Ионистор вместо аккумулятора – Может ли ионистор заменить аккумулятор? / Habr

Содержание

Суперконденсаторы вместо аккумулятора в автомобиле

Суперконденсаторы вместо аккумулятора в автомобиле
Суперконденсатор или ионистор — это что-то нечто среднее между аккумулятором и обычным конденсатором. У него много плюсов, которыми не обладает аккумуляторная батарея. Поэтому, я познакомлю вас с полностью рабочим прототипом батареи для машины на ионисторах. С помощью него можно не просто завести двигатель пару раз, а вполне полноценно эксплуатировать автомобиль неограниченное время.

Понадобится



Этого хватит для первого опытного образца.

Первое испытание с запуском двигателя


Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.
Суперконденсаторы вместо аккумулятора в автомобиле
Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.
Суперконденсаторы вместо аккумулятора в автомобиле
После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.

Схема


Вот схема второго прототипа батареи.
Суперконденсаторы вместо аккумулятора в автомобиле
Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.
Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.
Суперконденсаторы вместо аккумулятора в автомобиле
На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.
А заряжается аккумуляторная батарея через контроллер зарядки.
Суперконденсаторы вместо аккумулятора в автомобиле
Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.
Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Полностью рабочий экземпляр батареи на суперконденсаторах


Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.
Суперконденсаторы вместо аккумулятора в автомобиле
Вид устройства с верху.
Суперконденсаторы вместо аккумулятора в автомобиле
Защитный контроллер.
Суперконденсаторы вместо аккумулятора в автомобиле
Мощный токоограничивающий резистор.
Суперконденсаторы вместо аккумулятора в автомобиле
Цифровой вольтметр виден через пластик.
Суперконденсаторы вместо аккумулятора в автомобиле
Устанавливаем на автомобиль вместо штатной батареи.
Суперконденсаторы вместо аккумулятора в автомобиле
Включаем зажигание и пробуем произвести пуск двигателя.
Суперконденсаторы вместо аккумулятора в автомобиле
Мотор запустился быстро, без каких либо проблем.
Суперконденсаторы вместо аккумулятора в автомобиле
Производится зарядка ионисторов и аккумуляторной батареи, о чем свидетельствуют показания вольтметра.
Суперконденсаторы вместо аккумулятора в автомобиле

Заключение


Теперь поподробнее о достоинствах и недостатка:
Плюсы:
  • В отличии от аккумулятора суперконденсаторы надежнее справляются с пиковым пусковым током. Пуск получается надежнее.
  • Низкое напряжение вполне является рабочим.
  • Имеет низкий вес, от чего всю коробку можно запросто таскать домой на всякий случай.
  • Для пуска можно произвести зарядку даже от батареек и спокойно ехать в путь.

Минусы:
  • Большой саморазряд. Передвигаться конечно можно, но если необходимо на короткий срок включить габариты или аварийную сигнализацию — мало на что хватит энергии, при заглушенном двигателе естественно.

Ну это то что пришло в голову. Теперь о стоимости. На Али Экспресс супер конденсаторы стоят не так уж и дорого. И если посчитать их 6 и балансную защиту, то выйдет дешевле чем кислотный аккумулятор.
На этом у меня все. Надеюсь мой эксперимент был для вас познавательным и интересным. Удачи всем!

Смотрите видео


sdelaysam-svoimirukami.ru

Ионистор вместо аккумулятора: наглядная сборка накопителя энергии

Ионистор вместо аккумулятора — практический обзор сборки суперконденсатора


Ионистор вместо аккумулятора-1Ионистор вместо аккумулятора-1

Ионистор вместо аккумулятора (он же суперконденсатор, ультраконденсатор) — в принципе это тот же конденсатор, только имеющий большую емкость, которую можно сравнить с аккумулятором. Вот именно такое устройство рассчитанное на напряжение 12v я собрал для нужд в бытовом хозяйстве. Практически такой прибор способен работать во много раз дольше, чем аккумуляторы различных типов, конечно при условии эксплуатации в определенных режимах. Вот в чем особенность применения ионистора вместо аккумулятора и его преимущество:

  • прибору не страшен полный разряд до нулевого значения;
  • в несколько сотен раз больше способен выдержать моментов заряда/разряда;
  • прибор не боится максимальных значений по току.

Но не только такие особенности имеются у ионистора использующегося вместо аккумулятора, о них я скажу после выполнения сборки накопителя.

Необходимые компоненты

  • Суперконденсаторы в количестве восьми штук с номиналом 2,7v х 500F
  • Одножильый провод сечением от 2 мм²
  • Пару винтов и гаек

Ионистор вместо аккумулятора-2Ионистор вместо аккумулятора-2

Ионистор вместо аккумулятора-3Ионистор вместо аккумулятора-3

  • Инструмент: паяльник, пинцет, кусачки.
  • Расходники: припой, флюс.

Ионистор вместо аккумулятора — порядок сборки батареи

В данном обзоре я буду собирать накопитель энергии с применением восьми конденсаторов, включенных по встречно-параллельной схеме. В принципе будет организованно четыре пары по две емкости включенных параллельно, а пары в свою очередь соединены последовательно.

Ионистор вместо аккумулятора-4Ионистор вместо аккумулятора-4

Эмалированный провод нужно выровнять и убрать с него лак. Выполняется это с помощью рабочего ножа или специального инструмента для зачистки проводов ( у кого он имеется).

Ионистор вместо аккумулятора-5Ионистор вместо аккумулятора-5

Формируем медный провод в соединительные шины

Ионистор вместо аккумулятора-6Ионистор вместо аккумулятора-6

Необходимо изготовить три квадратных элемента и пару полюсов для клемм «+» и «-«

Ионистор вместо аккумулятора-7Ионистор вместо аккумулятора-7

К сформированным изделиям для контактов припаиваем гайки, к которым будут подключаться провода питания.

Ионистор вместо аккумулятора-8Ионистор вместо аккумулятора-8

Залуживаем места соединения квадратов.

Ионистор вместо аккумулятора-9

Ионистор вместо аккумулятора-9

Соединяем емкости в батарею, припаиваем проводники к выводам конденсатора, соблюдая при этом полярность.

Ионистор вместо аккумулятора-10Ионистор вместо аккумулятора-10

Вначале нужно собрать четыре группы.

Ионистор вместо аккумулятора-11

Ионистор вместо аккумулятора-11

Теперь припаиваем шины для подключения проводов питания.

Ионистор вместо аккумулятора-12Ионистор вместо аккумулятора-12

На этом этапе нужно зарядить батарею током 5А.

Сборка суперконденсатора-1Сборка суперконденсатора-1

По истечению пяти минут накопитель будет полностью заряжен.

Сборка суперконденсатораСборка суперконденсатора

Делаем испытательный тест лампой накаливания.

Сборка суперконденсатора-2Сборка суперконденсатора-2

Делаем короткое замыкание выходных контактов — провод разогрелся до красного состояния.

Сборка суперконденсатора-3Сборка суперконденсатора-3

Испытываем батарею подключением электромотора.

Сборка суперконденсатора-4Сборка суперконденсатора-4

Где такая конструкцию используется

Использовать можно ионистор вместо аккумулятора, там где присутствуют большие и цикличные нагрузки по току. Классический пример: накопительная емкость для сабвуфера установленного в автомобиле. Кроме этого суперконденсатор может быть задействован в устройствах где происходят постоянные циклы зарядки/разрядки, например: устройства накопления солнечной энергии с последующей ее передачей фонарям освещения в ночное время.

Здесь приведены только два примера использования ионистора вместо аккумулятора, но на самом деле их существенно больше.
Стоимость компонентов для сборки такого прибора вполне приемлема, особенно если взять во внимание колоссальный срок их эксплуатации с учетом применения по назначению.

Сборка ионистора вместо аккумулятора 12v, 100A

usilitelstabo.ru

Конденсатор вместо аккумулятора / Статьи и обзоры / Элек.ру

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности — гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Сравнение конструкций разных типов конденстаторов (Источник: Википедия)

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.


Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии — с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В.   Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.


Принципиальная схема источника бесперебойного питания
напряжением на суперконденсаторах, основные узлы реализованы
на одной микосхеме производства LinearTechnology

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае — емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

E = CU2/2,
где C — емкость, выраженная в фарадах, U — напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

W = CU2/7200000

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.


Грунтовый светодиодный светильник с питанием
от солнечных батарей, накопление энергии
в котором осуществляется в суперконденсаторе

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Алексей Васильев

www.elec.ru

Ставим суперконденсаторы в ИБП вместо аккумулятора

Все, у кого дома имеется источник бесперебойного питания (ИБП) для компьютера, знают его один существенный недостаток, который вылетает его владельцу «в копеечку». Это конечно же недолговечность его аккумуляторов. Обычно, если повезет, они живут 3 года, а затем теряют свою емкость и функционал. Отсюда отпадает возможность использования ИБП непосредственно по назначению.
Ставим суперконденсаторы в ИБП вместо аккумулятора
Почти во всех бесперебойниках используются закрытые, необслуживаемые кислотно-свинцовые аккумуляторы. Само слово «необслуживаемые» четко дает понять, что восстановить такую АКБ невозможно, а если и возможно, то точно ненадолго. И тут появилась идея заменить АКБ на суперконденсаторы (ионисторы). Они имеют громадный срок службы, абсолютно терпимы к высоким нагрузкам, количество циклов заряд-разряд более 10000. Поэтому, если повезет, то бесперебойник станет вечным!

Понадобится


6 суперконденсаторов с платой балансовой защиты. Купить можно готовую на АлиЭкспресс.
Ставим суперконденсаторы в ИБП вместо аккумулятора
Плата балансовой защиты является обязательным элементом. Без нее эксплуатация ионисторов в последовательной цепи невозможна, так как все чревато выходом из строя любого элемента при перезарядке.
Емкость 1 элемента в цепи 500 Фарад и напряжение 2,7 В. То есть 6 штук составят батарею, которую можно зарядить максимум до 16,2 В.

Замена аккумуляторной батареи в источнике бесперебойного питания на суперконденсаторы


В теории как всегда все гладко, а вот на практике все не так как хотелось бы.
Ставим суперконденсаторы в ИБП вместо аккумулятора
В данном примере использовался ИБП, который имел максимальную мощность нагрузки 300 Вт. В нем была удалена нерабочая батарея и установлена плата с суперконденсаторами вместо АКБ.
Первый запуск. И тут же первая неудача: ИБП конечно же включился, но заряжать ионисторы отказался. Почему? Дело в том, что в схеме ИБП имелась защита, которая не давала зарядку если начальное напряжение АКБ меньше 10 В.
Попытка вторая. Тогда я взял сторонний адаптер с выходным напряжение 10 В и просто зарядил конденсаторы перед включением.
Ставим суперконденсаторы в ИБП вместо аккумулятора
Включил ИБП и все наконец-то заработало. Ионисторы продолжили заряжаться до порогового напряжения кислотной батареи.
Ставим суперконденсаторы в ИБП вместо аккумулятора
По итогам было принято решение убрать защиту от низкого напряжения, доработав схему ИБП.
Но это ещё не все подводные камни. Далее было проверенно время работы при выключении питания сети. И результаты довольно специфические. ИБП прекращал свою работу, когда напряжение на ионисторах падало ниже 10 В
Ставим суперконденсаторы в ИБП вместо аккумулятора
В итоге полное время работы, в зависимости от мощности нагрузки могло составлять от 5 до 30 секунд. Хотя, нагрузка, которую питал этот ИБП раньше была не совсем мощной, ее время работы было 18 секунд. В принципе, под мои задачи, этого времени вполне хватало.

Установка в корпус


На место штатной АКБ эту линейку поставить было невозможно. Решение было сделать пропил в боку корпуса и вывести элементы наружу.
Ставим суперконденсаторы в ИБП вместо аккумулятора
Ставим суперконденсаторы в ИБП вместо аккумулятора
В итоге внешний вид был не особо ужасен, учитывая что ИБП располагается в укромном месте.
Ставим суперконденсаторы в ИБП вместо аккумулятора
Как оказалось, идея вполне рабочая. Конечно емкость конденсаторов нужно существенно увеличить, чтобы добиться значительного увеличения времени работы в случае отключения.
Хотя тут есть и обратная сторона медали: при увеличении общей емкости, увеличится и общее время начальной зарядки… что негативно скажется на удобстве пользования.

Смотрите видео


Полную модернизацию ИБП с корректировкой цепей защиты смотрите в видео ролике автора.

sdelaysam-svoimirukami.ru

Батарея 12В/100А на суперконденсаторах

Батарея на суперконденсаторах - ионисторов
Суперконденсатор (он же ионистор) — это почти тот же конденсатор, только большой емкости, сравнимой с аккумулятором. Я сделал батарею 12 В из таких ионисторов, которою вполне можно использовать в различных устройствах. И будет она служить дольше в определенных режимах по сравнению с аккумуляторами любого типа, и вот почему суперконденсатор тут выигрывает:
  • — не боится полного разряда «в ноль»;
  • — в 100, а может 1000 раз больше выдерживает циклов «заряд/разряд»;
  • — не боится критических перегрузок по току.

И это ещё не все. Продолжу после сборки батареи.

Понадобится



Батарея на суперконденсаторах
Батарея на суперконденсаторах
Инструмент: паяльник, пинцет, кусачки.
Расходники: припой, флюс.

Изготовление батареи из ионисторов


Будем делать батарею из 8 ионисторов, включенных встречно-параллельно. А именно будет 4 пары из двух параллельно включенных конденсаторов, включенных последовательно.
Батарея на суперконденсаторах
Лакированную медную проволоку нужно выпрямить и очистить от лака. Сделать это можно с помощью канцелярского ножа.
Батарея на суперконденсаторах
Сгибаем проволоку в соединительные элементы.
Батарея на суперконденсаторах
Нужно сделать три квадрата и два полюса.
Батарея на суперконденсаторах
К полюсам, как на настоящей батареи, припаиваем гайки для подключения.
Батарея на суперконденсаторах
Лудим уголки квадратиков.
Батарея на суперконденсаторах
Собираем батарею, припаиваем соединители к ионисторам, не путая полярность.
Батарея на суперконденсаторах
Сначала собираем 4 группы.
Батарея на суперконденсаторах
А затем припаиваем полюса.
Батарея на суперконденсаторах
Заряжаем током 5 Ампер.
Батарея на суперконденсаторах
Через пять минут батарея полностью заряжена.
Батарея на суперконденсаторах
Проверяем лампой.
Батарея на суперконденсаторах
Замыкаем проволокой — раскалилось до красна.
Батарея на суперконденсаторах
Подключаем электродвигатель.
Батарея на суперконденсаторах

Где применить


А применить такую батарею можно там, где есть высокие и кратковременные нагрузки по току. Идеальный пример: накопительный конденсатор для сабвуфера в машину.
Также батарея пригодится там, где имеются частые циклы заряда и разряда: в виде аккумулятора для накопления энергии от солнечных батарей, и полной ее отдаче в ночное время фонарям.
Это лишь два варианта использования, но их гораздо больше.
Стоят они даже на Али Экспресс (ссылка) относительно не дорого, учитывая громадный срок их службы при использовании по назначению.

Смотрите видео


sdelaysam-svoimirukami.ru

Суперконденсатор вместо аккумулятора | Электрика в доме

Электричество играет большую роль в нашей жизни сегодня. В ближайшие несколько десятилетий наши автомобили, работающие на ископаемом топливе, и отопление дома также должны будут перейти на электроэнергию, если мы не хотим катастрофических изменений климата.

Батарея суперконденсаторов Maxwell для автомобилей

Электричество является очень универсальной формой энергии, но у нее есть один большой недостаток: ее относительно сложно хранить в нужном количестве. Аккумуляторы могут хранить большое количество энергии, но они заряжаются часами. Конденсаторы, с другой стороны, заряжаются почти мгновенно, но накапливают лишь незначительное количество энергии. В нашем будущем с электропитанием, когда нам нужно очень быстро накапливать и также быстро отдавать большое количество электроэнергии, вполне вероятно, что мы обратимся к суперконденсаторам (ультраконденсаторы), которые сочетают в себе все эти возможности.

Что такое суперкоденсаторы и как они работают

Как можно хранить электрический заряд? Обычная цинко — углеродная батарея заряжается электроэнергией на заводе и может быть использована только один раз, после чего ее можно будет только выбросить. Батареи, подобные этой, дороги в использовании и вредны для окружающей среды — миллиарды во всем мире выбрасываются каждый год.

Аккумуляторы и конденсаторы выполняют аналогичную работу — накапливают электричество — но совершенно другими способами. Батареи имеют две электрические клеммы (электроды), разделенные химическим веществом, называемым электролитом. Когда вы включаете питание, происходят химические реакции с участием, как электродов, так и электролита.

Обычная батарейка

В результате химической реакции на электродах выделяются положительные и отрицательные заряды. Когда все химические вещества истощаются, реакция прекращается, и батарея разряжается. В перезаряжаемом аккумуляторе, таком как литий-ионный блок питания, используемый в ноутбуке или MP3-плеере, реакции могут протекать в любом направлении, так что вы можете заряжать и разряжать сотни раз, прежде чем аккумулятор износится.

Обычный слюдяной конденсатор

Такой конденсатор накапливает столько же энергии, сколько батарея, но может заряжаться и разряжаться мгновенно, практически любое количество раз. В отличие от батареи положительные и отрицательные заряды в конденсаторе полностью создаются статическим электричеством; никакие химические реакции не участвуют.

Небольшой обычный конденсатор

Конденсаторы используют статическое электричество (электростатику), а не химию для хранения энергии. Внутри конденсатора находятся две проводящие металлические пластины с изоляционным материалом, называемым диэлектриком, между ними — это диэлектрический бутерброд, если так можно сказать. Зарядка конденсатора — это накопление зарядов на пластинах.

Положительные и отрицательные электрические заряды накапливаются на пластинах, которые изолируются, чтобы препятствовать их контакту, благодаря такому разделению пластин сохраняется энергия. Диэлектрик позволяет конденсатору определенного размера накапливать больше заряда при данном напряжении, поэтому можно сказать, что он делает конденсатор более эффективным в качестве устройства хранения заряда.

Конденсаторы имеют много преимуществ перед батареями: они весят меньше, обычно не содержат вредных химикатов или токсичных металлов, и их можно заряжать и разряжать миллионы раз и не изнашиваются. Но у них также есть большой недостаток: конструкция конденсаторов не позволяет им сохранять такое же количество электрической энергии как в батареях. Что можно сделать? Вообще говоря, вы можете увеличить энергию, которую накопит конденсатор, либо используя лучший материал для диэлектрика, либо используя большие металлические пластины.

Чтобы сохранить значительное количество энергии, вам нужно использовать колоссальные пластины. Например, грозовые облака — это супергигантские конденсаторы, которые накапливают огромное количество энергии — и мы все знаем, насколько они велики! А как насчет увеличения емкости конденсаторов путем улучшения диэлектрического материала между пластинами? Изучение этого варианта привело ученых к разработке суперконденсаторов в середине 20-го века.

Преимущества и недостатки аккумуляторов и конденсаторов

Батареи отлично подходят для хранения большого количества энергии в относительно небольшом пространстве, но они тяжелые, дорогие, медленно заряжаются, имеют ограниченный срок службы и часто сделаны из токсичных материалов. Обычные конденсаторы лучше почти во всех отношениях, но не так хороши в хранении большого количества энергии.

Что такое суперконденсатор? Суперконденсатор (или ультраконденсатор) отличается от обычного конденсатора в двух важных направлениях: его пластина имеет гораздо большую эффективность площадь, а расстояние между ними много меньше, потому что разделитель между ними работает по-другому принципу отличного от обычного диэлектрика. Хотя слова «суперконденсатор» и «ультраконденсатор» часто используются взаимозаменяемо, существует различие: они обычно изготавливаются из разных материалов и структурируются немного по-разному, поэтому они хранят разное количество энергии. Для целей простого понимания мы предположим, что это одно и то же.

Как обычный конденсатор, суперконденсатор имеет две разделенные пластины. Пластины изготовлены из металла, покрытого пористым веществом, таким как порошкообразный активированный уголь, который эффективно дает им большую площадь для хранения гораздо большего заряда. Представьте себе, что электричество — это вода: там, где обычный конденсатор похож на ткань, которая может вобрать небольшое количество воды, пористые пластины суперконденсатора делают больше похожими на кусочек губки, которая может впитывать воды во много раз больше. Пористые суперконденсаторные пластины — это губки впитывающие электричество.

Какой разделитель установлен между пластинами

В обычном конденсаторе пластины разделены относительно толстым диэлектриком, сделанным из чего-то вроде слюды (керамики), тонкой пластиковой пленки или даже просто воздуха (в чем-то вроде конденсатора, который действует как настраиваемый диск внутри радиоприемника). Когда конденсатор заряжается, положительные заряды образуются на одной пластине, а отрицательные — на другой, создавая электрическое поле между ними. Поле поляризует диэлектрик, поэтому его молекулы выстраиваются в направлении, противоположном полю, и уменьшают его прочность. Это означает, что пластины могут хранить больше заряда при данном напряжении. Что показано на рисунке, который вы видите ниже.

Работа обычного конденсатора

Обычные конденсаторы накапливают статическое электричество, накапливая противоположные заряды на двух металлических пластинах (синей и красной), разделенных изоляционным материалом, который называется диэлектриком (серый). Электрическое поле между пластинами поляризует молекулы (или атомы) диэлектрика, заставляя их выравниваться противоположно полю. Это уменьшает напряженность поля и позволяет конденсатору хранить больше заряда для данного напряжения.

Работа суперконденсатора

Суперконденсаторы накапливают больше энергии, чем обычные конденсаторы, создавая очень тонкий, «двойной слой» заряда между двумя пластинами, которые сделаны из пористых, обычно углеродных материалов, пропитанных электролитом. Пластины имеют большую эффективную площадь поверхности и меньшее разделение, что дает суперконденсатору способность сохранять гораздо больший заряд.

В суперконденсаторе нет диэлектрика как такового. Вместо этого обе пластины пропитаны электролитом и разделены очень тонким изолятором (который может быть сделан из углерода, бумаги или пластика). Когда пластины заряжаются, на каждой стороне сепаратора образуется противоположный заряд, создавая так называемый электрический двойной слой, толщиной всего в одну молекулу (по сравнению с диэлектриком, толщина которого может варьироваться от нескольких микрон до миллиметра или больше в обычном конденсаторе).

Вот почему суперконденсаторы часто называют двухслойными конденсаторами, также называемыми электрическими двухслойными конденсаторами (EDLC). Если вы посмотрите на нижний рисунок, то увидите, как суперконденсатор похож на два обычных конденсатора рядом.

Емкость конденсатора увеличивается с увеличением площади пластин и уменьшением расстояния между пластинами. В двух словах, суперконденсаторы получают гораздо большую емкость, благодаря комбинации пластин с большей эффективной площадью поверхности (из-за их конструкции из активированного угля) и меньшего расстояния между ними (из-за очень эффективного двойного слоя).

Первые суперконденсаторы были изготовлены в конце 1950-х годов с использованием активированного угля в качестве пластин. С тех пор достижения в области материаловедения привели к разработке гораздо более эффективных пластин, изготовленных из таких материалов, как углеродные нанотрубки (крошечные углеродные стержни, построенные с использованием нанотехнологий ), графен, аэрогель и титанат бария.

Сравнение суперконденсаторов с батареями и обычными конденсаторами

Суперконденсаторы могут использоваться в качестве прямой замены батарей. Вот беспроводная дрель с питанием от банок суперконденсаторов, также они используются в космосе (разработка НАСА). Большим преимуществом по сравнению с обычной длительной зарядкой является то, что его можно заряжать за считанные секунды, а не часы.

Базовая единица электрической емкости называется фарадом (F), названным в честь британского химика и физика Майкла Фарадея (1791–1867). Типичные конденсаторы, используемые в схемах электроники хранят только незначительное количество электричества (обычно оцениваемое в единицах, называемых микрофарадами (миллионные доли фарада), нанофарадами (миллиардные доли фарада) или пикофарадами (триллионные доли фарада).

В отличие от этого, обычный суперконденсатор может хранить заряд в тысячи, в миллионы или даже в миллиарды раз больше(оценивается в фарадах). Самые большие коммерческие суперконденсаторы, производимые такими компаниями, как Maxwell Technologies, имеют емкости, оцениваемые до нескольких тысяч фарад. Это все еще составляет лишь часть (возможно, 10–20 процентов) от электрической энергия, которую вы можете упаковать в батарею.

Но большое преимущество суперконденсатора заключается в том, что он может накапливать и высвобождать энергию практически мгновенно — гораздо быстрее, чем батарея. Это потому, что суперконденсатор работает, накапливая статические электрические заряды на твердых телах, в то время как батарея зависит от зарядов, которые производятся медленно в результате химических реакций, часто с участием жидкостей.

Обычные батареи и суперконденсаторы различаются величиной энергии и мощности. В повседневной речи эти два слова взаимозаменяемы; в науке мощность — это количество энергии, использованной или произведенной за определенное время. Батареи имеют более высокую плотность энергии (они накапливают больше энергии на единицу массы), но суперконденсаторы имеют более высокую плотность мощности (они могут выделять энергию быстрее).

Это делает суперконденсаторы особенно подходящими для относительно быстрого хранения и высвобождения большого количества энергии, но батареи по-прежнему важны для хранения большого количества энергии в течение длительных периодов времени. Хотя суперконденсаторы работают при относительно низких напряжениях (возможно, 2–3 вольт), они могут быть подключены последовательно (например в батареи) для получения больших напряжений, для использования в более мощном варианте.

Поскольку суперконденсаторы работают электростатически, а не через обратимые химические реакции, их теоретически можно заряжать и разряжать любое количество раз (технические характеристики коммерческих суперконденсаторов предполагают, что вы можете циклически повторять их, возможно, миллион раз). Они имеют небольшое внутреннее сопротивление или вообще не имеют его, что означает, что они накапливают и выделяют энергию без затрат большого количества энергии — и работают с эффективностью, близкой к 100% (обычно 97–98%).

Для чего используются суперконденсаторы

Если вам нужно хранить большое количество энергии в течение относительно короткого периода времени (от нескольких секунд до нескольких минут), у вас слишком много энергии затрачивается на хранение в конденсаторе, и у вас нет времени для зарядки аккумулятора, суперконденсатор может быть как раз то, что вам нужно.

Электрическая дрель с питанием от ультраконденсаторов

Суперконденсаторы широко используются в качестве электрических эквивалентов маховиков в машинах — «резервуаров энергии», которые сглаживают источники питания для электрического и электронного оборудования. Суперконденсаторы также могут быть подключены к батареям для регулирования мощности, которую они отдают.

Суперконденсатор от автобуса, разработанный НАСА

Суперконденсаторы используются в регенеративных тормозах, широко используются в электромобилях. Одно из распространенных применений — ветряные турбины, где очень большие суперконденсаторы помогают сгладить прерывистую мощность, создаваемую ветром. В электрических и гибридных транспортных средствах суперконденсаторы все чаще используются в качестве временных накопителей энергии для рекуперативного торможения (где энергия, которую транспортное средство обычно теряет при остановке, кратковременно накапливается и затем используется повторно, когда он снова начинает движение).

Тоже интересные статьи

electricavdome.ru

техническое решение. Может ли ионистор заменить аккумулятор

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаян

comuedu.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *