Импульсный трансформатор для блока питания: Импульсный трансформатор: принцип работы, расчет

Содержание

Импульсный блок питания из сгоревшей лампочки

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов.

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

 

Оглавление статьи.

  1. Вступление.
  2. Отличие схемы КЛЛ от импульсного БП.
  3. Какой мощности блок питания можно изготовить из КЛЛ?
  4. Импульсный трансформатор для блока питания.
  5. Ёмкость входного фильтра и пульсации напряжения.
  6. Блок питания мощностю 20 Ватт.

     

  7. Блок питания мощностью 100 ватт
  8. Выпрямитель.
  9. Как правильно подключить импульсный блок питания к сети?
  10. Как наладить импульсный блок питания?
  11. Каково назначение элементов схемы импульсного блока питания?

 

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют.

А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

 

Вернуться наверх к меню

 

Отличие схемы КЛЛ от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе КЛЛ с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

 

Вернуться наверх к меню

 

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Вернуться наверх к меню

 

Импульсный трансформатор для блока питания.

 

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. 🙂 Проверено на практике.

Здесь подробно рассказано, как произвести самые простые расчёты импульсного трансформатора, а так же, как его правильно намотать… чтобы не пришлось подсчитывать витки. 🙂

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Вернуться наверх к меню

 

Ёмкость входного фильтра и пульсации напряжения.

 

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц».

Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

 

Вернуться наверх к меню

 

Блок питания мощностью 20 Ватт.

 

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт. Частота автоколебаний без нагрузки – 26 кГц. Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС Температура транзисторов – 42ºС

 

Вернуться наверх к меню

 

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

 

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

 

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз. 1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз бо’льшие предельно-допустимые токи.

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

На чертеже изображено соединение транзистора с радиатором охлаждения в разрезе.

 

  1. Винт М2,5.
  2. Шайба М2,5.
  3. Шайба изоляционная М2,5 – стеклотекстолит, текстолит, гетинакс.
  4. Корпус транзистора.
  5. Прокладка – отрезок трубки (кембрика).
  6. Прокладка – слюда, керамика, фторопласт и т.д.
  7. Радиатор охлаждения.

А это действующий стоваттный импульсный блок питания.

 

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.

 

Мощность, выделяемая на нагрузке – 100 Ватт.

Частота автоколебаний при максимальной нагрузке – 90 кГц.

Частота автоколебаний без нагрузки – 28,5 кГц.

Температура транзисторов – 75ºC.

Площадь радиаторов каждого транзистора – 27см².

Температура дросселя TV1 – 45ºC.

TV2 – 2000НМ (Ø28 х Ø16 х 9мм)

Вернуться наверх к меню

 

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

 

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

 

1. Мостовая схема.

2. Схема с нулевой точкой.

 

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

 

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ватт.

 

100 / 5 * 0,4 = 8(Ватт)

 

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

 

100 / 5 * 0,8 * 2 = 32(Ватт).

 

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности. 🙂


 

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

 

Вернуться наверх к меню

 

Как правильно подключить импульсный блок питания к сети?

 

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

 

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку между исследуемым ИБП и осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

 

А это уже изображение реального стенда для ремонта и наладки импульсных БП, который я изготовил много лет назад по схеме, расположенной выше.

 

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

 

Будьте осторожны, берегитесь ожога!

 

Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Вернуться наверх к меню

 

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Вернуться наверх к меню

 

Каково назначение элементов схемы импульсного блока питания?

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Вернуться наверх к меню

 

Источник http://oldoctober.com/

принцип работы, виды и расчёт

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто  устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:

  • Тороидальный.
  • Броневой.
  • Стержневой.
  • Бронестержневой.

Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

  • Спиральные.
  • Цилиндрические.
  • Конические.

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

Далее можно просчитать минимальное количество витков:

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Проверка трансформаторов импульсных источников питания


При ремонте частотных преобразователей и других устройств промышленной электроники, имеющих в своем составе импульсный блок питания, часто появляется необходимость в диагностике состояния трансформаторов.


В практике ремонта разработано много различных методик, которые позволяют с требуемой для ремонта точностью отбраковывать неисправные трансформаторы импульсных источников питания.


Способ №1.

Для проверки трансформаторов этим способом потребуется генератор сигналов синусоидальной формы с частотным диапазоном 10 — 150 кГц и цифровой или аналоговый осциллограф. Для начала проверки на первичную обмотку трансформатора последовательно через неполярный конденсатор с номинальной емкостью 0.3-1.6 мкФ подаем тестовый сигнал с выхода генератора с амплитудой 4 — 11 В. Ко вторичной обмотке подключаем вход осциллографа и наблюдаем форму сигнала. Изменяя значение частоты на выходе генератора сигналов важно на каком-то определенном участке частотного диапазона обнаружить форму сигнала в виде чистой, неискаженной, синусоиды. Если же форма сигнала окажется искаженной, отличной от синусоиды, то с высокой степенью вероятности можно сделать заключение, что проверяемый трансформатор содержит межвитковое замыкание или обрыв.


Способ №2.

Для тестирования трансформатора паралелльно первичной обмотке подключаем неполярный конденсатор с номинальной емкостью 0.05-1.5 мкФ и подаем на нее тестовый сигнал с генератора синусоиды амплитудой 4 — 11 В. Вход осциллографа также подключаем параллельно конденсатору и первичной обмотке. Теперь, регулируя частоту генератора сигналов на собранном параллельном колебательном контуре, производим поиск участка резонанса, ожидая максимальный размах сигнала на дисплее осциллографа. Далее, на время проведения проверки, вторичную обмотку трансформатора необходимо замкнуть накоротко — это приведет к исчезновению колебаний в контуре. Из описанного следует, что наличие короткозамкнутых витков приводит к срыву эффекта резонанса в колебательном контуре. Таким образом, если в одной из обмоток тестируемого трансформатора есть межвитковое замыкание, то мы не обнаружим эффект резонанса, изменяя выходную частоту тестового генератора.


Способ №3.

Принцип тестирования трансформатора тот же, но теперь применяется последовательный контур вместо параллельного и происходит резкий срыв устойчивых колебаний при достижении эффекта резонанса. Последовательная цепь будет состоять из осциллографа, генератора сигналов, конденсатора и первичной обмотки трансформатора. Достигнуть эффекта резонанса будет невозможно, если присутствуют короткозамкнутые витки в одной из обмоток трансформатора.


Перечисленные выше способы можно применять для проверки силовых трансформаторов преобразователей, а также разделительных трансформаторов, используемых для гальванической развязки цепей управления в устройствах силовой электроники.


Примеры работ
Услуги
Контакты

Время выполнения запроса: 0,00753283500671 секунд.

прозвонка на КЗ и обрыв, измерение напряжения и тока

Основным элементом источника питания цифровых приборов является устройство преобразования тока и напряжения. Поэтому при поломке оборудования часто подозрение падает именно на него. Проще всего проверить импульсный трансформатор мультиметром. Существуют несколько способов измерений. Какой выбрать — зависит от ситуации и предполагаемых повреждений. При этом самостоятельно выполнить проверку любым из них совсем несложно.

Конструкция преобразователя

Перед тем как приступить непосредственно к проверке импульсного трансформатора (ИТ), желательно знать, как он устроен, понимать принцип действия и различать существующие виды. Такое импульсное устройство используется не только как часть блока питания, его задействуют при построении защиты от короткого замыкания в режиме холостого хода и в качестве стабилизирующего элемента.

Импульсный трансформатор используется для преобразования величины тока и напряжения без изменения их формы. То есть он может изменить амплитуду и полярность различного рода импульса, согласовать между собой различные электронные каскады, создать надёжную и устойчивую обратную связь. Поэтому главным требованием, предъявляемым к нему, является сохранение формы импульса.

Добиваются этого снижением паразитных величин, таких как межвитковая ёмкость и индуктивность, путём использования небольших сердечников, расположением витков, уменьшением числа обмоток. Основными характеристиками трансформатора являются: мощность и рабочее напряжение. Конструктивно устройство может быть выполнено в следующем виде:

  • стержневом — магнитопровод такого трансформатора выполняется из П-образных пластин, обхваченных обмотками;
  • броневом — используются Ш-образные пластины, а обмотки располагаются в катушках, образуя своеобразную броню;
  • тороидальном — его вид напоминает геометрическую фигуру тор, при этом он не имеет катушек, а обмотка наматывается на сердечник;
  • смешанном (бронестержневом) — собирается из четырёх катушек и магнитопровода совмещённого типа.

Магнитопровод в трансформаторе выполняется из пластин электротехнической стали, кроме тороидальной формы, в которой он сделан из рулонного или ферромагнитного материала. Каркасы катушек размещаются на изоляторах, а провода используются только медные. Толщина пластин подбирается в зависимости от частоты.

Расположение обмоток может быть выполнено спиральным, коническим и цилиндрическим видом. Особенностью первого типа является использование не проволоки, а широкой тонкой фольгированной ленты. Второго — выполняются с различной толщиной изоляции, влияющей на напряжение между первичной и вторичной обмотки. Третьего же типа представляют собой конструкции с намотанной проволокой на стержень по спирали.

Принцип работы устройства

Принцип действия ИТ основан на возникновении электромагнитной индукции. Так, если на первичную обмотку подать напряжение, то по ней начнёт протекать переменный ток. Его появление приведёт к возникновению непостоянного по своей величине магнитного потока. Таким образом, эта катушка является своего рода источником магнитного поля. Этот поток по короткозамкнутому сердечнику передаётся на вторичную обмотку, индуцируя на ней электродвижущую силу (ЭДС).

Величина напряжения на выходе зависит от отношения числа витков между первичной обмоткой и вторичной, а от сечения используемого провода зависит максимальная сила тока. При подключении к выходу мощной нагрузки увеличивается потребление тока, что при малом сечении проволоки приводит трансформатор к перегреву, повреждению изоляции и перегоранию.

Работа ИТ зависит также от частоты сигнала, который подаётся на первичную обмотку. Чем выше будет эта частота, тем меньшие потери будут происходить при трансформации энергии. Поэтому при высокой скорости подаваемых импульсов размеры устройства могут быть меньшими. Достигается это работой магнитопровода в режиме насыщения, а для снижения остаточной индукции используется небольшой воздушный зазор. Этот принцип и используется при построении ИТ, на который подаётся сигнал с длительностью всего в несколько микросекунд.

Подготовка и проверка

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

С цифровым мультиметром проще. В его конструкции используется анализатор, который следит за состоянием батареи и при ухудшении её параметров выводит на экран тестера сообщение о необходимой её замене.

При проверке параметров трансформатора используется два принципиально разных подхода. Первый заключается в оценке исправности непосредственно в схеме, а второй — автономно от неё. Но важно понимать, что если ИТ не выпаять из схемы, или хотя бы не отсоединить ряд выводов, то погрешность измерения может быть очень большой. Связано это с другими радиоэлементами, шунтирующими вход и выход устройства.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Исследование на обрыв и КЗ

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного. В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом -|>| —))). Для определения обрыва к цифровому прибору подключаются измерительные провода. Один вставляется в разъёмы, обозначенные V/Ω, а второй — в COM. Галетный переключатель переводится в область прозвонки. Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным — к одному её выводу, а чёрным — к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на короткое замыкание. Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока. Для проведения тестирования мультиметр переключается в режим проверки сопротивления. Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки). Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым — последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Измерения напряжения и тока

При подозрении на неисправность трансформатора тестирование можно провести, и не отключая его полностью от схемы. Такой метод проверки называется прямым, но связан с риском получить удар электрическим током. Суть действий в измерении тока заключается в выполнении следующих этапов:

  • из схемы выпаивается одна из ножек вторичной обмотки;
  • провод чёрного цвета вставляется в гнездо мультиметра COM, а красного — подключается к разъёму, обозначенному буквой А;
  • переключатель устройства переводится в положение, соответствующее зоне ACA.
  • щупом, подключённым к красному проводу, касаются свободной ножки, а к чёрному — места, к которому она была припаяна.

При подаче напряжения, если трансформатор работоспособный, через него начнёт протекать ток, значение которого и можно будет увидеть на экране тестера. Если ИТ имеет несколько вторичных обмоток, то сила тока проверяется на каждой из них.

Измерение же напряжения заключается в следующем. Схема с установленным трансформатором подключается к источнику питания, а затем тестер переключается на область ACV (переменный сигнал). Штекеры проводов вставляются в гнёзда V/Ω и COM и прикасаются к началу и концу обмотки. Если ИТ исправен, то на экране отобразится результат.

Снятие характеристики

Чтобы иметь возможность проверить трансформатор мультиметром таким методом, необходима его вольт-амперная характеристика. Этот график отображает зависимость между разностью потенциалов на выводах вторичных обмоток и силы тока, приводящей к их намагничиванию.

Суть метода лежит в следующем: трансформатор извлекается из схемы, на его вторичную обмотку с помощью генератора подаются импульсы разной величины. Подводимой на катушку мощности должно быть достаточно для насыщения магнитопровода. Каждый раз при изменении импульса измеряется сила тока в катушке и напряжение на выходе источника, а магнитопровод размагничивается. Для этого после снятия напряжения ток в обмотке увеличивается за несколько подходов, после чего снижается до нуля.

По мере снятия ВАХ её реальная характеристика сравнивается с эталонной. Снижение её крутизны свидетельствует o появление в трансформаторе межвиткового замыкания. Важно отметить, что для построения вольт-амперной характеристики необходимо использовать мультиметр с электродинамической головкой (стрелочный).

Таким образом, используя обычный мультиметр, можно с большой долей вероятности определить работоспособность ИТ, но для этого лучше всего выполнить комплекс измерений. Хотя для правильной интерпретации результата, следует понимать принцип работы устройства и представлять, какие процессы происходят в нём, но в принципе для успешного измерения достаточно лишь уметь переключать прибор в разные режимы.

Как ремонтировать импульсный блок питания

Импульсный источник питания — это инверторная система, в которой входное переменное напряжение выпрямляется, а потом полученное постоянное напряжение преобразуется в импульсы высокой частоты и установленой скважности, которые как правило, подаются на импульсный трансформатор.

Немного о применении и устройстве ИБП

Под аббревиатурой ИБП достаточно часто упоминается источник бесперебойного питания. Чтобы не было разночтений, условимся, что в данной статье это Импульсный Блок Питания.

Практически все импульсные блоки питания, применяющиеся в электронной аппаратуре построены по двум функциональным схемам.

Рис.1. Функциональные схемы импульсных блоков питания

По полумостовой схеме выполняются, как правило, достаточно мощные блоки питания, например компьютерные. По двухтактной схеме изготавливаются также блоки питания мощных эстрадных УМЗЧ и сварочных аппаратов.

Кому доводилось ремонтировать усилители мощностью 400 и более ватт, прекрасно знает, какой у них вес. Речь идет, естественно, об УМЗЧ с традиционным трансформаторным блоком питания. ИБП телевизоров, мониторов, DVD-проигрывателей чаще всего делаются по схеме с однотактным выходным каскадом.

Хотя реально существуют и другие разновидности выходных каскадов, которые показаны на рисунке 2.

Рис.2. Выходные каскады импульсных блоков питания

Здесь показаны только силовые ключи и первичная обмотка силового трансформатора.

Если внимательно посмотреть на рисунок 1, нетрудно заметить, что всю схему можно разделить на две части — первичную и вторичную. Первичная часть содержит сетевой фильтр, выпрямитель напряжения сети, силовые ключи и силовой трансформатор. Эта часть гальванически связана с сетью переменного тока.

Кроме силового трансформатора в импульсных блоках питания применяются еще развязывающие трансформаторы, через которые управляющие импульсы ШИМ – контроллера подаются на затворы (базы) силовых транзисторов. Таким способом обеспечивается гальваническая развязка от сети вторичных цепей. В более современных схемах эта развязка осуществляется при помощи оптронов.

Вторичные цепи гальванически отвязаны от сети при помощи силового трансформатора: напряжение с вторичных обмоток подается на выпрямитель, и далее в нагрузку. От вторичных цепей питаются также схемы стабилизации напряжения и защиты.

Очень простые импульсные блоки питания

Выполняются на базе автогенератора, когда задающий ШИМ контроллер отсутствует. В качестве примера такого ИБП можно привести схему электронного трансформатора Taschibra.

Рис.3. Электронный трансформатор Taschibra

Подобные электронные трансформаторы выпускаются и другими фирмами. Их основное назначение — питание галогенных ламп. Отличительная особенность подобной схемы — простота и малое количество деталей. Недостатком можно считать то, что без нагрузки эта схема просто не запускается, выходное напряжение нестабильно и имеет высокий уровень пульсаций. Но лампочки все-таки светят! При этом вторичная цепь полностью отвязана от питающей сети.

Совершенно очевидно, что ремонт такого блока питания сводится к замене транзисторов, резисторов R4, R5, иногда диодного моста VDS1 и резистора R1, выполняющего роль предохранителя. Просто нечему больше в этой схеме сгореть. При небольшой цене электронных трансформаторов чаще просто покупается новый, а ремонт делается, что называется, «из любви к искусству».

Сначала техника безопасности

Коль скоро имеется такое весьма неприятное соседство первичной и вторичной цепей, которые в процессе ремонта обязательно, пусть, даже случайно, придется пощупать руками, то следует напомнить некоторые правила техники безопасности.

Прикасаться к включенному источнику можно только одной рукой, ни в коем случае не сразу обеими. Это известно каждому, кто работает с электрическими установками. Но лучше не касаться вовсе, или, только после отключения от сети путем выдергивания вилки из розетки. Также не следует на включенном источнике что-то паять или просто крутить отверткой.

В целях обеспечения электробезопасности на платах блоков питания «опасная» первичная сторона платы обводится достаточно широкой полосой или заштриховывается тонкими полосками краски, чаще белого цвета. Это предупреждение о том, что трогать руками эту часть платы опасно.

Даже выключенный импульсный блок питания можно касаться руками только через некоторое время, не менее 2…3 минут после выключения: на высоковольтных конденсаторах заряд сохраняется достаточно долго, хотя в любом нормальном блоке питания параллельно конденсаторам установлены разрядные резисторы. Помните, как в школе предлагали друг другу заряженный конденсатор! Убить, конечно, не убьет, но удар получается достаточно чувствительный.

Но самое страшное даже не в этом: ну, подумаешь, чуть щипнуло. Если сразу после выключения прозвонить электролитический конденсатор мультиметром, то вполне возможно пойти в магазин за новым.

Когда такое измерение предвидится, конденсатор нужно разрядить, хотя бы пинцетом. Но лучше это сделать с помощью резистора сопротивлением в несколько десятков КОм. В противном случае разряд сопровождается кучей искр и достаточно громким щелчком, да и для конденсатора такое КЗ не очень полезно.

И все же, при ремонте приходится касаться включенного импульсного блока питания, хотя бы для проведения каких-то измерений. В этом случае максимально обезопасить себя любимого от поражения электричеством поможет развязывающий трансформатор, часто его называют трансформатор безопасности.

Если же в двух словах, то это трансформатор с двумя обмотками на 220В, мощностью 100…200Вт (зависит от мощности ремонтируемого ИБП), электрическая схема показана на рисунке 4.

Рис.4. Трансформатор безопасности

Левая по схеме обмотка включается в сеть, к правой обмотке через лампочку подключается неисправный импульсный блок питания. Самое главное при таком включении это то, что ОДНОЙ рукой прикасаться к любому концу вторичной обмотки можно безбоязненно, равно как и ко всем элементом первичной цепи блока питания.

О роли лампочки и ее мощности

Чаще всего ремонт импульсного блока питания выполняется без развязывающего трансформатора, но в качестве дополнительной меры безопасности включение блока производится через лампочку мощностью 60…150Вт. По поведению лампочки можно, в общем, судить о состоянии блока питания. Конечно, такое включение не обеспечит гальванической развязки от сети, трогать руками не рекомендуется, но от дыма и взрывов вполне может защитить.

Если при включении в сеть лампочка зажигается в полный накал, то следует искать неисправность в первичной цепи. Как правило, это пробитый силовой транзистор или выпрямительный мост. При нормальной работе блока питания лампочка сначала вспыхивает достаточно ярко (заряд конденсаторов), а потом нить накала продолжает слабо светиться.

Насчет этой лампочки существует несколько мнений. Кто-то говорит, что она не помогает избавиться от непредвиденных ситуаций, а кто-то считает, что намного снижается риск спалить только что запаянный транзистор. Будем придерживаться этой точки зрения, и лампочку для ремонта использовать.

О разборных и неразборных корпусах

Чаще всего импульсные блоки питания выполняются в корпусах. Достаточно вспомнить компьютерные блоки питания, различные адаптеры, включаемые в розетку, зарядные устройства для ноутбуков, мобильных телефонов и т.п.

В случае компьютерных блоков питания все достаточно просто. Из металлического корпуса выкручиваются несколько винтиков, снимается металлическая же крышка и, пожалуйста, вся плата с деталями уже в руках.

Если корпус пластмассовый, то следует поискать на обратной стороне, где находится сетевая вилка, маленькие шурупчики. Тогда все просто и понятно, отвернул и снял крышку. В этом случае можно сказать, что просто повезло.

Но в последнее время все идет по пути упрощения и удешевления конструкций, и половинки пластмассового корпуса просто склеиваются, причем достаточно прочно. Один товарищ рассказывал, как возил в какую-то мастерскую подобный блок. На вопрос, как же его разобрать мастера сказали: «Ты, что не русский?». После чего взяли молоток и быстренько раскололи корпус на две половинки.

На самом деле это единственный способ для разборки пластиковых клееных корпусов. Вот только колотить надо аккуратно и не очень фанатично: под действием ударов по корпусу могут оборваться дорожки, ведущие к массивным деталям, например, трансформаторам или дросселям.

Помогает также вставленный в шов нож, и легкое постукивание по нему все тем же молотком. Правда, после сборки остаются следы этого вмешательства. Но пусть уж будут незначительные следы на корпусе, зато не придется покупать новый блок.

Как найти схему

Если в прежние времена практически ко всем устройствам отечественного производства прилагались принципиальные электрические схемы, то современные иностранные производители электроники делиться своими секретами не хотят. Вся электронная техника комплектуется лишь руководством пользователя, где показывается, какие надо нажимать кнопки. Принципиальные схемы к пользовательскому руководству не прилагаются.

Предполагается, что устройство будет работать вечно или ремонт будет производиться в авторизованных сервисных центрах, где имеются руководства по ремонту, именуемые сервис мануалами (service manual). Сервисные центры не имеют права делиться со всеми желающими этой документацией, но, хвала интернету, на многие устройства эти сервис мануалы находить удается. Иногда это может получиться безвозмездно, то есть, даром, а иногда нужные сведения можно получить за незначительную сумму.

Но даже если нужную схему найти не удалось, отчаиваться не стоит, тем более при ремонте блоков питания. Практически все становится понятно при внимательном рассмотрении платы. Вот этот мощный транзистор — не что иное как выходной ключ, а эта микросхема — ШИМ контроллер.

В некоторых контроллерах мощный выходной транзистор «спрятан» внутри микросхемы. Если эти детали достаточно габаритные, то на них имеется полная маркировка, по которой можно найти техническую документацию (data sheet) микросхемы, транзистора, диода или стабилитрона. Именно эти детали составляют основу импульсных блоков питания.

Даташиты содержат весьма полезную информацию. Если это микросхема ШИМ контроллера, то можно определить, где какие выводы, какие на них приходят сигналы. Тут же можно найти внутреннее устройство контроллера и типовую схему включения, что очень помогает разобраться с конкретной схемой.

Несколько сложнее найти даташиты на малогабаритные компоненты SMD. Полная маркировка на маленьком корпусе не помещается, вместо нее на корпусе ставится кодовое обозначение из нескольких (три, четыре) букв и цифр. По этому коду с помощью таблиц или специальных программ, добытых опять-таки в интернете, удается, правда не всегда, найти справочные данные неведомого элемента.

Измерительные приборы и инструмент

Для ремонта импульсных блоков питания потребуется тот инструмент, который должен быть у каждого радиолюбителя. В первую очередь это несколько отверток, кусачки-бокорезы, пинцет, иногда пассатижи и даже упомянутый выше молоток. Это для слесарно-монтажных работ.

Для паяльных работ, конечно же, понадобится паяльник, лучше несколько, различной мощности и габаритов. Вполне подойдет обычный паяльник мощностью 25…40Вт, но лучше, если это будет современный паяльник с терморегулятором и стабилизацией температуры.

Для отпаивания многовыводных деталей хорошо иметь под руками если не супердорогую паяльную станцию, то хотя бы простенький недорогой паяльный фен. Это позволит без особых усилий и разрушения печатных плат выпаивать многовыводные детали.

Для измерения напряжений, сопротивлений и несколько реже токов понадобится цифровой мультиметр, пусть даже не очень дорогой, или старый добрый стрелочный тестер. О том, что стрелочный прибор еще рано списывать со счетов, какие он дает дополнительные возможности, которых нет у современных цифровых мультиметров, можно прочитать в статье «Стрелочные и цифровые мультиметры — достоинства и недостатки».

Неоценимую помощь в ремонте импульсных блоков питания может оказать осциллограф. Тут тоже вполне возможно воспользоваться стареньким, даже не очень широкополосным электронно-лучевым осциллографом. Если конечно есть возможность приобрести современный цифровой осциллограф, то это еще лучше. Но, как показывает практика, при ремонте импульсных блоков питания можно обойтись и без осциллографа.

Собственно при ремонте возможны два исхода: либо отремонтировать, либо сделать еще хуже. Тут уместно вспомнить закон Хорнера: «Опыт растет прямо пропорционально числу выведенной из строя аппаратуры». И хотя закон этот содержит изрядную долю юмора, в практике ремонта дела обстоят именно таким образом. Особенно в начале пути.

Поиск неисправностей

Импульсные блоки питания выходят из строя намного чаще, чем другие узлы электронной аппаратуры. В первую очередь сказывается то, что присутствует высокое сетевое напряжение, которое после выпрямления и фильтрации становится еще выше. Поэтому силовые ключи и весь инверторный каскад работают в очень тяжелом режиме, как электрическом, так и тепловом. Чаще всего неисправности кроются именно в первичной цепи.

Неисправности можно разделить на два типа. В первом случае отказ импульсного блока питания сопровождается дымом, взрывами, разрушением и обугливанием деталей, иногда дорожек печатной платы.

Казалось бы, что вариант простейший, достаточно только поменять сгоревшие детали, восстановить дорожки, и все заработает. Но при попытке определить тип микросхемы или транзистора выясняется, что вместе с корпусом улетучилась и маркировка детали. Что тут было, без схемы, которой чаще под рукой нет, узнать невозможно. Иногда ремонт на этой стадии и заканчивается.

Второй тип неисправности тихий, как говорил Лёлик, без шума и пыли. Просто бесследно пропали выходные напряжения. Если этот импульсный блок питания представляет собой простой сетевой адаптер вроде зарядника для сотового или ноутбука, то в первую очередь следует проверить исправность выходного шнура.

Чаще всего происходит обрыв либо около выходного разъема, либо у выхода из корпуса. Если блок включается в сеть при помощи шнура с вилкой, то в первую очередь следует убедиться в его исправности.

После проверки этих простейших цепей уже можно лезть в дебри. В качестве этих дебрей возьмем схему блока питания 19-дюймового монитора LG_flatron_L1919s. Собственно неисправность была достаточно простой: вчера включался, а сегодня не включается.

При кажущейся серьезности устройства — как-никак монитор, схема блока питания достаточно проста и наглядна.

Описание схемы и рекомендации по ремонту

После вскрытия монитора было обнаружено несколько вздутых электролитических конденсаторов (C202, C206, C207) на выходе блока питания. В таком случае лучше поменять сразу все конденсаторы, всего шесть штук. Стоимость этих деталей копеечная, поэтому не стоит ждать, когда они тоже вспучатся. После такой замены монитор заработал. Кстати, такая неисправность у мониторов LG достаточно частая.

Вспученные конденсаторы вызывали срабатывание схемы защиты, о работе которой будет рассказано чуть позже. Если после замены конденсаторов блок питания не заработал, придется искать другие причины. Для этого рассмотрим схему более подробно.

Рис 5. Блок питания монитора LG_flatron_L1919s (для увеличения нажмите на рисунок)

Сетевой фильтр и выпрямитель

Сетевое напряжение через входной разъем SC101, предохранитель F101, фильтр LF101 поступает на выпрямительный мост BD101. Выпрямленное напряжение через термистор Th201 поступает на сглаживающий конденсатор C101. На этом конденсаторе получается постоянное напряжение 310В, которое поступает на инвертор.

Если это напряжение отсутствует или намного меньше указанной величины, то следует проверить сетевой предохранитель F101, фильтр LF101, выпрямительный мост BD101, конденсатор C101, и термистор Th201. Все указанные детали легко проверить с помощью мультиметра. Если возникает подозрение на конденсатор C101, то лучше поменять его на заведомо исправный.

Кстати, сетевой предохранитель просто так не сгорает. В большинстве случаев его замена не приводит к восстановлению нормальной работы импульсного блока питания. Поэтому следует искать другие причины, приводящие к перегоранию предохранителя.

Предохранитель следует ставить на тот же ток, который указан на схеме, и ни в коем случае не «умощнять» предохранитель. Это может привести к еще более серьезным неисправностя.

Инвертор

Инвертор выполнен по однотактной схеме. В качестве задающего генератора используется микросхема ШИМ-контроллера U101 к выходу которой подключен силовой транзистор Q101. К стоку этого транзистора через дроссель FB101 подключена первичная обмотка трансформатора T101 (выводы 3-5).

Дополнительная обмотка 1-2 с выпрямителем R111, D102, C103 используется для питания ШИМ контроллера U101 в установившемся режиме работы блока питания. Запуск ШИМ контроллера при включении производится резистором R108.

Выходные напряжения

Блок питания вырабатывает два напряжения: 12В/2А для питания инвертора ламп подсветки и 5В/2А для питания логической части монитора.

От обмотки 10-7 трансформатора T101 через диодную сборку D202 и фильтр C204, L202, C205 получается напряжение 5В/2А.

Последовательно с обмоткой 10-7 соединена обмотка 8-6, от которой с помощью диодной сборки D201 и фильтра C203, L201, C202, C206, C207 получается постоянное напряжение 12В/2А.

Защита от перегрузок

В исток транзистора Q101 включен резистор R109. Это датчик тока, который через резистор R104 подключен к выводу 2 микросхемы U101.

При перегрузке на выходе ток через транзистор Q101 увеличивается, что приводит к падению напряжения на резисторе R109, которое через резистор R104 подается на вывод 2CS/FB микросхемы U101 и контроллер перестает вырабатывать управляющие импульсы (вывод 6OUT). Поэтому напряжения на выходе блока питания пропадают.

Именно эта защита и срабатывала при вспученных электролитических конденсаторах, о которых было упомянуто выше.

Уровень срабатывания защиты 0,9В. Этот уровень задается источником образцового напряжения внутри микросхемы. Параллельно резистору R109 подключен стабилитрон ZD101 с напряжением стабилизации 3,3В, что обеспечивает защиту входа 2CS/FB от повышенного напряжения.

К выводу 2CS/FB через делитель R117, R118, R107 подается напряжение 310В с конденсатора С101, что обеспечивает срабатывание защиты от повышенного напряжения сети. Допустимый диапазон сетевого напряжения, при котором монитор нормально работает находится в диапазоне 90…240В.

Стабилизация выходных напряжений

Выполнена на регулируемом стабилитроне U201 типа A431. Выходное напряжение 12В/2А через делитель R204, R206 (оба резистора с допуском 1%) подается на управляющий вход R стабилитрона U201. Как только выходное напряжение становится равным 12В, стабилитрон открывается и засвечивается светодиод оптрона PC201.

В результате открывается транзистор оптрона, (выводы 4, 3) и напряжение питания контроллера через резистор R102 подается на вывод 2CS/FB. Импульсы на выводе 6OUT пропадают, и напряжение на выходе 12В/2А начинает падать.

Напряжение на управляющем входе R стабилитрона U201 падает ниже опорного напряжения (2,5В), стабилитрон запирается и выключает оптрон PC201. На выходе 6OUT появляются импульсы, напряжение 12В/2А начинает возрастать и цикл стабилизации повторяется снова. Подобным образом цепь стабилизации построена во многих импульсных блоков питания, например, в компьютерных.

Таким образом, получается, что на вход 2CS/FB контроллера с помощью проводного ИЛИ подключены сразу три сигнала: защита от перегрузок, защита от превышения напряжения сети и выход схемы стабилизатора выходных напряжений.

Вот тут как раз уместно вспомнить, как можно проверить работу этой петли стабилизации. Для этого достаточно при ВЫКЛЮЧЕННОМ!!! из сети блоке питания подать на выход 12В/2А напряжение от регулируемого блока питания.

На выход оптрона PC201 зацепиться лучше стрелочным тестером в режиме измерения сопротивлений. Пока напряжение на выходе регулируемого источника ниже 12В, сопротивление на выходе оптрона будет большим.

Теперь будем увеличивать напряжение. Как только напряжение станет больше 12В, стрелка прибора резко упадет в сторону уменьшения сопротивления. Это говорит о том, что стабилитрон U201 и оптопара PC201 исправны. Следовательно, стабилизация выходных напряжений должна работать нормально.

В точности так же можно проверить работу петли стабилизации у компьютерных импульсных блоков питания. Главное разобраться в том, к какому напряжению подключен стабилитрон.

Если все указанные проверки прошли удачно, а блок питания не запускается, то следует проверить транзистор Q101, выпаяв его из платы. При исправном транзисторе виновата, скорей всего, микросхема U101 или ее обвязка. В первую очередь это электролитический конденсатор C105, который лучше всего проверить заменой на заведомо исправный.

Ранее ЭлектроВести писали, что ОП «Энергоатом-Трейдинг» на торгах Украинской энергетической биржи (УЭБ) реализовал 168 тыс. МВт*ч «ночной» электроэнергии по цене 682,35 грн/МВт*ч, что на 43,2% ниже стартовой цены, составляющей 1200 грн/Мвт*ч.

По материалам: electrik.info.

Трансформаторы для импульсных источников питания

             
                                                                                                                Общие сведения
 
    В современной зарубежной бытовой и офисной РЭА, а именно в устройствах их электропитания, находят широкое применение различные типы трансформаторов для импульсных источников питания
Импульсные сетевые блоки и модули питания бытовой и офисной аппаратуры, подключенной к сети переменного тока, применяются для получения напряжений постоянного тока, необходимых для питания всех функциональных узлов РЭА. Такие блоки и модули импульсных источников питания обеспечивают существенные преимущества перед традиционными источниками питания в достижении меньшей материалоемкости, большей удельной мощности и более высокого КПД. Это обусловлено отсутствием традиционных сетевых трансформаторов питания типа ТС, работающих на частоте 50 Гц, и использованием импульсной стабилизации вторичных напряжений вместо ранее общепринятых компенсационных стабилизаторов непрерывного действия.
   В импульсных сетевых блоках питания переменное напряжение питающей сети преобразуется в достаточно высокое напряжение постоянного тока при помощи бестрансформаторного выпрямителя с соответствующим фильтром. Напряжение с выхода фильтра поступает на вход импульсного стабилизатора напряжения, основная задача которого заключается в преобразовании выпрямленного напряжения в последовательность прямоугольных импульсов, которые затем преобразуются в постоянное напряжение. Регулировка уровня выходного напряжения осуществляется изменением длительности этих импульсов В состав импульсного стабилизатора напряжения входит регулирующий элемент, который работает в импульсном режиме Переход к ключевому режиму работы регулирующего элемента предопределил достаточно высокий КПД импульсных блоков питания (до 0,9)
  Именно наличие ключевого каскада, преобразующего выпрямленное напряжение в последовательность прямоугольных импульсов, и является принципиальной особенностью импульсного блока питания А стабилизация выходного напряжения осуществляется изменением соотношения времени открытого и закрытого состояний ключа, который соединен последовательно с первичной обмоткой высокочастотного импульсного трансформатора Этот трансформатор обеспечивает гальваническую развязку между выходом блока питания и первичной сетью питания переменного тока.
  Наибольшее распространение получили импульсные блоки питания с высокочастотным импульсным трансформатором, в которых ключевой высокочастотный преобразователь работает на постоянной частоте повторения импульсов, а длительность самих импульсов изменяется под действием формирователя широтно-импульсной модуляции (ШИМ).
  В импульсных блоках питания обычно используются одно- или двухтактные высокочастотные ключевые преобразователи. КПД однотактных преобразователей значительно ниже, чем у двухтактных. Поэтому однотактные импульсные блоки питания мощностью более 70 Вт разрабатывать нецелесообразно. Значительно большую мощность, при достаточно высоком КПД (до 95%), обеспечивают двухтактные преобразователи Их можно подразделить на несколько групп, характеризующихся по способу возбуждения мощных выходных ключевых транзисторов и схемами их включения в цепь первичной обмотки высокочастотного импульсного трансформатора преобразователя. По способу возбуждения преобразователи делятся на две группы с самовозбуждением и с независимым внешним возбуждением. Преобразователи с самовозбуждением достаточно трудоемки в налаживании, а при конструировании мощных (более 200 Вт) импульсных блоков питания сложность их изготовления неоправданно возрастает, поэтому для таких источников питания они малопригодны Преобразователи же с внешним возбуждением наилучшим образом подходят для проектирования импульсных блоков питания повышенной мощности и почти не требуют налаживания По способу подключения ключевых транзисторов к импульсному трансформатору различают три известные схемы полумостовую, мостовую и с первичной обмоткой трансформатора, имеющей отвод от середины обмотки (балансную) Однако во всех перечисленных схемах импульсных блоков питания существует реальная опасность возникновения сквозного тока через ключевые транзисторы и первичную обмотку импульсного трансформатора, вследствие подачи в одно из плеч открывающего напряжения в то же самое время, когда из-за своих инерционных свойств другое плечо еще полностью не закрылось. Такое явление всегда приводит к работе коммутирующих элементов в режиме замыкания, к выходу из строя дорогостоящих мощных высоковольтных транзисторов и к существенной перегрузке первичной обмотки импульсного трансформатора Это в свою очередь значительно снижает надежность и КПД импульсного блока питания Для устранения подобных нежелательных явлений в таких схемах преобразователей приходится принимать ряд специальных мер по надежному закрытию одного из ключевых транзисторов до открывания второго.                                                         
  Эти специальные меры значительно усложняют полумостовые, мостовые и балансные схемы импульсных блоков питания, и поэтому в бытовой технике более широкое распространение получили обрат-ноходовые импульсные источники питания, в которых коммутирующий ключевой транзистор в первый такт обеспечивает накопление электромагнитной энергии в обмотках и в магнитопроводе накопительного трансформатора обратного хода, а во второй — ее передачу в нагрузку. Такие трансформаторы обратного хода фактически являются связанными катушками индуктивности с несколькими обмотками или многообмоточными линейными дросселями, служащими прежде всего для накопления электромагнитной энергии с последующей ее передачей в нагрузку и одновременно обеспечивающими развязку в обратноходовых преобразователях.
  В зависимости от конкретных требований, предъявляемых к импульсному блоку питания, он может содержать различные дополнительные функциональные узлы и цепи, так или иначе связанные с выходным высокочастотным импульсным трансформатором: стабилизатор выходного напряжения, устройство защиты от перегрузок и аварийных режимов, цепи первоначального запуска, подавления помех и др.
 
К списку статей

Чем заменить сгоревший трансформатор?

Нередко бывают случаи, когда при ремонте техники требуется заменить сгоревший трансформатор или вышедший из строя импульсный источник питания. Трансформатор обычно удаётся найти без проблем, его можно заменить на аналогичный с таким же напряжением выходной обмотки и максимальным током такой же величины или большей, главное, чтобы он подходил по размерам.

С импульсными источниками всё сложнее. Самая распространённая неисправность, это пробой выходного ключа микросхемы. Не все производители используют распространённые микросхемы, многие из них применяют детали собственного производства, которые приобрести у нас невозможно.  Или возможно,но под заказ, с временем доставки около двух недель. Да и некоторые радиоэлементы в розницу стоят не дёшево.

Если же в схеме такого источника питания перегорела обмотка трансформатора, то его перемотка довольно трудоёмкая операция.

Подбирая аналоги для питания плат управления кондиционеров, я наткнулся на модули питания для светодиодов и светодиодных лент. Один из удачных вариантов сейчас рассмотрим.

Итак, модуль питания представляет из себя небольшой блок, состоящий из платы с элементами,которая помещена в алюминиевый корпус:

Для подключения к сети и к нагрузке предусмотрены колодки с зажимными винтами. Как видно на шильдике, выходное напряжение составляет 12 В, а максимальный выходной ток — 2 А. Входное напряжение от 110 В до 220 В, с разбросом в 20%, то есть максимальное получается — 264 В. Страна происхождения, естественно, Китай.

Сама плата довольно аккуратно скомпонована, пайка красивая на вид, силовые дорожки усилены слоем припоя, электролитические конденсаторы применены достаточной ёмкости.

Основа модуля микросхема RM6203 производства компании Reactor Microelectronics. Собран модуль по схеме обратноходового преобразователя (Fly back konvertor). В остальном всё типовое, как бонус индикатор выходного напряжения — зелёный светодиод.

Ещё одна полезная функция — возможность корректировки выходного напряжения, для этого имеется подстроечный резистор (на плате он оранжевого цвета с крестовой выемкой под отвертку).

Выходное напряжение можно установить от .11,5 В до 15 В. Это очень удобно, так как попадаются платы кондиционеров с напряжением питания 14 и 15 В (например, в кондиционерах с двигателем вентилятора постоянного тока).

Единственный недостаток, это отсутствие помехоподавляющего фильтра на входе и варистора для нейтрализации бросков напряжения. Но эти цепи обязательно есть на плате кондиционера, поэтому можно подключить модуль к питанию от платы уже после этих элементов.

Данные модули использовались на протяжении полутора лет для замены штатных источников питания в кондиционерах, водонагревателях и сушилках, случаев выхода из строя пока нет.

Также можно применять другие модули питания, подобрав их по выходному напряжению, максимальному току и размеру.

Теория импульсного трансформатора

— Gowanda Electronics

Примером применения силового импульсного трансформатора может быть точное управление нагревательным элементом от фиксированного источника постоянного напряжения. Напряжение может повышаться или понижаться в зависимости от коэффициента трансформации импульсного трансформатора. Питание импульсного трансформатора включается и выключается с помощью переключателя (или переключающего устройства) с рабочей частотой и длительностью импульса, которые обеспечивают необходимое количество энергии. Следовательно, температура также контролируется.Трансформатор обеспечивает гальваническую развязку между входом и выходом. Трансформаторы, используемые в источниках питания прямого преобразователя, в основном представляют собой импульсные трансформаторы силового типа. Существуют конструкции мощных импульсных трансформаторов, мощность которых превышает 500 киловатт.

Конструкция импульсного трансформатора сигнального типа ориентирована на выдачу сигнала на выходе. Трансформатор выдает импульсный сигнал или серию импульсов. Коэффициент трансформации импульсного трансформатора можно использовать для регулировки амплитуды сигнала и обеспечения согласования импеданса между источником и нагрузкой.Импульсные трансформаторы часто используются при передаче цифровых данных и в схемах управления затвором транзисторов, F.E.T., S.C.R. и т. Д. В последнем случае импульсные трансформаторы могут называться трансформаторами затвора или трансформаторами управления затвором. Импульсные трансформаторы сигнального типа работают с относительно низкими уровнями мощности. Для передачи цифровых данных трансформаторы сконструированы так, чтобы минимизировать искажение сигнала. Трансформаторы могут работать с постоянным током смещения. Многие импульсные трансформаторы сигналов также относятся к широкополосным трансформаторам.Импульсные трансформаторы сигнального типа часто используются в системах связи и цифровых сетях.

Конструкции импульсных трансформаторов

широко различаются по номинальной мощности, индуктивности, уровню напряжения (от низкого до высокого), рабочей частоте, размеру, импедансу, полосе пропускания (частотной характеристике), упаковке, емкости обмотки и другим параметрам. Разработчики стараются минимизировать паразитные элементы, такие как индуктивность рассеяния и емкость обмотки, используя конфигурации обмоток, которые оптимизируют связь между обмотками.

Gowanda разрабатывает и производит импульсные трансформаторы из самых разных материалов и размеров. Сюда входят различные стандартные типы структур «сердечник с бобиной» (E, EP, EFD, PQ, POT, U и другие), тороиды и некоторые нестандартные конструкции. Наши верхние пределы — 40 фунтов веса и 2 киловатта мощности. Наши возможности включают обмотку из фольги, обмотку из тонкой проволоки и идеальное наслоение. Для тороидов список включает секторную обмотку, обмотку с прогрессивной обмоткой, обмотку в ряд и обмотку с прогрессивным рядом.Gowanda имеет множество намоточных машин, в том числе программируемые автоматизированные машины и машины для заклейки тороидов. Gowanda имеет вакуумные камеры для вакуумной пропитки, а также может инкапсулировать. Для обеспечения качества Gowanda использует программируемые автоматизированные испытательные машины. Большая часть нашей продукции проходит 100% тестирование на этих машинах.

Импульсный трансформатор

— Принципы работы

Магнитный поток в сердечнике типичного трансформатора переменного тока чередуется между положительными и отрицательными значениями.Магнитного потока в типичном импульсном трансформаторе нет. Типичный импульсный трансформатор работает в униполярном режиме (плотность потока может совпадать, но не пересекать ноль).

Фиксированный постоянный ток можно использовать для создания смещающего постоянного магнитного поля в сердечнике трансформатора, тем самым заставляя поле пересекать нулевую линию. Импульсные трансформаторы обычно (не всегда) работают на высокой частоте, что требует использования сердечников с низкими потерями (обычно ферритов).

На рисунке 1A показана электрическая схема импульсного трансформатора.На рисунке 1B показано эквивалентное представление высокочастотной схемы трансформатора, применимое к импульсным трансформаторам. Схема рассматривает паразитные элементы, индуктивности рассеяния и емкость обмотки как элементы с сосредоточенными параметрами, но на самом деле они являются распределенными элементами. Импульсные трансформаторы можно разделить на два основных типа: силовые и сигнальные.

Примером применения силового импульсного трансформатора может быть точное управление нагревательным элементом от постоянного источника постоянного напряжения.Напряжение может повышаться или понижаться в зависимости от коэффициента трансформации импульсного трансформатора. Питание импульсного трансформатора включается и выключается с помощью переключателя (или переключающего устройства) с рабочей частотой и длительностью импульса, которые обеспечивают необходимое количество энергии. Следовательно, температура также контролируется. Трансформатор обеспечивает гальваническую развязку между входом и выходом. Трансформаторы, используемые в источниках питания прямого преобразователя, в основном представляют собой импульсные трансформаторы силового типа.Существуют конструкции мощных импульсных трансформаторов, мощность которых превышает 500 киловатт.

Конструкция импульсного трансформатора сигнального типа ориентирована на выдачу сигнала на выходе. Трансформатор выдает импульсный сигнал или серию импульсов. Коэффициент трансформации импульсного трансформатора можно использовать для регулировки амплитуды сигнала и обеспечения согласования импеданса между источником и нагрузкой. Импульсные трансформаторы часто используются при передаче цифровых данных и в схемах управления затвором транзисторов F.E.T.s, S.C.R. и т. Д. В последнем случае импульсные трансформаторы могут называться «затворными трансформаторами» или трансформаторами управления затвором ». Импульсные трансформаторы сигнального типа работают с относительно низкими уровнями мощности. Для передачи цифровых данных трансформаторы сконструированы так, чтобы минимизировать искажение сигнала. Трансформаторы могут работать с постоянным током смещения. Многие импульсные трансформаторы сигналов также относятся к широкополосным трансформаторам. Импульсные трансформаторы сигнального типа часто используются в системах связи и цифровых сетях.

Конструкции импульсных трансформаторов сильно различаются по номинальной мощности, индуктивности, уровню напряжения (от низкого к высокому), рабочей частоте, размеру, сопротивлению, полосе пропускания (частотная характеристика), упаковке, емкости обмотки и другим параметрам. Разработчики стараются минимизировать паразитные элементы, такие как индуктивность рассеяния и емкость обмотки, используя конфигурации обмоток, которые оптимизируют связь между обмотками.

Butler Winding может изготавливать (и уже производила) импульсные трансформаторы самых разных форм и размеров.Это включает в себя; различные стандартные типы сердечника со структурой бобины (E, EP, EFD, PQ, POT, U и другие), тороиды и некоторые нестандартные конструкции. Наши верхние пределы — 40 фунтов веса и 2 киловатта мощности. У нас есть опыт работы с обмотками из фольги, обмоток из тонкой проволоки и безупречной многослойности. Что касается тороидов, мы можем (и уже сделали) секторную обмотку, прогрессивную обмотку, намотку в ряд и намотку в ряд. Обмотка Батлера имеет множество намоточных машин, бобин / трубку и тороид. Сюда входят две программируемые автоматизированные машины и машина для заклейки тороидов.Обмотка Батлера имеет вакуумную камеру (камеры) для вакуумной пропитки, а также может герметизировать. Для обеспечения качества компания Butler Winding приобрела две программируемые автоматизированные испытательные машины. Большая часть нашей продукции проходит 100% тестирование на этих машинах.

Источник питания с плавным пуском и импульсным трансформатором

При включении усилителей питания, лабораторных и других БП в сети возникают помехи, вызванные пусковыми токами трансформаторов, токами заряда электролитических конденсаторов и запуском самих питаемых устройств.Внешне эта помеха проявляется как «мигающий» световой сигнал и искры в электрической розетке, а электрически — это просадка линейного напряжения, которая может привести к выходу из строя и нестабильности других устройств, питающихся от той же сети.

Кроме того, эти пусковые токи вызывают возгорание контактов выключателей, розеток. Еще одно негативное влияние пускового тока — диоды выпрямителя при запуске этой работы из-за перегрузки по току могут выйти из строя. Например, пусковой ток зарядки конденсатора 10000 мкФ 50В может достигать более 10 ампер.Если диодный мост не предназначен для этой текущей рабочей среды, мост может выйти из строя. Особенно сильные пусковые токи наблюдаются при мощности 50-100Вт. Для этих силовых агрегатов предлагаем стартер.

При включении сетевого адаптера токоограничивающий резистор запускается через R4. Через некоторое время, необходимое для его запуска, зарядка конденсатора и пусковой резистор нагрузки шунтируются контактами реле и выходом блока питания на полную мощность. Время включения определяется емкостью конденсатора C2.Элементы C1D1C2D2 представляют собой бестрансформаторный источник питания для реле цепи управления. Стабилитрон D2 играет сугубо защитную роль, и исправная схема управления может отсутствовать. Реле БС-115С-12В, использованное в схеме, может быть заменено любыми другими контактами реле с током не менее 10А, с подбором диодов, конденсатором С1 и выбором транзистора VT1 по напряжениям, реле высокого напряжения. Стабилитрон D3 обеспечивает гистерезис между включением и выключением напряжения. Другими словами, реле будет круто включаться, но не плавно.

Конденсатор C1 определяет ток реле. В случае недостаточного тока емкость конденсатора необходимо увеличить (0,47… 400… 630 В 1 мкФ). В защитную пленку для конденсатора желательно наклеить изоленту или усадить ее. Предохранители подбираются на удвоенный номинальный ток источника питания. Например, для блока питания на 100Вт предохранители должны иметь ток на 2 * (100/220) = 1А. При необходимости схема может быть дополнена сетевым балансным / несимметричным фильтром, включенным после предохранителей.Соединение с корпусом, представленное на схеме, можно рассматривать только как общий провод для подключения тестера. Ни в коем случае он не может подключаться к устройству шасси, отображать его на общих проводных фильтрах и т. Д.

Теги: схема защиты источника питания плавный пуск источника питания Импульсный трансформатор Источник питания мягкий пуск схема плавного пуска БП Soft-Start

Производители импульсных трансформаторов

| Поставщик импульсных трансформаторов

Импульсные трансформаторы — Lenco Electronics, Inc.

Примером этого применения могут быть радиолокационные передатчики, в которых обычно используется трубка выходной мощности, такая как магнетрон, требующий высокого напряжения и высокого импеданса или электрического сопротивления.

Малогабаритные версии импульсных трансформаторов создают электрические скачки, которые часто используются в телекоммуникационных и детальных логических приложениях, таких как вспышки фотокамер, радиолокационное оборудование и ускорение частиц. Импульсные трансформаторы среднего размера используются в электронных схемах.Импульсные трансформаторы используются для оцифровки компьютеров, измерительных устройств и импульсной связи. Импульсные трансформаторы большого размера используются в отрасли распределения электроэнергии, чтобы создать общую границу между низковольтными схемами управления и высоковольтными затворами силовых полупроводников.

Импульсные трансформаторы — Lenco Electronics, Inc.

Импульсные трансформаторы используются для сопряжения сети формирования импульсов (PFN) и нагрузки. Они гарантируют, что электрическое сопротивление нагрузки соответствует PFN, чтобы максимизировать эффективность передачи энергии.Сети формирования импульсов (PFN) работают, собирая электрическую энергию в течение довольно длительного периода времени, а затем быстро разряжая эту накопленную энергию в виде короткого, относительно прямоугольного импульса. Импульсные трансформаторы, обычно состоящие из входной обмотки, выходной обмотки и сердечника из ферромагнитных материалов, передают электрическую энергию в виде импульсов от PFN через входную обмотку к выходной обмотке и в нагрузку.

Силовые трансформаторы обычно работают на высоких частотах, для чего требуются сердечники с низкими потерями, сделанные из ферромагнитного материала.Существует два основных типа импульсных трансформаторов: силовые и сигнальные. Силовые импульсные трансформаторы включаются и выключаются с помощью переключающего устройства с рабочей частотой и длительностью импульса, которые обеспечивают получение импульсным трансформатором необходимого количества энергии. В результате управления мощностью также регулируется температура импульсного трансформатора. Кроме того, импульсный трансформатор обеспечивает электрическую изоляцию между входной и выходной обмотками.

Преобразователи импульсов сигнала обрабатывают относительно небольшие количества энергии и выдают серию импульсов или сигналов.Этот тип импульсного трансформатора в основном сконцентрирован на подаче сигнала на выходную обмотку. Кроме того, трансформатор сигнальных импульсов может использовать свое отношение витков для регулировки амплитуды сигнала и обеспечения электрического сопротивления между источником и нагрузкой.

Индивидуальные импульсные трансформаторы — Пало-Альто, Калифорния

Stangenes Industries предлагает широкий выбор трансформаторов, включая линейку импульсных трансформаторов.Мы специализируемся на разработке и производстве импульсных трансформаторов большой мощности, мощностью до 1,5 мВ, 6 кА и 1 кВ, 600 кВА. Мы предлагаем несколько различных типов импульсных трансформаторов, как стандартной конструкции, так и различных конфигураций по индивидуальному заказу. Обладая способностью удовлетворять уникальные производственные требования наших клиентов, начиная от единичных деталей и прототипов и заканчивая долгосрочным и крупномасштабным производством, мы обслуживаем наши продукты во многих отраслях промышленности уже более 45 лет.

Stangenes Industries специализируется на производстве импульсных трансформаторов, используемых в системах большой мощности.Мы производим импульсные трансформаторы для клистронов, магнетронов и электронных пушек для исследовательских, промышленных, медицинских и коммерческих приложений. Состав наших импульсных трансформаторов зависит от пиковой мощности, ширины импульса и частоты повторения. Кроме того, мы предлагаем выбор вариантов изоляции, включая масляное охлаждение, эпоксидное покрытие и изоляцию воздух / вода, в зависимости от требований вашей работы. Мы сертифицированы по ISO 9001: 2015, что гарантирует высокое качество работы и документации.
Чтобы получить дополнительные образцы наших импульсных трансформаторов, свяжитесь с
Stangenes Industries для получения дополнительной информации сегодня!

Запросить цену

Возможности импульсного трансформатора

Отраслевые стандарты

ISO-9001-2015
Международная организация по стандартизации

Общая информация

Компания Stangenes Industries заработала свою репутацию на разработке и производстве импульсных трансформаторов большой мощности до 1.5МВ, 6кА и 1кВ, 600кВА. Мы проектируем и производим:

  • Импульсные трансформаторы заряда
  • Высокомощные импульсные трансформаторы клистрона
  • Импульсные трансформаторы клистрона / пушки
  • Агрегаты импульсного трансформатора магнетрона / пушки
  • Сборки импульсных трансформаторов с баком
Импульсные трансформаторы клистрона наивысшей мощности

Импульсный трансформатор клистрона Stangenes используется в проекте удвоения (SLED) в Стэнфордском центре линейных ускорителей (SLAC).Блок рассчитан на 270 кВ, 75 МВт, для импульса 7 мкс. Используя прецизионные методы намотки и конструкции, можно было ограничить время нарастания до 0,5 мкс (10-90), сохраняя при этом пульсацию плоской вершины менее 0,15% p-p. Конические вторичные обмотки (постоянный градиент) ограничивают индуктивность рассеяния почти вдвое по сравнению с обычной конструкцией. Это также помогает сократить время нарастания импульса. Общий размер блока сведен к минимуму, а эффективность повышена за счет сброса сердечника по постоянному току.Бифилярная вторичная обмотка подает мощность нагревателя на клистрон.

Импульсные трансформаторы заряда

В системе стабилизации повторяющейся мощности часто необходимо передавать энергию от одного конденсатора к другому с другим уровнем напряжения. Этот резонансный перенос энергии может быть выполнен с помощью импульсного трансформатора. Один такой блок используется для передачи энергии от конденсатора емкостью 3 мкФ на 112.5 кВ на конденсатор 13 нФ при 1,5 мВ. Частота следования импульсов 0,2 Гц; возможны гораздо более высокие частоты повторения.

Импульсные трансформаторы клистрона / пушки

Импульсные трансформаторы клистрона / пушки Stangenes подают энергию пучка на трубку клистрона и импульсное напряжение на электронную пушку. Один такой блок рассчитан на 100 кВ, 6 МВт, импульс 8 мкс, 1000 импульсов в секунду. Трансформатор предназначен для погружения в трансформаторное масло в баке заказчика.Напряжение пушки 70 кВ обеспечивается отводом во вторичной обмотке. Этот метод отключения трансформатора значительно дешевле, чем подача импульсного напряжения на электронную пушку с помощью отдельного импульсного трансформатора. Кроме того, время нарастания напряжения пистолета уменьшается за счет клистрона с относительно низким импедансом, а не за счет энергоемкой фиктивной нагрузки на пистолете.

Агрегаты импульсного трансформатора магнетрона / пушки

Мы разработали методы проектирования магнетронных импульсных трансформаторов, которые значительно уменьшают пульсации импульса тока.Один из примеров импульсного трансформатора с баком используется для подачи мощности луча на магнетрон и импульсного напряжения на электронную пушку. Устройство рассчитано на 45 кВ, 4,5 МВт при импульсе 3,5 мкс. Вторичная обмотка четырехзаходная и подает энергию нагревателя как на магнетрон, так и на пушку. В бак входит датчик тока магнетрона и байпасные конденсаторы. Агрегат можно вращать и эксплуатировать в любом положении.

Заправленные агрегаты импульсного трансформатора

Stangenes Ind.производит полные сборки, состоящие из импульсного трансформатора, трансформатора нагревателя, байпасных конденсаторов, сети для снятия пиков, монитора тока, монитора напряжения, розетки клистрона и системы водяного охлаждения. Все компоненты смонтированы в двухкамерном масляном баке. Бак имеет приспособления для установки клистрона и соленоида и может вращаться и работать в любом положении. Одна сборка содержит импульсный трансформатор на 125 кВ, 11 МВт, для импульса 6 мкс. Мощность нагревателя клистрона 250 Вт подается через бифилярную вторичную обмотку.

Объем производства

Специализированный производственный цех
Прототип
Малый объем
Малый выпуск
Большой объем
Крупный выпуск
Длинный выпуск
Крупномасштабный выпуск Объем производства

4 причины, по которым импульсные трансформаторы становятся популярными в различных отраслях промышленности

Импульсные трансформаторы специально разработаны для приложений с высокими нагрузками и широко используются в различных отраслях промышленности для распределения электроэнергии.Они помогают минимизировать падение напряжения, время нарастания и искажение импульсов. Импульсные трансформаторы могут работать на высоких частотах и ​​могут передавать большую мощность по сравнению с обычным трансформатором того же размера. Импульсные трансформаторы широко используются для цепей малой мощности, импульсных источников питания большой мощности и передачи сигналов. Прочтите этот пост, чтобы узнать, почему импульсные трансформаторы находят все большее распространение в различных промышленных приложениях.

Преимущества использования импульсных трансформаторов

Ниже приведены некоторые из преимуществ импульсных трансформаторов:
  • Высокая передача энергии : Импульсные трансформаторы имеют компактные размеры и превосходную повторяемость, что обеспечивает короткое время нарастания, широкую ширину импульса и высокую эффективность передачи энергии в большинстве приложений.Кроме того, индуктивность рассеяния уменьшается из-за высокой проницаемости его ферритового сердечника, что обеспечивает высокую передачу энергии внутри трансформатора.
  • Большое количество обмоток: Импульсные трансформаторы обычно имеют более двух обмоток, которые можно использовать для одновременного управления несколькими транзисторами. Благодаря этому любые фазовые сдвиги или задержки сводятся к минимуму.
  • Гальваническая развязка: Импульсный трансформатор имеет гальваническую развязку между обмотками, которая исключает прохождение паразитных токов.Это свойство также позволяет первичной цепи управления и вторичной цепи управления работать при разных потенциалах. Изоляция может находиться в диапазоне от 4 кВ для электронных трансформаторов небольших размеров до 200 кВ для приложений с очень большой мощностью. Гальваническая развязка также отвечает требованиям безопасности, если одна из частей небезопасна для прикосновения из-за прохождения высокого напряжения.
  • Вакуумная заливка : Импульсные трансформаторы залиты абразивными смолами.Эти смолы помогают контролировать любое электрическое сопротивление или вибрацию трансформатора в контролируемой атмосфере. Этот процесс известен как вакуумная заливка. Термореактивные пластмассы или гели из силиконовой резины также используются для заливки внутри трансформатора. Компаунд для заливки также действует как изолятор. Кроме того, это помогает минимизировать занимаемое пространство, что приводит к лучшей изоляции.

Перечисленные выше преимущества делают импульсные трансформаторы энергоэффективным устройством, что делает их заметными в различных промышленных установках.Если вы планируете купить один из этих импульсных трансформаторов для промышленного применения, вы всегда можете положиться на такого первоклассного эксперта, как Custom Coils. Компания производит широкий спектр импульсных трансформаторов согласно промышленным требованиям. Для большей информации, пожалуйста нажмите сюда.

4 причины, по которым импульсные трансформаторы становятся популярными в различных отраслях промышленности. Последнее изменение: 13 марта 2018 г., автор: gt stepp

О gt stepp

GT Stepp — инженер-электрик с более чем 20-летним опытом работы, опытный в исследованиях, оценке, тестирование и поддержка различных технологий.Посвящен успеху; с сильными аналитическими, организационными и техническими навыками. В настоящее время работает менеджером по продажам и операциям в Custom Coils, разрабатывая стратегии продаж и маркетинга, которые увеличивают продажи, чтобы сделать Custom Coils более узнаваемыми и уважаемыми на рынке.

% PDF-1.4 % 162 0 объект > эндобдж xref 162 97 0000000016 00000 н. 0000002291 00000 н. 0000002501 00000 н. 0000002908 00000 н. 0000003772 00000 н. 0000003825 00000 н. 0000003854 00000 н. 0000003884 00000 н. 0000003906 00000 н. 0000004010 00000 н. 0000004460 00000 н. 0000004482 00000 н. 0000005556 00000 н. 0000005578 00000 н. 0000006518 00000 н. 0000006540 ​​00000 н. 0000007503 00000 н. 0000007525 00000 н. 0000008497 00000 н. 0000008519 00000 н. 0000009512 00000 н. 0000009534 00000 п. 0000010586 00000 п. 0000010608 00000 п. 0000010635 00000 п. 0000010662 00000 п. 0000010689 00000 п. 0000011618 00000 п. 0000011639 00000 п. 0000011922 00000 п. 0000011943 00000 п. 0000012226 00000 п. 0000012248 00000 п. 0000012945 00000 п. 0000012968 00000 п. 0000014754 00000 п. 0000014777 00000 п. 0000016248 00000 п. 0000016270 00000 п. 0000017382 00000 п. 0000017404 00000 п. 0000018637 00000 п. 0000018660 00000 п. 0000020050 00000 п. 0000020071 00000 п. 0000020354 00000 п. 0000020375 00000 п. 0000020659 00000 п. 0000020680 00000 п. 0000020964 00000 п. 0000020985 00000 п. 0000021278 00000 п. 0000021299 00000 н. 0000021583 00000 п. 0000021604 00000 п. 0000021888 00000 п. 0000021909 00000 п. 0000022193 00000 п. 0000022214 00000 п. 0000022504 00000 п. 0000022527 00000 н. 0000025038 00000 п. 0000025061 00000 п.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *