Как измерить емкость конденсатора мультиметром: единица измерения, как измерить мультиметром

Содержание

единица измерения, как измерить мультиметром

Ёмкость — это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С — это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют — заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Номинальная емкость кодируется по стандартам IEC — Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.

Стандарт IEC использует обозначения:

  1. Кодировка из 3 цифр. 2 знака в начале — количество пФ, третий — число нулей, 9 в конце — номинал меньше 10 пФ, 0 спереди — не больше 1 пФ. Код 689 — 6,8 пФ, 152 — 1500 пФ, 333 — 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой «R». R8=0,8 пФ, 2R5 — 2,5 пФ.
  2. 4 цифры в маркировке. Последняя — число нулей. 3 первых — величина в пФ. 3353 — 335000 пФ, 335 нФ или 0,335 мкФ.
  3. Использование букв в коде. Буква µ — мкФ, n — нанофарад, p — пФ. 34p5 — 34,5 пФ, 1µ5 — 1,5 мкФ.
  4. Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 — 2400 пФ.
  5. Электролитические SMD приборы маркируются 2 способами: цифры — номинальная емкость в пФ и рядом или во 2 строчке при наличии места — значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя — количество нулей. А205 значит 10 В и 2 мкФ.
  6. Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 — 10 мкФ и 16 В.
  7. Кодировки — цветом корпуса.

Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Как измерить ёмкость конденсатора мультиметром?

Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.

Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом «Сх» такой:

  1. Включить режим «Сх» и подобрать предел замера — 2000 пФ — 20 мкФ в стандартном приборе;
  2. Вставить конденсатор в гнезда в приборе или приложить щупы к выводам конденсатора и посмотреть значение на шкале прибора.

Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.

Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.

Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора — плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.

Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.

При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.

Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.

Прочие способы измерения

Измеритель емкости конденсаторов своими руками собирают по схемам импульсных устройств. Последовательности RC цепей с переменными резисторами создают на выходе изделия серии сигналов со ступенчатым изменением частоты. Для наладки устройства используют мультиметр, с которым будет применяться приставка.

Набор проверенных конденсаторов поочередно подключают к конструкции и настраивают точность работы в каждом поддиапазоне.

Измеритель ёмкости полярных электролитических элементов своими руками схематически реализуется и настраивается, как часть приставки без колебательного контура. На выходе вместо импульсного — постоянное напряжение.

В цифровых измерителях ёмкости источник питания — высокостабильный. «Плавающие» параметры элементов, из которых собирается схема, дадут неприемлемую для точности измерений погрешность.

На логических элементах создаются источники переменного импульсного тока для замеров ESR.

Недорогие приборы для измерения емкости конденсатора, типа мостовых RLC устройств с дополнительной функцией проверки SMD сопротивлений, сетевой зарядкой и жидкокристаллическим дисплеем, сами размером с палец. Выполняют функции профессионального метрологического комплекса. Способны выступать в роли измерителя емкости электролитических конденсаторов, как полярных, так и переменных.

Измеритель емкости конденсаторов своими руками: принцип, схема

Конденсатор — элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и — Q — на другой. Ёмкость здесь в фарадах, напряжение — вольтах, заряд — кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

Обозначения на конденсаторах

Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV — рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь — 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

Вычисления с помощью формул электротехники

Простейшая RC — цепь состоит из параллельно включённых резистора и конденсатора.

Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

Произведение RC называют постоянной времени цепи. При значениях R в омах, а C — в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени — 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА.

При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC — 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

Схема измерения

Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно — достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти — десяти килоом. Напряжение на конденсаторе контролируется вольтметром.

Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления — даёт непрогнозируемую погрешность.

 Измерительные приборы

Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

Самодельный С — метр

Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz — соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость — длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

Провода, соединяющие резисторы с переключателем должны быть как можно короче, а если позволяет конструкция — размещены на его выводах. Переменные желательно использовать многооборотные, лучше вообще — постоянные, но это не всегда возможно. Тщательнейшим образом необходимо отмыть печатную плату от флюса и другой грязи, иначе паразитные ёмкости и сопротивления между проводниками могут привести к полной неработоспособности изделия.

При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

Конструкция и детали

R1, R5 6,8k R12 12k R10 100k C1 47nF

R2, R6 51k R13 1,2k R11 100k C2 470pF

R3, R7 68k R14 120 C3 0,47mkF

R4, R8 510k R15 13

Диод VD1 — любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема — любая из серии 555 (LM555, NE555 и другие), русский аналог — КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

Вариант печатной платы и расположение компонентов

Видео по теме

Как проверить конденсатор мультиметром — инструкция 2021

В статье мы расскажем, как проверить работоспособность конденсатора, измерить его емкость и сопротивление между двумя выводами. Ответим на самые частые вопросы и предостережем от проблем с неправильным эксплуатированием конденсаторов.

Что сделать перед проверкой:

  1. С самого начала, тестирующий элемент нужно выпаять из платы, в том случае, если он там находится.
  2. После этого, конденсатор разряжают – нужно его выходящие контакты замкнуть токопроводящим материалом (подойдёт простой металлический пинцет) или подключить к его выводам сопротивление 5-10 кОм для плавной разрядки, если он имеет большую ёмкость (высоковольтный).
  3. Не рекомендуется при этом прикасаться руками к выходным контактам элемента в целях личной безопасности. Всё это делается для того, чтобы не вышел из строя сам измерительный прибор, потому как на обкладках измеряемой детали может быть достаточно высокое напряжение.

Порядок проверки

Касание контактов щупами

Мультиметр может выявить такие причины неисправности, как пробой, влекущее за собой разрушение диэлектрика, разделяющего пластины, и ток идёт напрямую, при этом, сам конденсатор, по сути, становится простым проводником. Либо делает это частично, теряя свою ёмкость, становясь дополнительно активным сопротивлением в электрической цепи.

Сам конденсатор в силу своего принципа работы пропускает только переменный ток, а постоянный ни в коем случае, поэтому его сопротивление, замеряемое между выводами, достаточно большое и ограничивается очень малым током утечки через диэлектрик, разделяющий его рабочие пластины, накапливающие в себе заряд.

В неполярных конденсаторах, роль диэлектрика которых играет слюда, керамика, бумага, стекло, воздух ток утечки бесконечно мал, а сопротивление очень большое и при его измерении между выводами цифровым мультиметром прибор покажет бесконечность в виде 1 на цифровом табло. Поэтому, в случае пробоя, его сопротивление, замеряемое на выводах, составляет довольно малую величину — до нескольких десятков Ом.

Проверка на пробой

  1. Цифровой мультиметр переводим в режим измерения сопротивления, устанавливая его в самый высокий из возможных пределов.
  2. После, подключаем измерительные щупы прибора к оголённым выводам тестируемого элемента.
  3. Если он рабочий, то на дисплее мультиметра будет только знак бесконечности – 1. Это показатель того, что внутреннее сопротивление (сопротивление утечки) свыше 2 Мом. Поэтому пробоя нет и, возможно, проверяемый элемент исправен. В противном случае пробой очевиден. Вследствие чего требуется замена его аналогичным или с более большей ёмкостью, с номинальным напряжением не ниже оригинала.
  4. При проверке нельзя прикасаться руками за оголенные выводы конденсатора или измерительных щупов прибора, потому как будет измерено сопротивление вашего тела, а не измеряемого элемента. Оно будет гораздо меньше, следовательно, результат будет ошибочным.

Измерение сопротивления конденсатора мултьтиметром

Полярные электролитические конденсаторы имеют некоторые особенности при замере их внутреннего сопротивления:

  1. Оно обычно не менее 100 кОм. При качественном изготовлении, сопротивление утечки у них может быть не менее 1 мОм. Как и упоминалось выше, перед проверкой измеряемый элемент должен быть полностью разряжен. Как это делается, описано выше.
  2. При замере сопротивления предел измерения на мультиметре устанавливается более 100 кОм. После, соблюдая полярность подключения щупов, производим замер. В силу своей сравнительно большой ёмкости, при проверке будет происходить зарядка конденсатора в течение малого количества времени. Процесс зарядки будет протекать с одновременным возрастанием сопротивления, выведенным на дисплей прибора, после окончания, которого замеряемая величина прекратит свой рост и будет иметь фиксированное и окончательное значение.
  3. Если показатель не более 100 кОм, то с большей долей вероятности это показатель того, что конденсатор рабочий.

При проверке стрелочным мультиметром всё делается аналогичным способом:

  1. Подготавливается конденсатор (фиксируется и разряжается).
  2. Выставляется измеряемый параметр (сопротивление не менее максимального предела).
  3. Делается замер, в некоторых случаях соблюдая полярность.
  4. Фиксируется результат и сравнивается с рабочими значениями.

Особенность измерения этим способом сопротивления в том, что когда он заряжается сам параметр также пропорционально растёт и соответственно стрелочный прибор, указывающий само значение сопротивления, двигается от нулевой отметки до окончательной фиксированной.

Можно было визуально по времени перемещения стрелки оценивать ёмкость измеряемого элемента. Тем самым, чем дольше стрелка шла до конечного значения, тем больше ёмкость конденсатора и наоборот.

Значение внутреннего сопротивления конденсатора является не основным показателем его работоспособности, поэтому серьёзным аргументом может служить только замеренная мультиметром ёмкость.

Проверка на ёмкость

Изменение ёмкости конденсаторов легко обнаружить при её замере мультиметром, имеющий такой режим измерения.

Замер происходит следующим образом:

  1. Измерительные щупы подключаются к разъёмам для измерения ёмкости (условное обозначение Cx) с соблюдением их (щупов) полярности. Обязательна полная разрядка конденсатора перед измерением этого параметра.
  2. Затем, рабочие поверхности щупов присоединяются к выводам измеряемого элемента, также соблюдая полярность в случае снятия показаний с полярного типа измеряемого элемента.
  3. При показании мультиметра равным 0 или значительно отличающимся по значению от указанных на конденсаторе, последний считать не рабочим и требующим замены.

Возможные причины выхода из строя

Несоблюдение основных параметров эксплуатации, таких как:

  1. Номинальное напряжение. При увеличении номинального напряжения, на нём возникает пробой в силу электротехнических характеристик диэлектрика, изолирующего пластины конденсатора.
  2. Расчётная ёмкость. Несоответствие ёмкости (ниже расчётной) влечёт за собой завышение номинального напряжения на рассматриваемом элементе, поэтому при его замене, если нет аналога, ставится элемент с большей ёмкостью.
  3. Полярность в некоторых случаях. Полярность является обязательным параметром электролитических и танталовых конденсаторов в силу особенности конструкции.

Рабочая температура зависит от соблюдения вышеописанных параметров напрямую. Исключением является старение, возникающее у электролитического типа, и расположения элемента на печатной плате, вследствие которого его рабочая температура может быть выше критической вследствие размещённых рядом других единиц электрической цепи, имеющих более высокий температурный режим.

Это причина выхода из строя оксиднополупроводникового элемента, так как он уже сам по себе представляет собой взрывчатку: там есть тантал, который является горючим и окислитель двуокись марганца.

Каждый компонент — это порошок и всё это смешано воедино. Не гремучая ли смесь? Именно поэтому повышение температуры из-за пробоя или несоблюдения полярности может привести к взрыву, способного вывести из строя не только соседние элементы, но и плату полностью.

Подробнее про мультиметр

Это компактный прибор, позволяющий делать замеры основных параметров как электрической цепи, так и отдельных его элементов для тестирования и выявления неисправностей.

Существуют 2 типа:

Аналоговый

Состоит из следующих элементов:

  1. Стрелочного магнитоэлектрического индикатора.
  2. Добавочных резисторов для снятия показаний напряжения,
  3. Шунтов для измерения тока.

Цифровой

Более сложный и точный прибор (наиболее распространены мультиметры с точностью 1%), состоящий из набора микросхем и цифрового индикатора, который бывает в основном жидкокристаллическим.

Некоторые из замеряемых мультиметром характеристик:

  1. Напряжение (переменного и постоянного тока).
  2. Сила тока (переменного и постоянного).
  3. Сопротивление (со звуковым сигналом, если оно менее 50 Ом).
  4. Ёмкость.
  5. Проверка полупроводников на целостность и полярность.
  6. Температура.

Статья была полезна?

5,00 (оценок: 4)

Как измерить емкость с помощью мультиметра

Мультиметр определяет емкость, заряжая конденсатор известным током, измеряя результирующее напряжение и затем вычисляя емкость.

Предупреждение: Хороший конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед тем, как дотронуться до него или провести измерение: а) выключите все питание, б) используйте мультиметр, чтобы убедиться, что питание отключено, и в) осторожно разрядите конденсатор, подключив резистор к его проводам (как указано в следующем абзаце).Обязательно используйте соответствующие средства индивидуальной защиты.

Для безопасной разрядки конденсатора: После отключения питания подключите 5-ваттный резистор 20 000 Ом к клеммам конденсатора на пять секунд. Используйте мультиметр, чтобы убедиться, что конденсатор полностью разряжен.

  1. Используйте цифровой мультиметр (DMM), чтобы убедиться, что все питание цепи отключено. Если конденсатор используется в цепи переменного тока, настройте мультиметр на измерение переменного напряжения. Если он используется в цепи постоянного тока, настройте цифровой мультиметр на измерение постоянного напряжения.
  2. Осмотрите конденсатор. Если утечки, трещины, выпуклости или другие признаки износа очевидны, замените конденсатор.
  3. Переведите шкалу в режим измерения емкости ( ). Символ часто разделяет точку на циферблате с другой функцией. Помимо регулировки шкалы, для активации измерения обычно требуется нажать функциональную кнопку. За инструкциями обратитесь к руководству пользователя мультиметра.
  4. Для правильного измерения необходимо удалить конденсатор из цепи.Разрядите конденсатор, как описано в предупреждении выше. Примечание: Некоторые мультиметры предлагают относительный (REL) режим. При измерении малых значений емкости можно использовать относительный режим для удаления емкости измерительных проводов. Чтобы перевести мультиметр в относительный режим измерения емкости, оставьте измерительные провода открытыми и нажмите кнопку REL. Это удаляет значение остаточной емкости измерительных проводов.
  5. Подключите щупы к клеммам конденсатора. Оставьте измерительные провода подключенными на несколько секунд, чтобы мультиметр автоматически выбрал правильный диапазон.
  6. Считайте отображаемое измерение. Если значение емкости находится в пределах диапазона измерения, мультиметр отобразит значение конденсатора. Он будет отображать OL, если а) значение емкости выше диапазона измерения или б) конденсатор неисправен.

Обзор измерения емкости

Поиск и устранение неисправностей однофазных двигателей — одно из наиболее практичных применений функции емкости цифрового мультиметра.

Однофазный двигатель с конденсаторным пуском, который не запускается, является признаком неисправного конденсатора.Такие двигатели будут продолжать работать после запуска, что затрудняет поиск и устранение неисправностей. Выход из строя конденсатора жесткого пуска компрессоров HVAC является хорошим примером этой проблемы. Двигатель компрессора может запуститься, но вскоре перегреется, что приведет к срабатыванию выключателя.

Однофазные двигатели с такими проблемами и однофазные двигатели с конденсаторами с шумом требуют мультиметра для проверки правильности работы конденсаторов. Почти все моторные конденсаторы имеют значение в микрофарадах, указанное на конденсаторе.

Трехфазные конденсаторы коррекции коэффициента мощности обычно защищены плавкими предохранителями.Если один или несколько из этих конденсаторов выйдут из строя, это приведет к неэффективности системы, скорее всего, увеличатся счета за коммунальные услуги и могут произойти непреднамеренные отключения оборудования. Если предохранитель конденсатора перегорел, необходимо измерить предполагаемое значение микрофарад конденсатора и убедиться, что оно находится в пределах диапазона, указанного на конденсаторе.

Стоит знать о некоторых дополнительных факторах, связанных с емкостью:

  • Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
  • Неисправные конденсаторы могут иметь короткое замыкание, разрыв цепи или могут физически выйти из строя до точки отказа.
  • При коротком замыкании конденсатора может перегореть предохранитель или повредить другие компоненты.
  • Когда конденсатор размыкается или выходит из строя, цепь или ее компоненты могут не работать.
  • Износ может также изменить значение емкости конденсатора, что может вызвать проблемы.

Источник: Fluke

Использование осциллографа для поиска неизвестной емкости

Обычно значение конденсатора в микрофарадах или пикофарадах напечатано на его корпусе или там указан цветовой код.Но иногда нам нужно измерить величину емкости. Например, электролитический конденсатор со временем может потерять емкость (а также показать большее последовательное сопротивление). В критических приложениях этот эффект может быть катастрофическим. Электролитические конденсаторы могут терять емкость, когда они простаивают на полке, а не работают в цепи. Фактически, эти конденсаторы иногда можно восстановить, подвергнув их режиму постепенно возрастающего постоянного напряжения.

Бывают и другие случаи, когда емкость неизвестна, и нам нужно ее измерить.Пример — это когда мы хотим узнать емкость всей электрической среды внутри части электрического оборудования или на его входных или выходных клеммах. Или нам может потребоваться измерить входную емкость пробника осциллографа, чтобы узнать, что происходит.

Мультиметры высшего класса могут измерять емкость, но показания не всегда могут считаться окончательными. Однажды я измерил большое количество новых неэлектролитических конденсаторов и обнаружил, что среднее отклонение от отмеченного значения превышает 10%.

В некоторых приложениях точное значение емкости не критично. Например, допустимы большие отклонения в цепи запуска двигателя. Напротив, резонансный контур требует точного значения для точной настройки.

Осциллограф можно использовать для измерения постоянной времени как средства определения фактической емкости устройства или величины распределенной емкости в электронной системе. Хотя осциллограф не обеспечивает прямого считывания емкости, емкость можно рассчитать, поскольку она напрямую связана с постоянной времени RC-цепи при приложении постоянного напряжения.

Постоянная времени электронной схемы, содержащей резистивные и емкостные элементы, обозначается греческой буквой тау (τ). Эта постоянная времени в секундах равна сопротивлению цепи в омах, умноженному на емкость цепи в фарадах, τ = RC . Тау — это время, необходимое для зарядки конденсатора, включенного последовательно с резистором, до уровня 63,2% от начального значения, обычно 0 В.

Цифровой запоминающий осциллограф может легко отображать график зависимости напряжения от времени при зарядке конденсатора или разрядке через резистор.Затем можно рассчитать постоянную времени цепи и, исходя из этого, определить номинал конденсатора.

Если вы приложите постоянное напряжение к конденсатору, включенному последовательно с резистором, его заряд будет расти сначала быстро, а затем медленнее по мере приближения к напряжению питания. График зависимости напряжения от времени на экране осциллографа называется экспоненциальным ростом. И наоборот, разряд конденсатора, включенного последовательно с резистором, известен как экспоненциальный спад.

Теоретически, напряжение на конденсаторе никогда не становится равным полному напряжению батареи, потому что скорость изменения снижается по мере приближения к этому уровню.Постоянная времени по определению — это время в секундах, необходимое для того, чтобы заряд, измеренный на клеммах конденсатора, составил 63,2% от приложенного напряжения.

Экспоненциальный рост (вверху), экспоненциальный спад (в центре) и постоянная RC, измеренная по неизвестной емкости (внизу).

Это явление можно легко продемонстрировать, подключив цифровой мультиметр в режиме измерения сопротивления через электролитический конденсатор. В зависимости от полярности подключения измерителя, а также от того, заряжен ли конденсатор, сопротивление будет сначала низким, а затем повышаться или начинать высокое, а затем снижаться в измеряемой форме, постепенно замедляясь до тех пор, пока оно не прекратится. Электрики говорят, что омметр ведет отсчет, а это говорит о том, что прибор исправен. Это нехарактерное показание связано с тем, что внутренняя батарея измерителя намеренно смещает конденсатор, чтобы можно было измерить сопротивление. Типичное значение составляет 3 В. Большинство производителей приборов окрашивают щупы в красный цвет для положительных и черных для отрицательных, но это не универсально и должно быть проверено с помощью второго мультиметра.

Для определения неизвестной емкости с помощью осциллографа последовательно подключаются источник питания постоянного тока, такой как батарея 9 В, известное сопротивление, переключатель и конденсатор.Наконечник пробника осциллографа и заземляющий провод подключаются к конденсатору. Кроме того, вам понадобится перемычка для короткого провода, чтобы шунтировать конденсатор.

Когда переключатель переводится в положение «включено», на дисплее осциллографа отображается напряжение на конденсаторе. Поскольку прибор находится в режиме измерения во временной области, амплитуда в вольтах отображается по оси Y, а прошедшее время — по оси X. Перед нами стоит задача найти постоянную времени последовательно включенных резистора и конденсатора. Для этого определите окончательный заряд конденсатора, который должен быть практически равен номинальному напряжению батареи.Затем умножьте это количество на 0,632, потому что постоянная времени по определению основана на 63,2% от максимального заряда конденсатора.

Найдите эту точку на графике осциллографа, используя горизонтальную линию от оси Y. Затем из этой точки кривой зарядки опустите вертикальную линию вниз до оси X, которую необходимо откалибровать за секунды. (Для этой цели можно использовать курсор.) Это обеспечивает постоянную времени RC-комбинации, τ. Зная постоянную времени, найти неизвестную емкость несложно.

Как указывалось ранее,

τ = RC
транспонирование,
C = τ / R

Напомним, что в уравнении постоянной времени C выражается в фарадах, большое значение для R , которое известно, в знаменателе дает разумное значение для емкости, выраженной в микрофарадах, миллионных долях фарада. Эта единица используется чаще.

Теория конденсаторов

Конденсаторы

широко используются в электротехнике для таких функций, как накопление энергии, коррекция коэффициента мощности, компенсация напряжения и многие другие.Емкость также присуща любой системе распределения электроэнергии и может играть ключевую роль в ее работе.

Для полного понимания конденсаторов и их использования важно, чтобы практикующие электрики хорошо разбирались в теории конденсаторов.

Емкость

Используемые символы

C — конденсатор, с единицей измерения Фарад (Ф)
R — резистор, с единицей измерения Ом (Ом)
V — d.c. напряжение источника в вольтах (В)
v c — напряжение конденсатора в вольтах (В)
I — пиковый ток заряда или разряда в амперах (A)
i — мгновенный ток в амперах (A)
Q — электрический заряд (Кл)
E — напряженность электрического поля (В / м)
D — плотность электрического потока (Кл / м2)
ε o — диэлектрическая проницаемость свободного пространства (f / м) — постоянная: 8. 854 187 817 … x 10−12
ε r — относительная диэлектрическая проницаемость диэлектрика

Конденсаторы состоят из проводящих поверхностей, разделенных диэлектриком (изолятором). Эффект этого заключается в том, что при приложении напряжения заряд течет в конденсатор и сохраняется. Когда к конденсатору подключена внешняя цепь, этот накопленный заряд будет течь из конденсатора в цепь.

Емкость — это величина заряда, который может храниться в конденсаторе.Единица измерения емкости в системе СИ — фарад ( F ). Фарад — это отношение накопленного конденсатором электрического заряда к приложенному напряжению:

Величина емкости зависит от используемых материалов и геометрии конденсатора.

Формально емкость находится путем решения уравнения Лапласа ∇2φ = 0, где φ — постоянный потенциал на поверхности проводника. Более простые геометрические формы также могут быть решены с использованием других методов (в этом примере показан пример конденсатора с параллельными пластинами).

Пример — емкость параллельных пластин


Конденсатор параллельных пластин
(щелкните, чтобы увеличить изображение)

Показан конденсатор; предполагается, что диэлектрик представляет собой вакуум. Электростатическая теория предполагает, что отношение плотности электрического потока к напряженности электрического поля является диэлектрической проницаемостью свободного пространства:

Плотность электрического потока и напряженность электрического поля определяются как:

D = QA и E = Vd

С емкостью, определенной как:

Приведенные выше уравнения можно объединить и решить для получения емкости конденсатора с параллельными пластинами (с диэлектриком на открытом воздухе) как:

фарад

Для более реальных диэлектриков Емкость будет увеличиваться прямо пропорционально относительной диэлектрической проницаемости и определяется по формуле:

фарад

Зарядка и разрядка конденсаторов

Заряд (и разряд) конденсаторов следует экспоненциальному закону. Рассмотрим схему, которая показывает конденсатор, подключенный к постоянному току. источник через переключатель. Резистор представляет собой сопротивление утечки конденсатора, сопротивление внешних проводов и соединений, а также любое намеренно введенное сопротивление.


Напряжение зарядки конденсатора

Напряжение зарядки конденсатора

Когда переключатель замкнут, начальное напряжение на конденсаторе (C) равно нулю, а ток (i) определяется по формуле:


— из основной теории конденсаторов

Напряжение на резисторе — это ток, умноженный на его значение, что дает:

Согласно закону Кирхгофа, d.c. Напряжение источника (В) равно сумме напряжения конденсатора (v c ) и напряжения на резисторе:

Что при перестановке дает:

и

Путем интегрирования обеих сторон мы получаем:

at, что дает

Путем перестановки

, который идет на

и

Напряжение на конденсаторе увеличится от нуля до d. c. источник как экспоненциальная функция.

Ток зарядки конденсатора


Зарядка конденсатора и разрядка

Из приведенного выше:

Предоставление:

Пусть начальный ток (I) будет сопротивлением источника постоянного тока. :

дает

Постоянная времени

Произведение сопротивления и емкости (RC) выражается в секундах и обозначается как постоянная времени цепи (обозначается греческой буквой Tau, τ).

Используя это, уравнения напряжения и зарядного тока на конденсаторе записываются как:

Примечание: увеличение значения сопротивления R увеличит постоянную времени, что приведет к более медленному заряду ( или разряд) конденсатора.

Разряд конденсатора

При разрядке ток ведет себя так же, как и при зарядке, но в противоположном направлении. Напряжение на конденсаторе экспоненциально спадет до нуля. Уравнения для разряда как по току, так и по напряжению могут быть определены аналогично тому, как показано выше, и суммируются как:

Накопитель энергии

Чем больше емкость, тем больше энергии он может хранить.

Ток в конденсаторе определяется по формуле:

Мгновенная мощность внутри конденсатора является произведением тока и напряжения:

Вт

В течение интервала dt подводимая энергия составляет:

джоулей

Интегрируя мгновенную энергию при повышении напряжения конденсатора, мы можем найти общую запасенную энергию:

джоулей

Стоит отметить, что при последовательном соединении конденсаторов общая емкость уменьшается, но номинальное напряжение увеличивается.При параллельном подключении номинальное напряжение остается неизменным, но увеличивается общая емкость. В любом случае общий запас энергии любой комбинации — это просто сумма накопительной емкости каждого отдельного конденсатора.

Потери в резисторе

При зарядке идеального конденсатора потерь нет. Однако, если конденсатор заряжается через резистор, следует понимать, что половина энергии заряда будет потеряна и рассеиваться в виде тепла через конденсатор.

Рассмотрим приведенную выше схему с зарядным током:

Мгновенная потеря мощности на резисторе:

Следовательно, общая потеря мощности составит:

Работа через решение дает:

∫0∞V2Re − 2tRCdt = [V2R (−RC2) e − 2tRC] 0∞ = [0] — [- CV22]

= 12CV2 джоулей

Видно, что потеря энергии то же самое, что хранится в конденсаторе.При разряде в резисторе также будет потеряна половина запасенной энергии.

См. Также

Конструкция конденсаторов с рабочими и прикладными задачами

Как и различные электрические и электронные компоненты, такие как резистор, транзистор, ИС, конденсатор является одним из наиболее часто используемых компонентов в электрических и электронных схемах. Иногда конденсатор называют конденсатором. Он играет жизненно важную роль в различных встроенных приложениях. Эти компоненты доступны с разными номиналами.Он состоит из двух металлических пластин, разделенных диэлектриком или непроводящим веществом. На рынке доступны различные типы конденсаторов, но разница между этими конденсаторами обычно заключается в диэлектрическом материале, который используется в пластинах. Некоторые конденсаторы выглядят как трубки, некоторые сконструированы из керамических материалов и покрыты эпоксидной смолой. В этой статье дается обзор того, что такое конденсатор, работа конденсатора и конструкция конденсатора.

Что такое конденсатор?

Конденсатор представляет собой двухпроводной электрический провод, разделенный изолятором. Эти терминалы накапливают электрическую энергию, когда они подключены к источнику питания. Один терминал хранит положительную энергию, а другой — отрицательный заряд. Зарядку и разрядку конденсатора можно определить так: когда электрическая энергия добавляется к конденсатору, называется зарядкой, тогда как высвобождение энергии из конденсатора называется разрядкой.


Емкость может быть определена как количество электрической энергии, хранящейся в конденсаторе при 1 вольте, и она измеряется в единицах Фарада, обозначенных F.Конденсатор разделяет ток в цепях постоянного (постоянного тока) и короткое замыкание в цепях переменного (переменного тока). Емкость конденсатора можно увеличить тремя способами:

  • Увеличить размер пластин
  • Расположить пластины ближе друг к другу
  • Сделать диэлектрик лучше, если возможно

Конденсаторы содержат диэлектрики, сделанные из всех видов материалов. В транзисторных радиоприемниках изменение осуществляется переменным конденсатором, между пластинами которого находится воздух.В большинстве электрических и электронных схем эти компоненты обернуты диэлектриками из керамических материалов, таких как стекло, слюда, пластмасса или бумага, пропитанная маслом.

Конструкция конденсатора

Простейшей формой конденсатора является «конденсатор с параллельными пластинами», и его конструкция может состоять из двух металлических пластин, которые размещены параллельно друг другу на некотором расстоянии.

Если источник напряжения подключен к конденсатору, где + Ve (положительный вывод) подключен к положительному выводу конденсатора, а отрицательный вывод подключен к –Ve (отрицательный вывод) конденсатора.Тогда энергия, которая хранится в конденсаторе, прямо пропорциональна приложенному напряжению.


Конструкция конденсатора

Q = CV

Где ’C’ — константа пропорциональности, известная как емкость конденсатора. Емкость конденсатора равна Фарадам. Согласно уравнению Q = CV, 1 F = кулон / вольт. Из приведенного выше уравнения мы можем сделать вывод, что емкость зависит от напряжения и заряда, но это не так.Емкость конденсатора в основном зависит от размеров пластин и диэлектрика между двумя пластинами.
C = ε A / d

Емкость конденсатора в основном зависит от площади поверхности каждой пластины, расстояния между двумя пластинами и диэлектрической проницаемости материала между двумя пластинами.

Основные схемы конденсатора

Основные схемы конденсаторов в основном включают конденсаторы, соединенные последовательно, и конденсаторы, соединенные параллельно.

Конденсаторы, соединенные последовательно

Когда два конденсатора C1 и C2 соединены последовательно, это показано на схеме ниже.

Конденсаторы, соединенные последовательно

Когда конденсаторы C1 и C2 соединены последовательно, то напряжение от источника напряжения делится на конденсаторах на V1 и V2. Общий заряд будет зарядом всей емкости

Напряжение В = V1 + V2

Протекание тока в любой последовательной цепи одинаково

Таким образом, общая емкость вышеуказанной цепи составляет C total = Q / V

Мы знаем, что V = V1 + V2

= Q / (V1 + V2)

Общая емкость конденсаторов последовательно C1, C2

1 / CTotal = 1 / C1 + 1 / C2

Следовательно, когда цепь имеет «n» последовательно соединенных конденсаторов

1 / CTotal = 1 / C1 + 1 / C2 + ………….. + 1 / Cn

Конденсаторы, подключенные параллельно

Когда два конденсатора C1 и C2 подключены параллельно, это показано на схеме ниже.

Конденсаторы, подключенные параллельно

Когда конденсаторы C1 и C2 подключены параллельно, тогда напряжение от источника напряжения на конденсаторах будет одинаковым. Заряд в первом конденсаторе C1 будет Q1, а заряд во втором конденсаторе C2 будет Q2. Следовательно, уравнение может быть записано как

C1 = Q1 / V и C2 = Q2 / V

Следовательно, когда цепь имеет «n» количество конденсаторов, подключенных параллельно

C Всего = C1 + C2 +… ……….. + Cn

Измерение емкости

Емкость можно определить как количество электрической энергии, хранящейся в конденсаторе, используемом в цепи (единицей измерения емкости является Фарад). Следующие 3 шага обсуждают, как измерить емкость, когда известны напряжение и заряд конденсатора.

Измерение емкости
Определите переносимый заряд в конденсаторе

Заряд часто бывает проблематично измерить напрямую. Поскольку единица измерения — ампер, ток определяется как 1 кулон в секунду, если ток и время, в течение которого применяется ток, известны, можно вычислить заряд.

Добавить комментарий

Ваш адрес email не будет опубликован.