служат дольше.

Кроме того, генератор постоянного тока, в отличие от генератора переменного тока, начинает вырабатывать ток при относительно большой частоте вращение якоря. По этой причине для его полноценного функционирования, например, на холостых оборотах двигателя, необходимо значительное передаточное число привода, что в дальнейшем (на рабочей частоте коленчатого вала) может привести к дисбалансу (из-за значительной массы якоря), износу подшипников и элементов привода генератора.

Определенное преимущество генераторов переменного тока проявляется, также, в том, что при необходимости получения высокого напряжения (например, для питания высоковольтных потребителей), достаточно использовать небольшой трансформатор. Увеличить напряжение постоянного тока таким способом не удастся. Несмотря на то, что в автомобильных бортовых сетях необходимость получения высокого напряжения возникает крайне редко, такую возможность нельзя сбрасывать со счетов.

Основные недостатки генератора переменного тока — необходимость выпрямления вырабатываемого им тока, а также некоторое рассеивание мощности в окружающих ротор и статор металлических деталях из-за возникновения вихревых и реактивных токов в переменном электромагнитном поле. Тем не менее, достоинства генераторов переменного тока с лихвой окупают отмеченные недостатки.

Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры, и их приходилось размещать отдельно от генератора, в местах, где обеспечивалось хорошее охлаждение. Для присоединения такого выпрямителя к генератору требовалась дополнительная проводка.
Кроме того, селеновые выпрямители были недостаточно теплостойки, и допускали максимальную рабочую температуру не выше +80 ˚С.
По этим причинам в дальнейшем от селеновых выпрямителей отказались, и стали применять кремниевые диоды, которые были менее габаритны, обладали хорошей теплостойкостью, что позволяло размещать их непосредственно в генераторе.

На смену вибрационным регуляторам напряжения пришли сначала контактно-транзисторные, а затем бесконтактные на дискретных элементах и бесконтактные интегральные регуляторы.
Габаритные размеры интегральных регуляторов позволяют встраивать их в генератор, который совместно со встроенными регулятором и выпрямительным блоком называется генераторной установкой.

***

Принципиальное устройство генератора переменного тока

На рис. 1 представлена упрощенная схема генератора переменного тока, который состоит из двух основных частей: статора с неподвижной обмоткой, в которой индуцируется переменный ток, и ротора, создающего магнитное поле.

Полюсы ротора поочередно проходят мимо неподвижных катушек статора, размещенных на пазах с внутренней стороны корпуса генератора. При этом изменяется направление магнитного потока, а, следовательно, и направление индуцируемой в катушке ЭДС.

Обычно число полюсов магнита на роторе и число катушек в корпусе позволяет получить трехфазный ток. У трехфазных генераторов обмотки имеют одну общую точку, где соединяются их концы, поэтому такая схема соединения называется «звездой», а общая точка обмотки – нулевой точкой.

Вторые концы обмоток присоединяют к двухполупериодному выпрямителю. Магнитное поле ротора может создаваться постоянным магнитом или электромагнитом. В последнем случае к обмотке возбуждения электромагнита подводится постоянное напряжение.

Применение в роторе электромагнитов усложняет конструкцию генератора, так как необходимо подводить напряжение к вращающейся детали – ротору, но в этом случае возможно регулирование напряжения изменением частоты вращения ротора. Кроме того, магнитные свойства постоянных магнитов существенно зависят от их температуры.

Более подробно устройство и работа автомобильного генератора переменного тока приведены на следующей странице.

***



Бесконтактные генераторы с электромагнитным возбуждением

Для автомобильных генераторов надежность и срок службы определяются тремя факторами:

  • качеством электрической изоляции;
  • качеством подшипниковых узлов;
  • надежностью токосъемных (щеточно-контактных) устройств.

Первые два фактора зависят от уровня развития смежных производств. Третий фактор может быть исключен путем использования бесконтактных генераторов, имеющих более высокую надежность и ресурс, чем контактные генераторы, использующие щеточно-контактные токосъемные устройства. Это стимулировало создание автомобильных бесконтактных генераторов переменного тока с электромагнитным возбуждением – индукторных генераторов и генераторов с укороченными полюсами.

К бесконтактным генераторам с электромагнитным возбуждением относятся индукторные генераторы и генераторы с укороченными клювами. Работает генератор следующим образом. Обмотка возбуждения, по которой протекает постоянный ток, создает в магнитной системе поток, который при вращении ротора изменяется по величине без изменения знака. Этот поток замыкается, проходя через воздушные зазоры между валом и элементами ротора, зубцы которого выполнены в виде звездочки, воздушный зазор между ротором и статором, магнитопровод статора и крышку генератора.

Изменение магнитного потока в якоре при вращении ротора происходит за счет изменения магнитного сопротивления воздушного зазора между зубцами статора и ротора.
Магнитный поток Ф у индукторных генераторов пульсирующий. Магнитный поток в воздушном зазоре периодически изменяется от Фmах, когда оси зубцов ротора и статора совпадают, до Фmin, когда оси зубцов ротора и статора смещены на угол 180˚ электрических градусов. Таким образом, магнитный поток имеет среднюю постоянную и переменную составляющую с амплитудой

Фпер = 0,5 (Фmах — Фmin)

3убец и впадина ротора (индуктора) генератора образуют пару полюсов, поэтому частота тока якоря в индукторе генератора может быть определена по формуле:

f = zn/60,

где z- число зубцов ротора.

В генераторах с укороченными полюсами бесконтактность достигается за счет неподвижного крепления обмотки возбуждения с помощью немагнитной обоймы. Полюсы клювообразной формы имеют длину меньше половины длины активной части ротора. В процессе вращения ротора магнитный поток возбуждения пересекает витки обмотки статора, индуцируя в них ЭДС.

Генераторы с укороченными полюсами просты по конструкции, технологичны. Роторы таких генераторов имеют малое рассеяние.
К недостаткам можно отнести несколько большую, чем у контактных генераторов, массу при той же мощности. Также следует отметить трудность крепления обмотки возбуждения и обеспечения жесткости и механической прочности ее крепления.

Применение на автомобилях существующих конструкций индукторных генераторов долго сдерживалось следующими трудностями:

  • невысокие удельные показатели;
  • повышенный уровень пульсации выпрямленного напряжения;
  • повышенный уровень шума.

Дальнейшее совершенствование конструкции и устранение вышеперечисленных недостатков позволило использовать индукторные генераторы переменного тока на автомобилях.

Впервые бесщеточные генераторы с укороченными полюсами 45.3701 и 49.3701 были использованы на автомобилях марки «УАЗ».

***

Небольшой видеоролик позволит наглядно понять основные принципы работы и устройство автомобильного генератора переменного тока.

***

Устройство и работа генератора автомобиля ВАЗ


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Устройство и принцип работы дизельного генератора

Чтобы преобразовать механическую энергию (двигателя внутреннего сгорания, ветрового двигателя, турбины) в электрическую энергию (постоянного или переменного тока), необходим генератор. Основные части генератора – неподвижный якорь (статор) и приводимый во вращение первичным двигателем с высоким постоянством числа оборотов индуктор (ротор) с питаемой постоянным током обмоткой возбуждения.

Ротор электромашины переменного тока может вращаться с частотой магнитного поля или отставать от него (вращаться с меньшей скоростью). В первом случае машина относится к синхронным, во втором к асинхронным. Синхронная электрическая машина, работающая в генераторном режиме, называется синхронным генератором. Синхронный генератор обратим, т.е. при подключении якорной обмотки к трехфазной электросети он работает как электродвигатель.
Принцип работы синхронного генератора

При вращении ротора синхронного генератора (СГ) линии его магнитного поля пересекают обмотку статора. Магнитное поле ротора создается независимым возбудителем, в качестве которого может служить аккумулятор или дополнительный генератор постоянного тока с напряжением обычно не выше 150 В, а также ртутные, полупроводниковые (селеновые или германиевые) или механические выпрямители.

Возможно и обратное решение (применяемое обычно в малогабаритных передвижных установках переменного тока) – вращение ротора в неподвижном магнитном поле, при этом вырабатываемый в обмотках ротора переменный ток необходимо снимать с ротора через коллектор. Вырабатываемая СГ электродвижущая сила (ЭДС) пропорциональна магнитной индукции, длине паза статора, числу витков в обмотке статора, внутреннему диаметру статора и частоте вращения магнитного поля. Изменение ЭДС синхронного генератора возможно путем регулирования тока в обмотке возбудителя реостатом или системой автоматического регулирования.

Частота вращения магнитного поля равна скорости вращения ротора, а частота вырабатываемого переменного напряжения пропорциональна частоте вращения магнитного поля и количеству пар полюсов статора. В качестве примера, при заданной частоте СГ 50 Гц при числе пар полюсов 1 ротор должен вращаться со скоростью 3000 об/мин, а при числе пар 2 – со скоростью 1500 об/мин и т.д.

Для поддержания постоянства частоты вырабатываемого СГ переменного напряжения скорость вращения первичного двигателя поддерживается постоянной посредством автоматического регулятора скорости.


Обычно от СГ требуется выработка напряжения порядка 15-40 кВ, снять такое напряжение с вращающегося коллектора сложно, и обмотки якоря, с которого снимается вырабатываемая электрическая энергия, выгодно сделать неподвижными. Мощность же возбуждения СГ обычно составляет 1-3% и не превышает 5% мощности СГ; подать эту мощность на вращающийся ротор не составляет проблемы.

При мощности СГ до нескольких киловатт магнитное поле ротора может обеспечиваться постоянными магнитами (самыми современными, неодимовыми), что позволяет обойтись без коллектора и токосъемника. При этом, ввиду невозможности регулирования магнитного потока ротора, выходное напряжение СГ неизменно и не поддается регулированию, либо же с регулированием возникают сложности. Мощность современного синхронного генератора достигает нескольких Гвт и выше.

 

Виды синхронных генераторов


Генераторы разделяются по способу возбуждения. Самый простой способ, не требующий дополнительного источника питания для возбуждения статора – это использование самовозбуждения за счет остаточного намагничивания сердечника ротора даже при отсутствии в обмотках ротора тока возбуждения. При вращении ротора слабый остаточный магнитный поток ротора вызывает образование в обмотках ротора небольшой ЭДС, которая отбирается понижающим трансформатором, выпрямляется и через коллектор подается в обмотку возбуждения, что увеличивает магнитный поток, ЭДС генератора и дальнейшее развитие процесса самовозбуждения, вплоть до выхода на нормальный режим работы. Подобная схема с самовозбуждением успешно применяется в автономных установках наземного, водного и воздушного транспорта.

Если применяется тиристорное устройство регулирования тока возбуждения, появляется возможность автоматического регулирования выходного напряжения СГ (поддержания его постоянства или изменения по определенному закону в зависимости от величины и характера нагрузки). Возможно также возбуждение ротора от дополнительного генератора (подвозбудителя), имеющего общий вал с основным генератором или соединенного с валом СГ посредством полумуфты.

 

Устройство синхронного генератора


Статор СГ по устройству схож с устройством статора асинхронного двигателя. Сердечник статора, в пазах которого размещается обмотка, собран из спрессованных в виде пакета пластин электротехнической стали толщиной 1-2 мм, разделенных изолирующей пленкой лака толщиной 0,08-0,1 мм.


Синхронный генератор может вырабатывать переменный ток однофазный или, чаще всего, трехфазный. К обмотке статора подключается нагрузка.

Конструктивно полюсы статора могут быть выступающими (как в тихоходных СГ со скоростью вращения не выше 1000 об/мин, вращаемых гидротурбинами), либо же не выражаться явно (как в скоростных машинах).


Синхронный генератор обратим – он может не только вырабатывать переменный ток (режим генератора), но и совершать механическую работу (режим двигателя).

Для охлаждения ротора в конструкции СГ предусмотрены крыльчатки на общем с ротором валу. Прежде чем поступить в СГ для охлаждения обмоток, воздух пропускается через фильтр, если же система охлаждения замкнута, он дополнительно охлаждается в теплообменнике. В качестве охлаждающего агента, помимо воздуха, применяется и водород ввиду своей легкости.

Концы обмоток СГ выводятся на контактную колодку, что позволяет соединить обмотки трехфазного СГ по схеме звезды или треугольника.

При необходимости получения синусоидального напряжения на выходе к форме явно выраженных полюсных наконечников предъявляются определенные требования, либо необходимо (при неявно выраженных полюсах) расположить витки роторной обмотки по особому закону.

 

Режимы работы синхронного генератора

Синхронный генератор может работать в режиме холостого хода, при отсутствии токов в обмотке якоря, и тогда вырабатываемое напряжение задается лишь током возбуждения.

При подключении к СГ потребителя через обмотку якоря начинают протекать токи, и создаваемое ими магнитное поле складывается с полем ротора. Ток в якорной обмотке при чисто активной нагрузке (нагревательные элементы, лампочки накаливания) совпадает по фазе с ЭДС, при индуктивной (асинхронные электродвигатели, дроссели, трансформаторы) отстает, а при емкостной (батареи конденсаторов, корректоры коэффициента мощности, высоковольтные ЛЭП) опережает. При активной нагрузке создаваемый в статоре дополнительный магнитный поток перпендикулярен потоку ротора, и ЭДС генератора, определяемая суммарным потоком, возрастает.

Реактивная нагрузка ведет к отклонению направлений потоков от перпендикулярности, вследствие несовпадения фаз тока якорной обмотки и ЭДС, и при емкостной нагрузке ЭДС генератора увеличивается еще выше, поскольку направление потоков начинает совпадать (вызывается продольно-намагничивающая реакция), а при индуктивной нагрузке к снижению ЭДС вследствие встречного направления потоков (вызывается продольно-размагничивающая реакция). Наиболее часто встречается смешанная активно-индуктивная нагрузка.

Чтобы устранить воздействие реакции якоря на ЭДС генератора, предусматривается регулирование возбуждения ротора с целью поддержания ЭДС на должном уровне с исключением ее зависимости от мощности и вида нагрузки. Также, для устранения колебаний при резкой смене режима работы СГ, помимо основной обмотки возбудителя, наматывается еще и демпферная (успокаивающая) катушка, особо полезная при совместной работе нескольких СГ на общую сеть. Поскольку нагрузка СГ не остается постоянной и время от времени меняется, существует необходимость постоянного регулирования тока возбуждения, что осуществляется автоматическими системами регулирования.

При нормальной работе СГ допустимы некоторые отклонения коэффициентов мощности нагрузки, напряжения и частоты в пределах нескольких процентов от номинальных значений. При нарушениях в линии нагрузки (коротких замыканиях, непостоянстве отбираемой мощности, неравномерном распределении нагрузки между фазами), возникает асимметрия выходного напряжения СГ, форма напряжения искажается и отклоняется от синусоидальной, что может приводить к перегреву обмоток и элементов конструкции генератора. Также, к искажениям формы ЭДС генератора ведет нелинейность нагрузки (подключенные к сети выпрямители, инверторы).

При работе СГ важно следить за расходом охлаждающей воды, автоматика должна предупреждать персонал при снижении расхода путем включения сигнализации, и при резком падении расхода приступить к разгрузке генератора с последующим отключением в течение нескольких минут.


Работа нескольких синхронных генераторов на общую сеть


Параллельная работа нескольких СГ необходима для полного использования их мощности, позволяет создавать мощные источники питания, а также периодически выводить на профилактику или в ремонт один из генераторов.


При параллельной работе нескольких СГ требуется строгое постоянство вырабатываемой каждым из них частоты, с высоким поддержанием постоянства скорости их вращения.

При включении в сеть еще одного СГ требуется равенство его напряжения напряжению сети с постоянством частоты, фазы и чередования фаз. Лишь при совпадении этих условий при включении СГ в сеть не будет толчков тока и опасных для обмоток уравнительных токов.

Синхронизация осуществляется посредством специальных устройств – синхроскопов, наиболее простыми из которых является ламповые, позволяющие по характеру свечения ламп синхроскопа определить с достаточной для практики точностью момент совпадения напряжения подключаемого генератора и сети по частоте, фазе и порядку чередования фаз.


 

 

Урок 43-3 Устройство и принцип работы генератора переменного тока

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = — Ф’ = — (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε0 = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС — электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Структурная схема генератора переменного тока.

Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Общее устройство генератора

Генератор переменного тока это элемент автомобиля, предназначенный для произведения электрической энергии путем преобразования механической энергии (вращение коленчатого вала) в электрическую энергию. Генераторы могут генерировать постоянный или переменный ток.

Генератор автомобиля используется, как источник питания для следующих электропотребителей: система зажигания, приборы освещения, бортовой компьютер, системы диагностики. Также генератор обеспечивает подзарядку аккумуляторной батареи (АКБ) во время движения автомобиля.

На сегодняшний день чаще всего используются генераторы переменного тока, которые хорошо себя зарекомендовали.

Как работает генератор?

Чтобы ответить на вопрос, — как работает генератор? — мы рассмотрим Принцип работы генератора.

Основа работы генератора заключается в использовании электродвижущей силы (ЭДС), которая образуется в прямоугольном контуре, вращающемся в однородном вращающемся магнитном поле.

Устройство простейшего генератора

Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.

В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.

Устройство автомобильного генератора переменного тока

Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.

Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.


Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.

Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).

От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.

Принцип работы автомобильного генератора

Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.

Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.

В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.

От поворота ключа до выдачи напряжения…

Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.

Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.

Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.

Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.

На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.

Работа, характеристики, преимущества и недостатки

В 1832 году французским изобретателем Ипполитой Пикси (1808-1835) были созданы генераторы переменного тока. Некоторые из компаний-производителей генераторов в Индии: Abrasive Engineers Private Limited в Дели, Accurion Scientific Instruments Private Limited в Бангалоре, Aditya Techno Private Limited в Нью-Дели, Agni Natural Energy India Private Limited в Бангалоре, Agragami Natures Electrical Generating System Private Limited в Бангалоре , Air Sensors Auto Electronics Private Limited в Нью-Дели, Ajanta Switchgerars Private Limited в Пуне, Alok Electricals Private Limited в Уттар-Прадеше, Ambica Elevator Private Limited в Гуджарате, Amico Engineers Private Limited в Калькутте, Ананд и Ко.Electronics Private Limited в Западной Бенгалии, Anand Technocrats Private Limited в Махараштре.

Что такое генератор?

Генератор переменного тока определяется как машина или генератор, который вырабатывает переменный ток (переменный ток) и преобразует механическую энергию в электрическую, поэтому его также называют генератором переменного тока или синхронным генератором. Существуют различные типы генераторов переменного тока в зависимости от области применения и конструкции. Генератор переменного тока морского типа, генератор автомобильного типа, генератор переменного тока типа дизель-электрический локомотив, генератор переменного тока бесщеточного типа и генераторы переменного тока с радио — это типы генераторов переменного тока, основанные на применении.Типы генераторов с явным полюсом и с цилиндрическим ротором — это типы генераторов переменного тока, основанные на конструкции.


генератор переменного тока

Конструкция генератора переменного тока

Основными компонентами генератора переменного тока или синхронного генератора являются ротор и статор. Основное различие между ротором и статором заключается в том, что ротор — это вращающаяся часть, а статор — это не вращающийся компонент, что означает, что это неподвижная часть. Двигатели обычно приводятся в действие ротором и статором.

генератор или синхронный генератор

Слово статора основано на неподвижном состоянии, а слово ротора основано на вращении.Конструкция статора генератора переменного тока аналогична конструкции статора асинхронного двигателя. Таким образом, конструкция асинхронного двигателя и конструкция синхронного двигателя одинаковы. Таким образом, статор — это неподвижная часть ротора, а ротор — это компонент, который вращается внутри статора. Ротор расположен на валу статора, а серия электромагнитов, расположенных в цилиндре, заставляет ротор вращаться и создавать магнитное поле. Есть два типа роторов, они показаны на рисунке ниже.

типов роторов
Ротор с выступающими полюсами

Значение выступа — выступающий наружу, что означает, что полюса ротора выступают наружу из центра ротора. На роторе имеется обмотка возбуждения, и для этой обмотки возбуждения будет использоваться источник постоянного тока. Когда мы пропускаем ток через эту обмотку возбуждения, создаются полюса N и S. Выступающие роторы неуравновешены, поэтому скорость ограничена. Этот тип ротора используется на гидроэлектростанциях и дизельных электростанциях. Ротор с явнополюсным ротором используется для тихоходных машин со скоростью примерно 120-400 об / мин.

Цилиндрический ротор

Цилиндрический ротор также известен как невыступающий или круглый ротор, и этот ротор используется в высокоскоростных машинах с частотой вращения приблизительно 1500-3000 об / мин, и примером этого является тепловая электростанция. Этот ротор состоит из стального радиального цилиндра, имеющего ряд пазов, и в этих пазах размещается обмотка возбуждения, и эти обмотки возбуждения всегда подключаются последовательно. Преимущества: механическая надежность, равномерное распределение потока, высокая скорость работы и низкий уровень шума.

Двигатели переменного тока бывают разных форм и размеров, но у нас не может быть переменного тока без ротора и статора. Ротор изготовлен из чугуна, а статор — из кремнистой стали. Цена ротора и статора зависит от качества.

Принцип работы генератора переменного тока

Все генераторы переменного тока работают по принципу электромагнитной индукции. Согласно этому закону, для производства электричества нам нужны проводник, магнитное поле и механическая энергия. Каждая машина, которая вращается и воспроизводит переменный ток.Чтобы понять принцип работы генератора переменного тока, рассмотрим два противоположных магнитных полюса, северный и южный, и поток проходит между этими двумя магнитными полюсами. На рисунке (а) прямоугольная катушка расположена между северным и южным магнитными полюсами. Положение катушки таково, что катушка параллельна потоку, поэтому поток не режет и, следовательно, ток не индуцируется. Таким образом, форма волны, генерируемая в этом положении, равна нулю градусов.

вращение прямоугольной катушки между двумя магнитными полюсами

Если прямоугольная катушка вращается по часовой стрелке на осях a и b, сторона проводника A и B проходит перед южным полюсом, а C и D встаньте перед северным полюсом, как показано на рисунке (b).Итак, теперь мы можем сказать, что движение проводника перпендикулярно силовым линиям от N к S полюсу, и проводник отсекает магнитный поток. В этом положении скорость отсечения магнитного потока проводником максимальна, потому что проводник и магнитный поток перпендикулярны друг другу, и, следовательно, в проводнике индуцируется ток, и этот ток будет в максимальном положении.

Проводник еще раз поворачивается на 90 0 по часовой стрелке, после чего прямоугольная катушка переходит в вертикальное положение.Теперь положение проводника и линии магнитного потока параллельно друг другу, как показано на рисунке (c). На этом рисунке проводник не режет магнитный поток и, следовательно, ток не индуцируется. В этом положении форма волны уменьшается до нуля, потому что поток не режется.

Во втором полупериоде проводник продолжает вращаться по часовой стрелке еще на 90 0 . Итак, здесь прямоугольная катушка приходит в горизонтальное положение таким образом, что проводники A и B проходят перед северным полюсом, а C и D проходят перед южным полюсом, как показано на рисунке (d).Опять же, ток будет течь через проводник, который в настоящее время индуцируется в проводнике A, а B — от точки B к A, а в проводнике C и D — от точки D к C, поэтому форма волны создается в противоположном направлении и достигает максимума. значение. Затем направление тока обозначено буквами A, D, C и B, как показано на рисунке (d). Если прямоугольная катушка снова вращается на 90 0 , тогда катушка достигает того же положения, откуда начинается вращение. Следовательно, ток снова упадет до нуля.

В полном цикле ток в проводнике достигает максимума и уменьшается до нуля, а в обратном направлении ток в проводе достигает максимума и снова достигает нуля. Этот цикл повторяется снова и снова, из-за этого повторения цикла в проводнике будет постоянно индуцироваться ток.

форма волны одного полного цикла

Это процесс создания тока и ЭДС однофазной сети. Теперь для получения 3 фаз катушки размещаются со смещением 120 0 каждая.Таким образом, процесс производства тока такой же, как и в однофазном, но разница только в том, что смещение между тремя фазами составляет 120 0 . Это принцип работы генератора переменного тока.

Характеристики

Генератор имеет следующие характеристики:

  1. Выходной ток со скоростью генератора: Выходной ток уменьшается или уменьшается при уменьшении или уменьшении скорости генератора.
  2. КПД со скоростью генератора переменного тока: КПД генератора переменного тока снижается, когда генератор работает на низкой скорости.
  3. Падение тока при повышении температуры генератора: Когда температура генератора увеличивается, выходной ток будет уменьшаться или уменьшаться.

Применения

Генератор переменного тока применяется

  • Автомобили
  • Электрогенераторные установки
  • Морские применения
  • Дизельные электрические блоки
  • Радиочастотная передача

Преимущества

Преимущества Генератор

  • Дешевый
  • Малый вес
  • Низкие затраты на обслуживание
  • Конструкция проста
  • Прочный
  • Более компактный

Недостатки

Недостатки генератора

  • Генераторам нужны трансформаторы
  • Генераторы переменного тока будут перегрев при высоком токе

Таким образом, это все о генераторе переменного тока, который включает в себя конструкцию, работу, преимущества и области применения.Вот вам вопрос, какова мощность генератора в автомобилях?

Принцип работы генератора

Машина, вырабатывающая трехфазную мощность из механической энергии, называется генератором переменного тока или синхронным генератором. Работа генератора переменного тока основана на том принципе, что при изменении магнитного потока, соединяющего проводник, в проводнике индуцируется ЭДС.

Генераторы переменного тока являются основным источником всей потребляемой нами электроэнергии.Эти машины являются крупнейшими преобразователями энергии в мире. Они преобразуют механическую энергию в энергию переменного тока.

Принцип работы генератора

Генератор переменного тока работает на том же фундаментальном принципе электромагнитной индукции, что и генератор постоянного тока. Работа генератора переменного тока основана на том принципе, что при изменении магнитного потока, соединяющего проводник, в проводнике индуцируется ЭДС.

Подобно генератору постоянного тока, генератор также имеет обмотку якоря и обмотку возбуждения. Но между ними есть одно важное различие.

В генераторе постоянного тока обмотка якоря размещена на роторе, чтобы обеспечить преобразование переменного напряжения, генерируемого в обмотке, в постоянное напряжение на выводах с помощью вращающегося коммутатора.

Полевые столбы размещаются на неподвижной части машины. Поскольку в генераторе переменного тока коммутатор не требуется, обычно удобнее и выгоднее размещать обмотку возбуждения на вращающейся части (т.е.е., ротор) и обмотку якоря на неподвижной части (т.е.статоре).

Генератор имеет трехфазную обмотку на статоре и обмотку возбуждения постоянного тока на роторе. Этот источник постоянного тока (называемый возбудителем) обычно представляет собой небольшой шунт постоянного тока или составной генератор, установленный на валу генератора.

Конструкция ротора бывает двух типов:

  1. Выступающий (или выступающий) полюс типа
  2. Невыступающая (или цилиндрическая) опора типа

В генераторе с явнополюсными полюсами выступающие или выступающие полюса устанавливаются на большой круглой стальной раме, которая прикреплена к валу генератора.

В генераторе переменного тока с цилиндрическими полюсами ротор выполнен из гладкого сплошного радиального цилиндра из кованой стали, имеющего ряд пазов по внешней периферии.

Работа генератора

Обмотка ротора питается от возбудителя постоянного тока, и на роторе формируются чередующиеся полюса N и S.

Когда ротор вращается против часовой стрелки первичным двигателем, статор или проводники якоря перерезаются магнитным потоком полюсов ротора. Следовательно, e.м.ф. индуцируется в проводниках якоря из-за электромагнитной индукции.

Индуцированная э.д.с. чередуется, поскольку полюса N и S ротора попеременно проходят через проводники якоря. Направление наведенной э.д.с. можно найти по правилу правой руки Флеминга , а частота дается по формуле;

f = PN / 120
где N = частота вращения ротора в об / мин.
P = количество полюсов ротора

Величина индуцированного напряжения в каждой фазе зависит от магнитного потока ротора, количества и положения проводников в фазе и скорости ротора.

При вращении ротора в обмотке якоря индуцируется трехфазное напряжение. Величина наведенной э.д.с. зависит от скорости вращения и постоянного тока возбуждения. Величина ЭДС. в каждой фазе обмотка якоря одинакова. Однако они различаются по фазе на 120 ° электрически.

Анимация видео

Посмотрите, как работает генератор переменного тока, на сайте learnengineering.org в этом видео.

Как работают генераторы переменного тока

Генератор — как это работает

Вы можете подумать, что электрика в автомобиле питает аккумулятор, но это не так.Аккумулятор вырабатывает электричество, необходимое стартеру для запуска автомобиля. Когда автомобиль работает, генератор вырабатывает энергию для питания электрической системы и зарядки аккумулятора. Генератор раньше назывался генератором, и он работает аналогичным образом. В этом случае двигатель внутреннего сгорания автомобиля вращает шкивы под капотом, который вращает шкив генератора переменного тока и создает энергию.

Генератор работает вместе с аккумулятором для питания электрических компонентов автомобиля.Выходной сигнал генератора постоянного тока (DC). Когда шкив генератора переменного тока вращается, переменный ток (AC) проходит через магнитное поле и генерируется электрический ток. Затем он преобразуется в постоянный ток через выпрямитель.

Развитие технологий означало, что генераторы переменного тока сильно изменились за последние 50 лет. Первоначально генераторы переменного тока использовались только для генерации тока, который контролировался внешним регулятором. Появление в 1990-х годах встроенного регулятора использовало сигнальную лампу для возбуждения генератора и запуска процесса зарядки.Многие современные автомобили приняли систему зарядки типа запроса нагрузки с внедрением интеллектуальных систем зарядки и систем CANBUS, которые в настоящее время широко используются. Эти системы контролируются блоком управления двигателем автомобиля (ЭБУ). Когда транспортному средству требуется больше нагрузки, ЭБУ отправляет сигнал генератору переменного тока, требуя, чтобы он начал зарядку. Генератор должен справляться с изменяющимися электрическими нагрузками и соответствующим образом регулировать скорость заряда. В наши дни эти типы генераторов переменного тока легко могут быть неправильно диагностированы как неисправные, если в автомобиле обнаружена неисправность зарядки, но в большинстве случаев неисправность генератора не обнаруживается.

Компоненты генератора и их функции:

Регулятор

Регулятор напряжения контролирует количество мощности, распределяемой от генератора к батарее, чтобы управлять процессом зарядки. Регуляторы имеют разные функции и работают в зависимости от своей спецификации.

Выпрямитель

Выпрямитель используется для преобразования переменного тока (AC) в постоянный (DC) во время процесса зарядки.

Ротор

Ротор — это вращающаяся масса внутри генератора, которая вращается через шкив и систему приводного ремня. Ротор действует как вращающийся электромагнит.

Контактные кольца

Контактные кольца используются как средство подачи постоянного тока и мощности на ротор.

Концевой подшипник скольжения

Подшипники предназначены для поддержки вращения вала ротора.

Статор

Статор состоит из нескольких витков проволоки, намотанной через железное кольцо.Статор находится вне ротора, и когда создается магнитное поле, возникает электрический ток.

Подшипник приводного конца

Подшипники предназначены для поддержки вращения вала ротора.

Шкив

Шкив соединен с валом ротора и системой приводного ремня. Вращение, создаваемое двигателем, система приводного ремня поворачивает шкив, начиная процесс зарядки.

См. Наши новые ссылки на ассортимент

По какому принципу работает генератор переменного тока

Генератор переменного тока — это механическое устройство, преобразующее другие формы энергии в электрическую энергию. Генератор обычно состоит из ротора, статора, выпрямителя и торцевой крышки.

Ротор состоит из обмотки сердечника ротора (или магнитного полюса), защитного кольца, центрирующего кольца, контактного кольца, вентилятора и вращающегося вала. Функция ротора — создавать магнитное поле. Установлен внутри статора. Статор состоит из сердечника статора, проволочных обмоток, основания двигателя и других конструктивных элементов, фиксирующих эти детали. Функция статора — генерировать переменный ток.

Принцип заключается в том, что статор и ротор генератора соединены подшипником и торцевой крышкой, так что ротор может вращаться в статоре и совершает движение режущей магнитной линии, создавая таким образом индукционный потенциал. , который выводится через клемму и подключается в петлю, и генерируется ток.

Есть много форм генераторов, но их принцип работы основан на законе электромагнитной индукции и электромагнитной силы. Следовательно, общий принцип его конструкции заключается в использовании соответствующих магнитопроводящих и проводящих материалов для формирования магнитных цепей и цепей для взаимной электромагнитной индукции, чтобы генерировать электромагнитную энергию и достигать цели преобразования энергии.

Механическая энергия первичного двигателя преобразуется в выходную электрическую энергию с использованием принципа электромагнитной индукции силовой линии магнитного поля, индуцированной силовой линией магнитного поля для резки проволоки.Синхронный генератор состоит из статора и ротора. Статор — это якорь, вырабатывающий электричество, а ротор — это магнитный полюс. Статор состоит из стального сердечника якоря, трехфазной обмотки с равномерным разрядом, основания и торцевой крышки.

Ротор обычно представляет собой тип со скрытым полюсом, состоящий из обмотки возбуждения, железного сердечника и вала, защитного кольца, центрирующего кольца и т. Д. Обмотка возбуждения ротора питается постоянным током, создавая магнитное поле, близкое к синусоидальному распределению (относящееся к полю ротора), эффективный поток поля которого пересекает статическую обмотку якоря.Когда ротор вращается, магнитное поле ротора вращается вместе с ним, с каждым оборотом магнитные линии последовательно отсекают каждую фазную обмотку статора, и в трехфазной обмотке статора индуцируется потенциал трехфазного переменного тока.

Когда генератор работает с симметричной нагрузкой, трехфазный ток якоря объединяется для создания вращающегося магнитного поля с синхронной скоростью. Магнитное поле статора взаимодействует с магнитным полем ротора, создавая тормозной момент.

Трехфазные обмотки статора генератора переменного тока вложены в пазы статора генератора в соответствии с определенным правилом и отличаются друг от друга на электрический угол 120 °. Когда обмотка возбуждения ротора подключена к источнику постоянного тока, кулачковый полюс ротора намагничивается к полюсу N и полюсу S. Линия магнитного поля начинается от полюса N, входит в сердечник статора через небольшой воздушный зазор между ротором и статором и, наконец, возвращается к полюсу S через воздушный зазор.

Условия использования

(1) Полярность заземления батареи должна быть такой же, как и у заземления генератора. Следствием несоблюдения спецификации является повреждение диода из-за большой разрядки диода по току.

(2) Когда шесть диодов выпрямителя подключены к обмотке статора, категорически запрещается проверять изоляцию генератора с помощью мегомметра или источника переменного тока 220В.В противном случае диод легко сломается и повредится.

(3) После выключения двигателя следует выключить зажигание. Если вовремя не погасить пламя, батарея продолжит разряжаться, что повлияет на магнитное поле и сократит срок службы батареи.

(4) При работающем генераторе переменного тока нельзя использовать метод огневого испытания для проверки того, вырабатывает ли он электричество. В противном случае легко повредить диод и электронные компоненты.

(5) Регулятор должен быть таким же, как и генератор переменного тока, в форме железа, иначе генератор не сможет выдавать выходное напряжение из-за отсутствия тока магнитного поля.И уровень напряжения у них должен быть одинаковым, иначе система зарядки не сможет работать должным образом.

(6) Если генератор не вырабатывает электричество или зарядный ток мал, неисправность должна быть устранена вовремя, а проводное соединение между генератором и аккумулятором должно быть надежным. В противном случае легко повредить диоды и электронные компоненты.

(7) Когда генератор установлен на двигателе, центр генератора с канавкой для шкива и центр двигателя с канавкой для шкива должны быть совмещены, а также должна быть установлена ​​соответствующая степень натяжения ремня треугольной формы.

8) При ранней установке клинового ремня с силой подденьте переднюю крышку генератора. В противном случае он раздавит элемент.

Синхронный генератор относится к генератору переменного тока (генератор переменного тока), а обмотка статора такая же, как у асинхронного генератора. Его скорость вращения ротора такая же, как у вращающегося магнитного поля, создаваемого обмоткой статора, поэтому он называется синхронным генератором . Из-за этого ток синхронного генератора опережает напряжение по фазе, то есть синхронный генератор является емкостной нагрузкой.По этой причине во многих случаях для повышения коэффициента мощности системы электроснабжения используются синхронные генераторы.

Как работает система зарядки

Внутри генератора переменного тока ротор с ременным приводом становится электромагнитом, когда к нему подается ток. По мере вращения ротора в обмотках статора генерируется более высокий ток.

Автомобиль потребляет довольно много электроэнергии для работы зажигание и другое электрооборудование.

Если питание было от обычного аккумулятор , он скоро закончится.Итак, в машине есть аккумуляторная аккумулятор и система зарядки, чтобы поддерживать его в рабочем состоянии.

Батарея имеет пары выводов. тарелки погружают в смесь серной кислоты и дистиллированной воды.

Половина пластин соединена с каждой Терминал . Электроэнергия, подводимая к батарее, вызывает химическую реакцию, в результате которой на один набор пластин откладывается дополнительный свинец.

Когда батарея подает электричество, происходит прямо противоположное: лишний свинец растворяется с пластин в реакции, которая производит электрический ток. Текущий .

Аккумулятор заряжается генератор на современных автомобилях или динамо-машиной на более ранних. Оба типа генератор , и приводятся в движение ремнем от двигатель .

генератор состоит из статор — стационарный комплект проволоки катушка обмотки, внутри которых вращается ротор.

Ротор электромагнит подается небольшое количество электроэнергии через углерод или медь-углерод кисти (контакты) касаются двух вращающихся металлических контактные кольца на его валу.

Вращение электромагнита внутри катушек статора генерирует гораздо больше электричества внутри этих катушек.

Электричество переменный ток — его направление потока меняется назад и вперед каждый раз, когда ротор вращается. Должно быть исправленный — превратились в односторонний поток, или постоянный ток .

Динамо-машина выдает постоянный ток, но менее эффективна, особенно при малых двигатель скорости и весит больше, чем генератор.

Предупреждающая лампа на приборная панель светится, когда аккумулятор недостаточно заряжен, — например, при остановке двигателя.

Также может быть амперметр чтобы показать, сколько электричества вырабатывается, или индикатор состояния батареи, показывающий состояние батареи заряжать .

Как работает генератор

Как протекает ток в генераторе

При перемещении магнита мимо замкнутой проволочной петли в проволоке течет электрический ток. Представьте себе петлю из проволоки с магнитом внутри.

Северный полюс магнита проходит через верх петли как Южный полюс проходит его нижнюю часть.Оба прохода заставляют ток течь в одном направлении по контуру.

Полюса удаляются, и ток перестает течь до тех пор, пока южный полюс не достигнет вершины, а северный полюс — основания.

Это заставляет ток снова течь, но в противоположном направлении.

В автомобильном генераторе переменного тока используется электромагнит для увеличения выработки электрического тока.

Как работает динамо

Обмотки возбуждения внутри корпуса — это электромагнит динамо.Ток генерируется во вращающемся якоре.

В динамо-машине электромагниты неподвижны и называются поле катушки. Ток вырабатывается в арматура — еще один набор катушек, намотанных на вал и вращающихся внутри катушек возбуждения.

Принцип такой же, как у генератора, но ток идет на коммутатор — металлическое кольцо, разделенное на сегменты, к которым прикасаются угольные щетки, установленные в подпружиненный гиды. Два сегмента касаются пары щеток и подают к ним ток.

По мере вращения якоря ток меняет направление. Но к тому времени под щетками оказалась еще одна пара сегментов коммутатора, и эта пара подключена наоборот, так что выходящий ток всегда течет в одном и том же направлении.

Регулировка тока к батарее

Ток от генератора выпрямляется в постоянный ток с помощью набора диоды которые позволяют току течь через них только в одном направлении.

Для зарядки аккумулятора подаваемое на него напряжение не должно быть слишком низким или слишком высоким.

Генератор имеет управляющее устройство с транзисторным управлением, которое регулирует напряжение путем подачи большего или меньшего тока — по мере необходимости — на электромагнит.

Выпрямитель и регулятор обычно находятся внутри корпуса генератора переменного тока, но на некоторых генераторах переменного тока они находятся снаружи и установлены на корпусе генератора.

Динамо-машине не нужен выпрямитель — есть регулятор напряжения в отдельной коробке, в которой реле .

Одно реле контролирует уровень напряжения, кратковременно отключая ток в обмотках возбуждения.

Второе реле предотвращает перезарядку динамо-машины и повреждение аккумулятора.

Как работает генератор переменного тока | Техник Академии

Автомобильные аккумуляторы не могут удовлетворить потребности электрической системы в течение длительного периода времени. Задача генератора — восстановить подачу электроэнергии к батарее. Генератор также необходим для подачи тока на электрические аксессуары при работающем двигателе.

Генераторы

используются в серийных автомобилях с 1960-х годов, когда они впервые появились на Plymouth Valiant.До этого использовались генераторы постоянного тока (DC). И генераторы постоянного тока, и генераторы переменного тока полагаются на явление, известное как электромагнитная индукция.

Электромагнитная индукция

Электромагнитная индукция возникает, когда электричество создается путем перемещения проводника через магнитное поле. Это также может произойти, когда магнитное поле проходит через проводник. Чтобы создать электричество в генераторе постоянного тока, проводник вращается, и поле сохраняется. В генераторе переменного тока проводник удерживается неподвижным, а поле вращается.

Хотя они во многом похожи, генератор не мог производить достаточный ток для питания ряда электрических аксессуаров на современных транспортных средствах. Из-за этого от него отказались в пользу генератора.

Ротор, статор и диоды

С появлением полупроводников появилось множество устройств, от домашнего компьютера до транзисторных радиоприемников. Генератор переменного тока — одно из таких устройств, в котором используется полупроводник, называемый диодом.Диод пропускает ток только в одном направлении, а не в другом. Это преобразует напряжение переменного тока (AC) в напряжение постоянного тока (DC), которое может использовать автомобиль.

Генератор предназначен для преобразования механической энергии в электрическую. Приводится ремнем от коленчатого вала двигателя. Ремень вращает шкив, прикрепленный к валу ротора. Ротор представляет собой сердечник из магнитного железа, обернутый катушкой из проволоки. Два конца катушки прикрепляются к медным контактным кольцам, которые затем прикрепляются к щеткам.Одна из щеток заземлена, а другая — к полевому выводу в регуляторе напряжения. Вращающийся ремень вращает ротор, расположенный внутри статора. Поскольку ротор представляет собой магнит, а статор — проводник, вращение ротора создает электричество в обмотках статора. Это индукция в действии.

Внутри статора есть три катушки с проволокой, каждая из которых генерирует собственное переменное напряжение. Это напряжение необходимо преобразовать в постоянный ток, прежде чем его можно будет использовать для зарядки аккумулятора и питания электрических аксессуаров.Это работа диодов внутри выпрямительного моста. Как уже упоминалось, диоды — это твердотельные полупроводники, позволяющие току проходить только в одном направлении. Диод блокирует выход отрицательного напряжения с каждой обмотки статора, поэтому на автомобиль поступает только положительное напряжение. Чтобы визуализировать это, представьте себе напряжение переменного тока, которое представляет собой синусоидальную волну. После прохождения напряжения через выпрямленный мост синусоида разрезается пополам по его горизонтальной оси.

Регуляторы напряжения

Генераторам переменного тока требуется регулятор напряжения для управления выработкой электроэнергии.Для выполнения этой задачи регулятор включает и выключает цепь управления ротором, уменьшая его магнитное поле. В результате напряжение, поступающее на статор, уменьшается, как и общая выходная мощность генератора. Старые генераторы переменного тока использовали внешний регулятор или регулятор, который находится внутри генератора. Они могут иметь механическое или электронное управление.

В современных автомобилях регулирование напряжения осуществляется модулем управления трансмиссией (PCM). В отдельном регуляторе нет необходимости.В большинстве случаев PCM контролирует напряжение аккумулятора, частоту вращения двигателя и температуру аккумулятора. Затем он подает импульсы на обмотку возбуждения генератора для управления выходом.

Индикаторы заряда

Манометры и сигнальные лампы используются для предупреждения водителя о проблеме с системой зарядки. В старых автомобилях для этой цели используются амперметры, в то время как в современных автомобилях используются вольтметры или сигнальные лампы. Вольтметры подключаются параллельно к системе зарядки и используются для измерения напряжения системы зарядки.Вольтметр имеет катушку с проволокой, расположенную между двумя магнитами. По мере увеличения тока от зарядной системы катушка с проводом перемещается, заставляя указатель перемещаться по датчику.

Вольтметры

известны своей неточностью, поэтому большинство производителей перешли на сигнальные лампы. В большинстве случаев индикаторы зарядки получают питание от замка зажигания. Они заземлены через регулятор напряжения. Когда зажигание включено, а двигатель не работает, индикатор замкнул цепь и горит.При запуске двигателя напряжение увеличивается. Это заставляет индикатор терять позиции и в конечном итоге гаснуть. Если есть проблема с системой зарядки, индикатор продолжит получать массу от регулятора. Это будет держать его освещенным.

Генератор очень важен. Без него ваш автомобиль не будет работать долго (или, что еще хуже, не будет работать радио). Надеюсь, теперь у вас есть общее представление о том, как работает генератор.

Генератор: определение, функции, детали, типы, работа, выпуск

Большинство пользователей автомобилей никогда не понимают секрета автомобилей с автоматической зарядкой. Что ж, вы узнаете об генераторах переменного тока здесь.Вы должны знать, что аккумулятор может выйти из строя, но следует спросить генератор, когда он разрядится. Это система зарядки, которая увеличивает мощность аккумуляторной батареи двигателя.

Генераторы находятся в передней части двигателя, приводятся в движение коленчатым валом. бывают разные виды и конструкции. Генераторы с постоянным магнитом для магнитного поля известны как магнето, а генераторы переменного тока на электростанциях, приводимые в действие паровыми турбинами, называются турбогенераторами. Тем не менее, основная функция генераторов переменного тока в любом механическом приложении — это зарядка их электрических устройств.

Ранние автомобили использовали отдельный приводной ремень для привода шкива генератора. Но в современных автомобилях змеевик или один ремень приводит в движение все компоненты за счет мощности коленчатого вала. Большинство генераторов устанавливаются с помощью кронштейна, который крепится болтами к двигателю в определенной точке. Один из кронштейнов находится в фиксированном положении, а другой регулируется, чтобы приводной ремень можно было правильно натянуть.

Сегодня мы рассмотрим определение, функции, детали, схемы, типы, принципы работы и худшие симптомы генератора переменного тока, используемого в автомобильном двигателе.

Подробнее: Понимание двигателя стартера двигателя

Определение генератора

Генератор переменного тока можно определить как электрический генератор, преобразующий механическую энергию в электрическую. Работа выполняется в виде переменного тока. Электрические компоненты состоят из вращающегося магнитного поля со стационарным якорем, что делает его конструкцию менее сложной и дешевой.

Автомобильная зарядная система состоит из трех основных частей, включая аккумуляторную батарею, регулятор напряжения и генератор переменного тока.Без этих трех зарядная система будет неполной, хотя генераторы переменного тока теперь оснащены регуляторами напряжения. Генератор работает от аккумулятора для выработки энергии для электрических компонентов автомобиля, таких как внутреннее и внешнее освещение и т. Д.

Генераторы получили свое название от термина «переменный ток» (AC), поскольку они вырабатывают энергию за счет электромагнетизма. Этот электромагнетизм формируется за счет взаимосвязи статора и ротора. Это будет дополнительно объяснено ниже в этой статье.

Функции генераторов переменного тока

Ниже приведены функции генераторов переменного тока

  • Основная функция генератора переменного тока — заряжать автомобильный аккумулятор, чтобы другие электрические компоненты в автомобиле могли получать питание.
  • Заряженный аккумулятор обеспечивает электричество, необходимое стартеру для запуска автомобиля. И
  • Когда автомобиль движется, генераторы вырабатывают энергию для питания электрической системы и аккумулятора.

Генераторы переменного тока работают как генераторы, поскольку они работают одинаково.Шкив вращается и создает постоянный ток (DC). Во время вращения переменный ток (AC) проходит через магнитное поле, которое создает электрический ток.

Основные компоненты генератора переменного тока

Ниже представлены компоненты генератора и их функции:

Регулятор:

Регулятор напряжения — это часть, которая регулирует количество энергии, подаваемой от генератора к батарее. Он контролирует процесс зарядки, так как имеет различные функции и работает в зависимости от приложения.

Выпрямитель:

Выпрямитель используется для преобразования переменного тока (DC) в постоянный ток (DC) во время процесса зарядки.

Ротор:

Ротор — это часть, которая вращается внутри генератора, вращает шкив и приводит в движение ременную систему. Он действует как вращающийся электромагнит.

Контактные кольца:

Контактные кольца служат средством получения постоянного тока и подачи энергии на ротор.

Концевой подшипник скольжения:

Подшипники генератора предназначены для поддержки вращения вала ротора.

Статор:

Статор — это железное кольцо, содержащее несколько витков проволоки, намотанных вокруг него. Часть статора служит корпусом генератора переменного тока, создавая электрический ток, когда создается магнитное поле.

Подшипник приводного конца:

Подшипники приводного конца также помогают поддерживать вращение вала ротора.

Шкив:

Шкив — это деталь, соединенная с валом ротора и системой приводного ремня. Хотя вращение передается от двигателя приводным ремнем на шкив. Вращение вызывает процесс зарядки.

Генераторы

содержат некоторые функциональные крошечные компоненты, хотя мы объяснили несколько важных. но внутри электрического устройства мы можем найти диодный выпрямитель или выпрямительный мост, регулятор напряжения, контактные кольца и щетки.Мы также можем найти обмотку возбуждения ротора, полюса пальцев, обмотку возбуждения, статор и т. Д.

Подробнее: Принцип работы сварки трением

На задней панели генератора есть несколько клемм или точек подключения, которые служат для различных целей:

IG Terminal — выключатель зажигания, включающий регулятор напряжения.

S Клемма — это точка подключения, которая определяет напряжение аккумуляторной батареи.

L Клемма — замыкает цепь на контрольную лампу.

B Клемма — это основная выходная клемма генератора. Он подключен напрямую к батарее.

F Клемма — это полнофункциональный байпас для регулятора.

Типы генераторов Генераторы

классифицируются по многим параметрам в зависимости от их конструкции и применения. Ниже приведены 5 типов генераторов в зависимости от их применения:

Автомобильные генераторы переменного тока — используются в современных автомобилях.

Дизель-электрические локомотивы-генераторы — используются в дизель-электрических агрегатах.

Радио Генераторы — используются для низкочастотной радиопередачи.

Судовые генераторы — используются в морских приложениях

Бесщеточные генераторы переменного тока — используются в качестве основного источника энергии на электростанциях.

Подробнее: что нужно знать о двигателях с турбонаддувом

Генераторы переменного тока (генераторы) также классифицируются по конструкции:

Гладкие цилиндрические генераторы:

Гладкая цилиндрическая конструкция генераторов аналогична генератору с приводом от паровой турбины.Ротор изготовлен из гладкого цельного стального цилиндра из кованой стали, в котором имеется определенное количество прорезей для размещения катушек возбуждения. Он вращается с очень высокой скоростью, поскольку может содержать от 2 до 4 полюсов турбогенератора, работающего со скоростью 36000 или 1800 об / мин соответственно.

Типы выступающих полюсов:

Эти типы генераторов используются как средне- и низкоскоростные генераторы. Он содержит большое количество выступающих полюсов, сердечники которых прикреплены болтами к тяжелому магнитному колесу. Магнитное колесо из чугуна или стали хорошего магнитного качества.Эти генераторы выглядят как большое колесо, но в основном используются для тихоходных турбин, например, на электростанции Hydel. Но они классифицируются по большому диаметру и короткой осевой длине.

Принцип работы

Работа автомобильного генератора переменного тока довольно проста и менее сложна. Он содержит две обмотки, такие как статор (неподвижная внешняя обмотка) и ротор (вращающаяся внутренняя обмотка). Регулятор напряжения подавал напряжение на обмотку ротора, которое возбуждает и превращает его в магнит.Ротор через шкив вращается двигателем через приводной ремень.

Поскольку магнитное поле создается вращающимся ротором, он индуцирует электрический ток переменного тока в неподвижной обмотке статора. Диоды помогают преобразовывать переменный ток в постоянный, необходимый для электрической системы автомобиля. Как правило, в генератор встроены регуляторы напряжения. Они контролировали выходное напряжение.

Автомобильные генераторы относительно небольшие и легкие, имеют алюминиевый внешний корпус.этот легкий металл не намагничивается, поэтому он рассеивает тепло, выделяемое во время процесса, и потому, что узел ротора создает магнитное поле. На передней и задней части генератора есть вентиляционные отверстия, которые также помогают отводить тепло.

Во время работы двигателя коленчатый вал вращает приводной ремень, который вращает шкив генератора. И когда генератор вращается, вырабатывается ток. Вот почему говорят, что генераторы переменного тока преобразуют механическую энергию двигателя в электрическую энергию для компонентов автомобиля.

Водная видеосъемка работающих генераторов:

Подробнее: все, что вам нужно знать о карбюраторе

Признаки неисправного и неисправного генератора

Ниже приведены общие симптомы неисправного и вышедшего из строя генератора:

Одним из наиболее распространенных симптомов, которые часто возникают в системе зарядки автомобиля, является то, что индикатор подогрева значка аккумулятора на приборной панели горит во время движения. Обычно сигнальная лампа загорается при включенном зажигании автомобиля, но гаснет, как только запускается двигатель.Если гореть постоянно, значит проблема с системой зарядки двигателя. Профессионал должен проверить двигатель, так как сигнальная лампа прямо не говорит о том, что проблема в генераторе. Но частая проблема для такого знака — генератор.

При слабой системе зарядки вы увидите, что подсветка приборной панели и фары тускнеют на холостом ходу, но становятся ярче при увеличении частоты вращения двигателя. Эта проблема может быть вызвана слабым генератором, неисправным аккумулятором, плохим подключением аккумулятора или ослабленным змеевидным ремнем.Жужжание или воющий звук генератора переменного тока — еще один симптом неисправности генератора переменного тока. Это могло быть вызвано неисправным подшипником внутри генератора.

Наиболее частая проблема генератора переменного тока — изношенные контактные кольца, изношенные угольные щетки или неисправный регулятор напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *