Как проверить конденсатор на работоспособность мультиметром
Тестирование с помощью мультиметра
Мультиметр является универсальным средством измерения различных параметров электрических цепей, узлов и деталей.
Он позволяет измерить:
- Величину тока как постоянного, так и переменного.
- Значение напряжения.
- Параметры сопротивления и прочие параметры.
Мультиметры, в зависимости от способа вывода данных, бывают аналоговые и цифровые. Если мультиметр цифровой, то измеренные параметры выводятся на жидкокристаллическом экране.
При аналоговом варианте, параметры отображаются на дисплее со стрелочкой. Вариант с градуировкой удобнее для измерения и проверки конденсаторов. Визуально проще увидеть отклонение стрелки, чем быстроменяющиеся цифры.
Если конденсаторы переменные, то они пропускают ток в различных направлениях, а постоянные, то только в одном, до тех пор, пока не зарядятся.
Мультиметры имеют свой источник питания, то есть обладают номинальным напряжением и полярностью.
Области применения
Конденсаторы находят применение практически во всех областях электротехники:
- Фильтры выпрямителей и стабилизаторов в источниках питания.
- Передача сигналов в усилителях.
- Различные частотные фильтры. Разделяют звуки на низкие, средние, высокие.
- В таймерах. Они устанавливают временные отрезки пускового механизма стиральной машины, микроволновки.
- В переходниках. Например, можно подключить электродвигатель, рассчитанный на 380 вольт к сети с напряжением в 220 вольт. Конденсатор подсоединяется к третьему выводу, сдвигая фазу на 90 градусов на третьем выводе. В результате можно трехфазный мотор включать в однофазную сеть 220 вольт.
- В генераторах. Подбор частоты колебаний и т. д.
В настоящее время сложно встретить электрическую схему, где бы ни использовались конденсаторы.
youtube.com/embed/UYyZf836geE?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>Несложные конденсаторы практически не выходят из строя, поломка может возникнуть только при механическом воздействии. Электролитические кондеры могут со временем «высыхать». Если прибор продолжительное время не эксплуатируется, то диэлектрический слой ухудшает непроводимость тока.
Если полярные конденсаторы неправильно подсоединить в схеме, перепутав полюса, то элемент тоже может выйти из строя или даже привести к короткому замыканию на плате.
При замене конденсаторов, их обязательно надо тестировать и проверять. Поскольку даже в неиспользуемых ранее элементах, при длительном хранении может высохнуть диэлектрик.
Способов проверки радиоэлементов несколько. В одних случаях достаточно внешнего осмотра. Лучше всего подходит тестирование прибором LC-метром. Но если его нет под рукой, то проверить исправность кондера можно тестером или мультиметром. Последний способ подходит для конденсаторов, с емкостью, превосходящей 0.25 микрофарад.
Как проверить мультиметр на работоспособность
Надо перевести переключатель в положение для измерения сопротивления. Обычно это положение обозначается ОНМ. Прибор следует отградуировать механической градуировкой так, чтобы стрелка совместилась с крайней риской.
Замкнуть хвостики отверткой, ножом, одним из щупальцев мультиметра для снятия заряда с конденсатора
На этом этапе надо действовать аккуратно и осторожно. Даже небольшой бытовой элемент может нанести удар по человеческому телу
После включения прибора, необходимо перевести переключатель в режим измерения сопротивления и соединить щупы. На дисплее должно отразиться нулевое значение сопротивления или близко к нему.
Ход проверки
Определяют визуально на предмет физических нарушений. После чего пробуют крепление ножек на плате. Несильно раскачивают элемент в разные стороны. При обрыве одной из ножек или отслаивании электродорожки на плате, это сразу будет заметно.
Если внешних признаков нарушений нет, то сбрасывают возможный заряд и прозванивают мультиметром.
Если на приборе показано практически нулевое сопротивление, то элемент начал заряжаться и исправен. По мере зарядки, сопротивление начинает расти. Рост значения должен быть плавно, без рывков.
При нарушенной работоспособности:
- При зажиме разъёмов показания тестера сразу безразмерно велики. Значит, обрыв в элементе.
- Мультиметр на нуле. Иногда сигнализирует звуковым сигналом. Это признак короткого замыкания или, как говорят, «пробой».
В этих случаях элемент надо заменить на новый.
Если надо проверить работоспособность неполярного конденсатора, то выбирают предел измерения мегаомы. При тестировании исправная радиодеталь не покажет сопротивление выше 2 мОм. Правда, если номинальный заряд элемента меньше 0,25 мкФ, то требуется LC-метр. Мультиметр здесь не поможет.
После проверки на сопротивление следует проверка на ёмкость. Для того чтобы знать, способен ли радиоэлемент накапливать и удерживать заряд.
Тумблер мультиметра переводится в режим СХ. Выбирается предел измерения исходя из емкости элемента. К примеру, если на корпусе обозначена ёмкость в 10 микрофарад, то пределом на мультиметре может быть 20 микрофарад. Значение ёмкости указано на корпусе. Если показатели измерения сильно отличаются от заявленных, то конденсатор неисправен.
Этот вид измерения лучше всего проводить цифровым прибором. Стрелочный покажет лишь быстрое отклонение стрелки, что лишь косвенно говорит о нормальности проверяемого элемента.
Как проверить устройство не выпаивая
Для того чтобы случайно не сжечь паяльником какую-нибудь микросхему на плате, существует способ проверки конденсатора мультиметром не выпаивая.
Перед тем как прозвонить, электродетали разряжаются. После чего тестер переводится в режим проверки сопротивления. Щупальца прибора подключаются к ножкам проверяемого элемента, с соблюдением необходимой полярности. Стрелка прибора должна отклонится, поскольку по мере зарядки элемента его сопротивление увеличивается. Это свидетельствует о том, что конденсатор исправен.
Иногда приходится проверять на плате и микросхемы. Это сложная процедура, не всегда выполнимая. Поскольку микросхема представляет собой отдельный узел, внутри которого находится большое количество микродеталей.
Проверка микросхемы
Мультиметр ставится в режим измерения напряжения. На вход микросхемы подается напряжение в пределах допустимой нормы. После чего необходимо проконтролировать поведение на выходе микросхемы. Это очень сложный прозвонок.
Перед выполнением всех видов работ, связанных с электричеством, проверки, тестирования радиоэлементов, очень важно соблюдать правила безопасности. Мультиметр должен тестировать только обесточенную электрическую плату
Как измерить напряжение на конденсаторе
Кроме того, чтобы определить исправен ли элемент, необходимо выполнить проверку соответствия его реального напряжения к номинальному. Чтобы это сделать следует использовать тестер в режиме вольтметра, а также необходимо наличие источника питания для зарядки устройств. Значение напряжения должно быть меньшим нежели, то под которое рассчитаны накопители. Чтобы измерить вам понадобится подсоединить щуп к выводу и чуть подождать, до момента полной зарядки.
Следует учитывать, что в процессе проверки у накопителя теряется заряд и, очевидно, что напряжение будет быстро снижаться, именно поэтому важна начальная величина замера.
Существует более доступный способ проверить конденсаторы, но он подходит только для изделий, имеющих гораздо большую емкость. После полноценной зарядки накопителя, нужно взять простую отвертку с изолированной ручкой, поднести ее металлической частью к выводам и замкнуть их. Если же после проделанных манипуляций произошло возникновение искры, то это свидетельствует о работоспособности элемента. Если же она отсутствовала или была слабой, то это говорит о невозможности устройства держать заряд.
Особенности SMD конденсаторов
Современные технологии позволяют делать радиодетали очень малых размеров.
С применением SMD технологии компоненты схем стали миниатюрными. Несмотря на малые размеры, проверка SMD конденсаторов ничем не отличается от более габаритных. Если надо узнать, рабочий он или нет, сделать это можно прямо на плате. Если необходимо измерить емкость, надо выпаять, затем провести измерения.SMD технологии позволяют делать миниатюрные радиоэлементы
Проверка работоспособности SMD конденсатор проводится точно также как электролитических, керамических и всех других. Щупами надо прикасаться к металлическим выводам по бокам. Если они залиты лаком, лучше плату перевернуть и тестировать «с тыльной» стороны, определив, где находятся выводы.
Танталовые SMD конденсаторы могут быть полярными. Для обозначения полярности на корпусе, со стороны отрицательного вывода, нанесена полоса контрастного цвета
Даже обозначение полярного конденсатора похоже: на корпусе возле «минуса» нанесена контрастная полоса. Полярными SMD конденсаторами могут быть только танталовые, так что если видите на плате аккуратный прямоугольник с полосой вдоль короткого края, к полоске прикладывайте щуп мультиметра который подключен к минусовой клемме (черный щуп).
Проверка на короткое замыкание
Есть три способа сделать это.
Способ №1: определение КЗ в режиме прозвонки
Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.
Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки
Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.
Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость.
Следовательно, проверку на обрыв можно не делать.
Способ №3: проверка конденсатора лампочкой на 220В
Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.
Можно ли проверить конденсатор мультиметром не выпаивая его с платы?
Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.
Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.
Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.
Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.
Вот пример, когда все пять конденсаторов покажут ложное КЗ:
В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая «прозвонка» конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.
Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.
Вот очень правильный и понятный видос на эту тему:
Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.
Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.
Как проверить исправность электролитического конденсатора мультиметром
Сначала нужно провести внешний осмотр конденсатора. Повреждения электролитов нередко приводят к увеличению давления внутри их корпуса. В итоге они взрываются. Сила взрыва невелика, но больший вред окружающему пространству наносит разбрызгивание содержимого детали. Для исключения этого явления современные конденсаторы имеют в верхней части крестообразную насечку. При превышении давления корпус рвется по ее линиям и стравливает давление из корпуса, не давая ему достичь высоких значений. Заключение о неисправности можно смело дать в случаях вспучивания корпуса или его разрыва в месте насечки. В остальных случаях потребуется проверить работоспособность конденсатора.
Такой конденсатор необходимо заменить
Принцип проверки заключается в следующем. Мультиметры и тестеры используют для измерения сопротивления внутренний источник постоянного тока – батарейку. Для проверки исправности конденсатора прибор подключают к его выводам, соблюдая полярность. В первый момент времени прибор будет показывать сопротивление разряженного устройства, которое близко к нулю. Источник постоянного тока прибора начнет заряжать конденсатор, по мере зарядки сопротивление будет увеличиваться. Когда заряд закончится, прибор покажет бесконечно большое сопротивление, лежащее за пределом его измерения.
Перед тем, как проверить конденсатор мультиметром, его необходимо разрядить, замкнув выводы между собой или закоротив любым металлическим предметом: отверткой, пинцетом, ножом. Предел измерения мультиметра выставляется максимально возможным. Плюсовой вывод прибора, имеющий красный цвет и маркировку «Ω», соединяется с выводом радиодетали, обозначенным знаком «+». Минусовой вывод черного цвета, обозначенный на корпусе мультиметра «COM», подключается к другому выводу, и измерение начинается. При этом нужно внимательно следить за показаниями мультиметра, которые должны только увеличиваться, не изменяясь в меньшую сторону.
Должен быть обеспечен надежный контакт между щупами мультиметра и выводами детали, процесс не рекомендуется прерывать. Также нельзя держаться за оба вывода руками: тело человека имеет сопротивление, которое будет шунтировать элемент, мешая ему заряжаться. В конце проверки прибор покажет не бесконечность, а сопротивление тела, и исправность изделия определить будет невозможно.
Возможные результаты проверки конденсатора мультиметром:
- показания прибора равны нулю и не увеличиваются, любо увеличиваются незначительно. В этом случае у изделия наблюдается пробой (замыкание) обкладок между собой. Его подключение к схеме, где он работает, приведет к короткому замыканию
- показания прибора увеличиваются, но не достигают бесконечности, останавливаясь на определенном значении сопротивления. В этом случае между обкладками наблюдается ток утечки, а емкость изделия значительно снижается. Элемент будет работать, но неэффективно, выполняя свое функциональное назначение не полностью. Использование его в блоках питания приведет к недостаточной фильтрации выходного напряжения, на звуковых устройствах это сопровождается наличием фона 50 Гц в выходном сигнале. В других узлах это приводит к искажениям сигнала.
Рабочее напряжение мультиметра не превышает 1,5 В, а в схемах, где работают конденсаторы оно намного больше. Если прибор показывает утечку, то при установке изделия на свое место при рабочем напряжении не исключен его полный пробой.
При проверке работоспособности электролитического изделия изменять полярность подключения мультиметра не имеет смысла.
Проверка конденсатора тестером
Перед проверкой, как и перед любой работой с конденсатором, его следует разрядить. Если он маломощный, то достаточно отверткой замкнуть ножки элемента. Ручка отвертки должна быть изолирована.
Мощные конденсаторы разряжаются лампочкой накаливания. После вспыхивания лампочки он полностью разрядится.
Теперь можно проводить внешний осмотр. Определить испорченные радиодетали иногда можно невооруженным глазом. Если обнаружены коррозия, вздутие корпуса, подтеки, то деталь требует замены.
В некоторых импортных электролитических конденсаторах в верхней части размечен и выдавлен крест. Стенка корпуса в этом месте элемента тоньше. При пробое, именно там и рвется.
Перед прозвонкой нужно обязательно выпаять ножки. Иначе, остальные детали повлияют своим сопротивлением на показатели. В принципе, можно отпаять только одну ножку, но на практике, особенно у электролитических кондеров, ножки короткие. И технически это трудно сделать.
Для проверки детали на 220 вольт подходит простой способ тестирования:
- Проверяем степень разрядки.
- Проверяем тестером нет ли внутри короткого замыкания.
- Заряжаем конденсатор от сети. Обязательно надо соблюдать технику безопасности.
- Отключаем деталь от сети.
- Подключаем лампочку или просто соединяем ножки элемента. Если лампочка вспыхнула или появилась искра, то радиодеталь в порядке.
Проверка пускового и рабочего конденсаторов
Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.
- обесточиваем кондиционер
- разряжаем конденсатор, закоротив еговыводы
- снимаем одну из клемм (любую)
- выставляем прибор на измерение ёмкости конденсаторов
- прислоняем щупы к выводам конденсатора
- считываем с экрана значение ёмкости
У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.
В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх. Щупы включить в гнёзда с обозначением Сх.
Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.
У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.
Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.
Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)
К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).
После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.
Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.
Устройство элемента
Конденсаторы могут отличаться и по типу крепежа. Допустим печатный или навесной монтаж. Корпус их может быть выполнены из керамики, пластика или металла (алюминия).
Керамические конденсаторы, а также те, которые выполнены из пленки и другие неполярные не имеют на себе маркировки. Емкостный их показатель может колебаться от 1пф до 10 мкф.
Конденсаторы электролитного типа выполнены в виде небольших бочонков. Корпус их сделан из алюминия. Они имеют маркировку. В прямоугольных корпусах выполняются конденсаторы танталового типа. Они могут быть различного размера и различаются по окраске. На них тоже проставляется маркировочный код.
Из минусов можно выделить чрезмерную утечку тока и уменьшение емкости. Как показала практика, использование керамических конденсаторов наряду с электролитными вполне себя оправдывает. Данный тип характеризуется полярностью. Это означает, что минусовой вывод находится под отрицательным напряжением. Если не соблюдать это, то устройство выйдет из рабочего состояния. Поэтому такие типы применяются только в цепях с постоянным или пульсирующим током.
Электролитические конденсаторы имеют широкий ряд моделей. Имеются полимерные, полимерно-радиальные с очень низким уровнем потери тока, стандартные с большим диапазоном температур. Бывают миниатюрные, неполярные.
Это устройство нашло столь широкий круг применения, но довольно часто ломается, поэтому следует знать, как проверить конденсатор мультиметром.
В данном месте следует сделать небольшое отступление и дать пояснение о том, что такое мультиметр. Им называют измерительный прибор, обладающий многофункциональными свойствами. Он позволяет производить замеры сопротивления электрического тока, напряжения и силу тока. Это основное его назначение в простейшем исполнении. Мультиметром можно обнаружить разрывы электрической цепи. Некоторые модели позволяют проверить работоспособность электрических ламп. Это очень удобно, всегда иметь под рукой такой компактный и функциональный прибор.
Проверка мультиметром
Наиболее простым, и в то же время доступным способом тестирования является проверка мультиметром. Этот прибор способен измерять различные электротехнические величины, от сопротивления до напряжения и частоты. В частности, он может измерить и емкость конденсатора. Проверка емкости не происходит мгновенно. Тестеру нужно время для того, чтобы зарядить элемент до определенного уровня напряжения, а потом разрядить его. По величине тока разряда и времени производится заключение о емкости.
Измерение емкости
Перед установкой любых элементов в аппаратуру при ремонте или проектировании требуется протестировать их исправность и соответствие заданным параметрам. Поэтому необходимо знать, как проверить емкость конденсатора мультиметром. Нужно выполнить несколько простых действий:
- Установить измерительные щупы мультиметра в подходящие отверстия на его корпусе. Черный щуп — в отверстие с маркировкой COM, а красный — в гнездо с надписью Ом, Hz, U.
- Выбрать режим проверки конденсаторов ручкой на лицевой панели прибора. Обычно этот режим обозначен условным значком электроконденсатора — двумя параллельными линиями с выводами.
- Прикоснуться щупами мультиметра к выводам элемента. При этом на экране тестера должно отобразиться значение его емкости в микрофарадах. Обычно измерительный прибор показывает, в каких величинах производится измерение, либо эти данные есть на его измерительной шкале.
- Если полученное значение отличается от номинального более чем на допуск, указанный в описании этого типа электроконденсаторов (может быть от 0,5 до 80%), значит, элемент не должен применяться по назначению.
Знать, как измерить емкость конденсатора мультиметром, необходимо также и при проверке электроприбора на ошибки в работе. Любой электротехнический прибор может начать работать нестабильно, и причиной этого может служить выход из строя одного или нескольких элементов. Если провести измерение емкости используемых в приборе конденсаторов, можно выявить и устранить причину неисправности.
com/embed/ckMU05mAjsE?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Тест сопротивления
Узнать, произошёл ли пробой элемента, также можно, измерив его сопротивление. Некоторые измерительные приборы не имеют возможности проверять емкость электроконденсаторов. Но такими измерителями все равно можно протестировать аппаратуру, если замерить величину сопротивления между обкладками используемых в ней конденсаторов.
Для этого нужно выполнить все действия, описанные для проверки емкости, но режим измерения нужно выбрать другой — проверку сопротивления. Этот режим обычно обозначен диапазоном измерения в Омах. Для проверки конденсаторов лучше выбрать диапазон, равный 200 Ом. Если при прозвонке элемента выявлено сопротивление ниже 50 Ом, такой элемент подвергся пробою и не может быть использован.
Прозвонить элемент можно также и внутри схемы, непосредственно в аппаратуре. Однако проверка конденсатора мультиметром, не выпаивая ни одну из его ножек, приводит к ошибкам измерения, так как тестируется также и вся остальная схема, находящаяся между измерительными щупами. Поэтому для измерения нужно выпаять хотя бы один из выводов элемента.
Знать, как проверить конденсатор мультиметром, не выпаивая, необходимо при кропотливой проверке электротехнических приборов на возможную неисправность, если точно известно, что неисправность заключается в одном из элементов. При этом следует выпаять одну из ножек каждого элемента и поочередно померить их сопротивление и емкость. Таким образом можно выявить вышедшие из строя элементы.
youtube.com/embed/YEhaDKOCCEw?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Подготовка перед проверкой
В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.
Мультиметр с аналоговой шкалой и цифровой мультиметр
Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.
Для подготовки к проверке:
Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными
Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.
Как проверить конденсатор
Прежде всего, стоит просто осмотреть его. Со временем корпус конденсатора может разрушиться, ножки могут начать качаться. На электролитических конденсаторах могут появиться подтеки. Конденсатор может изменить свой цвет. Это означает, что произошел пробой конденсатора.
Пробой – это такое состояние детали, когда диэлектрик, лежащий между двумя разноименными прокладками, разрушился, со временем или под воздействием внешних причин, и между прокладками проскочил электрический заряд. В результате конденсатор пришел в негодность. В этом случае, как и в случае появления вышеописанных дефектов, конденсатор подлежит замене.
При визуальном осмотре не всегда удается вывить неисправности конденсатора. Поэтому воспользуемся мультиметром.
Подготовительные работы
Перед проверкой конденсатора его рекомендуется выпаять из электросхемы. Дело в том, что рядом стоящие детали могут вносить искажения в показания прибора. Выпаиваем конденсатор и разряжаем его. Разряжать конденсатор нужно для того, чтобы сбросить накопленную им во время работы емкость. Мощные конденсаторы, рассчитанные на 220 и 380 вольт, лучше разряжать с помощью пробника. Пробник – электропатрон с лампочкой и двумя проводами. Если конденсатор рассчитан на 220 вольт, то пробник может быть с одной лампочкой. Если на 380 вольт, то лучше в пробник поставить несколько лампочек, включенных последовательно. Лампочка на мгновение вспыхнет и погаснет. Конденсатор разрядился.
Для того чтобы разрядить менее мощные конденсаторы можно воспользоваться отверткой с изолированной ручкой. Жалом отвертки замыкаем концы конденсатора. Проскочит небольшая искорка. Конденсатора разряжен.
Проверки сопротивления, как метод выявление вышедших из строя деталей
Сначала проверим его на сопротивление. При этом надо учесть, что электролитические конденсаторы относятся к полярному типу конденсаторов. То есть одна из прокладок у него положительно заряжена, другая – отрицательно. На корпусе конденсатора они помечены знаками «+» и « — « Полярными бывают только электролитические конденсаторы.
Устанавливаем на мультиметре режим измерения сопротивления. Если проверяем электролитический конденсатор, плюсовым концом щупа прибора касаемся плюса конденсатора, а минусовым – минуса. Если конденсатор исправен, то сразу высветится минимальное значение сопротивления. Потом оно будет плавно возрастать до максимума. Сопротивление может так же возрасти и до бесконечности. Только при исправном конденсаторе рост его происходит плавно. Не рывками.
Если конденсатор неисправен, то в одном случае прибор не показывает никакого сопротивления, т .е . ноль. При этом прибор может пищать. Это означает, что конденсатор пробит, произошло короткое замыкание. Если при касании щупом ножек конденсатора, прибор сразу показывает бесконечность, то в конденсаторе есть обрыв. И в том и в другом случае конденсатор не пригоден для дальнейшего использования, и его следует заменить.
Остальные типы конденсаторов, они, кстати, относятся к неполярным конденсаторам, проверять на сопротивление проще. Не имеет значения, каким контактом вы коснетесь ножки конденсатора, плюсом или минусом. Для измерения сразу устанавливаем величину сопротивления в Мегаомах. Сопротивление неисправного конденсатора никогда не превышает величину в 2 Мегаома. У исправного сопротивление или равно, или больше этой величины.
Проверка на неисправности с помощью измерения ёмкости
Замеряя сопротивление конденсатора, мы только проверяем его исправность. Нам еще нужно определить его емкость — самый главный номинал конденсатора.
Учтите, что на пробой с помощью мультитестора можно проверить только те конденсаторы, емкость которых меньше 0,25 микрофарад.
Как мы видим, нет ничего сложного в проверке с помощью мультиметра работоспособности конденсатора и соответствии его заявленным номиналам. Мы уже говорили, что со временем конденсаторы утрачивают свою способность накапливать и распределять энергию. Они попросту высыхают. Поэтому нужно регулярно проверять свои электронные и электрические схемы и отбраковывать пришедшие в негодность конденсаторы. Этим вы обеспечите надежную и качественную работу своей аппаратуры.
Как измерить ток утечки конденсатора?
уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.
Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:
При проверке полярных конденсаторов на утечку необходимо соблюдать полярность их подключения. В противном случае будут получены некорректные результаты.
При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации
Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:
ТОЧНОЕ ИЗМЕРЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА
Сейчас практически каждый универсальный мультиметр имеет возможность измерения емкости конденсаторов. Это особенно полезно, когда имеем дело с конденсаторами, маркировка которых нечитаема или отсутствует. В этом случае достаточно измерения с точностью до нескольких процентов, потому что во-первых, сами конденсаторы не так точны, а во-вторых, для устройств этого хватает. Но иногда необходимо знать точное значение емкости конденсатора. Ведь прецизионные конденсаторы труднодоступны и довольно дороги. Поэтому просто берем упаковку одинаковых и подбираем подходящий. Так как точно измеряется емкость конденсатора? Есть несколько способов сделать это.
Метод 1: мост Вина
Это один из первых методов точного измерения емкости, изобретенный Максом Вином в 1891 году. С помощью моста Вина можно точно измерить как емкость, так и сопротивление. А после преобразования в мост Максвелла еще и индуктивность. Все аналоговые мосты RLC основаны на принципе этой схемы.
Вход Uwe подключен к генератору синусоидальной волны с фиксированной или регулируемой частотой. К Uwy подключен вольтметр. Rx и Cx — искомые сопротивление и емкость. R3 и C2 известны и постоянны. R2 и R4 — потенциометры, снабженные шкалами, с которых считываются значения Rx и Cx. Эти потенциометры регулируются до тех пор, пока мост не будет сбалансирован и вольтметр не покажет ноль. Тогда удовлетворяются две зависимости:
Точность измерения зависит от стабильности генератора питающего мост, и знания номинала резисторов и емкости C2. Используя известные значения Rx и Cx, его можно откалибровать.
Метод 2: измерение частоты LC-генератора
В схеме использован простой LC-генератор с компаратором. В резонансном контуре работают известная емкость и известная индуктивность. Дополнительная, подключаемая к реле, позволяет рассчитать точные значения L и C используемых компонентов. Во время измерения добавленная внешняя емкость или индуктивность изменяет частоту колебаний генератора и это изменение позволяет рассчитать измеренное значение.
Эта схема существует в нескольких вариантах, часто с использованием встроенных в микроконтроллер компараторов. Точность расчетов в исходной версии — 0,1%. Точность калибровки зависит от точности калибровочного конденсатора.
Метод 3: измерение ёмкости с помощью CTMU
CTMU или блок измерения времени зарядки — это модуль имеющийся во многих микроконтроллерах PIC, предназначенный в основном для управления клавиатурами и сенсорными интерфейсами. Модуль также позволяет точно измерять емкость, измеряя напряжение на тестируемом конденсаторе, питаемом от источника тока в течение определенного периода времени. В основе работы системы лежит формула заряда:
Поскольку нам известны ток I и время t, и можем измерить напряжение V, то чтоб вычислить значение C. Метод работы показан на рисунке ниже из документации к AN1375. Тут видно, как откалибровать и измерить емкость.
Предпосылками для точного измерения абсолютного значения емкости являются точная калибровка источника тока, относительно точный таймер микроконтроллера и хороший источник опорного сигнала для АЦП. Источник тока можно легко откалибровать — просто подсоедините внешний точный резистор и измерьте приложенное к нему напряжение. Кстати, прецизионные резисторы найти легче, чем прецизионные конденсаторы.
Но прямое измерение емкости имеет еще один недостаток — вся схема нагружена различными паразитными емкостями. Поэтому рекомендуется постоянно подключать конденсатор параллельно измерительному входу, проводить измерения и использовать это значение как «ноль».
Последовательность шагов:
- Сформировать и откалибровать источник тока, используя вход ANx и резистор.
- Переключение на вход ANy и разряд емкости контура.
- Таймер запускает текущую операцию источника, измеряет заданное время и останавливает источник. АЦП выполняет измерение.
- Подключается внешний конденсатор, шаги второй и третий повторяются.
- Если значение АЦП близко к нулю, повторим все измерение с более высоким током или более длительным временем. Когда значение близко к максимальному значению, время измерения сокращается.
- Результаты обоих измерений конвертируются в значения пикофарад.
- Результат первого измерения вычитается из результата второго, чтобы вычесть паразитные емкости схемы.
- Результат форматируется и отображается на дисплее.
Источник тока CTMU имеет четыре возможных значения: 0,55 мкА, 5,5 мкА, 55 мкА и 550 мкА и регулируется в диапазоне 0,341 мкА для основного диапазона с шагом 0,011 мкА. Для измерения большой емкости потребуется увеличенное время зарядки источника, но такой измеритель должен иметь приличную точность 0,1% и диапазон измерения от единиц пикофарад до тысяч микрофарад. При измерении больших емкостей может потребоваться добавить внешний транзистор для разряда емкости, поскольку внутренний транзистор может не выдержать больших токов.
Метод 4: измерение ёмкости с помощью внешнего источника тока
Для этого метода требуются три PNP-транзистора, согласованные по Vbe и усилению, соединенные вместе для термостатики, и несколько резисторов с точностью 0,1%. Посмотрим на схему:
Резисторы R1-R3 и транзисторы Q1-Q3 образуют токовое зеркало. Резисторы R4 — R8 подключены к цифровым выходам микроконтроллера. Установив низкое состояние на одном из них, в то время как остальные находятся в состоянии высокого сопротивления, можно выбрать одно из пяти значений тока: 1 мкА, 10 мкА, 100 мкА, 1 мА и 10 мА. В свою очередь, установка низкого состояния на одном из выходов, подключенных к R9, R10 или R11, позволяет измерять ток, генерируемый источником, путем измерения напряжения на соответствующем резисторе.
Q4 и R12 используются для разряда емкости между измерениями. Измерение точно такое же, как и для метода CTMU. Подбираем зарядный ток, замеряем заданное время, останавливаем ток, измеряем напряжение на конденсаторе. При необходимости меняем время зарядки или ток зарядки.
Измерения этим методом ограничиваются только разрешающей способностью АЦП, стабильностью опорного напряжения и точностью резисторов. Подключив мультиметр вместо Cx, можно предварительно откалибровать все диапазоны. Большинство недорогих мультиметров имеют довольно точные диапазоны тока, хотя измерение напряжения на резисторах R9-R11 может быть более точным.
Метод 5: измерение ёмкости с помощью модуля CVD
Модуль CVD, емкостной делитель напряжения, можно найти в некоторых микроконтроллерах PIC. Это еще одна идея Microchip для создания сенсорных клавиатур, например в семействе PIC18FQ41.
Интересно, что измерение с помощью этого метода может выполняться без этого модуля, манипулируя битами конфигурации порта микроконтроллера и его модуля АЦП, соответственно.
Предположим, имеется конденсатор емкостью 1 нФ, заряженный напряжением 5 В. Подключим к нему второй конденсатор емкостью 1 нФ. Какое напряжение будет у обоих? Правильный ответ — 2,5 В. Теперь возьмем два других конденсатора: 10 нФ и 22 нФ. Первый заряжен на 5 В, второй замкнут на массу. Затем соединяем их обоих вместе. Какое будет напряжение? 1,5625 В. Теперь зарядим второй конденсатор до 5 В, разрядим первый и подключим два. Какое будет напряжение? 3,4375 В. Модуль CVD выполняет именно это измерение, при этом конденсатор выборки АЦП (плюс дополнительно подключенные емкости внутри микроконтроллера) действует как первый конденсатор, а все что подключено к выводу АЦП, на котором выполняется измерение, как конденсатор 2.
Модуль CVD сначала автоматически загружает внутреннюю емкость, подключает внешнюю емкость и измеряет ее, затем разряжает внутреннюю емкость, заряжает внешнюю емкость и выполняет второе измерение. Результаты автоматически вычитаются друг из друга, а полученное значение сравнивается с заданным пороговым значением — таким образом, модуль в основном используется для управления сенсорными кнопками, но вы также можете измерить значение присоединенной внешней емкости как изменение в дифференциальное напряжение. Но тут измерение будет менее точным, чем измерение CTMU.
Метод 6: измерение ёмкости RC-генератором
Этот метод частично относится к методу номер 2. Основа — RC-генератор, у которого значение R ровно 10 кОм. RC-генератор настроен на непрерывную работу и генерирует сигнал в диапазоне 1 / 3–2 / 3 напряжения питания. Схема всего прибора выглядит так:
Основа — PIC16F628 (A) с кварцем 16 МГц, что означает внутренний таймер имеет частоту 4 МГц. Во время измерения модуль Capture / Compare / PWM (CCP1) подсчитывает значения модуля Timer1 для каждого переднего фронта сигнала от компаратора. Программа подсчитывает и суммирует значения таймера и количество подсчитанных передних фронтов, пока не наберет значение более 2 миллионов отсчетов, то есть >0,5 секунды. Этот результат увеличивается в тысячу раз, а затем делится на количество измеренных наклонов. Результат преобразуется и отображается как значение емкости в пико-, нано- или микрофарадах: Диапазоны 0,00-18000,00 пФ; 18,000-999,000 нФ; 1,0000-50,0000 мкФ. Разрешение измерений намного выше, чем у других любительских решений. По тестам точность измерения лучше 0,2%. В схеме есть возможность сброса и режим относительного измерения для сравнения конденсаторов. Так что методов измерения ёмкости есть несколько — просто выбираем самый подходящий для своих целей и собираем С-метр.
Форум
Форум по обсуждению материала ТОЧНОЕ ИЗМЕРЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА
Узнаем как мультиметром прозвонить конденсатор: инструкция и советы
Одной из наиболее распространенных причин неисправности радиоэлектронной техники является поломка одного или нескольких конденсаторов, которые составляют неотъемлемую часть ее платы. И чтобы выяснить, какой же именно конденсатор оказался слабым звеном, необходимо проверить их работоспособность. В этой статье описывается, как прозванивают конденсатор. Независимо от того, занимаетесь ли вы электронной аппаратурой профессионально или вы просто любитель, вам это вполне под силу. Для этого вам понадобится мультиметр. Ниже мы рассмотрим, как проверить конденсатор мультиметром самостоятельно.
Виды конденсаторов и их проверка
Прежде чем разобраться, как мультиметром прозвонить конденсатор, давайте выясним, какие виды конденсаторов существуют. Все конденсаторы делятся на полярные и неполярные. Разница между ними заключается в том, что полярные, как можно догадаться из названия, имеют полярность. Проверять их нужно строго соответствующим образом: «плюс» к «плюсу», «минус» к «минусу», так как в противном случае они придут в негодность и могут взорваться. Все полярные конденсаторы являются электролитическими. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев предусмотрено специальное сечение на поверхности, которое разрывается в определенном направлении и не дает проводящему веществу разбрызгаться в разные стороны.
Каким образом выполнить проверку, зависит от характера поломки, так как мультиметром проверить конденсатор на работоспособность можно двумя способами: в режиме замера сопротивления его диэлектрика и измеряя его емкость.
Пробой конденсатора
Наиболее распространенной проблемой конденсаторов является пробой диэлектрика. Диэлектрик – это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, чтобы не допустить протекания тока между проводниками.
В исправном конденсаторе допускается небольшое пропускание тока через этот изолятор, это называется «ток утечки», и он ничтожно мал. При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обыкновенный проводник. Причиной такого пробоя, как правило, является резкий перепад напряжения в сети, к которой подключено оборудование. К характерным признакам пробоя относятся вздутие корпуса конденсатора, его потемнение и появление черных пятен. Перед тем как проверить конденсатор на исправность, осмотрите его визуально на предмет внешних дефектов.
Проверка неполярного конденсатора в режиме омметра
Проверка мультиметром сопротивления диэлектрика в конденсаторе осуществляется в режиме омметра. В неполярных конденсаторах диэлектрик может быть выполнен из стекла, керамики, бумаги или даже в виде воздушной прослойки. Таким образом обеспечивается крайне высокое сопротивление, и в исправном конденсаторе цифровой мультиметр покажет фактически бесконечную величину. Если же электрический пробой имеет место, то уровень сопротивления будет в пределах нескольких Ом, максимум нескольких десятков.
Перед тем как мультиметром прозвонить конденсатор, включите на измерительном приборе соответствующий режим, выставив на нем максимально возможный уровень измерения сопротивления. Подведите к выводам конденсаторы щупы мультиметра и посмотрите на табло: если конденсатор в порядке, то там должна появиться единичка, что говорит о том, что сопротивление выше установленного максимума. Если же на дисплее мультиметра высветится какое-то конкретное значение, меньшее чем измерительный максимум, то это может быть свидетельством неисправности проверяемого конденсатора.
Помните о технике безопасности и не держитесь одновременно и за щупы прибора и за выводы конденсатора, так как из-за меньшего сопротивления электрический ток пойдет через ваше тело.
Проверка полярного конденсатора в режиме омметра
По сравнению с неполярными конденсаторами в полярных сопротивление диэлектрика на порядок меньше, поэтому максимум сопротивления на мультиметре нужно выставлять соответствующее. Большинство таких конденсаторов имеют не менее 100 кОм сопротивления, особо мощные и до 1 мОма. Перед тем как мультиметром прозвонить конденсатор, замкните выводы накопителя, чтобы разрядить его полностью.
Установив соответствующий предел измерения, подключите щупы прибора к конденсатору, соблюдая при этом полярность. Электролитические конденсаторы имеют сравнительно большую емкость, и поэтому при подключении они тут же начинают заряжаться. В течение того времени, пока идет зарядка, сопротивление будет прямо пропорционально расти, что будет отображаться на экране прибора. Конденсатор можно считать исправным в большинстве случаев, когда сопротивление переваливает за отметку в 100 кОм.
Как мультиметром прозвонить конденсатор (аналоговый измеритель)
Ту же самую процедуру можно проделать при помощи аналогового (стрелочного) измерителя. Емкость электролитического конденсатора можно определить по скорости движения стрелки прибора в сторону максимума. Чем медленнее двигается стрелка, тем дольше заряжается конденсатор и тем, соответственно, больше его емкость. Если емкость составляет от 1 до 100 микрофарадов (мкФ), стрелка достигнет правого края циферблата практически моментально. При емкости от 1000 мкФ ее путь может занять несколько секунд.
Как мультиметром прозвонить конденсатор: инструкция по проверке емкости накопителя
Хотя конденсаторы часто проверяют омметром, более надежным способом выяснить его исправность считается измерение емкости. Повышенная утечка (в том числе из-за пробоя) в электролитическом конденсаторе приводит к частичной потере емкости, и ее действительная величина уже не соответствует заявленной на корпусе накопителя. Измеряя сопротивление конденсатора, очень трудно определить данный дефект, для этого требуется измеритель емкости. Следует иметь в виду, что далеко не у всех мультиметров имеется такая функция, поэтому убедитесь в том, что ваш прибор способен выполнять такое измерение.
Прежде чем проверять таким образом электролитический конденсатор, его обязательно необходимо полностью разрядить. Заряженный конденсатор может попросту испортить ваш мультиметр. Особенно это касается полярных накопителей с высоким рабочим напряжением и большой емкостью. Как правило, такие конденсаторы используются в импульсных блоках в качестве фильтрующих накопителей.
Разрядка конденсатора
Для разрядки низковольтных конденсаторов достаточно просто закоротить их выводы, но в случае с высоковольтными и большой емкостью к выводам следует подключить 5-10-килоомный резистор. Резистор необходим, чтобы избежать возникновения искры во время замыкания. Помните о безопасности и ни в коем случае не прикасайтесь к выводам конденсатора, иначе замыкание произойдет на вас.
Обрыв конденсатора
Обрыв – довольно редкая для конденсаторов неисправность. Как правило, он возникает при механических повреждениях накопителя. В результате обрыва конденсатор полностью теряет свою накопительную функцию и имеет нулевую емкость. Фактически он превращается в два изолированных друг от друга проводника. Обнаружить обрыв при помощи омметра практически невозможно. Своеобразным симптомом обрыва в полярных электролитических конденсаторах при измерении сопротивления является отсутствие какого-либо изменения в показаниях прибора. Так как исправный неполярный конденсатор малой емкости имеет высокое сопротивление, проверить его на обрыв, таким образом, не представляется возможным. Единственный выход – измерение емкости.
Потеря емкости конденсатора
Для того чтобы определить, потерял ли конденсатор свою емкость, как ни странно, нужно замерить эту самую емкость. Выставьте на мультиметре соответствующий предел измеряемой емкости, разрядите проверяемый конденсатор, подключите щупы измерителя к соответствующим гнездам на нем, соблюдая правильную полярность, и наконец, прикоснитесь щупами к выводам конденсатора. Очевидно, что разобраться, как мультиметром проверить конденсатор кондиционера или любого другого бытового прибора на предмет потери емкости, не столь сложно.
Измерение напряжения конденсатора
Также, чтобы убедиться в исправности конденсатора, следует проверить, соответствует ли его реальное напряжение номинальному. Для этого вам потребуется режим вольтметра на вашем мультиметре и источник питания для зарядки конденсатора. Напряжение он должен выдавать меньше, чем то, на которое рассчитан накопитель. Подсоедините щупы к выводам и подождите немного, пока конденсатор полностью зарядится. Переведя прибор в режим вольтметра, проверьте выдаваемое накопителем напряжение. Значение, появившееся на экране мультиметра сразу же в начале тестирования, должно соответствовать заявленному.
Учтите, что при проверке накопитель теряет свой заряд и напряжение, соответственно, будет быстро падать, поэтому важно увидеть цифру, которая появилась в самом начале.
Есть и более простой способ проверки, но он действенен только для конденсаторов с достаточно большой емкостью. Зарядив накопитель полностью, возьмите обыкновенную отвертку с изолированной рукояткой, поднесите ее металлическую часть к его выводам и замкните их. Если в результате проскочила яркая искра, значит, элемент рабочий. Если же искра очень слабая или вовсе отсутствует, значит, конденсатор не держит заряд.
Заключение
В данной статье мы попытались разобрать все наиболее часто встречающиеся поломки конденсаторов, а также способы их проверки. Важный момент: многие начинающие мастера думают, как прозвонить конденсатор мультиметром, не выпаивая его из платы, однако в таком случае в процессе измерений будет иметь место очень большая погрешность. Единственный способ в таком случае – это визуальный осмотр на предмет наличия внешних признаков, таких как взбухание, потемнение или изменение цвета поверхности.
Чаще всего конденсаторы «летят» в таких видах бытовой техники, как стиральные машины, телевизоры, микроволновые печи и др. Поэтому если перед вами стала проблема, как прозвонить конденсатор кондиционера мультиметром, можете смело использовать нашу инструкцию.
формула для расчета электрической емкости
Конденсатор – радиоэлектронный прибор, способный накапливать и отдавать заряд. Как правило, на его корпусе дается информация о его емкости, но иногда требуется самому рассчитать этот номинал. Конденсаторами могут выступать и проводники, они также обладают определенной емкостью. Для расчета существует несколько формул емкости конденсатора, их и рассмотрим.
В чем измеряется емкость конденсатора
Что такое заряд еще проходят в школе, когда эбонитовую палочку натирают о шерстяную ткань и подносят к маленьким кусочкам бумаги. Под действием электромагнитных сил бумага прилипает к палочке. Подобный заряд накапливается в конденсаторе. Но для начала познакомимся с самим конденсатором.
Простейшим конденсатором являются две металлические пластины, разделенные диэлектриком. От качества диэлектрика зависит, как долго энергия заряженного конденсатора может сохраняться. На этих пластинах, они еще называются обкладками, накапливается разноименный заряд. Как это происходит?
Электрический заряд, а в случае с металлами это электроны, способен перемещаться под действием электродвижущей силы (э. д. с.). Подключая металлические пластинки к источнику тока, мы получаем замкнутую цепь, но разделенную диэлектриком. Электростатическое поле проходит этот диэлектрик, замыкая цепь, а электроны, дойдя до препятствия, останавливаются и скапливаются.
Получается, на одной обкладке наблюдается избыток электронов, и эта пластина имеет отрицательный знак, а на другой пластине электронов недостает настолько же, знак на этой обкладке, конечно же, будет положительным.
Вот теперь нужна для определения емкости конденсатора формула, определяющая, какой заряд способен разместится на конкретном конденсаторе.
В качестве единицы измерения в международной системе (СИ) емкость определяется в Фарадах. |
Много это или мало — емкость в 1Ф? Чтобы конденсатор обладал емкостью в 1Ф, он должен содержать в себе заряд в 1К (кулон) и при этом напряжение между обкладками должно равняться 1 вольту.
Интересно. Что такое заряд в 1 кулон? Если два предмета, каждый из которых имеет заряд в один кулон разместить в вакууме на расстоянии один метр, то сила притяжения между ними будет равна силе притяжения землей тела массой в один миллион тонн. |
Как и любая буквальная емкость один и тот же конденсатор может вмещать разное количество заряда.
Рассмотрим пример.
- В трехлитровую банку входит три литра воздуха. Его хватит для дыхания, допустим, на 3 минуты. Но если воздух закачать под каким-то давлением, то емкость так и останется три литра, однако дышать можно будет дольше. Так устроен акваланг для ныряльщиков. Получается, количество воздуха в банке зависит от давления, которое в ней создается. Точно так же есть некая зависимость между различными силами, влияющими на емкость.
Формула емкости плоского конденсатора
Прежде чем узнать, по какой формуле вычисляется емкость плоского конденсатора, рассмотрим формулу для одиночного проводника. Она имеет вид:
- где Q – заряд,
- φ – потенциал.
Как видно емкость конденсатора, формула которого здесь приведена, будет тем больше, чем больший заряд способен накапливаться на нем при незначительном потенциале. Чтобы легче это было понять, рассмотрим получившие широкое распространение плоские конденсаторы разных размеров.
Для получения качественного конденсатора важны любые мелочи:
- ровная поверхность каждой обкладки;
- обе пластинки по всей площади должны располагаться на одинаковом расстоянии;
- размеры обкладок должны быть строго идентичными;
- от качества диэлектрика, расположенного между пластинками, будет зависеть ток утечки;
- емкость напрямую зависит от расстояния между обкладками, чем оно меньше, тем больше емкость.
Теперь обратимся к плоскому конденсатору. Формула определения емкости конденсатора несколько отличается от приведенной выше:
- где S – площадь одной обкладки,
- εr — диэлектрическая проницаемость диэлектрика,
- ε0 — электрическая постоянная,
- d – расстояние между обкладками.
Электрическая постоянная выражается числом 8,854187817×10-12.
Внимание! Эта формула справедлива только тогда, когда расстояние между пластинами намного меньше их площади. |
Попробуем разобраться с каждой переменной подробнее. Площадь измеряется в м2, точнее, приводится к этой величине. А вот проницаемость диэлектрика может обозначаться по-разному.
В России это εr (также означает относительная проницаемость), в англоязычной литературе встречается εa (также означает абсолютная проницаемость), а то может и вовсе использоваться без индекса, просто ε. О том, что здесь используется диэлектрическая проницаемость диэлектрика можно понять из контекста.
Дальше идет ε0. Это уже вычисленное значение, измеряемое в Ф/м. Последняя переменная – d. Измеренное расстояние также приводится к метру. Емкость конденсатора, формула которого сейчас рассматривается, показывает сильную зависимость от расстояния обкладок. Поэтому стараются это расстояние по возможности сокращать. Почему этот показатель так важен?
Идеальными условиями для получения наибольшей емкости – это отсутствие промежутка между обкладками, чего, конечно, добиться невозможно. Чем ближе находятся разноименные заряды, тем сильнее сила притяжения, но здесь возникает компромисс.
При уменьшении толщины диэлектрика, а именно он разделяет разноименные заряды, возникает вероятность его пробоя из-за разности потенциалов на обкладках. С другой стороны, как уже говорилось, при увеличении напряжения увеличивается количество зарядов. Вот и приходится выбирать между емкостью и рабочим напряжением конденсатора.
Есть другая формула для плоского переменного конденсатора:
Здесь диэлектрическая проницаемость обозначена буквой ε, π = 22/7 ≈ 3,142857142857143, d – толщина диэлектрика. Формула предназначена для конденсатора, состоящего из нескольких пластин.
Допустимая толщина диэлектрика d также зависит от εr, чем выше коэффициент, тем тоньше можно использовать диэлектрик, тем большую емкость будет иметь конденсатор. Это был самый сложный материал, дальше будет легче.
Формула емкости цилиндрического конденсатора
Теперь поговорим о том, как найти емкость конденсатора цилиндрической формы. К ним относятся конденсаторы, состоящие из двух металлических цилиндров, вставленных один в другой. Для разделения между ними расположен диэлектрик. Формула емкости конденсатора выглядит следующим образом:
Здесь видим несколько новых переменных:
- l – высота цилиндра;
- R1 и R2 – радиус первого и второго (внешнего) цилиндров;
- ln – это не переменная, а математический символ натурального логарифма. На некоторых калькуляторах он имеется.
Всегда нужно помнить, что все величины должны приводиться к единой системе, в приведенной ниже таблице указаны международные системы единиц (СИ).
Из нее видно, что все расстояния нужно приводить к метру.
Еще стоит обращать внимание на качество диэлектрика. Если толщина диэлектрика влияет только на емкость конденсатора, то его качество затрагивает сохранность энергии. Другими словами, конденсатор с качественным диэлектриком будет иметь меньший саморазряд.
Определить качество можно по числу, стоящему возле вещества, чем оно больше, тем лучше качество. Сравнение производится по вакууму, значение которого равно единице.
Формула емкости сферического конденсатора
Последнее что осталось разобрать – формулу определения емкости конденсатора, состоящего из двух сфер. Причем одна сфера находится внутри другой. Формула имеет следующий вид:
Из приведенных переменных здесь все знакомо. Стоит обратить внимание лишь на сам конденсатор.
Кроме своей необычной формы у него есть свои особенности: внутри малой сферы никакого заряда нет, он образуется на внешней части малой сферы и внутренней части большого шара. Также заряд отсутствует и на внешней стороне внешней сферы.
Так же как и все другие конденсаторы, сферы разделены диэлектриком. Толщина и качество диэлектрика оказывают такое же влияние на емкость, как в случае с другими конденсаторами.
После того как были рассмотрены формулы, стоит испробовать их на практике. Рассмотрим, как найти емкость конденсатора каждого вида.
Примеры решения задач
Начнем с плоского конденсатора. Формула для этого вида:
Допустим, у нас есть следующие значения:
- в качестве диэлектрика возьмем слюду толщиной 0,02 мм, ε = 6;
- конденсатор квадратный со сторонами в 7 мм.
Определяем площадь пластин: 7×7 = 49 мм2.
Приводим к единой системе: 4,9×10-5 = 0,000049 м2. Толщина диэлектрика 0,02×10-5 = 0,00002 м. Электрическая постоянная 8,854187817×10-12.
Подставляем в формулу и высчитываем числитель: 6×8,854187817×10-12 ×4,9×10-5, сокращаем и решаем 6×49×8,854187817×10-17 = 2,603131218198×10-14.
Делим на толщину диэлектрика: 2,603131218198×10 / 2×10 = 1301,565609099×10 = 1,301565609099×10. Шесть нулей – это тысячи или приставка «микро», получается округлено 1,3 мкФ.
Возможно, при вычислении была допущена ошибка, но это не экзамен по математике. Важно понять сам метод вычисления.
Формула для цилиндрического конденсатора:
Выбираем значения:
- l = 1 см;
- R1 = 0,25 мм;
- R2 = 0,26 мм;
- ε = 2.
Подгоняем под единую систему: l — 1 см = 1×10-2 = 0,01 м; R1 – 0,25 мм = 0,0025 м; R2 – 0,26 мм = 0,0026 м.
Подставляем значения в числитель: 2×3,142857142857143×8,854187817×10-12×2×0,01 1,11×10-12. Находим знаменатель: 0,26:0,25 = 1,04.
Находим натуральный логарифм, он равен примерно 0,39. Числитель делим на знаменатель: 1,11×10-12/0,39 = 2,85×10-12.
Число с 12 нулями это приставка «пико», получаем 2,85 пФ.
Формула для сферического конденсатора:
Выбираем значения:
- ε= 4;
- r1= 5 см;
- r2= 5,01 см.
Снова все подгоняем: 5 см = 0,05 м; 5,01 см = 0,0501 м. Заполняем числитель. 4×3,142857142857143×4×8,854187817×10-12×0,05×0,0501 1,11×10-12 Вычисляем знаменатель: 0,0501 – 0,05 = 0,01. Производим деление: 1,11×10-12×0,01 = 1,11×10-10. Снова получили пикофарады, а именно 1,11 пФ.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Измерения малых ёмкостей (аналоговый ёмкостной датчик) / Хабр
Предлагаю сообществу датчик малых ёмкостей, работающий почти от 0 пФ. Можно использовать в любительской электронике, роботостроении.
Разрабатывая хобби-электронику, мне понадобился какой-нибудь простой датчик расстояния на ёмкостном эффекте. Поискав в Интернете, нашёл только датчики касания, но они имеют малое расстояние срабатывания и дискретный выход. Другие же датчики слишком сложные или с долгой настройкой. Нужен был очень простой и дешёвый, работающий от микроконтроллера. Что получилось — под катом…
Схема
После нескольких экспериментов
появилась схема, на рис. 1.
Рис. 1. Схема. MicroCap10
Как работает
Принцип действия основан на измерении заряда, который накопился на обкладке конденсатора при зарядке. Вторая обкладка – это объект, подносимый к датчику. Для моделирования она показана подключённой к «земле», но это не принципиально.
Обкладка конденсатора подключена к выводу микроконтроллера, который настроен на выдачу меандра частотой 120 — 180 кГц, на схеме это источник напряжения V2. Также, обкладка подключена к базе транзистора Q1. Эмиттер подключён к тому же генератору. Так как выход МК комплементарный, это означает что вывод попеременно подключён то к «+» источнику питания, то к «0». Что происходит в эти полупериоды:
- На выходе МК лог. 1: Конденсатор быстро заряжается через R1, R2. Так как ёмкость очень мала, можно обойтись без диодного разделения, сопротивление R2 достаточно для полного заряда, и нет паразитной ёмкости диодов. Транзистор закрыт, так как включён в обратном направлении UБЭ<0.
- На выходе МК лог. 0: Конденсатор С1 разряжается через R3, переход БЭ Q1 и выход МК. Так как эмиттер через вывод МК подключился к «0V», то ток разряда на очень короткое время открывает транзистор. Создаётся ток коллектора на короткое время, определяемое зарядом конденсатора С1.
комплементарный выход
Диод D1 и конденсатор С2 образуют амплитудный детектор – на R5 создаётся напряжение, пропорциональное ёмкости С1. Транзистор Q2 нужен для согласования сопротивлений с АЦП МК. Выходное напряжение снимается с R6.
Результаты моделирования (рис. 2) при номиналах, показанных на схеме. Линейная зависимость примерно сохраняется до 10 пФ.
Рис. 2. График ёмкость — напряжение
При снижении R3 до 2 кОм, увеличивается чувствительность и снижается линейный участок примерно до 0…4 пФ.
Рис. 3. График ёмкость — напряжение
Примечание: подъём графика около 0 пФ – ошибки моделирования, там на самом деле продолжается линейность. Проверено в «железе».
Приведённая схема отличается от других (с диодной развязкой или мостами и неизменным включением БЭ транзистора) тем, что пропорция ёмкость/напряжение имеется почти с 0 пФ, без мёртвой зоны. Также, в схеме задействована только одна обкладка конденсатора.
При выполнении на плате собственная ёмкость схемы намного меньше ёмкости одной обкладки — пластины в 20 см2. Чувствительность датчика: для поднесённой руки примерно на 50 мм к пластине — изменение выходного сигнала более 10%. Расчётное изменение ёмкости около 2 пФ. На сетевые помехи, ЭМП и GSM датчик не реагирует.
Уточнения для реализации
- Транзисторы должны быть с рабочей частотой от 100 МГц, и минимальной ёмкостью базы (здесь 2 пФ).
- Диод D1 – высокочастотный типа BAV99, ёмкость единицы пФ.
- С2 в диапазоне 10 – 30 нФ, больше не надо, растёт ток вывода МК. Для сглаживания импульсов можно поставить конденсатор параллельно R6
- Резистор R1 в 100 Ом ограничивает ток вывода МК, импульсный 5мА, средний 0,2 мА.
- Микроконтроллер в данной схеме – Atmega8A, выход меандр 166 кГц, АЦП его же. Увеличение частоты выше 300 кГц не рекомендуется, из-за влияния паразитных ёмкостей.
Кто реализует и применит в своих поделках — отпишитесь, интересно.
Альтернативное применение.
В комментариях под статьёй обсуждается применение в качестве датчика влажности почвы. Решил проверить, возможно ли.
Сенсорную пластину взял 40х60 мм, хорошо замотав в 4 слоя сантехнического скотча (допустим, герметизировал). Собственная ёмкость возросла, пришлось поменять номиналы в схеме, снизив чувствительность до уровня 15 пФ. Новая схема здесь :
Рис. 4. Схема для датчика влажности почвы.
Эксперименты:
земли у меня нет, есть песок, который я насыпал в банку объёмом примерно 300 мл. Доливал воды каждый раз примерно по 15…20 мл.
Сухой песок. Собственная ёмкость сенсора.
Песок +20мл воды.
Ещё долил воды и немного утрамбовал.
… и ещё воды.
… и ещё воды.
… и ещё воды.
… и ещё воды. Стало совсем тропически сыро.
Напряжение снимал с R5, поэтому при увеличении ёмкости напряжение увеличивается.
Видно, что ёмкость возрастает при каждом доливе. Однако, то ли песок такой, то ли я не знаю что, но показания увеличиваются сразу при доливе. Я ожидал более плавное изменение U при пропитывании песка водой.
Да, я знаю о сенсорных датчиках для Ардуино с Али. Но мне хотелось разобраться самому и сделать с заданными параметрами.
Dynamics Track Конденсатор Цепи Wave Tank Оптическая скамья | Емкость и разделение пластин Конденсатор с параллельной пластиной Конденсатор с параллельными пластинами — это устройство, используемое для изучения конденсаторов.Это сводит к минимуму функцию конденсатора. Конденсаторы в реальном мире обычно скручены по спирали в небольших корпусах, поэтому конденсатор с параллельными пластинами значительно упрощает привязку функции к устройству. Конденсатор работает путем накопления противоположных зарядов на параллельных пластинах, когда напряжение подается с одной пластины на другую. Между пластинами существует электрическое поле, которое позволяет конденсатору накапливать энергию. Количество заряда, которое может храниться на один приложенный вольт, определяется площадью поверхности пластин и расстоянием между ними.Чем больше пластины и чем ближе они расположены, тем больше заряда может храниться на каждый вольт разности потенциалов между пластинами. Количество заряда, которое может храниться в конденсаторе, измеряется его емкостью. Конденсатор в один фарад (Ф) может хранить один кулон заряда на каждый вольт, приложенный к конденсатору. Формула для этого: C = q / v Где C — емкость в фарадах, q — заряд в кулонах, а v — электрический потенциал в вольтах. Для конденсатора с параллельными пластинами емкость определяется по следующей формуле: C = ε 0 А / сут Где C — емкость в Фарадах, ε 0 — постоянная диэлектрической проницаемости свободного пространства (8,85×10 -12), A — площадь пластин в квадратных метрах, а d — расстояние между пластинами в метрах. Фарада — это очень большая величина емкости, поэтому мы будем использовать метрические префиксы для получения более удобных чисел. Емкость обычно измеряется в микрофарадах (мкФ), что равно 1.0×10 -6F или пикофарад (пФ), что составляет 1,0×10 -12F. 1.0F = 1,000,000 мкФ = 1,000,000,000,000 пФ! Будьте очень внимательны с расчетами! Назначение: Целью данной лабораторной работы является исследование взаимосвязи между разделением пластин и емкостью конденсатора с параллельными пластинами. Оснащение:
Осторожно: Это хрупкое оборудование.Все должно сочетаться с легчайшими прикосновениями. Ничего не заставляйте! Порядок установки переменного конденсатора
Анализ данных: Сначала необходимо рассчитать теоретическую емкость для каждого шага. Мы сделаем первое, а потом вы сможете сделать все остальное! Самая сложная часть этого — правильно настроить юниты. Проще всего поставить все в метрах для расчетов:
|
Методы измерения емкости, входящего тока, внутреннего сопротивления и ESR
% PDF-1.6 % 287 0 объект > / Метаданные 368 0 R / Страницы 284 0 R / StructTreeRoot 84 0 R / Тип / Каталог / Просмотрщик Настройки >>> эндобдж 321 0 объект > / Шрифт >>> / Поля [] >> эндобдж 368 0 объект > поток Ложь 11.08.522018-11-06T16: 33: 30.078-05: 00 Библиотека Adobe PDF 11.0Eatonfbd8739bef2a157818271cab46c704a8027b31be221544Методы измерения емкости, входящего тока, внутреннего сопротивления и ESR | Техническая нота 5502 | Библиотека EatonAdobe PDF 11.0falseAdobe InDesign CC 2014 (Macintosh) 2018-10-30T09: 28: 33.000-07: 002018-10-30T12: 28: 33.000-04: 002015-06-11T11: 45: 02.000-04: 00application / pdf
Емкость | Electronics Club
Емкость | Клуб электроникиЕмкость | Зарядка и энергия | Реактивное сопротивление | Последовательный и параллельный | Зарядка | Постоянная времени | Разрядка | Использует | Конденсаторная муфта
Следующая страница: Импеданс и реактивное сопротивление
См. Также: Конденсаторы | Блоки питания
Емкость
Емкость(символ C) — это мера способности конденсатора накапливать заряд .Большая емкость означает, что можно хранить больше заряда. Емкость измеряется в фарадах, символ F, но 1F очень большой, поэтому для отображения меньших значений используются префиксы (множители):
- мкФ (микро) означает 10 -6 (миллионная), поэтому 1000000 мкФ = 1F
- n (нано) означает 10 -9 (миллиардная), поэтому 1000 нФ = 1 мкФ
- p (пико) означает 10 -12 (миллионно-миллионная), поэтому 1000 пФ = 1 нФ
неполяризованный конденсатор | поляризованный конденсатор |
Rapid Electronics: Конденсаторы
Заряд и накопленная энергия
Количество заряда (Q), сохраняемого конденсатором, определяется как:
Заряд, Q = C × V |
Когда они накапливают заряд, конденсаторы также накапливают энергию (E):
Энергия, E = ½QV = ½CV² |
Q = заряд в кулонах (Кл)
C = емкость в фарадах (Ф)
В = напряжение в вольтах (В)
E = энергия в джоулях (Дж) )
Конденсаторы возвращают накопленную энергию в цепь
Обратите внимание, что конденсаторы возвращают накопленную энергию в схему.Они не «расходуют» электрическую энергию преобразовывая его в тепло, как это делает резистор.
Энергия, запасаемая конденсатором, намного меньше, чем энергия, хранящаяся в батарее, поэтому они не могут использоваться в качестве источника энергии для большинства целей.
Емкостное реактивное сопротивление Xc
Емкостное реактивное сопротивление (Xc) — это мера сопротивления конденсатора переменному току (переменному току). Как и сопротивление, он измеряется в Ом () но реактивное сопротивление сложнее, чем сопротивление, потому что его значение зависит от частоты (f) электрического сигнала, проходящего через конденсатор, а также емкости (C).
Емкостное реактивное сопротивление, Xc = | 1 |
2fC |
Xc = реактивное сопротивление в омах ()
f = частота в герцах (Гц)
C = емкость в фарадах (F)
Реактивное сопротивление велико на низких частотах и мало на высоких частотах. Для постоянного постоянного тока, который является нулевой частотой, Xc бесконечно (полное противодействие), отсюда правило, что Конденсаторы пропускают переменный ток, но блокируют постоянный ток .
Например, конденсатор 1 мкФ имеет реактивное сопротивление 3,2 кГц для сигнала 50 Гц, но когда частота выше 10 кГц, его реактивное сопротивление составляет только 16.
Емкостное и индуктивное сопротивление
Символ Xc используется для отличия емкостного реактивного сопротивления от индуктивного X L что является свойством индукторов.
Различие важно, потому что X L увеличивается с частотой (противоположно Xc) и если в цепи присутствуют оба X L и Xc, объединенное реактивное сопротивление (X) равно разнице между ними.
Для получения дополнительной информации см. Страницу Импеданс.
Последовательные и параллельные конденсаторы
Суммарная емкость (C) конденсаторов, подключенных в серии , определяется по формуле:
1 | = | 1 | + | 1 | + | 1 | +… |
C | C1 | C2 | C3 |
Суммарная емкость (C) конденсаторов, подключенных параллельно , составляет:
C = C1 + C2 + C3 + … |
Два или более конденсатора редко намеренно соединяются последовательно в реальных цепях, но может быть полезно подключить конденсаторы параллельно, чтобы получить очень большую емкость, например, чтобы сгладить питание.
Обратите внимание, что эти уравнения обратны для резисторы последовательно и параллельно.
Зарядка конденсатора
Конденсатор (C) на принципиальной схеме заряжается от напряжения питания (Vs) с током проходящий через резистор (R). Напряжение на конденсаторе (Vc) изначально равно нулю, но увеличивается. по мере заряда конденсатора. Конденсатор полностью заряжен, когда Vc = Vs.
Зарядный ток (I) определяется напряжением на резисторе (Vs — Vc):
Зарядный ток, I = (Vs — Vc) / R |
Сначала Vc = 0V, поэтому:
Начальный ток, Io = Vs / R |
Vc увеличивается, как только заряд (Q) начинает накапливаться (Vc = Q / C), это снижает напряжение на резисторе и, следовательно, снижает ток зарядки.Это означает, что скорость зарядки постепенно снижается.
Постоянная времени (RC)
Постоянная времени — это мера того, насколько медленно конденсатор заряжается током, протекающим через резистор. Большая постоянная времени означает, что конденсатор заряжается медленно. Обратите внимание, что постоянная времени является свойством цепь , содержащая конденсатор и резистор, не является свойством только конденсатора.
Постоянная времени (RC) — это время, необходимое для того, чтобы зарядный (или разрядный) ток (I) упал до 1 / е от его начального значения (Io).’е’ — важное число в математике (нравиться ). e = 2,71828 (до 6 значащих цифр), поэтому мы можем грубо сказать, что постоянная времени — это время, необходимое для того, чтобы ток упал до 1 / 3 от его начального значения.
После каждой постоянной времени ток падает на 1 / e (около 1 / 3 ). После 5 постоянных времени (5RC) ток упал до менее 1% от своего начального значения, и мы можем разумно говорят, что конденсатор полностью заряжен , а на самом деле конденсатор требует вечной зарядки полностью!
Нижний график показывает, как напряжение (В) увеличивается по мере заряда конденсатора.Сначала напряжение быстро меняется из-за большого тока; но по мере уменьшения тока заряд нарастает медленнее, а напряжение увеличивается медленнее.
Время | Напряжение | Заряд |
0RC | 0,0 В | 0% |
1RC | 5,7 В | 63% |
86% | ||
3RC | 8.6 В | 95% |
4RC | 8,8 В | 98% |
5RC | 8,9 В | 99% |
Зарядка конденсатора
постоянная времени = RC
После 5 постоянных времени (5RC) конденсатор почти полностью заряжен, а его напряжение почти равно напряжение питания. Можно с полным основанием сказать, что конденсатор полностью заряжен после 5RC, хотя реально заряжается продолжается вечно (или пока схема не будет изменена).
Разряд конденсатора
Верхний график показывает, как ток (I) уменьшается по мере разряда конденсатора. Начальный ток (Io) определяется начальным напряжением на конденсаторе (Vo) и сопротивлением (R):
Начальный ток, Io = Vs / R |
Обратите внимание, что графики тока имеют одинаковую форму как для зарядки, так и для разрядки конденсатора. Этот тип графика является примером экспоненциального убывания.
Нижний график показывает, как напряжение (В) уменьшается по мере разряда конденсатора.
Время | Напряжение | Заряд |
0RC | 9,0 В | 100% |
1RC | 3,3 В | 37% |
1,2 | ||
В | 14% | |
3RC | 0,4 В | 5% |
4RC | 0.2 В | 2% |
5RC | 0,1 В | 1% |
Разрядка конденсатора
постоянная времени = RC
Сначала ток большой из-за большого напряжения, поэтому заряд быстро теряется и напряжение быстро уменьшается. По мере того, как заряд теряется, напряжение уменьшается, уменьшая ток, поэтому скорость разрядки становится все медленнее.
После 5 постоянных времени (5RC) напряжение на конденсаторе почти равно нулю, и мы можем с полным основанием сказать, что конденсатор полностью разряжен, хотя реально разряд продолжается вечно (или пока не поменяют схему).
Применение конденсаторов
Конденсаторы используются в нескольких целях:
Конденсаторная муфта (CR-муфта)
Секции электронных схем могут быть связаны с конденсатором, потому что конденсаторы проходят переменный ток (изменяющиеся) сигналы, но блокируют DC (постоянные) сигналы. Это называется конденсаторной связью или CR-связью .
Он используется между ступенями аудиосистемы для передачи аудиосигнала (переменного тока) без постоянного напряжения (постоянного тока). которые могут присутствовать, например, для подключения громкоговорителя.Он также используется для установки переключателя «AC» на осциллографе.
Точное поведение конденсаторной связи определяется ее постоянной времени (RC). Обратите внимание, что сопротивление (R) может быть внутри следующего участка цепи, а не отдельного резистора.
Для успешной связи конденсаторов в аудиосистеме сигналы должны проходить через с небольшим искажением или без него. Это достигается, если постоянная времени (RC) больше, чем период времени (T) звуковых сигналов самой низкой частоты требуется (обычно 20 Гц, T = 50 мс).
- Выход при RC >> T
Когда постоянная времени намного больше, чем период входного сигнала конденсатор не успевает существенно зарядиться или разрядиться, поэтому сигнал проходит с незначительными искажениями. - Выход при RC = T
Когда постоянная времени равна периоду времени, вы можете видеть, что конденсатор успевает частично зарядиться и разрядиться до изменения сигнала. В результате есть значительное искажение сигнала при прохождении через CR-муфту.Обратите внимание, как внезапные изменения входного сигнала проходят прямо через конденсатор на выход. - Выход при RC << T
Когда постоянная времени намного меньше периода времени, конденсатор успевает для полной зарядки или разрядки после каждого резкого изменения входного сигнала. Фактически, только внезапные изменения передаются на выходе, и они выглядят как «всплески», попеременно положительный и отрицательный. Это может быть полезно в системе, которая должна определять, когда сигнал меняется внезапно, но игнорируйте медленные изменения.
Следующая страница: Импеданс и реактивное сопротивление | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Как измерить емкость керамических конденсаторов? | Уголок вопросов и ответов
Как я могу измерить емкость керамических конденсаторов?
Емкость керамических конденсаторов измеряется с помощью измерительные инструменты, такие как измеритель LCR (принцип измерения см. ниже.) и анализатор импеданса.
В нашей компании номинальная емкость керамических конденсаторов измеряется при следующих условиях.
(Условия измерения также описаны на странице данных о надежности.
в каталоге. Каталоги здесь.)
Класс 1 | Класс 2 | |||
---|---|---|---|---|
Стандартный | Высокочастотный Тип | C ≤ 10 мкФ | C> 10 мкФ | |
Предварительная подготовка | Нет | Термическая обработка (при 150 ℃ в течение 1 часа) (* 2) | ||
Частота измерения | 1 МГц ± 10% | 1 кГц ± 10% | 120 ± 10 Гц | |
Измерительное напряжение (* 1) | 0.От 5 до 5 В (среднекв.) | 1 ± 0,2 В среднекв. | 0,5 ± 0,1 В среднекв. | |
Приложение смещения | Нет |
Обратите внимание, что емкость изменяется в зависимости от частоты, температуры, напряжение и тд.
Пожалуйста, обратитесь к индивидуальным спецификациям по измерительным приборам и условиям
каждый продукт.
Пожалуйста, обратитесь к этой странице об измерительных приборах и
условия, используемые для получения характеристик в паспорте.
Измеритель LCR (принцип измерения)
Метод измерения, называемый «методом автобалансирующего моста», показанный на рисунке ниже, применяется к измерителям LCR многими производителями измерительных приборов. В этом методе ток в измеряемом объекте (= DUT) и известное сопротивление R автоматически регулируются так, чтобы они были одинаковыми, то есть напряжение в точке A становится равным 0.Затем измеритель LCR рассчитывает комплексный импеданс на основе напряжения, приложенного к ИУ, и известного сопротивления R. Емкость керамических конденсаторов выводится из составляющей реактивного сопротивления этого комплексного импеданса.
Пожалуйста, обратитесь к веб-сайту производителя для более подробной информации.
Как измерить емкость ~ Как измерить
Какой самый недорогой способ измерения емкости? У меня есть конденсаторы для фотовспышки, на которых не указана их емкость.Я пошел в радиорубку, и самый дешевый мультиметр, который это измерил, стоил около 60 долларов. Есть ли дешевый способ узнать номинал моих конденсаторов?
Обсуждения
Очевидно, вы достаточно умны в этой области, поэтому я задаю вам вопрос.
Как мне узнать, какая емкость мне нужна? Есть ли уравнение? Мне нужно 5 В, разряженное за 2 секунды от конденсатора для моего проекта своими руками, но никто не может дать мне прямой ответ на значение емкости, которая мне нужна.Какие-либо предложения?
Ответ 8 лет назад
Яцек, посмотрите эту страницу:
и используйте предоставленную формулу. Здесь вы вводите 5 вольт в качестве начального напряжения, а затем устанавливаете время, равное 2 секундам. Затем вы можете найти значение RC.
Я не знаю, как точно измерить емкость конденсатора, но я могу оценить емкость конденсатора, близкую к фактической, с помощью дешевых деталей.
Все, что вам нужно сделать, это подключить резистор с известным значением (в Мегаомах), цифровой мультиметр и конденсатор, который будет измеряться параллельно.
Перед тем, как соединить конденсатор с резистором и мультиметром параллельно,
зарядите конденсатор известным источником постоянного напряжения (лучше всего подойдет аккумулятор). После того, как конденсатор полностью зарядится, подготовьте секундомер и дайте секундомеру начать отсчет, как только вы подключите конденсатор параллельно.
Установите опорное напряжение таким образом, чтобы вы останавливали отсчет секундомера после того, как вы заметили значение опорного напряжения, отображаемое мультиметром, то есть 100 мВ.(-t / CR)
ln (V) = ln (Vo) -t / CR
ln (V / Vo) = -t / CR
ln (Vo / V) = t / CR
Наконец,
C = t / [ln (Vo / V) R], в Фараде
Поскольку конденсатор и мультиметр имеют внутреннее сопротивление, измеренное значение будет немного отличаться от фактического. Я пробовал это раньше, и он оценивает емкость неизвестного конденсатора.
Надеюсь, это поможет.
Ответ 9 лет назад
Что делать, если во время экзамена я не могу вспомнить формулу.
Первый метод на этой странице — это RC-цепочка выдержки времени. он указывает, что вы никогда не сможете измерить это время, потому что оно такое маленькое, но это неверно, если у вас есть микроконтроллер, подобный базовому штампу 2.
в цепи времени RC, сопротивление в Ом, умноженное на емкость в Фарады равняются времени в секундах. следовательно, емкость равна секундам, разделенным на сопротивление. C = T / R
вот как будет выглядеть схема:
—————————> к входному выводу основного штампа
| |
неизвестно C известно R
| |
—————————> на землю
, так что вы устанавливаете контакт на несколько миллисекунд, чтобы зарядить крышку.затем вы меняете контакт на вход, запускаете счетчик и указываете базовому штампу следить за низким логическим уровнем.
, конечно, вам нужно сначала «откалибровать» базовый штамп, измерив, сколько времени требуется для прохождения счетной области кода. например, скажите ему, чтобы он прошел цикл счета десять тысяч раз, а затем измерьте, сколько времени потребуется, с помощью секундомера. более высокое значение даст вам хорошее среднее значение после нескольких калибровок. базовый штамп работает в миллисекундах, поэтому десять тысяч циклов могут быть близки к десяти секундам, но это зависит от сложности цикла и множества переменных теории хаоса.
, так что теперь, когда вы знаете, сколько времени занимает каждый счет в вашем счетчике, вы можете вставить фактическое время в секундах в уравнение, чтобы найти очень хорошее приближение емкости.
Я бы пошел на www.dealextreme.com и заказал там дешевый мультиметр. Вы можете получить один с функцией измерения емкости за 12 $ или меньше с бесплатной доставкой.
Схема, описанная orksecurity, очень увлекательна в изготовлении и стоит меньше доллара (шестнадцатеричные инверторы с триггером Шмитта великолепны, таймеры 555 тоже подойдут), хотя, по моему опыту, вам понадобится осциллограф (дороже, чем мультиметр), или мультиметр с функцией подсчета частоты, чтобы использовать его с приемлемым удобством и точностью.Вы можете включать и выключать множество известных емкостей, пока не перестанете слышать сигнал. но этот метод меня не особо привлекает!
Более дешевый и удобный способ — сначала УБЕДИТЬСЯ, что они разряжены, затем зарядить их батареей 9 В или 12 В и подключить их последовательно к резистору и светодиоду. Вам нужно будет уметь считать и пользоваться секундомером.
Из таблицы данных светодиодов вы можете увидеть падение напряжения на светодиоде (или используйте мультиметр с функцией проверки диодов).Когда приложенное напряжение упадет ниже этого порога, он выключится. Выходное напряжение конденсатора через резистор представляет собой функцию затухания, как описано здесь: http://en.wikipedia.org/wiki/Capacitor#DC_circuits
Вы в основном используете светодиод как примитивный индикатор напряжения. Я предлагаю красный цвет из-за низкого напряжения холостого хода. Время, в течение которого светодиод остается включенным, позволит вам рассчитать емкость, так как теперь вы знаете, сколько времени потребовалось для спада от известного начального напряжения до известного конечного напряжения на известном сопротивлении.Резистор большего размера даст более точные результаты (из-за внутреннего сопротивления конденсатора и более длительного времени, в течение которого светодиод будет гореть), но светодиод будет более тусклым; найти хороший баланс. Сначала попробуйте несколько сотен Ом.
Конечно, если у вас есть мультиметр с функцией измерения напряжения, просто подключите его параллельно через конденсатор (при заряде 9 В или 12 В это не проблема), он будет намного более чувствительным, чем светодиод. Вы увидите падение напряжения на резисторе, и вы можете рассчитать время до произвольной точки.
По моему (ограниченному) опыту и (очень ограниченной) памяти, конденсаторы вспышки камеры рассчитаны примерно на 330 В и различаются по емкости от примерно 100 до 300 мкФ. Знание емкости не говорит вам о безопасном номинальном напряжении, ОЧЕНЬ ОСОЗНАЙТЕ это. Соединение их последовательно и наивное предположение, что это увеличивает допуск по напряжению, также может привести к катастрофическим сбоям.
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение, а затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как прикасаться к нему или проводить измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Переведите шкалу в режим измерения емкости.Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
4. Для правильного измерения необходимо удалить конденсатор из цепи. Разрядите конденсатор, как описано в предупреждении выше.
Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов.Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы.Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования.Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.
Конденсаторы — одни из самых полезных из всех электронных компонентов. Емкость — это термин, который относится к способности конденсатора накапливать заряд. Это также измерение, используемое для определения того, сколько энергии может хранить конкретный конденсатор. Чем больше емкость у конденсатора, тем больше заряда он может хранить.
Емкость измеряется в единицах, называемых фарад (сокращенно F). Определение одного фарада обманчиво простое. Конденсатор емкостью в одну фарад держит напряжение на пластинах ровно один вольт, когда он заряжается током ровно один ампер в секунду.
Обратите внимание, что в этом определении часть «один ампер в секунду тока» на самом деле относится к количеству заряда, присутствующего в конденсаторе. Нет правила, согласно которому ток должен течь целую секунду.Это может быть один ампер за одну секунду, или два ампера за полсекунды, или полампер за две секунды. Или это может быть 100 мА в течение 10 секунд или 10 мА в течение 100 секунд.
Один ампер в секунду соответствует стандартной единице измерения электрического заряда, называемой кулоном . Итак, другой способ определить значение одного фарада — сказать, что это величина емкости, которая может хранить один кулон при напряжении в один вольт на пластинах.
Оказывается, одна фарада — это огромная емкость просто потому, что один кулон — это очень большая величина заряда.Для сравнения: общий заряд, содержащийся в среднем разряде молнии, составляет около пяти кулонов, и вам нужно всего пять конденсаторов по одному фараду, чтобы сохранить заряд, содержащийся в ударе молнии. (Некоторые удары молнии намного мощнее, до 350 кулонов.)
Предполагается, что конденсатор потока Дока Брауна находился в диапазоне фарад, потому что Док зарядил его ударом молнии. Но конденсаторы, используемые в электронике, заряжаются от гораздо более скромных источников. Намного скромнее.
На самом деле, самые большие конденсаторы, которые вы, вероятно, будете использовать, имеют емкость, которая измеряется в миллионных долях фарада, называемая микрофарад и сокращенно мк F. И меньшие из них измеряются в миллионных долях микрофарад, также называется пикофарад и сокращенно пФ.
Вот еще несколько вещей, которые вам следует знать об измерениях конденсаторов:
Как и резисторы, конденсаторы не производятся до совершенства.Вместо этого у большинства конденсаторов есть предел погрешности, также называемый допуском . В некоторых случаях погрешность может достигать 80%. К счастью, такая степень впечатления редко оказывает заметное влияние на большинство схем.
μ в μ F — это не курсивная буква u ; это греческая буква mu , которая является распространенным сокращением для micro .
Обычно значения 1000 пФ или более выражаются в мкФ, а не в пФ.Например, 1000 пФ записывается как 0,001 мкФ, а 22000 пФ записывается как 0,022 мкФ.
Как цифровые мультиметры (DMM) измеряют емкость через их типичное входное / выходное сопротивление 10 МОм?
Обеспечивая логический уровень 3,3 В, попытка измерения 1F будет означать постоянную времени 10 миллионов секунд (R x C), таким образом, повышение напряжения на конденсаторе будет неизмеримым (по минимальному уровню шума). Они также делают это в течение секунды. или около того с точностью 3%. Как же это достигается?
3 ответа 3
Существует много способов измерения емкости. Если у вас есть генератор сигналов, вы можете использовать прямоугольный сигнал и измерить время нарастания.Или синусоидой и измерить ток и напряжение. Если вы знаете ток и напряжение, вы знаете, какова ваша нагрузка. Если нагрузка представляет собой конденсатор, вам также потребуется информация о фазе. По ссылкам ниже подробно описано, как это делается. Вместо генератора сигналов цифровые мультиметры обычно имеют более простую схему (обычно генерирующую только одну или несколько частот). Вместо схем осциллографа, которые измеряют фазу и амплитуду для выполнения вычислений.
Замечательно то, что если у вас есть осциллограф и генератор сигналов, вы также можете измерить емкость, иногда лучше, чем цифровой мультиметр.Это также работает для индуктивности до.
Источник: https://meettechniek.info/passive/capacitance.html
Источник: https://meettechniek.info/passive/capacitance.html
Емкость конденсатора — это способность конденсатора накапливать электрический заряд на единицу напряжения на своих пластинах конденсатора. Емкость определяется делением электрического заряда на напряжение по формуле C = Q / V. Его единица — Фарад.
Формула
Его формула выглядит так:
Где C — емкость, Q — напряжение, а V — напряжение.Мы также можем найти заряд Q и напряжение V, переписав приведенную выше формулу как:
Фарад — единица измерения емкости. Один фарад — это величина емкости, когда один кулон заряда хранится с одним вольт на пластинах.
Большинство конденсаторов, которые используются в электронике, имеют значения емкости, указанные в микрофарадах (мкФ) и пикофарадах (пФ). Микрофарад — это одна миллионная фарада, а пикофарад — одна триллионная фарада.
Какие факторы влияют на емкость конденсатора?
Это зависит от следующих факторов:
Площадь плит
Емкость прямо пропорциональна физическому размеру пластин, определяемому площадью пластины A.Большая площадь пластины дает большую емкость и меньшую емкость. На рисунке (а) показано, что площадь пластины конденсатора с параллельными пластинами равна площади одной из пластин. Если пластины перемещаются относительно друг друга, как показано на рис (b), площадь перекрытия определяет эффективную площадь пластины. Это изменение эффективной площади пластины является основным для определенного типа переменного конденсатора.
Пластины разделительные
`Емкость обратно пропорциональна расстоянию между пластинами.Разделение пластин обозначено буквой d, как показано на рис. (А). Чем больше разделение пластин, тем меньше емкость, как показано на рис. (B). Как обсуждалось ранее, напряжение пробоя прямо пропорционально расстоянию между пластинами. Чем дальше разделены пластины, тем больше напряжения пробоя .
Диэлектрическая проницаемость материала
Как известно, изоляционный материал между пластинами конденсатора называется диэлектриком. Диэлектрические материалы имеют тенденцию уменьшать напряжение между пластинами при заданном заряде и, таким образом, увеличивать емкость.Если напряжение фиксировано, из-за наличия диэлектрика может храниться больше заряда, чем может храниться без диэлектрика. Мера способности материала создавать электрическое поле называется диэлектрической постоянной или относительной диэлектрической проницаемостью и обозначается как ∈ r .
Емкость прямо пропорциональна диэлектрической проницаемости. Диэлектрическая проницаемость вакуума определяется как 1, а диэлектрическая проницаемость воздуха очень близка к 1. Эти значения используются в качестве справочных, а для всех других материалов значения ∈r указаны по отношению к таковым для вакуума или воздуха.Например, материал с εr = 8 может иметь емкость в восемь раз большую, чем у воздуха, при прочих равных условиях.
Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈ 0 , которое выражается следующей формулой:
Ниже приведены некоторые общие диэлектрические материалы и типичные диэлектрические постоянные для каждого из них. Значения могут варьироваться, потому что они зависят от конкретного состава материала.
Материал Типичные значения ∈r
- Воздух 1.0
- тефлон 2,0
- Бумага 2.5
- Масло 4.0
- Слюда 5,0
- Стекло 7,5
- Керамика 1200
Диэлектрическая проницаемость ∈r безразмерна, поскольку является относительной мерой. Это отношение абсолютной диэлектрической проницаемости материала, ∈r, к абсолютной диэлектрической проницаемости вакуума, ∈0, которое выражается следующей формулой:
Значение ∈0 составляет 8,85 × 10-12 Ф / м.
Формула емкости по физическим параметрам
Вы видели, как емкость напрямую связана с площадью пластины, A, и диэлектрической проницаемостью, ∈r, и обратно пропорциональна расстоянию между пластинами, d. Точная формула для расчета емкости по этим трем величинам:
Емкость параллельных обкладок конденсатора вывода
Рассмотрим конденсатор с параллельными пластинами. Размер пластины большой, а расстояние между пластинами очень маленькое, поэтому электрическое поле между пластинами однородно.
Электрическое поле «E» между конденсаторами с параллельными пластинами составляет:
Емкость цилиндрических конденсаторов физика
Рассмотрим цилиндрический конденсатор длиной L, образованный двумя коаксиальными цилиндрами с радиусами «a» и «b». Предположим, что L >> b, так что на концах цилиндров нет окаймляющего поля.
Пусть «q» — это заряд конденсатора, а «V» — это разность потенциалов между пластинами. Внутренний цилиндр заряжен положительно, а внешний цилиндр — отрицательно.Мы хотим узнать выражение емкости для цилиндрического конденсатора. Для этого мы рассматриваем цилиндрическую гауссовскую поверхность радиуса «r», такую, что теги
В этой статье мы рассмотрим различные тесты, которые мы можем использовать, чтобы определить, хорош ли конденсатор или нет, используя все функции цифрового мультиметра.
Мы можем выполнить множество проверок, чтобы убедиться, что конденсатор работает должным образом. Мы будем использовать характеристики и поведение, которые должен проявлять конденсатор, если он исправен, и, таким образом, определять, исправен он или неисправен.
Проверка конденсатора омметром мультиметра
Очень хороший тест, который вы можете сделать, — это проверить конденсатор с помощью мультиметра, настроенного на настройку омметра.
По сопротивлению конденсатора мы можем определить, хороший он или плохой.
Для проведения этого теста берем омметр и помещаем щупы на выводы конденсатора. Ориентация не имеет значения, потому что сопротивление не поляризовано.
Если мы прочитаем очень низкое сопротивление (около 0 Ом) на конденсаторе, мы знаем, что конденсатор неисправен.Он читается так, как будто на нем короткое замыкание.
Если мы увидим очень высокое сопротивление конденсатора (несколько МОм), это признак того, что конденсатор, вероятно, тоже неисправен. Считывается, что на конденсаторе есть разрыв.
Нормальный конденсатор имел бы сопротивление где-то между этими двумя крайними значениями, скажем, где-нибудь в десятках тысяч или сотнях тысяч Ом. Но не 0 Ом или несколько МОм.
Это простой, но эффективный метод определения неисправности конденсатора.
Проверка конденсатора мультиметром при настройке емкости
Еще одна проверка, которую вы можете сделать, — это проверить емкость конденсатора с помощью мультиметра, если у вас есть измеритель емкости на вашем мультиметре. Все, что вам нужно сделать, это считать емкость, которая находится на внешней стороне конденсатора, взять щупы мультиметра и поместить их на выводы конденсатора. Полярность не имеет значения.
Это то же самое, что и настройка для первой иллюстрации, только теперь мультиметр настроен на настройку емкости.
Вы должны прочитать значение рядом с номинальной емкостью конденсатора. Из-за допуска и того факта, что (в частности, электролитические конденсаторы) могут высохнуть, вы можете прочитать значение немного меньше номинальной емкости. Это хорошо. Если он немного ниже, это все еще хороший конденсатор. Однако, если вы обнаружите значительно меньшую емкость или ее отсутствие вообще, это верный признак того, что конденсатор неисправен и его необходимо заменить.
Проверка емкости конденсатора — отличный тест для определения того, исправен ли конденсатор.
Проверка конденсатора вольтметром
Еще один тест, который вы можете провести, чтобы проверить, исправен ли конденсатор, — это проверка напряжения.
В конце концов, конденсаторы — это накопители. Они накапливают на своей пластине разность потенциалов зарядов, которые представляют собой напряжения. На аноде есть положительное напряжение, а на катоде — отрицательное напряжение.
Тест, который вы можете провести, — это проверить, нормально ли работает конденсатор, — это зарядить его напряжением, а затем измерить напряжение на клеммах.Если он считывает напряжение, до которого вы его заряжали, значит, конденсатор выполняет свою работу и может сохранять напряжение на своих выводах. Если он не заряжается и не считывает напряжение, это признак неисправности конденсатора.
Чтобы зарядить конденсатор напряжением, подайте напряжение постоянного тока на выводы конденсатора. Сейчас полярность очень важна для поляризованных конденсаторов (электролитических конденсаторов). Если вы имеете дело с поляризованным конденсатором, вы должны соблюдать полярность и правильное назначение выводов.Положительное напряжение идет на анод (более длинный вывод) конденсатора, а отрицательное или заземление идет на катод (более короткий вывод) конденсатора. Подайте напряжение, которое меньше номинального напряжения конденсатора, на несколько секунд. Например, подайте на конденсатор 25 В 9 вольт и дайте 9 вольт зарядить его в течение нескольких секунд. Пока вы не используете огромный конденсатор, он заряжается за очень короткий период времени, всего за несколько секунд. После завершения заряда отключите конденсатор от источника напряжения и снимите его напряжение с помощью мультиметра.Напряжение сначала должно быть около 9 вольт (или любого другого напряжения), которое вы ему подавали. Обратите внимание, что напряжение будет быстро разряжаться и упадет до 0 В, потому что конденсатор разряжает свое напряжение через мультиметр. Тем не менее, вы должны сначала прочитать значение заряженного напряжения, прежде чем оно резко упадет. Это поведение исправного и хорошего конденсатора. Если напряжение на нем не сохраняется, значит, он неисправен и его следует заменить.
Итак, у вас есть 3 сильных теста, которые вы можете провести (все или либо / или), чтобы проверить, исправен ли конденсатор или нет.
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение, а затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как прикасаться к нему или проводить измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Переведите шкалу в режим измерения емкости. Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше.
Примечание: Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.
Мне нужно измерить или измерить емкость от 0 до 5 пФ с точностью 0,1 пФ или выше. Я знаю, что чипы емкости для цифрового преобразования утверждают, что это делают, но есть ли более простой / легкий способ смонтировать схему для измерения этих сверхмалых емкостей?
У меня есть небольшой концентрический цилиндр, в котором внешний цилиндр физически закреплен (и связан с некоторым потенциалом), а внутренний двигается внутрь и наружу.Это движение мне нужно отслеживать. Изменение площади перекрытия между двумя цилиндрами приводит к изменению емкости. Таким образом, я постоянно отслеживаю его положение, отслеживая изменение емкости.
1 ответ 1
Довольно просто обнаружить изменение емкости на 0,1 пФ в виде отношения. Самым простым, возможно, является создание релаксационного генератора и измерение частоты и изменения частоты в цифровом виде при подключении испытательного конденсатора.
Очень сложно точно узнать, сколько эффективной емкости имеется в остальной части схемы и любых соединительных приспособлениях, парах, клеммах, выводах, относительно которых измеряется соотношение.
Преимущество релаксационного генератора состоит в том, что один вывод конденсатора заземлен, поэтому паразитные помехи относительно стабильны. Недостатком является то, что паразиты могут быть большими, довольно легко большими по сравнению с 5 пФ.
Альтернативой является измерение с 3 предохраненными выводами, которое невосприимчиво к паразитной емкости на любом выводе конденсатора и чувствительно только к паразитным помехам на нем.Третий вывод — заземление. Метод заключается в следующем.
1) Подайте синусоидальное напряжение относительно земли на одну клемму испытательного конденсатора от известного напряжения. Паразитные помехи от этой клеммы к земле приводятся к точно такому же напряжению, нас не интересует, сколько тока требуется для их зарядки, измерения напряжения достаточно.
2) Удерживая второй вывод на земле, измерьте ток, необходимый для этого. Наиболее распространенный способ сделать это — использовать виртуальный наземный операционный усилитель.Паразитные помехи от второго вывода к земле удерживаются на уровне 0 В, поэтому ток в них не течет, поэтому измерение тока является точным.
3) Теперь мы знаем ток через конденсатор при заданном напряжении на нем. Вычислите емкость по импедансу и частоте. Емкостная обратная связь, а не резистивная на ОУ виртуального заземления, позволяет исключить частоту из уравнения.
Даже несмотря на то, что защищенное измерение устраняет влияние паразитного заземления, любые паразитные колебания конденсатора, усиленные испытательным приспособлением, возможно, пластиковая прижимная площадка, удерживающая SMD-компонент на посадочной поверхности, изменит измерение по сравнению с тем, что он был бы в цепи без этой колодки.
Параллельные конденсаторы
Задача 1:
Конденсаторы серии
Когда конденсаторы подключаются друг за другом, это называется последовательным соединением. Это показано ниже. Чтобы рассчитать общую общую емкость двух конденсаторов, подключенных таким образом, вы можете использовать следующую формулу:
Cобщ. = | C1 x C2 | и так далее |
C1 + C2 |
Пример: чтобы вычислить общую емкость для этих двух последовательно соединенных конденсаторов.
Задача 2:
Три или более конденсатора последовательно
Задача 3:
ответов
Задача 1
Задача 2
Задача 3
© Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.
22 октября 2019 г., 07:27
Хорошие задания мне помогли
03 сентября 2019 в 10:48
03 сентября 2019 в 08:22
Этот сайт был полезен для многих из нас.Спасибо, китроник!
21 февраля 2019 в 14:06
Привет, на данный момент у нас нет руководства, показывающего это, но мы должны добавить его. Вы правильно угадали, как рассчитать общую емкость вашей цепи. Надеюсь, это помогло.
20 февраля 2019 в 18:57
Были ли у вас какие-либо задачи, разработанные с подобными изображениями, как показано выше? Я пытаюсь решить эту же проблему. У меня есть два конденсатора, параллельных друг другу, но также последовательно с одним другим конденсатором.Могу ли я сложить два числа параллельно, а затем использовать это число в уравнении для ряда? Любые советы полезны, спасибо!
01 февраля 2019 в 12:16
Это действительно помогло мне, так что большое спасибо
04 января 2019 в 10:47
МНЕ НРАВИТСЯ ЭТО РАСЧЕТ
27 октября 2018 г., 03:49
Очень хорошая информация спасибо kitronik
20 сентября 2018 г., 10:58
Привет, Эммануэль, Вы можете рассчитать емкость каждой из областей по отдельности, а затем выяснить, как найти общую емкость, метод будет определяться тем, как различные области расположены по отношению друг к другу.Они могут быть последовательно или параллельно. Надеюсь, это поможет.
19 сентября 2018 01:21
Как рассчитать конденсаторы, подключенные параллельно и последовательно
16 января 2018 в 18:42
— это очень полезный инструмент для изучения основ электротехники. спасибо
14 июля 2017 в 10:41
Привет, Кин, осталось сделать еще один шаг ваших вычислений, вам нужно разделить 1 на 3, и тогда вы получите свой ответ на сумму C.Надеюсь это поможет.
13 июля 2017 в 04:54
Формула для последовательной емкости не работает для 1Ф. Если вы добавите 1 + 1 + 1, вы получите 3F вместо .333F. Пожалуйста, объясни.
19 мая 2017 в 08:17
Очень-очень полезный сайт Мне нравится .. Будучи учеником 10 класса, я понял, как решить вопрос о последовательном и параллельном сочетании проводов ..
10 мая 2017 в 11:00
Мне нравится этот сайт. Спасибо большое, буду писать экзамены.Теперь моя проблема с конденсаторами решена полностью. еще раз спасибо
19 апреля 2017 в 09:40
Это может быть что-то, для чего мы в какой-то момент создаем ресурс, но пока попробуйте Google, так как в Интернете уже есть много информации об этом.
16 апреля 2017 в 14:11
Мне нужно больше разъяснений о ЗАКОНЕ ЭЛЕКТРОСТАТИКИ КУЛУМБСА и ЕГО РАСЧЕТЕ.
03 апреля 2017 в 06:27
Мне нравится этот сайт, он мне действительно помогает
13 декабря 2016 в 22:05
Awwnnn….это действительно потрясающе, это очень помогает.
30 ноября 2016 г., 09:40
вау !! Мне очень нравится этот сайт, он очень полезен.
01 ноября 2016 в 20:47
Моя проблема с конденсатором решена
20 октября 2016 в 16:18
Привет, мне нравится этот расчет последовательного и параллельного
03 мая 2016 в 10:02
Привет, Дуглас, Примеры расчетов будут работать независимо от номиналов отдельных конденсаторов.
25 апреля 2016 г., 04:55
Привет, похоже, что в ваших примерах речь идет только о конденсаторах различной емкости.Было бы полезно включить примеры идентичных конденсаторов, соединенных последовательно и параллельно. Последовательно подключаемые идентичные конденсаторы… .. Общая емкость = Номинальная емкость, деленная на общее количество конденсаторов. EG .. 3000 Фарад ÷ (X5 последовательно),… 3000F / 5 = 600F. Идентичные конденсаторы, соединенные параллельно …… Общая емкость = Номинальная емкость, умноженная на общее количество конденсаторов ………. 3000Farad X (X5 параллельно)… 3000FX5 = 15,000F Покончим со всей «ерундой длинного деления»
01 апреля 2015 в 11:52
Привет, напряжение осталось бы прежним.Грабить
12 марта 2015 в 23:36
Объяснение понятно, а как насчет рабочего напряжения двух конденсаторов параллельно? Остается ли оно прежним или номинальное напряжение отдельного конденсатора суммируется. Предположим, что оба конденсатора имеют одинаковое рабочее напряжение
.Белко Царь Соломон
24 февраля 2015 в 13:23
это объяснение простое и легкое для понимания и оно нравится.
07 декабря 2014 в 00:57
Пока это единственное объяснение, которое я смог понять.Спасибо
23 мая 2014 в 12:17
Спасибо, я исправил это сейчас!
21 мая 2014 в 22:04
я думаю, что задача 3 должна быть 1,167F, а не 1,67F
Информационный бюллетень Kitronik
Зарегистрируйтесь сейчас, чтобы узнавать первыми о последних продуктах и ресурсах!
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение, а затем вычисляя емкость.
Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания.Перед тем, как прикасаться к нему или проводить измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Поверните циферблат в режим измерения емкости (
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов.Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.
Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя полученное напряжение, а затем вычисляя емкость.
Предупреждение: исправный конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как прикасаться к нему или проводить измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце). Обязательно используйте соответствующие средства индивидуальной защиты.
Для безопасной разрядки конденсатора: После отключения питания подключите резистор 20 000 Ом, 5 Вт к клеммам конденсатора на пять секунд.Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.
- Используйте цифровой мультиметр (DMM), чтобы убедиться, что питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, установите цифровой мультиметр на измерение постоянного напряжения.
- Осмотрите конденсатор. Если утечки, трещины, вздутия или другие признаки износа очевидны, замените конденсатор.
- Переведите шкалу в режим измерения емкости ().Символ часто разделяет точку на циферблате с другой функцией. В дополнение к регулировке шкалы обычно необходимо нажать функциональную кнопку, чтобы активировать измерение. За инструкциями обратитесь к руководству пользователя мультиметра.
Для правильного измерения необходимо удалить конденсатор из цепи. Разрядите конденсатор, как описано в предупреждении выше.
Примечание. Некоторые мультиметры поддерживают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов.Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
Обзор измерения емкости
Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.
Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора. Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Отказ конденсатора жесткого пуска компрессоров HVAC — хороший пример этой проблемы.Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.
Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.
Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями. Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования.Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.
Стоит знать о некоторых дополнительных факторах, связанных с емкостью:
- Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
- Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
- При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
- Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
- Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.
Измерения емкости и индуктивности с помощью осциллографа и функционального генератора
В большинстве лабораторий имеется достаточный запас цифровых мультиметров для измерения сопротивления постоянному току, но когда речь идет об измерении индуктивности, емкости и импеданса, это не всегда легко найти измеритель LCR.
СчетчикиLCR работают, подавая на устройство напряжение переменного тока. при испытании, и измеряя результирующий ток, как по амплитуде, так и по фаза относительно сигнала переменного напряжения. Емкостный импеданс будет иметь форма волны тока, которая опережает форму волны напряжения. Индуктивный импеданс будет имеют форму волны тока, которая отстает от формы волны напряжения. К счастью, если у вас есть осциллограф и генератор функций в вашей лаборатории, вы можете использовать аналогичный метод для измерения многочастотного импеданса с хорошим полученные результаты.Этот подход также может быть адаптирован для использования в качестве учебной лаборатории. упражнение.
Рисунок 1. Импеданс смоделирован как конденсатор или индуктор с эквивалентным последовательным сопротивлением.Что такое импеданс?
Импеданс — это полное сопротивление току в цепь переменного тока. Он состоит из сопротивления (реального) и реактивного сопротивления. (мнимый) и обычно представляется в сложных обозначениях как Z = R + jX , где R — сопротивление, а X — реактивное сопротивление.
Реальные компоненты состоят из проводов, соединений, проводники и диэлектрические материалы. Эти элементы вместе составляют характеристики импеданса компонента, и это полное сопротивление изменяется в зависимости от частота тестового сигнала и уровень напряжения, наличие напряжения смещения постоянного тока или текущие и окружающие факторы, такие как рабочие температуры или высота. Из этих потенциальных влияний частота тестового сигнала часто оказывается определяющей. наиболее значимый фактор.
В отличие от идеальных компонентов, настоящие компоненты не являются чисто индуктивные или емкостные.Все компоненты имеют последовательное сопротивление, которое Параметр R в его импедансе. Но у них также есть несколько участников реактивное сопротивление. Например, конденсатор имеет последовательную индуктивность, которая становится больше проявляется на высоких частотах. Когда мы измеряем реальный конденсатор, серия индуктивность (ESL) будет влиять на показания емкости, но мы не сможем измерять его как отдельный, самостоятельный компонент.
Методы измерения импеданса
Метод I-V, описанный в этом примечании по применению, просто один из многих методов измерения импеданса.Другие включают мостовой метод. и резонансный метод.
Метод I-V использует значение напряжения и тока на тестируемое устройство (DUT) для расчета неизвестного импеданса, Z x . Текущий измеряется путем измерения падения напряжения на прецизионном резисторе последовательно с ИУ, как показано на рисунке 2. Уравнение 1 показывает, как можно использовать схему. найти Z x . Уравнение 1:
Теоретическая точность
В этом документе мы будем использовать Tektronix AFG2021. произвольный / функциональный генератор и осциллограф Tektronix серии MDO4000 для выполнения измерение.Полоса пропускания AFG2021 в 20 МГц хорошо подходит для этого. измерение. Точность усиления постоянного тока MDO4000 составляет 2% при настройке 1 мВ / дел. 1,5% при других вертикальных настройках. Как вы можете видеть в уравнении 1, Точность измерения напряжения осциллографом является наиболее важным фактором в общая точность теста.
На основании уравнения 1 теоретическая точность этого метод измерения должен составлять около 4% при настройке MDO4000 1 мВ / дел и 3% при других настройках.
Так как частота дискретизации осциллографа очень велика. выше, чем частота стимулов, используемых в этих тестах, ошибка вклад фазовых измерений будет незначительным.
Рисунок 3. Испытательная установка для оценка конденсатора, как в Примере 1.Тестовый пример
В следующих двух примерах представлены конденсатор / индуктор / Измерение ESR с помощью осциллографа и функционального генератора.
Б / у оборудования:
- AFG2021 Генератор произвольных функций / функций Осциллограф
- MDO4104C
- А 1 кОм прецизионный резистор
- Подлежащие испытаниям конденсаторы и катушки индуктивности
- Два пробника напряжения Tektronix TPP1000
Для этого приложения большинство осциллографов и функций генераторы дадут приемлемые результаты, так как тестовые частоты ниже 100 кГц.Однако мы воспользуемся статистикой измерений на MDO4000. Серии в этом примере.
Рисунок 4. Осциллограммы напряжения и измерения, сделанные в узлах A1 и A2.Пример 1: керамический конденсатор 10 мкФ
Установите испытательную схему, как показано на рисунке 3. Примечание. что R ESR и C связаны с тестируемым керамическим конденсатором, и что R fg — это выходное сопротивление 50 Ом генератор функций.
Установите функциональный генератор на выход 1,9 В. амплитуда, синусоида 100 Гц. Вы можете использовать ручку AFG2021 или клавиатуру для установить напряжение и частоту. Отрегулируйте настройку вертикального масштаба осциллографа, чтобы использовать как можно большую часть экрана — используя как можно больше диапазон, насколько это возможно, вы улучшите точность своего напряжения измерения.
Используйте осциллограф для проверки узлов A1 и A2. Рисунок 4 показывает результирующую форму волны.
Выберите средний режим сбора данных осциллографа. и установите количество средних значений на 128.Это уменьшит эффект случайного шум по вашим измерениям. Настройте осциллограф на измерение канала 1. частота, фаза между каналом 2 и каналом 1, амплитуда канала 1 и амплитуда канала 2, как показано на рисунке 4. Если ваш осциллограф предлагает статистику измерений, такую как серия MDO4000, запишите средние значения для вашего расчеты. В противном случае запишите самые последние значения.
Из измерительной установки мы знаем:
- Частота стимула, f = 100 Гц
- Прецизионный резистор, Rref = 1 кОм
По измерениям, выполненным на осциллографе и показанным на рисунке 4:
- Амплитуда напряжения, измеренная при A1, В A1 = 1.929 В
- Амплитуда напряжения, измеренная при A2, В A2 = 0,310 В
- Разность фаз между напряжением, измеренным в точке A2, относительно A1, θ = -79,95 °
Обратите внимание, что в узле A1 напряжение имеет фазовый угол 0 °, то есть он находится в фазе с выходом функционального генератора. На А2 напряжение равно сдвинуты вперед на фазовый угол θ.
Полное сопротивление тестируемого конденсатора можно найти используя уравнение 1.
Импеданс можно выразить в полярной форме, где величина определяется уравнением 2.
Уравнение 2:Угол импеданса определяется вычитанием двух углы:
Уравнение 3:Для теста в нашем примере мы можем использовать уравнение 2 и уравнение 3, чтобы найти величину и угол импеданса конденсатор тестируемый:
Теперь мы можем преобразовать импеданс в прямоугольную форму. найти сопротивление и емкость.
Используя приведенные выше уравнения, мы можем решить для ESR и Емкость ИУ:
Уравнения 4 и 5:Используя уравнение 4 и уравнение 5, мы можем вычислить ESR и емкость для тестируемого конденсатора:
|
В таблице 1 сравниваются результаты, полученные с помощью осциллографа. и генератор функций для результатов, достигаемых с помощью недорогого ВАЦ и традиционный измеритель LCR.Измеритель LCR, используемый в этом случае, поддерживает только тест частоты 100 Гц и 1 кГц, которые являются общими частотами тестирования компонентов. Вы заметите, что эти три метода достаточно хорошо коррелируют.
Значения пассивных компонентов указаны с особым частоту, и измерители LCR часто имеют более одной тестовой частоты для эта причина. В таблице 1 показаны результаты с использованием осциллографа / функции. комбинация генераторов на пяти разных частотах. Вы можете увидеть эффект паразитная индуктивность в испытательной цепи при увеличении испытательной частоты — измеренная емкость падает с увеличением испытательной частоты.См. Раздел о «Диапазон измерения» для получения дополнительной информации о тестовых частотах.
Для достижения наилучших результатов вам необходимо сохранить значение прецизионного резистора (R ref ) достаточно низкий, чтобы дать значительную волну напряжения в узле A2. Резистор также должно быть больше 50 Ом, иначе выходное сопротивление функционального генератора будет учитываться при измерении.
Рисунок 5. Испытательная установка для оценка катушки индуктивности, как в Примере 2.Пример 2: индуктор 10 мГн
Схема и процедура проверки практически идентичны те, которые использовались для проверки конденсатора в Примере 1.
Используйте функциональный генератор для вывода 1,9 В. амплитуда синусоидальной волны 10 кГц. Сигнал подается на опорный резистор и испытуемый индуктор.
Используйте осциллограф для проверки узлов A1 и A2. Рисунок 6 показаны две результирующие формы волны.
Рисунок 6. Осциллограммы напряжения и измерения взяты в узлах A1 и A2.
Выберите средний режим сбора данных осциллографа. и установите количество средних значений на 128. Это уменьшит влияние случайных шум по вашим измерениям.Настройте осциллограф на измерение канала 1. частота, фаза между каналом 2 и каналом 1, амплитуда канала 1 и амплитуда канала 2, как показано на рисунке 6. Если ваш осциллограф предлагает статистику измерений, такую как серия MDO4000, запишите средние значения для вашего расчеты. В противном случае запишите самые последние значения.
Из измерительной установки мы знаем:
- Частота стимула, f = 10 кГц
- Прецизионный резистор, R ref = 1 кОм
По измерениям, выполненным на осциллографе и показанным на рисунке 6:
Обратите внимание, что в узле A1 напряжение имеет фазовый угол 0 °, то есть он находится в фазе с выходом функционального генератора. На А2 напряжение равно сдвинуты вперед на фазовый угол θ.
Мы можем использовать те же уравнения для расчета импеданса ИУ, которое мы использовали для измерения конденсатора в примере 1. Импеданс может быть выраженным в полярной форме, где величина и угол импеданса равны предоставлено:
Теперь мы можем преобразовать в прямоугольную форму сопротивление, чтобы найти сопротивление и индуктивность
Используя приведенные выше уравнения, мы можем решить для ESR и Индуктивность ИУ:
Уравнения 6 и 7:Используя уравнения 6 и 7, мы можем рассчитать СОЭ и индуктивность для испытуемой катушки индуктивности:
— пользователем Область применения / FG | по USB ВНА | по LCR | — пользователем Область применения / FG | по USB ВНА | по LCR | |
Частота | индуктивность (мГн) | индуктивность (мГн) | индуктивность (мГн) | СОЭ (Ом) | СОЭ (Ом) | СОЭ (Ом) |
10 Гц | 12 | 10.3 | НЕТ | 20,5 | 20,8 | НЕТ |
100 Гц | 10,1 | 10,4 | 10,31 | 20,6 | 20,9 | 20,9 |
1 кГц | 10,3 | 10.2 | 10,1 | 20,5 | 22 | 21,5 |
10 кГц | 10 | 9,8 | 9,76 | 29,8 | 31,5 | 29,4 |
Опять же, в таблице 2 сравниваются достигнутые результаты с осциллографа и генератора функций для результатов, достигаемых с помощью недорогого векторного анализатора цепей и традиционный измеритель LCR.Эти три метода хорошо коррелируют.
Таблица 2 также показывает результаты, полученные с помощью осциллографа / комбинация функционального генератора на четырех различных частотах. См. Раздел в разделе «Диапазон измерений» для получения дополнительной информации о тестовых частотах.
Еще раз, вам, возможно, придется поэкспериментировать со стоимостью R ref , чтобы получить лучшее полученные результаты.
Рисунок 7. Емкость / частота коробка. | Рисунок 8.Индуктивность / частота коробка. |
Диапазон измерения
Существуют практические ограничения на частоту стимула и значения конденсатора или индуктора ИУ для этого метода измерения импеданса.
Рисунок 7 — это блок емкости / частоты. Если емкость значение и частота тестирования указаны в рамке, тогда вы сможете измерить это. В заштрихованной области точность измерения будет около 3%, а за пределами заштрихованной области точность падает примерно до 5%.Эти неопределенности предположим, что вы позаботились о том, чтобы использовать весь экран осциллографа, усреднено 128 периодов сигналов и использовано среднее значение амплитуды и фазы для выполнения расчетов.
Аналогичный блок индуктивности / частоты показан на рисунке. 8 для испытания индуктора.
Заключение
Если у вас нет измерителя LCR в вашей лаборатории, или вы хочу продемонстрировать поведение конденсаторов и катушек индуктивности при синусоидальном стимула, осциллографа и генератора функций могут помочь вам сделать простой, прозрачное измерение импеданса.Вы можете рассчитывать на емкость и индуктивность значения с погрешностью 3% -5%. Чтобы воспользоваться этим методом, вы нужен только функциональный генератор с хорошим диапазоном частот и амплитуд, осциллограф с хорошими характеристиками и функциями, которые мы обсуждали, несколько прецизионные резисторы, а также калькулятор или электронную таблицу.
8.1 Конденсаторы и емкость — University Physics Volume 2
Задачи обучения
К концу этого раздела вы сможете:
- Объясните понятие конденсатора и его емкости
- Опишите, как оценить емкость системы проводов
Конденсатор — это устройство, используемое для хранения электрического заряда и электрической энергии.Конденсаторы обычно состоят из двух электрических проводников, разделенных расстоянием. (Обратите внимание, что такие электрические проводники иногда называют «электродами», но, точнее, они «обкладки конденсатора».) Пространство между конденсаторами может быть просто вакуумом, и в этом случае конденсатор будет известен как «Вакуумный конденсатор». Однако пространство обычно заполнено изолирующим материалом, известным как диэлектрик. (Вы узнаете больше о диэлектриках в разделах, посвященных диэлектрикам, далее в этой главе.Объем конденсатора определяется свойством , емкостью , о котором вы узнаете больше чуть позже в этом разделе.
Конденсаторыимеют различные применения: от фильтрации статического электричества, от радиоприема до накопления энергии в дефибрилляторах сердца. Обычно в промышленных конденсаторах две токопроводящие части расположены близко друг к другу, но не соприкасаются, как показано на рисунке 8.2. В большинстве случаев между двумя пластинами используется диэлектрик. Когда клеммы батареи подключены к первоначально незаряженному конденсатору, потенциал батареи перемещает небольшой заряд величиной Q с положительной пластины на отрицательную.Конденсатор в целом остается нейтральным, но с зарядами + Q + Q и −Q − Q, находящимися на противоположных пластинах.
Фигура 8,2 Оба конденсатора, показанные здесь, были изначально разряжены перед подключением к батарее. Теперь у них на пластинах есть заряды + Q + Q и −Q − Q (соответственно). (a) Конденсатор с параллельными пластинами состоит из двух пластин противоположного заряда с площадью A , разделенных расстоянием d . (b) Катаный конденсатор имеет диэлектрический материал между двумя проводящими листами (пластинами).Система, состоящая из двух идентичных параллельно проводящих пластин, разделенных расстоянием, называется конденсатором с параллельными пластинами (рис. 8.3). Величина электрического поля в пространстве между параллельными пластинами равна E = σ / ε0E = σ / ε0, где σσ обозначает поверхностную плотность заряда на одной пластине (напомним, что σσ — это заряд Q на площадь поверхности А. ). Таким образом, величина поля прямо пропорциональна Q .
Фигура 8,3 Разделение зарядов в конденсаторе показывает, что заряды остаются на поверхности пластин конденсатора.Линии электрического поля в конденсаторе с параллельными пластинами начинаются с положительных зарядов и заканчиваются отрицательными зарядами. Величина электрического поля в пространстве между пластинами прямо пропорциональна количеству заряда на конденсаторе.
Конденсаторы с разными физическими характеристиками (такими как форма и размер пластин) накапливают разное количество заряда для одного и того же приложенного напряжения В на своих пластинах. Емкость C конденсатора определяется как отношение максимального заряда Q , который может храниться в конденсаторе, к приложенному напряжению В на его пластинах.Другими словами, емкость — это наибольшая величина заряда на вольт, которая может храниться на устройстве:
Единица измерения емкости в системе СИ — фарад (Ф), названная в честь Майкла Фарадея (1791–1867). Поскольку емкость — это заряд на единицу напряжения, один фарад равен одному кулону на один вольт, или
.По определению, конденсатор емкостью 1,0 мкФ может сохранять заряд 1,0 К (очень большой заряд), когда разность потенциалов между его пластинами составляет всего 1,0 В. Следовательно, один фарад является очень большой емкостью.Типичные значения емкости варьируются от пикофарад (1пФ = 10−12Ф) (1пФ = 10−12Ф) до миллифарадов (1мФ = 10−3Ф) (1мФ = 10−3Ф), что также включает микрофарады (1мкФ = 10−6F1мкФ = 10− 6F). Конденсаторы могут быть разных форм и размеров (рис. 8.4).
Фигура 8,4 Это некоторые типичные конденсаторы, используемые в электронных устройствах. Размер конденсатора не обязательно зависит от его емкости. (Источник: Windell Oskay)
Расчет емкости
Мы можем рассчитать емкость пары проводников с помощью следующего стандартного подхода.
Стратегия решения проблем
Расчет емкости
- Предположим, что конденсатор имеет заряд Q .
- Определить электрическое поле E → E → между проводниками. Если в расположении проводников присутствует симметрия, вы можете использовать закон Гаусса для этого расчета.
- Найдите разность потенциалов между проводниками из
VB − VA = −ABE → · dl →, VB − VA = −ABE → · dl →,
8,2
где путь интегрирования ведет от одного проводника к другому.Тогда величина разности потенциалов равна V = | VB-VA | V = | VB-VA |. - Зная В , определите емкость непосредственно из уравнения 8.1.
Чтобы показать, как работает эта процедура, мы теперь вычисляем емкости параллельных пластин, сферических и цилиндрических конденсаторов. Во всех случаях мы предполагаем вакуумные конденсаторы (пустые конденсаторы) без диэлектрического вещества в пространстве между проводниками.
Конденсатор с параллельными пластинами
Конденсатор с параллельными пластинами (рисунок 8.5) имеет две идентичные проводящие пластины, каждая с площадью поверхности A , разделенными расстоянием d . Когда на конденсатор подается напряжение В , он сохраняет заряд Q , как показано. Мы можем увидеть, как его емкость может зависеть от A и d , рассматривая характеристики кулоновской силы. Мы знаем, что сила между зарядами увеличивается с увеличением заряда и уменьшается с расстоянием между ними. Следует ожидать, что чем больше пластины, тем больше заряда они могут хранить.Таким образом, C должно быть больше для большего значения A . Точно так же, чем ближе пластины расположены друг к другу, тем сильнее на них притяжение противоположных зарядов. Следовательно, C должно быть больше для меньшего d .
Фигура 8,5 В конденсаторе с параллельными пластинами, разделенные пластинами на расстояние d , каждая пластина имеет одинаковую площадь поверхности A .
Определим плотность поверхностного заряда σσ на пластинах как
Из предыдущих глав мы знаем, что, когда d мало, электрическое поле между пластинами довольно однородно (без учета краевых эффектов) и что его величина определяется как
.где постоянная ε0ε0 — диэлектрическая проницаемость свободного пространства, ε0 = 8.85 × 10–12Ф / м. Ε0 = 8,85 × 10–12Ф / м. Единица СИ в Ф / м эквивалентна C2 / N · m2.C2 / N · m2. Поскольку электрическое поле E → E → между пластинами однородно, разность потенциалов между пластинами составляет
. V = Ed = σdε0 = Qdε0A.V = Ed = σdε0 = Qdε0A.Следовательно, уравнение 8.1 дает емкость конденсатора с параллельными пластинами как
C = QV = QQd / ε0A = ε0Ad.C = QV = QQd / ε0A = ε0Ad.8,3
Обратите внимание на это уравнение, что емкость является функцией только геометрии и того, какой материал заполняет пространство между пластинами (в данном случае вакуум) этого конденсатора.Фактически, это верно не только для конденсатора с параллельными пластинами, но и для всех конденсаторов: емкость не зависит от Q или В . При изменении заряда соответственно изменяется и потенциал, так что Q / V остается постоянным.
Пример 8.1
Емкость и заряд в конденсаторе с параллельными пластинами
(а) Какова емкость пустого конденсатора с параллельными пластинами с металлическими пластинами, каждая из которых имеет площадь 1?00м21.00м2, расстояние между которыми составляет 1,00 мм? (b) Сколько заряда хранится в этом конденсаторе, если к нему приложено напряжение 3,00 × 103 В3,00 × 103 В?Стратегия
Определение емкости C является прямым применением уравнения 8.3. Найдя C , мы сможем найти накопленный заряд, используя уравнение 8.1.Решение
- Ввод заданных значений в уравнение 8.3 дает C = ε0Ad = (8,85 × 10−12Fm) 1,00м21,00 × 10−3м = 8,85 × 10−9F = 8,85nF.C = ε0Ad = (8,85 × 10−12Fm) 1,00м21.00 × 10−3m = 8,85 × 10−9F = 8,85 нФ. Это небольшое значение емкости указывает на то, насколько сложно изготовить устройство с большой емкостью.
- Обращение уравнения 8.1 и ввод известных значений в это уравнение дает Q = CV = (8,85 × 10–9F) (3,00 × 103 В) = 26,6 мкКл. Q = CV = (8,85 × 10–9F) (3,00 × 103 В) = 26,6 мкКл.
Значение
Этот заряд лишь немного больше, чем в типичных приложениях для статического электричества. Поскольку воздух разрушается (становится проводящим) при напряженности электрического поля около 3.0 МВ / м, на этом конденсаторе больше нельзя накапливать заряд при увеличении напряжения.Пример 8,2
А 1-Ф конденсатор с параллельными пластинами
Предположим, вы хотите сконструировать конденсатор с параллельными пластинами емкостью 1,0 F. Какую площадь вы должны использовать для каждой пластины, если пластины разделены на 1,0 мм?Решение
Преобразуя уравнение 8.3, получаем A = Cdε0 = (1.0F) (1.0 × 10−3m) 8.85 × 10−12F / m = 1.1 × 108m2 A = Cdε0 = (1.0F) (1.0 × 10−3m) 8,85 × 10−12F / m = 1,1 × 108 м2.Каждая квадратная пластина должна быть 10 км в поперечнике.Раньше было обычным розыгрышем — попросить студента пойти в склад лаборатории и попросить конденсатор с параллельными пластинами 1F, пока обслуживающий персонал не устанет от этой шутки.
Проверьте свое понимание 8.1
Проверьте свое понимание Емкость конденсатора с параллельными пластинами составляет 2,0 пФ. Если площадь каждой пластины составляет 2,4 см 22,4 см2, каково расстояние между пластинами?
Проверьте свое понимание 8,2
Проверьте свое понимание Убедитесь, что σ / Vσ / V и ε0 / dε0 / d имеют одинаковые физические единицы.
Сферический конденсатор
Сферический конденсатор — это еще один набор проводников, емкость которых можно легко определить (рис. 8.6). Он состоит из двух концентрических проводящих сферических оболочек радиусов R1R1 (внутренняя оболочка) и R2R2 (внешняя оболочка). Оболочкам приписываются равные и противоположные заряды + Q + Q и −Q − Q соответственно. Из-за симметрии электрическое поле между оболочками направлено радиально наружу. Мы можем получить величину поля, применив закон Гаусса к сферической гауссовой поверхности радиусом r , концентричной оболочкам.dr) = Q4πε0∫R1R2drr2 = Q4πε0 (1R1−1R2).
В этом уравнении разность потенциалов между пластинами равна V = — (V2 − V1) = V1 − V2V = — (V2 − V1) = V1 − V2. Мы подставляем этот результат в уравнение 8.1, чтобы найти емкость сферического конденсатора:
C = QV = 4πε0R1R2R2 − R1.C = QV = 4πε0R1R2R2 − R1.8,4
Фигура 8,6 Сферический конденсатор состоит из двух концентрических проводящих сфер. Обратите внимание, что заряды на проводнике находятся на его поверхности.
Пример 8.3
Емкость изолированной сферы
Вычислите емкость одиночной изолированной проводящей сферы радиуса R1R1 и сравните ее с уравнением 8.4 в пределе R2 → ∞R2 → ∞.Стратегия
Мы предполагаем, что заряд на сфере равен Q , и поэтому следуем четырем шагам, описанным ранее. Мы также предполагаем, что другой проводник представляет собой концентрическую полую сферу бесконечного радиуса.Решение
На внешней стороне изолированной проводящей сферы электрическое поле задается уравнением 8.dr) = Q4πε0∫R1 + ∞drr2 = 14πε0QR1.Таким образом, емкость изолированной сферы равна
. C = QV = Q4πε0R1Q = 4πε0R1.C = QV = Q4πε0R1Q = 4πε0R1.Значение
Тот же результат можно получить, взяв предел уравнения 8.4 при R2 → ∞R2 → ∞. Таким образом, одиночная изолированная сфера эквивалентна сферическому конденсатору, внешняя оболочка которого имеет бесконечно большой радиус.Проверьте свое понимание 8,3
Проверьте свое понимание Радиус внешней сферы сферического конденсатора в пять раз больше радиуса его внутренней оболочки.Каковы размеры этого конденсатора, если его емкость 5,00 пФ?
Цилиндрический конденсатор
Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров (рисунок 8.7). Внутренний цилиндр радиуса R1R1 может быть либо оболочкой, либо полностью твердым. Внешний цилиндр представляет собой оболочку внутреннего радиуса R2R2. Мы предполагаем, что длина каждого цилиндра составляет l и что избыточные заряды + Q + Q и −Q − Q находятся на внутреннем и внешнем цилиндрах соответственно.
Фигура 8,7 Цилиндрический конденсатор состоит из двух концентрических проводящих цилиндров. Здесь заряд на внешней поверхности внутреннего цилиндра положительный (обозначен ++), а заряд на внутренней поверхности внешнего цилиндра отрицательный (обозначен −−). dA = E (2πrl) = Qε0.dr) = Q2πε0l∫R1R2drr = Q2πε0llnr | R1R2 = Q2πε0llnR2R1.Таким образом, емкость цилиндрического конденсатора
C = QV = 2πε0lln (R2 / R1). C = QV = 2πε0lln (R2 / R1).8,6
Как и в других случаях, эта емкость зависит только от геометрии расположения проводников. Важным применением уравнения 8.6 является определение емкости на единицу длины коаксиального кабеля , который обычно используется для передачи изменяющихся во времени электрических сигналов. Коаксиальный кабель состоит из двух концентрических цилиндрических проводников, разделенных изоляционным материалом.(Здесь мы предполагаем наличие вакуума между проводниками, но физика качественно почти такая же, когда пространство между проводниками заполнено диэлектриком.) Эта конфигурация экранирует электрический сигнал, распространяющийся по внутреннему проводнику, от паразитных электрических полей, внешних по отношению к проводнику. кабель. Ток течет в противоположных направлениях во внутреннем и внешнем проводниках, при этом внешний проводник обычно заземлен. Теперь из уравнения 8.6 емкость коаксиального кабеля на единицу длины равна
. Cl = 2πε0ln (R2 / R1).Cl = 2πε0ln (R2 / R1).В практических приложениях важно выбирать конкретные значения C / l . Это может быть достигнуто за счет соответствующего выбора радиусов проводников и изоляционного материала между ними.
Проверьте свое понимание 8,4
Проверьте свое понимание Когда цилиндрический конденсатор получает заряд 0,500 нКл, между цилиндрами измеряется разность потенциалов 20,0 В. а) Какова емкость этой системы? (b) Если цилиндры 1.Длина 0 м, каково соотношение их радиусов?
Несколько типов конденсаторов, пригодных для использования на практике, показаны на рис. 8.4. Обычные конденсаторы часто состоят из двух небольших кусочков металлической фольги, разделенных двумя небольшими кусочками изоляции (см. Рисунок 8.2 (b)). Металлическая фольга и изоляция покрыты защитным покрытием, а два металлических вывода используются для подключения фольги к внешней цепи. Некоторые распространенные изоляционные материалы — это слюда, керамика, бумага и антипригарное покрытие Teflon ™.
Другой популярный тип конденсатора — электролитический конденсатор.Он состоит из окисленного металла в проводящей пасте. Основным преимуществом электролитического конденсатора является его высокая емкость по сравнению с другими распространенными типами конденсаторов. Например, емкость одного типа алюминиевого электролитического конденсатора может достигать 1,0 F. Однако вы должны быть осторожны при использовании электролитического конденсатора в цепи, потому что он работает правильно только тогда, когда металлическая фольга находится под более высоким потенциалом, чем проводящая паста. Когда возникает обратная поляризация, электролитическое действие разрушает оксидную пленку.Этот тип конденсатора не может быть подключен к источнику переменного тока, потому что в половине случаев переменное напряжение будет иметь неправильную полярность, поскольку переменный ток меняет свою полярность (см. Схемы переменного тока в цепях переменного тока).
Конденсатор переменного тока (рисунок 8.8) имеет два набора параллельных пластин. Один набор пластин закреплен (обозначен как «статор»), а другой набор пластин прикреплен к валу, который может вращаться (обозначается как «ротор»). Поворачивая вал, можно изменять площадь поперечного сечения в перекрытии пластин; следовательно, емкость этой системы может быть настроена на желаемое значение.Настройка конденсатора находит применение в любом типе радиопередачи и при приеме радиосигналов от электронных устройств. Каждый раз, когда вы настраиваете автомобильное радио на любимую станцию, думайте о емкости.
Фигура 8,8 В переменном воздушном конденсаторе емкость можно регулировать, изменяя эффективную площадь пластин. (кредит: модификация работы Робби Спрула)
Символы, показанные на рисунке 8.9, представляют собой схемные изображения различных типов конденсаторов.Обычно мы используем символ, показанный на рис. 8.9 (а). Символ на Рисунке 8.9 (c) представляет конденсатор переменной емкости. Обратите внимание на сходство этих символов с симметрией конденсатора с параллельными пластинами. Электролитический конденсатор представлен символом на рис. 8.9 (b), где изогнутая пластина обозначает отрицательный вывод.
Фигура 8.9 Здесь показаны три различных схемных представления конденсаторов. Символ в (а) является наиболее часто используемым.Символ в (b) представляет собой электролитический конденсатор. Символ в (c) представляет конденсатор переменной емкости.
Интересный прикладной пример модели конденсатора взят из клеточной биологии и имеет дело с электрическим потенциалом в плазматической мембране живой клетки (рис. 8.10). Клеточные мембраны отделяют клетки от их окружения, но позволяют некоторым отобранным ионам проходить внутрь или из клетки. Разность потенциалов на мембране составляет около 70 мВ. Клеточная мембрана может иметь толщину от 7 до 10 нм.Рассматривая клеточную мембрану как наноразмерный конденсатор, оценка наименьшей напряженности электрического поля на ее « пластинах » дает значение E = Vd = 70 × 10−3V · 10 · 10−9m = 7 · 106V / m> 3MV / mE. = Vd = 70 × 10−3V10 × 10−9m = 7 × 106V / m> 3MV / m.
Этой величины электрического поля достаточно, чтобы вызвать электрическую искру в воздухе.
Фигура 8.10 Полупроницаемая мембрана биологической клетки имеет разные концентрации ионов на внутренней поверхности, чем на внешней.Диффузия перемещает ионы K + K + (калий) и Cl – Cl– (хлорид) в показанных направлениях, пока кулоновская сила не остановит дальнейший перенос. Таким образом, внешняя поверхность мембраны приобретает положительный заряд, а ее внутренняя поверхность приобретает отрицательный заряд, создавая разность потенциалов на мембране. Мембрана обычно непроницаема для Na + (ионов натрия). .