Испытание кабеля из сшитого полиэтилена 6 кв: Испытание высоковольтного кабеля 10 кВ | Полезные статьи

Содержание

Испытания кабеля с изоляцией из сшитого полиэтилена

Испытание кабеля из сшитого полиэтилена

Электролаборатория GEOLINE-ES оказывает услуги по испытаниям и диагностике кабелей с изоляцией из сшитого полиэтилена с 2004 г.

В СССР кабели с изоляцией из сшитого полиэтилена (СПЭ) не производились и не применялись. В связи с этим, нормативная база ГОСТ по ним отсутствует (исключая ГОСТ Р 55025—2012, носящий по отношению к СПЭ-кабелям рекомендательный характер). Методики и Нормы испытаний таких кабельных линий базируются на рекомендациях западных фирм — изготовителей. Начав производство кабелей СПЭ в начале 80-х годов, они к настоящему времени смогли прийти к определенным стандартам в этой области.

В России «де факто» действуют стандарты, принятые в европейских странах. В частности, в Германии.

Методики испытания кабелей с изоляцией из сшитого полиэтилена настолько отличаются от методов испытаний прочих кабельных линий, что мы выделяем испытание СПЭ кабелей в совершенно обособленный вид работ.

Особенности кабелей с СПЭ изоляцией

Кабели с СПЭ изоляцией обладают рядом особенностей, проистекающих из физических свойств сшитого полиэтилена и применяемой технологии производства.

Ключевым преимуществом СПЭ изоляции, которое, собственно, и подвигло в начале 80-х годов прошлого века западные компании на внедрение этой технологии, является высокая диэлектрическая прочность и временная (длительность сохранения характеристик) стабильность параметров сшитого полиэтилена. Под стабильностью понимается как долговечность, так и ничтожно малая зависимость от температуры (в сравнении, например, с бумажной изоляцией).

Высокая диэлектрическая прочность изоляции СПЭ кабеля в сочетании с применяемой технологией производства обуславливает возникновение и существенную значимость некоторых электрофизических эффектов, которые в ранее применявшихся кабелях были пренебрежимо малы, либо — вообще не имели место.

Накопление объемного заряда в изоляции из сшитого полиэтилена

СПЭ изоляция в своем объеме содержит микровключения молекул воды, которые, при приложении внешнего электрического поля (подаче напряжения на кабель), склонны к поляризации. Наличие микровключений, хоть и считается паразитным явлением, само по себе, является следствием базовых принципов технологии производства сшитого полиэтилена и исключено быть не может. (Масло с 0% жирности перестает быть маслом.)

Поляризация микровключений приводит к образованию множества «виртуальных микроконденсаторов» в массиве изоляции. При исчезновении внешнего электрического поля (снятии напряжения с кабеля), поляризация сохраняется.

Применительно к кабелям с из сшитого полиэтилена, работающим на переменном токе промышленной частоты (чистая синусоида, 50 Гц), этот эффект значения не имеет. Так как за время полупериода степень поляризации не успевает достигнуть существенных значений, а постоянная смена направления вектора электрического поля (полярности приложенного к кабелю напряжения) препятствует накоплению объемного заряда.

Испытания кабелей из сшитого полиэтилена повышенным напряжением

Испытание СПЭ кабеля традиционным для кабелей с бумажной изоляцией способом — подачей повышенного выпрямленного напряжения, приводит к не контролируемому росту поляризации микровключений в изоляции с последующим локальным превышением предела диэлектрической прочности изоляции и образованием «электрических древовидных структур» в объеме изоляции кабеля. Эти изменения являются необратимыми, по сути, начальным этапом пробоя кабеля, и ведут к скорому выходу его из строя.

Важно. Подача выпрямленного напряжения на кабель из сшитого полиэтилена ведет к не обратимым изменениям в изоляции и выходу его из строя.

Амплитуда и частота испытательного напряжения для СПЭ кабелей

Для испытания кабельных линий с изоляцией из сшитого полиэтилена необходимо переменное напряжение, строго симметричной формы.

Производители кабелей нормируют амплитуду, частоту и длительность прикладываемого к кабелю испытательного напряжения. Однако, в реальности, для оценки состояния изоляции кабеля из сшитого полиэтилена, важны параметры dU/dT и количество изменений направления вектора электрического поля, которые только косвенно отражаются через значение частоты напряжения и длительности испытания кабеля.

Понятно, что чем выше частота испытательного напряжения, тем больше требуемая выходная мощность испытательной установки (при той же длине кабеля). А чем ниже частота, тем больше времени потребуется на испытание кабеля (для обеспечения требуемого количества переходов через «0»). Наилучшим вариантом, возможно, было бы испытание на частоте 50 Гц, но стоимость (да и габариты) требуемых установок оказались чересчур высоки. Производителям кабелей и испытательного оборудования пришлось пойти на некоторые

компромиссы, и через некоторое время нормы испытаний КЛ с СПЭ изоляцией приняли теперешний вид.

Принятые нормы испытания кабельных линий с изоляцией из сшитого полиэтилена

К началу 90-х годов, общепринятые нормы и правила эксплуатации кабелей из сшитого полиэтилена несколько устоялись. Появившаяся к тому моменту элементная база испытательного оборудования позволила, наконец, найти баланс между стоимостью, массой и габаритами испытательных установок, реализовав при этом достаточный уровень точности оценок состояния изоляции кабелей СПЭ. Однако, единого стандарта до сих пор не существует ни у «них», ни, соответственно, в России.

При испытаниях кабелей с изоляцией из сшитого полиэтилена, мы руководствуемся нормами, принятыми ОАО «Московская электросетевая компания» (ОАО «МОЭСК»). Обратите внимание, что принятые этой сетевой организацией параметры могут несколько отличаться от рекомендованных производителями СПЭ кабелей. Однако, как уже было сказано выше, единого стандарта нет, а учитывая колоссальный опыт работы (да и доминирующее положение) на рынке электросетей в московском регионе именно этой организации, мы считаем очень разумным следовать именно их рекомендациям.

Цель и объекты испытания

U рабочее, кВ

U испытательное, кВ (переменное напряжение 0,1 Гц сверхнизкой частоты, 3*Uф)

Длительность, мин.

Кабельные линии, выполненные одножильным кабелем с изоляцией из сшитого полиэтилена вновь проложенные (после ремонта)

6

12

30 (20)

 

10

18

30 (20)

 

20

36

30 (20)

Пластмассовые оболочки (шланги одножильных кабелей с изоляцией из сшитого полиэтилена)

От 10 и выше

10

1

Кабельные перемычки длиной до 15 м испытываются выпрямленным напряжением, но в «щадящем режиме».

Цель и объекты испытания

U рабочее, кВ

U испытательное, кВ (выпрямленное)

Длительность, мин.

Кабельные перемычки в РП, ТП, выполненные кабелем из сшитого полиэтилена

6

12

5

 

10

18

5

 

20

25

10

Форма испытательного напряжения

На данный момент применяются две формы испытательного напряжения: синусоидальная

и косинусоидально-прямоугольная. О преимуществах и недостатках того или иного варианта споры идут до сих пор. Мы используем синусоидальную форму испытательного напряжения для приемо-сдаточных испытаний кабельных линий, а косинусоидально-прямоугольную при диагностике и определении места повреждения кабеля.

Методика испытаний силовых кабельных линий 6

1. Измерение сопротивления изоляции

Измерение сопротивления изоляции КЛ производится мегаомметром на 2500 В. Измерения производятся на отключенных и разряженных линиях.

Измерение сопротивления изоляции многожильных кабелей без металлического экрана (брони, оболочки) производится между каждой жилой и остальными жилами, соединенными между собой.

Измерение сопротивления изоляции многожильных кабелей с металлическим экраном (броней, оболочкой) производится между каждой жилой и остальными жилами, соединенными вместе и с металлическим экраном (броней, оболочкой).

Перед первыми и повторными измерениями КЛ должна быть разряжена путем соединения всех металлических элементов между собой и землей не менее чем на 2 мин.

Отсчеты значений сопротивления изоляции производятся по истечении 1 мин с момента приложения напряжения.

КЛ до 1 кВ считается выдержавшей испытания, если сопротивление изоляции составляет не менее 0,5 МОм. В противном случае кабель вновь разделывается.

2. Испытание изоляции кабелей повышенным выпрямленным напряжением

Испытательное напряжение принимается в соответствии с табл. 29.1. РД 34.45-51.300-97.

Разрешается техническому руководителю энергопредприятия в процессе эксплуатации исходя из местных условий как исключение уменьшать уровень испытательного напряжения для кабельных линий напряжением 6-10 кв до Uном.

Для кабелей на напряжение до 35 кВ с бумажной и пластмассовой изоляцией длительность приложения полного испытательного напряжения при приемо-сдаточных испытаниях составляет 10 мин., а в процессе эксплуатации – 5 мин.

Для кабелей с резиновой изоляцией на напряжение 3-10 кВ длительность приложения полного испытательного напряжения 5 мин. Кабели с резиновой изоляцией на напряжение до 1 кВ испытаниям повышенным напряжением не подвергаются.

Токи утечки и коэффициенты асимметрии для силовых кабелей принимаются в соответствии с табл. 29.2. РД 34.45-51.300-97.

Приложение повышенного напряжения создаёт в испытываемой изоляции увеличенную напряженность электрического поля, что позволяет обнаруживать дефекты, вызвавшие недопустимое для дальнейшей эксплуатации высоковольтного кабеля снижение электрической прочности его изоляции, не обнаруживаемые другими способами (например, мегаомметром). При испытании повышенным напряжением постоянного тока особенно отчетливо выявляются местные сосредоточенные дефекты. Так как в большинстве случаев кабельные линии выходят из строя именно из-за появления в них местных дефектов (механические повреждения, коррозия, монтажные и заводские дефекты), регулярные испытания кабельных линий повышенным напряжением постоянного тока получили наиболее широкое распространение. Кроме того, испытание кабельных линий повышенным напряжением постоянного тока диктуется следующим обстоятельством.

Для испытания кабельных линий переменным током требуется большая мощность испытательной установки. Так, например, мощность установки для испытания кабеля напряжением 10 кВ и длиной 2000м составляет:

P=wCU210-3=3140.54102103=170 кВа,

Где w – угловая частота испытательного напряжения.

С – ёмкость кабеля напряжением 10 кВ, примерно равная 0,27 мкф/км.

U- испытательное напряжение, кВ.

При испытании этого же кабеля постоянным током мощность установки составит :

P = UIут = 10x1x10-3 = 10 Вт,

Где Iут – ток утечки, принимаемый равным 1 мА.

Основным назначением испытаний кабеля повышенным напряжением постоянного тока является доведение ослабленного места в них до пробоя с целью предотвращения аварийного выхода из строя кабельной линии в эксплуатации.

Повышенное выпрямленное напряжение для испытания изоляции кабеля обычно получают от установки переменного тока с помощью выпрямительного устройства.

В комплект такой испытательной установки входят: трансформатор переменного тока, рассчитанный на нужное напряжение; выпрямитель; регулировочное устройство, изменяющее величину напряжения на трансформаторе, а следовательно, и величину выпрямленного напряжения; комплект контрольно-измерительных приборов.

Напряжение испытательной установки должно быть выбрано в соответствии с наивысшим напряжением, принятым для испытываемой изоляции кабеля, согласно ПУЭ.

Ток, проходящий через изоляцию при испытании выпрямленным напряжением, в большинстве случаев не превышает величину 5-10 мА, что и определяет требования к пропускной способности выпрямителя, а следовательно, и к мощности трансформатора переменного тока.

Регулировочное устройство должно обеспечивать плавное регулирование напряжения трансформатора от нуля до полного испытательного напряжения. Ступень регулирования напряжения не должна превышать 1-1,5% величины номинального напряжения обмотки трансформатора.

В цепи, питающей регулировочное устройство, помимо коммутирующих элементов с видимым разрывом рекомендуется иметь автоматы и плавкие предохранители, обеспечивающие защиту испытательного трансформатора при недопустимых перегрузках и коротких замыканиях.

Поскольку на правильность отсчета тока утечки, особенно в нестационарном режиме, имеет большое влияние стабильность напряжения, подводимого от источника питания, рекомендуется снабжать установку стабилизатором напряжения.

Измерительный прибор для измерения тока утечки должен давать возможность отсчета токов от 0,5-1,0 до 1000 мкА. Прибор должен быть снабжен устройством, полностью его шунтирующим, это исключит повреждение прибора бросками ёмкостного тока и тока абсорбции при заряде и разряде объекта.

Стационарные и передвижные высоковольтные испытательные установки, предназначенные для получения выпрямленного напряжения, должны выполняться с соблюдением следующих условий:

• конструкция установки должна обеспечивать минимальную затрату времени на испытания при создании безопасных условий работы, простоту обслуживания установки, надёжность и бесперебойность работы в условиях частой транспортировки;

• электрическая схема установки должна быть снабжена коммутирующим аппаратом, обеспечивающим создание видимого разрыва в цепи питания источников высокого напряжения;

• металлические конструкции, баки, аппараты, нулевой вывод испытательного трансформатора и другие элементы установки, подлежащие заземлению, должны быть надёжно связаны с внешним заземляющим контуром.

Всем этим требованиям отвечают переносные испытательные установки типа АИИ-70 или АИД-70, а также заводские передвижные лаборатории, например ЭИЛ и СПЭИИ.

Изоляция многожильных кабелей без металлического экрана (брони, оболочки) испытывается между каждой жилой и остальными жилами, соединенными между собой и с землей. Изоляция многожильных кабелей с общим металлическим экраном (броней, оболочкой) испытывается между каждой жилой и остальными жилами, соединенными между собой и с экраном (броней, оболочкой).

Изоляция многожильных кабелей в отдельных металлических оболочках (экранах) испытывается между каждой жилой и оболочкой, при этом другие жилы должны быть соединены между собой и с оболочками. Допускается одновременное испытание всех фаз таких кабелей, но с измерением токов утечки в каждой фазе.

При всех указанных выше видах испытаний металлические экраны (броня, оболочки) должны быть заземлены.

Пластмассовые оболочки (шланги) кабелей, проложенных в земле, испытываются между отсоединенными от земли экранами (оболочками) и землей.

При испытаниях напряжение должно плавно подниматься до максимального значения и поддерживаться неизменным в течение всего периода испытания. Отсчет времени приложения испытательного напряжения следует производить с момента установления его максимального значения.

В течение всего периода выдержки кабеля под напряжением ведется наблюдение за значением тока утечки и на последней минуте испытания должен быть произведен отсчет показаний микроамперметра.

КЛ считается выдержавшей испытания, если во время их проведения не произошло пробоя или перекрытия по поверхности концевых муфт и значения токов утечки и их асимметрии не превысили норм, а также не наблюдалось резких толчков тока.

Если значения токов утечки стабильны, но превосходят нормы, КЛ может быть введена в работу, но с сокращением срока до последующего испытания.

При заметном нарастании тока утечки или появлении толчков тока продолжительность испытания следует увеличить до 15 мин и если при этом не происходит пробоя, то КЛ может быть включена в работу с повторным испытанием через 1 мес.

Если значения токов утечки и асимметрия токов утечки превышают нормы, необходимо осмотреть концевые заделки и изоляторы, устранить видимые дефекты (пыль, грязь, влага и т.п.) и произвести повторные испытания.

После каждого испытания производят повторное измерение сопротивления изоляции с помощью мегаомметра на 2500 В для того, чтобы убедиться, что производство испытаний не ухудшило состояние изоляции кабеля.

3. Определение целости жил кабеля и фазировка КЛ

Определение целости жил кабелей производится мегаомметром при соединении проверяемой жилы на другом конце кабеля с землей. Таким же образом производится предварительная фазировка КЛ. Если на одном из концов кабеля проверяемая жила подсоединяется к фазе «А», то на другом конце она должна подсоединиться тоже к фазе «А». На основании «прозвонки» делается раскраска жил.

Перед включением в работу КЛ фазируется под напряжением. Для этого с одного конца на кабель подается рабочее напряжение, а с другого конца проверяется соответствие фаз измерениями напряжений между одноименными и разноименными фазами КЛ и шинами распределительного устройства, где производится фазировка.

Работа указателя обеспечивается только при двухполюсном его подключении к электроустановке. Применение диэлектрических перчаток при этом обязательно.

Исправность указателя проверяется на рабочем месте путем двухполюсного подключения указателя к земле и фазе. Сигнальная лампа исправного указателя при этом должна ярко светиться.

НТД и техническая литература:

• Межотраслевые правила по охране труда (ПБ) при эксплуатации электроустановок. ПОТ Р М — 016 — 2001. — М.: 2001.

• Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание

• Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.

• Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.

• Сборник методических пособий по контролю состояния электрооборудования. – М.: ОРГРЭС, 1997.

• Правила применения и испытания средств защиты… Издание девятое. — М.: 1993.

2. Испытание оболочки кабеля из сшитого полиэтилена

Вторым необходимым типом испытаний является испытание оболочки кабеля из сшитого полиэтилена.

Данный тип кабельных повреждений связан с коррозионными процессами, их пагубным влиянием, а также с воздействиями механического характера, происходящими во время выполнения монтажа, ремонтных работ и несогласованных раскопок кабельных линий. Если вовремя не произвести ремонт участка повреждённой оболочки кабеля, то основная изоляция утратит свои свойства и произойдёт пробой кабельной линии.

Испытание оболочки кабеля из сшитого полиэтилена выполняется с использованием повышенного напряжения постоянного электротока. При возникновении пробоя производится локальный поиск конкретного места повреждения.

Нормы испытаний оболочки кабелей со СПЭ-изоляцией согласно УП-Б-1

Напряжение кабельной линии, кВ

Испытательное напряжение постоянного тока, кВ

Длительность приложения испытательного напряжения

10-20

5

10 мин

Нормы испытаний оболочки кабелей с СПЭ-изоляцией регламентируют периодичность их выполнения. Проведение испытаний пластиковых защитных оболочек кабелей 10кВ-20кВ, имеющих изоляцию из сшитого полиэтилена, выполняются:

  • перед осуществлением включения кабельных линий в эксплуатацию;

  • после проведения ремонтных работ основной изоляции кабельной линии;

  • при раскопках, которые проводятся в охранной зоне конкретной кабельной линии, в связи с возможным нарушением целостности кабельных оболочек;

  • периодически – после сдачи в эксплуатацию (через 2,5 года), потом 1 раз в течение 5 лет.

Для данных целей существует специально разработанное оборудование  – особый аппаратный комплекс, реализующий полный цикл соответствующих работ по проведению испытаний кабелей и кабельных оболочек, предварительному определению мест имеющихся повреждений и точного определения мест нахождения дефектов оболочек с применением метода шагового напряжения (автоматический режим).

3. Поиск повреждения кабеля из сшитого полиэтилена

Поиск повреждения кабеля из сшитого полиэтилена предполагает проведение работ в трёх направлениях:

  • нахождение мест повреждений кабельной изоляции;

  • нахождение мест повреждений кабельной оболочки;

  • нахождение мест повреждений кабельных жил.

3.1. Нахождение мест повреждённой кабельной изоляции

Данное направление включает в себя два определённых этапа:

  • Определение предварительной локализации места имеющегося повреждения изоляции, которое выполняется с применением петлевого метода (длина кабеля должна быть больше 50 м). На данном этапе применяется прецизионный мост.

  • Обозначение точной локализации с применением метода шагового напряжения.

3.2. Нахождение мест повреждений кабельной оболочки

Для предварительной локализации мест имеющихся повреждений используется мостовой метод проведения измерения по Мюррею и Глейзеру. Использование приёмника универсального для точной локализации методом импульсного напряжения. Прецизионный мост может реализовать полный комплекс.

3.3. Нахождение мест повреждений в кабельных жилах

Применяются такие методы нахождения повреждений: прожиг (только для 3х жильного кабеля), предварительная локализация (применение беспрожиговых методов), точная локализация (акустический метод). Полный цикл испытаний и нахождения мест повреждений реализуется специальным оборудованием.

СВОЙСТВА ЭЛЕКТРИЧЕСКИХ СЕТЕЙ, ОБУСЛОВЛЕННЫЕ РЕЖИМОМ ЗАЗЕМЛЕНИЯ НЕЙТРАЛИ

Классификация сетей по способу заземления нейтрали

Нейтралью, называют общую точку соединения обмоток трансформаторов или двигателей при соединении в звезду.

В ПУЭ [1] даны определения для двух видов нейтралей.

Изолированная нейтраль – нейтраль, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (в приборах сигнализации, защиты и т. д.) (рисунок 3.2, а).

а) б)

N

N

Рисунок 3.2 – Виды нейтралей

Глухозаземленная нейтраль – нейтраль, непосредственно присоединенная к глухозаземленному устройству (рисунок 3. 2, б).

Таким образом, нейтраль может быть либо соединена с землей через какие-либо элементы (резистор, конденсатор и т. д.), либо изолирована от земли.

По назначению заземление нейтрали может быть либо рабочим, либо защитным.

Защитное заземление – заземление, выполненное в целях электробезопасности [1, п.1.7.9]..

Рабочее (функциональное) заземление – заземление, точки или точек токоведущих частей электроустановок, выполненное для обеспечения работы электроустановки (не в целях электробезопасности) [1, п.1.7.30]..

Классификация электрических сетей по способу рабочего заземления нейтрали приведена в ПУЭ, п. 1.2.16.

Работа электрических сетей напряжением 2-35 кВ мо­жет предусматриваться как с изолированной нейтралью, так и с нейтралью, заземленной через дугогасящий реактор или резистор.

Компенсация емкостного тока замыкания на землю должна при­меняться при значениях этого тока в нормальных режимах:

  • в сетях напряжением 3-20 кВ, имеющих железобетонные и ме­таллические опоры на воздушных линиях электропередачи, и во всех сетях напряжением 35 кВ — более 10 А;

  • в кабельных сетях и в воздушных сетях, не имеющих железобетонных и металлических опор на воздушных линиях электропередачи:

более 30 А при напряжении 3-6 кВ;

более 20 А при напряжении 10 кВ;

более 15 А при напряжении 15-20 кВ;

При токах замыкания на землю более 50 А рекомендуется при­менение не менее двух заземляющих реакторов.

Работа электрических сетей напряжением 110 кВ может пре­дусматриваться как с глухозаземленной, так и с эффективно зазем­ленной нейтралью.

Электрические сети напряжением 220 кВ и выше должны ра­ботать только с глухозаземленной нейтралью.

Таким образом, ПУЭ выделяют пять видов сетей по способу рабочего заземления нейтрали:

  1. сети напряжением 6 – 35 кВ с изолированной нейтралью;

  2. сети напряжением 6 – 35 кВ эффективно – заземленной нейтралью;

  3. сети напряжением 6 – 35 В с нейтралью, заземленной через активное сопротивление;

  4. сети напряжением 110 кВ с эффективно заземленной нейтралью;

  5. сети напряжением 110 кВ и выше с глухозаземленной нейтралью.

Выбор экрана кабеля с изоляцией из сшитого полиэтилена на термическую устойчивость

В случае выбора кабеля с изоляцией из сшитого полиэтилена помимо проверки кабеля:

  • по нагреву расчетным током;
  • по термической стойкости к токам КЗ;
  • по потерям напряжения в нормальном и послеаварийном режимах;

Также следует проверить экран кабеля из сшитого полиэтилена на термическую устойчивость.

Для проверки экрана кабеля рекомендую руководствоваться методикой представленной в: «Инструкциях и рекомендациях по прокладке, монтажу и эксплуатации кабелей с изоляцией из сшитого полиэтилена на напряжение 6, 10, 15, 20 и 35 кВ » 2014г ОАО «Электрокабель» Кольчугинский завод, либо другой аналогичной методикой. Например у ЗАО «Завод «Южкабеля» г. Харьков (Украина) есть такая же методика.

Для расчета экрана кабеля нам понадобятся такие исходные данные:

  • трехфазный ток КЗ в максимальном режиме на шинах РУ-6(10) кВ;
  • время действия защиты с учетом полного отключения выключателя.

При этом должно выполняться условие:

Iд.э. кз > I2ф(к.з.)

где:

  • Iд.э. кз – допустимый ток медного экрана;
  • I2ф(к.з.) – двухфазный ток КЗ. Для того чтобы получить двухфазный ток КЗ из трехфазного нужно умножить на √3/2.

Допустимый ток медного экрана определяется по таблице 12.

Пример выбора экрана кабеля с изоляцией из сшитого полиэтилена

Выберем экран кабеля с изоляцией из сшитого полиэтилена. Предварительно выберем кабель АПвП-10 кВ с изоляцией из сшитого полиэтилена сечением 70 мм2 и с медным экраном 16 мм2: 3х70/16 мм2.

Исходные данные для расчета экрана кабеля, возьмем из предыдущей статьи: «Пример выбора кабеля на напряжение 10 кВ».

  • трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ составляет 8,8 кА;
  • время действия защиты с учетом полного отключения выключателя равно 0,345 сек.

1. Так как продолжительность короткого замыкания отличается от 1 с, то нам нужно определить поправочный коэффициент по формуле:

K = 1/√t = 1/√0,345 = 1,69 c

где:
t = 0,345 с — продолжительность короткого замыкания, с.

2. Определяем допустимый ток медного экрана сечением 16 мм2:

Iд.э.кз = k*Sэ*K = 0,191*16*1,69 = 5,16 кА

3. Определяем двухфазный ток КЗ:

I2ф(к.з.) = √3/2* I3ф(к.з.) = 0,87*8,8 = 7,656 > 5,16 кА (условие не выполняется)

4. Определяем допустимый ток медного экрана сечением 25 мм2:

Iд. э.кз = k*Sэ*K = 0,191*25*1,69 = 8,1 кА > 7,656 кА (условие выполняется)

Принимаем кабель АПвП-10 кВ сечением 3х70/25 мм2.

Для удобства выполнения расчетов по выбору кабелей из сшитого полиэтилена и их экранов, я прикладываю данную методику. Для этого нужно скачать архив.

Если данная статья стала для Вас полезной, автор будет очень признателен, если Вы поделитесь данной статье в одной из социальных сетей.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Все о кабеле из сшитого полиэтилена

Кабель из сшитого полиэтилена (СПЭ, английское — XLPE, немецкое — VPE, шведское — РЕХ) появился на рынке чуть позже, чем другие виды проводников. Но ввиду хороших технических характеристик он стал более популярным и распространенным в категории кабельной продукции. Рассмотрим подробнее особенности и преимущества кабеля СПЭ, его сферы применения и плюсы прокладки.

Что такое кабель из сшитого полиэтилена

Одна из важных характеристик любого кабеля – материал изоляции. От него зависит величина силы тока, которая может выдерживать кабель. И чем выше сила тока, тем более высокие требования предъявляются к изоляции. Особенно это касается кабелей среднего напряжения – 6-35 кВ.

Под кабелем СПЭ понимают кабель с изоляцией из сшитого полиэтилена (ПЭ). Сшитый полиэтилен – это полимер с поперечно сшитыми молекулами. Это наиболее плотный из всех видов полиэтилена, обладающий более высокими техническими показателями.

Молекулярная трехмерная структура сшитого полиэтилена PEX

Сшитым называют полиэтилен, полученный в результате сшивки. Это физический процесс по модификации внутренней молекулярной структуры материала с сохранением химического состава. Цель сшивки – придать полиэтилену новые, физические свойства, которые расширяют сферу применения материала.

В ходе сшивки звенья молекул полиэтилена связывают с трехмерную сетку за счет образования поперечных связей. Поэтому и говорят, что сшитый ПЭ состоит из поперечно сшитых молекул.

1 — многопроволочная, уплотненная токопроводящаяжила, алюминиевая или медная

2 — внутренний экструдированный полупроводящий слой

3 — изоляция из сшитого полиэтилена

4 — внешний экструдированный полупроводящий слой

5 — слой обмотки полупроводящей лентой

6 — медный экран

7 — экструдированная подушка

8 — броня из круглой стальной оцинкованной проволоки

9 — наружная оболочка: из полиэтилена (АПвЭКП, ПвЭКП), поливинилхлоридного пластиката (АПвЭКВ, ПвЭКВ),ПВХ пластиката пониженной горючести(АПвЭКВнг, ПвЭКВнг) или ПВХ пластиката пониженной пожароопасности (АПвЭКВнгд, ПвЭКВнгд)

В чем плюсы изоляции из сшитого полиэтилена

Сшитый ПЭ – полиэтилен с улучшенными характеристиками. Его применение в качестве изоляции позволяет тоже придать ей более качественные свойства. К преимуществам изоляции из СПЭ перед другими видами относится следующее:

  • Стойкость к более высоким температурам (предельная достигает 90 °C).
  • Допустимая температура в аварийном режиме, гр. С – 130.
  • Максимально допустимая температура жилы при протекании тока короткого замыкания, гр. С — 250.
  • Более высокая пропускная способность, чем у бумажной с масляной пропиткой – в 1,3-1,5 раза выше, что обусловлено более высокой длительно допустимой температурой (90 °C
  • Экологическая безопасность ввиду отсутствия жидких включений, что позволяет сохранить чистоту окружающей среды.
  • Отсутствие алюминиевых и свинцовых оболочек, что уменьшает вес, диаметр и радиус изгиба (упрощает прокладку).
  • Большая строительная длина, которая может достигать 2000-4000 м.
  • Низкая гигроскопичность, обеспечивающая диэлектрическую стабильность.

Не менее важно, что кабель СПЭ обычно имеет одножильную конструкцию, это упрощает прокладку и монтаж даже в самых тяжелых условиях работы. Ее можно вести при температуре до -20 °C (без предварительного прогрева). Благодаря перечисленным преимуществам кабель СПЭ признали как продукт, обладающий наилучшими электрическими и механическими свойствами, а также самым длительным сроком службы среди других серийно выпускаемых типов кабелей, достигающим 30 лет без потери качества. (Срок службы).

Виды кабеля из сшитого полиэтилена

Кабели СПЭ могут иметь разную форму жил: круглую или секторную. Последняя имеет несколько недостатков, поскольку для нее не предусмотрен специальный механический инструмент для разделки, из-за чего все работы нужно производить вручную. Кроме того, магнитное поле,образующееся вокруг сектора, увеличивает потери.

Цена кабеля из сшитого полиэтилена зависит от его разновидности. Существует несколько критериев классификации, по которым выделяют виды кабеля СПЭ.

По напряжению:

  • 6-35 кВ;
  • 45-150 кВ;
  • 220 и 330 кВ.

По количеству токоведущих жил:

  • 1 или 3 для 6-35 кВ;
  • 1 для 45-150 и 220, 330 кВ.

Одножильные кабели СПЭ более распространены, поскольку трехжильные применяются только на напряжение до 35 кВ.

По материалу токопроводящей жилы:

  • из меди;
  • из алюминия (в маркировке обозначается первой буквой «А»).

По площади поперечного сечения токопроводящей жилы:

  • 35-1600 мм2 для 6-35 кВ;
  • 70-2000 мм2 для 45-150 кВ;
  • 400-2000 мм2 для 220 и 330 кВ.

По материалу оболочки:

  • из полиэтилена;
  • из ПВХ пластиката;
  • из полимерной композиции.

По типу бронирования:

  • стальной проволокой;
  • стальными лентами;

Где используют кабель из сшитого полиэтилена

Специалисты рекомендуют купить кабель из сшитого полиэтилена в следующих случаях:

  • если необходимо транспортировать большие энергетические мощности на дальние расстояния;
  • если прокладка кабельной трассы ведется по сложному рельефу;
  • если к кабелю предъявляются особенно строгие требования относительно пожарной и экологической безопасности.

Кабель применяют в строительстве и промышленности. Его прокладывают в любом грунте при условии наличия защиты от механических повреждений. Еще он подойдет для прокладки под водой.

Кабель СПЭ выпускается в разных исполнениях, в том числе не распространяющие горение с низким дымовыделением. Это делает его оптимальным для применения в производственных помещениях и кабельных сооружениях, а также стационарных электроустановках и там, где действуют разрушающие газовоздушные среды.

Марки кабеля из сшитого полиэтилена

Условное обозначение в маркировке силового кабеля с изоляцией из СПЭ на среднее напряжение 10; 20; 35 кВ
Краткое обозначение Обозначение Порядковое место буквы в марке
А Алюминиевая жила (без обозначения — жила медная) 1
Пв Изоляция из сшитого полиэтилена 2
П Оболочка из полиэтилена 3
Пу Оболочка из полиэтилена, усиленная 3
В Оболочка из ПВХ апастиката 3
Внг-LS Оболочка из ПВХ пластиката пониженной пожароопасности («LS»- Low Smoke — низкое дымо- и газовыделение(А(В), предел распространения горения ПРПГ1 (ПРПГ2) 3
г Продольная герметизация водоблокирующими лентами 4
Продольная и поперечная герметизация (водоблокирующими лентами и ламинированной алюмополимерной лентой) 4
ж Герметизация жилы водоблокирующими нитями или порошком 5

В буквенной аббревиатуре кабеля СПЭ можно найти всю основную информацию и характеристики относительно типа жилы, изоляции и оболочки.

КритерийНаименованиеМаркировкаПример
Материал жилы Медная Без обозначения ПвП
Алюминиевая А АПвП
С герметизацией гж АПвП (гж)
Сегментированная с герметизацией сгж ПвП сгж
Материал изоляции Из сшитого полиэтилена Пв ПвВ
Материал оболочки Полиэтилен П АпвП
Усиленная оболочка из полиэтилена увеличенной толщины – для 10 кВ, с ребрами жесткости – для 110 кВ. Пу АПвП
Из полимерной композиции, не распространяющей горение и не содержащей галогенов. Пнг-HF-А(В) А – не распространяющей горение по категории А. В – не распространяющей горение по категории В. АПвПнг-HF-А
ПВХ пластикат В АПвВ
ПВХ пластикат с пониженной горючестью. Внг-А(В) А – не распространяющей горение по категории А. В – не распространяющей горение по категории В. АПвВнг-В
ПВХ пластикат с пониженной горючестью, газо- и дымовыделением. Внг-LS-А(В)   АПвВнг-LS-А
С продольной герметизацией водоблокирующими лентами г (после обозначения оболочки)   АПвПг
С продольной герметизацией водоблокирующими лентами и поперечной герметизацией из алюмо-полимерной ленты, сваренной с оболочкой. АПвП2г

Купить кабель оптом и в розницу

Компания «Бонком» занимается продажей кабельной продукции от крупнейших российских производителей. Большие складские мощности позволяют обеспечить стабильные поставки даже на масштабные объекты. Все виды кабеля СПЭ, представленные в каталоге компании «Бонком», по техническим и эксплуатационным характеристикам отвечают требованиям международных стандартов и имеют сертификацию по ГОСТ.

Дополнительно мы реализуем аксессуары, расходные материалы и инструменты, такие как кабельные муфты, арматура для СИП, термоусаживаемые трубки и экипировка монтажника. Чтобы купить кабель, обращайтесь к нам по телефонам и адресу из раздела «Контакты». Здесь в форме обратной связи и по указанным телефонам вы можете узнать о продукции или задать другие интересующие вопросы.

Кабели 6–10 кВ с изоляцией из сшитого полиэтилена. Требования к прокладке

В настоящее время в электрические сети среднего напряжения различного назначения всё шире внедряются силовые кабели с изоляцией из сшитого полиэтилена (XLPE, СПЭ). Применение в кабелях такой изоляции имеет определенные преимущества по сравнению с бумажно-пропитанной изоляцией. К этим преимуществам следует прежде всего отнести более высокие значения пропускной способности, сниженные себестоимость изделия и эксплуатационные затраты.

Немаловажным преимуществом является также и отсутствие жидких компонентов в конструкции кабелей, что не накладывает дополнительных требований по перепаду высот вдоль трассы их прокладки.

Надежная эксплуатация этих кабелей зависит в том числе и от условий их прокладки. Именно способы прокладки в большой мере определяют тепловой режим эксплуатации кабелей, а, следовательно, и надежность как самого кабеля, так и электропитания потребителей.

Вместе с тем проектирующими организациями уделяется недостаточное внимание условиям прокладки кабелей с изоляцией из СПЭ, что в ряде случаев приводит к перегреву и даже к возгоранию кабелей в нормальном эксплуатационном режиме. Этот вопрос на страницах нашего журнала рассматривают ученые из Новосибирска.

Кира Кадомская,

д.т.н., профессор

Юрий Лавров,

к.т.н.

Семен Кандаков,

магистрант

Новосибирский государственный технический университет

Наиболее распространенными в сетях 6–10 кВ в настоящее время являются кабели с СПЭ-изоляцией (более часто их называют кабелями с пластмассовой изоляцией (КПИ)) в однофазном исполнении (рис. 1).

Такое исполнение конструкции кабеля обусловлено требуемыми большими строительными длинами, легкостью монтажа, а также возможностью выполнения кабелей с большими номинальными сечениями жилы. Однофазная конструкция КПИ накладывает определенные ограничения на способы их прокладки в отличие от кабелей традиционных трехфазных конструкций с бумажно-пропитанной изоляцией. Например, в [1] оговариваются допустимые температурные условия эксплуатации кабеля при различных способах его прокладки, а в [2,3] подчеркиваются особенности прокладки КПИ в местах, требующих их механической защиты с помощью труб: при пересечении инженерных сооружений, естественных препятствий и т.п.

Невыполнение регламента прокладки КПИ в этих случаях может привести по крайней мере к двум негативным явлениям: к термическому разрушению кабеля при его эксплуатации в номинальном режиме либо локальному снижению электрической прочности СПЭ-изоляции на участке кабеля, заключенного в трубу.

Деградация CПЭ-изоляции при комбинированном воздействии электрического и теплового полей больше сказывается на снижении электрической прочности СПЭ при высокочастотных импульсных перенапряжениях, которые, например, могут инициировать вакуумные выключатели. Таким образом, неправильное проектирование прокладки КПИ однофазного исполнения на «особых участках» может с течением времени спровоцировать аварийную ситуацию, связанную с тепловым разрушением кабеля или его электрическим пробоем.

О тепловом режиме эксплуатации кабелей

Перегрев кабеля может быть вызван выделением тепла как внутри конструкции кабеля, так и в окружающем его пространстве. Источником теплового поля внутри и снаружи кабеля являются электрические токи, протекающие по всем металлическим элементам конструкции: по жиле кабеля и экрану из медных проволок.

Следует отметить, что в ряде проектов на определенных участках кабельной трассы (зачастую под дорогами) предполагается пофазная прокладка кабелей в металлических трубах. При такой прокладке дополнительным источником тепла являются токи Фуко, протекающие по металлической трубе. Так как длина защитных стальных труб обычно на порядок и более меньше общей длины кабельной линии, то при расчете токов в экранах можно с большой степенью точности пренебречь наличием стальной трубы. Проведенные расчеты подтвердили это предположение (рис. 2).

 

Рис. 1

Конструкция кабеля с СПЭ-изоляцией однофазного исполнения

 

Рис. 2

Направления токов в металлических элементах конструкции при пофазной прокладке кабеля в трубе

Токи в экранах кабелей в общем случае прокладки трех фаз кабеля

Рассмотрим общий случай прокладки трех фаз кабельной линии, экраны которых заземляются по концам его строительных участков (рис. 3). Расчеты производились как с помощью аналитической методики, основанной на анализе электромагнитного поля в соответствующих электрических схемах, так и на основе численного анализа поля с помощью векторного метода конечных элементов (ВМКЭ). При использовании численного метода использовалось понятие векторного магнитного потенциала, описывающего распределение магнитного поля в проводящей среде и в диэлектрике.

На рис. 4 приведены зависимости отношений токов в экранах к токам в жилах от расстояния между фазами кабеля при горизонтальной прокладке трех фаз в грунте. Рассмотрен кабель 10 кВ фирмы Nexans с изоляцией из сшитого полиэтилена типа N2XSY10 1•500. Токопроводящая жила и экран выполнены из меди. Сечение токопроводящей жилы 500 мм2, сечение экрана 35 мм2, номинальный ток при прокладке в земле 745 А, толщина изоляции по жиле – 4 мм, толщина ПВХ оболочки – 2,5 мм. Внешний диаметр кабеля – 45 мм. Заглубление центров фаз кабелей – 0,7 м.

Этот и аналогичные расчеты показали, что токи в экранах кабелей однофазного исполнения могут составлять значительную величину – начиная с 10–15% от тока в жиле при расположении фаз кабеля в непосредственной близости друг от друга и до 40–50% при значительном удалении фаз. Следовательно, при пофазной прокладке фаз в стальной трубе токи в экранах являются существенным дополнительным источником тепла.


 

Рис. 3

Заземление экранов по концам строительного участка КЛ

 

Рис. 4

Зависимость отношения токов в экранах к токам в жилах от расстояния между центрами фаз

Тепловыделение в стальной трубе

Произведенные расчеты показали, что при прокладке стальной трубы в грунте вихревые токи вследствие существенно большей проводимости трубы, выполненной из конструкционной стали (107См/м), замыкаются лишь по самой трубе. Тепловыделение в ней, определенное с помощью численного расчета теплового поля от вихревых токов при прокладке фазы кабеля с параметрами, указанными выше, и номинальном токе в нем составило 129 Вт/м.

Распределение температуры в плоскости сечения кабеля, проложенного в стальной трубе

При решении уравнения теплопроводности в рассматриваемой системе (однофазный кабель в трубе) были приняты следующие правомочные допущения:

— поверхность земли принята изотермической при заданной температуре,

— на границе расчетной области тепловой поток принят равным нолю,

-на границах сред с различными значениями коэффициента теплопроводности принималось условие непрерывности температурного поля (T1 = T2).

При проведении расчетов учитывались температурные зависимости теплофизической теплопроводности воздуха и электропроводности медной жилы и экрана. Распределение температуры в плоскости сечения конструкции приведено на рис. 5.

 

Рис. 5

Распределение температуры в плоскости сечения фазы кабеля, проложенной в металлической трубе

 

Рис. 6

Последствие прокладки фазы кабеля с пластмассовой изоляцией в стальной трубе

 

Рис. 7

Температурное поле в сечении конструкции при прокладке трех фаз кабеля в стальной трубе

Из рисунка видно, что температура жилы в рассматриваемой конструкции составляет величину порядка 150ОС, что значительно выше длительно допустимой температуры нагрева изоляции из сшитого полиэтилена (90ºС).

Правомочность приведенных результатов подтверждается непосредственными измерениями температуры трубы при повреждении кабеля длиной 110 м, связывающего генераторы теплоэлектростанции с КРУ (длина стальных труб с проложенными под дорогой пофазно кабелями составляла 13 м). При этих измерениях температура стальной трубы оказалась равной 140–145ОС. На рис. 6 приведена фотография поврежденной фазы кабеля.

Избежать повреждения кабеля, проложенного пофазно в стальной трубе, можно, нагрузив его не более чем на 50–60% от номинального тока. Очевидно, что такая недогрузка кабелей вряд ли допустима.

Одной из возможных мер уменьшения рабочей температуры кабелей при прокладке их в стальных трубах является расположение всех трех фаз вплотную в вершинах правильного треугольника в общей стальной трубе.

Распределение температурного поля при прокладке трех фаз, расположенных в стальной трубе в вершинах правильного треугольника, приведено на рис. 7. Из рисунка видно, что при такой прокладке температура наиболее нагретой жилы составила 85ОC, что не превышает допустимого значения.

Можно заметить, что в наихудших условиях с точки зрения температуры находится верхняя фаза (фаза А на рис. 7), так как через неё проходит тепловой поток от нижних фаз.

Заключение

1. Пофазная прокладка кабелей среднего напряжения в стальных трубах недопустима из-за появления дополнительного источника тепла в виде вихревых токов в стальной трубе, что приводит к повышению температуры в конструкции, существенно превышающей допустимую.

2. Снизить тепловыделение в стальной трубе можно путем прокладки трех фаз однофазных кабелей вплотную, в вершинах правильного треугольника в общей стальной трубе. Тепловыделение в трубе при этом становится соизмеримым с тепловыделением в жиле и экране кабеля, а максимальная рабочая температура не превышает предельно допустимых значений.

3. Если это не требуется по условиям механической прочности, то следует по возможности избегать прокладки кабелей в трубах из ферромагнитных материалов, а применять отрезки неметаллических труб (например, асбоцементные, керамические, пластмассовые или из иного немагнитного материала).

Литература

1. Кабели силовые с изоляцией из сшитого полиэтилена на напряжение 10, 20, 35 кВ. Технические условия. ТУ 16.К71-335-2004. (ОАО ВНИИКП).

2. Инструкция по прокладке кабелей силовых с изоляцией из сшитого полиэтилена на напряжение 10, 20 и 35 кВ. RUKAB/ID 23-2-019 (ABB Москабель).

3. Инструкция. Прокладка силовых кабелей на напряжение 10 кВ с изоляцией из сшитого полиэтилена. ИМ СК-20-03 (Камкабель).


HTTP / 1.1 404 не найдено

HTTP / 1.1 404 не найдено

Запрошенный ресурс недоступен.

трассировка стека

 com.sapportals.wcm.protocol.webdav.server.WDServletException
в com.sapportals.wcm.protocol.webdav.server.WDObject.throwNotFoundIf (WDObject.java:54)
в com.sapportals.wcm.protocol.webdav.server.WDGetHandler.handle (WDGetHandler.java:176)
в com.sapportals.wcm.protocol.webdav.server.WDServlet.doGet (WDServlet.java:791)
в ком.sapportals.wcm.protocol.webdav.server.WDServlet.service (WDServlet.java:483)
в javax.servlet.http.HttpServlet.service (HttpServlet.java:853)
в com.sapportals.wcm.portal.proxy.PCProxyServlet.service (PCProxyServlet.java:322)
в javax.servlet.http.HttpServlet.service (HttpServlet.java:853)
в com.sapportals.portal.prt.core.broker.ServletComponentItem $ ServletWrapperComponent.doContent (ServletComponentItem.java:110)
на com.sapportals.portal.prt.component.AbstractPortalComponent.serviceDeprecated (AbstractPortalComponent.java: 209)
в com.sapportals.portal.prt.component.AbstractPortalComponent.service (AbstractPortalComponent. java:114)
в com.sapportals.portal.prt.core.PortalRequestManager.callPortalComponent (PortalRequestManager.java:328)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java:136)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java:189)
в com.sapportals.portal.prt.component.PortalComponentResponse.include (PortalComponentResponse.java: 215)
в com.sapportals.portal.prt.pom.PortalNode.service (PortalNode.java:645)
в com.sapportals.portal.prt.core.PortalRequestManager.callPortalComponent (PortalRequestManager.java:328)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java:136)
в com.sapportals.portal.prt.core.PortalRequestManager.dispatchRequest (PortalRequestManager.java:189)
в com.sapportals.portal.prt.core.PortalRequestManager.runRequestCycle (PortalRequestManager.java:753)
в ком.sapportals.portal.prt.connection.ServletConnection.handleRequest (ServletConnection. java:235)
в com.sapportals.wcm.portal.connection.KmConnection.handleRequest (KmConnection.java:63)
в com.sapportals.portal.prt.dispatcher.Dispatcher $ doService.run (Dispatcher.java:557)
в java.security.AccessController.doPrivileged (собственный метод)
в com.sapportals.portal.prt.dispatcher.Dispatcher.service (Dispatcher.java:430)
в javax.servlet.http.HttpServlet.service (HttpServlet.java:853)
на com.sap.engine.services.servlets_jsp.server.HttpHandlerImpl.runServlet (HttpHandlerImpl.java:401)
в com.sap.engine.services.servlets_jsp.server.HttpHandlerImpl.handleRequest (HttpHandlerImpl.java:266)
в com.sap.engine.services.httpserver.server.RequestAnalizer.startServlet (RequestAnalizer.java:386)
в com.sap.engine.services.httpserver.server.RequestAnalizer.startServlet (RequestAnalizer.java:364)
в com.sap.engine.services.httpserver.server.RequestAnalizer.invokeWebContainer (RequestAnalizer.java:1060)
на com.sap.engine.services.httpserver.server.RequestAnalizer.handle (RequestAnalizer.java:265)
в com. sap.engine.services.httpserver.server.Client.handle (Client.java:95)
в com.sap.engine.services.httpserver.server.Processor.request (Processor.java:175)
в com.sap.engine.core.service630.context.cluster.session.ApplicationSessionMessageListener.process (ApplicationSessionMessageListener.java:33)
в com.sap.engine.core.cluster.impl6.session.MessageRunner.run (MessageRunner.java:41)
на com.sap.engine.core.thread.impl3.ActionObject.run (ActionObject.java:37)
в java.security.AccessController.doPrivileged (собственный метод)
в com.sap.engine.core.thread.impl3.SingleThread.execute (SingleThread.java:104)
в com.sap.engine.core.thread.impl3.SingleThread.run (SingleThread.java:176) 

Электрическое испытательное оборудование | Электростанция для подключения

Стивен Дреннан — инженер-электрик

Существует множество способов проверки изоляции электрического оборудования с использованием различных напряжений, частот и методов испытаний.Megger Group поставляет широкий спектр тестеров для таких приложений, от тестеров сопротивления изоляции от 50 В до 15 кВ, через испытательные комплекты VLF и AC Tan Delta для диагностики приборов с частотной характеристикой диэлектрика и тестеров HiPot или контрольных приборов с использованием переменного или постоянного тока до 80 / 800 кВ.

Эта статья призвана устранить путаницу, которая иногда возникает в отношении допустимых уровней напряжения для тестирования кабелей и того, что подразумевается под «тестированием постоянного тока» кабелей в различных контекстах.

Определение терминов

При использовании в определенном контексте многие технические термины имеют четкое, хорошо определенное значение.Однако, когда они вырваны из контекста или используются небрежно, те же самые термины могут стать двусмысленными и запутанными. Хороший пример — «высокое напряжение».

Многие национальные и международные стандарты однозначно определяют напряжения, которые можно правильно обозначить как ELV (сверхнизкое напряжение), EHV (сверхвысокое напряжение) и все, что между ними. Однако в обычном использовании фраза «высокое напряжение» означает очень разные вещи для коммерческого инженера по ОВКВ, привыкшего работать при 110 или 230 В, инженера-распределителя, работающего с системами 11 кВ, и инженера по передаче, работа которого включает 132 или 765 кВ. линии передачи.Испытательное оборудование часто используется вне этих дисциплинарных границ, и, частично, по крайней мере из-за нечеткого использования терминологии, может возникнуть путаница в отношении того, какие испытательные напряжения и методы подходят, а какие потенциально вредны для конкретных приложений.

Проблема — кабели с твердым диэлектриком из сшитого полиэтилена

Обеспокоенность по поводу испытаний на высокое напряжение возникла в результате поведения кабелей с изоляцией из сшитого полиэтилена, когда они подвергались тому же режиму обслуживания, который ранее применялся к кабелям с многослойным покрытием.В начале 1990-х годов некоторые бесценные исследования факторов, влияющих на старение кабелей из сшитого полиэтилена, были проведены доктором Н.Н. Сринивасом из EPRI (Исследовательский институт электроэнергетики) и другими, такими как доктор М. Машикян из Университета Коннектикута и проф. . Ф.Х. Крюгер из Делфтского университета.

Испытание постоянным током в сравнении с испытанием перенапряжения

Все полученные в результате документы относятся к так называемым «контрольным испытаниям», «испытаниям на устойчивость» или «испытаниям в режиме высокого напряжения», под которыми они подразумевают «высокие» напряжения (опять же это слово) по отношению к рабочему напряжению. системы, применяются к кабелям, чтобы увидеть, не произойдет ли пробой во время испытания.Например, испытательное напряжение 40 кВ может использоваться для проверки системного кабеля 15 кВ. В контексте этих режимов тестирования кабелей в документах также упоминается «испытание постоянным током», чтобы отличать его от испытания переменного тока при аналогичных напряжениях. Однако исследователи не говорят обо всех тестах постоянного тока независимо от используемого напряжения — в конце концов, мультиметр использует постоянное напряжение от 0,5 до 2,5 В для проверки целостности цепи, но это определенно не будет включено! Исследователей интересуют только «высокие» напряжения постоянного тока, но что в данном контексте означает «высокое»?

Расследование EPRI

Отчет EPRI начинается с заявления: «Испытания кабелей высоковольтным постоянным током используются для выявления грубых дефектов или износа…».

В этом контексте напряжения, о которых идет речь, абсолютно четко указаны в таких заявлениях, как:

«Испытание постоянным током при 40 кВ приведет к сокращению срока службы кабеля с изоляцией из сшитого полиэтилена с ускоренным старением» и

«Испытания постоянным током при 70 кВ или 55 кВ перед старением, по-видимому, не влияют на срок службы кабеля.

В ходе исследований были изучены три класса кабелей с изоляцией из сшитого полиэтилена: новые, прошедшие естественное старение и прошедшие ускоренное старение в лаборатории при работе на них при примерно вдвое нормальном рабочем напряжении при высокой температуре.

Отбор проб

Затем образцы были разделены на две группы, и одна группа была подвергнута испытанию на перенапряжение постоянного тока, а другая группа — нет. Испытательные напряжения постоянного тока, приложенные к кабелям, составляли от 3 до 3.В 8–5,2 раза превышающее расчетное напряжение переменного тока кабелей, обычно от 40 кВ до 68 кВ. Затем оба набора образцов были подвергнуты дальнейшему испытанию при напряжении переменного тока «ускоренного старения», и сравнили окончательное время отказа образцов.

Результаты

При некоторых испытаниях образцы, которые подвергались испытаниям на перенапряжение постоянного тока, выходили из строя раньше, чем непроверенные образцы. Например, два из протестированных кабелей вышли из строя через 346 и 887 дней, в то время как их непроверенные аналоги прослужили более 928 дней.Однако результаты отнюдь не были однозначными, поскольку 32 других кабеля в исследовании не показали статистически значимой разницы между протестированными и непроверенными образцами.

Выводы исследований EPRI

Тем не менее, в свете более ранних лабораторных работ по микроскопическому анализу образования водяных деревьев и с учетом ограниченной способности перенапряжения постоянного тока вызывать отказ во время испытания, исследователи пришли к выводу, что, хотя испытания перенапряжения постоянного тока на новом кабеле не связаны с риском. Из-за деградации кабеля существует потенциальный риск ускоренного старения уже состаренного кабеля из сшитого полиэтилена.

Механизмы отказа

Исследование показало, что проблема с испытаниями на перенапряжение связана с индукцией электрического поля в изоляции порядка 230 В на тысячную долю дюйма («thou» на британском языке или «mil» на американском языке). В метрическом мире это эквивалентно 9050 В / мм. Это электрическое поле является проблемой для сильно устаревшей изоляции из сшитого полиэтилена, поскольку электрическая прочность такого кабеля может упасть ниже 300 В на тысячную долю дюйма (12000 В / мм).С этого момента напряжение перенапряжения может заметно повредить изоляцию.

Исследование также установило, что когда

Изоляция

новая, ее диэлектрическая прочность составляет порядка 1100 В на тысячную долю дюйма (44000 В / мм). Это примерно в четыре раза больше напряженности поля, создаваемой во время испытаний на постоянном токе, поэтому она не повлияет на новую изоляцию.

Высокое напряжение

Имея в виду вышесказанное, важно понимать, что напряжения, возникающие в кабеле, не являются просто результатом приложения постоянного напряжения — перенапряжение переменного тока также ускоряет старение — но в первую очередь вызваны высоким напряжением, используемым при испытаниях на перенапряжение.

Испытания изоляции под напряжением

Не все испытания изоляции кабелей проводятся при высоком напряжении. Фактически, многие испытания на постоянном токе обычно проводятся при 2,5 кВ или 5 кВ. Эти электрические напряжения, возникающие в результате таких испытаний, составляют от одной восьмой до одной шестнадцатой от электрической прочности даже сильно устаревшего кабеля из сшитого полиэтилена. Нет никаких доказательств того, что это вызывает какие-либо проблемы с изоляцией. Эти значения на самом деле значительно меньше, чем соотношение напряжение / электрическая прочность, которое, как было доказано, не создает проблем для новых кабелей из сшитого полиэтилена.

Таким образом, испытание изоляции постоянного тока под напряжением

может использоваться как часть процедур ввода в эксплуатацию и технического обслуживания, не беспокоясь о повреждении кабелей из сшитого полиэтилена. Действительно, он часто используется коммунальными предприятиями, например, с 10-минутным временем тестирования между каждой фазой и экраном с уровнем прохождения 10 ГОм. Другие утилиты используют эту форму тестирования в сочетании с другими тестами для проверки согласованности между фазами.

Почему испытание на перенапряжение постоянного тока является проблемой для XLPE

Хотя перенапряжения как постоянного, так и переменного тока могут ускорить старение, при типичной продолжительности испытаний, составляющей, скажем, 30 минут, проблема с XLPE намного хуже с постоянным током, чем с переменным током.Это связано с тем, что электрическое поле, сохраняющееся в том же направлении в течение всего испытания, может создавать нежелательные пространственные заряды внутри изоляции из сшитого полиэтилена; когда на кабель впоследствии снова подается напряжение, эти заряды остаются, вызывая очень высокие локальные напряжения. Нормальное напряжение переменного тока плюс объемный заряд могут запустить электрическое дерево в изоляции, которое может перерасти в неисправность и сократить срок службы. После испытания на перенапряжение постоянного тока для рассеивания пространственного заряда может потребоваться до 24 часов, и, в большинстве случаев, оставлять кабель в нерабочем состоянии на такое время непрактично.

Решения для испытания кабелей из сшитого полиэтилена

Разумно утверждать, что любое испытание, предназначенное для определения состояния изоляции, должно оценивать испытываемую систему как можно ближе к ее нормальным рабочим условиям. Таким образом, для кабельной системы, предназначенной для работы на частоте переменного тока, испытание перенапряжения переменного тока на частоте 50/60 Гц может считаться наиболее репрезентативным испытанием, особенно потому, что изменение направления поля позволит избежать образования постоянных пространственных зарядов.

Однако на промышленной частоте кабель представляет собой большую емкостную нагрузку, типичные значения которой составляют 300 пФ / м. Таким образом, кабель 66 кВ длиной 500 м, испытываемый при 100 кВ переменного тока, будет иметь емкостную нагрузку 470 кВА. Ясно, что для обеспечения такой нагрузки потребуется большая, тяжелая и очень дорогая тестовая система. И, если бы такая тестовая система была запитана от однофазного источника 400 В, требуемый входной ток превысил бы 1 кА! Даже если бы использовался комплект для последовательного резонансного тестирования, который снижает требования к входной мощности, он все равно был бы большим и дорогим. Однако иногда альтернативы нет, и доступ к этому виду специализированного оборудования время от времени требуется некоторым коммунальным предприятиям и многим производителям оборудования и кабелей.

В обычных полевых условиях, однако, тестеры VLF (очень низкой частоты) часто являются приемлемым и гораздо более удобным вариантом, но они по-прежнему требуют тщательного рассмотрения уровней напряжения и методов тестирования.

VLF AC Techniques

Очевидно, что уменьшение эффекта емкостной нагрузки кабеля поможет облегчить практические испытания, поэтому испытания СНЧ проводятся на частотах ниже 1 Гц.Уменьшение тестовой частоты до 0,1 Гц, частоты, наиболее часто используемой для тестирования VLF, означает, что выходная мощность, необходимая для тестера, уменьшается в 500 раз, что делает его гораздо более практичным предложением для полевых испытаний.

В руководстве IEEE по полевым испытаниям кабелей с использованием СНЧ (IEEE 400.2, таблица 1) приведены сводные данные о испытательных напряжениях СНЧ, применимых к различным типам кабелей, с разделением каждого на категории для установки, приемки и технического обслуживания.

Продолжительность испытаний при испытании СНЧ значительно больше, чем при испытании 5/10 кВ постоянного тока.Рекомендуемая продолжительность одного теста обычно составляет 30 или 60 минут, что может сделать процесс длительным, когда необходимо тестировать каждую фазу отдельно.

Было проведено полевое исследование отказов, связанных с тестированием, для подтверждения исходных лабораторных исследований, которые привели к разработке тестирования VLF. Это показало, что «тесты VLF в IEEE Std. Уровни 400.2 существенно не повреждают кабельные системы ».

Обратите внимание, однако, что это исследование также предостерегает от повышения рекомендуемых значений напряжения СНЧ для кабелей, подвергнутых полевому старению, в попытке сократить время тестирования (например, до 15 минут на фазу), поскольку это может вызвать проблемы с множественными отказами.

Новые кабели, напротив, могут выдерживать более высокие напряжения, как определено, например, в IEC605202-2, который включает испытательное напряжение для новых кабелей 3Uo при 0,1 Гц в течение 15 минут. Итак, это еще один случай, когда необходимо четко понимать, какая высота достаточно высока, а какая — слишком высока!

Можно подумать, что используемые очень низкие частоты могут неадекватно отражать напряжения в кабеле, когда он работает на промышленной частоте. По этой причине адаптированная форма волны, известная как «косинусно-прямоугольная», часто используется в испытательных наборах VLF.Этот сигнал представляет собой по существу прямоугольную волну с нарастающим и спадающим фронтами, которые точно соответствуют наклону синусоидальной волны промышленной частоты. Это означает, что напряжения, возникающие в кабеле при испытании с косинусо-прямоугольной формой волны, более характерны для тех, которые кабель испытывает при нормальной работе.

Косинусно-прямоугольный СНЧ для тестирования более длинных кабелей

Этот косинусо-прямоугольный сигнал рекомендован стандартами IEC, DIN VDE, HD620

документов по гармонизации и IEEE400.В документе CIGRE об опыте тестирования кабелей в США не было обнаружено каких-либо существенных различий в диагностических возможностях синусоидальной и косинусно-прямоугольной формы волны, но косинусно-прямоугольное оборудование позволяет проводить испытания на нагрузках с более высокой емкостью и, следовательно, делает его можно тестировать более длинные кабели, чем те, которые можно тестировать с помощью сопоставимого набора для тестирования синусоидальных сигналов.

Лошади на курсы…

Практические советы по полевым испытаниям кабелей можно резюмировать следующим образом:

1.Испытание изоляции при 2,5 кВ или 5 кВ (испытание пониженным напряжением)

  • Может выполняться на оборудовании высокого и среднего напряжения, включая кабели с изоляцией из сшитого полиэтилена, без опасения вызвать неисправности, либо в качестве недорогого теста Go-NoGo, либо, на некотором оборудовании, в качестве диагностического теста изоляции с использованием таких методов, как ступенчатое напряжение, показатель поляризации или диэлектрический разряд. При обычно используемых напряжениях и продолжительности нет никаких доказательств ухудшения изоляции кабеля из сшитого полиэтилена.

2. Контрольные испытания постоянного тока «Hi-Pot» при 40 кВ / 70 кВ или выше (испытание на перенапряжение)

  • Может выполняться при вводе в эксплуатацию любого нового кабеля, хотя некоторые типы дефектов могут быть пропущены.
  • Не следует проводить для испытаний устаревших кабелей из сшитого полиэтилена или других кабелей с твердым диэлектриком во время цикла технического обслуживания, но можно проводить на кабелях с многослойным покрытием.

3. Тестирование СНЧ

  • Может применяться как с кабелями с ламинированным, так и с твердым диэлектриком.
  • При тестировании
  • VLF используется частота 0,1 Гц, что решает проблемы с тестированием постоянного тока Hi-Pot (более 40 кВ) на XLPE или смешанных кабелях, поскольку направление электрического поля меняется.
  • Пониженное энергопотребление по сравнению с испытанием промышленной частоты означает, что испытательное оборудование можно сделать транспортируемым и оно стоит меньше.
  • VLF может тестировать длинные кабели из-за требуемых низких уровней тока, и эта возможность максимизируется с помощью опции тестирования косинусно-прямоугольной формы.

Термоусадка 6.6kV 7.2kV HV

прекращения кабеля одиночного ядра XLPE на открытом воздухе

Просмотр дополнительных продуктов

Концевая заделка кабеля 6. 6кВ | Одноядерный | XLPE | На улице

Комплекты для заделки кабелей из сшитого полиэтилена с использованием термоусадочной технологии подходят для заделки внутри помещений одножильных кабелей среднего / высокого напряжения (СН-ВН) до 7,2 кВ.

Используется для подключения силовых кабелей 6,6 кВ / 7,2 кВ к распределительному устройству среднего и высокого напряжения, трансформатору, двигателю или кабельным коробкам — для внутренней заделки кабеля 6,6 кВ доступна версия .

Концевая заделка одножильного кабеля из сшитого полиэтилена

ВЫСОКОГО НАПРЯЖЕНИЯ HV НАРУЖНАЯ ТЕПЛОУСАДКА

  • Концевая заделка кабеля — термоусадочная
  • Место подключения — вне помещения
  • Напряжение — 6.6 кВ / 7,2 кВ
  • Кабельная изоляция типа — XLPE EPR (полимерный)
  • Количество ядер — одноядерный
  • Проводники — 25 кв. м, 35 ​​кв.м, 50 кв.м, 70 кв.м, 95 кв.м, 120 кв.м, 150 кв.м, 185 кв.м, 240 кв.м, 300 кв.м, 400 кв.м, 500 кв.м, 630 кв.м, 800 кв.м, 1000 кв.м
  • Термоусадочная стандартная длина хвостовика — 400 мм
  • Костюм кабели на 6,6 кВ — BS6622, BS7835, BS7870, BS6883, BS7917 и IEC60502-2

6.Тестирование и выбор концевой заделки кабеля 6 кВ

Термоусадочные полимерные системы тестируют термоусадочные соединения и муфты 6,6 кВ , как описано в стандартах CENELEC HD 628 S1 и 629.1 S2: 2006, охватывающих VDE 0278 и IEC 60502.

Следующая таблица позволяет выбрать комплект термоусаживаемых заделок для одножильных внутренних кабелей из сшитого полиэтилена напряжением до 7,2 кВ — индивидуальные заделки доступны для всех типов высоковольтных полимерных кабелей.

➡ Больше оконечных устройств на 6,6 кВ: 3-жильный внутренний 7.2кВ XLPE | 3-жильный наружный 7,2 кВ XLPE

Также MV HV: Концевые муфты холодной усадки 3M | Разъемные соединители Euromold | Заглушки для внутреннего конуса Pfisterer | Кабельные зажимы | Кабельные вводы | Уплотнения воздуховодов | Инструменты

Концевая заделка кабеля 6,6 кВ / 7,2 кВ Внутри помещений Комплект для заделки кабеля из сшитого полиэтилена — одноядерный Концевая заделка кабеля 6,6 кВ / 7,2 кВ для установки вне помещений
1TIS-7. 2X-A 25-50 кв.м 1ТЭС-7.2X-A
1TIS-7.2X-B 70-185 кв. Мм 1TES-7.2X-B
1TIS-7.2X-C 240-300 кв. Мм 1TES-7.2X-C
1TIS-7.2X-D 400-500 кв. Мм 1TES-7.2X-D
1TIS-7.2X-E 630-1000 кв.м 1TES-7.2X-E
Список комплектов заделки кабелей
Термоусадочные трубки Anti Track (красные) 3
Термоусадочные трубки для контроля напряжения (черные) 3
Лента для снятия напряжений (только экранированный кабель HV XLPE) 3
Красная мастиковая уплотнительная лента 1
Салфетки для очистки кабелей из сшитого полиэтилена 3
Навесы от дождя 1
Инструкции по монтажу высоковольтного соединения Одноядерный из сшитого полиэтилена для наружной установки 1

Посмотрите, как установить заделки и соединения среднего напряжения

6. Принадлежности для оконечной нагрузки на 6 кВ

Полный набор аксессуаров для наружной заделки одножильных кабелей 6,6 кВ.

Сапоги втулки концевой заделки кабеля 6,6 кВ | Кабельные вводы | Комплекты заземления экрана | Кабельные наконечники

Концевые заделки высокого напряжения, соединители, вилки

T&D поставляет высоковольтные термоусадочные, холодноусадочные и вставные кабельные наконечники и соединители для высоковольтных соединений силовых кабелей к распределительным устройствам и трансформаторам с воздушной, газовой или масляной изоляцией, 11–33 кВ.

Сертифицированный склад T&D — 3M, Elastimold, Nexans Euromold & Pfisterer

Кабели питания

— A2XFY / 2XFY-A2XWY / 2XWY-3.5 Core

Кабельная конструкция

1,1 кВ (перем. Ток) и 1,5 кВ (пост. Ток) на землю
3,5-жильные жилы AL / CU, изоляция из сшитого полиэтилена, оцинкованная стальная лента / армированная проволокой Кабели в соответствии с IS 7098 Часть -1.
Провод: AL / CU многожильный компактный, профильный провод согласно кл.2, IS 8130.
Изоляция: Сшитый полиэтилен (XLPE)
Цвет фазового сердечника: Красный, желтый, синий
Цвет нейтрального сердечника: Черный
Внутренняя оболочка: Лента ПВХ / ПВХ согласно IS 7098 ( P — 1)
Армирование: Одинарное армирование из оцинкованной стальной ленты / проволоки
Наружная оболочка: ПВХ тип ST — 2 согласно IS 5831. (Опция: тип FR / тип FRLS)
Цвет кабеля: Черный Опции: любой другой цвет по требованию)

Параметры конструкции кабеля

При заказе в дополнение к номеру детали необходимо указать следующие данные:
Тип проводника (алюминий или медь) и класс проводника (кл.1 или 2).
Тип оболочки — ПВХ Тип СТ — 2 (FR или FRLS).

Номер детали Размер Ядра x Кв. мм + нейтраль (кв. мм) Номинальная толщина изоляции (мм) Минимальная толщина внутренней оболочки (мм) Броня плоской полосой (A2XFY / 2XFY) Броня круглой проволокой (A2XWY / 2XWY)
Номинальная толщина полосы (мм) Минимальная толщина внешней оболочки (мм) Прибл.Общий диаметр (мм) Прибл. Вес нетто кабеля (кг / км) Номинальный диаметр провода (мм) Минимальная толщина внешней оболочки (мм) Прибл. Общий диаметр (мм) Прибл. Вес нетто кабеля (кг / км)
Кабель AL A2XFY Кабель CU 2XFY Кабель AL A2XFY Кабель CU 2XWY
112101010211 3 × 25 + 16 0,9 / 0,7 0,3 0.8 1,40 23 900 1400 1,6 1,40 25 1080 1685
112101020211 3 × 35 + 16 0,9 / 0,7 0,3 0,8 1,40 25 1000 1800 1,6 1,40 27 1285 1980
112101030211 3 × 50 + 25 1. 0 / 0,9 0,3 0,8 1,40 28 1200 2300 1,6 1,56 30 1580 2685
112101040211 3 × 70 + 35 1,1 / 0,9 0,4 0,8 1,56 32 1600 3200 2.0 1,56 35 2190 3690
112101050211 3 × 95 + 50 1,1 / 1,0 0,4 0,8 1,56 35 2000 4100 2,0 1,56 38 2580 4585
112101060211 3 × 120 + 70 1.2 / 1,1 0,4 0,8 1,72 39 2400 5100 2,0 1,72 42 3085 5680
112101070211 3 × 150 + 70 1,4 / 1,1 0,5 0,8 1,72 43 2800 6000 2. 0 1,88 46 3590 6790
112101080211 3 × 185 + 95 1,6 / 1,1 0,5 0,8 1,88 47 3400 7400 2,5 2,04 51 4675 8615
1121010 3 × 240 + 120 1.7 / 1,2 0,6 0,8 2,04 53 4300 9500 2,5 2,20 56 5680 10485
112101100211 3 × 300 + 150 1,8 / 1,4 0,6 0,8 2,20 57 5000 11500 2.5 2,36 60 6685 12990
112101110211 3 × 400 + 185 2,0 / 1,6 0,7 0,8 2,52 66 6400 14500 3,2 2,68 71 8980 16980
112101120211 3 × 500 + 240 2. 2 / 1,7 0,7 0,8 2,68 74 7900 18000 3,2 2,84 79 10985 21485
112101130211 3 × 630 + 300 2,4 / 1,8 0,7 0,8 3,00 82 9900 23000 4.0 3,00 88 14490 27985
.

Добавить комментарий

Ваш адрес email не будет опубликован.