Громоотвод как работает: как работает? Принцип действия, инструкция по сборке!

Содержание

как работает? Принцип действия, инструкция по сборке!

Сегодня мы погрузимся в мир теоретической физики, чтобы разобраться с тем, как работает громоотвод. На самом деле, это неправильное название, так как гром является звуковым эффектом — отвести его от здания не только нельзя, но и не имеет никакого смысла. Правильное название конструкции «молниеотвод», и оно наиболее точно отражает суть данного устройства.

Громоотвод — как работает

Содержание статьи

Что такое громоотвод и как он функционирует

Итак, молниеотвод – это устройство, предназначенное для защиты зданий и сооружений от удара молний. Представляет собой заостренный металлический штырь, который устанавливается в вертикальном положении на крыше зданий или на отдельно стоящей высокой мачте. От нижнего конца штыря идет проводник, который уходит в землю – заземление.

Принцип действия молниеотвода

Большинство людей думают, что основная функция молниеотвода заключается в том, что при прямом попадании молнии во время грозы он отводит заряд по проводнику в землю, где тот рассеивается, не повреждая здание. Да, это утверждение верное, и при попадании молнии именно так и произойдет.

Однако так бывает только в случае прямого попадания, что случается крайне редко. В прочих ситуациях громоотвод работает по-другому. Удивлены? На самом деле, все не так сложно и объяснимо, и сейчас вы в этом убедитесь.

Молния крайне редко попадает в громоотвод

Молниезащита тросовая

Немного физики

При образовании грозовых облаков происходит разделение зарядов. Мельчайшие капли воды приобретают отрицательные и положительные заряды, при этом отрицательные заряды скапливаются преимущественно в нижней части кучевого облака.

  1. На поверхности земли, а также на зданиях и сооружениях под заряженным облаком скапливаются индуцированные заряды противоположного знака, то есть положительные.

    Нюансы разделения зарядов

  2. Между землей и облаками увеличивается напряженность электрического поля.
    Появляется разность потенциалов, достигающая миллионов вольт. Данной разницы достаточно для образования разряда, коим и является молния.
  3. Разряд молнии начинается со ступенчатого лидера. Под этим понимается слабосветящийся разряд, который движется по направлению от облака к земле со скоростью 50 000 км/сек. Путь молнии прокладывается по воздуху — он неоднороден, а значит, есть места с более высокой электропроводностью (больше количество заряженных частиц). По ним-то молния и проходит. По-другому можно сказать, что молния выбирает наименьший путь сопротивления.

    Разряд молнии

  4. Приближаясь к земле, лидер направляется в те участки, где в данный момент имеется наибольшее количество индуцированных зарядов противоположного знака. Когда лидер достигает земли, все отрицательные заряды, находящиеся в ионизированном канале, устремляются в землю – сначала заряды из нижней части канала, а затем и из облака. Таким образом, основной разряд идет снизу-вверх.

    Молния выбирает наименьший путь сопротивления

Наверное, всем известно, что молния поражает высокие объекты: деревья, вышки, мачты, дома. Но происходит так не всегда, так как многое зависит от электропроводности этих объектов. Например, ствол дерева содержит влагу, что позволяет образующимся в земле индуцированным зарядам перетекать на верхушку дерева, а значит, расстояние до нисходящего ступенчатого лидера сокращается. Ему нужно проделать меньший путь, поэтому удар с высокой долей вероятности придется в рассматриваемый объект. Так будет, если рассмотреть одиноко стоящее дерево.

Совет! Именно поэтому нельзя прятаться во время грозы под деревьями, которые стоят особняком. В относительной безопасности вы будете только в зарослях, да и то – не факт.

Большинство специалистов рекомендует поднимать молниеотвод на высоту до 18-20 м, особенно если здание находится в плотной застройке частного сектора

Справедливо перетекание зарядов также для высоких сооружений и зданий, однако если поблизости находится объект с более высокой электропроводностью, он накопит в себе больше индуцированных зарядов, и молния поразит именно его — несмотря на то, что оно может быть намного ниже.

Единственным проверенным средством, помогающим уберечься от удара атмосферного разряда, является молниеотвод

Данный эффект полностью объясняет поведение молнии. Иногда люди недоумевают, почему заряд поражает не высокое строение, а какой-нибудь маленький сарай, находящийся поблизости. Причиной может быть то, что он стоял на водоносном слое почвы, а вода, как мы знаем, является прекрасным проводником и однозначно будет содержать большее количество индуцированных зарядов.

Молниезащита загородного дома

Можно часто наблюдать деревья, пораженные молнией, около рек. Как известно, в силу гравитации реки протекают в самых низких участках рельефа, но так как вода в реке – это хороший проводник, содержащий много зарядов, в этой области создаются самые оптимальные условия для попадания молнии.

История молниеотвода

Совет! По этой причине во время грозы стоит держаться подальше от рек и водоемов.

Цены на молниезащиту и заземление

Молниезащита и заземление

Принцип действия молниеотвода

Итак, мы разобрались с поведением молнии, но до сих пор непонятно, как функционирует громоотвод. Сейчас мы объясним и этот вопрос.

  1. Как уже было сказано, на земле появляется большое количество индуцированных зарядов, возникает сильное электрическое поле, которое будет усиленно у заостренных предметов, коим и является молниеотвод.

    Принцип работы молниеотвода сводится к тому, чтобы переключить электрический удар на специальную проводную шину, отправляющую заряд молнии глубоко в землю

  2. В результате этого на верхушке устройства возникает коронный разряд, через который разряды из земли стекают вверх по воздуху в направлении грозового облака. Это означает только одно – индуцированные заряды не могут накапливаться на здании, а значит, молния в него бить не будет, так как наверняка поблизости найдутся более заряженные объекты.
  3. Вероятность того, что молния попадет в здание с громоотводом, падает практически до нуля. Именно поэтому случаи ударов в громоотводы такие редкие.

    Принцип действия активного громоотвода

Согласитесь, все очень просто и понятно, если понимаешь суть явления. Мы уже давно живем в информационном веке, поэтому быть невеждой современному человеку не к лицу.

Как правильно устроить молниеотвод на здании

Разобрав принцип работы громоотвода, будет неправильно оставить без внимания способ его устройства. Во второй части статьи мы расскажем, как своими руками смонтировать качественную защиту для вашего дома, чтобы уберечься от ударов молнии.

ГРОМООТВОДЫ. Фигура 1) Платиновый наконечник громоотводного стержня. 2) Проволочный кабель, зажатый наконечником. 3) Проволочный кабель с наконечником. 4) Соединение верхней части стержня а, который для сбережения места укорочен и обломан на чертеже. 5, 6) Пучки из стержней. 7, 8, 9 и 10) Скрепления основания стержня с деревянными частями крыши. 11 и 12) Муфты для соединения проводников. 13) Скрепление основания стержня с проводником, загибающимся вниз. 14) Конец подземного проводника, опущенный в воду колодца. 15, 16, 17) Подземные части проводника. 18) Якорь и корзина с углем — подземная оконечность проводника. 19) Защита порохового погреба, система Мельсана. 20) То же — по французской системе. 21) Защита высокого здания

Существует множество вариантов исполнения молниеотвода, начиная с самых простых самодельных вариантов и заканчивая профессиональными системами от именитых производителей.

Мы настоятельно советуем использовать заводские решения, так как они гарантированно будут работать (при правильном монтаже) и, что немаловажно, выглядят намного привлекательнее с эстетической точки зрения.

В качестве примера мы разберем, как монтируется молниезащита от белорусского производителя «ТерраЦинк». Данная система включает в себя широкий ассортимент аксессуаров и комплектующих, позволяющих выполнять монтаж на строениях разной формы и сложности. Основу системы составляет молниеприемник, который в зависимости от габаритов может представлять собой молниеприемную мачту или молниеприемный стержень. Всего насчитывается более 20 видов элементов.

Молниезащита «ТерраЦинк»

В комплект будут входить основание, треноги и держатели токоотвода. Токоотводов компанией представлено 30 видов, что позволяет подобрать оптимальный вариант под любой фасад здания. Также система включает в себя 15 видов соединителей и зажимов токоотвода.

Держатель треугольной формы

Интересно знать! В качестве токоотвода для частных домов чаще всего используют 8-миллиметровый оцинкованный прут.

Система «ТерраЦинк» хороша еще и тем, что для установки вам не потребуется специальных инструментов. Монтаж выполняется за очень короткое время при том, что его можно осуществлять на эксплуатируемые здания. Комплектующие имеют небольшие размеры, что делает их незаметными на фоне строения.

Расположение элементов молниезащиты

Таблица. Как происходит установка такой молниезащиты?

Шаги, фотоОписание работ

Шаг 1. Установка держателей под токоотвод

Работа начинается с того, что на конёк кровли монтируются регулируемые держатели с металлическим стержнем. Фиксируются они очень просто — за счет затягивания крепежного винта.

Шаг 2. Монтаж остальных держателей

Токопровод у нас пройдет по всей крыше, поэтому держатели устанавливаются по всему коньку с шагом 1 м.

Шаг 3. Прокладка токопровода

Фиксируем в держателях токопровод диаметром 8 мм при помощи пластиковой защелки на верхушке держателя.

Комментарий. Некоторые держатели имеют иное крепление токопровода, поэтому обязательно изучите перед монтажом прилагаемую инструкцию.

Шаг 4. Торцевой загиб токопровода

Чтобы увеличить площадь покрытия молниезащиты, свободный конец токопровода, выступающий за край конька, рекомендуется загнуть вверх под углом 45 градусов. Делаем это с двух сторон.

Шаг 5. Монтаж держателя токоотвода

На следующем этапе необходимо закрепить держатель под токоотвод. Монтируется он под черепицу или иные кровельные материалы, поэтому в месте установки придется произвести небольшой демонтаж, чтобы добраться до деревянной стропильной системы и обрешетки. Держатель фиксируется при помощи саморезов, после чего элементы кровли возвращаются на место. Образовавшееся отверстие дополнительно герметизируется, чтобы не допустить попадания внутрь воды во время дождя.

Шаг 6. Установка держателей на скате

Далее аналогичным образом крепятся держатели прямо по кровле до самой нижней части. Шаг установки также составляет 1 м.

Шаг 7. Дальнейшая разводка токопровода

В держатели 42202, идущие по кровле, устанавливается токопровод. Фиксация элемента аналогична той, что выполнялась ранее с коньковыми держателями.

Шаг 8. Соединение токопровода

Подведенные с боков токопроводы необходимо соединить с центральным. Делается это при помощи зажимов №51515 при затягивании болтов.

Шаг 9. Монтаж держателя под молниеприемник

Далее начинается процесс монтажа молниеприемника. Первым делом устанавливаем держатель. Проще всего его закрепить к вертикальной поверхности, например, стенке дымохода.
1. Для этого в ней просверливаются отверстия, в которые вставляются пластиковые дюбеля.
2. В них вкручиваются кронштейны до надежной фиксации.
3. Ставится стержень (молниеприемник), который фиксируется скобами, прикручиваемыми к кронштейну на болтовые соединения.

Шаг 10. Соединения молниеприемника с токопроводом

С нижнего конца у стержня имеется резьба, на которую накручивается зажим прута №55422. Высоту расположения этого элемента стоит отрегулировать так, чтобы он находился на одном уровне с коньковым токопроводом. Далее происходит соединение по уже рассмотренному принципу.

Шаг 11. Монтаж фасадных держателей

По фасаду, снизу-вверх, устанавливаются пластиковые держатели. Их монтаж аналогичен тому, как мы ранее крепили держатель молниеотвода. Шаг установки также составляет 1 м.

Шаг 12. Закрепление токопровода на вертикали

Далее соединяем токопровод со стеновыми держателями. Свес кровли при этом необходимо обогнуть так, чтобы нигде не было контакта с кровлей и прочими элементами, особенно металлическими. Если при прокладке необходимо обойти водоотлив коттеджа, то используйте держатели для водостока. Токопровод при этом можно пропустить по водосточной трубе, используя специальные крепежные элементы.

Шаг 13. Установка контрольного зажима

Токопровод должен заканчиваться на высоте 70 см от земли. На его конец крепится контрольный зажим

Шаг 14. Копка траншеи

Далее необходимо выкопать траншею, по которой будут проложены металлические шины заземления. Длина траншеи составляет 1 м, а глубина – 50 см.

Шаг 15. Установка держателя полосы

Под контрольным зажимом устанавливаем держатель полосы.

Шаг 16. Установка полосы заземления

Затем прикрепляем полосу заземления. Она погружается в траншею с загибом и проходит по ее дну.

Шаг 17. Установка контрольно-измерительного колодца

Устанавливаем контрольно измерительный колодец на край траншеи.

Шаг 18. Сборка штырей для заземлителя

Осуществляем сборку комплекта штырей для заземлителя. Тут все просто – на резьбу накручивается переходная муфта, через которую элементы легко соединяются друг с другом.

Внимание! Количество штырей, а соответственно, и глубина их погружения в почву, рассчитываются при составлении проекта.

Шаг 19. Подготовка инструмента

По мере наращивания штыри забиваются в землю. Для этого вам понадобится специальная насадка на перфоратор и ответный ударный винт, который вкручивается в муфту, после чего удаляется и на его место становится следующий элемент штыря.

Шаг 20. Установка штыря

Забиваем штырь перфоратором на расчетную глубину. Обязательно при соединении его частей пользуемся антикоррозионной токопроводящей смазкой. Также используем антикоррозионную ленту, которой обматываются все соединения, находящиеся под землей.

Шаг 21. Соединение штыря и полосы заземления

Далее устанавливаем на конец штыря зажим для прута, после чего выполняем стыковку с полосой заземления. При этом зажим разворачивается перпендикулярно, как показано на картинке.

Виды расположения молниезащиты кровли

Цены на держатели для токоотвода

Держатели для токоотвода

На этом работа заканчивается. Вам останется лишь засыпать траншею и красиво все замаскировать. Если монтаж выполнен правильно, то система образует вокруг дома зону, при попадании в которую, молния уйдет в землю.

Видео — Громоотвод в действии

Молниеотводы. Виды и устройство. Работа и особенности

Если рассматривать статистику погибших людей от ударов молнии, то это количество больше, чем жертв в авиационных катастрофах. Молния каждый год уносит несколько тысяч жизней, а также наносит многомиллионный материальный ущерб. Каждый владелец дачи или собственного дома знает, что защитить свое имущество и родственников можно только самому. Поэтому молниеотводы лучше изготавливать самостоятельно.

Самодельные молниеотводы нормально работают, что подтверждается на практике. Такие устройства имеют и другое название – громоотводы. Гром никакого вреда не наносит, кроме громкого звука. А для защиты от молнии необходимо сооружать некоторую конструкцию.

Удар молнии обычно приходится в конструкцию с максимальной высотой, которая встречается на ее пути.

Опасным местом во время грозы является жилой дом или другая постройка из-за наличия в них металлических элементов – крыша, телевизионная антенна и т.д. Жильцы городских квартир могут не беспокоиться, так как большинство многоэтажных домов уже имеют молниеотводы.

Если рядом с домом имеется вышка сотовой связи, то в устройстве молниеотвода нет необходимости. Во всех других случаях целесообразно все-таки обезопасить свой дом. Если вызывать для таких работ специалистов, то это обойдется вам недешево. Но если разобраться с устройством системы молниеотвода, то можно все сделать самостоятельно.

Виды и особенности устройства

На рисунке изображено устройство системы молниеотведения.

Существует несколько видов молниеотвода, но основные их части одни и те же:
  • Молниеприемник.
  • Токоотводящее устройство.
  • Заземление.
Виды молниеприемников
Верхняя часть этой защитной системы называется молниеприемником.
  • Стержневой приемник молнии заострен на конце. В него ударяет молния во время грозы. Оптимальным вариантом изготовления приемника молнии является медный штырь диаметром 15 мм. Он должен быть расположен достаточно высоко, однако слишком высокий приемник будет притягивать к себе электрические разряды молнии.Стержневые молниеотводы наиболее эстетичны, в отличие от тросового, но обеспечивают меньший защитный радиус на участке. От высоты металлического штыря зависит величина защищаемого пространства.

  • Тросовый приемник способен защитить большую площадь участка, в отличие от стержневого молниеприемника. Тросовые конструкции используются в устройствах линий электропередач. В них вместо металлических штырей применяют трос, который соединяется с другими элементами болтовым соединением.

  • Сетчатый приемник молнии изготавливается в виде металлической сетки на крыше дома.
 
Токоотводы

Следующей частью системы отведения молнии является токоотвод, состоящий из толстых алюминиевых или медных проводов, закрепленных специальными муфтами к приемнику молнии и заземляющему контуру. Для крепления его на стене применяются пластиковые крепежные элементы. Токоотвод необходимо изолировать от воздействия внешней среды. Для этого обычно используют пластиковый кабель-канал.

Заземление

Основные элементы заземления находятся в грунте. Заземлитель состоит из металлических стержней, сваренных между собой, либо скрепленных болтами.

Заземление системы отведения молнии является важной частью всей конструкции. Этот заземляющий контур аналогичен устройству заземления дома. Важным требованием при этом является то, что эти два разных контура заземления ни в коем случае не должны соединяться. Иначе во время грозы бытовые электрические устройства могут выйти из строя, либо возникнет возгорание деревянного дома от разряда молнии.

Требования к заземлению системы отведения молнии:
  • Металлические штыри, вставленные в грунт, должны быть длиной не меньше трех метров.
  • Сечение металлических штырей – не менее 25 мм2.
  • Штыри соединяются между собой треугольником, что является отличием от обычного заземления дома.
  • Между вершинами треугольника должно быть расстояние не менее 3 метров.
  • В качестве соединительных шин допускается применять металлический пруток диаметром не меньше 12 мм или полосу сечением 50 х 6 мм.
  • Длина сварных швов не должна быть меньше 20 см.
  • Для заземления молниеотводов устанавливается минимальная глубина над поверхностью земли 50 см.
Место для заземления

К этому вопросу следует подходить с наибольшим вниманием и аккуратностью. Заземляющие электроды не должны устанавливаться в местах нахождения животных, или возле детских площадок. Также нельзя располагать эти элементы возле скамеек или дорожек.

Лучше заземление будет работать во влажном грунте. Чтобы поддерживать работу заземления, можно самостоятельно создавать для этого условия, периодически поливая место заземления водой. Если нет возможности полива этого места, а почва в вашей местности слишком сухая, то рекомендуется при установке в почву электродов заземления посыпать их смесью соли и древесного угля.

Как работают молниеотводы

Чтобы разобраться в принципе действия системы отведения молнии, следует представить большой конденсатор, который постоянно заряжается. Его обкладками будут облака и земля. При наступлении грозы обкладки этого большого конденсатора начинают электризоваться между собой, и накапливать заряд. При достижении разницы напряжения между обкладками, равному напряжению пробоя молнии, возникает сильный разряд молнии, достигающий нескольких миллиардов вольт.

Чтобы заряд не накапливался, необходимо замкнуть этот конденсатор на землю. Таким замыкающим проводником и являются молниеотводы. Поэтому при грозе происходит разряжение конденсатора и обкладки не могут накопить заряд, а напряжение в молниеотводе уменьшается до нуля. Другими словами, система отведения молнии создает условия, в которых не способен возникнуть электрический разряд молнии, так как накапливаемый заряд отводится в землю.

Особенности самостоятельной установки молниеотвода
  • Молниеотводы рекомендуется изготавливать из материалов, не подверженных коррозии. Для этого применяется оцинкованный уголок, луженая жесть, профиль из дюралюминия, или сетка из неизолированной медной проволоки. Соединяющие проводники должны иметь необходимое сечение. Молниеприемник нельзя покрывать лакокрасочными материалами или другой изоляцией.
  • Для удобного расположения молниеотвода можно использовать высокое дерево, находящееся вблизи дома. Чтобы не причинять вред дереву, приемник молнии можно закрепить на длинном деревянном шесте, который фиксируют на дереве с помощью пластиковых хомутов, и располагают на максимальной высоте.
  • Если дерева нет, то можно использовать для крепления молниеприемника телевизионную антенну, которая закреплена на крыше дома.
  • Другим способом установки является печная труба, к которой можно закрепить металлический штырь и соединить его с заземлением.
Техническое обслуживание

Чтобы система молниеотвода работала без нареканий, необходимо обслуживать его конструкцию для поддержания в рабочем состоянии. Металлический штырь, играющий роль приемника молнии, необходимо чистить обычными чистящими средствами в виде наждачной бумаги или других аналогичных средств, чтобы предотвратить образование окиси и удалить загрязнения.

В засушливые времена необходимо периодически увлажнять почву в месте закладки контура заземления.

Похожие темы:

Громоотвод | Физика

Проведем опыт. Прикоснемся наэлектризованной палочкой к гибкой металлической сетке с бумажными лепестками (сетке Кольбе). Если сетка образует плоскую поверхность, то заряд распределится по ее поверхности равномерно, и мы увидим, что все лепестки отклонятся на одинаковый угол (рис 18, а). Иначе распределится заряд, если сетку изогнуть. Мы увидим, что на вогнутых участках сетки лепестки опадут, а на выпуклых, наоборот, отклонятся сильнее (рис 18, б).

Этот и другие опыты показывают, что электрические заряды распределяются по поверхности проводника так, что электрическое поле оказывается сильнее на выступах проводника и слабее на его впадинах.

Особенно сильно электрическое поле вблизи металлического острия. На этом свойстве проводников основано действие громоотвода.

Громоотвод был изобретен в середине XVIII в Б. Франклином. Более правильное его название — молниеотвод, так как он предназначен для защиты зданий и других сооружений от ударов молнии, а не раскатов грома.

Подсчитано, что в атмосфере Земли каждую секунду происходит около 100 молний. Еще в древности было замечено, что ударяют они преимущественно в наиболее высокие объекты — столбы, вышки, деревья, а на равнинных местах могут поразить людей и животных. Поэтому никогда не следует укрываться от молнии под деревьями, а, оказавшись во время грозы на открытой местности, лучше всего лечь на землю или, по крайней мере, встать на колени и как можно ниже опустить голову.

На протяжении многих веков люди не понимали истинной природы молнии, считая ее удары проявлением воли богов. Так, например, когда персидский царь Ксеркс (IV в до н. э.) задумал поход против греков, то, чтобы предотвратить этот поход, его советник Артабан сказал ему «Взгляни, как Бог молниями своими всегда поражает крупных животных и не позволяет им становиться дерзкими, а существа меньших размеров не раздражают Его. И как молнии Его падают всегда на самые большие дома и самые высокие деревья. Так, очевидно, Он любит унижать все, что возносит себя».

На самом деле молния имеет электрическую природу и может быть объяснена на основе законов физики. Возникает она тогда, когда заряженные дождевые облака (тучи) создают настолько сильное электрическое поле, что разгоняемые этим полем свободные электроны (всегда имеющиеся в небольшом количестве в воздухе) ионизируют встречные молекулы, выбивая из них новые электроны. Освободившиеся электроны также разгоняются и ионизируют следующие молекулы и т. д. Возникает лавина заряженных частиц, образующая быстро удлиняющуюся светящуюся искру. При приближении этой искры к земле она прокладывает себе путь к области наиболее сильного электрического поля, наблюдаемой вблизи высоких и заостренных сооружений. Этот искровой разряд и образует молнию.

Если над наивысшей точкой защищаемого сооружения закрепить молниеотвод, состоящий из тонкого, заостренного на конце металлического стержня, соединенного проволокой с металлическим листом, закопанным в землю (рис. 19), то большая часть электрического заряда, переносимого молнией, уйдет в землю и сооружение будет спасено. Впрочем, в большинстве случаев при наличии молниеотвода непосредственного удара молнии не происходит. Туча над громоотводом успевает разрядиться до того, как создаваемое ею электрическое поле окажется способным породить светящийся грозовой разряд.

Изобретение Франклином громоотвода не сразу было оценено по достоинству. Любопытный случай произошел в конце XVIII в. во французском городе Сент-Оморе. Когда один из его жителей установил на крыше своего дома громоотвод, испуганные соседи подали на него жалобу в суд. Четыре года длился судебный процесс над владельцем громоотвода. Интересно, что его защитником на суде выступал М. Робеспьер, а одним из экспертов со стороны истца был Ж- Марат (оба они впоследствии прославились как видные деятели французской революции). На суде Марат (в то время более известный как ученый, а не политик) выступал против установки громоотвода, считая его опасным для людей. Однако после продолжительных разбирательств Робеспьер выиграл процесс, и громоотвод получил право на существование.

??? 1. На каких участках поверхности проводника электрическое поле сильнее, а на каких слабее? 2. Для чего применяют громоотвод? Как он иначе называется? Кто и когда его изобрел? 3. Опишите, как возникает молния. 4. Как следует вести себя, оказавшись во время грозы на открытой местности? Почему нельзя укрываться под деревьями? 5. В XVIII в. некоторые люди, считавшие, что острый стержень громоотвода «отпугивает» молнию, во время грозы доставали из ножен шпагу и поднимали ее вверх. Могли ли они таким способом защититься от молнии?

Молниеотвод: устройство, разновидности и принцип работы

Содержание статьи:
Молниеотвод: разновидности и их конструкции
Молниеотвод в частном доме и его контур заземления
Устройство молниеотвода: как соединить заземление и приемник молний

В большинстве случаев молния действует предсказуемо, несмотря даже на полную непредсказуемость этого природного явления – она не выбирает цель, а бьет непосредственно в самый высокий предмет. В общем, если ваш дом является самым высоким строением в радиусе 200-300м, то молниеотвод окажется не лишним дополнением к вашему дому. Именно он убережет вас от неприятных, а иногда очень опасных исходов, связанных с прямым попаданием молнии в дом. О нем и пойдет речь в этой статье, в которой вместе с сайтом stroisovety.org мы ответим на следующие вопросы: какие бывают молниеотводы, как они устроены и как изготавливаются своими руками?

Молниеотвод фото

Молниеотвод: разновидности и их конструкции

В принципе, конструкция молниеотвода представляет собой бесхитростный механизм, состоящий из трех простейших частей, изготовить которые самостоятельно и собрать в единую систему не представляет никаких сложностей.

  1. Приемник молнии – это железный элемент, поднимаемый на несколько метров выше крыши строения. Размещаться он может как непосредственно на самом строении, так и рядом с ним, неподалеку.
  2. Токоотвод. По сути, это толстая стальная или медная жила, по которой ток, полученный от разряда попавшей в приемник молнии, передается в контур заземления.
  3. Заземляющий контур. Его назначение простое – именно с его помощью разряд молнии передается в землю, где он и гаснет, не причиняя постройкам и человеку никакого вреда.

Так устроены все виды молниеотводов без исключения. Причем два элемента этого устройства все время остаются неизменными – это токоотвод и контур заземления. На разновидности этих приспособлений оказывает влияние исключительно конструкция приемника молний, о которых мы и поговорим дальше.

  1. Стержневой молниеприемник. Это устройство знакомо практически всем жителям частного сектора – оно представляет собой обыкновенную металлическую мачту, поднятую на пару метров над верхним краем крыши. Такая мачта может стоять как на крыше дома, так и немного в стороне от постройки или рядом, вдоль стены дома. Фактически отдельно стоящий молниеприемник в плане изготовления более простой – сама мачта одновременно является и приемником грозовых разрядов и токоотводом. Она напрямую подключается к контуру заземления самым что ни на есть жестким способом (сваркой).

    Стержневой молниеотвод фото

  2. Линейный, или, как его еще называют, тросовый молниеотвод. Чтобы проще было понять о чем идет разговор, этот молниеприемник можно представить в виде натянутой между двумя небольшими мачтами проволоки или троса – отсюда и его название. В чем основное отличие такого устройства от обычной мачты? В возможности полностью улавливать все разряды молнии, не позволяя даже малой их части попадать на металлические элементы строения. В большинстве случаев такой молниеприемник соединяется с контуром заземления посредством отдельной мощной токоотводящей жилы – это может быть либо медный кабель большого сечения, либо металлическая полоса или прут.

    Тросовый молниеотвод фото

  3. Сетчатый приемник молний. Его суть заложена в самом названии – такой токоприемник укладывается непосредственно на крышу дома. Сверху кровельного материала из толстых токопроводящих жил создается полноценная сетка, которая и принимает на себя все разряды молнии. Дальше все стандартно – посредством токоотводящего кабеля или толстой стальной полосы (либо прутка) разряды статического напряжения направляются в контур заземления, где и рассеиваются, не причиняя вреда строению.

    Сетчатый молниеотвод фото

Этих основных конструкций улавливателей молнии вполне достаточно для того, чтобы полностью защитить свой дом от такого природного явления, как молния.

Молниеотвод в частном доме и его контур заземления

По большому счету, заземление молниеотводов устроено аналогичным образом, как и контур заземления самого дома – здесь следует сразу понять один момент, что эти два контура не должны быть связаны между собой – это два отдельных элемента. Подключив молниеотвод к контуру заземления дома, вы рискуете в один момент потерять не то что все электрооборудование, а и вообще весь дом целиком – для защиты от грозовых разрядов придется оборудовать отдельное заземление.

Изготавливается оно практически точно так же, как и заземление дома, за исключением некоторых отличий.

  1. Глубина (или длина) заземляющих электродов – она не может быть менее 3000мм.
  2. Сами электроды должны иметь сечение не менее 25мм и представлять собой цельный металлический прут.
  3. Если контур заземления дома может иметь линейное расположение электродов, то здесь важно соблюсти именно их треугольное расположение.
  4. Расстояние между вершинами этого треугольника должно составлять 3000мм.
  5. Шина, соединяющая электроды в единый контур, должна иметь диаметр не менее 12мм (если это прут или арматура) и 50х6мм, если речь идет о металлической полосе.
  6. Самое главное – это качественные сварные соединения, которые по своей длине должны составлять не менее 200мм.

    Заземление молниеотводов фото

Как видите, между контуром заземления дома и такой же частью молниеотвода общий только принцип – требования к этим элементам защиты разнятся. Еще один момент, объединяющий эти две системы, заключается в глубине их залегания – верхняя часть контура располагается на глубине 500-800мм над поверхностью грунта.

Устройство молниеотвода: как соединить заземление и приемник молний

Токоотводящая или, правильнее сказать, токопередающая часть молниеотвода является не менее важным элементом, чем его заземление и сам приемник молний – вы только представьте, что случится с домом, если этот элемент устройства просто не выдержит нагрузку и сгорит. В таком случае все грозовые разряды попадут в дом, и тогда от беды может спасти только чудо. Именно по этой причине к токопроводящей шине следует отнестись не менее серьезно, чем ко всему другому. Здесь имеется всего два важных момента, которые нужно соблюсти, как говорится, беспрекословно.

  1. Сечение токоотвода – оно не должно быть менее 6мм, если речь идет о цельной (монолитной) медной жиле и не менее 10мм, если для отведения грозовых разрядов используется стальной прут.
  2. Соединение токоотводящей шины с заземлением и приемником молний. В значительной мере дело облегчается, если система целиком изготавливается из стали – в такой ситуации все соединения производятся с помощью сварки. Опять же, здесь важна длина сварного соединения – при стыковке токоотводящей шины к контуру заземления и приемнику провар должен иметь длину не менее 600мм. Если речь идет о медной жиле, то здесь придется действовать с помощью специальных клемм, которые представляют собой пластины с ложбинками для кабеля, соединяющиеся друг с другом посредством винтов.

    Монтаж молниеотвода фото

Что же касается крепления токоотводящей жилы к стенам строения, то здесь используются пластиковые клипсы. В идеале, чтобы сохранить молниепровод в целостности в течение долгого времени, его лучше изолировать от окружающей среды, поместив в обыкновенный кабель канал.

В принципе, это все, остается добавить не так уж и много. А именно о таких моментах, как молниезащита отдельных элементов крыши. Если имеется дымоход, то вокруг него нужно намотать хотя бы пару витков отводящей ток жилы и соединить ее с общим молниеотводом. Также в защите нуждаются и все элементы кровли, изготовленные из металла – к примеру, отводящие воду желоба и трубы. Только в таком случае изготовленный самостоятельно молниеотвод будет являться надежной защитой дома от грозовых разрядов.

Автор статьи Александр Куликов

Громоотводы: принцип действия

Из всех природных катаклизмов, гроза, пожалуй, является самым демократичным: она может настигнуть вас практически в любом месте планеты, даже посреди океана, исключением являются слишком жаркие и слишком холодные районы. Поэтому если вы живёте не в пустыне, не в Арктике и не у полярного круга, то проблема защиты от молний – это и ваша проблема.

Гигантский электрический разряд, обладающий колоссальной силой тока, способен нанести огромные разрушения. Прямое попадание в незащищённое здание в большинстве случаев приводит к пожару, а электромагнитное поле, создаваемое молнией, сулит погибель бытовой технике, подключённой к сети. Принято считать, что попадание молнии – это большая редкость, но, посмотрите на данные статистики – каждый час в поверхность Земли вонзаются десятки тысяч разрядов. От попадания молнии не застрахован никто.

Спасибо американскому изобретателю Бенджамину Франклину, который придумал громоотвод в середине восемнадцатого века. Принцип действия громоотвода со времени его изобретения остался неизменным: разряд молнии попадает в молниеотвод, установленный выше уровня защищаемого сооружения, затем через токоотвод попадает в заземлитель, а из него уже уходит в землю.

Громоотводы различаются по типу молниеприёмника. В зависимости от типа и площади защищаемого сооружения, молниеприёмником может быть металлический штырь (именно его использовал Франклин), металлическая крупноячеистая сеть или трос, натянутый между опорами. Также в качестве молниеприёмника используют металлическую крышу здания. Если есть такая возможность, громоотвод заземляют через арматуру железобетонного фундамента, если же этот способ не подходит, то используют стальные стержни, заложенные глубоко в землю или железобетонные сваи.

Степень защищённости сооружения зависит от его предназначения: если для амбара с зерном достаточно стандартных мер молниезащиты, то для предприятия с повышенной пожароопасностью необходима также защита от вторичных проявлений молнии – заноса высокого потенциала, который может вызвать пожар (в загазованных цехах, на химических производствах), а также опасен для электрооборудования, находящегося внутри здания.

Вы можете следить за комментариями к этой записи через ленту RSS 2.0.

Схема громоотвода в частном доме для установки на крышу своими руками


Громоотвод в частном доме – это вещь необходимая, но далеко не все знают, как оно работает и для чего вообще нужно. Само название громоотвод в корне неверное, так как гром – это звук.

А зачем его отводить? Это невозможно, да и лишено всякого смысла, а вот молния и молниеотвод – другое дело. Природное явление может представлять реальную угрозу для жилых домов, но так как все привыкли говорить именно о громоотводе, будем пользоваться и этим «термином» тоже.

Система молниеотвода, смонтированная на коньке крыши Вернуться к оглавлению

Содержание материала

Молниезащита дома – как она устроена и работает

Молниеотвод – это металлический шпиль, устанавливаемый на самую высокую точку здания в вертикальном положении или рядом с ним на отдельно стоящей мачте, которая будет выше крыши дома.

Его задача – защищать здание от удара молнии. Штырь по системе металлических проводников, проходящий по кровле и фасаду строения подсоединен к металлическому контуру, который закопан в землю.

Тросовая молниезащита частного дома подключена к контуру заземления

Многие не знакомы с тем, как работает громоотвод. Мыслится это так – при ударе молнии в здание, она будет притянута к шпилю. Заряд стечет по проводнику в землю, где благополучно рассеется.

Если молния попадет в громоотвод, именно так и произойдет, но действует это устройство совершенно иначе – его задача не отводить удары, а не давать им случаться вообще. Как это работает? Приготовьтесь погрузиться в мир теоретической и экспериментальной физики – вперед!

Принцип работы громоотвода для частного дома

Объяснение очень простое:

  • Во время дождя начинают образовываться грозовые облака, в которых разделяются разряды. То есть, мельчайшие капли воды, из которых они состоят, получают положительные и отрицательные заряды, причем последние скапливаются в основном в нижней части кучевого облака.
Так выглядит кучевое облако
  • Под заряженным облаком на земле, зданиях и других объектах начинают индуцироваться и скапливаться положительные заряды.
Расположение зарядов и причины образования разрядов молнии
  • По мере накопления зарядов, между облаком и земной поверхностью увеличивается напряженность электрического поля. Максимальная разница потенциалов достигает нескольких миллионов Вольт. Эта разница и служит причиной образования молнии – атмосфера выступает проводником, через который напряжение разряжается, ослабляясь.
  • При образовании молнии первым возникает ступенчатый лидер.
Схема появления молнии – все начинается со ступенчатого лидера
  • Лидер — это слабосветящийся разряд, движущийся по направлению к земле от облака. Его скорость в атмосфере достигает 50 000 км/сек. Проводник – это воздух, неоднородный по своей структуре. Молния выбирает путь наименьшего сопротивления до точки, к которой устремилась. Под неоднородностью понимается наличие мест с большим количеством заряженных частиц, с повышенной электропроводностью.
  • По мере приближения к поверхности земли лидер «выбирает» те места для удара, где накоплено больше всего положительных индуцированных зарядов.
  • В момент соприкосновения все отрицательные заряды, которые находятся в ионизированном канале начинают стекать в землю – первыми проходят заряды из самого канала, а потом заряды из облака, то есть разряд идёт снизу-вверх.
Молния бьет в дерево, так как на нем скопилось больше положительных зарядов

Все знают, что молния выбирает для удара самые высокие объекты, например, дома, деревья, вышки или мачты. Однако это не закон – здесь прослеживается влияние других факторов. Многое зависит от электропроводности материала. Простой пример – в деревьях течет сок. Будучи водой с примесями, он хорошо проводит электричество. Индуцированные в земле заряды перетекают к его вершине, притягиваясь к отрицательным зарядам облака. Получается, что расстояние до облака сокращается, и ступенчатому лидеру проще ударить в это место.

Так произойдет, если дерево стоит одно в округе, но когда объектов много, все может сложиться иначе.

Совет! Напоминаем, что прятаться во время грозы под высокими деревьями на открытой местности опасно. Велика вероятность попадания в него молнии.

Заряд молнии через дерево проходит в землю и рассеивается

Описанное перетекание зарядов происходит и по зданиям и другим конструкциям. Когда объектов много, их высота перестает иметь значение. Молния предпочтет объект с большей электропроводностью, даже если он будет ниже. Это полностью объясняет поведение этого природного явления.

Иногда случается так, что молния не трогает высокого здания, а бьет в какую-нибудь будку, находящуюся поблизости. Причина кроется в том, что здесь зарядов накоплено больше. Произойти это может из-за водоносного слоя, находящегося в этой точке, а вода, как хороший проводник, будет накапливать много индуцированных зарядов.

Поведение молнии можно предугадать

Очень часто можно видеть пораженные молнией деревья в руслах рек, а, как известно, реки текут по самым низинным местам рельефа. Все это происходит по той же причине. Поэтому от рек и водоемов во время грозы тоже лучше держаться подальше.

Как работает молниеотвод

Теперь давайте разбираться с тем, как молниеотводу удается уберегать дома от попадания молнии.

  1. Итак, в земле возникает множество индуцированных зарядов, которые перетекают вверх по предметам. Особенно сильно это будет проявляться на заостренных объектах, как шпиль громоотвода.
  2. Казалось бы, заряды накопятся на мачте и молния в нее ударит, но так не происходит, из-за того что на верхушке устройства возникает постоянно горящий коронарный разряд, через который положительные заряды из земли начинают стекать в направлении облака. Благодаря этому заряды не успевают накапливаться в достаточном количестве, а так как поблизости наверняка найдутся более заряженные объекты, молния предпочтет для удара их.
  3. В результате вероятность попадания молнии в громоотвод падает почти до нуля – такое случается, но крайне редко. Даже в Эйфелеву башню бывает да и попадет разряд.
Молния попала в Эйфелеву башню

Как видите, все предельно просто и понятно. Не нужно быть физиком, чтобы понимать причину природных явлений. В общем, на вопрос, нужен ли громоотвод в частном доме, мы ответили. Теперь давайте разбираться с тем, как его смонтировать.

Вернуться к оглавлению

Как установить громоотвод в частном доме своими руками

Разновидностей молниеотводов придумано огромное количество – есть много самодельных разработок, которые просты и не очень по строению и обходятся владельцам практически бесплатно, есть и готовые решения, приобретаемые в магазине. Конечно, последние обеспечивают лучшую защиту, так как расчет конструкции производится профессионалами. При этом решение от производителя проще смонтировать – система является модульной, она надежно закреплена и выглядит очень аккуратно.

Громоотвод из алюминиевого стержня диаметром 8 мм

Наш портал рекомендует использовать только проверенную защиту от молнии по указанным выше причинам.

Лучшие производители

Производителей систем грозозащиты на рынке представлено много. Так как с таким вопросом люди сталкиваются крайне редко, то и названия компаний им говорят мало о чем. Представляем вниманию читателя список фирм, продукция которых ценится в России и остальном мире.

В чем может быть разница по качеству подобных статических систем, спросите вы? Прежде всего, речь идет о толщине металла, надежности креплений, о толщине слоя цинкового покрытия, если проводники используются стальные. Особенно важно последнее, так как при истончении покрытия металл быстро ржавеет. Купить можно продукцию и других производителей, но читайте предварительно отзывы в интернете.

Комплект заводской молниезащиты

Модели громоотводов существуют самые разные, но общее назначение деталей у них похожее. Проектирование системы осуществляют до покупки. Собирается она из следующих деталей.

Детали, фото:Описание:

Токоотвод

Железный стержень, который и формирует основную часть системы громоотвода. Его диаметр составляет 8 мм, крепится он к разным поверхностям через специальные кронштейны. Процесс установки разберем дальше.

Коньковый держатель

Токоотвод необходимо пропустить через всю крышу по самой высокой ее части, коей является конек. Для монтажа используются скругленные и треугольные коньковые держатель, которые подбираются под форму конька.

Молниеприемный стержень

Это тот самый штырь, на конце которого горит коронный разряд. Монтируется он в самую высокую точку крыши. Габариты у этой детали бывают разные. Иногда их делают в виде больших мачт.

Основание молниеприемника

В некоторых системах молниеприемник монтируется на бетонное основание. В других моделях он крепится при помощи металлических кронштейнов прямиком к стенам дымоходов и вентиляционных шахт.

Зажим прута на штыре

Этот соединитель используется для подключения штыря к токоотводу.

Зажим «прут-прут»

Эта деталь похожа чем-то на предыдущую, но используется она для соединения двух концов прутов.

Держатель на водосток

Для фиксации токоотвода на водостоках применяются вот такие держатели.

Контрольно-измерительный колодец грунтовой

Эта полимерная коробка вкапывается в землю. В нее заходит токоотвод и соединяется со штырем заземления. При необходимости ревизии, в колодец остается удобный доступ.

Штырь заземления токоотвода и фурнитура для него

Заземление требуется хорошо заглубить (как сделать заземление можете узнать из статьи на нашем сайте). Для этого используется составной штырь, который может быть забивным или винтовым. При сборке детали используется заостренный наконечник, облегчающий вход в грунт, стержни с резьбой на концах, соединительная резьбовая муфта и боек, через который можно наносить удары кувалдой без риска повредить резьбу, или вставлять его в перфоратор.

Смазка электроповодащая

Используется для защиты соединений и улучшения их токопроводящих свойств.

Так же в список можно добавить кровельные и стеновые кронштейны, через которые токоотвод монтируется на соответствующие поверхности.

Молниезащита частного дома своими руками — чем устанавливать громоотвод

Подобные системы хороши тем, что для установки не требуется специализированного инструмента – применяется то, что есть в доме у каждого хорошего хозяина, а именно:

  • Перфоратор для бурения монтажных отверстий
  • Гаечные ключи для заворачивания болтовых соединений.
  • Большой молоток или кувалда для забивания штыря заземления в грунт.
  • Кисточка для нанесения смазки на соединения.
  • Лопата и лом для копки траншеи под токоотвод и контрольно-измерительный колодец.

Схема громоотвода в частном доме – порядок сборки

Теперь давайте рассмотрим пошаговый порядок действий при монтаже громоотвода. В качестве примера разберем комплект оборудования от компании «DEHN+SOHNE».

  1. Двускатную кровлю без надстроек проще всего выполнить при помощи круглого токоотвода. Сделан он может быть из алюминия или оцинкованной стали.
  2. Первым делом монтируются коньковые держатели. Эти детали состоят из двух скругленных скоб и винтового зажима. Они могут раздвигаться и регулироваться под размер конкретного конька.
Громоотвод для дачного дома своими руками — установка конькового держателя
  1. На держателях вкручиваются кронштейны с защелками, в которые впоследствии будет вставляться токоотвод. Детали нужно расставлять по всему коньку с шагом 100 см. Это позволит пруту не провисать под собственным весом.
  2. Затем устанавливаются кровельные держатели, имеющие штампованную часть для загиба. Крепятся они на саморезы прямо к обрешетке, находящейся под кровельным материалом. Перед установкой кровля частично разбирается. Проще всего провести такие манипуляции с черепицей, тот же профнастил придется откручивать целым листом. Шаг расстановки этих держателей также составляет 100 см. Их пускают по одному из краев здания.
Молниезащита частного дома с крышей из металлочерепицы
  1. По намеченной линии монтируются и стеновые держатели. Они представляют отдельный кронштейн, который крепится при помощи пластикового дюбеля и винта. В такой работе уже понадобится перфоратор. Шаг между деталями не меняется.
Установка стенового кронштейна
  1. В коньковые держатели монтируется токоотвод. Для этого достаточно откинуть все защелки, установить круглый проводник, и защелкнуть фиксаторы обратно. Края прута необходимо сделать длиннее крыши примерно на 15 см с каждой стороны. После установки они загибаются под углом 45 градусов вверх. Это позволит увеличить зону охвата защиты.
Токоотвод установлен в держатели, его концы загнуты вверх
  1. Затем аналогичным способом монтируется стеновая и кровельная части токоотвода. Прут повторяет форму строения и нигде его не касается. При прохождении водостока ставится специальный держатель для этого места.
Крепление токоотвода к водостоку
  1. Присоединение токоотвода к молниеприемнику осуществляется при помощи клеммы типа MV. Чтобы соединение было надежным винты затягиваются с усилием 25 Ньютон метров.
  2. Путей можно сделать несколько. Растекание тока молнии по разветвленной сети приводит к снижению электромагнитного поля внутри защищаемого объема. Так работает экранирующий эффект.
Перпендикулярное соединение прутов через зажим
  1. Особое внимание следует уделить узлу соединения токоотвода и контура заземления. Чтобы была возможность нормально измерять сопротивления проводников, это соединение делается разъемным – при помощи кольцевой клеммы с двумя болтами. В качестве контура заземления могут быть использованы металлические стержни арматуры фундамента – такое решение реализуемо на этапе строительства дома. Отдельные пруты арматуры при этом соединяются при помощи сварки. На выходе к ним присоединяется через специальные соединители металлические плоские полосы.
Соединение токоотвода с заземлением
  1. Если на крыше имеются надстройки, например, каминная труба или антенна, то нужно побеспокоиться и об их защите. Для этого применяют стержневые молниеприемники, устанавливаемые вертикально. При помощи клемм и кронштейнов сооружается высокая конструкция, как показано на следующей картинке.
Стержневой молниеприемник соединен с металлической трубой, на которой закреплена антенна, что позволит эффективно снять разряд и с нее

Также можно молниеприемник закрепить на самой надстройке, если применить специальные кронштейны и изолированный токоотвод. Для соединения отдельных веток молниезащиты можно использовать токоотвод, так как к нему ранее был подсоединен металлический кронштейн.

Вернуться к оглавлению

Видео инструкция по монтажу молниезащиты промышленного и жилого здания


Вернуться к оглавлению

Заключение

На этом, собственно, монтаж завершается, если не считать процесса установки штыря заземления. Мы же с вами прощаемся. Надеемся, статья вам понравилась и была полезной.

Молниезащита частного дома, громоотвод своими руками

Из школьного курса физики известно, что молния – это огромной величины электрический разряд, который в себе несет большую тепловую энергию. Последствия от удара молнии могут быть катастрофическими, поэтому во все времена человечество старалось создать устройства и приборы, которые бы защищали их от этой природной напасти. В современном мире молниезащита частного дома – это совокупность конструктивных особенностей здания и специальных устройств, предназначенных для отвода электричества в землю. Последний носит название молниеотвод, как работает он, какие к нему предъявляются требования?

Виды молниезащиты

Молниезащита дома делится на две категории: внутренняя и внешняя. Цель первой – это защитить от молнии, грозовой разряд которой попал не в сам дом. К примеру, он может попасть в линию электропередач, которая соединяется с внутренней электрической разводкой дома. В этом случае во внутренней электропроводке возникают высокие перенапряжения. Следствие – выход из строя большей части бытовой техники. Во всяком случае, той, которая в это время была включена в розетки. Могут прогореть провода, произойдет замыкание, наихудший вариант – пожар, если проводка была проведена по деревянным перекрытиям или дом был деревянным.

Решить данную проблему можно, установив в электрическую сеть специальные приборы, которые защитят ее от импульсных перенапряжений. К примеру, ограничители перенапряжения, всякого рода разрядники, УЗИП (устройство защиты от импульсного перенапряжения). Все приборы устанавливаются в распределительный щит дома.

Внешняя защита

Внешняя молниезащита – это молниеотвод, который состоит из трех основных элементов:

  • молниеприемник;
  • токоотвод;
  • контур заземления.

Основное требование ко всем трем элементам – надежное соединение их между собой. В зависимости от кровельного материала необходимо использовать и разные типы защиты от молний. Их три: штыревая, тросовая и сетчатая.

Штыревая

Ее обычно использует, если крыша дома покрыта металлическим кровельным материалом. К примеру, металлочерепицей, профнастилом или жестью. Для этого нужно установить на крыше металлический штырь, который будет возвышаться над коньком кровли дома, приблизительно на 1-2 м выше. Это и будет молниеприемник. Сделать его можно из металлического прутка диаметром 8-12 мм, можно использовать для этого и стальную полосу толщиною 4-5 мм и шириною 25-35 мм.

Такой молниеотвод может отводить электрические удары стихии вокруг дома с площадью, равной площади, где радиусом выступает высота молниеотвода. И чем выше устанавливается штырь, тем больше площадь, которую он защищает от ударов молний.

Отводящая способность молниеприемника основана не величине площади, которую он закрывает. Если учитывать, что вертикальная линия установки штыря – это высота равнобедренного треугольника, то основание этой фигуры будет два размера высоты. Получится, что на поверхности грунта может образоваться круг с радиусом, равным высоте установки штыря.

Тросовая

Для этого молниеотвода необходим трос, который натягивается по коньку кровли, и подвешивается он на высоте полметра над уровнем установки конька. Для этого лучше всего использовать трос из оцинкованных проволочек с общим минимальным сечением 5-7 мм. Данная защита от молний применяется, если крыша дома покрыта шифером.

Трос натягивают вдоль конька и крепят к деревянным стойкам, установленным по краям конькового бруса. Если крыша длинная, то стоек может быть больше, главное соблюсти небольшой провис троса. Сильный провис недопустим, потому что таким образом уменьшается расстояние от конька кровли до молниеприемника. А оно не должно быть меньше 1 м. Способ крепления разнообразный, здесь важна прочность установки. Можно крепление провести хомутами (металлическими или пластиковыми), если трос тонкий 5-8 мм, то можно его просто завязать и дополнительно обвязать проволокой.

Сетчатая



Это более сложная конструкция, которая устанавливается на кровли, покрытых черепицей. Сделать такой громоотвод своими руками непросто. Для этого используется стальная катанка сечением 6-8 мм, которая укладывается по всей поверхности скатов крыши в виде сетки с размерами ячеек 6х6 м и больше, все зависит от площади крыши. Все соединения – сварочные, крепление к крыше с помощью скоб.

Что касается токоотвода, то это линия, соединяющая молниеприемник с заземляющим контуром. Обычно для этого используют стальную катанку диаметром 6-8 мм. Здесь важно, чтобы токоотводящий элемент смог выдержать большую силу тока, которая нередко доходит до 200000 ампер. Если выбирается готовая защита, то ее токоотвод – это медная или алюминиевая проволока диаметром 6 мм.

Требования, предъявляемые к токоотводу.

  1. Это должен быть самый короткий путь от молниеприемника до заземляющего контура.
  2. Нельзя использовать при прокладке изгибы и заломы, которые станут в процессе отвода электричества местом появления искрового заряда, приводящему, как показывает практика, к воспламенениям.
  3. Маршрут прокладки выбирается так, чтобы проволока не проходила вблизи окон и дверей.
  4. Если производится устройство молниезащиты деревянного дома, то монтаж токоотвода производится на расстоянии 15-20 см от поверхностей деревянной конструкции. Для этого используются специальные скобы. Представляют они собой металлический зажим, основание которого сделано из жесткого и прочного пластика. Именно пластик ограждает токопроводящий элемент от соприкосновения с деревянными конструкциями дома. Крепится скоба на саморезы. Кстати, эти скобы используются и при сооружении сетчатого молниеприемника, где расстояние между ними 1,5-2,0 м.
  5. Если защита зданий и сооружений от молний – это большая сетчатая конструкция, или длинный уложенный трос, или используются на крыше несколько штырей, то токоотводов должно быть тоже несколько, расстояние между которыми составляет 25 м (согласно СО 153-34.21.122-2003).
  6. Катанка проводится по стенам строения, по фронтонам и острым выступам кровли. То есть, по тем участкам, в которые может ударить молния.

Контур заземления

Контур защиты от молний в частном доме проводится по той же схеме и конструкции, как и заземление электрических сетей.

  • В одном метре от фундамента дома и в не менее пяти метрах от входной двери, дорожек, площадок выкапываются траншеи по форме равностороннего треугольника. Глубина траншей – 80 см, ширина – 60 см, длина 1,5-2 м.
  • В углах треугольника вбиваются штыри из стального уголка размерами 50х50х5 мм. Глубина заглубления – 2-3 м. Уголки не должны забиваться в грунт полностью, высота свободного торчащего отрезка 20-30 см.
  • Между собой штыри соединяются стальной полосой толщиною 4 мм, шириною 40 мм. Можно использовать для этих элементов те же уголки, что и для штырей.
  • Этот заземляющий контур грозозащиты соединяется с токоотводом.

Внимание! Все соединительные стыки необходимо крепить электрической сваркой. Болтовые соединения не приветствуются, потому что в процессе эксплуатации молниеотвода дачного дома они могут ослабиться, проржаветь и ослабить проводящие способности всей конструкции.

Сборка своими руками

Перед тем как сделать громоотвод в частном доме, необходимо определиться, какой тип молниеотвода выбрать. Если это штыревой вариант, то сам штырь необходимо установить не на кровельный материал, а на обрешетку.

После чего своими руками прокладывается токоотводящий провод. Если длины купленного куска проволоки или катанки не хватило, то можно провести соединение двух отрезков при помощи алюминиевого или медного контакта, который используется в воздушных линиях электропередачи. Расстояние между скобами – 1,5-2,0 м.

Сооружается заземляющий контур, к которому крепится токоотвод. Перед сваркой все стыки элементов нужно зачистить до металлического блеска. Если используется готовая молниезащита частного строения, то применяются в качестве соединения специальные приспособления на болтовых соединениях из цветного металла.

Внимание! Оптимальный вариант, если контур заземления и молниезащиты расположить недалеко друг от друга и соединить их между собой катанкой или полосой. Этим нормы устройства молниезащиты не нарушаются, к тому же контур становится в два раза больше.

Устанавливая молниезащиту в собственном частном доме своими руками, необходимо понимать, что это элемент безопасности не только строения, но и людей, проживающих в нем. Поэтому не стоит проведение его монтажа откладывать в долгий ящик. Идеальное время для установки –возведение частного дома своими руками.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Lightning Rods — Lightning Rod

Молниеотводы были первоначально разработаны Бенджамином Франклином. Громоотвод очень прост — это заостренный металлический стержень, прикрепленный к крыше здания. Стержень может быть дюйм (2 см) в диаметре. Он подключается к огромному куску медного или алюминиевого провода диаметром около дюйма. Провод подключается к проводящей сетке , закопанной в земле поблизости.

Назначение громоотводов часто понимают неправильно. Многие считают, что громоотводы «притягивают» молнию.Лучше сказать, что молниеотводы обеспечивают путь к земле с низким сопротивлением, который может использоваться для проведения огромных электрических токов при возникновении ударов молнии. В случае удара молнии система пытается отвести опасный электрический ток от конструкции и безопасно заземлить. Система способна справляться с огромным электрическим током, связанным с ударом. Если удар коснется материала, который не является хорошим проводником, материал будет сильно поврежден нагреванием.Система громоотвода является отличным проводником и, таким образом, позволяет току течь на землю, не вызывая теплового повреждения.

Молния может « прыгнуть вокруг » при ударе. Этот «прыжок» связан с электрическим потенциалом поражаемой цели по отношению к потенциалу земли. Молния может ударить, а затем «искать» путь наименьшего сопротивления, прыгая к ближайшим объектам, которые обеспечивают лучший путь к земле. Если удар происходит рядом с системой громоотвода, система будет иметь путь с очень низким сопротивлением и затем может совершить «прыжок», отводя ток удара на землю, прежде чем он сможет нанести еще какой-либо ущерб.

Как видите, громоотвод предназначен не для привлечения молнии — он просто обеспечивает безопасный выбор для удара молнии. Это может показаться немного придирчивым, но это не так, если учесть, что громоотводы становятся актуальными только тогда, когда происходит удар или сразу после него. Независимо от того, присутствует ли система громоотвода или нет, удар все равно произойдет.

Если конструкция, которую вы пытаетесь защитить, находится на открытой плоской поверхности, вы часто создаете систему молниезащиты, в которой используется очень высокий громоотвод.Этот стержень должен быть выше конструкции. Если область окажется в сильном электрическом поле, высокий стержень может начать посылать положительные стримеры в попытке рассеять электрическое поле. Хотя не факт, что стержень всегда будет проводить разряд молнии в непосредственной близости, он имеет лучшую возможность, чем конструкция. Опять же, цель состоит в том, чтобы обеспечить путь с низким сопротивлением к земле в области, которая может получить удар. Эта возможность возникает из-за силы электрического поля, создаваемого грозовыми облаками.

Как работает громоотвод?

Что такое громоотвод?

Стержень освещения — это внешний вывод, установленный в здании или сооружении, который предназначен для привлечения молнии, чтобы иметь контролируемую точку удара и предотвратить ее попадание в нежелательную зону или людей.

Существует несколько типов осветительных стержней с разными характеристиками. Но они состоят из металлических материалов, и их морфология основана на одной или нескольких выступающих точках, куда попадает разряд.

Вся установка называется системой молниезащиты, в основном она состоит из:

  • Системы захвата (молниеотводы)
  • Токоотвод.
  • Системы заземления.
  • Ограничители перенапряжения.

Прежде чем объяснять, как работает молниеотвод , мы хотели бы связать его с историей и познакомить вас с возможными эффектами ударов молнии.

История громоотвода

15 июня 1752 года, в штормовой день в Филадельфии, ученый-изобретатель по имени г-н.Бенджамин Франклин взорвал воздушного змея с металлическим каркасом, привязанным шелковым шнуром, к которому он ранее вставил металлический ключ, и поднес его к руке. Благодаря этому эксперименту он смог наблюдать, как через шелковую нить электричество достигает ключа, и летят электрические искры.

Он мог подтвердить, что металлический ключ был заряжен электростатическим зарядом, и он продемонстрировал, что облака были электрически заряжены и что удары молнии были сильными электростатическими разрядами.

Франклин обнаружил, что если удар молнии или электрический огонь, как он это называл, когда он выйдет из облаков и найдет металлический канал на пути к Земле, чтобы попасть в него, он останется там и рассеется.В результате этого безумного эксперимента год спустя, в 1753 году, он обнаружил громоотвод под названием типа Франклина, и этот змей стал самым известным в истории.

Эффекты ударов молнии

Среди различных эффектов, которые могут вызывать удары молнии, мы можем упомянуть такие, как термические, физиологические, электродинамические, электрохимические эффекты и т. Д. Из-за их важности мы подчеркнем тепловые и физиологические эффекты.

Тепловые эффекты возникают из-за высокой температуры, достигаемой в канале, по которому протекает ток молнии, она может достигать 20000 ° C, что вызывает большие повреждения, когда электрический ток достигает, например, дерева или ударяет по конструкции.

С другой стороны, физиологические эффекты, они в основном затрагивают живые существа и возникают из-за ступенчатых и контактных напряжений, возникающих при разряде молнии на землю. Для борьбы с этими эффектами и смягчения их последствий в правилах защиты от молний устанавливаются меры безопасности для людей и животных, такие как те, которые изложены в Приложении D стандарта UNE 21186: 2011.

Существуют также международные правила, регулирующие воздействие тока молнии на человеческий организм и домашний скот (IEC TR 60479-4: 2011).И другие правила, устанавливающие процедуры безопасности для снижения риска, когда мы находимся вне строения или здания (IEC / TR 62713).

Молния также имеет два очень характерных связанных эффекта: молния, которая представляет собой световой эффект из-за сильной циркуляции тока (до 200 кА), и гром, который представляет собой звуковой эффект из-за расширяющейся волны воздуха, который он нагревает. за несколько микросекунд до очень высоких температур.

Эксплуатация

Когда нас спрашивают Как работает громоотвод ? Мы указываем, что это воздушный терминал, обеспечивающий внешнюю защиту здания или сооружения от прямых ударов молнии.Таким образом, молниеотвод должен всегда устанавливаться над самой высокой точкой здания или сооружения, которое мы должны защищать, он будет отвечать за улавливание и безопасное проведение разряда молнии на землю.

Для улавливания этого разряда молниеотвод имеет наконечник и металлический корпус, которые соединены проводящей сетью с системой заземления с низким импедансом (менее 10 Ом), где происходит рассеяние грозового разряда.

В условиях шторма между системой облако — земля возникает высокое напряжение из-за большого количества электрических зарядов, которые присутствуют как в основании облака, так и на земле.Это высокое напряжение является спусковым крючком для запуска лидера, спускающегося с луча, который пробурит диэлектрический воздух между облаком и землей. Очень сильное электрическое поле E (кВ / м), которое появляется в этой зоне, вызывает циркуляцию восходящих электрических зарядов через тело молниеотвода противоположного знака, инициируя восходящий индикатор, который встретится и рекомбинирует с нисходящим лидером. , захватив его и сбросив на землю.

Внешние системы молниезащиты

В настоящее время существует 4 системы внешней защиты, утвержденные нормативными документами:

Благодаря своим преимуществам по сравнению с другими системами внешней защиты, молниеотвод ESE (Early Streamer Emission) в настоящее время является наиболее часто используемым, он обеспечивает больший радиус защиты, чем другие системы (до 80 м в радиусе защиты уровня I).), и его установка очень проста, потому что в некоторых случаях требуется только токоотвод для подачи тока молнии и заземление для рассеивания всей ее энергии. Вследствие всех этих факторов установка системы молниеотвода ESE проста, легка, быстра и имеет очень низкую стоимость по сравнению с другими системами.

Проектирование и установка

Чтобы правильно спроектировать систему молниезащиты в конструкции, мы должны сначала провести анализ ее риска, чтобы определить, необходима ли ее защита.В случае подтверждения необходимости молниезащиты мы должны рассчитать, какой уровень защиты или фактор безопасности следует применять в данной конструкции (I, II, III или IV). На веб-сайте INGESCO есть бесплатное онлайн-программное обеспечение для расчета и оценки этого риска.

После расчета уровня защиты конструкции мы выберем внешнюю систему молниезащиты, которая наилучшим образом соответствует вашим потребностям в каждом проекте из этих 4 систем защиты.

Если выбранной внешней системой молниезащиты является молниеотвод ESE, мы будем следовать всем рекомендациям, установленным международными стандартами (UNE 21186: 2011, NFC 17.102: 2011, НП 4426: 2013)

В статье «Установка громоотвода » вы найдете дополнительную информацию о том, как установить громоотвод ESE в соответствии с указанными правилами. @ 6k $ @ 8N`MA (‘k5b> u9N9-nC * 26TU%! A24r0BLO + P «CaA2% BNT’25; u;) 9 =! # (DQDg FW ([rRL & 8G: FUt? Ab-aeni [> PM? T / * \ B =) u5KH *) \ K [) — f «1s`nn + Jk.Q] 67E! Z + 9 ~> конечный поток эндобдж 15 0 объект > / ExtGState> >> эндобдж 16 0 объект > поток rVlfqs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! qu? Kgs8W & ts8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8Vf`s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! h3-icoDejjs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! q # C? ks8W-! s8W-! s8W & ss8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s / 9C.@ _Da @ s8W-! S8W-! S8W-! S8W-! S8W-! S8W) ts8W-! S8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8VMOA8e4: s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, / Br7G? = P3ZRs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! p \ Omes8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! R> C4t_dT # 6s8Lp> s8W-! s8W-! s8W-! s8W-! s8W, us8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s6P-4 f = ucClMpn_nGE7cs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8UPqnGiOg`) PChb \ Ut = s8W-! s8W-! s8W-! s8W-! s8W-! p \ Fd`s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, BTE «rks7U0.s0cB9U]: Aos8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s0UJZs8W, # BDV7 _> @ lgos8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, jl21M \ s8S_Os8W-! s0uafNn (F5 eGoOJs8W-! s8W-! s8W-! s8W-! p & 4ger; Zfss8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, m_Pt? Is3o \ omf3 = es8VM! MPU: @Dkt; 1s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s5 (h9 #) ss8W-! Rt%? dqPn5Qec5 [Ls8W -! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8KK ^ F * 5dXK6WRZs8W-! s8STj k5YJ $ A; d / Vs8W-! s8W-! s8W-! s8W-! qu? QgrVuots8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, * TY> _dY ^ &] is8W-! s8W, RQhCCYmrOq3kl: \ _ s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! duC8T = 208g; @ $ puos8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s3% PAs3aGSl * \ h: s8W-! s8W & ls8W-! i: 2qes8W-! s8W-! s8W-! s8W-! s8; `aqu?] rs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, ni:? 6 * s8W + k; «jYOs8W-! s8W-! s8W-! s8Du2LB%; R s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s7H * `Z1 \.s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8Tdos8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W -! \ uu) 5rVliss8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, T \, ZL.s8W-! s8W-! s8W-! s8W-! s8W-! s8W, sn, NFfs75 + Js8W-! rggb & s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! p; 6e.s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s7lBhs8W, \ p & G’ls8U9) s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8U-‘rrIrhuE`Vs8W-! s8W-! s8W-! s8W) sr;? Tps8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, (TE «rks8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! pg; qYs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8V3rGlRgD s8W-! s8W-! s8W-! s8W # qrr2rts8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, dB’oWus8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s.kJNs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W + V # f6Q @ s8W-! s8W-! s8W-! rVccrrqlZos8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! M5L = Qs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s6sUds8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, +! $] 2Xs8W-! s8W-! s8W-! qYC0ks8N & us8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! RP ‘? Vs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8,2QVu $ Gns8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W +? * FB (hq> ^ Kps8W-! s8W-! qY ^? ks8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, mGgV (+ ZN’t) s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s1sT094dr! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8V [8F8rKU; «akgs8W-! s8W-! s8MoprV? Kns8W) us8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, DMuWh # 1p? RZs8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s + ness) r2Xs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, us8TP> cN! pU! — \ DBs8W-! s8W-! s8) WmrVccrs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W + o _ # OH7d9ZDEs8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! k $ Ri ^ s8? E5Fs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8V17f) PdMD + FX + s (jLds8W-! s8W-! s8W-! oDAR \ p% \ Ibs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s-D [Es8Ubms8W-! jEge) s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8T, [qZ $ T \) 4: I (s1 & BQs8W-! s8W-! s8W-! q «t! ap \» @ YrVuot s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! nRf) PdMs8Qb-s8W-! s8W-! s8W-! qtpBls8N & us8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! nG3 + as2C # u s8W-! s4VPos8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, UEA @ `Ss8W-! s8VQNs8W-! s8W-! s8W-! rr) Zmrr) lss8W-! s8W-! s8W-! p> u> C [/ U + * p «o`Kl0 / 0Is8K = es8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s7c9fs8W-! s5% Dfs8Drsr; -; R / Gq7cYi @ SLk5T \ huA \ kq: b38 lh: AYs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, `nGiOgs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s6QNQM1C25KnanjL5 (\ ELY; _- s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8Q [jrrs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8Q7Bli7 «bs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s6:; Us8W-! s8W-! s8W-! s8W-! s8W-! s8W-! r; QWjrVuots8W-! s8W-! s8W-! fMhb,>)% uJVLuI; S; «% lIu% gPBWPTRU2], ls8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! S8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8,> + h> dNTs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s4% OW s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! rVuchrr [HEd] tbBs8W-! s8W-! s8W, uqu6Wq s8W-! s8W-! s8W-! s8W-! s8W-! km $ GB7e [A: SW1g].+ s3Xf? qu?] WURI2Bs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8SVHs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8VbMo` * + 2 s8W-! s-] b-BC5a! s8W-! s8W-! s8W-! rquQdrVliss8W-! s8W-! s8W + lX’-VZIJr) s8W-! Y \ Lu> `6NCqjIX6gs8W-! S8W-! S8W-! S8W-! S8W-! S8W-! HlZqYs8W-! S8W-! S8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! ejiG19’ZHVs5e0es5rLMC # Ilhli7 «bs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8T + Us8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8Q [fG!: 9Qs8W + aOSo.WrnlB.i + _QXs8W-! s8W-! rr2oss8W-! s8W-! s8W-! s8W + ffDkmNs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W + k; jC4A s8W-! A # oY0qu> Rs8W-! s8W-! s8N # rrVuot s8W-! s8W-! s8W + aeGoRKs8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W-! s8W, J VZ3gIs8W «дБ».$ Des- (DeWj! Ci3p $ CMI? HB4YFY @ D) WoL ?? = Y] 85) NI 92% lN: e4) N: .n / P9h2-Apk [\ GT; S3CSN *; s8Q! T # nq;! Vs8W, fH> 7 & 6 [-k! -E! .ECs8W-! S8W-! QY: ‘ я ! S8W- s1iNbs8Drrr; Х1 & JGlj & n15H && Jq & делают & U & Zs8W — && ч & WrJh2 & JY && QS && s8W & K & NK9 && O_Z && HJrVuots8W & _rr & NipQX && r88u & A2mE &&&&& gQJLBU7 & tGfX0Hd &&&& dLuuSdZqrZ && J & AD3 & ioY3BB2 & sYNfT6 & dVPg & Z & _B_gauN1KKVjP &&&& D & i7BU..CRU & JQU &&&& Xn5L & eMlHP & JZ &&& G & Nb3s4p0dHN & Х &&&& W & QOH & ts8W- & WM & т && Y9 & ms8W- & Ds8Mrrs8W- & ts8W — && us8W- & U & us8W- & Us8W- & URR && D & eGoRKs8W- & ls6tD_ & us8W- & D & urgf && M & O & JVJSh7 & F_u & D85Dg && AgXt-5inN & G & us8W- & qs8W — && Qrr &&& ss4M && us8N && Х6 && р & us8W — && rSs4KOV & Es8W- & м && Q & gjmJm4ds & B & G && rXs8W — && i5r && fDAEW && us8Vons & Jj & п && L7l- & NMg52 & etrh & J && J & ес & Х5 & ts8W- & ss8W- & G && B &&&& Whs8W- & uoCi4 & US8 & U & us8W- & urqQNn && Ys8W — && Ds8W- & us8W & e55s8TZ & US8: & us8W & Ys8W — & us8W — && us8W- & U2 & F & GbaNDcXe & М & e55s8W- & K & us8W — &&& Ys8W- & ss8W- & Whs8W- & ss8W — &: & N && Ys8W- & nQ6 &&& QJ && LPs8W — && у && s2 & us8W & ts8W- & urqlZms5GMSs7uWnqZ & ts8W- & ts8W &&& У &&& р & ts8W- & Ed & L4Fu.J: N & rJqSQ &&&& ИД && г &&& Ю.Г. && J & eYfk & jSMN & T: D & UY.1sKYd1 & e_ & м — && VSqR & C && bD1Id & llOBfoAZ && V: &&& e.akR38HM & sKOPOEK & Au &&&&& mrVlWgq & us8W & ts8W- & ts8W- & URR & us8W- & т & us8W — && RQ & rqZ & us8W & rVuips4 & СРБ & us8W- & fDhmSmXAQ && SJ && us8W- & rrr2rts8W — && us8W- & J & us8W- & J5 & us8W- & EGJ &&&& ts8W- & nmSlrdRZ &: & U && G && B &&& G & I & ANF & ts8T & S-4s8W- & us8W- & ls8W- & s8W — &&& Zs8W — && ч && rXs8W- & Qu & e55s8W — && is8W- & urr2rts7 && YdCs8W- & ts8W- & ss8W- & && Биду & А0 & ts7ZEks8Vups8W- & J &: & В9 & js8W — && D4A7pD & TQ1 && Et: 7A && us8U & Ys8W && s8W- & J &&& us8W — &&&& k7ns8W — && bs8W — &&& Kt & ч && && s8VfFZ & is8W- & PLC.& U & rXs8W- & Y & s8W & U & И. & B & s8W- & WHS &&& O & s8W- & kI_I & ls8W — &&& ss8W- & s8W & SQs7AV5s8W- & s8W- & s8W- & s8W- & K8 & ZFK: & U && TdmVr && MPTX && Bam & && Р & Например, & Х & Q & FcR3 && F & БИФ &&& :: & HM & м & J & охраны труда и промышленной 0fs8w-> 7s8w-> 2>

Громоотвод: кто его изобрел и как работает

Он привязал металлический ключ к своим воздушным змеям и продолжал запускать их в штормовые дни, пока 15 июня 1752 года ему не удалось захватить еще один болт.Электричество шло по струне воздушного змея, пока не достигло ключа. Так он продемонстрировал, что можно притягивать молнии к металлическим конструкциям, тем самым уберегая другие элементы от ударов.

Год спустя, в 1753 году, начали устанавливать первые громоотводы. Металлические стержни от пяти до десяти метров длиной с медным или платиновым наконечником (материалы с высокой электропроводностью). Их постепенная установка на крышах в Соединенных Штатах (а позже и во всем мире) помогла спасти бесчисленное количество жизней и предотвратить пожары.

Как только молния попала в ловушку, металлический стержень продолжился в форме проводящей линии . Эта линия была сделана из металлических стержней или медной проволоки. В любом случае их функция — подводить электричество к земле. Диссипатор , который является не чем иным, как продолжением этой линии, был помещен под землю. Там электричество молнии разбавляется и поглощается, никому не причиняя вреда.

Эволюция оригинальной молнии: Никола Тесла

С тех пор, как Франклин придумал свою великую идею, шел дождь (и гремел).Тем не менее, почти 300 лет спустя во всем мире есть много громоотводов, которые продолжают использоваться именно так, как он их разработал. Металлический стержень с медным наконечником, проводящая линия также имеет медь и подземный рассеиватель.

Однако эта схема претерпела важные изменения. В 1918 году Никола Тесла , первооткрыватель переменного тока , заметно усовершенствовал изобретение. Он понял, что кончик громоотвода ионизирует воздух и по этой причине притягивает молнию.Однако в то же время он преобразовал циркулирующий воздух в проводник, что могло вызвать неконтролируемые повреждения. Так был основан громоотвод с точкой сбора и широким основанием , который был намного безопаснее оригинала.

Позже сочетание новых материалов и новых технологий сделало громоотвод еще более изощренным, особенно в двух направлениях:

  • Деионизирующие молниеотводы с электростатическим зарядом: , которые предназначены для устранения электрических полей в конструкциях, тем самым предотвращая образование на них молнии.Сегодня большинство специалистов считают, что не доказали его эффективность.
  • Молниеотводы с разрядным устройством : они измеряют электростатические заряды облаков, чтобы предсказать, когда будет произведена молния. Когда они его обнаруживают, они запускают вверх электромагнитный импульс, который служит для захвата болта на расстоянии. Таким образом уменьшаются возможные повреждения болта при падении на молниеотводы.

Интересные факты и анекдоты про молнии и громоотводы
  • Краны не обладают молниезащитой: принцип действия громоотвода основан на сочетании отрицательного электрического заряда шторма с положительным электрическим зарядом земли.Молния притягивается металлическими проводниками. Это также относится к металлическим конструкциям, таким как краны, которые становятся огромным коллектором молнии.
  • Эйфелева башня была спроектирована как гигантский громоотвод: на самом деле она была спроектирована как лаборатория для всех видов научных исследований, но особенно для проверки теорий об электричестве и метеорологии. Этот громоотвод высотой более 325 метров получает в среднем 5 ударов молнии в год. В 1902 году впервые фотограф М.Ж. Лоппе увековечил момент, когда буря стала эмблемой Парижа.

Учебник по физике: Lightning

Пожалуй, самым известным и мощным проявлением электростатики в природе является гроза. Грозы неизбежны от внимания человечества. Их никогда не приглашали, никогда не планировали и никогда не оставляли незамеченными. Ярость удара молнии разбудит человека посреди ночи. Они отправляют детей вбегать в родительские спальни, требуя уверенности в том, что все будет в безопасности.Ярость удара молнии способна прервать полуденные разговоры и дела. Они — частая причина отмены игр с мячом и прогулок в гольф. Дети и взрослые одинаково толпятся у окон, чтобы наблюдать за появлением молний в небе, трепещущие перед мощью статических разрядов. Действительно, гроза — это самое яркое проявление электростатики в природе.

В этой части Урока 4 мы обсудим два вопроса:

  • Какова причина и механизм поражения молнией?
  • Как громоотводы защищают здания от разрушительного воздействия удара молнии?

Накопление статического заряда в облаках

Научное сообщество давно размышляет о причинах ударов молнии.Даже сегодня это предмет многочисленных научных исследований и теоретизирования. Детали того, как облако становится статически заряженным, не совсем понятны (на момент написания этой статьи). Тем не менее, есть несколько теорий, которые имеют большой смысл и демонстрируют многие концепции, ранее обсуждавшиеся в этом разделе Физического класса.

Предвестником любого удара молнии является поляризация положительных и отрицательных зарядов внутри грозового облака. Известно, что вершины грозовых облаков приобретают избыток положительного заряда, а низы грозовых облаков приобретают избыток отрицательного заряда.Два механизма кажутся важными для процесса поляризации. Один из механизмов включает разделение заряда посредством процесса, который напоминает зарядку трением. Облака, как известно, содержат бесчисленные миллионы взвешенных капель воды и частиц льда, которые движутся и кружатся в турбулентном режиме. Дополнительная вода из земли испаряется, поднимается вверх и образует скопления капель по мере приближения к облаку. Эта поднимающаяся вверх влага сталкивается с каплями воды в облаках. При столкновении электроны отрываются от поднимающихся капель, вызывая отделение отрицательных электронов от положительно заряженной капли воды или кластера капель.

Второй механизм, который способствует поляризации грозового облака, связан с процессом замораживания. Повышение влажности сопровождается более низкими температурами на больших высотах. Эти более низкие температуры вызывают замерзание скопления капель воды. Замороженные частицы имеют тенденцию к более плотному скоплению вместе и образуют центральные области скопления капель. Замороженная часть скопления поднимающейся влаги становится отрицательно заряженной, а внешние капли приобретают положительный заряд.Воздушные потоки внутри облаков могут оторвать внешние части скоплений и унести их вверх, к вершине облаков. Замороженная часть капель с их отрицательным зарядом имеет тенденцию тяготеть к нижней части грозовых облаков. Таким образом, облака становятся еще более поляризованными.

Считается, что эти два механизма являются основными причинами поляризации грозовых облаков. В конце концов, грозовое облако становится поляризованным: положительные заряды переносятся в верхние части облаков, а отрицательные части тяготеют к нижней части облаков.Не менее важное влияние на поверхность Земли оказывает поляризация облаков. Электрическое поле облака распространяется через окружающее его пространство и вызывает движение электронов на Земле. Электроны на внешней поверхности Земли отталкиваются нижней поверхностью отрицательно заряженного облака. Это создает противоположный заряд на поверхности Земли. Здания, деревья и даже люди могут испытывать накопление статического заряда, поскольку электроны отталкиваются дном облака. С облаком, поляризованным на противоположности, и положительным зарядом, индуцированным на поверхности Земли, все готово для второго акта драмы удара молнии.

Механика удара молнии

По мере увеличения накопления статического заряда в грозовом облаке электрическое поле, окружающее облако, становится сильнее. Обычно воздух, окружающий облако, был бы достаточно хорошим изолятором, чтобы предотвратить разряд электронов на Землю. Тем не менее, сильные электрические поля, окружающие облако, способны ионизировать окружающий воздух и делать его более проводящим.Ионизация заключается в отрыве электронов от внешних оболочек молекул газа. Таким образом, молекулы газа, из которых состоит воздух, превращаются в суп из положительных ионов и свободных электронов. Изолирующий воздух превращается в проводящую плазму . Способность электрических полей грозового облака преобразовывать воздух в проводник делает возможной передачу заряда (в виде молнии) от облака к земле (или даже к другим облакам).

Удар молнии начинается с разработки ступенчатого лидера .Избыточные электроны на дне облака начинают путешествие через проводящий воздух к земле со скоростью до 60 миль в секунду. Эти электроны движутся зигзагообразными путями к земле, разветвляясь в разных местах. Переменные, влияющие на детали фактического пути, малоизвестны. Считается, что присутствие примесей или частиц пыли в различных частях воздуха может создавать области между облаками и землей, которые обладают большей проводимостью, чем другие области. По мере роста ступенчатого лидера он может освещаться пурпурным свечением, характерным для молекул ионизированного воздуха.Тем не менее, лидер — это не настоящий удар молнии; он просто обеспечивает дорогу между облаком и Землей, по которой в конечном итоге будет перемещаться молния.

Когда электроны ступенчатого лидера приближаются к Земле, происходит дополнительное отталкивание электронов вниз от поверхности Земли. Количество положительного заряда на поверхности Земли становится еще больше. Этот заряд начинает мигрировать вверх через здания, деревья и людей в воздух.Этот восходящий положительный заряд — известный как стример — приближается к ступенчатому лидеру в воздухе над поверхностью Земли. Лента может встретиться с лидером на высоте, равной длине футбольного поля. После установления контакта между косой и лидером намечается полный проводящий путь и начинается молния. Точка контакта между наземным зарядом и облачным зарядом быстро поднимается вверх со скоростью до 50 000 миль в секунду. Целый миллиард триллионов электронов могут пройти этот путь менее чем за миллисекунду.За этим начальным ударом следует несколько вторичных ударов или скачков заряда в быстрой последовательности. Эти вторичные выбросы разнесены во времени так близко, что могут выглядеть как один удар. Огромный и быстрый поток заряда по этому пути между облаком и Землей нагревает окружающий воздух, заставляя его сильно расширяться. Расширение воздуха создает ударную волну, которую мы наблюдаем как гром.

Молниеотводы и другие средства защиты

Высокие здания, фермерские дома и другие строения, восприимчивые к ударам молнии, часто оснащены громоотводами .Крепление заземленного громоотвода к зданию — это защитная мера, которая предпринимается для защиты здания в случае удара молнии. Первоначально концепция громоотвода была разработана Беном Франклином. Франклин предположил, что молниеотводы должны состоять из заостренного металлического столба, который поднимается вверх над зданием, которое он предназначен для защиты. Франклин предположил, что громоотвод защищает здание одним из двух способов. Во-первых, стержень служит для предотвращения разряда молнии заряженным облаком.Во-вторых, громоотвод служит для безопасного отвода молнии на землю в том случае, если облако действительно разряжает свою молнию с помощью болта. Теории Франклина о работе громоотводов существуют уже несколько столетий. И только в последние десятилетия научные исследования предоставили доказательства, подтверждающие, как они действуют для защиты зданий от повреждений молнией.

Первую из двух предложенных Франклином теорий часто называют теорией рассеяния молнии .Согласно теории, использование громоотвода на здании защищает здание, предотвращая удар молнии. Идея основана на том принципе, что напряженность электрического поля вокруг заостренного объекта велика. Сильные электрические поля, окружающие заостренный предмет, служат для ионизации окружающего воздуха, тем самым повышая его проводящую способность. Теория диссипации утверждает, что по мере приближения грозового облака между статически заряженным облаком и громоотводом устанавливается проводящий путь.Согласно теории, статические заряды постепенно перемещаются по этому пути к земле, что снижает вероятность внезапного и взрывного разряда. Сторонники теории рассеяния молнии утверждают, что основная роль молниеотвода — разрядить облако в течение более длительного периода времени, предотвращая, таким образом, чрезмерное накопление заряда, характерное для удара молнии.

Вторая из предложенных Франклином теорий о работе громоотвода лежит в основе теории отклонения молнии .Теория отвода молнии утверждает, что молниеотвод защищает здание, обеспечивая проводящий путь заряда к Земле. Громоотвод обычно прикрепляют толстым медным кабелем к заземляющему стержню, который закапывают в землю внизу. Внезапный разряд из облака будет направлен к поднятому громоотводу, но безопасно направлен на Землю, что предотвратит повреждение здания. Громоотвод, присоединенный к нему кабель и заземляющий полюс обеспечивают путь с низким сопротивлением от области над зданием к земле под ним.Отводя заряд через систему молниезащиты, здание избавляется от повреждений, связанных с прохождением через него большого количества электрического заряда.

Исследователи молний в настоящее время в целом убеждены, что теория рассеяния молнии дает неточную модель того, как работают громоотводы. Действительно, кончик громоотвода способен ионизировать окружающий воздух и делать его более проводящим. Однако этот эффект распространяется только на несколько метров над кончиком громоотвода.Несколько метров повышенной проводимости над кончиком стержня не способны разряжать большое облако, простирающееся на несколько километров. К сожалению, в настоящее время нет научно проверенных методов предотвращения молний. Более того, недавние полевые исследования показали, что кончик молниеотвода не нужно резко заострять, как предлагал Бен Франклин. Было обнаружено, что громоотводы с тупым наконечником более восприимчивы к ударам молнии и, таким образом, обеспечивают более вероятный путь разряда заряженного облака.При установке молниеотвода на здание в качестве меры молниезащиты обязательно, чтобы стержень был приподнят над зданием и соединен проводом с низким сопротивлением с землей.


Проверьте свое понимание

Используйте свое понимание, чтобы ответить на следующие вопросы. По завершении нажмите кнопку, чтобы просмотреть ответы.

1. ИСТИНА или НЕВЕРНО:

Наличие громоотводов на крышах зданий не позволяет облаку со статическим зарядом передать свой заряд в здание.

2. ИСТИНА или НЕВЕРНО:

Если вы поместите громоотвод на крышу своего дома, но не заземлите его, то ваш дом все равно будет в безопасности в маловероятном случае удара молнии.

Что такое громоотвод и как он работает? В

Притягивает ли громоотвод в Мурриете?

Громоотвод — это металлические полосы или стержни, обычно сделанные из меди, используемые для защиты зданий или сооружений от сильного удара молнии.В системе молниезащиты молниеотвод является отдельным компонентом системы. Громоотвод соединен кабелем с землей внизу, откуда он может направить заряд в безопасное место.

Громоотвод является мощным источником поражения электрическим током по площади, хотя для правильного использования требуется несколько ходов. Громоотвод также используется как метафорический термин для описания тех, кто вызывает споры. Эти стержни размещаются на крышах, чтобы притягивать молнии и защищать здания от ударов молнии

Громоотвод помещается там, где провода входят в конструкцию, предотвращая повреждение электронных инструментов внутри и обеспечивая безопасность людей рядом с ними.

Хотя лето — пиковый сезон для молний, ​​они бьют круглый год. По данным Национального управления океанических и атмосферных исследований (NOAA), в Соединенных Штатах ежегодно происходит 25 миллионов ударов молнии «облако-земля». Вообще говоря, удары молнии географически сконцентрированы на юго-востоке, юге и среднем западе. Пока мы не переехали в Вирджинию (в среднем 344 702 удара молнии в год) из Калифорнии, я мало думал о молниях.

Техас — это штат, в котором больше всего ударов молний в год, в среднем почти 3 миллиона в год, а во Флориде — 1,4 миллиона ударов в год! Создание молнии — сложный процесс. Согласно NOAA, мы знаем, какие условия необходимы для возникновения молнии, но до сих пор ведутся споры о том, как именно образуется молния. Точный способ, которым облако накапливает электрические заряды, приводящие к молнии, до конца не изучен. Канал отрицательного заряда, называемый ступенчатым лидером, устремляется к земле зигзагообразно из сегментов длиной примерно 50 ярдов в виде разветвления.

Когда он приближается к земле, отрицательно заряженный шаговый лидер притягивается к восходящему каналу положительного заряда от земли, стримеру, обычно через что-то высокое, например, дерево, дом или телефонный столб. Когда противоположно заряженные лидер и стример соединяются, начинает течь мощный электрический ток. Вспышка может состоять из одного или до 20 обратных ходов. Подробнее см. Здесь.

Громоотвод — это один из компонентов системы молниезащиты, предназначенный для проведения удара молнии в землю, таким образом защищая конструкцию здания.

Сегодня каждое здание оснащено множеством чувствительных электронных систем, поэтому они должны быть защищены от любых непредвиденных повреждений, таких как удар молнии. По этой причине больше людей устанавливают громоотводы, чем когда-либо прежде. А поскольку каждая конструкция уязвима для поражения молнией, громоотвод установлен на крыше каждого здания — школ, больниц, медицинских учреждений, аэропортов, торговых центров, офисных зданий, производственных предприятий и т. Д.

Громоотвод

Громоотвод устанавливается на крыше здания и подключается к проводящему каналу для отвода огромного электрического разряда в землю.Это очень распространенное заблуждение, что громоотвод притягивает молнию. Давайте разберемся с этим так. Единственная цель удара молнии — нейтрализовать себя землей. А громоотвод обеспечивает наиболее простой и адекватный путь, предотвращая, таким образом, удар молнии от повреждения любого другого объекта в пределах области.

Таким образом, он не притягивает молнии, а просто обеспечивает наиболее удобный путь. Еще одно очень распространенное заблуждение — установку молниезащиты может взять на себя электрик.Для таких установок следует нанимать только профессиональную компанию, соответствующую международным стандартам и государственным нормам. Подробнее см. Здесь.

Громоотвод подключается через провод или кабель с низким сопротивлением к земле или воде внизу, где заряд может безопасно рассеиваться.

Зимние снежные бури постепенно подходят к концу, а это значит, что следующая погода, с которой нам придется столкнуться, — весенний дождь и грозы. Системы молниезащиты могут быть очень важны в сезон штормов, особенно если вы живете в районах, где грозы могут быть обычным явлением.

Мифы о системе молниезащиты:

• Они не притягивают молнии
• Они не могут предотвратить молнии
• Большинство из них не обеспечивают защиту от перенапряжения
• Однако они обеспечивают защиту от огня и структурных повреждений, предотвращая прохождение горячих взрывоопасных каналов молний через строительные материалы

Когда болт поражает здание без молниезащиты, он может использовать любой проводник, имеющийся в здании. Это означает, что он может пройти через телефон, кабель или электрические линии, водопроводные или газовые трубы и даже через само здание, если это металлическая конструкция.В этом случае вашему зданию угрожает пожар, боковые вспышки, повреждение здания — разбитое стекло / трещина в бетоне, а также может быть повреждена техника. Читайте полную статью здесь.

Система молниезащиты: громоотвод

Иногда назначение молниеотводов понимают неправильно. Люди верят, что громоотводы «притягивают» молнию. Громоотводы обеспечивают путь к земле с низким сопротивлением, который может использоваться для проведения огромных электрических токов при возникновении ударов молнии.В случае удара молнии система пытается отвести опасный электрический ток от конструкции на землю.

Система способна выдерживать сильный электрический ток, связанный с ударом. Если удар коснется материала, который не является хорошим проводником, материал будет сильно поврежден нагреванием. Система громоотвода является отличным проводником и, таким образом, позволяет току течь на землю, не вызывая теплового повреждения. Несколько владельцев бизнеса пошли на ум, установили громоотводы, для получения дополнительной информации позвоните нам: (951) 805-1262 .

Статьи по теме:
Автоматическое управление освещением экономит энергию и деньги
Встраиваемые осветительные приборы — экономичное улучшение дома

Написано Джоном Стивенсоном

Джон — ветеран отрасли с 25-летним стажем, который пишет и курирует тематически связанный, интересный и актуальный контент для нескольких сетевых блогов, связанных с отраслью. Если у вас есть вопросы или комментарии по поводу какого-либо сообщения в блоге, не стесняйтесь оставлять комментарии.Джон ответит, если позволит время.

Как работают системы молниезащиты

Системы молниезащиты — это современное развитие инновации, впервые предложенной Бенджамином Франклином: громоотвод. Сегодня системы молниезащиты используются в тысячах зданий, домов, фабрик, башен и даже на стартовой площадке космического корабля «Шаттл». В этой статье будет рассмотрено, зачем нужна молниезащита и что системы могут и что нельзя делать.

В этой статье:
— Компоненты системы молниезащиты
— Системы молниезащиты — Что они делают и чего не делают
— Как работает система молниезащиты
— Устройства защиты от молнии и перенапряжения / ИБП
— Мифы об рассеивании / уничтожении молний
— Факты о молниезащите

Компоненты системы молниезащиты

Молниеотводы или молниеотводы — это лишь небольшая часть полной системы молниезащиты.Фактически, стержни могут играть наименее важную роль в установке системы. Система молниезащиты состоит из трех основных компонентов:

  1. Стержни или «воздушные терминалы» — Небольшие вертикальные выступы, предназначенные для использования в качестве «вывода» для разряда молнии. Стержни бывают разных форм, размеров и дизайнов. Большинство из них увенчаны высокой заостренной иглой или гладкой полированной сферой. Функциональность различных типов громоотводов и даже необходимость стержней в целом являются предметом многих научных дискуссий.
  2. Проводящие кабели — Тяжелые кабели (справа), по которым ток молнии проходит от стержней к земле. Кабели проложены по верху и по краям крыш, затем по одному или нескольким углам здания к заземляющему стержню (ам).
  3. Стержни заземления — Длинные, толстые и тяжелые стержни, закопанные глубоко в землю вокруг защищенной конструкции. К этим стержням подключаются токопроводящие кабели, образуя безопасный путь для разряда молнии вокруг конструкции.

Токопроводящие кабели и заземляющие стержни являются наиболее важными компонентами системы молниезащиты, выполняя главную задачу по безопасному отведению тока молнии через конструкцию. Сами по себе «громоотводы», то есть заостренные вертикально ориентированные выводы по краям крыш, не играют большой роли в функциональности системы. Полная защита при хорошем покрытии кабеля и хорошем заземлении все равно будет достаточно работать без молниеприемников.

Системы молниезащиты — что они делают и чего не делают

Единственная цель системы молниезащиты — обеспечить безопасность здания и его жителей, если молния попадает прямо в него. — задача, решаемая путем обеспечения хорошего и безопасного пути к земле, по которому молния будет следовать. Вопреки мифам, системы молниезащиты:

  • Не притягивать молнии
  • Не и не могут рассеивать или предотвращать молнию, «высасывая» шторм из своего заряда
  • Большинство не предлагают защиты от перенапряжения для чувствительной электроники
  • Do обеспечивает противопожарную защиту и защиту от повреждений конструкций, предотвращая прохождение горячих, взрывоопасных каналов молний через строительные материалы.
Создание этого веб-сайта стало возможным благодаря поддержке CIS Internet .

Как работает система молниезащиты

Незащищенная конструкция

[перезапуск анимации]

Без обозначенного пути для достижения земли при ударе молнии вместо этого можно использовать любой проводник, доступный внутри дома или здания. Это может быть телефон, кабель или электрические линии, водопроводные или газовые трубы или (в случае здания со стальным каркасом) сама конструкция. Молния обычно будет следовать по одному или нескольким из этих путей к земле, иногда прыгая по воздуху через боковую вспышку , чтобы достичь более заземленного проводника (см. Анимацию выше).В результате молния представляет несколько опасностей для любого дома или здания:

  • Пожар — Пожар может начаться в любом месте, где открытый канал молнии соприкасается, проникает или приближается к горючим материалам (дереву, бумаге, газовым трубам и т. Д.) В здании, включая конструкционные пиломатериалы или изоляцию внутри стен и крыш. Когда молния следует за электропроводкой, она часто перегревает или даже испаряет провода, создавая опасность пожара в любом месте пораженных цепей.
  • Боковые вспышки — Боковые вспышки могут прыгать через комнаты, возможно, травмируя любого, кто окажется на пути.Они также могут воспламенить такие материалы, как канистра с бензином в гараже.
  • Повреждение строительных материалов — Взрывная ударная волна, создаваемая разрядом молнии, может взорвать участки стен, разбить бетон и штукатурку на части, а также разбить близлежащее стекло.
  • Повреждение бытовой техники — Телевизоры, видеомагнитофоны, микроволновые печи, телефоны, стиральные машины, лампы и почти все, что подключено к поврежденной цепи, могут быть повреждены и не подлежат ремонту. Электронные устройства и компьютеры особенно уязвимы.

Добавление системы защиты не предотвращает удара, но обеспечивает лучший и безопасный путь к земле. Молниеприемники, кабели и заземляющие стержни работают вместе, чтобы отводить огромные токи от конструкции, предотвращая возгорание и большинство повреждений оборудования:

Защищенная структура

[перезапустить анимацию]

Устройства молниезащиты и защиты от перенапряжения / ИБП

Устройства защиты от перенапряжения и ИБП не подходят для защиты от молний.Эти устройства обеспечивают некоторую степень защиты от скачков напряжения при ежедневных скачках напряжения и удаленных ударах молнии. Но когда молния поражает конструкцию прямо или очень близко к ней, независимо от системы молниезащиты, все ставки не принимаются.

Обычный сетевой фильтр просто не может повлиять на резкий, катастрофический всплеск тока от очень близкого или прямого удара молнии. Постоянный ток молнии слишком велик, чтобы его можно было защитить с помощью небольшого электронного устройства внутри удлинителя или даже здоровенного ИБП.Если ваш ИБП или устройство защиты от перенапряжения мешают прохождению молнии, вся или часть молнии просто вспыхнет над устройством или через него — независимо от количества задействованных конденсаторов и аккумуляторных батарей.

Даже «разъединения» или устройства, которые физически отключают питание устройства путем активации набора контактов, не гарантируют защиты. Небольшой воздушный зазор не остановит удар молнии, который уже прыгнул через много миль в воздухе. Он не будет дважды думать о том, чтобы прыгнуть еще на несколько дюймов или даже на несколько футов, особенно если «путь наименьшего сопротивления» к земле проходит через контакты выключателя.

Более того, даже не полноценная система молниезащиты со стержнями, кабелями и заземлением не гарантирует от повреждения электроники и компьютеров. Чтобы любая система обеспечивала 100% защиту, она должна отводить почти 100% тока молнии от прямого удара, что практически невозможно: закон Ома гласит, что для набора сопротивлений, соединенных параллельно, ток будет распределяться. по ВСЕМ сопротивлениям на уровнях, обратно пропорциональных различным значениям сопротивления.Дом или здание — это не что иное, как набор резисторов, «соединенных» параллельно — электропроводка, водопровод, телефонные линии, стальной каркас и т. Д. (Даже если водопровод и электропроводка, например, не могут быть физически соединены, молнии будет использовать боковых вспышек через воздушные зазоры для их эффективного соединения). При прямом ударе молнии ток не будет идти только по одному пути — он будет распространяться по всем путям к земле в зависимости от сопротивления каждого пути.

Ток молнии часто достигает максимума в 100 000 и более ампер. Имея это в виду, подумайте, установлена ​​ли у вас система молниезащиты, и в ваш дом напрямую попадает молния. Если система защиты забирает даже 99,9% тока, то ваша электропроводка может забрать оставшиеся 0,1%. 0,1% от 100 000 ампер — это скачок тока в 100 ампер через ваши линии, которого может быть достаточно, чтобы вывести ваш компьютер из строя.

Нередко «боковые вспышки» возникают внутри дома или здания, когда вся или часть молнии прыгает через всю комнату, достигая земли, например, от системы электропроводки к хорошо заземленным водопроводным трубам.Если ваш компьютер мешает, пришло время купить новый, даже если у вас установлена ​​самая дорогая система защиты.

Гарантии на упаковке ИБП / устройств защиты от перенапряжения несколько вводят в заблуждение, когда речь идет о молниезащите, подразумевая, что устройства могут предотвратить любые последствия удара. В некоторых случаях они будут — если они не находятся на прямой линии огня или рядом с ней. Но на самом деле ничто не может гарантировать абсолютную защиту от прямого или очень близкого удара.

Все это не означает, что вы не должны использовать сетевой фильтр, ИБП, разъединитель или полноценную систему громоотвода. Любое устройство обеспечит или степень защиты от каждодневных скачков напряжения в линии электропередач и удаленных ударов молнии. Но когда молния попадает рядом или прямо, все ставки отменяются.

Лучший и самый дешевый способ защитить вашу стереосистему, телевизор, компьютер или любое электронное устройство — это отключить от всех источников питания, телефона, кабеля (модема) и антенны во время грозы.

Некоторые могут возразить, что риск прямого удара по любому конкретному дому слишком низок, чтобы оправдать отключение всего от сети при каждом шторме, который проходит над головой. В этом есть доля правды. В таком случае разумно убедиться, что страховка вашего домовладельца или арендатора покрывает ущерб от молнии, а все ваши устройства инвентаризированы и покрываются полисом. В конце концов, застрахованную дорогую электронику можно заменить. Однако считайте незаменимыми такие, как данные, сохраненные на вашем компьютере (фотографии, видео, рабочие файлы и т. Д.).Вы можете снизить этот риск, выполняя частое резервное копирование вне офиса и / или сохраняя данные на внешнем жестком диске, который вы можете отключить при необходимости.

Мифы об рассеивании / устранении молнии

Продукты, называемые устройствами для устранения молний или устройств для рассеивания молний, ​​возникли в результате двух мифов: во-первых, заряд грозы может истощить или иным образом повлиять на объекты на земле, а во-вторых, начинаются разряды молнии между облаками и землей. с земли.Эти продукты, которые продаются до сих пор, утверждают, что способны предотвратить прямой удар молнии в любой объект, на котором они установлены. Устройства имеют очень разный внешний вид, но обычно характеризуются металлическим корпусом с сотнями заостренных щетинок, игл или тонких стержней. Конструкция оправы варьируется от гребенчатой ​​до зонтичной.

Утверждается, что устройства предотвращают или уменьшают прямые удары молнии по объектам, на которых они установлены, с помощью коронного разряда для выполнения одного или нескольких из следующих действий: 1.) для истощения его заряда до того, как может произойти молния, 2) для создания локализованного «пространственного заряда» над защищаемой зоной, который отводит удары молнии, или 3) для затруднения инициирования восходящих лидеров от объекта, тем самым снижение шансов на прямую ступенчатую связь лидер-земля-лидер.

Как мы обсуждали в нашей статье о рассеянии грозового заряда, проблема с этими устройствами заключается в том, что, хотя они и создают коронный разряд, скорость «утечки» заряда совершенно незначительна по сравнению со скоростью генерации заряда на высоте 10 миль. , Над головой гроза диаметром от 15 до 25 миль! Никакой искусственный коронный разряд в таком небольшом масштабе не имеет ни малейшего шанса истощить заряд быстрее, чем его производит гигантское грозовое облако.И хотя мелкомасштабная корона действительно помогает предотвратить возникновение лабораторных искр (например, от генераторов Ван-де-Граафа), это не может быть экстраполировано для применения к полноразмерным разрядам молнии, которые в несколько тысяч раз больше, чем искусственные аналоги ( нашу статью о сравнении искусственного и естественного освещения). Коронный разряд от небольших «диссипаторов» незначителен для полноразмерной грозы и никак не повлияет на возникновение или поведение молнии в непосредственной близости от нее.

Удары молнии из облака в землю возникают высоко во время грозы, на много миль над поверхностью, где наземные объекты не действуют. Даже после начала разряда движущийся вниз ступенчатый лидер «слеп» к объектам на земле, пока не окажется очень близко к земле, в пределах от 50 до 100 футов. На таком расстоянии молния ударит в очень маленькую область, в которую она уже спускается, независимо от каких-либо устройств поблизости, которые утверждают, что отклоняют или предотвращают удар. Например, существует фотография удара молнии в здание Merchandise Mart в центре Чикаго.Торговый центр находится очень близко к Сирс-Тауэр высотой 1700 футов, но даже Сирс-Тауэр не повлиял на наземное соединение этого близкого удара облака с землей.

Помимо очевидных научных недостатков концепции устройств «рассеивания» и «устранения» молний, ​​они оказались неэффективными в реальных установках. Многие устройства «рассеивания молнии» на башнях и зданиях были поражены напрямую.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *