ЧЕЛНОК ДЛЯ НАМОТКИ
С намоткой кольцевых трансформаторов и ферритовых колец, могут возникнуть сложности, особенно если нет специального приспособления. Про него мы сейчас и узнаем. Потребовалось намотать на ферритовое кольцо пару обмоток, 5 витков проводом 0,5 мм и 200 витков 0,1 мм. Потребовалось не вдруг прямо сейчас, а ещё с месяц назад. Тормозили воспоминания. Как-то уже приходилось мотать ферритовое колечко диаметром 10 мм.
Дабы всё не повторилось, пришлось начать с приспособления. Сначала с его эскиза. Для этого измерил его со всех сторон и получил: D = 10 мм, d = 6 мм, H = 5 мм. Здесь важен внутренний диаметр кольца равный 6 мм, исходя из этого значения ширину будущего приспособления (в дальнейшем челнока) возьмём на 2 мм меньше. Длину челнока определим так: длина одного витка (можно определить опытным путём) равна 1,5 см, значит 200 витков равны 3 метрам. Для того чтобы уместить их на челноке его длина должна быть от 70 до 100 мм. В этом случае, челнок с намотанным на него проводом должен проходить через кольцо.
Как видно на фото первоначально нужна заготовка, потребуется подходящий кусок пластмассы, в обязательном порядке не хрупкой и минимально толстой. Был найден прозрачный пластик толщиной 1 мм и довольно пластичный, несмотря на то, что похож на органическое стекло.
Также нужна линейка и резак, который с успехом заменит обломок ножовочного полотна по металлу и у которого режущие зубья направлены в правильную сторону (смотрите на фото).
Делаем разметку и по линейке, крайним зубом от излома, режем (скребём – так быстрее и удобней). В полученной заготовке сверлом диаметром 2 мм, на расстоянии от края 5 мм делаем отверстия. С одной стороны одно, с другой два. И наконец, заканчиваем изготовление челнока пропилом этих отверстий так чтобы было как на нижнем изображении эскиза.
Челнок получился правильной формы, а что касается изящества, так нам не он нужен, нам кольцо намотать.
Провод перед намоткой отмеряем и сразу отрезаем, чтобы не путаться с длиной при намотке, нужно 3 метра и по 5 см на выводы, итого 310 см, не больше. Зарядил челнок, и по его толщине сразу стало видно, что всё будет хорошо.
Не спеша, слушая музыку и не считая витки, мотаем провод на кольцо следя только за тем, чтобы он расположился на нём равномерно. Потребовалось 25 минут, сделано с первой попытки.
Перед тем как намотать оставшиеся пять витков проводом 0,5 мм, нашёл подходящий кусок оболочки для него. В ней ранее был провод большего диаметра, так что поместился он туда без проблем. Вроде как очень даже ничего. А челнок приберу, уже решил, что теперь смогу с лёгкостью перемотать трансформатор на ферритовом кольце для одного ранее не заработавшего, из-за этого трансформатора, устройства.
Видео
И напоследок советую думать нам всем о предстоящем наперёд, запасаясь необходимыми деталями и оборудованием. Автор — Babay.
Форум по технологиям
Форум по обсуждению материала ЧЕЛНОК ДЛЯ НАМОТКИ
ЗАМЕНА ФЕРРИТОВОГО КОЛЬЦА ДРОССЕЛЕМ
Раньше в повышающих преобразователях напряжения с успехом использовал ферритовые кольца, снятые с плат, вышедших из строя компактных люминесцентных лампочек (КЛЛ) или попросту «энергосберегаек», о чём недавно рассказывал — сейчас это стало делать сложнее. КЛЛ последних выпусков стали более надёжные и из строя выходят не так часто как раньше и соответственно теперь «на каждом углу» не валяются, а ферритовые кольца с их плат сильно уменьшились в размерах и для их превращения в трансформатор (намотки) уже не получается использовать приспособление под названием челнок, да и без него в другой раз намотать тоже не получиться, в том числе и из-за недостатка места для обмотки. А так как уже слышал, что возможно в данном случае для намотки использовать индуктивность с сердечником, решил попробовать.
Взял индуктивность номиналом практически 2000 микрогенри, с диаметром намотанного провода 0,27 мм и рассудив, что его на сердечнике намотано более чем достаточно, отмотал 50 витков, сделал отвод и вновь намотал. Ни тебе поисков подходящего провода для намотки, ни изменения внешней формы индуктивности. Короче сплошная идиллия, вот только при установке в схему преобразователя эта конструкция выдала «на гора» вместо желаемых 9 В всего пять с половиной при входящих 1,2 В.
Следующей была индуктивность с номиналом в 320 микрогенри с диаметром намотанного провода также 0,27 мм, тут ни чего отматывать не стал, а отыскал провод близкий по диаметру (0,26 мм) и намотал те же 50 витков. Преобразователь с этим трансформатором сразу выдал 8,69 В при входных 1,2 В, однако при подключении нагрузки напряжение катастрофически просело до недопустимого предела.
Тогда добавил второй аккумулятор и входное напряжение было увеличено до 2,4 В, на выходе сразу стало 10 полноценных вольт, при подключении нагрузки напряжение практически не снизилось, а замер токоотдачи показал, что преобразователь с данным трансформатором уже достаточно функционален. Если не быть придирой то вопрос можно считать закрытым.
Однако это сказка скоро сказывается, а при установке намотанного трансформатора в схему необходимо отработать восемь вариантов его подключения, которые представлены на фото выше. Для того и выполнил необходимый отвод по схеме как отдельную обмотку (без внутреннего соединения проводов).
Сравните изображённый на фото «трансформатор в схеме» и «намотанный трансформатор». В каждом конкретном случае подходящим может оказаться любой из восьми возможных вариантов, тут уж лучше не «делать на удачу».Итого
Это не итоговый результат, изыскания можно продолжить и дальше, например в первом неудавшемся варианте уменьшить индуктивность путём отмотки витков, но это уже другая история. Автор Babay iz Barnaula.
Форум
Форум по обсуждению материала ЗАМЕНА ФЕРРИТОВОГО КОЛЬЦА ДРОССЕЛЕМ
как изготовить ферритовый трансформатор | Электрознайка. Домашний Электромастер.
Трансформатор для двухтактного ИБП.
Для статьи: «Двухтактный ИБП своими руками»
Трансформатор Тр2 можно намотать на ферритовом кольце, на Ш – образном сердечнике или на сердечнике другой формы.
Сердечник трансформатора подбирается по требуемой мощности на выходе инвертора.
Есть много различных формул и разных программ по расчету ферритовых трансформаторов для импульсных источников питания. Я перепробовал различные способы расчета ферритовых трансформаторов. Не буду вдаваться в их достоинства и недостатки. Каждый выбирает свой вариант расчета ферритового сердечника для импульсного блока питания.
Вот некоторые мои рассуждения по этому поводу.
Во первых: рекомендуемые к использованию, в результате расчетов, ферритовые сердечники (кольца, Ш-образные, броневые) не всегда имеются в наличии в торговых точках.
Во вторых: тот ферритовый магнитопровод, что мы можем достать, как правило, не имеет никаких обозначений на корпусе о его магнитной проницаемости.
Вот и получается, что все с таким трудом проведенные выкладки и расчеты количества витков в обмотках ферритового трансформатора, из за неопределенности в магнитной проницаемости феррита, теряют ценность.
Я подошел к подбору выходного ферритового трансформатора с чисто практической стороны.
Из технической литературы приведу таблицу ферритовых колец для использования в качестве высокочастотный трансформаторов.
В этой таблице дан размер магнитопровода, его поперечное сечение по сердечнику, размер окна.
Произведение площадей, сечения магнитопровода и окна, дает возможность определить его габаритную мощность на частоте в 20 килогерц.
На другой частоте соответственно и мощности будут другие.
Ферритовые сердечники будут работать и на более высокой частоте, но увеличатся потери в магнитопроводе и КПД трансформатора уменьшится. Но ничего, для нашего случая частота автогенератора не превысит 45 — 50 КГц, это нормально.
В нашем случае нужно подобрать ферритовый сердечник на мощность свыше 20 ватт. У меня есть ферритовое кольцо снятое со старой аппаратуры вполне подходящее под наш случай. Его размер: К28×18х8 (наружний диаметр 28, внутренний 18, толщина 8 мм.).
По таблице его габаритная мощность свыше 200 ватт, что более чем достаточно для данного устройства. Не нужно стремиться брать ферритовое кольцо меньших размеров, это якобы уменьшает габариты устройства. Ничего подобного.
Чем больше окно кольца, тем удобнее расположить в нем витки и не нужно стеснять себя в диаметре провода. Чем больше диаметр провода в первичной и вторичной обмоток, тем меньше потерь в проводах и стабильнее выходное напряжение. К тому же, с увеличением сечения магнитопровода, уменьшается количество витков на вольт, то есть будет меньше витков во всех обмотках.
Количество витков на 1 вольт у ферритового трансформатора зависит от сечения сердечника магнитопровода.
Известная формула для определения количества витков на вольт при расчете обмоток трансформатора изготовленного из стальных листов и работающего на частоте 50 герц:
n = 50 /S
Где: n – количество витков на вольт;
S – площадь поперечного сечения сердечника в см. кв.
Для расчета количества витков на вольт ферритового трансформатора на частоты свыше 20 килогерц, я применяю немного видоизмененную формулу:
n = 0,7 / S;
где: S – площадь поперечного сечения ферритового сердечника в см. кв…
Площадь поперечного сечения выбранного нами кольца К28×18х8 будет:
S = (D — d) / 2 x l = (28 — 18) / 2 x 8 = 10 / 2 x 8 = 40 мм. кв. или 0,4 см. кв..
Количество витков на 1 вольт выбранного мной ферритового магнитопровода:
n = 0,7 / S = 0,7 / 0,4 = 1,75 витка на 1 вольт.
Тогда количество витков первичной обмотки трансформатора Тр2 будет:
w1 = n x U1 = 1,75 х 145 = 253,75 витка. Примем 254 витка.
Диаметр провода 0,25 — 0,35 мм. Чем больше диаметр провода, тем мощнее будет ИБП, но все должно быть в разумных пределах.
Вторичная обмотка состоит из двух полуобмоток w2-1 и w2-2, каждая из которых рассчитана на полное выходное напряжение.
Количество витков в каждой вторичной полуобмотке:
w2-1 = w2-2 = n x U2 = 1,75 х 15 = 26,25 витка.
С учетом падения напряжения на диодах Д9, Д10 количество витков во вторичной обмотке примем: w2-1 = w2-2 = 28 витков. Диаметр провода 0,6 — 0,7 мм.
Напряжение обратной связи в обмотке w3 должно быть достаточным для работы генератора. Для трансформатора Тр1 оно должно быть 6,5 вольт.
Количество витков в обмотке связи w3 = n x 6,5 = 1,75 x 6,5 = 11,3 витка. Примем: w3 = 12 витков. Диаметр провода 0,3 мм.
Трансформатор Тр2 будем мотать на ферритовом кольце по схеме приведенной на рисунке.
На рисунке показана последовательность намотки ферритового трансформатора.
Ферритовое кольцо (рис. а) необходимо обмотать лакотканью или лучше фторопластовой лентой (рис. б).
Поверх мотается первичная обмотка w1. На начало и конец провода, для жесткости, надевается хлорвиниловая трубочка и провод вместе с трубочкой закрепляется нитками.
Витки обмотки необходимо равномерно распределить по всей длине кольца (рис.в).
Для этого нужно заранее поверхность кольца разделить на секторы. Например на четыре сектора. Тогда в каждом секторе будет по 254 витка / 4 = 63,5 витков. Равномерно и последовательно намотав один сектор, переходим ко второму, еще 63,5 витка и т.д.
Идеальный случай, это намотать обмотку виток к витку, что вряд ли получится.
Начало и конец проводов обмотки не должны касаться друг друга, между ними надо сохранить промежуток в 2-3 мм… Это делается для избежания пробоя между витками начала и конца первичной обмотки.
Намотка на кольцо производится с помощью самодельного челнока, который можно изготовить из медной проволоки, по форме как на рисунке.
Предварительно рассчитав необходимую длину провода (количество витков в обмотке умноженное на длину одного витка, плюс длину выводов) с небольшим запасом, наматываем на челнок. Закрепляем начало провода обмотки , провод вместе с трубочкой, нитками на кольце и мотаем при помощи челнока. При намотке провода на кольцо необходимо следить, чтобы провод не скручивался и не образовывались «барашки». Нужно запастись большим терпением и тогда все получится.
Сначала процедура намотки кольца будет проходить с трудом, но по мере накопления опыта, работа ускорится.
Поверхность намотанной первичной обмотки w1 необходимо обмотать лентой шириной 8 — 10 мм. из лакоткани или лучше фторопласта (рис. г).
Далее мотается вторичная обмотка w2. Две полуобмотки w2-1 и w2-2 мотаются одновременно двумя проводами.
Нужно определить длину каждого провода для w2-1 и w2-2. Предварительно измеряется длина одного витка, а затем умножается на количество витков, плюс 10 сантиметров на длину выводов, плюс запас 20 см.
Провод для вторичной обмотки толстый и мотается без челнока, одновременно двумя проводами. Начала двух проводов закрепляются нитками, а затем виток за витком, двумя проводами продеваются в кольцо. Между началами и концами вторичных полуобмоток нужно оставить на кольце свободным расстояние 5-6 мм. В этот зазор разместить витки обмотки w3
Нужно стараться меньше гнуть провода и чтобы они оба не переплетались между собой.
Необходимо так же равномерно распределить количество витков вторичной обмотки по всему кольцу, т.е. разбить количество витков на четыре сектора, как и в случае первичной обмотки. Необходимо мотать так, чтобы намотка уложилась в один ряд по всей длине, как на рисунке д).
Конец одной полуобмотки (w2-1) спаять с началом другой полуобмотки (w2-2). Получится полная обмотка w2 с выводом посередине (рис. д).
Обмотка обратной связи w3 мотается на первичную обмотку в одном слое с вторичной w2. Мотать ее поверх обмотки w2 нельзя, так как это может повлиять на режим автогенерации.
УДАЧИ ВАМ!!!!
Силовой трансформатор на феррите | Электрознайка. Домашний Электромастер.
Силовой трансформатор на феррите
Здравствуйте уважаемые коллеги!!
Чтобы намотать импульсный выходной трансформатор на ферритовом сердечнике на любую мощность, необходимо провести предварительный, прикидочный расчет. Сначала нужно определиться с мощностью, которую необходимо получить на выходе трансформатора.
Обратимся к таблице параметров ферритовых магнитопроводов, в ней указаны размеры, площадь сечения магнитопровода, площадь окна и мощность, которую «теоретически» можно получить от сердечника.
Эту таблицу я «откопал» еще в «советской технической литературе» по электротехнике и не один раз убедился в ее верности.
Ферритовые кольца на разные размеры по позициям №1 — №16 имеют рабочую мощность Рвт, от 9 до 951 и более, ватт. Нетрудно заметить, что начиная с позиции №6, даже незначительное увеличение размеров ферритового кольца, приводит к резкому увеличению «пропускаемой» мощности Р вт.
Кольцо К18,5×11х6,5 (Наруж. диам. х Внутр. диам. х Ширина кольца, в миллиметрах) соответствует мощности 70 ватт.
Кольцо К28×16х9 уже 232 ватта. И так далее…
Начиная с позиции №5 уже можно использовать кольца для изготовления выходного трансформатора в импульсном блоке питания на мощность 10 — 15 ватт. С позиции №7 можно изготовить импульсный блок питания на 25 — 30 ватт.
Количество витков в обмотках ферритового трансформатора (количество витков на один вольт) зависит от поперечного сечения магнитопровода «Sк». Выбор размера того или иного ферритового кольца или Ш — сердечника, для задуманного ИБП, зависит в основном от условия — уместятся ли заявленные количества витков в обмотках, в окне.
Чем больше мощность трансформатора, тем диаметр провода обмоток должен быть выше. Чем меньше поперечное сечение феррита, тем больше число витков в обмотках (выше количество витков, приходящееся на один вольт).
Теоретически, все кольца, начиная с позиции №7, «дадут мощность» свыше 232 ватт, что вполне достаточно для среднемощного, до 200 ватт источника питания. Но пытаться «вымучить» из него 200 ватт бесполезно, площадь окна в 202 мм.кв. для этого очень мала. Витки всех обмоток не влезут в его окно. Чтобы получить мощность 200 ватт, нужно брать больше размер кольца.
Существуют также П — образные ферритовые сердечники (строчный трансформатор в телевизорах с кинескопами).
Исходя из практики, импульсные трансформаторы, выполненные на Ш — образных и П — образных ферритовых сердечниках, имеют те же свойства, что и на ферритовом кольце.
Ш — образный сердечник № 17: поперечное сечение среднего стержня » «Sк»= 56 мм.кв.; площадь окна -«Sо» = 7,5 х 20 = 150 мм.кв…
Ш — образный сердечник № 18 от ИБП компьютера: сечение «Sк» = 8,0 х 12,5 = 100мм.кв. = 1см.кв.; Площадь окна «Sо» = 7,5 х 19 = 142 мм.кв…
Сердечник № 19: «Sк» = 10 х 10 = 100 мм.кв. = 1 см.кв.; «Sо» = 7,5 х 25 = 187 мм.кв…
Из всего перечня ферритовых магнитопроводов, я использовал для построения маломощных импульсных трансформаторов кольца: № 5,№ 6, № 7.
Из Ш — образных сердечников: № 17, № 18, № 19.
Из П — образных, от строчных трансформаторов с «Sк»= 1,1 — 1,3 см.кв.
Основной параметр у кольца, П и Ш — сердечников, это площадь поперечного сечения магнитопровода «Sк». Этот параметр определяет количество витков провода в обмотках. Чем больше площадь «Sк», тем меньше витков в обмотках.
Для определения количества витков в обмотках трансформатора, необходимо определить число витков на 1 вольт, исходя из площади Sк. Для этого я постоянно использую свою простую формулу, полученную эмпирическим путем:
n = 0,7/Sк
где: n — количество витков на 1 вольт для данного сердечника;
0,7 — коэффициент;
Sк — площадь поперечного сечения феррита в см.кв.
Второй основной параметр ферритового сердечника, это площадь окна Sо.
В таблице о ферритах видно — увеличивается площадь окна «Sо», увеличивается объем феррита в сердечнике. Следовательно, запасается больше индуктивной энергии в феррите, увеличивается «пропускаемая» электрическая мощность Рвт.
Увеличить мощность ферритового трансформатора любой конфигурации, можно двумя путями:
1. Взять феррит заведомо больших размеров;
2. Применить складывание однотипных сердечников вместе.
При этом суммарная площадь поперечного сечения сердечника «Sк», будет кратна количеству штук, а общая площадь окна «Sо» остается прежней.
Какой же конфигурации (П, Ш или кольцо) ферритовый сердечник наиболее подходит для построения трансформатора. У каждой формы магнитопровода есть свои особенности.
Например, кольцо:
— обмотки трансформатора покрывают всю поверхность кольца, максимальное потокосцепление магнитного поля катушки и сердечника;
— минимально поле рассеивания электромагнитной энергии;
— максимальна площадь теплового излучения обмоток при нагревании, хороший теплоотвод — естественная вентиляция;
— площадь окна у кольца больше, чем у Ш — образного сердечника, значит при одинаковой площади «Sк» (у кольца и Ш — сердечника), с кольца можно «снять» большую мощность.
Трансформатор на Ш — сердечнике (при одинаковой мощности) более компактен, чем на кольце и П — образном сердечнике. Обмотки на Ш — обр. сердечнике сильно нагреваются, т. к. находятся внутри корпуса трансформатора, требуется обдув вентилятором.
Силовые ферритовые трансформаторы в компьюторных блоках питания выполнены в основном на Ш — образных сердечниках. Разбирая старый ферритовый трансформатор, обратите внимание, есть ли немагнитный зазор в прилегающих плоскостях. Для ферритовых сердечников, применяемых в двухтактных импульсных источниках питания, такой зазор не нужен. Если зазор существует, нужно аккуратно сточить на бруске, наждачной шкурке или мелком напильнике боковые стержни сердечника таким образом, чтобы сохранялась плоскость соприкосновения.
Импульсные блоки питания
Для статьи
«Двухтактный
автогенератор — ИБП своими руками».
Трансформатор Тр2 можно намотать на ферритовом
кольце, на Ш – образном сердечнике или другой
формы.
Сердечник
трансформатора подбирается по требуемой мощности
на выходе инвертора.
Есть много различных формул и разных программ по расчету ферритовых трансформаторов для импульсных источников питания.
Я перепробовал различные способы расчета ферритовых трансформаторов. Не буду вдаваться в их достоинства и недостатки. Каждый выбирает свой вариант.
Вот некоторые рассуждения по этому поводу.
Во первых: рекомендуемые к использованию, в
результате расчетов, ферритовые сердечники
(кольца, Ш-образные, броневые) не всегда имеются
в наличии в торговых точках.
Во вторых: тот ферритовый магнитопровод, что мы
можем достать, как правило, не имеет никаких
обозначений на корпусе о его магнитной
проницаемости.
Вот и получается, что все с таким трудом
проведенные выкладки и расчеты количества витков
в обмотках ферритового трансформатора из за
неопределенности в магнитной проницаемости, теряют ценность.
Я подошел к подбору выходного ферритового
трансформатора с чисто практической стороны.
Из технической литературы приведу
таблицу
ферритовых колец для использования в
качестве высокочастотный трансформаторов.
В этой
таблице дан размер магнитопровода, его
поперечное сечение
по сердечнику, размер окна.
Произведение
площадей, сечения магнитопровода и окна, дает
возможность определить его габаритную мощность
на частоте в 20 килогерц.
На другой частоте соответственно и мощности
будут другие.
Ферритовые сердечники будут работать и на более
высокой частоте, но увеличатся потери в
магнитопроводе и КПД трансформатора уменьшится.
Но ничего, для нашего случая частота
автогенератора не превысит 45 — 50 КГц, это
нормально.
В нашем случае нужно подобрать ферритовый
сердечник на мощность свыше 20 ватт. У меня есть ферритовое кольцо снятое со
старой аппаратуры вполне подходящее под наш
случай. Его размер: К28х18х8 (наружний диаметр
28, внутренний 18, толщина 8 мм.).
По таблице его
габаритная мощность свыше 200 ватт, что более
чем достаточно для
данного устройства. Не нужно стремиться брать
ферритовое кольцо меньших размеров, это якобы
уменьшает габариты устройства. Ничего подобного.
Чем больше окно кольца, тем удобнее расположить
в нем витки и не нужно стеснять себя в диаметре
провода. Чем больше диаметр провода обмоток, тем
меньше потерь в проводах и стабильнее выходное
напряжение. К тому же, с увеличением сечения магнитопровода, уменьшается количество
витков на вольт, то есть будет меньше витков во
всех обмотках.
Количество витков на
1 вольт у ферритового трансформатора зависит от сечения
сердечника магнитопровода.
Известная формула для определения количества
витков на вольт при расчете обмоток
трансформатора изготовленного из стальных листов
и работающего на частоте 50 герц:
n=50/S
Где: n – количество витков на вольт;
S – площадь поперечного сечения сердечника в см.
кв.
Для расчета количества витков на вольт
ферритового трансформатора на частоты свыше 20
килогерц, я применяю немного
видоизмененную
формулу:
n = 0,7 / S;
где: S – площадь поперечного сечения ферритового
сердечника в см. кв..
Площадь поперечного сечения выбранного нами
кольца К28х18х8 будет:
S = (D — d) / 2 x l = (28 — 18) / 2 x 8 = 10 / 2
x 8 = 40
мм. кв. или 0,4 см. кв..
Количество витков на 1 вольт выбранного мной
ферритового магнитопровода:
n = 0,7 / S = 0,7 / 0,4 = 1,75 витка на 1 вольт.
Тогда количество витков первичной обмотки
трансформатора Тр2 будет:
w1 = n x U1 = 1,75 х 145 = 253,75 витка. Примем
254 витка.
Диаметр провода 0,25
— 0,35 мм.
Чем больше диаметр провода, тем мощнее
будет ИБП, но все должно быть в разумных
пределах.
Вторичная обмотка состоит из двух полуобмоток
w2-1 и w2-2, каждая из которых рассчитана на
полное выходное напряжение.
Количество витков в каждой вторичной полуобмотке:
w2-1 = w2-2 = n x U2 = 1,75 х 15 = 26,25 витка.
С
учетом падения напряжения на диодах Д9, Д10
количество витков во вторичной обмотке примем:
w2-1 = w2-2 = 28 витков. Диаметр провода 0,6 —
0,7 мм.
Напряжение
обратной связи в обмотке w3 должно быть
достаточным для работы генератора. Для
трансформатора Тр1 оно должно быть 6,5 вольт.
Количество витков в обмотке связи
w3: w3 = n x 6,5 = 1,75 x 6,5
= 11,3 витка. Примем: w3 = 12 витков.
Диаметр провода 0,3 мм.
Трансформатор Тр2 будем мотать на ферритовом
кольце по схеме приведенной на рисунке.
На рисунке показана последовательность намотки
ферритового трансформатора.
Ферритовое кольцо (рис. а) необходимо обмотать лакотканью
или лучше фторопластовой лентой (рис. б).
Поверх
мотается первичная обмотка w1. На начало и конец
провода, для жесткости, надевается хлорвиниловая
трубочка и провод вместе с трубочкой
закрепляется нитками.
Витки обмотки необходимо равномерно распределить
по всей длине кольца (рис.в).
Для этого нужно заранее поверхность кольца
разделить на секторы.
Например на четыре
сектора. Тогда в каждом секторе будет по 254/4 =
63,5 витков. Равномерно и последовательно намотав один сектор, переходим ко
второму, еще 63,5 витка и т.д.
Идеальный случай, обмотку намотать виток к
витку, но это вряд ли получится.
Начало и конец обмотки не должны касаться друг
друга, между ними надо сохранить промежуток в
2-3
мм.. Это делается для избежания пробоя между
витками начала и конца первичной обмотки.
Намотка на кольцо производится с помощью
самодельного челнока, который можно изготовить
из медной проволоки, по форме как на рисунке.
Предварительно
рассчитав необходимую длину провода (количество
витков в обмотке умноженное на длину одного
витка, плюс длину выводов) с небольшим запасом,
наматываем на челнок. Закрепляем
начало обмотки , провод вместе с трубочкой,
нитками на кольце и при помощи челнока мотаем.
При намотке провода на кольцо необходимо
следить, чтобы провод не скручивался и не
образовывались «барашки». Нужно запастись
большим терпением и тогда все получится.
Сначала
процедура намотки кольца будет проходить с
трудом, но по мере накопления опыта работа
ускорится.
Поверхность намотанной первичной обмотки
w1 необходимо обмотать лентой шириной 8 — 10 мм. из лакоткани или
лучше
фторопласта (рис. г).
Далее мотается вторичная
обмотка w2. Две полуобмотки w2-1 и w2-2 мотаются
одновременно двумя проводами.
Предварительно
измеряется длина одного витка, а затем
умножается на количество витков, плюс 10
сантиметров на длину выводов, плюс запас 20 см.
Провод
для вторичной обмотки толстый и мотается без челнока,
одновременно двумя проводами. Начала двух
проводов закрепляются нитками, а затем виток за
витком, двумя проводами продеваются в кольцо.
Между началами и концами вторичных полуобмоток
нужно оставить на кольце свободным расстояние
5-6 мм. В него разместить витки обмотки w3
Нужно стараться меньше гнуть провода и чтобы они
оба не переплетались между собой.
Необходимо так же равномерно распределить
количество витков вторичной обмотки по всему
кольцу, т.е. разбить количество витков на четыре
сектора, как и в случае первичной обмотки. Необходимо мотать так, чтобы намотка
уложилась в один ряд по всей длине, как на
рисунке д).
Конец одной полуобмотки (w2-1) спаять с началом
другой полуобмотки (w2-2). Получится полная
обмотка w2 с выводом посередине (рис. д).
Обмотка обратной связи w3 мотается на
первичную обмотку в одном слое с вторичной w2.
Мотать ее поверх обмотки w2 нельзя, так как это может
повлиять на режим автогенерации.
Правильная намотка импульсного трансформатора
Приветствую, Уникумрус!
Как известно трансформатор — основной элемент любого источника питания. Новички радиолюбители довольно часто задаются вопросом: как правильно произвести намотку трансформатора самостоятельно? Поэтому данная инструкция (автор: Роман, YouTube канал «Open Frime TV») полностью посвящена расчету и намотке импульсного трансформатора.
Итак, давайте начнем, но не с самого трансформатора, а со схемы управления. Зачастую случается так, что люди берут любой попавшийся под руку трансформатор и начинают на нем мотать свои обмотки, при этом не задумываясь об одной мелкой, но очень важной детали, которая называется зазор.
Существует 2 основных типа схемы управления трансформатором: однотактная и двухтактная.
Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.
Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.
Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.
Мотать трансформатор автор решил для готовых проектов. Первый — блок на SG3525. Схема представлена ниже.
Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.
С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.
Благодаря автору данных программ, а их у него далеко не одна, количество самопальных блоков питания постоянно растет. Вы можете ознакомиться со всеми программами данного автора, но в примере мы разберем только две из них. Первая – это «Lite-CalcIT Расчет импульсного трансформатора двухтактного преобразователя» (Версия 4.1).
Вдаваться в подробности не будем, затронем только важные моменты. Первый — это выбор схемы преобразователя: пуш-пул, полумостовая или мостовая. Далее у нас строка выбора напряжения питания, его также необходимо указать, можно указывать или уже выпрямленное напряжение (постоянное) или просто сетевое (переменное). Ниже поле для ввода частоты преобразования. Обычно в своих проектах при расчете блоков питания автор устанавливает частоту в районе 40-50Гц, выше поднимать не нужно. Далее следует указать характеристики преобразователя. В соответствующих колонках указываем напряжение, мощность и провод, каким будет производиться намотка. Не забываем указать схему выпрямления и поставить галочку на «Использовать желаемые параметры».
Помимо этого, в программе присутствуют еще 2 важных поля для заполнения. Первое — это наличие или отсутствие стабилизации.
При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.
И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.
Большинство стандартных номиналов уже занесены в программу, тут остается только выбрать необходимый.
И вот, когда все поля заполнены, можно нажимать кнопку «Рассчитать».
В результате получаем данные для намотки нашего трансформатора, а именно количество витков первички и вторички совместно с количеством жил.
Необходимые расчеты произвели, можно приступать к обмотке.
Важный момент! Все обмотки мотаем в одну сторону, но начало и конец обмотки располагаем строго по схеме. Пример: допустим мы поставили начало обмотки тут (подробнее на изображении ниже), намотали необходимое количество витков и сделали вывод.
Давайте визуально представим, как течет ток. Допустим он течет так:
Тогда он потечёт по проводу в указанную сторону. А теперь мы просто поменяем начало и конец обмотки местами.
Хоть намотка и производилась справа, ток потечет в обратном направлении и это будет равносильно тому, что мы намотали обмотку влево. Таким образом по точкам на схеме можно легко проводить фазировку, главное при этом все обмотки мотать в одну сторону.
С примером разобрались, приступаем к реальной намотке. Начало обмотки у нас в этой точке (смотри изображение ниже), значит отсюда и будем мотать.
Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.
Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.
Таким образом повышается магнитная связь обмоток и уменьшается индуктивность рассеяния.
Между обмотками необходимо использовать изоляцию. Отлично подойдет вот такая из термоскотча.
А для самого последнего слоя изоляции можно использовать майларовую ленту для красоты.
Вторичная обмотка наматывается точно так же, как и первичная.
Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.
Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.
Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.
Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.
Вот с этого пина и начинаем мотать оставшуюся первичку, все также равномерно.
Вот тут уже отводить вверх конец провода не стоит, можно сразу завести его на положенное место.
Затем проводим такую же операцию для оставшихся выводов.
Когда основные обмотки закончили, можно приступать к намотке дополнительных, в данном случае это обмотка самозапита. С ней все точно также, начало и конец обозначены на печатной плате, изолируем и мотаем.
Верхний слой, как уже говорилось ранее, покрываем майларовой лентой. Вот, теперь трансформатор похож на промышленный образец.
Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.
Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).
Указываем необходимые параметры: частоту, выходные напряжения и так далее, это не столь важно. Единственный момент, заслуживающий особого внимания — это зазор в сердечнике и индуктивность первичной обмотки. Эти параметры необходимо будет как можно точнее соблюсти.
На этом все. Благодарю за внимание. До новых встреч!
Видеоролик автора:
Этот пост может содержать партнерские ссылки. Это означает, что я зарабатываю небольшую комиссию за ссылки, используемые без каких-либо дополнительных затрат для вас. Дополнительную информацию смотрите в моей политике конфиденциальности.
Как сконструировать катушку
Каждый любитель, желающий заняться радио, должен — в какой-то момент — намотать катушку или две, будь то антенная катушка AM-радио, катушка на тороидальном сердечнике для полосового фильтра в приемопередатчик связи или катушка с центральным отводом для использования в генераторе Хартли. Намотка катушек несложная, но довольно трудоемкая. Существуют разные методы изготовления катушек в зависимости от области применения и необходимой индуктивности. Воздушные сердечники являются наиболее широкополосными, но получение высокой индуктивности означает использование большого количества проводов, они также не являются наиболее эффективным средством для преодоления магнитного поля, выходящего из катушки — это выходящее магнитное поле может вызывать помехи из-за индукции в соседних проводах и других катушках.
Намотка катушки на ферромагнитную катушку фокусирует магнитное поле, увеличивая индуктивность. Отношение индуктивностей после и до того, как сердечник с диаметром катушки был вставлен внутрь, называется относительной проницаемостью (обозначается μ r ). Различные обычно используемые материалы имеют разную относительную проницаемость, от 4000 для электротехнической стали, используемой в сетевых трансформаторах, до около 300 для ферритов, используемых в трансформаторах SMPS, и около 20 для сердечников из железного порошка, используемых на УКВ.Каждый материал сердечника должен использоваться только в указанном диапазоне частот, за пределами которого сердечник начинает демонстрировать высокие потери. Тороидальные сердечники с множеством апертур, горшок и другие закрытые сердечники заключают магнитное поле внутри сердечника, повышая эффективность и практически сводя к нулю помехи. Чтобы узнать больше об индукторах и их работе, перейдите по ссылке.
Индукторы с воздушным сердечником
Катушкис воздушным сердечником подходят для катушек с низкой индуктивностью, где помехи не имеют особого значения. Катушки с небольшим количеством витков и относительно толстой проволокой наматываются на цилиндрический объект, такой как сверло или банка , которые затем удаляются, и катушка поддерживает себя, иногда катушка покрывается смолой для большей механической устойчивости. Катушки большего размера с большим количеством витков обычно наматываются на неферромагнитный каркас, такой как полая пластиковая трубка или керамический каркас (для мощных ВЧ-катушек), а затем прикрепляются к каркасу с помощью клея. Чтобы намотать их, вам сначала нужно рассчитать требуемый диаметр провода, потому что он имеет большое влияние на общую длину катушки.
Формула для диаметра проволоки :
(√I) * 0,6 = d, где I - действующий или постоянный ток, а d - диаметр проволоки.
Если катушки используются на низких уровнях мощности, диаметр провода не имеет большого значения, 0,3 мм подходит для большинства приложений, а 0,12 мм подходит для герметизированных катушек, если катушки используются в транзисторных радиоприемниках. Если катушка используется в генераторе, провод должен быть жестким, чтобы предотвратить эффекты коробления, поскольку они могут в некоторой степени изменить индуктивность и вызвать нестабильность частоты (возбуждение).
Далее нужно знать, какой диаметр должен быть у катушки. Рекомендуется, чтобы диаметр катушки составлял от 50% до 80% длины катушки для оптимальной добротности, и это зависит от того, сколько места может занимать катушка. Если катушка будет самонесущей, вы можете использовать болт или винт, намотать витки внутри канавок и удалить болт, открутив его, удерживая провод катушки, это делает катушку очень ровной и воспроизводимой.
Ниже приведена формула индуктивности для цилиндрической катушки
L = µ r (n 2 . ᴫ 2 . р 2 / л) 0,00000126
L - индуктивность в генри, μ r - относительная проницаемость сердечника (1 для катушек из воздуха, пластика, керамики и т.д.), n - количество витков, π - это пи, r - радиус катушки в метрах (от середины слоя разводки до середины обмотки) или половина диаметра (от середины слоя разводки через середину до середины слоя разводки на другой стороне), l - длина намотки в метра, а длинное число на обороте - проницаемость свободного пространства.
Еще одна формула индуктивности.
L = (n 2 . D 2 ) / 18d + 40l
Эта формула используется при намотке однослойной однородной катушки, когда все витки намотаны плотно, без промежутков между ними. Единицы такие же, как в приведенной выше формуле, за исключением d, который представляет собой диаметр рулона в метрах.
Очень хороший калькулятор для катушки сделал Serge Y. Stroobandt, позывной ON4AA здесь.
Как сделать индуктор с воздушным сердечником
На намотайте обычную катушку с воздушным сердечником. вам понадобится формирователь, источник проволоки, мелкая наждачная бумага или нож для моделирования (не показан) и немного суперклея или двусторонней ленты, чтобы удерживать провод на месте.
После проектирования катушки пора наматывать ее . Если вы делаете катушку с воздушным сердечником, рекомендуется использовать пластиковый формирователь, чтобы намотать его, так как пластиковый формирователь неферромагнитен и не проводит электричество, это не повлияет на работу катушки при низкой мощности. уровни. Затем отрежьте полоску двустороннего скотча по длине катушки и приклейте ее к каркасу, затем просверлите отверстия в каркасе там, где заканчивается виток и на отводах, снимите защитный слой с ленты и начните наматывать сначала пропуская его через просверленное отверстие, а затем наматывая его, как обычно, провод будет удерживаться двухсторонней лентой, в качестве альтернативы вы можете приклеить начало катушки к каркасу, намотав несколько витков цианакрилатным клеем, намотайте оставшуюся часть катушки и клей через каждые 1 см (также называемый суперклеем, используйте перчатки, его очень трудно удалить с кожи и вызывает раздражение).Для метчиков скрутите вместе кусок проволоки, пропустите ее через отверстие в образце и продолжайте как обычно. Попробуйте намотать витки плотно, после намотки снимите эмаль мелкой наждачной бумагой или лепочным ножом и залудите концы паяльником. Вы можете использовать измеритель LCR для измерения индуктивности или GDM, чтобы использовать GDM в качестве устройства для измерения индуктивности, см. Связанную статью.
Рисунки ниже объясняют процесс наматывания индуктора с воздушным сердечником :
Шаг 1: На двух рисунках ниже показан формирователь с кусочком ленты, где будет наматываться провод. и Отверстия для удержания провода на месте.
Шаг 2: На картинке ниже защитная пленка снята, намотка началась, и провод для отвода согнут и скручен .
Шаг 3: Затем проденьте отверстие в первой и вытащите другую сторону.
Шаг 4: Провода готовой катушки покрыты лужением путем погружения их в припой на куске ламината печатной платы.
Шаг 5: Наконец, индуктивность катушки измеряется с помощью измерителя LCR. Вы также можете использовать Arduino для измерения индуктивности катушки или использовать Grid Dip Meter (GDM) .
Катушки обмотки на ферритовых стержнях
Обмотка катушек на ферритовых стержнях (например, антенны с ферритовыми стержнями в радиоприемниках) аналогична намотке катушек с воздушным сердечником, но с вы не можете просверлить ферритовый стержень , вам придется полагаться на двустороннюю ленту или клей крепко держать провод.Поскольку лента не всегда прилипает к ферриту, рекомендуется сначала покрыть стержень одним-тремя слоями бумажной малярной ленты прямо под тем местом, где должна проходить катушка, и наклеить ленту поверх него. Вы можете использовать суперклей, чтобы удерживать проволоку на месте, вместо двусторонней.
Для расчета катушки используйте приведенную выше формулу индуктивности для цилиндрической катушки, для μ r введите относительную магнитную проницаемость, указанную в таблице данных или онлайн-калькуляторе катушки. Если вы разработали катушку , вы можете наматывать ее так же, как катушки с воздушным сердечником, но есть другой метод, более быстрый метод !
Поместите ферритовый стержень в электродрель, как сверло, и медленно вращайте его, стержень будет вращаться сам по себе, таким образом, вы можете очень быстро изготавливать высококачественные катушки с высокой индуктивностью с большим количеством оборотов! Если у вас есть пластиковые формирователи для стержня, сначала намотайте их, а затем наденьте на катушку и приклейте на место.
Слева — заводская антенная катушка в радиовещательном приемнике, где катушка намотана на каркас, который прикреплен к стержню с помощью пластиковых элементов. Проволока закреплена эпоксидной смолой. Справа небольшая катушка на ферритовом стержне , изготовленная описанными выше методами.
Обмотка тороидального сердечника
Тороидальные катушки довольно легко рассчитать, но немного сложнее.Тороидальные сердечники имеют широкий спектр применений, таких как индукторы фильтров в SMPS, дроссели RFI, силовые трансформаторы SMPS, входные фильтры RF, симметрирующие устройства, трансформаторы тока и другие.
Индуктивность тороидальной катушки в наногенри (когда индекс индуктивности AL указан в нГн / Н 2 ) можно рассчитать по следующей формуле:
л (нГн) = A л (нГн / н 2 ) * Обороты 2
После преобразования получаем формулу количества витков, необходимых для необходимой индуктивности:
Требуемые обороты = [L (нГн) / A L (нГн / N 2 )] 1/2
Чтобы намотать тороидальную катушку, вам понадобится тороидальный сердечник, источник провода (хорошим источником могут служить отклоняющие катушки от старых ЭЛТ-телевизоров), мелкая наждачная бумага и немного суперклея.
Чтобы намотать тороид, сначала нужно отрезать проволоку соответствующей длины, потому что вы не можете пропустить катушку проволоки через отверстие. Чтобы рассчитать необходимый провод, умножьте длину окружности поперечного сечения кольца на количество необходимых витков. Иногда это указывается в таблице данных как mlt (средняя длина на оборот). На этом веб-сайте есть онлайн-калькулятор, который помогает в проектировании тороидальных катушек, просто выберите свой сердечник, подключите необходимую индуктивность, и он даст необходимое количество проводов и витков.
Шаг 1: Сначала пропустите один конец провода через отверстие, убедитесь, что он выступает примерно на 4 см — этот кусочек называется косичкой.
Шаг 2: Оберните косичку вокруг сердечника, оставьте на расстоянии 1–2 см и закрепите остальную часть суперклеем.
Шаг 3: Используйте оставшуюся длину проволоки, чтобы намотать оставшуюся часть катушки, прикрепите более длинный конец к гвоздю или гвоздю для облегчения наматывания.
Поскольку ожидается, что катушка будет иметь низкую индуктивность (около 3,6 мкГн) в отсутствие профессионального измерителя LCR, лучше использовать GDM, поскольку обычные измерители на основе микроконтроллера имеют очень низкую точность при измерении малых индуктивностей. Конденсатор 680 пФ был подключен к катушке параллельно вместе с небольшой петлей связи. Эта схема имеет частоту 3,5 МГц (справа), помещая эти значения в вычислитель резонанса, мы получаем около 3 мкГн. Слева измеритель настроен на другую частоту вне резонанса контура.
Расчетные катушки могут давать очень разные результаты в реальных условиях из-за паразитных емкостей и вызванного ими параллельного саморезонанса.
Подробнее о трансформаторе тока
Процедура проектирования трансформатора тока помогает инженерам-проектировщикам выбрать наиболее подходящий материал и размер сердечника для ряда различных топологий трансформаторов тока (ТТ). А именно, включены следующие три стиля CT:
«Традиционные» (часто сетевые) трансформаторы тока — «Традиционные» трансформаторы тока относятся к общей категории, известной как измерительные трансформаторы.Их основная цель — производить из первичного тока пропорциональный вторичный ток, который можно легко измерить или использовать для управления различными цепями. Первичная обмотка подключается последовательно с измеряемым током источника, а вторичная обмотка обычно подключается к измерителю, реле или нагрузочному резистору для выработки напряжения низкого уровня, которое усиливается в целях управления.
Трансформаторы тока на эффекте Холла — Характеристики генератора на эффекте Холла делают его пригодным для использования в детекторных элементах в магнитометрах, накладных амперметрах постоянного и переменного тока, преобразователях, измерителях вариации магнитного поля и ваттметрах.В конкретном случае датчиков тока генератор / датчик Холла размещается в воздушном зазоре магнитопровода. Сердечник обычно представляет собой тороид и изготовлен из магнитомягкого материала (такого как феррит, порошок молипермаллоя или Kool Mu®). Первоначальный размер сердечника выбирается для поддержки центрального первичного проводника, а зазор оценивается не только для толщины самого датчика Холла, но и для обеспечения правильного магнитного поля в материале сердечника у датчика. пиковый ток, который необходимо обнаружить.
Трансформаторы тока SMPS — Трансформаторы тока для конструкций SMPS используются для измерения уровней тока в контуре управления источника питания. Трансформатор тока в этой схеме (обычно сделанный из ферритового тороида) помогает отслеживать ток в цепи обратной связи цепи управления. Затем этот ток используется для определения того, как будет изменено будущее поведение SMPS. Например, рабочий цикл (для систем с широтно-импульсной модуляцией) может быть изменен для будущих циклов переключения.
Просмотр функций программного обеспечения и загрузка конструкции трансформатора тока
Что такое индуктор? — Определение и типы
Определение: Индуктор — это пассивный компонент, который накапливает электрическую энергию в магнитном поле, когда электрический ток проходит через него. Или мы можем сказать, что индуктор — это электрическое устройство, которое обладает индуктивностью.
Катушка индуктивности изготовлена из проволоки, обладающей свойством индуктивности, т.е.е., препятствует прохождению тока. Индуктивность провода увеличивается за счет увеличения количества витков. Алфавит «L» используется для обозначения индуктора и измеряется в Генри. Индуктивность характеризует катушку индуктивности. На рисунке ниже показано символическое изображение индуктора.
Электрический ток I, протекающий через катушку, создает вокруг нее магнитное поле. Считайте, что магнитное поле генерирует поток Φ, когда через него протекает ток. Соотношение потока и тока дает индуктивности.
Индуктивность цепи зависит от путей прохождения тока и магнитной проницаемости ближайшего материала. Магнитная проницаемость показывает способность материала формировать магнитное поле.
Типы индукторов
Катушки индуктивности подразделяются на два типа.
1. Индуктор с воздушным сердечником (намотанный на неферритовый материал) — Индуктор, в котором либо сердечник полностью отсутствует, либо керамический материал используется для изготовления сердечника. Такой тип индуктора известен как индуктор с воздушным сердечником.
Керамический материал имеет очень низкий коэффициент теплового расширения. Низкий коэффициент теплового расширения означает, что форма материала остается неизменной даже при повышении температуры. Керамический материал не имеет магнитных свойств. Проницаемость индуктора остается неизменной благодаря керамическому материалу.
В воздушном сердечнике-индукторе единственная работа сердечника — это придание катушке определенной формы. Структура с воздушным сердечником имеет много преимуществ, таких как уменьшение потерь в сердечнике и повышение добротности.Индуктор с воздушным сердечником используется в высокочастотных приложениях, где требуется низкая индуктивность.
2. Индуктор с железным сердечником (намотанный на ферритовый сердечник) — это индуктор с фиксированным значением, в котором железный сердечник находится между катушкой. Индуктор с железным сердечником используется в схеме фильтра для сглаживания пульсаций напряжения, он также используется как дроссель в лампах дневного света, в промышленных источниках питания, инверторных системах и т. Д.
Как работает индуктор?
Катушка индуктивности — это электрическое устройство, используемое для хранения электрической энергии в форме магнитного поля.Он построен путем намотки провода на сердечник. Сердечники изготавливаются из керамического материала, железа или воздуха. Сердечник может быть тороидальным или Е-образным.
Катушка, по которой проходит электрический ток, индуцирует магнитное поле вокруг проводника. Напряженность магнитного поля увеличивается, если сердечник помещается между катушкой. Сердечник обеспечивает путь к магнитному потоку с низким сопротивлением.
Магнитное поле индуцирует ЭДС в катушке, которая вызывает ток.А согласно закону Ленца причины всегда противостоят следствию. Здесь причиной является ток, и он индуцируется из-за напряжения. Таким образом, ЭДС противодействуют изменению тока, изменяющему магнитное поле. Ток, который уменьшается из-за индуктивности, известен как индуктивное реактивное сопротивление.