что это и как выполнить проверку?
Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.
Что такое чередование фаз?
Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.
Рис. 1. Напряжение в трехфазной сетиКак видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.
Если взять за основу, что из нулевой точки на рисунке а) выходит U
Прямое и обратное чередование фаз
В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.
Рисунок 2: Прямая и обратная последовательностьОбратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:
- Желтый – первый;
- Зеленый – второй;
- Красный – третий.
На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.
Зачем нужно учитывать порядок фаз?
Последовательность чередования играет значительную роль в таких ситуациях:
- При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
- При подключении трехфазного счетчика
- При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.
С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.
Как выполнить проверку?
Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.
С помощью фазоуказателя
По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .
Рисунок 3: Принципиальная схема работы ФУ-2Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.
На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.
На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.
С помощью мегаомметра
Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.
Рис. 4: Прозвонка кабеля мегаомметромПосмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.
На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.
По расцветке изоляции жил
Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.
Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.
При помощи мультиметра
Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.
Рис. 5: фазировка мультиметромНеобходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.
Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.
Защита от нарушения порядка чередования
Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.
Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.
Тематическое видео
www.asutpp.ru
Как определить где какая фаза. Фазировка электрического оборудования
Небольшое вступление
Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили . Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.
Что собой представляет чередование фаз?
Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.
Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.
Как выполнить проверку?
Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.
Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.
Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или .
Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.
На видео ниже наглядно показывается, как проверить чередование фаз:
Когда нужно учитывать порядок?
Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.
Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.
Если имеется электрический силовой кабель, с помощью которого необходимо выполнить под
elektrokomplektnn.ru
Как определить фазы a b c. Основные понятия и определения
В нашем садоводческом товариществе установили трёхфазный электросчётчик с трансформатором тока. Счетчик был новый со всеми пломбами. Однако при полностью отключенной нагрузке диск счётчика медленно вращается, то есть у счётчика обнаружился «самоход». Понятно, платить товариществу за учитываемую счетчиком энергию, которую оно фактически не использовало, не хотелось.
Сначала решили, что счетчик неисправен. Заменяли счетчики несколько раз, но «самоход» оставался. В результате пришли к другому выводу — счетчик не виноват. Стали думать, что же вызывает подобный «самоход»? В заводской инструкции, приложенной к трёхфазному счетчику, записано: подключать счётчик к сети необходимо, соблюдая последовательность чередования фаз, чтобы фаза А сети была бы подключена к первому зажиму счётчика, фаза В — ко второму, а фаза С — к третьему зажиму счётчика.
Последовательность чередования фаз легко установить с помощью фазоуказателя. Таковой всегда имеется на электростанциях, в электрохозяйствах крупных заводов, но откуда ему быть в садоводческих товариществах? Наша попытка заполучить фазоуказатель на прокат на пару дней в крупном учреждении не удалась. Пришлось самим изготовить «Устройство для определения последовательности чередования фаз» , с помощью которого удалось определить эту правильную последовательность. В результате после устранения нарушения последовательности чередования фаз «самоход» счётчика исчез. Стало быть, отпала нужда платить за неиспользованную садоводами энергию.
Устройство для определения последовательности чередования фаз в трехфазной сети
Итак, вышеупомянутое «Устройство для определения последовательности чередования фаз» предназначено для определения фазы, в которой напряжение отстаёт от напряжения в фазе, произвольно взятой для начала отсчёта. Знание этого отставания необходимо для правильного подключения к сети приборов, в которых требуется соблюдать последовательность чередования фаз, например, трёхфазных четырёхпроводных (с нулем) электросчетчиков.
Конструкция устройства достаточно простая (рис. 1). На основании из электроизоляционного материала, например текстолита, размещены два настенных электропатрона с ввинченными в них обычными осветительными лампами накаливания, закрытыми прозрачными кожухами, изготовленными из пластиковой тары от соков, воды и т. д. На основании укреплены также конденсатор и клеммы для подключения проводов.
Одни выводы от ламп и конденсатора спаяны (точка О), другие концы проводов соединены с клеммами А, В и С (рис. 2).
Принцип действия «Устройства для определения последовательности чередования фаз» таков. При подключении «Устройства…» к трехфазной сети из-за наличия конденсатора в каждой фазе изменяется напряжение, что приводит к разному накалу ламп. (В нашем случае к конденсатору подсоединена фаза В.) По величине накала (яркости свечения ламп) и судят о принадлежности оставшихся фаз (проводов) к фазе А или к фазе С.
8.1.Основные понятия и определения
Электрическое оборудование трехфазного тока (синхронные компенсаторы, трансформаторы, линии электро-передачи) подлежит обязательной фазировке перед первым включением в сеть, а также после ремонта, при котором мог быть нарушен.порядок следования и чередования фаз.
В общем случае фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз вклю-чаемой электроустан
tmzs.ru
Чередование фаз в трехфазной сети – что это и как проверить
Часто на объектах электроснабжения приходится решать задачу проверки чередования фаз, а также производить фазировку. Обычно эти задачи входят в комплекс работ по согласованию параллельной работы трансформаторов. Хочется поделиться небольшой историей, в которой будут затронуты темы чередования фаз в трехфазной сети и правильной фазировки, а также приборы и методы, использующиеся при этом.
Небольшое вступление
Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили короткое замыкание. Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.
Что собой представляет чередование фаз?
Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.
Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, как пользоваться фазоуказателем, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.
Как выполнить проверку?
Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.
Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.
Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или осциллограф.
Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, как пользоваться мультиметром, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.
На видео ниже наглядно показывается, как проверить чередование фаз:
Когда нужно учитывать порядок?
Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.
Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.
Если имеется электрический силовой кабель, с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь снять наружную изоляцию кабеля. На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о цветовой маркировке проводов вы можете узнать из нашей статьи.
Но все же слепо доверяться такой маркировке нельзя. Так, на практике бывают случаи, что производители кабеля не могут гарантировать что в начале и в конце кабеля цвет жил будет один и тот же. Поэтому нужно все равно прозвонить жилы прозвонкой.
Теперь вы знаете, что такое чередование фаз в трехфазной сети и как его проверить с помощью приборов. Надеемся, информация была для вас полезной и интересной!
Советуем также прочитать:
samelectrik.ru
Порядок чередования фаз в трехфазной сети
Прямое и обратное чередование фаз
Трехфазный переменный ток графически представляет собой три фазы в виде чередующихся синусоид на оси Х, сдвинутых по отношению друг к другу на 120°. Первую синусоиду можно представить как фазу А, следующую синусоиду как фазу B, сдвинутую на 120° относительно фазы А, и третью фазу C, также сдвинутую на 120° по отношению к фазе В.
Графическое отображение сдвига фаз на 120° трехфазной сети
Если фазы имеют порядок АВС, то такое следование фаз называется прямым чередованием. Следовательно, порядок фаз СВА будет означать обратное чередование. Всего возможно три прямых чередования фаз ABС, BCА, CАВ. Для обратного чередования фаз порядок будет выглядеть как CВА, BAC, ACB.
Проверить чередование фаз трехфазной сети можно фазоуказателем ФУ — 2. Он представляет собой небольшой корпус, на котором имеются три зажима для подключения трех фаз сети, алюминиевого диска с черной точкой на белом фоне и три обмотки. Принцип действия у него аналогичен работе асинхронного электродвигателя.
Если подключить фазоуказатель к трем фазам и нажать кнопку на корпусе, то диск начнёт вращаться в одну из сторон. Когда вращение диска совпадает со стрелкой на корпусе, тогда фазоуказатель показывает прямое чередование фаз, вращение диска в обратном направлении указывает на обратное чередование фаз.
Электрическая схема фазоуказателя ФУ-2
В каких случаях необходимо знать порядок чередования фаз. Во-первых, если дом подключен к трехфазной сети и установлен индукционный электросчётчик, тогда нужно соблюдать на нем прямое чередование фаз. При неправильном подключении такого электросчетчика возможен его самоход, что даст неправильные показания в сторону увеличения расхода электроэнергии.
Также, если в доме используются асинхронные электродвигатели, то направление вращения ротора будет зависеть от порядка чередования фаз. Меняя чередование фаз на асинхронном электродвигателе можно изменить направление вращения ротора в нужную сторону.
Что такое фазировка трехфазной сети
Фазировку трех фаз проводят в трансформаторных подстанциях при параллельном подключении трансформаторов. Подключение двух трансформаторов к одной трехфазной сети осуществляется межсекционными автоматическими выключателями. Проверить одноименные фазы фазоуказателем не представляется возможным.
Однако можно определить одноименные фазы мультиметром или любым вольтметром с пределом измерения 500 В. При проведении фазировки, нужно соблюдать все меры безопасности и заранее проверить на работоспособность мультиметр. Перед нахождением одноименных фаз важно определить наличие фазного напряжения относительно «земли» на всех шинах (на случай обрыва).
Проверка на обрыв и нахождение одноименных фаз в трехфазной сети
Далее, работая в резиновых перчатках, замеряют линейные напряжения на шинах разных трансформаторов. Если найдены шины, напряжение между которыми около нуля, то такие шины имеют одноименные фазы и их отмечают. Следом находят остальные две пары одноимённых шин и также отмечают.
Если напряжения между всеми шинами разных трансформаторов ниже линейного 380 В, но значительно отличаются от нуля, то фазировать такие трансформаторы нельзя, т. к. они имеют разные схемы соединения. Найденные одноимённые шины соединяют на разъединителях для параллельной работы.
Отличие фазного и линейного напряжения в трехфазной сети
Когда трансформатор имеет различные напряжения, при одинаковых схемах соединений, их подгоняют переключателем отводов обмоток трансформаторов до номинального значения. Фазировку высоковольтных линий проводят специальными высоковольтными индикаторами УВНФ.
Тоже интересные статьи
electricavdome.ru
Трехфазные электрические цепи (Лекция №16)
Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.
Таким образом, понятие «фаза» имеет в электротехнике два различных значения:
- фаза как аргумент синусоидально изменяющейся величины;
- фаза как составная часть многофазной электрической системы.
Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.
Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.
Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).
Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:
— экономичность передачи электроэнергии на большие расстояния;
— самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;
— возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;
— уравновешенность симметричных трехфазных систем.
Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.
Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.
Рис.3 | Рис.4 |
Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).
Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).
Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.
Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.
Схемы соединения трехфазных систем
Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.
Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.
Соединение в звезду
На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.
Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).
Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.
Все величины, относящиеся к фазам, носят название фазных переменных, к линии — линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.
Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; — фазные напряжения нагрузки.
Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать
; | (1) |
; | (2) |
. | (3) |
Отметим, что всегда — как сумма напряжений по замкнутому контуру.
На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при основании, равными 300), в этом случае
(4) |
Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .
Соединение в треугольник
В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).
Для симметричной системы ЭДС имеем
.
Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.
Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.
Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями
Аналогично можно выразить линейные токи через фазные токи генератора.
На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов
. | (5) |
В заключение отметим, что помимо рассмотренных соединений «звезда — звезда» и «треугольник — треугольник» на практике также применяются схемы «звезда — треугольник» и «треугольник — звезда».
Литература
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
- Какой принцип действия у трехфазного генератора?
- В чем заключаются основные преимущества трехфазных систем?
- Какие системы обладают свойством уравновешенности, в чем оно выражается?
- Какие существуют схемы соединения в трехфазных цепях?
- Какие соотношения между фазными и линейными величинами имеют место при соединении в звезду и в треугольник?
- Что будет, если поменять местами начало и конец одной из фаз генератора при соединении в треугольник, и почему?
- Определите комплексы линейных напряжений, если при соединении фаз генератора в звезду начало и конец обмотки фазы С поменяли местами.
- На диаграмме на рис. 10 (трехфазная система токов симметрична) . Определить комплексы остальных фазных и линейных токов.
- Какие схемы соединения обеспечивают автономность работы фаз нагрузки?
toehelp.ru
Электротехника. Трехфазные электрические цепи
Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет – УПИ»
Электротехника: Трехфазные электрические цепи
Учебное пособие
В.С. Проскуряков, С.В. Соболев, Н.В. Хрулькова Кафедра «Электротехника и электротехнологические системы»
Екатеринбург 2007
2
Оглавление
1.Основные понятия и определения
2.Получение трехфазной системы ЭДС.
3.Способы соединения фаз в трехфазной цепи.
4.Напряжения трехфазного источника.
5.Классификация приемников в трехфазной цепи.
6.Расчет трехфазной цепи при соединении фаз приемника «Звездой»
7.Значение нейтрального провода
8.Расчет трехфазной цепи при соединении фаз приемника «треугольником»
9.Мощность трехфазной цепи
3
Трехфазные электрические цепи.
1. Основные понятия и определения
Трехфазная цепь – это совокупность трех электрических цепей, в которых
действуют синусоидальные ЭДС, одинаковые | по амплитуде и частоте, | ||
сдвинутые по фазе одна от другой на угол | 2π | =120° и создаваемые общим | |
3 |
| ||
|
|
|
источником энергии.
Каждую отдельную цепь, входящую в трехфазную цепь принято называть фазой.
Таким образом, термин «фаза» имеет в электротехнике два значения: первое – аргумент синусоидально изменяющейся величины, второе – часть многофазной системы электрических цепей.
Трехфазная цепь является частным случаем многофазных систем переменного тока.
Широкое распространение трехфазных цепей объясняется рядом их преимуществ по сравнению как с однофазными, так и с другими многофазными цепями:
•экономичность производства и передачи энергии по сравнению с однофазными цепями;
•возможность сравнительно простого получения кругового вращающегося магнитного поля, необходимого для трехфазного асинхронного двигателя;
•возможность получения в одной установке двух эксплуатационных напряжений – фазного и линейного.
Каждая фаза трехфазной цепи имеет стандартное наименование:
первая фаза – фаза «А»; вторая фаза – фаза «В»; третья фаза – фаза «С».
Начала и концы каждой фазы также имеют стандартные обозначения. Начала первой, второй и третьей фаз обозначаются соответственно А, В, С, а концы фаз – X, Y, Z.
Основными элементами трехфазной цепи являются: трехфазный генератор, преобразующий механическую энергию в электрическую; линии электропередач; приемники (потребители), которые могут быть как трехфазными (например, трехфазные асинхронные двигатели), так и однофазными (например, лампы накаливания).
4
2. Получение трехфазной системы ЭДС.
Трехфазный генератор создает одновременно три ЭДС, одинаковые по величине и отличающиеся по фазе на 1200.
Получение трехфазной системы ЭДС основано на принципе электромагнитной индукции, используемом в трехфазном генераторе. Трехфазный генератор представляет собой синхронную электрическую машину. Простейшая конструкция такого генератора изображена на рис. 3.1.
Рис. 3.1. Схема устройства трехфазного генератора
На статоре 1 генератора размещается трехфазная обмотка 2. Каждая фаза трехфазной обмотки статора представляет собой совокупность нескольких катушек с определенным количеством витков, расположенных в пазах статора. На рис. 3.1 каждая фаза условно изображена одним витком. Три фазы обмотки статора генератора повернуты в пространстве друг относительно друга на 1/3 часть окружности, т.е. магнитные оси фаз повернуты в пространстве на угол
23π =120°. Начала фаз обозначены буквами A, B и C, а концы – X, Y, Z.
Ротор 3 генератора представляет собой постоянный электромагнит, возбуждаемый постоянным током обмотки возбуждения 4. Ротор создает постоянное магнитное поле, силовые линии которого показаны на рис.3.1 пунктиром. При работе генератора это магнитное поле вращается вместе с ротором.
5
При вращении ротора турбиной с постоянной скоростью происходит пересечение проводников обмотки статора с силовыми линиями магнитного поля. При этом в каждой фазе индуктируется синусоидальная ЭДС.
Величина этой ЭДС определяется интенсивностью магнитного поля ротора и количеством витков в обмотке.
Частота этой ЭДС определяется частотой вращения ротора.
Поскольку все фазы обмотки статора одинаковы (имеют одинаковое количество витков) и взаимодействуют с одним и тем же магнитным полем вращающегося ротора, то ЭДС всех фаз имеют одинаковую амплитуду Em и частоту ω.
| 2π | Но, так | как магнитные оси фаз в | пространстве повернуты на | угол | ||||||||
| =120°, начальные фазы их ЭДС отличаются на угол | 2π | . |
| |||||||||
3 |
|
| |||||||||||
|
|
|
|
|
|
| 3 |
|
| ||||
|
| Примем начальную фазу ЭДС фазы А, равной нулю, то есть ψеА = 0 | , | ||||||||||
| тогда | eA = Em sinωt . | (3.1) | ||||||||||
ЭДС фазы В отстает от ЭДС фазы А на |
| 2π |
|
|
|
|
| ||||||
|
|
| : |
|
|
|
|
| |||||
3 |
|
|
|
|
|
| |||||||
|
|
|
| 2π | = Em sin(ωt −120). |
| |||||||
|
|
| eB = Em sin ωt − |
|
|
| (3.2) | ||||||
|
|
|
|
| |||||||||
|
|
|
|
| 3 |
|
|
|
|
| |||
|
|
|
|
|
|
|
|
| 2π |
| |||
ЭДС фазы С отстает от ЭДС фазы В еще на |
| : |
|
|
| ||||||||
3 |
|
|
| ||||||||||
|
|
|
| 4π | = Em sin(ωt −240). |
| |||||||
|
|
| eС = Em sin ωt − |
|
|
|
| (3.3) | |||||
|
|
|
|
|
| ||||||||
|
|
|
|
| 3 |
|
|
|
|
|
Действующее значение ЭДС всех фаз одинаковы:
E | A | = E | B | = E | = | Em = E | . | (3.4) |
|
| C |
| 2 | ||||
|
|
|
|
|
|
|
|
Трехфазная симметричная система ЭДС может изображаться тригонометрическими функциями, функциями комплексного переменного, графиками на временных диаграммах, векторами на векторных диаграммах.
Аналитическое изображение тригонометрическими функциями приведено в (3.1) – (3.3).
6
В комплексном виде ЭДС фаз изображаются их комплексными действующими значениями:
& | j0 | 0 | & | = Ee | − j120 | 0 | & | − j2400 |
|
|
|
| (3.5) | ||||
EA = Ee |
|
| = E ; EB |
|
| ; EC = Ee |
Графики мгновенных значений трехфазной симметричной системы ЭДС на временной диаграмме показаны на рис. 3.2. Они представляют из себя три синусоиды, сдвинутые друг относительно друга на 1/3 часть периода.
Рис. 3.2. Графики мгновенных значений трехфазной симметричной системы ЭДС.
На векторной диаграмме ЭДС фаз изображаются векторами одинаковой длины, повернутыми друг относительно друга на угол 120° (рис.3.3а).
Рис. 3.3. Векторные диаграммы ЭДС трехфазных симметричных систем. (а – прямая последовательность фаз; б – обратная последовательность фаз).
7
Так как ЭДС индуктированные в обмотках статора имеют одинаковые амплитуды и сдвинуты по фазе относительно друг друга на один и тот же угол 120°, полученная трехфазная система ЭДС является симметричной.
Следует отметить, что чередование во времени фазных ЭДС зависит от направления вращения ротора генератора относительно трехфазной обмотки статора. При вращении ротора по часовой стрелке, как показано на рис.3.1, полученная симметричная трехфазная система ЭДС имеет прямое чередование (А – В – С) (рис.3.3а). При вращении ротора против часовой стрелки образуется также симметричная трехфазная система ЭДС. Однако чередование фазных ЭДС во времени изменится. Такое чередование называется обратным (А – С – В) (рис.3.3б).
Чередование фазных ЭДС важно учитывать при анализе трехфазных цепей и устройств. Например, последовательность фаз определяет направление вращения трехфазных двигателей, и т.п. Для практического определения последовательности фаз используются специальные приборы – фазоуказатели.
По умолчанию при построении трехфазных цепей и их анализе принимается прямое чередование фазных ЭДС трехфазного источника.
На схемах обмотку статора генератора изображают как показано на рис. 3.4а с использованием принятых обозначений начал и концов фаз.
На схеме замещения трехфазный источник представлен тремя идеальными источниками ЭДС (рис.3.4б)
Рис. 3.4. Условное изображение обмотки статора генератора.
За условное положительное направление ЭДС в каждой фазе принимают направление от конца фазы к началу.
3. Способы соединения фаз в трехфазной цепи.
Для построения трехфазной цепи к каждой фазе трехфазного источника присоединяется отдельный приемник электроэнергии, либо одна фаза трехфазного приемника.
8
Рис.3.5 Схема несвязанной трехфазной цепи.
Здесь трехфазный источник представлен тремя идеальными источниками ЭДС E&A , E&B , E&C . Три фазы приемника представлены условно идеальными
элементами с полными комплексными сопротивлениями Z a , Z b , Z c . Каждая фаза приемника подсоединяется к соответствующей фазе источника, как показано на рис. 3.5. При этом образуются три электрические цепи, объединенные конструктивно одним трехфазным источником, т.е. трехфазная цепь. В этой цепи три фазы объединены лишь конструктивно и не имеют между собой электрической связи (электрически не связаны между собой). Такая цепь называется несвязанной трехфазной цепью и практически не используется.
На практике три фазы трехфазной цепи соединены между собой (электрически связаны).
Существуют различные способы соединения фаз трехфазных источников и трехфазных потребителей электроэнергии. Наиболее распространенными являются соединения «звезда» и «треугольник». При этом способ соединения фаз источников и фаз потребителей в трехфазных системах могут быть различными. Фазы источника обычно соединены «звездой», фазы потребителей соединяются либо «звездой», либо «треугольником».
При соединении фаз обмотки генератора (или трансформатора) «звездой» их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников x, y, z также соединяют в одну точку n (нейтральная точка приемника). Такое соединение называется соединение «звезда».
9
Рис. 3.6. Схема соединения фаз источника и приемника в звезду.
Провода A-a, B-b и C-c, соединяющие начала фаз генератора и приемника, называются линейными проводами (линейный провод А, линейный провод В, линейный провод С). Провод N-n, соединяющий точку N генератора с точкой n приемника, называют нейтральным проводом.
Здесь по–прежнему каждая фаза представляет собой электрическую цепь, в которой приемник подключен к соответствующей фазе источника посредством нейтрального провода и одного из линейных проводов (пунктир на рис.3.6). Однако, в отличие от несвязанной трехфазной цепи, в линии передачи используется меньшее количество проводов. Это определяет одно из преимуществ трехфазных цепей – экономичность передачи энергии.
При соединении фаз трехфазного источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к трем фазам приемника, также соединенным способом «треугольник».
Рис. 3.7. Схема соединения фаз источника и приемника в треугольник
10
Здесь также каждая фаза представляет собой электрическую цепь, в которой приемник подключен к соответствующей фазе источника посредством двух линейных проводов (пунктир на рис.3.7). Однако в линии передачи используется еще меньшее количество проводов. Это делает передачу электроэнергии еще более экономичной
При способе соединения «треугольник» фазы приемника именуют двумя символами в соответствии с линейными проводами, к которым данная фаза подключена: фаза «ab», фаза «bc», фаза «ca». Параметры фаз обозначают
соответствующими индексами: Z ab , Z bc , Z ca
4. Напряжения трехфазного источника.
Трехфазный источник, соединенный способом «звезда», создает две трехфазные системы напряжения разной величины. При этом различают фазные напряжения и линейные напряжения.
На рис.3.8 показана схема замещения трехфазного источника, соединенного «звездой» и присоединенного к линии электропередачи.
Рис.3.8. Схема замещения трехфазного источника
Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (U&A , U&B , U&C ). За условно
положительные направления фазных напряжений принимают направления от начала к концу фаз.
Линейное напряжение (UЛ) – напряжение между линейными проводами или между началами фаз (U&AB , U&BC , U&CA ). Условно положительные
направления линейных напряжений приняты от точек соответствующих первому индексу, к точкам соответствующим второму индексу (то есть, от точек с более высоким потенциалом к точкам с более низким) (рис. 3.8).
studfile.net