Индуктивность катушки формула через частоту: назначение и характеристики, методы расчёта для катушки и схемы, формулы для нахождения

Содержание

Индуктивность: формула, единица измерения

Индуктивность – это элемент цепи, где происходит накопление энергии от магнитного поля. Так происходит запас поля или его преобразование в иные виды энергий. Самым идеальным примером служит катушка индуктивности. В ней происходит запасание поля и его дальнейшее преобразование в энергию других видов, в том числе и тепловую. Способность накапливать магнитное поле и является индуктивностью. Индуктивность напрямую связана с электромагнитной индукцией, статья о которой, также есть на нашем сайте. В данной статье будет описано данное физическое явление, как оно происходит, а также как используется на практике, в чем измеряется и как можно рассчитать физические характеристики. Дополнениями служат два ролика и одна статья, по выбранной теме.

Что такое индуктивность.

Что такое индуктивность.

 Индуктивность в цепи переменного тока

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока, в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю. Под действием э. д. с. генератора в цепи протекает переменный ток, возбуждающий переменный магнитный поток. Этот поток пересекает «собственные» витки катушки и в ней возникает электродвижущая сила самоиндукции

Электродвижущая сила самоиндукции, согласно правилу Ленца, всегда противодействует причине, вызывающей ее. Так как э. д. с. самоиндукции всегда противодействует изменениям переменного тока, вызываемым э. д. с. генератора, то она препятствует прохождению переменного тока. При расчетах это учитывается по индуктивному сопротивлению, которое обозначается XL и измеряется в омах.

Измерение катушки индуктивности мультиметром

Измерение катушки индуктивности мультиметром

Таким образом, индуктивное сопротивление катушки XL, зависит от величины э. д. с. самоиндукции, а следовательно, оно, как и э. д. с. самоиндукции, зависит от скорости изменения тока в катушке (от частоты ω) и от индуктивности катушки 

L

XL = ωL,

  • где XL— индуктивное сопротивление, ом;
  • ω — угловая частота переменного тока, рад/сек;
  • L— индуктивность катушки, гн.

Так как угловая частота переменного тока ω = 2πf, то индуктивное сопротивление

XL = 2πf L,    (59)

где f — частота переменного тока, гц.

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Пример. Катушка, обладающая индуктивностью L = 0,5 гн, присоединена к источнику переменного тока, частота которого f = 50 гц. Определить:
1) индуктивное сопротивление катушки при частоте f = 50 гц;
2) индуктивное сопротивление этой катушки переменному току, частота которого f = 800 гц.
Решение. Индуктивное сопротивление переменному току при 

f = 50 гц

XL = 2πf L = 2 · 3,14 · 50 · 0,5 = 157 ом.

При частоте тока f = 800 гц

XL = 2πf L = 2 · 3,14 · 800 · 0,5 = 2512 ом.

Индуктивность сварочной дуги

Индуктивность сварочной дуги

Приведенный пример показывает, что индуктивное сопротивление катушки повышается с увеличением частоты переменного тока, протекающего по ней. По мере уменьшения частоты тока индуктивное сопротивление убывает. Для постоянного тока, когда ток в катушке не изменяется и магнитный поток не пересекает ее витки, э. д. с. самоиндукции не возникает, индуктивное сопротивление катушки XL равно нуло. Катушка индуктивности для постоянного тока представляет собой лишь сопротивление

Выясним, как изменяется з. д. с. самоиндукции, когда по катушке индуктивности протекает переменный ток. Известно, что при неизменной индуктивности катушки э. д. с. самоиндукции зависит от скорости изменения силы тока и она всегда направлена навстречу причине, вызвавшей ее.

В первую четверть периода сила тока возрастает от нулевого до максимального значения. Электродвижущая сила самоиндукции ес, согласно правилу Ленца, препятствует увеличению тока в цепи. Поэтому на графике (пунктирной линией) показано, что ес в это время имеет отрицательное значение. Во вторую четверть периода сила тока в катушке убывает до нуля. В это время э. д. с. самоиндукции изменяет свое направление и увеличивается, препятствуя убыванию силы тока. В третью четверть периода ток изменяет свое направление и постепенно увеличивается до максимального значения; э. д. с. самоиндукции имеет положительное значение и далее, когда сила тока убывает, э. д. с. самоиндукции опять меняет свое направление и вновь препятствует уменьшению силы тока в цепи.

Индуктивность

Индуктивность

Из сказанного следует, что ток в цепи и э. д. с. самоиндукции не совпадают по фазе. Ток опережает э. д. с. самоиндукции по фазе на четверть периода или на угол φ = 90°. Необходимо также иметь в виду, что в цепи с индуктивностью, не содержащей г, в каждый момент времени электродвижущая сила самоиндукции направлена навстречу напряжению генератора 

U. В связи с этим напряжение и э. д. с. самоиндукции ес также сдвинуты по фазе друг относительно друга на 180°.

Из изложенного следует, что в цепи переменного тока, содержащей только индуктивность, ток отстает от напряжения, вырабатываемого генератором, на угол φ = 90° (на четверть периода) и опережает э. д. с. самоиндукции на 90°. Можно также сказать, что в индуктивной цепи напряжение опережает по фазе ток на 90°. Построим векторную диаграмму тока и напряжения для цепи переменного тока с индуктивным сопротивлением. Для этого отложим вектор тока I по горизонтали в выбранном нами масштабе.

Чтобы на векторной диаграмме показать, что напряжение опережает по фазе ток на угол φ = 90°, откладываем вектор напряжения U вверх под углом 90°. Закон Ома для цепи с индуктивностью можно выразить так:

Что такое индуктивность

Следует подчеркнуть, что имеется существенное отличие между индуктивным и активным сопротивлением переменному току. Когда к генератору переменного тока подключена активная нагрузка, то энергия безвозвратно потребляется активным сопротивлением.

Если же к источнику переменного тока присоединено индуктивное сопротивление r = 0, то его энергия, пока сила тока возрастает, расходуется на возбуждение магнитного поля. Изменение этого поля вызывает возникновение э. д. с. самоиндукции. При уменьшении силы тока энергия, запасенная в магнитном поле, вследствие возникающей при этом э. д. с. самоиндукции возвращается обратно генератору.

  • В первую четверть периода сила тока в цепи с индуктивностью возрастает и энергия источника тока накапливается в магнитном поле. В это время э. д. с. самоиндукции направлена против напряжения.
  • Когда сила тока достигнет максимального значения и начинает во второй четверти периода убывать, то э. д. с. самоиндукции, изменив свое направление, стремится поддержать ток в цепи. Под действием э. д. с. самоиндукции энергия магнитного поля возвращается к источнику энергии — генератору. Генератор в это время работает в режиме двигателя, преобразуя электрическую энергию в механическую.
  • В третью четверть периода сила тока в цепи под действием э. д. с. генератора увеличивается, и при этом ток протекает в противоположном направлении. В это время энергия генератора вновь накапливается в магнитном поле индуктивности.
  • В четвертую четверть периода сила тока в цепи убывает, а накопленная в магнитном поле энергия при воздействии э. д. с. самоиндукции вновь возвращается генератору.

Таким образом, в первую и третью четверть каждого периода генератор переменного тока расходует свою энергию в цепи с индуктивностью на создание магнитного поля, а во вторую и четвертую четверть каждого периода энергия, запасенная в магнитном поле катушки в результате возникающей э. д. с. самоиндукции, возвращается обратно генератору.

Интересно по теме: Как проверить стабилитрон.

Из этого следует, что индуктивная нагрузка в отличие от активной в среднем не потребляет энергию, которую вырабатывает генератор, а в цепи с индуктивностью происходит «перекачивание» энергии от генератора в индуктивную нагрузку и обратно, т. е. возникают колебания энергии. Из сказанного следует, что индуктивное сопротивление является реактивным. В цепи, содержащей реактивное сопротивление, происходят колебания энергии от генератора к нагрузке и обратно.

Индуктивность и емкость в цепи переменного тока

Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:

i = Iм sin ωt

u = Uм sin (ϕ + ωt),

e = Ɛm sin (ψ + ωt).

Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле:

R=(pl/S)(1 + at).

В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.

График и схема подключения

График и схема подключения

Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:

ХL = ωL.

Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.

Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.

Катушки индуктивности

Катушки индуктивности

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока. Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;

Хс = 1/ωС

Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока. Индуктивное X

L и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:

X = XL—XC

и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.

В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:

P = IU cos ϕ.

Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:

Р = I2R

Для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)

Индуктивность

Индуктивность

Устройство катушки

Более близким к идеализированному элементу — индуктивности — является реальный элемент электронной цепи — индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электронного поля и преобразование электронной энергии в другие виды энергии, а именно в термическую. Количественно способность реального и идеализированного частей электронной цепи припасать энергию магнитного поля характеризуется параметром, именуемым индуктивностью.

Таким макаром термин «индуктивность» применяется как заглавие идеализированного элемента электронной цепи, как заглавие параметра, количественно характеризующего характеристики этого элемента, и как заглавие основного параметра индуктивной катушки.

Связь меж напряжением и током в индуктивной катушке определяется законом электрической индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости конфигурации потокосцепления катушки ψ и направленная таким макаром, чтоб вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

e = — dψ / dt

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Интересно почитать: инструкция как прозвонить транзистор.

Магнитный поток Ф, пронизывающий любой из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток наружных полей Фвп: Ф — Фси + Фвп.

1-ая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, 2-ая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и неизменных магнитов. Если 2-ая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее именуют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы 2-ух составляющих: потокосцепления самоиндукции ψси, и потокосцепления наружных полей ψвп

ψ= ψси + ψвп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана конфигурацией магнитного потока самоиндукции, и ЭДС, вызванной конфигурацией магнитного потока наружных по отношению к катушке полей:

e = eси + eвп,

тут еси — ЭДС самоиндукции, евп — ЭДС наружных полей.

Если магнитные потоки наружных по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности "Программное обеспечение вычислительной техники и автоматизированных систем", МИФИ, 2005–2010 гг.

Написано статей

Более подробно об индуктивности рассказано в статье Что такое катушка индуктивности. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.jasic.ua

www.tkexp.ru

www.elektrica.info

www.electricalschool.info

www.tehnar.net.ua

www.tehinfor.ru

Предыдущая

ТеорияЧто такое электромагнитная индукция?

Следующая

ТеорияЧто такое анод и катод, в чем их практическое применение

формула. Измерение индуктивности. Индуктивность контура

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

индуктивность формулаИндуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

индуктивность катушки формула

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название "самоиндукция". По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на постоянном токе катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

где F – магнитный поток, I – ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

"Катушка ниток"

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

индуктивность соленоида формула

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь "катушка – источник тока", то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN2R2 : 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N2R2 : 2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от "витков в квадрате".
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом – ярмом.

индуктивность контураВ наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:
  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

где µ0 показывает магнитную проницаемость вакуума, n – это число витков, V – объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

где S – это площадь поперечного сечения, а l – длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

где µ0 – это магнитная проницаемость вакуума, n – это число витков, а I – значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

где L показывает значение индуктивности, а E – запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) - это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для индукционного нагрева в тигельных печах.

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить индуктивность катушки, формула используется следующая:

где XL показывает реактивное сопротивление катушки, а W - круговая частота.

Если используется реактивное сопротивление конденсатора, то формула будет выглядеть следующим образом:

Xc = 1 : W х C.

индуктивность колебательного контураВажными характеристиками колебательного контура являются резонансная частота, волновое сопротивление и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину амплитудно-частотных характеристик (АЧХ) резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

индуктивность конденсатора

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f – это частота, L – индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида – апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

где Lk показывает индуктивность устройства, Lp –пакета, Lm – главных шин, а Lb – индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc : n + µ0 l х d : (3b) + Lb,

где l – длина шин, b – ее ширина, а d – расстояние между шинами.

индуктивность токаЧтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.
Катушка индуктивности. Устройство и принцип работы.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Катушки индуктивности

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

Магнитное поле проводника с током

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

Магнитное поле катушки индуктивности

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

L = \frac{\mu_0\thinspace \mu S N^2}{l}

Давайте разберемся, что за величину входят в это выражение:

  • \mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: \mu_0 = 4 \pi \cdot 10^{-7}\medspace\frac{Гн}{м}
  • \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Катушка индуктивности в цепи постоянного тока

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

\varepsilon_s = -\frac{d\Phi}{dt}

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот  будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

Напряжение и ток катушки индуктивности

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

Напряжение и ток в катушке

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

\varepsilon_s = -L\medspace\frac{dI}{dt}

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Катушка индуктивности в цепи переменного тока

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Зависимость тока и ЭДС самоиндукции в катушке в цепи переменного тока

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

\varepsilon_L = -L\medspace\frac{dI}{dt}

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon < 0, i > 0, участок 3-4: \varepsilon > 0, i < 0). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника).

А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока).

И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

X_L = w\medspace L

Где w – круговая частота: w = 2 \pi f. [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный (f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

u + \varepsilon_L = 0

А следовательно:

u = – \varepsilon_L

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Сдвиг фаз при включении катушки индуктивности

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Coil32 - Собственный резонанс однослойной катушки

контурНа заре развития радиотехники было обнаружено, что катушка не идеальная индуктивность. На определенной частоте она входит в режим резонанса даже при отсутствии внешней емкости, а выше этой частоты импеданс катушки носит уже емкостный характер. Для объяснения этого явления предположили, что кроме индуктивности реальная катушка обладает еще собственной емкостью (предположительно между соседними витками) и реальную катушку стали представлять в виде модели из сосредоточенных RLC элементов, в которой L —  индуктивность, C — собственная емкость, названная паразитной, а с помощью активного R учитываются различные потери в катушке. Такая модель катушки имеет одну резонансную частоту, которую назвали частотой собственного резонанса. Долгое время эта модель всех устраивала и стала классической моделью реальной катушки во всех учебниках.

 

Ведь катушки в подавляющем большинстве практических применений работают на частотах намного ниже частоты собственного резонанса и задачей конструктора является, по сути, обеспечение этого условия. При этом большинство инженеров с этой целью пытались уменьшить эту самую "межвитковую" паразитную емкость. В случае же, если катушка работает на частотах близких к собственному резонансу, как например в спиральных резонаторах или катушках Теслы, RLC-модель дает неверные результаты, но для таких случаев были разработаны альтернативные алгоритмы расчета и все остались довольны не особо задумываясь о причинах таких нестыковок. В нашу цифровую эпоху появились программы, которые дали возможность моделировать поведение любых высокочастотных устройств с высокой степени точности — так называемые электромагнитные симуляторы. Это мощные пакеты типа CST Studio, HFSS и многие другие. Давайте проведем исследование однослойной спиральной катушки в программе HFSS. В первой модели мы поместим катушку над идеальной проводящей поверхностью и запитаем от точечного источника с внутренним сопротивлением 50 МОм. Второй конец катушки заземлен. Расчет будем вести в режиме HFSS Design, использующий метод конечных элементов.HFSS модель катушки инндуктивностиВторую катушку рассчитаем методом HFSS Design-IE, использующий метод моментов. В отличии от популярных у радиолюбителей симуляторов на основе ядра NEC, например MMANA, здесь сегментация идет не на отрезки провода, а по его поверхности на элементарные треугольные площадки. При такой сегментации для успешного расчета требуется не менее 8-16 Гб оперативной памяти компьютера. Запитаем катушку через короткие выводы от такого же источника. Поскольку катушка не заземлена, в этой модели первый резонанс - полуволновой.собственный резонанс катушкиВ результате исследования мы получили графики импеданса на зажимах источника относительно частоты. Из графиков видно, что у катушки не один, а множество резонансов. Из этого следует вывод, что наша катушка — это совсем не одиночный LC-контур с собственной индуктивностью и паразитной емкостью в виде сосредоточенных элементов, как принято считать, а длинная линия с распределенными параметрами. Такая линия состоит из одного провода, но это не должно никого смущать. То, что в даже одиночном проводе наблюдаются волновые резонансные явления, хорошо иллюстрирует пример полуволнового вибратора Герца. Ведь волновые явления как в длинных линиях, так и в вибраторе отображают тот факт, что электромагнитное взаимодействие распространяется с конечной скоростью. На то чтобы электромагнитное взаимодействие «добралось» от одного конца провода до другого затрачивается определенное время, и когда это время сравнимо с периодом колебаний рабочей частоты возникают явления резонанса. И катушка в этом плане недалеко ушла от вибратора, поскольку несмотря на малые ее габариты, длина провода, которым она намотана, может иметь величину сравнимую с длиной волны. Частоту собственного резонанса вибратора мы можем довольно легко определить зная его длину, учтя коэффициент укорочения. В катушке, кроме того, необходимо учесть связь между витками.


В учебниках по электродинамике [1] можно найти описание работы спиральных волноводов с поверхностными электромагнитными (ЭМ) волнами, распространяющимися вдоль провода спирали. Такие волноводы применяются как замедляющие структуры в спиральных антеннах и лампах бегущей волны. Длина одного витка и шаг намотки у них сравним с длиной волны. В частности, у спиральной антенны длина витка L равна длине волны, а шаг намотки p равен четверти длины волны.srfФазовая скорость волны вдоль оси спирального волновода значительно ниже скорости света, на чем и основано его применение как замедляющей структуры.

формула фазовой скорости волны в спиральной антенне [1]

где:

 

  • vax - скорость волны вдоль оси спирали
  • с - скорость света

Относительная фазовая скорость волны вдоль оси такого волновода зависит только от геометрии спирали и не зависит от частоты, поскольку влияние витков друг на друга минимально и ЭМ-волна распространяется вдоль провода такой спирали, так же как и у вибратора. Отметим, что фазовая скорость ЭМ волны относительно провода спирали в таком волноводе близка к скорости света.


В нашей же катушке, и длина отдельного витка, и даже длина всей намотки, и тем более шаг намотки намного меньше длины волны. В этом случае, кроме основной моды в таком спиральном волноводе существуют высшие моды колебаний, распространяющиеся непосредственно вдоль ее оси. Другими словами, ЭМ волна распространяется не только вдоль длины провода, но часть ее «перепрыгивает от витка к витку». Относительная фазовая скорость вдоль оси катушки определяется следующим приближенным выражением:

формула фазовой скорости волны в спиральной антенне [2]

где:

 

  • λ0 - длина волны рабочей частоты в свободном пространстве

Как видно из формулы, скорость зависит от диаметра катушки, шага намотки и длины волны. По сути, катушка — тот же спиральный волновод с медленными волнами, но работающий в другом режиме колебаний. Во избежании различных спекуляций отметим то обстоятельство, что благодаря наличию высших мод, волна "добирается" до другого конца катушки быстрее чем непосредственно вдоль провода. Поэтому фазовая скорость волны относительно провода выше скорости света, причем в разы. Это не противоречит теории относительности. Достаточно упомянуть, что в полых волноводах фазовая скорость волны тоже выше скорости света. Для понимания этого кажущегося парадокса следует различать фазовую и групповую скорости электромагнитной волны. Для чего отсылаю к учебникам...

Катушка с одним заземленным концом резонирует на частотах 0/4, где n – целое число, λ0 - длина волны рабочей частоты и fsrf = vax0. Поэтому увеличение частоты собственного резонанса сводится к увеличению значения vax. Из-за наличия высших мод ЭМ-волны, частота первого резонанса катушки всегда выше частоты, рассчитанной исходя из длины провода. По этой же причине высшие по частоте резонансы не кратны первому и друг другу. При изменении шага намотки vax имеет максимум при шаге спирали примерно равном радиусу намотки (радиус a = D / 2). Однако катушки с большим шагом намотки (p ≈ a) не представляют практического интереса, поскольку имеют малую индуктивность. При увеличении шага намотки частота собственного резонанса катушки растет (при p < a), но рост этот идет за счет снижения величины индуктивности. При фиксированной индуктивности, если увеличивать шаг намотки, нам приходится добавлять витки и выигрыша мы практически не получаем.

У коротких катушек на каркасах большого диаметра последующие резонансы отстоят от первого далеко выше по частоте, что можно видеть по результатам HFSS моделирования:hfss модель катушкиНа частотах много ниже частоты первого резонанса пространственные задержки намного меньше периода колебаний, ЭМ-поле вокруг катушки представляет собой поле соленоида и скорость распространения волны вдоль ее оси можно не учитывать. В таком случае RLC-модель из сосредоточенных элементов будет вполне рабочей и достаточно точно отображает поведение катушки. Стоит только помнить, что паразитная собственная емкость — это вовсе не статическая емкость между витками. В таком режиме работают катушки из всех наших трех моделей в КВ диапазоне и ниже. Однако уже на частоте первого резонанса начинают проявляться волновые эффекты, связанные с ограниченной скоростью передачи электромагнитных взаимодействий и катушку следует рассматривать только как спиральный волновод. В этом случае RLC модель не только не годится для расчетов, но и приводит к неверному пониманию самого механизма возникновения резонансных явлений в катушке. В этой связи хочется отметить наличие в Сети ложной идеи о том, что в катушке одновременно происходят как волновой резонанс, так и LC-резонанс на сосредоточенных индуктивности и пресловутой «межвитковой емкости». Такое утверждение равносильно тому, что в катушке имеются два механизма распространения электромагнитных взаимодействий. Один происходит, как обычно, со скоростью света и определяет волновой резонанс. Второй осуществляется мгновенно с бесконечной скоростью в виртуальных сосредоточенных элементах катушки. Ведь фазовый сдвиг между током и напряжением в реактивных элементах — это совсем не то пространственное запаздывание, о котором идет речь. На самом деле катушка, как набор сосредоточенных RLC элементов, и катушка, как цепь с распределенными параметрами  — это две разные математические модели одной и той же реальной катушки. Первая модель не учитывает ограниченную скорость передачи взаимодействий, основана на предположении, что плотность тока во всех витках всегда одинакова, что не имеет место при собственном резонансе спирали. Поэтому эта модель ограничена и применима только на низких частотах. Вторая модель — более полная, учитывает то, что не учла первая и применима на любой частоте. В этом нет ничего необычного. Любая цепь, физические размеры которой сравнимы с длиной волны, не может рассматриваться как цепь из сосредоточенных элементов, в которой не учитывается ограниченная скорость передачи электромагнитных взаимодействий. Именно по этой причине О.Хевисайд и предложил в 1885 г. свою теорию длинных линий, а заодно кстати и само абстрактное математическое понятие "индуктивность". Как положительную реактивность.

Особо хотелось бы отметить следующий момент. На низких частотах, где, как мы выяснили, RLC модель справедлива, можно считать, что как индуктивность так и собственная емкость катушки не зависят от частоты, а определяются только геометрией намотки. Это общеизвестный факт, который зафиксирован например в формуле Нагаока. Однако реально параметры спиральной длинной линии зависят от частоты. Не только vax, но и погонная емкость и погонная индуктивность и, как следствие - величины собственной индуктивности и собственной емкости катушки в целом. Только на низких частотах эта зависимость пренебрежимо мала, а вот уже на частотах близких к первому резонансу значения индуктивности и собственной емкости катушки начинают заметно "плыть" по частоте. В итоге, мы сталкиваемся с ситуацией, что эти значения, измеренные или рассчитанные на низкой частоте, не пригодны для расчета частоты собственного резонанса катушки как LC резонанса по формуле Томсона. Расчет даст неверный результат! Неверный, Карл! Таким образом, мы приходим к выводу, что расчеты, основанные на понятии о LC-резонансе в катушке, полностью теряют смысл, что еще раз доказывает несостоятельность RLC-модели катушки не только для объяснения физических явлений при собственном резонансе, но и для расчетов в этой частотной области. Поэтому приходится прибегать к более сложному численному методу из работы [5], включающему в себя функции Бесселя и прочий суровый матан, что и делает Coil32.

Как видно из HFSS-моделей, у катушки как первый резонанс так и все последующие связаны исключительно с волновыми явлениями в катушке. Возможны практические случаи, когда катушка работает в диапазоне частот, в который попадает не только ее первый резонанс, но и более высокие. Очень хорошо такой случай описан в статье И.Гончаренко об анодном дросселе коротковолнового передатчика [2]. На этом примере хорошо видно, что для правильного понимания механизма резонансных явлений в катушке необходимо пользоваться теорией длинных линий.

 

Кроме фазовой скорости волны в катушке на частоту собственного резонанса оказывает влияние так называемый торцевой эффект, подобный хорошо известному аналогичному понятию из теории антенн, от которого зависит коэффициент укорочения вибратора. Этот эффект проявляется от того, что ЭМ-поле вокруг катушки занимает пространство большее, чем сама катушка. Наличие торцевого эффекта понижает резонансную частоту и этот эффект более выражен у коротких катушек с большим диаметром, что еще раз подтверждает родственную связь резонансных явлений в катушке и в вибраторе. Учитывая фазовую скорость вдоль оси катушки и явление торцевого эффекта мы можем рассчитать частоту собственного резонанса катушки по следующей весьма приближенной формуле от G3RBJ:

формула фазовой скорости волны в спиральной антенне [3]

где:

 

  • fsrf - частота собственного резонанса [МГц]
  • ĺw - длина провода катушки с учетом торцевого эффекта [м]
  • lw - реальная длина провода катушки [м]
  • D, p, l - диаметр, шаг и длина намотки, соответственно [м]
  • 0,25 - коэффициент, определяющий четвертьволновый резонанс (для полуволнового - 0,5)

Если конструктору необходимо создать катушку, имеющую минимальные габариты и максимальную частоту собственного резонанса при заданной индуктивности, то наиболее оптимальна будет намотка с расстоянием между витками, равном диаметру провода,  при отношении l/D ≈ 1..1,5. Хотелось бы обратить внимание конструкторов, что здесь идет речь о вычислении собственной резонансной частоты "голой катушки в вакууме", т.е. одной проволочной спирали без учета влияния каркаса, сердечника, экрана, изоляции провода и т.п. Все эти, трудно поддаваемые учету факторы, приводят к уменьшению этой частоты. Причем влияние оказывает все — любой проводник, печатная плата, корпус конструкции. В наших HFSS-моделях влияющие факторы — это выводы спирали и, особенно, сплошная земля в 1-ой и 3-ей моделях. Даже если вы соберетесь измерить частоту собственного резонанса экспериментально, это будет непростой задачей, так как щупы измерительного оборудования также оказывают влияние, даже если катушка где то висит в воздухе!


Необходимо отметить, что строгого аналитического решения уравнений Максвелла для цилиндрической проволочной спирали не существует, поэтому в теории спиральный волновод представляют в виде эквивалентной модели из тонкостенного сплошного цилиндра с анизотропной проводимостью. Однако численные методы решения уравнений Максвелла (чем в принципе и занимается HFSS) приводят нас к вполне однозначным результатам. В итоге, следует иметь ввиду, что вышеприведенная простая аналитическая формула [3] является весьма приблизительной и не может быть применима к любой катушке с произвольной геометрией намотки. Поэтому в Coil32 расчет частоты собственного резонанса основан не на аналитическом, а на численном методе из работы [5], который проверен практическими измерениями. При этом не учитывается влияние экрана, каркаса и других факторов. Расчет имеет точность около 10% при 0,04 < l/D < 40. Для некоторых катушек, например для очень длинных соленоидов с большим числом витков, этот метод может давать неверный результат. На практике же следует придерживаться следующего простого условия: если длина провода, которым намотана катушка, меньше четверти длины волны на наивысшей рабочей частоте, то катушка будет работать ниже своего первого резонанса.


P.S: В заключении хотелось бы добавить несколько слов о концепции "Двух независимых резонансов в катушке - волновом и LC-резонансе". Эта концепция зиждется на трех ложных в своей основе предпосылках и поэтому в корне неверна:

  1. Любую линейную замкнутую электрическую цепь можно представить как набор из сосредоточенных RLC-элементов. Основными законами этой цепи являются законы Ома и Кирхгофа. Любое изменение топологии цепи или добавление элементов в нее полностью меняет распределение токов и напряжений во всей цепи. Однако в концепции "двойного резонанса" длинная линия считается этаким себе "черным ящиком", равноценным какому-то особому четвертому сосредоточенному элементу, волновые процессы внутри которого существуют сами по себе. Но не стоит забывать, что другое название длинной линии - линия с распределенными параметрами, когда она представляется как цепь из бесконечного числа RLC-элементов. В ней также справедливы те же самые законы Ома и Кирхгофа, только представленные уже в дифференциальной форме. Мы просто перешли на более высокий уровень математической абстракции, при котором учитываются пространственно-временные задержки сигнала, но сути дела это не меняет. Поэтому, если мы подключим параллельно такой линии сосредоточенную емкость и будем считать, что характер распределения токов и напряжений внутри самой линии не изменится, мы просто отрицаем сами законы Ома и Кирхгофа. При этом не надо забывать, что характер распространения ЭМ-волны в линии и характер распределения токов и напряжений в ней - вещи жестко взаимосвязанные. Вывод - волновые процессы в линии не являются каким то особым ее свойством, которое существует само по себе, независимо от общих законов электрических цепей. Эти законы настолько фундаментальны, что в определенной мере отображены на еще более высоком уровне математической абстракции в уравнениях Максвелла, которые описывают свойства самой электромагнитной волны.
  2. "При сворачивании линии в спираль мало что меняется". Это утверждение неверно. По крайней мере индуктивность значительно увеличивается, иначе зачем сворачивать? Кроме того, погонная емкость и погонная индуктивность такой линии уже становятся зависимыми от частоты. В результате, как отмечалось выше, формула Томсона для расчета частоты собственного резонанса в спиральной линии перестает работать.
  3. В итоге, на основе этих неверных предпосылок, утверждается наличие двух независимых резонансов и нам выкатывают две формулы. Формулу Томсона, которая на самом деле в этом случае не работает, и формулу от Alane Payne (G3RBJ), которая, как мы отметили выше, является сильно приближенной. И по этим двум формулам уже идет развитие "теории двух независимых резонансов", которых в реальности не существует, что подтверждают и расчеты в HFSS и точные измерения. Повторюсь еще раз - все дело в разных математических моделях одной реальной катушки и разных уровнях математических абстракций в зависимости от конкретных условий расчета. Смешивать все это в одну кучу и подгонять под выдуманную теорию нельзя.

Ссылки по теме:

  1. Техническая электродинамика, Семенов Н.А., Изд. "Связь" Москва, 1973, стр.318-323.
  2. Моделирование анодного дросселя как распределенной структуры - И.Гончаренко 2007-2012
  3. Паразитные резонансы в катушке П-контура - И.Гончаренко
  4. Высокочастотные катушки, спиральные резонаторы и увеличение напряжения из-за когерентных пространственных мод 2001г. (Оригинал статьи здесь)
  5. THE SELF-RESONANCE AND SELF-CAPACITANCE OF SOLENOID COILS - applicable theory, models and calculation methods. By David W Knight (G3YNH)
  6. The self-resonance and self-capacitance of solenoid coils by David W Knight - основная статья с массой полезных ссылок по теме, в том числе на экспериментальные исследования с наглядными фото (G3YNH)
  7. SELF-RESONANCE IN COILS and the self-capacitance myth. By Alane Payne (G3RBJ)
  8. О собственной емкости катушки.

Расчёт частоты резонанса колебательного контура

Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

- Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
- Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

- Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
- Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t1, которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = .
По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL. Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1, он перезарядит конденсатор от нуля до максимального отрицательного значения (-U).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U (в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t1 + t2 + t3 + t4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).



Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Частота резонанса колебательного контура LC.
ƒ = 1/(2π√(LC))


Расчёт ёмкости:

Ёмкость для колебательного контура LC
C = 1/(4𲃲L)


Расчёт индуктивности:

Индуктивность для колебательного контура LC
L = 1/(4𲃲C)




Похожие страницы с расчётами:

Рассчитать импеданс.
Рассчитать реактивное сопротивление.
Рассчитать реактивную мощность и компенсацию.

что это такое и от чего зависит

В радиотехнике часто приходится сталкиваться с индуктивным сопротивлением. Его источником являются катушки. Они представляют собой двухполюсник, намотанный медным эмалированным проводом (обычно это ПЭТВ) на ферритовый или железный сердечник. Подобные детали встречаются в широком перечне оборудования: от древних советских радиоприёмников до материнских плат ПК последних моделей.

Катушки индуктивности

Катушки индуктивности

Формулы, зависимости и виды индуктивности

Электрическая индуктивность L – это величина, равная коэффициенту пропорциональности между током I, протекающим в замкнутом контуре, и создаваемым им магнитным потоком, иначе называемым потокосцеплением Y:

Y = LI.

Если к выводам катушки на некоторое время приложить напряжение, то в ней начнёт протекать ток I и формироваться магнитное поле. Чем меньше индуктивность L, тем быстрее протекает данный процесс. В итоге рассматриваемый двухполюсник накопит некоторое количество потенциальной энергии. При отключении питания он будет стремиться её вернуть. В результате на выводах катушки образуется ЭДС самоиндукции E, которая многократно превышает изначально приложенное напряжение. Подобная технология ранее использовалась в магнето систем зажигания ДВС, а сейчас широко встречается в повышающих DC-DC преобразователях.

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуля

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуля

Простой DC-DC повышающий преобразователь

Простой DC-DC повышающий преобразователь

Катушка (она же – дроссель) – это радиодеталь с ярко выраженной индуктивностью, ведь именно для этого её и создавали. Однако подобным свойством обладают в принципе все элементы. Например, конденсатор, резистор, кабель, просто кусок провода и даже тело человек также имеют некоторую индуктивность. В расчетах ВЧ схем это обязательно принимается во внимание.

Важно! Проводя измерение индуктивности специализированным прибором, стоит помнить, что нельзя держаться руками за оба его вывода. В противном случае показания могут измениться и будут неверными. Вызвано это включением в измеряемую цепь тела человека с его собственной индуктивностью.

Сопротивление катушки переменному току

Гораздо интереснее дела обстоят с индуктивностью в контуре переменного тока. Любая катушка содержит в себе две составляющие сопротивления:

  1. Активную;
  2. Индуктивную.

При постоянном токе учитывается только первый фактор, а при переменном – оба. Формула индуктивного сопротивления XL катушки имеет следующий вид:

XL = 2pfL,

где:

  • p = 3.14;
  • f – частота переменного тока, Гц;
  • L – индуктивность катушки, Гн.

Полное сопротивление катушки Z, называемое импедансом, определяется, исходя из активной R и индуктивной XL составляющих.

Импеданс катушки

Импеданс катушки

Важно! Если катушка установлена в печатную плату, то для проверки её следует отпаять. В таком случае индуктивность будет измеряться независимо от других компонентов, что существенно повысит точность показаний прибора.

Расчёт индуктивного сопротивления катушки

Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.

Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:

L=u0urN2S/l,

где:

  • u0 – магнитная проницаемость вакуума – 4p*10-7 Гн/м;
  • ur – относительная проницаемость сердечника;
  • N – количество витков дросселя;
  • S – его поперечное сечение в м2;
  • l – длина катушки в метрах.

Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.

Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.

Где применяется катушка (дроссель, индуктивность)

Дроссели имеют примитивную конструкцию: просто намотанный витками на каком-либо сердечнике проводник. В то же время в таком приборе нечему ломаться. Также у дросселей широчайший функционал и десятки применений. Из всего этого следует, что в какой бы точке города ни находился человек, в радиусе 1 км от него всегда будут тысячи катушек индуктивности, настолько они распространены.

Катушка как электромагнит

Самое простое применение катушки – это электромагнит. С подобным применением каждый сталкивается, заходя в подъезд. Сила, удерживающая дверь на месте и препятствующая несанкционированному доступу чужака, берётся из электромагнита. Он находится сверху.

Электрический ток, проходя по виткам катушки, создаёт вокруг неё переменное электромагнитное поле. Оно возбуждает в металлическом «бруске», расположенном на двери, вихревые токи, которые так же создают магнитное поле. В результате получаются два управляемых магнита. Они притягиваются друг к другу. Тем самым дверь надёжно удерживается на месте.

Другое применение электромагнитов в быту – индукционные плиты. Катушка наводит в металлической посуде переменный высокочастотный ток. Он, в свою очередь, своим тепловым действием разогревает кастрюлю. В промышленности нечто подобное используется для разогрева и плавки металлов. Только в таком случае применяются на порядки более высокие мощности и другие частоты тока.

Индукционный нагрев металла

Индукционный нагрев металла

Индуктивность как фильтр

Импульсные блоки питания, электрические двигатели и диммеры для регулировки яркости ламп накаливания выбрасывают в сеть большое количество искажений и помех. Вызвано это неравномерностью потребляемого тока. Для борьбы с подобными сетевыми шумами применяются специальные фильтры на основе конденсаторов и дросселей.

Данный узел представляет собой небольшую катушку из медного эмалированного провода диаметром 0,2-2 мм. Обмотка наматывается на ферритовый сердечник. Чаще всего он изготовлен в форме кольца, немного реже встречаются так называемые «гантельки».

Подобные фильтры имеются в компьютерных блоках питания, компактных люминесцентных лампах (иногда не ставят, экономят), на выходах сварочных инверторов.

Также фильтр может быть звуковым. Его задача – срезать определённый диапазон частот. Индуктивные свойства этого прибора таковы, что он хорошо проводит низкие частоты, а высокие – приглушает. Поэтому дроссели используют для того, чтобы до динамиков дошёл только бас. По факту ослаблено будут слышны и другие частоты. Для более эффективной работы фильтра нужны дополнительные детали: конденсаторы и операционные усилители.

Самодельный звуковой фильтр

Самодельный звуковой фильтр

Катушка как источник ЭДС

Китайская промышленность удивила школьников 2000-х новой игрушкой – вечным фонариком. Его не нужно было заряжать. Фонарик работал от катушки индуктивности, около которой под действием движения рук перемещался магнит. Он наводил в обмотке переменную ЭДС, которая питала осветительный прибор.

Подобное явление объясняется законом электромагнитной индукции.  Если проводник (рамка) находится в переменном электромагнитном поле, то в нём начинает наводиться электродвижущая сила. Иными словами, появляется напряжение.

Закон этот совсем неигрушечный, ведь он используется в работе генераторов на подавляющем большинстве электростанций, в том числе любые ТЭЦ, ГЭС, АЭС и ветряки. По подобному принципу работают динамомашины, питающие фары велотранспорта.

Принцип работы генератора

Принцип работы генератора

Две катушки – трансформатор

Ещё одно распространённое применение – это электрический трансформатор. Конструктивно он состоит из двух и более катушек, расположенных на одном железном или ферритовом сердечнике. Подобный агрегат работает только с переменным напряжением. Если на первичную обмотку подать ток, то он создаст в сердечнике магнитный поток. Он, в свою очередь, наведёт ЭДС во вторичной обмотке. Напряжения во входной и выходной катушках прямо зависят от количества их витков.

Таким образом, можно трансформировать 220 В из розетки в 12 В, необходимых для питания небольшой стереосистемы, или преобразовать 10 000 вольт в 220 для передачи от подстанции к жилым домам. Подобным методом можно добиться и повышения напряжения, т.е. превратить 12 В обратно в 220.

Устройство трансформатора

Устройство трансформатора

Катушка индуктивности — элемент колебательного контура

Сейчас это уже редкость, но раньше для подстройки нужной радиостанции использовали колебательный контур. Он состоит из двух элементов, включенных параллельно: катушки индуктивности и переменного конденсатора. Работая в паре, они способны выделить из множества окружающих сигналов именно тот, который требуется. При попадании на антенну приёмника нужной частоты электромагнитных волн колебательный контур входит в резонанс. Процесс сопровождается лавинообразным увеличением ЭДС. Частота, на которой это происходит, зависит от индуктивности катушки и ёмкости конденсатора.

Катушка индуктивности – дроссель ДРЛ ламп

Несмотря на то, что освещение улиц и промышленных предприятий стремительно переходит на LED светильники, по СНГ всё ещё осталось огромное количество мест, где используются устаревшие дуговые ртутные люминесцентные лампы типа ДРЛ. Более всего они распространены в мелких городах и на второстепенных улицах. Их можно узнать по характерному холодно-белому свету и долгому розжигу.

ДРЛ лампы не способны работать без пускорегулирующего дросселя. Он обладает высоким индуктивным сопротивлением и призван ограничить пусковой ток осветительного прибора. Дроссели для ламп подбираются, исходя из их мощности. Наиболее распространённые номиналы – 250, 400 и 1000 Вт. Информация о мощности указывается на самом дросселе. Там же можно найти схемы включения.

Из вышесказанного можно подчеркнуть, что катушка индуктивности является консервативным и давно освоенным на практике электронным компонентом. Однако спрос на его применение по-прежнему не спадает. Поэтому знания, необходимые для расчета катушек и их правильного включения, необходимы каждому специалисту, имеющему дело с электроникой.

Видео

Катушка индуктивности в цепи постоянного и переменного тока

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания, который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:

Замеряем индуктивность нашей катушки с помощью LC метра:

132 микрогенри.

Теперь собираем все это вот по такой схеме:

где

L – катушка индуктивности

La – лампочка накаливания на напряжение 12 Вольт

Bat – блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!

Как вы помните из прошлой статьи, конденсатор у нас не пропускал  постоянный электрический ток:

Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам  провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится осциллограф, генератор частоты, собственно сама катушка индуктивности и резистор на 100 Ом.  Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:

Получилось как то так:

Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал – желтым. Следовательно, красная синусоида – это частота, которую нам выдает генератор частоты, а желтая синусоида – это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал  с частотой  в 1 Килогерц.

Катушка индуктивности в цепи постоянного и переменного тока

Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф

Катушка индуктивности в цепи постоянного и переменного тока

Красный кружок с цифрой “1” – это замеры “красного”канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой “2”. F=1 Килогерц, а Ма=1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется сдвиг фаз. Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Катушка индуктивности в цепи постоянного и переменного тока

Увеличиваем частоту до 200 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.

Катушка индуктивности в цепи постоянного и переменного тока

Амплитуда  желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц

Катушка индуктивности в цепи постоянного и переменного тока

Амплитуда желтого канала  стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца

Катушка индуктивности в цепи постоянного и переменного тока

Амплитуда “желтого” сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:

сдвиг фаз

Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет,  а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.

Итак, прогоняем все по тем же значениям частоты

Катушка индуктивности в цепи постоянного и переменного тока

При  частоте в 1 Килогерц у  нас значение почти не изменилось.

10 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Здесь тоже  ничего не изменилось.

100 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц

Катушка индуктивности в цепи постоянного и переменного тока

Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц

Катушка индуктивности в цепи постоянного и переменного тока

Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. 😉

2 Мегагерца, предел моего генератор частоты

Катушка индуктивности в цепи постоянного и переменного тока

Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах  на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

реактивное сопротивление катушки формула

где

ХL –  реактивное сопротивление катушки, Ом

П – постоянная и равна  приблизительно 3,14

F – частота, Гц

L – индуктивность, Гн

В данном опыте мы с вами получили фильтр низких частот (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда  и мощность  на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:

Катушка индуктивности в цепи постоянного и переменного тока

Формула индуктивного сопротивления и расчеты

Любой индуктор сопротивляется изменениям переменного тока, и это приводит к тому, что он создает сопротивление.


Индуктивность и трансформатор Учебник включает в себя:
Индуктивность Символы Закон Ленца Собственная индуктивность Расчеты индуктивного сопротивления Теория индуктивного сопротивления Индуктивность проводов и катушек трансформеры


Индуктор сопротивляется потоку переменного тока в результате его индуктивности.Любой индуктор сопротивляется изменению тока в результате действия закона Ленца.

Степень, в которой индуктор препятствует протеканию тока, обусловлена ​​его индуктивным сопротивлением.

Индуктивное реактивное сопротивление зависит от частоты - растет с частотой, но его можно легко рассчитать по простым формулам.

Индуктивное сопротивление

Эффект, посредством которого уменьшается ток переменного или переменного тока в индукторе, называется его индуктивным сопротивлением.Любое изменение тока в индуктивности будет затруднено в результате индуктивности, связанной с ним.

Причину этого индуктивного реактивного сопротивления можно просто увидеть, изучив самоиндуктивность и ее влияние в цепи.

Когда переменный ток подается на индуктор, самоиндукция вызывает индуцированное напряжение. Это напряжение пропорционально индуктивности, и в результате закона Ленца индуцированное напряжение противоположно приложенному напряжению.Таким образом, индуцированное напряжение будет работать против напряжения, вызывающего ток, и таким образом оно будет препятствовать течению тока.

формулы индуктивного сопротивления

Хотя совершенных индукторов не существует, полезно представить себе, чтобы взглянуть на формулы и расчеты, связанные с индукторами и индуктивностью. В этом случае идеальный индуктор - это тот, который имеет только индуктивность, но не имеет сопротивления или емкости. Если к этому идеальному индуктору подается изменяющийся сигнал, такой как синусоида, реактивное сопротивление препятствует протеканию тока и следует закону Ома.

Где:
X L = индуктивное сопротивление в Омах, Ом
В = напряжение в вольтах
I = ток в амперах

Индуктивное сопротивление индуктора зависит от его индуктивности, а также от применяемой частоты. Реактивное сопротивление увеличивается линейно с частотой. Это можно выразить в виде формулы для расчета реактивного сопротивления на определенной частоте.

где:
XL = индуктивное сопротивление по Ом, Ω
π = греческая буква Pi, 3.142
f = частота в Гц
L = индуктивность в генри


Добавление индуктивного сопротивления и сопротивления

Реальный индуктор будет иметь некоторое сопротивление, или индукторы могут быть объединены с резисторами для создания объединенной сети. В любом из этих случаев необходимо знать полное сопротивление цепи.

Поскольку ток и напряжение в индуктивности не совпадают по фазе на 90 ° (ток отстает от напряжения), индуктивное сопротивление и сопротивление не могут быть добавлены напрямую.

Adding inductive-reactance and DC resistance calculation Добавление индуктивного сопротивления и сопротивления постоянного тока

 Adding inductive-reactance and DC resistance is achieved vectorially Добавление индуктивного сопротивления и сопротивления постоянному току достигается векторно

Из диаграммы видно, что две величины необходимо сложить по вектору. Это означает, что индуктивное реактивное сопротивление и сопротивление должны быть возведены в квадрат, добавлены, а затем получен полученный квадратный корень:

В Общее количество 2 знак равно В L 2 + В р 2

Это можно переписать в более удобный формат:


В Общее количество знак равно В L 2 + В р 2

Результирующая комбинация сопротивления и индуктивного сопротивления называется импедансом, и это снова измеряется в омах.

При использовании и проектировании цепей, которые содержат индукторы, часто необходимо посмотреть на индуктивное сопротивление, рассчитать его по формулам, приведенным выше, а затем добавить его к чистому сопротивлению, чтобы получить общий импеданс. Как таковые, эти формулы особенно полезны.

Более основные понятия:
Напряжение Текущий сопротивление емкость Мощность трансформеры РЧ шум Децибел, дБ Q, добротность
Возврат в меню основных понятий., ,

.

Расчет катушки и индуктивность

На этой странице вы узнаете, как создать собственную катушку своими руками. Я сделал это для изготовления катушек для хрустальные радиоприемники и Катушки Тесла, но это работает для любой катушки, которая имеет цилиндрическую форму. Это также полезно, если вы собираетесь использовать свою катушку в LC танк резонансный цепи.

Калькулятор индуктивности предоставляется ниже для облегчения.

Намотка катушки вручную.

Часто индуктивность - это то, чего вы пытаетесь достичь при разработке катушки. то есть вы знаете индуктивность, которую хотите, и теперь вам нужно спроектировать катушку это будет иметь эту индуктивность.

Индуктивность

Катушки имеют свойство, называемое индуктивностью. Что такое индуктивность? Когда электрический ток изменяется по мере прохождения провод катушки, он создает изменяющееся магнитное поле, которое вызывает (производит) напряжение или ЭДС (электродвижущая сила) в проводе, который против течения.Это называется индукцией и индуктивностью является значением, определяющим способность катушки индуцировать это напряжение. Символ индуктивности - Генри, а единица - H. Здесь мы на самом деле говорить о катушке, индуцирующей напряжение само по себе, что самоиндукция, но мы просто скажем, индукция.

Магнитное поле вокруг катушки.
Параметры для индуктивности формулы

Одна формула для индуктивности выглядит следующим образом:

Где:

  • L = индуктивность
  • u r = относительная проницаемость материала сердечника (воздух = 1)
  • витков = количество витков на катушке
  • площадь = площадь поперечного сечения сердечника в квадратных метрах *, включая часть катушки, как показано на схеме
  • длина = длина катушки в метрах *

* Калькулятор индуктивности ниже также принимает дюймы, а также сантиметры и миллиметры, и делает преобразование в метры для вас.

Как сказано выше, μ r является относительным магнитным проницаемость для всего, что вы используете для сердечника катушки, цилиндр, на который вы наматываете провод. Это греческая буква му, μ, хотя часто для удобства используется буква u, например u r . Если это полая картонная или пластиковая трубка, то картон или пластик считается воздухом, и вы можете использовать 1. Материалы, такие как железо и феррит имеют более высокая относительная проницаемость исчисляется сотнями и тысячами.Для железного сердечника, грубое число для использования составляет 100, хотя оно действительно варьируется в зависимости от сплава. То же самое касается феррита, который может иметь значение где-то от 20 до 5000, но если вы в растерянности относительно того, что использовать, то 1000 это грубый компромисс. Поскольку он умножается на остальную часть формулы, это означает, что материалы дадут более высокое значение индуктивности. Сердечники для кристального радио катушки иногда пластиковые или картонные, и, следовательно, катушки с воздушным сердечником, а иногда они ферритовый сердечник.Сердечники для катушки Тесла вторичные катушки, как правило, пластиковые, а меньшие могут быть картонные, и поэтому считайте катушки с воздушным сердечником.

И если вы не знакомы с обозначением 1.26x10 -6 , это просто еще один способ написания 0.00000126.

Область включает в себя часть катушки, как показано на схеме выше. Если при расчете площади используется радиус, включите радиус ядра плюс радиус проволоки. При расчете площади с использованием диаметра затем включите диаметр сердечника плюс диаметр проволоки.Обратите внимание, что при выполнении расчетов для катушки с очень тонкой проволокой, как с Кристаллическое радио и катушка Тесла, показанные выше (например, 24 калибра / AWG) тогда размер провода, вероятно, будет незначительным по сравнению с площадь сердечника, и вы обычно можете игнорировать провод.

Калькулятор индуктивности

Вот калькулятор индуктивности, который использует приведенную выше формулу. Диаграмма Выше можно использовать в качестве руководства для некоторых параметров.

Видео - Как спроектировать катушку для определенной индуктивности

В этом видео я подробно объясняю формулу индукции, а также привести пример и поговорить о других факторах, таких как Емкость катушки, частота и связь.

,
Уравнения индуктивности и вычисления индуктивности Уравнения

Стили упаковки индуктора

Индукторы - это пассивные устройства, используемые в электронных схемах для накопления энергии в форме магнитного поля. Они представляют собой комплемент конденсаторов, которые накапливают энергию в форме электрического поля. идеальный индуктор является эквивалентом короткого замыкания (0 Ом) для постоянного тока (постоянного тока), и представляет противодействующую силу (реактивное сопротивление) к переменным токам (AC), которая зависит на частоте тока.Реактивное сопротивление (противодействие току) индуктора пропорциональна частоте тока, протекающего через него. Индукторы иногда упоминается как "катушки", потому что большинство индукторов физически построены из спиральных секций провода.

Свойство индуктивности, которое противодействует изменению тока, используется для цель предотвращения прохождения сигналов с более высокой частотой пропуская сигналы низкочастотных компонентов.Вот почему индукторы иногда упоминается как "дроссели", поскольку они эффективно подавляют более высокие частоты. Обычный применение дросселя в цепи смещения радиоусилителя, где коллектор транзистор должен быть снабжен постоянным напряжением, не позволяя радиочастотам (радиочастоте) сигнал от проведения обратно в источник постоянного тока.

При использовании в серия (левый рисунок) или параллель (правый чертеж) со своей схемой комплимент, конденсатор, комбинация индуктор-конденсатор образует цепь, которая резонирует на определенной частоте, которая зависит от значений каждого компонента.В серии В цепи, полное сопротивление току на резонансной частоте равно нулю с идеальными компонентами. В параллельной цепи (справа) полное сопротивление для протекания тока бесконечно с идеальными компонентами.

Реальные индукторы из физических компонентов проявлять больше, чем просто чистая индуктивность, когда присутствует в цепи переменного тока. Общая схема модель симулятора показана слева. Он включает в себя актуальный идеальный индуктор с параллельным резистивный компонент, который реагирует на переменный ток.DC резистивный компонент последовательно с идеальным индуктором, и конденсатор подключен через весь сборка и представляет емкость, присутствующую из-за близости обмоток катушки. Симуляторы типа SPICE используют эту или даже более сложную модель, чтобы облегчить точные расчеты в широком диапазоне частот.

Связанные страницы по РФ Кафе
- Индукторы и Расчеты индуктивности
Преобразование индуктивности
Стандартные значения индуктивности
- Поставщики индукторов

HamWaves.ком на сайте есть очень сложный калькулятор для индуктивности катушки, который позволяет вам диаметр проводника.

Уравнения (формулы) для объединения индукторов последовательно и параллельно приведены ниже. Дополнительные уравнения приведены для индукторов различной конфигурации.

последовательно соединенных индукторов

Общая индуктивность последовательно соединенных индукторов равна сумме отдельных индуктивностей. Держите единицы постоянными.

Тороидальная рана

Прямоугольное сечение

Индуктивность коаксиального кабеля




Прямая проволока индуктивности

Эти уравнения применяются для когда длина проволоки намного больше диаметра проволоки (смотрите диаметр проволоки здесь). Руководство АРРЛ представляет уравнение для единиц дюймов и мкФ:

Для низких частот - до примерно ОВЧ, используйте эту формулу:

Выше ОВЧ-эффекта скин-эффект приводит к тому, что ¾ в верхнем уравнении приближается к единице (1), поэтому используйте это уравнение:

Прямой провод

параллельно плоскости заземления с заземлением на одном конце

ARRL Handbook представляет это уравнение для прямой проволоки, подвешенной над землей плоскость, один конец которой заземлен на плоскость:


а = радиус проволоки, l = длина провода параллельно плоскости заземления
h = высота провода над плоскостью заземления к нижней части провода

Индуктивность параллельной линии

Многослойная воздушная индуктивность сердечника

Уилера Формула:

параллельно соединенных индукторов

Общая индуктивность параллельно соединенных индукторов равна обратной сумма обратных величин отдельных индуктивностей.Держите единицы постоянными.

Константы и переменные формулы индуктивности

Следующие физические константы и механические размерные переменные применяются к уравнениям на этой странице. Единицы для уравнений указаны в квадратных скобках в конце уравнений; например, означает, что длина в дюймах и индуктивность в Генри. Если единицы не указаны, то могут быть использованы любые до тех пор, пока они едины для всех сущностей; все метры, все мкГн и т. д.

C = Емкость
L = Индуктивность
N = Число витков
Вт = Энергия
ε r = Относительная диэлектрическая проницаемость (безразмерная)
ε 0 = 885 x 10 -12 Ф / м (диэлектрическая проницаемость свободного пространства)
µ r = Относительная проницаемость (безразмерная)
µ 0 = 4π x 10 -7 H / m (проницаемость свободного пространства)

1 метр = 3,2808 фута <-> 1 фут = 0,3048 метра
1 мм = 0,03937 дюймов <-> 1 дюйм = 25,4 мм

Также точки (не путать с десятичными точками) используются для указания умножения во избежание двусмысленности.

Индуктивное сопротивление


Индуктивное сопротивление (X L , в Ω) пропорционально частоте (ω, в радианах / с или f в Гц) и индуктивности (L в Генри).Чистая индуктивность имеет фазу угол 90 ° (напряжение подводит ток с фазовым углом 90 °).

Энергия, Накапливаемая в Индукторе

Энергия (Вт, в Джоулях), накопленная в индукторе, составляет половину произведения индуктивности (L, у Генри) и ток (у меня, в амперах) через устройство.

Напряжение на Индукторе

Свойство индуктора противодействовать изменению потока тока вызывает встречную ЭДС (напряжение), чтобы сформировать на своих клеммах, противоположных по полярности к приложенному напряжению.

добротность индуктора

Коэффициент качества - это безразмерное отношение реактивного сопротивления к сопротивлению в индуктивности.

Однослойная индуктивность с круглой катушкой

Уилера Формула для D >> A:

В целом для a = радиус провода:

Примечание. Если длины проводов значительны, используйте расчет по прямому проводу, чтобы добавить, что индуктивность.

В поисках эквивалента "R Q "

С «Q» индуктора - отношение реактивного компонента к резистивному компоненту, эквивалентная схема может быть определена резистором параллельно с индуктором. это Уравнение действует только на одной частоте "f" и должно рассчитываться для каждой частоты представляет интерес.

,

Coil32 - О расчете добротности

Подробнее
Хиты: 16678

Добротность - 4,3 из 5 основанный на 4 отзыва

high q-factor coil Расчет добротности Индуктор довольно сложен.В конечном счете, качественный фактор зависит от многих факторов - потери в проводах, в сердечнике, в экране. Точный учет у всех очень сложный. Однако мы можем упростить задачу, если учтем только потери в проводе. Во-первых, они вносят основной вклад в общую сумму потерь, а во-вторых, оценивают добротность катушки, которая нас интересует при создании более высокочастотных цепей. В этом случае мы применяем специальные действия, чтобы минимизировать потери путем реализации ребристого сердечника или катушки индуктивности воздушного сердечника.

Напоминаю, что добротность катушки индуктивности - это отношение катушки реактивности ( 2πƒL ) к ее сопротивлению потерям. Определить реактивное сопротивление катушки не сложно. Но оценка потерь в проводе не так проста, и мы рассмотрим ее подробнее ...

dwk130709 Поиск решения привел на сайт G3YNH - Dr. David W Knight. Он провел расширенные теоретические исследования по расчету импеданса на высоких частотах, расчету индукторов, выбору формул, аппроксимирующих экспериментальные измерения.Их можно найти в разделе сайта - « От передатчика к антенне ». Статья, посвященная расчету катушек здесь. Эти исследования легли в основу метода расчета добротности в Coil32. Отдельное спасибо D.Knight.

Одним из первых, кто попытался учесть потери в катушках индуктивности на радиочастотах, был С.Баттерворт в работе: « Эффективное сопротивление катушек индуктивности на радиочастотах, 1926, ».Он более известен как дизайнер знаменитых «фильтров Баттерворта». Но метод Баттерворта рассчитывает потери в проводе на ВЧ с высокой точностью только для бесконечно длинного соленоида.

Потери в проводнике на высоких частотах состоят из трех факторов:

  1. Прежде всего, в зависимости от материала проволоки . Очевидно, что проволока из металла с высоким удельным сопротивлением будет иметь большие потери. Как известно, сопротивление провода постоянному току можно рассчитать как:
    R DC = ρl / A .где A = πr 2 [1]
    • R DC - Сопротивление постоянному току [Ом]
    • ρ - удельное сопротивление металла [Ом · м] (например, серебро = 1,59 · 10 -8 Ом-м)
    • л - длина провода [м]
    • A - сечение провода [м 2 ]
    • r - радиус проволоки [м]
    Можно утверждать, что это основные потери в проводе, и потери на высоких частотах не могут быть меньше потерь на постоянном токе.
  2. skin effect Явление скин-эффекта заключается в том, что переменный ток, протекающий по поверхности провода, экранирует внутренние слои и не позволяет себе перемещаться к центру проводника, в результате чего почти весь ток концентрируется в тонком поверхностном слое. толщина которого определяется следующим выражением:
    δi = √ [ρ / (πf μ)] [2]
    • δi - глубина скин-слоя [м], глубина, на которой плотность тока уменьшается на коэффициент е (е = 2.71 - номер Эйлера)
    • ρ - удельное сопротивление металла [Ом · м]
    • f - частота [Гц]
    • μ = μ 0 * μ r , μ 0 = 4π · 10-7 - абсолютная проницаемость, μ r - относительная проницаемость металла (близка к единице для большинства немагнитных металлов)
    Очевидно, что полное сопротивление для переменного тока увеличивается с частотой, так как глубина скин-слоя уменьшается.Для удобства логических расчетов введем понятие коэффициента скин-эффекта - Ξ . Это будет коэффициент, указывающий, во сколько раз сопротивление проводника для переменного тока на данной частоте выше сопротивления постоянному току. Классический метод вычисляет площадь кольца от поверхности до глубины кожи Aeff = π (2rδi - δi2) и вставляет ее в формулу [1], вычисляя сопротивление переменного тока вместо постоянного тока. Фактор кожи в этом случае выражается как:
    Ξ = r² / (2rδi - δi²) [4]
    Физически эта формула может быть выражена как отношение проводимости постоянного тока (пропорционально r 2 ) к проводимости переменного тока (пропорционально r и δi ).Дэвид Найт улучшил этот метод для более точных формул сопротивления переменного тока. Смотрите ссылку ниже ...
  3. proximity Наличие феномена близости эффекта . В результате магнитное поле от соседних витков проволочной катушки индуцирует вихревые токи. Наложение этих токов с токами от скин-эффекта приводит к тому, что плотность тока фрагмента проводника, расположенного во внутренней части соленоида, выше, а кожа не похожа на кольцо и напоминает полумесяц.

    Очевидно, что сопротивление переменного тока под влиянием эффекта близости еще больше увеличивается. Эффект уменьшается с уменьшением близости, то есть за счет увеличения зазора между витками. Следует иметь в виду, что как эффект близости, так и скин-эффект являются двумя аспектами одного и того же явления - взаимодействия ВЧ-тока с магнитным полем.

    Из-за чрезвычайной сложности описания электромагнитного поля, связанного с РЧ-катушками, не существует простых теоретических основанных приближенных формул для расчета эффекта близости в произвольно построенной радиочастотной катушке.Мы можем использовать компьютерную модель в электромагнитных симуляторах, использующих метод конечных элементов - COMSOL Multiphysics , FEMM , ANSYS и т. Д. Но для упрощения расчетов мы можем использовать психоаналитические методы расчета с использованием таблиц, составленных на основе экспериментальных измерений. , Мы идем по этому пути.

    По аналогии с скин-фактором вводим понятие фактора близости - Ψ , затем:

    R AC = R DC · Ξ · Ψ [5]
    Эффект близости не существует в прямом проводнике, и в этом случае Ψ = 1.

    В 1947 году радиоинженер Р.Г.Медхерст - сотрудник Научно-исследовательской лаборатории "Дженерал Электрик". опубликовал ряд работ, связанных с экспериментальными исследованиями индукторов, в том числе исследования эффекта близости. Результаты этих исследований актуальны по сей день. Из измерений параметров реальных катушек Medhurst пришел к выводу, что метод Баттерворта не работает для коротких катушек. Термин «короткий» относится к катушке с отношением l / D <7, а шаг намотки менее чем в два раза больше диаметра проволоки.(т.е. именно те, которые чаще всего используются на практике).
    Нас интересуют экспериментальные данные по Ψ. Medhurst приводит их в таблице в зависимости от отношения длины катушки к диаметру (l / D) и шага намотки к диаметру проволоки (p / d). Желтым отмечено совпадение между экспериментом и теорией Баттерворта с ошибкой менее 3%:

    р / д →


    л / д ↓

    1 1.111 1,25 1,429 1,666 2 2,5 3,333 5 10
    0 5,31 3,73 2,74 2.12 1,74 1,44 1,20 1.16 1,07 1,02
    0,2 5,45 3,84 2,83 2,20 1,77 1,48 1,29 1,19 1,08 1,02
    0,4 5.65 3,99 2,97 2,28 1,83 1,54 1,33 1,21 1,08 1,03
    0,6 5,80 4.11 3,10 2.38 1,89 1,60 1,38 1,22 1,10 1,03
    0,8 5,80 4,17 3,20 2,44 1,92 1,64 1.42 1,23 1,10 1,03
    1 5,55 4,10 3,17 2,47 1,94 1,67 1,45 1,24 1,10 1,03
    2 4.10 3,36 2,74 2,32 1,98 1,74 1,50 1,28 1,13 1,04
    4 3,54 3,05 2,60 2,27 2.01 1,78 1,54 1,32 1,15 1,04
    6 3,31 2,92 2,60 2,29 2,03 1,80 1,56 1,34 1.16 1,04
    8 3,20 2,90 2,62 2,34 2,08 1,81 1,57 1,34 1,165 1,04
    10 3,23 2,93 2,65 2,27 2,10 1.83 1,58 1,35 1,17 1,04
    3,41 3,11 2,815 2,51 2,22 1,93 1,65 1,359 1,19 1,05

    Эта таблица может быть представлена ​​в виде массива данных, а промежуточные данные могут быть получены методом линейной интерполяции.Это было сделано в онлайн-калькуляторе ON4AA - http://hamwaves.com/antennas/inductance.html. Возможно, это единственный калькулятор, который правильно учитывает фактор качества. Coil32_v11.7.0.900 использует метод из работы: «Сопротивление однослойных индуктивных катушек с круглой проволокой по A.H.M.Arnold, D.Eng., Associate Member 1951». Этот же метод используется в Android-версии Coil32. Метод основан на формулах Баттерворта и содержит списки с поправочными коэффициентами для коротких катушек и рассчитывает коэффициент эффекта близости с точностью ± 10%.Это учитывает рабочую частоту, число витков катушки, материал провода и то, что невозможно сделать напрямую с помощью таблицы Medhurst. В программе есть возможность выбрать материал из проволоки. В реальной конструкции катушки индуктивности воздушного сердечника отклонение расчетов от измерения может достигать 20-30%.

optimum coil winding ratio Существует оптимальное отношение шага намотки к диаметру проволоки в зависимости от форм-фактора катушки. Medhurst дает эту зависимость в виде графика.

Если учесть, что наивысший коэффициент качества для катушки достигается при л / д ≈ 1 , то в этом случае оптимальное отношение шага обмотки катушки к диаметру п / д ≈ 2 , т.е. мы можем однозначно определить оптимальный диаметр проволоки, зная геометрию катушки. Более того, катушка с таким же форм-фактором (l / D ≈ 1) имеет минимальную паразитную емкость.Это понятно, потому что катушка с такой геометрией намотки имеет минимальную длину провода с максимальной индуктивностью. Такие оптимальные катушки геометрически схожи, то есть все размеры катушки, включая диаметр провода, который мы можем увеличить, и его собственная резонансная частота будут уменьшены, примерно так же, как принято в антенной технологии. Но добротность этих катушек не будет отличаться.

Ссылки:

  1. Практические непрерывные функции для внутреннего сопротивления твердых цилиндрических проводников - © D.У. Найт, 2010, 2012
  2. ВЧ-сопротивление однослойных катушек - статьи по моделированию индуктивности и потерь Алана Пейна G3RBJ.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *