Генерирование электроэнергии – Генерирование электрической энергии. Трансформаторы. — О’Пять пО физике!

Генерирование электрической энергии — Класс!ная физика

Генерирование электрической энергии

«Физика — 11 класс»

Электрическую энергию можно передавать по проводам на огромные расстояния со сравнительно малыми потерями.
С помощью простых устройств электрическую энергию легко превратить в другие формы энергии: механическую, внутреннюю (нагревание тел), энергию света и т. д.
Переменный ток в отличие от постоянного имеет то преимущество, что напряжение и силу тока можно преобразовывать почти без потерь энергии.
Такие преобразования необходимы при передаче электроэнергии на большие расстояния и во многих электро- и радиотехнических устройствах.

Электрический ток вырабатывается в генераторах — устройствах, преобразующих энергию того или иного вида в электрическую энергию.
К генераторам относятся гальванические элементы (дают большой ток, но продолжительность их действия невелика), электростатические машины (создают высокую разность потенциалов, но не способны создать большую силу тока), термобатареи, солнечные батареи и т. п.

Электромеханические индукционные генераторы переменного тока

В этих генераторах механическая энергия превращается в электрическую.
Их действие основано на явлении электромагнитной индукции.
Электроммеханические генераторы имеют простое устройство и позволяют получать большие токи при достаточно высоком напряжении.

Такой генератор состоит из:
электромагнита или постоянного магнита, создающего магнитное поле, и обмотки, в которой индуцируется переменная ЭДС (вращающаяся рамка).
Так как ЭДС, наводимые в каждом из витков, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу ее витков.
Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.


Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, изготовленных из электротехнической стали.
Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого.
Один из сердечников (обычно внутренний) вместе с обмоткой вращают вокруг горизонтальной или вертикальной оси.
Поэтому он называется ротором.
Неподвижный сердечник с обмоткой называют статором.
Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока вектора магнитной индукции.


В изображенной модели генератора вращают проволочную рамку, которая является ротором (но без железного сердечника).
Магнитное поле создает неподвижный постоянный магнит.
Хотя, можно и наоборот: вращать магнит, а рамку оставить неподвижной.

В больших промышленных генераторах вращается именно электромагнит, являющийся ротором, а обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными.


Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов.
Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.
Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.
Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь.
Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту.
Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том же валу.

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Производство, передача и использование электрической энергии. Физика, учебник для 11 класса — Класс!ная физика

Генерирование электрической энергии — Трансформаторы — Производство, передача и использование электрической энергии

class-fizika.ru

Генерирование электрической энергии: принцип действия генераторов

 

Генератор – устройство превращающее энергию различного вида в электрическую. Генераторы вырабатывают электрический ток. Примеры генераторов: гальванические элементы, электростатические машины, солнечные батареи и др. В зависимости от характеристик применяются генераторы различных типов.

Например, с помощью электростатических машин можно создать очень высокое напряжение, но при этом сила тока будет очень невелика. А с помощью гальванических элементов можно создать приемлемую силу тока, но они могут работать лишь непродолжительное время.

Структура генератора 

Рассмотрим индукционный электромеханический генератор переменного тока. Генераторов такого типа много, но любой из них имеет общие основные детали.

  • Постоянный или электромагнит. С помощью него создается магнитное поле.
  • Обмотка. В ней индуцируется переменная ЭДС.

Амплитуда ЭДС наводится в каждом витке обмотки. Так как витки соединены последовательно значения ЭДС будут складываться. ЭДС в рамке будет пропорциональна числу витков в обмотке. Для получения большого значения магнитного потока в генераторах делают специальную систему из двух сердечников.

В пазах одного сердечника размещаются обмотки, которые создают магнитное поле, а в пазах другого, обмотки, в которых индуцируется ЭДС. Один из сердечников вращается, его называют ротором. Второй неподвижен и называется статором. Зазор между сердечниками стараются сделать как можно меньшим, чтобы увеличить поток вектора магнитной индукции.

Ниже на рисунке представлена модель простейшего генератора.

Принцип действия генератора 

В генераторе, модель которого представлена на рисунке выше, магнитное поле создается постоянным магнитом, а проволочная рамка вращается внутри него. В принципе, можно оставить рамку неподвижной и вращать магнит. От этого ничего бы не изменилось.

В промышленных генераторах именно так и делается. Вращается электромагнит, а обмотки, в которых появляется ЭДС остаются неподвижными. Это связано с тем, что для того, чтобы подвести ток к ротору или снять с обмоток ротора, необходимо использовать скользящие контакты. Для этого используются щетки и контактные кольца. Сила тока, которая заставит вращаться ротор, много меньше, чем та, которую мы снимем с обмоток.

Поэтому удобнее подводить ток к ротору, а снимать ток со статора. В генераторах малой мощности, для создания магнитного поля используют вращающийся постоянный магнит, тогда подводить ток к ротору вообще необязательно. И использовать щетки и кольца не нужно.

При вращении ротора, в обмотках статора возникает ЭДС. Это происходит потому, что возникает вихревое электрическое поле. Современные генераторы это очень большие машины. Причем при таких размерах (несколько метров), некоторые важнейшие внутренние части изготавливаются с точность до миллиметра.  

Нужна помощь в учебе?



Предыдущая тема: Резонанс в электрической цепи: генератор на транзисторе
Следующая тема:&nbsp&nbsp&nbspТрансформаторы: устройство и работа трансформаторов

Все неприличные комментарии будут удаляться.

www.nado5.ru

Генерирование электрической энергии. Генератор переменного тока

Разделы: Физика


Цели урока:

Обучающие:

  1. Показать преимущества электрической энергии перед другими видами энергии.
  2. Дать понятие о принципиальном устройстве генератора переменного тока.
  3. Осветить экологические проблемы, связанные с выработкой электроэнергии.

Развивающая: Развитие логического мышления, профессиональной лексики.

Воспитывающая: Воспитывать самосознание и настойчивость в овладении профессией.

Оборудование:

  • компьютер,
  • проектор,
  • источники тока – батарея карманного фонарика,
  • фотоэлемент,
  • модель генератора постоянного тока,
  • DVD — диск «Виртуальная школа Кирилла и Мефодия»,
  • проверочный тест.

Тип урока: комбинированный, время проведения 40 минут.

Литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика-11 — М.: Просвещение, 2004г., 335с.
  2. Мякишев Г.Я., Синяков А.З.,Физика-11,- М.: Дрофа, 2002г.,288стр.
  3. Т.А.Демина, Экология, природопользование, охрана окружающей среды,- М., «Аспект Пресс», 1998г.,143с.
  4. DVD – диск: «Виртуальная школа Кирилла и Мефодия».
  5. Газета «Физика», №21, 2003г, статья «Народонаселение и энергопотребление».

Основные этапы урока:

  1. Организационный момент (2 мин.)
  2. Актуализация опорных знаний (3-5 мин.)
  3. Изучение нового материала (15 мин.)
  4. Закрепление новой темы (5 мин.)
  5. Проверка знаний (10 мин.)
  6. Подведение итогов. (3 мин.)

Ход урока

  1. Организационный момент
  2. - приветствие, настрой деятельности на успех.(1 Слайд)

Здравствуйте ребята, сегодня тема нашего урока «Генерирование электрической энергии. Генератор переменного тока».

Эта тема созвучна с вашей профессией, вы будите изучать ее на уроках спецтехнологии, электротехники, на классном часе «Вы будущие энергетики» мы встречались со специалистами Сургутских ГРЭС, вы успешно прошли производственную практику, и многое уже знаете. Поэтому я рассчитываю на вашу помощь, заинтересованность. Надеюсь, что сегодня вы узнаете много нового и полезного.

  1. Актуализация опорных знаний
  2. – фронтальная беседа со студентами.

Прежде чем мы будем говорить о производстве электрического тока, давайте вспомним:

Вопрос: Что называют электрическим током?

Ответ: Электрическим током называется упорядоченное движение заряженных частиц.

Вопрос: Какие вам известны источники тока?

Ответ: Аккумуляторы, батарейки и т. д.

У меня на столе всем известные источники тока: батарейка, фотоэлемент, модель индукционного генератора. Область применения каждого из перечисленных видов определяется их характеристиками. Давайте выясним, какие у них достоинства и недостатки и можно ли их применять повсеместно?

Химические источники тока: гальванические элементы; батареи аккумуляторов; ртутная батарейка, используемая в часах, калькуляторах и слуховых аппаратах, дает 1,4В; традиционная батарейка для карманного фонарика, дает 4,5 В. (демонстрация)

Достоинства – компактность, возможность использовать как автономный источник энергии.

Недостатки – небольшая энергоемкость, высокая стоимость энергии, недолговечность, проблема утилизации отходов.

Термоэлементы, фотоэлементы, солнечные батареи (демонстрация)

Достоинства – безмашинный способ получения энергии.

Недостатки – малый КПД, зависимость от погодных условий.

Преобладающую роль в наше время играют электромеханические

индукционные генераторы постоянного и переменного тока.

Практически они дают всю используемую энергию. Какие они имеют достоинства, преимущества и недостатки, нам предстоит выяснить сегодня на уроке.

  1. Объяснение новой темы.

Так как мы сегодня изучаем генераторы переменного тока, давайте вспомним:

Вопрос: Что такое переменный ток?

Ответ: Переменный ток можно рассматривать как вынужденное колебательное движение свободных электронов или вынужденные электромагнитные колебания силы тока и напряжения, меняющееся со временем по гармоническому закону.

Переменный ток имеет преимущество перед постоянным, потому что напряжение и силу тока можно в очень широких пределах преобразовать (трансформировать) почти без потерь, а такие преобразования необходимы во многих электро- и радиотехнических устройствах. Но особенно большая необходимость трансформации напряжения и тока возникает при передаче электроэнергии на большие расстояния. Электрическая энергия обладает преимуществом перед всеми другими видами энергии: ее можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в другие формы: механическую, тепловую, световую и т.д.

(2 слайд) Запишите в тетради преимущества переменного тока.

В современной энергетике применяются индукционные генераторы переменного тока, действие которых основано на явлении электромагнитной индукции.

Вопрос: Вспомните, что такое электромагнитная индукция, и кто открыл это явление?

Ответ: Майкл Фарадей открыл явление электромагнитной индукции, которое заключается в возникновении индукционного тока под действием переменного магнитного поля.

(3 слайд) После открытия этого явления многие скептики, сомневаясь, спрашивали: «Какая от этого польза?»

На что Фарадей ответил: «Какая может быть польза от новорожденного?»

Прошло немногим более половины столетия и, как сказал американский физик Р.Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

И этим богатырем, изменившим облик Земли, является генератор.

Генератор – это устройство, преобразующее энергию того или иного вида в электрическую энергию (запишите определение в тетрадь).

(4 слайд)

Электрический ток вырабатывается в генераторах — Откройте учебник на странице 106 рисунок 97. Давайте вместе назовем и запишем в тетради, как устроен генератор, его основные части.

— Что обозначено цифрой 1,2,3,4,5,6,7?

  1. Ротор, вращающаяся часть генератора, создает магнитное поле от электромашины постоянного тока.

  2. Статор, состоит из отдельных пластин для уменьшения нагрева от вихревых токов, пластины сделаны из электротехнической стали.
  3. Щетки, неподвижные пластины, прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.
  4. Кольца, чтобы подводить ток к ротору и отводить из обмотки ротора во внешнюю цепь при помощи скользящих контактов.
  5. Турбина, сочетание турбины с генератором переменного тока называется турбогенератором.
  6. Станина, корпус, внутри которой размещены статор и ротор.
  7. Возбудитель, генератор, вырабатываемый постоянный ток, который подводят к вращающему электромагниту.

В настоящее время существуют различные модификации индукционных генераторов. Но все они состоят, из одних и тех же, частей – это магнит или электромагнит, создающий магнитное поле, и обмотка в которой индуцируется ЭДС.

Один из сердечников (обычно внутренний) вращается вокруг вертикальной или горизонтальной оси – называется ротором. Неподвижный сердечник с его обмоткой называют – статором.

(5слайд)

Обратите внимание, в данной модели генератора вращается проволочная рамка, которая является ротором, магнитное поле создает неподвижный, постоянный магнит. При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. ЭДС индукции, следовательно, имеет магнитное происхождение.

На многих электростанциях земного шара именно сила Лоренца вызывает появление тока. ε = εm sin ωt

(6 слайд)

В больших промышленных генераторах вращается именно электромагнит, который является ротором. Обмотки, в которых наводится ЭДС, вложены в пазах статора – появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.

Из закона электромагнитной индукции следует: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Какова же должна быть скорость изменения магнитного потока, скорость вращения ротора, если в некоторых установках применяются токи в несколько килогерц и даже мегагерц? Для примера, попробуйте рассчитать скорость вращения ротора для стандартной частоты промышленного тока.

Чтобы ответить на данный вопрос, вспомните:

Вопрос: Чему равна частота промышленного тока?

Ответ: Стандартная частота промышленного переменного тока равна 50 Гц во многих странах мира, в США частота равна 60Гц, это означает, что на протяжении 1 с. ток 50 раз течет в одну сторону и 50 раз в противоположную.

-Тогда сколько колебаний будет происходить в 1 минуту?

Умножим на 60 сек. получается 3000 об/мин. Такая скорость нереальна и чтобы уменьшить скорость вращения, используют многополюсный магнит.

Частота наводимой ЭДС определяется формулой ν = p*n,

где р – число пар полюсов индуктора, n – частота вращения ротора.

Так, роторы генераторов Угличской ГЭС на Волге имеют 48 пар полюсов, и скорость их вращения уменьшается, становится 62,5 об/мин.

(7 слайд)

Мы живем в 21 веке и основой цивилизованного образа жизни, следовательно, и научно-технического прогресса, является энергия, которой требуется все больше и больше. Казалось бы, вырабатывайте ее сколько угодно, пока есть полезные ископаемые, есть машины, вырабатывающие эту энергию. Но здесь возникает проблема.

Эту проблему можно назвать — проблема «трех Э»: Энергетика + Экономика + Экология. Для бурного развития экономики, требуется все больше и больше энергии, увеличение выработки энергии — ведет к ухудшению экологии, наносит большой вред окружающей среде.

(8 слайд)

Ведь энергетика является одной из самых загрязняющих отраслей народного хозяйства. При неразумном подходе происходит нарушение нормального функционирования всех компонентов биосферы (воздуха, воды, почвы, животного и растительного мира), а в исключительных случаях, подобных Чернобылю, под угрозой оказывается и сама жизнь. Поэтому главным должен стать подход с экологических позиций, учитывающих интересы не только настоящего, но и будущего.

Между тем, ТЭС являются одними из основных загрязнителей атмосферы твердыми частицами золы, окислами серы и азота, а также углекислым газом, способствующим возникновению «парникового эффекта». Над городами образуются, так называемые острова тепла, из-за усиленного выброса энергии которых, нарушается нормальное течение атмосферных процессов. В сентябре этого года, мы все с вами были свидетелями образования торнадо над водохранилищем ГРЭС -2 в городе Сургуте.

(9 слайд)

Вопрос: Кто сможет объяснить это явление?

Ответ: Над поверхностью водохранилища образовался теплый воздушный фронт, в то время когда температура и давление окружающего воздуха были сравнительно низкими. Встреча, этих двух потоков и привела к образованию смерча.

Важнейшими направлениями экологизации научно-технического процесса, должны стать – внедрение ресурсосберегающих и безотходных технологий; переход к чистым и неисчерпаемым источникам энергии.

Уже разрабатываются, так называемые топливные элементы, в которых энергия освобождается в результате реакции водорода с кислородом, получили широкое применение МГД – генераторы. Строят электростанции разного типа, геотермальные, ветряные, солнечные и т.д.

    1. Закрепление новой темы
    2. — решение качественных и количественных задач.

Какими бы ни были типы электростанций, главное устройство на любом из них – это генератор.

Вопрос: Что называют генератором?

Ответ: Генератор – это устройство, преобразующее энергию того или иного вида в электрическую.

Вопрос: Назовите основные части генератора.

Ответ: Ротор, статор.

Вопрос: Фонари по дороге стоят одиноко.

Десять герц – частота переменного тока.

Кто ответит мне ясно, без тени смущенья:

Этот ток применяют ли для освещения?

Ответ: Нет.

Вопрос: Генератор переменного тока имеет на роторе 6 пар полюсов. Какой должна быть частота вращения ротора, чтобы генератор вырабатывал ток стандартной частоты?

Ответ: (500 об/мин)

  1. Проверка знаний проверь соседа! (приложение 1, приложение 2)

А сейчас проверим, на сколько, вы усвоили данный материал. У вас на столах лежат тестовые задания по теме нашего урока и карточка, в которую вы заносите правильный ответ. Кто ответит правильно на 6 вопросов, получит «5», на 4-5 вопросов, оценку — «4», за 3 правильных ответа получит «3».

  1. Подведение итогов. (10 слайд)

Сегодня на уроке, мы с вами разобрали принцип действия генератора, этого внушительного сооружения из проводов, изоляционных материалов, стальных конструкций. Не перестаю удивляться, как при таких огромных размерах в несколько метров важнейшие детали генераторов изготавливаются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать, электрическую энергию столь же непрерывно и экономично. А теперь постарайтесь ответить на вопрос, поставленный в начале урока.

— Какие достоинства и недостатки у генератора переменного тока?

О трехфазном генераторе вы узнаете на уроках электротехники, а к следующему уроку попрошу вас приготовить сообщение о новых, современных типах генераторов.

Выставление оценок в журнал. Домашнее задание. § 37 (учебник «Физика-11» Г.Я.Мякишев, Б.Б.Буховцев)

Спасибо за внимание. Всего хорошего. До свидания.

Презентация

5.03.2009

urok.1sept.ru

Генерирование электрической энергии. Трансформаторы

В данной теме речь пойдёт о способах генерирования электрической энергии. А также изучим устройство простейшего трансформатора.

Электромагнитная индукция – это явление заключается в том, что при всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока. А полученный таким способом ток называется индукционным током.

Переменным называется ток, периодически изменяющийся со временем.

Для того чтобы в цепи существовал синусоидальный переменный ток, источник в этой цепи должен создавать переменное электрическое поле, изменяющееся синусоидально. На практике синусоидальная ЭДС создается генераторами переменного тока, работающими на электростанциях.

Генераторы — это электрические машины, преобразующие механическую энергию в электрическую.

К генераторам относятся гальванические элементы, электростатические машины, термобатареи, солнечные батареи и т.д.

В настоящее время также исследуются возможности создания принципиально новых типов генераторов. Так, например, разрабатываются и уже частично используются топливные элементы, в которых энергия, освобождающаяся в результате реакции водорода с кислородом, непосредственно превращается в электрическую.

Область применения различных генераторов различна и определяется их характеристиками. Так, например, электростатические машины создают высокую разность потенциалов, но они не способны создать в цепи сколько-нибудь значимую силу тока. Гальванические же элементы наоборот могут дать большой ток, но продолжительность их невелика.

В современной энергетике применяют индукционные генераторы переменного тока, в которых используется явление электромагнитной индукции. Такие генераторы позволяют получать большие токи при достаточно высоком напряжении.

В прошлой теме была рассмотрена простейшая модель такого генератора — рамка с током, вращающаяся в однородном магнитном поле вокруг своей оси.

В настоящее время имеется много различных типов индукционных генераторов. Но все они состоят из одних и тех же основных частей.

Ранее нами рассматривался пример получения индукционного тока в плоском контуре при его вращении в магнитном поле. На этом принципе и работает электромеханической генератор переменного тока. Неподвижная часть генератора, аналогичная магниту, называется статором, а вращающаяся, т. е. рамка, — ротором.

В мощных промышленных генераторах вместо постоянного магнита используется электромагнит.

Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока вектора магнитной индукции.

В рассмотренной нами ранее модели генератора, вращается проволочная рамка, играющая роль ротора.

Разумеется, можно было бы поступить и наоборот, т.е. вращать магнит, а рамку оставить неподвижной. В больших промышленных генераторах приводится во вращение именно электромагнит.

Статор промышленного генератора представляет собой стальную станину цилиндрической формы (станина — это основная несущая часть машины, на которой монтируются различные рабочие узлы, механизмы и прочее). Во внутренней его части прорезаются пазы, в которые укладывается толстый медный провод. Именно в них и индуцируется переменный электрический ток при изменении пронизывающего их магнитного потока. Магнитное поле создается ротором. Он представляет собой электромагнит: на стальной сердечник сложной формы надета обмотка, по которой протекает постоянный электрический ток. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток; а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Ток к этой обмотке подводится через щетки и кольца от постороннего источника постоянного тока, называемого возбудителем.

На рисунке представлена полная схема генератора переменного тока. При вращении ротора какой-либо внешней механической силой, создаваемое им магнитное поле тоже вращается. При этом магнитный поток, пронизывающий витки обмотки статора, периодически меняется, в результате чего в них индуцируется переменный ток.

На тепловых электростанциях ротор генератора вращается с помощью паровой турбины, на гидроэлектростанциях — с помощью водяной турбины.

Обратите внимание, что ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Чем больше пар полюсов, тем больше частота переменного электрического тока, вырабатываемого генератором при данной скорости вращения ротора. Поскольку скорость вращения водяных турбин обычно невелика, то для создания тока стандартной частоты используют многополюсные роторы.

Таким образом, электрическую энергию производят на электростанциях. Но ее каким-то образом надо передать потребителям, часто находящимся очень далеко от станции. Для этого между станцией и потребителем строят линии электропередач.

Однако при передаче электроэнергии неизбежны потери, связанные с нагреванием проводов. Чем дальше от электростанции находится потребитель тока, тем больше энергии тратится на нагревание проводов и тем меньше доходит до потребителя.

Уменьшение потерь электроэнергии при ее передаче от электростанций к потребителям является важной народнохозяйственной задачей. Из закона Джоуля-Ленца следует, что уменьшить потери можно либо за счет уменьшения сопротивления проводов, либо уменьшения силы тока в них. Сопротивление проводов будет тем меньше, чем больше площадь их поперечного сечения и чем меньше удельное сопротивление металла, из которого они изготовлены. Провода делают из меди или алюминия, так как среди относительно недорогих металлов они обладают наименьшим удельным сопротивлением. Однако увеличивать же толщину проводов экономически невыгодно, т.к. это ведет к перерасходу дорогостоящего цветного металла, а также возникновению трудностей при закреплении проводов на столбах. Поэтому такой способ снижения потерь практически невозможен.

Поэтому существенного снижения потерь можно добиться только за счет уменьшения силы тока. Но приданной мощности уменьшение силы тока возможно лишь при увеличении напряжения. Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.

Так, электроэнергия Волжской ГЭС передается в Москву при напряжении 500 кВ, от Саяно-Шушенской ГЭС — при напряжении 750 кВ. Хотя на самих электростанциях генераторы вырабатывают электрическую энергию при напряжениях, не превышающих 20 кВ.

Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатораустройства, служащего для преобразования силы и напряжения переменного тока при неизменной частоте.

Первый трансформатор был изобретен в 1876 году русским ученым Павлом Николаевичем Яблочковым для питания изобретенных им электрических свечей — нового в то время источника света. А первый технический трансформатор впервые создал Иван Филиппович Усагин в 1882 г.

В основе работы трансформатора лежит явление электромагнитной индукции. Простейший трансформатор представляет собой две изолированные друг от друга катушки (их еще называют обмотками), намотанные на общий замкнутый сердечник. По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем.

Переменный ток в первичной обмотке создает в сердечнике переменный магнитный поток, который возбуждает ЭДС индукциив витках каждой обмотки. Сердечник из трансформаторной стали концентрирует магнитное поле так, что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.

Мгновенное значение ЭДС индукции во всех витках первичной или вторичной обмотки одинаково. Согласно закону Фарадея, оно будет определяться формулой

e = –Ф’

где Ф’ — производная потока магнитной индукции по времени.

Если первичная обмотка имеет N1 витков, а вторичная N2 витков, то в обмотках индуцируются (без учета потерь на рассеивание магнитного потока) соответственно e1 и e2, а их отношение будет равно

Т.е. возникающие в катушках ЭДС индукции (или самоиндукции) пропорциональны числу витков в них.

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь. В этом случае модуль напряжения на зажимах первичной обмотки примерно равен модулю суммарной ЭДС индукции.

При разомкнутой вторичной обмотке трансформатора ток в ней не идет, поэтому суммарная ЭДС индукции равна напряжению на зажимах вторичной обмотки.

Изменение мгновенных значений ЭДС происходит так, что они одновременно достигают максимума и одновременно проходят через ноль, т.е. изменяются синфазно. Поэтому их отношения можно заменить отношением действующих значений этих ЭДС или отношением действующих значений напряжений.

Отношение числа витков в первичной обмотке к числу витков во вторичной называют коэффициентом трансформации k.

В зависимости от того, какое значение принимает коэффициент трансформации, различают повышающий и понижающий трансформатор.

Его обычно определяют при холостом ходе трансформатора, т.е. при разомкнутой цепи вторичной обмотки.

Если коэффициент трансформации меньше единицы, то трансформатор называется повышающим, а если больше единицы — то понижающим.

При включении во вторичную цепь какой-либо нагрузки (это рабочий ход трансформатора) в ней начинает проходить ток нагрузки (он переменный и такой же частоты). Этот ток создает в сердечнике магнитный поток, направленный по правилу Ленца навстречу потоку первичной обмотки. В результате суммарный поток магнитной индукции в первичной катушке уменьшается, уменьшается и ЭДС, а, следовательно, сила тока будет увеличиваться. Это увеличение силы тока в первичной цепи приводит к увеличению магнитного потока, ЭДС индукции и силы тока во вторичной цепи. Но, как мы знаем, увеличение тока во вторичной цепи сопровождается увеличением тока самоиндукции и, следовательно, уменьшением магнитного потока который только что возрастал.

В конце концов, при постоянной нагрузке устанавливаются определенные магнитный поток, ЭДС индукции во вторичной цепи и ток в первичной цепи. Получается, что трансформатор сам, автоматически регулирует потребление энергии в зависимости от нагрузки во вторичной цепи.

При рабочем ходе трансформатора происходит непрерывная передача энергии из первичной цепи во вторичную.

Мощность, потребляемая в первичной цепи, будет определяться формулой

а выделяемая на нагрузке

Коэффициент полезного действия трансформатора будет определяться отношением выделяемой мощности на нагрузке к потребляемой мощности в первичной цепи.

Однако не вся энергия, вырабатываемая генератором, передается потребителю. При работе трансформатора имеются потери на нагревание обмоток трансформатора, на рассеивание магнитного потока в пространство, на вихревые токи Фуко в сердечнике и его перемагничивание.

Для уменьшения этих потерь принимаются следующие меры:

1) обмотка низкого напряжения делается большего сечения, так как по ней проходит ток большей силы;

2) сердечник делают замкнутым, что уменьшает рассеивание магнитного потока;

3) сердечник делают из изолированных пластин для уменьшения токов Фуко.

Благодаря этим мерам коэффициент полезного действия современных трансформаторов достигает 95—99%, а сдвиг фаз между колебаниями силы тока и напряжения близки к нулю.

Если иногда можно пренебречь потерями в трансформаторе, т.е. считать его коэффициент полезного действия равным 100%, то мощность, потребляемая в первичной цепи, будет равна мощности, выделяемой на нагрузке. Тогда отношение силы тока в первичной обмотке к силе тока во вторичной обмотке будет обратно пропорционально соответствующим напряжениям. А это значит, что увеличивая с помощью трансформатора напряжение, во столько же раз будем уменьшать силу тока и наоборот.

В настоящее время трансформаторы нашли широкое применение, как в технике, так и в быту. Например, для передачи электроэнергии на большие расстояния используются как повышающие, так и понижающие трансформаторы (об этом, кстати, мы более подробно будем говорить в одном из следующих уроков).При подзарядке сотового телефона имеющийся в зарядном устройстве трансформатор понижает напряжение, полученное из осветительной сети до 5.5 В, пригодного для телефона. В телевизоре имеется несколько трансформаторов (как понижающих, так и повышающих), поскольку для питания различных его узлов требуется напряжение от 1,5 В до 25 кВ и так далее.

Основные выводы:

Генератор переменного тока – устройство, преобразующее механическую энергию в электрическую.

– В современной энергетике применяются индукционные генераторы, работа которых основана на явлении электромагнитной индукции, и позволяющие получить большие токи при достаточно высоком напряжении.

– Конструкций индукционных генераторов существует достаточное количество, однако, неизменными в каждом из них, остаются ротор — подвижная часть генератора, и статор — неподвижная часть генератора.

Трансформатор – устройство, служащее для преобразования силы и напряжения переменного тока при неизменной частоте.

– Трансформатор характеризуется коэффициентом трансформации, т.е. отношением числа витков в первичной обмотке к числу витков во вторичной обмотке.

– В зависимости от значения этого коэффициента, различают повышающий и понижающий трансформаторы.

videouroki.net

Как осуществляется производство (генерация) электрической энергии?

Производство (Генерация) электроэнергии — это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:

Конденсационные (КЭС, также используется старая аббревиатура ГРЭС). Конденсационной называют не комбинированную выработку электрической энергии;

Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл, в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину, где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора — таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

Ядерная энергетика. К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе. Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;

Гидроэнергетика. К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы;

Альтернативная энергетика. К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:

Ветроэнергетика — использование кинетической энергии ветра для получения электроэнергии;

Гелиоэнергетика — получение электрической энергии из энергии солнечных лучей;

Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;

Геотермальная энергетика — использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;

Водородная энергетика — использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах;

Стоит также отметить альтернативные виды гидроэнергетики: приливную и волновую энергетику. В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. Распространению этих видов электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы (и волнение моря соответственно) были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды Чёрном море в прилив и отлив минимальны.

 


Вернуться назад

 

kt.tatarstan.ru

Генерация электроэнергии Википедия

Генерация электричества — это процесс получения электроэнергии из источников первичной энергии. Особенностью электричества является то, что оно не является первичной энергией, свободно присутствующей в природе в значительных количествах, и ее необходимо производить. Производство электричества происходит, как правило, с помощью генераторов на промышленных предприятиях, которые называются электростанциями. В электроэнергетике генерация электроэнергии является первым этапом доставки электроэнергии конечным пользователям, другие этапы — передача, распределение, накопление и восстановление энергии на гидроаккумулирующих электростанциях.

История[ | ]

Основной принцип выработки электроэнергии был открыт в 1820-х и начале 1830-х годов британским ученым Майклом Фарадеем . Его метод, который используется и сегодня, заключается в том, что в замкнутом проводящем контуре при движении этого контура между полюсами магнита, возникает электрический ток.

С развитием техники экономически выгодной стала следующая схема производства электричества. Электрические генераторы, установленные на электростанции, централизованно вырабатывают электрическую энергию в виде переменного тока. С помощью силовых трансформаторов электрическое напряжение вырабатываемого переменного тока повышается, что позволяет передавать его по проводам с низкими потерями. На месте потребления электрической энергии, напряжение переменного тока снижается с помощью понижающих трансформаторов и передаётся потребителям. Электрификация наряду с бессемеровским способом выплавки стали стала основой Второй промышленной революции. Основные изобретения, сделавшие электричество общедоступным и незаменимым, сделали Томас Алва Эдисон и Никола Тесла .

Производство электроэнергии на центральных электростанциях началось в 1882 году, когда на станции Пёрл-стрит в Нью-Йорке[1]паровой двигатель, приводил в движение динамо-машину, которая производила постоянный ток, для освещения Пёрл-стрит. Новая технология была быстро внедрена во многих городах по всему миру, которые быстро перевели осветительные фанари на электрическую энергию. Вскоре после этого электрические лампы стали широко использоваться в общественных зданиях, на предприятиях и для питания общественного транспорта, (трамваев и поездов). С тех пор производство электрической энергии в мире постоянно возрастает.

Способы выработки электроэнергии[ | ]

Схема производства и передачи электричества. Системы генерации отмечены красным цветом

Основным способом производства электрической энергии является её выработка электрическим генератором, находящимися на одной оси с турбиной, и преобразующим

ru-wiki.ru

Генерация электроэнергии Википедия

Генерация электричества — это процесс получения электроэнергии из источников первичной энергии. Особенностью электричества является то, что оно не является первичной энергией, свободно присутствующей в природе в значительных количествах, и ее необходимо производить. Производство электричества происходит, как правило, с помощью генераторов на промышленных предприятиях, которые называются электростанциями. В электроэнергетике генерация электроэнергии является первым этапом доставки электроэнергии конечным пользователям, другие этапы — передача, распределение, накопление и восстановление энергии на гидроаккумулирующих электростанциях.

История

Основной принцип выработки электроэнергии был открыт в 1820-х и начале 1830-х годов британским ученым Майклом Фарадеем . Его метод, который используется и сегодня, заключается в том, что в замкнутом проводящем контуре при движении этого контура между полюсами магнита, возникает электрический ток.

С развитием техники экономически выгодной стала следующая схема производства электричества. Электрические генераторы, установленные на электростанции, централизованно вырабатывают электрическую энергию в виде переменного тока. С помощью силовых трансформаторов электрическое напряжение вырабатываемого переменного тока повышается, что позволяет передавать его по проводам с низкими потерями. На месте потребления электрической энергии, напряжение переменного тока снижается с помощью понижающих трансформаторов и передаётся потребителям. Электрификация наряду с бессемеровским способом выплавки стали стала основой Второй промышленной революции. Основные изобретения, сделавшие электричество общедоступным и незаменимым, сделали Томас Алва Эдисон и Никола Тесла .

Производство электроэнергии на центральных электростанциях началось в 1882 году, когда на станции Пёрл-стрит в Нью-Йорке[1]паровой двигатель, приводил в движение динамо-машину, которая производила постоянный ток, для освещения Пёрл-стрит. Новая технология была быстро внедрена во многих городах по всему миру, которые быстро перевели осветительные фанари на электрическую энергию. Вскоре после этого электрические лампы стали широко использоваться в общественных зданиях, на предприятиях и для питания общественного транспорта, (трамваев и поездов). С тех пор производство электрической энергии в мире постоянно возрастает.

Способы выработки электроэнергии

Схема производства и передачи электричества. Системы генерации отмечены красным цветом

Основным способом производства электрической энергии является её выработка электрическим генератором, находящимися на одной оси с турбиной, и преобразующим кинетическую энергию вращения турбины в электричество. В зависимости от вида рабочего агента, вращающего турбину электростанции делятся на гидравлические и тепловые (включая ядерные).

Гидроэнергетика

Гидроэнергетика — отрасль производства электроэнергии от возобновляемого источника, использующая для производства электроэнергии кинетическую энергию водного потока. Предприятиями по производству энергии в этой области являются гидроэлектростанции (ГЭС), которые строят на реках.

При строительстве гидроэлектростанции с помощью плотин на реках искусственно создается перепад уровней водной поверхности (верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний специальными водоводам, в которых расположены водные турбины, лопасти которых раскручиваются водяным потоком. Турбина вращает соосный ротор электрогенератора.

Особой разновидностью ГЭС является гидроаккумулирующие электрические станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы.

Тепловая электроэнергетика

Предприятиями тепловой электроэнергетики является тепловые электростанции (ТЭС), на которых в электрическую энергию превращается тепловая энергия сгорания органического топлива. Тепловые электростанции бывают двух основных видов:

Конденсационные (КЭС, для которых в прошлом использовалась аббревиатура ГРЭС — государственная районная электростанция). Конденсационной называют тепловую электростанцию, которая предназначена исключительно для производства электрической энергии. На КЭС тепло, которое было получено при сжигании топлива, нагревает воду в парогенераторах, и образовавшийся перегретый водяной пар подается в паровую турбину, на одной оси с которой находится электрический генератор. В турбине внутренняя энергия пара превращается в механическую энергию, которая в электрическом генераторе создает электрический ток, подаваемый в электрическую сеть. Отработанный пар отводится в конденсатор. Оттуда сконденсировавшаяся вода перекачивается насосами обратно в парогенератор.

Теплофикационные (теплоэлектроцентрали, ТЭЦ ). Теплофикационной называется тепловая электростанция, в которой часть тепловой энергии направляется на выработку электрической энергии, а часть поступает для обогрева окрестных жилых районов. Комбинированная выработка тепла и электрической энергии на ТЭЦ значительно повышает эффективность использования топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях, а тепла для обогрева — в домашних котельных установках

Технологические схемы КЭС и ТЭЦ похожи. Принципиальное отличие ТЭЦ от КЭС состоит в том, что часть образовавшегося в котле пара идет на нужды теплоснабжения.

Ядерная энергетика

В ядерной энергетике для производства энергии и тепла используется ядерная энергия. Предприятиями ядерной энергетики являются атомные электростанции (АЭС). Принцип выработки электроэнергии на АЭС то же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании органического топлива, а в результате ядерной реакции в ядерном реакторе. Дальнейшая схема производства электроэнергии ничем принципиально не отличается от ТЭС: парогенератор получает тепло от реактора и вырабатывает пар, тот поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС их рентабельно использовать только для производства электричества, хотя отдельные эксперименты в области атомной теплофикации проводились.

Схема работы ядерной электростанции

Альтернативная электроэнергетика

Ветровые турбины обычно обеспечивают выработку электроэнергии в сочетании с другими методами производства электроэнергии.

К альтернативной электроэнергетике относятся способы генерирования электроэнергии, которые имеют ряд преимуществ по сравнению с «традиционными» (упомянутыми выше), но по разным причинам не получили широкого распространения. Основными видами альтернативной энергетики являются:

Ветроэнергетика — использование кинетической энергии ветра для получения электроэнергии. Интересно, что согласно закону Беца КПД ветряной турбины не может быть больше, чем 59,3 %

Солнечная энергетика (гелиоэнергетика) — получение электрической энергии из энергии солнечных лучей посредством фотоэлектрического эффекта. Солнечные батареи преобразуют солнечный свет непосредственно в электричество. Несмотря на то, что солнечный свет бесплатен и имеется в изобилии, крупномасштабное производство электроэнергии на солнечных электростанциях, обходится дороже, чем производство электроэнергии с помощью электрических генераторов. Это связано с высокой стоимостью солнечных батарей, которая однако постоянно снижается. В настоящее время коммерчески доступны батареи с КПД преобразования почти 30%. В экспериментальных системах была продемонстрирована эффективность более 40%[2] . До недавнего времени фотоэлектрические устройства чаще всего использовались на космических орбитальных станциях, в малонаселенных местах, где нет доступа к коммерческой электросети, или в качестве дополнительного источника электроэнергии для отдельных домов и предприятий. Последние достижения в области эффективности производства и фотоэлектрических технологий в сочетании с субсидиями, обусловленными экологическими проблемами, значительно ускорили развертывание солнечных панелей. Установленная мощность растет на 40% в год благодаря росту производства электроэнергии в Марокко[3], Германии, Китае, Японии и США. Общими недостатками ветро- и гелиоэнергетики является необходимость создния аккумулирующих мощностей для функционирования в ночное (для гелиоэнергетики) или безветренное (для ветроэнергетики) время.

Геотермальная энергетика — промышленное получение энергии, в частности электроэнергии, из горячих источников, термальных подземных вод. По сути геотермальные станции являются обычными ТЭС, на которых источником тепла для нагрева пара вместо котла или ядерного реактора используются подземные источники тепла из недр Земли. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где эти природные источники тепла являются самыми доступными.

Водородная энергетика  — использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода является абсолютно экологически чистым (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика пока не может из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах.

Стоит также отметить такие альтернативные виды гидроэнергетики: приливную и волновую энергетику. В этих случаях для производства электрической энергии используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. Распространению этих видов электроэнергетики мешает необходимость совпадения очень многих факторов при проектировании электростанции: необходимо такое побережья, на котором приливы (и волнение моря соответственно) были бы достаточно сильными и устойчивыми.

Электрохимия

Электрохимическая выработка энергии происходит в процессе прямого преобразования энергии химических связей в электричество, как, например, в батарее . Электрохимическое производство электроэнергии важно в портативных и мобильных приложениях. В настоящее время большая часть электрохимической энергии поступает от батарей[4]. Первичные элементы, такие как обычные цинк-углеродные батареи, действуют непосредственно в качестве источников энергии, в то время, как вторичные элементы (аккумуляторные батареи) используются хранения электроэнергии, а не для её выработки. Открытые электрохимические системы, известные как топливные элементы, могут использоваться для извлечения энергии из природного или синтетического топлива.

В местах, где много соленной и пресной воды возможно создание осмотических электростанций.

Экономика производства электроэнергии

США 2014 Производство электроэнергии по типам. [5]

Строительство объектов электроэнергетики очень затратно, срок их окупаемости велик. Экономическая эффективность того или иного способа производства электроэнергии зависит от многих параметров, в первую очередь, от спроса на электроэнергию и от региона. В зависимости от соотношения этих параметров варьируются и отпускные цены не электроэнергию, например, цена электроэнергии в Венесуэле составляет 3 цента за кВтч, а в Дании — 40 центов за кВтч.

В 2018 году стоимость производства ветроэнергии стала ниже производства энергии на атомных электростанциях

Выбор типа электростанции также основывается в первую очередь на учете местных потребностей в электроэнергии и колебаниях спроса. Кроме того, все электрические сети имеют различные нагрузки, но электростанции, которые подключены к сети и работают непрерывно должны обеспечить базовую нагрузку — дневной минимум потребления. Базовую нагрузку могут обеспечить только крупные тепловые и атомные электростанции, мощность которых можно в определенных пределах регулировать. В гидроэлектростанциях возможность регулирования мощности значительно меньше.

Тепловые электростанции предпочтительно строить в районах с высокой плотностью промышленных потребителей. Отрицательное влияние загрязнения местности отходами может быть сведено к минимуму, поскольку электростанции обычно располагаются вдали от жилых районов. Существенным для теплоэлектростанции является вид сжигаемого топлива. Обычно самым дешевым топливом для тепловых электростанций является уголь. Но если цена природного газа опускается ниже определенного предела, его использование для выработки электроэнергии становится более предпочтительным чем выработка электроэнергии путем сжигания угля[6].

Главным достоинством атомныъ электростанций является большая мощность каждого энергетического блока при относительно небольших размерах и высокая экологичность при чётком соблюдении всех правил работы. Однако потенциальные опасности от сбоя атомных станций очень велики.

Гидроэлектростанции строятся, как правило, в отдаленных районах и являются чрезвычайно экологичными, но их мощность сильно меняется в зависимости от времени года, и они не могут регулировать выдаваемую в электрическую сеть мощность в широких пределах.

Стоимость выработки электроэнергии из возобновляемых источников (за исключением гидроэнергии) в последнее время значительно упала. Стоимость электроэнергии, добываемой из солнечной энергии, энергии ветра, энергии приливов во многих случаях уже сопоставима со стоимостью электроэнергии, добываемой на тепловых электростанциях. С учётом государственных субсидий строительство электростанций работающих с возобновляемыми источниками экономически целесообразно. Однако главный недостаток подобных электростанций — непостоянный характер их работы и невозможность регулировать их мощность.

В 2018 году производство электроэнергии на ветровых электростанциях, расположенных в море, стало дешевле производства электроэнергии на атомных электростанциях[7].

Экологические проблемы

Различия между странами, производящими электроэнергию, влияют на озабоченность состоянием окружающей среды. Во Франции только 10% электроэнергии вырабатывается из ископаемого топлива, в США этот показатель доходит до 70%, а в Китае — до 80%[8]. Экологичность производства электричества зависит от типа электростанции. Большинство ученых сходятся во мнении, что выбросы загрязняющих веществ и парниковых газов от производства электроэнергии на основе ископаемого топлива составляют значительную часть мировых выбросов парниковых газов; в Соединенных Штатах на выработку электроэнергии приходится почти 40% выбросов, самый большой из всех источников. Транспортные выбросы сильно отстают, обеспечивая около трети производства диоксида углерода в США[9]. В Соединенных Штатах сжигание ископаемого топлива для выработки электроэнергии является причиной 65% всех выбросов диоксида серы, основного компонента кислотных дождей[10]. Производство электроэнергии является четвертым по величине комбинированным источником NOx, окиси углерода и твердых частиц в США[11]. В июле 2011 года парламент Великобритании констатировал, что при выработке одного киловатт-часа «выбросы (двуокиси углерода) в ядерной энергетике примерно в три раза ниже, чем на солнечных электростанция, в четыре раза ниже, чем при сжигании обогащенного угля, и в 36 раз ниже, чем при сжигании обычного угля»[12].

Примечания

wikiredia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *