Как определить силу электрического тока, как узнать, вычислить какой ток в схеме, цепи.
Известно, что электрический ток заряженных частиц лежит в основе работы всей электротехники. Знание его величины дает понимание о режиме работы той или иной цепи, схемы. Если для специалиста электрика, электронщика не составит особого труда определить силу тока, то для новичка это может оказаться проблемой. В этой теме давайте с вами рассмотрим, какими именно способами можно узнать, вычислить, найти электрический ток используя как непосредственные измерения так и формулы.
Основными электрическими величинами являются напряжение, ток, сопротивление, мощность. Пожалуй главной формулой электрика является формула закона Ома. Она имеет вид I=U/R (ток равен напряжение деленное на сопротивление). Данную формулу приходится использовать повсеместно. Из нее можно вывести две другие: R=U/I и U=I*R. Зная любые две величины всегда можно вычислить третью. Напомню, что при использовании формул нужно пользоваться основными единицами измерения. Для тока это амперы, для напряжения это вольты и для сопротивления это омы.
К примеру, вам нужно быстро определить силу тока, которую потребляем электрочайник. Напряжение нам известно, это 220 вольт. Берем в руки мультиметр, электронный тестер, меряем сопротивление в омах. Далее мы просто напряжение перемножаем на это сопротивление. В итоге мы получаем искомую силу тока в амперах. Хочу уточнить, что данная форума работает только для цепей с активной нагрузкой (обычные нагреватели, лампы накаливания, светодиоды и т.д.). Для реактивной нагрузки формула имеет иной вид, где уже используется такие величины как индуктивность, емкость, частота.
Силу тока можно определить и по другой формуле, которая в себе содержит напряжение и мощность. Она имеет вид: I=P/U (сила тока равна электрическая мощность деленная на напряжение). То есть, 1 ампер равен 1 ватт деленный на 1 вольт. Две других формулы, выходящие из этой, имеют такой вид: P=U*I и U=P/I. Если вам известны любые две величины из тока, напряжения и мощности, всегда можно вычислить третью.
Помимо формул силу тока можно определить и практическим путем, через обычное измерение тестером, мультиметром. Для новичков сообщаю, что силу тока нужно измерять в разрыв электрической цепи. То есть, к примеру, у нас схема, прибор, с него выходит кабель с двумя проводами питания. Берем измеритель, выставляем на нем нужный диапазон измерения. Далее, один щуп измерителя мы прикладываем к одному из проводов питания устройства, а другой щуп измерителя к одному из контактов самого электропитания. Ну, и оставшийся провод, идущий от устройства мы также подсоединяем ко второму контакту питания. После включения самого устройства на измерителе появится величина тока, которую он потребляет при своей работе.
При измерении силы тока нужно помнить, что имеет значение какой вид тока течет по цепи (переменный или постоянный). Допустим, на большинство электротехники подается переменное напряжение, следовательно и измерять на входе ток нужно переменного типа. Внутри устройств обычно стоят блоки питания, которые снижают сетевое напряжение до меньших величин и делают его постоянным. Значит ту часть электрической цепи, что стоит после выпрямляющего диодного моста (делающая из переменного тока постоянный) уже нужно измерять как постоянный ток. Если вы попытаетесь измерить силу тока не своего типа, то и показания вы получите неверные.
Напряжение измеряют по другому. Измерительные щупы уже прикладываются не в разрыв цепи, как это делается у тока, а параллельно контактам питания. И в этом случае тип напряжения имеет значение (переменное или постоянное). Так что будьте внимательны, когда выставляете тип тока (напряжения) и их предел на тестере.
P.S. Именно сила тока в электротехнике делает всю работу, что мы воспринимаем как свет, тепло, звук, движение и т.д. Для облегчения понимания, что такое ток, а что такое напряжение можно привести аналогию с обычной водой. Так вот давление в воды в водопроводе будет соответствовать примерно электрическому напряжению, а движение самой воды это будет ток.
Формула тока. Как найти ток. Вычисляем и определяем ток по формуле закона Ома.
Основополагающей формулой для нахождения силы тока является классический закон Ома, который гласит, что сила тока равна напряжение деленное на сопротивление. И эта основополагающая формула любого электрика и электроника, которая постоянно используется для быстрого вычисления силы тока той или иной цепи. Из любых двух известных величин закона Ома (это ток, напряжение и сопротивление) всегда можно найти третью. В случае нахождения напряжения мы перемножаем ток на сопротивление, ну а при вычислении тока или сопротивления всегда напряжение делим на ту величину, которая известная (сила тока или сопротивление).
Стоит сказать, что данная формула тока подходит как для переменного, так и для постоянного тока. Хотя для переменного имеются некоторые нюансы. А именно: это случаи, когда мы используем активную нагрузку (нагреватели, лампочки). Формула тока показывает зависимость напряжения, сопротивления, и собственно силы тока.
Поскольку немаловажной характеристикой, используемой в области электричества, является также электрическая мощность, то для нахождения силы тока применять можно и её. Электрическая мощность, это произведение силы тока на напряжение. И чтобы найти силу тока необходимо мощность поделить на известное напряжение. Например, нам известна мощность нагревательного элемента, которая равна 880 Вт. Мы также знаем напряжение, что будет подаваться на него, равное 220 В. Нам нужно найти силу тока, которая будет протекать по цепи питания данного нагревателя. Для этого мы просто 880 ватт делим на 220 вольт, что даст на силу тока в 4 ампера.
Теперь как можно вычислить по формуле тока (по закону Ома) этот самый ток зная напряжение и сопротивление. Итак, у нас всё то же напряжение 220 вольт, и есть тот же нагревательный элемент. Мы мультиметром, тестером измеряем сопротивление элемента (у нагревателя с мощностью 880 ватт и рассчитанного на напряжение 220 вольт оно будет 55 ом). И что бы найти силу тока мы напряжение 220 вольт делим на сопротивление нагревателя 55 ом, в итоге получаем всю ту же силу тока в 4 ампера.
Просто нужно хорошо запомнить эти две формулы тока (его нахождение через мощность и через сопротивление с известным напряжением). Тогда вы быстро и без труда в голове сможете вычислять как силу тока электрической цепи, так и любые другие электрические величины (напряжение, сопротивление, мощность).
Ну, а если вы больше практик, тогда просто берите в руки измерители и меряйте. Напомню, напряжение мы измеряем параллельным прикладыванием щупов тестера, мультиметра к контактам, на которых будет измерять величину разности потенциалов. Силу тока же мы меряем уже путем разрыва цепи, где нужно измерить силу тока, то есть разрываем электрическую цепь в начале (поближе к источнику питания) и между этим разрывом подсоединяем щупы нашего измерителя тока (амперметра). Не забывайте, что переменный ток должен соответствовать своему положению на переключателе тестера, а постоянный своему месту (иначе вы получите неверные значения измеряемого тока).
P.S. Для лучшего запоминания закона Ома вы просто держите в голове, что при делении напряжение всегда в верху, то есть если по закону Ома мы находим напряжение, то перемножаем ток на сопротивление, ну в двух других случаях (при нахождении сопротивления или тока) мы всегда напряжение делим на известную величину, получая вторую, которая ранее была неизвестна.
Как найти общую силу тока в проводнике формулой
Электрическим током в электротехнике называется движение заряженных частиц по какому-либо проводнику. Эта величина не характеризуется лишь количеством энергии электричества, проходящей через проводник, так как за один и тот же проводник можно пропустить ток как разной, так и равной силы за разные промежутки времени. Именно поэтому не все так просто, как кажется. Рекомендуется ознакомиться с более развернутыми определениями электротока, чему он равен и как вычисляется. В этой статье будет объяснено, как найти силу тока в проводнике, будет дана формула этого уравнения.
Сила тока – что это
Рассматривая количество электроэнергии, которое протекает через определенный проводник за различные временные интервалы, станет ясно, что за малый промежуток ток протечет более интенсивно, поэтому нужно ввести еще одно определение. Оно означает силу тока, протекающую в проводнике за секунду времени.
Основные величины, характеризующие поток электроновЕсли сформулировать определение на основе всего вышеперечисленного, то сила электротока – это количество электроэнергии, проходящее через поперечное сечение проводника за секунду. Маркируется величина латинской буквой «I».
Гальванометр для измерения небольшой силы токаВажно! Специалисты определяют силу электротока, равную одному амперу, когда через поперечное сечение проводника проходит один кулон электричества за одну секунду.
Часто в электротехнике можно увидеть другие единицы измерения силы электротока: миллиамперы, микроамперы и так далее. Связано это с тем, что для питания современных схем таких величин будет вполне достаточно. 1 ампер – это очень большое значение, так как человека может убить ток в 100 миллиампер, и потому электророзетка для человека ничуть не менее опасна, чем, к примеру, несущийся на скорости автомобиль.
Если известно количество электроэнергии, которое прошло через проводник за конкретный промежуток времени, то силу (не мощность) можно вычислить по формуле, изображенной на картинке.
Когда электросеть замкнута и не имеет никаких ответвлений, через каждое поперечное сечение за секунду протекает одно и то же количество электричества. Теоретически это обосновывается так: заряд не может накапливаться в определенном месте, и сила электротока везде одинакова.
Виды токовИсточники тока
Источником электротока называется такой электротехнический прибор, который конвертирует определенный вид энергии в электрическую. Такие устройства делятся на физические и химические.
Принцип действия химических источников основан на преобразовании химической энергии в электрическую. Это преобразование происходит самостоятельно и не требует участия извне. В зависимости от возобновляемости элементов и типа реакций, они делятся на:
- Первичные (батарейки) Первичные источники нельзя использовать второй раз, если они разрядились, так как химические реакции, протекающие в них, необратимы. Они делятся на топливные и полутопливные элементы. Топливные аналогичны батарейкам, но химические вещества в них заправляются отдельно, как продукты химической реакции они выходят наружу. Это помогает им работать долгое время. Полутопливные включают в себя один из химических элементов, а второй постепенно поступает на протяжении всего использования. Их срок службы определяется запасом невозобновляемого вещества. Если для такого элемента возможна регенерация через зарядку, то он возобновляет свои возможности как аккумулятор.
- Вторичные (аккумуляторы) перед использованием проходят цикл зарядки. Заряд, который они получают в процессе, можно транспортировать вместе с устройствами. После расходования заряда возможна его регенерация за счет зарядки и обратимости химической реакции. Также к вторичным относятся возобновляемые элементы, которые механическим или химическим путем заряжаются и восстанавливают способность питать приборы. Они разработаны таким образом, что после определенного срока требуют замены определенных частей для продолжения реакции.
Важно! Следует понимать, что разделение на батарейки и аккумуляторы условно. Свойства аккумулятора могут проявляться, например, у щелочных батарей, которые можно реанимировать при определенной степени заряда.
Также по типу реагентов химические источники делятся на:
- Кислотные.
- Солевые.
- Щелочные.
Физические же источники электротока основаны на преобразовании механической, а также ядерной, тепловой или световой энергии в электрическую.
Промышленный генератор трехфазного токаСила тока – чему равна, в каких единицах она измеряется, как найти силу тока по формуле
Как уже стало понятно, сила электротока – это физическая величина, показывающая заряд, который проходит через проводник за единицу времени. Основная формула для ее вычисления выглядит так: I = q/t, где q – это заряд, который идет по проводнику в кулонах, а t – это временной интервал в секундах.
Рассчитать силу электротока можно и с помощью закона Ома. Он гласит, что эта величина равна напряжению сети в вольтах, деленному на ее сопротивление в омах. В связи с этим имеет место формула такого рода — I = U/R. Этот закон применим для расчета значений постоянного тока.
Чтобы вычислить переменные параметры электричества, нужно разделить найденные величины на квадратный корень из двух.
К сведению! Это более практичный метод измерения, и им приходится пользоваться часто, так как все приборы в доме или в офисе работают от розеток, которые подают переменный ток. Делается это из-за того, что с ним легче работать, его удобнее трансформировать.
Закон Ома в таблице
Важно! Наглядный пример работы переменного электротока можно наблюдать при включении люминесцентных ламп. Пока они полностью не загорятся, они будут моргать, потому что ток двигается в них то туда, то сюда.
Единицей измерения силы тока является ампер. Он определяется как сила неизменяющегося тока, который проходит по бесконечным параллельным проводникам с наименьшим круговым сечением (с минимальной площадью кругового сечения), отдаленным друг от друга на 1 метр и расположенным в безвоздушном вакуумном пространстве. Это взаимодействие на одном метре длины этих проводников, равное 2 × 10 в минус 7-й степени Ньютона. Если в проводнике за одну секунду времени проходит один кулон заряда, то сила тока в нем равна одному амперу.
Аккумуляторы являются вторичными источниками, но неразрывно связаны с батарейкамиЗачем нужно измерять силу тока
Силу тока в проводнике или на участке электрической цепи измеряют для того, чтобы иметь понятие о характеристиках данного проводника или цепи. Так как сила тока – один из основных параметров электричества, он неразрывно связан с другими значениями по типу напряжения и сопротивления. Более того, как уже стало понятно, три этих величины могут пропорционально определять друг друга.
Солнечная панель также является источником, преобразующим световую энергиюРасчеты силы электротока делаются в разных случаях:
- При прокладке электрических сетей.
- При создании приборов.
- В образовательных целях.
- При выборе подходящих деталей для совершения тех или иных действий.
Электроприбор для измерения силы тока
Для измерения силы электротока используют специальный прибор под названием амперметр. Если требуется измерить токи самых разных сил, то прибегают к использованию миллиамперметров и макроамперметров. Чтобы измерить им требуемую величину, его подключают в цепь последовательно. Ток, который проходит через устройство, будет изменяться им, и данные будут выведены на цифровой дисплей или аналоговые шкалы.
Важно! Стоит помнить, что включать амперметр можно на любом участке сети, поскольку сила тока в простой замкнутой цепи без ответвлений одинакова во всех точках.
Современные тестеры и мультиметры содержат функцию измерения силы электротока, поэтому нет необходимости прибегать к габаритным приборам, предназначенным для промышленного использования
Силу тока в домашних условиях можно измерить с помощью мультиметраТаким образом, сила электротока – это основополагающая характеристика движущихся частиц. Она не только дает понять, какое в сети напряжение и сопротивление, но и определяет другие важные величины по типу ЭДС и т. д.
способы на практике узнать значение с помощью приборов и расчетных формул
Передвижение положительно заряженных частиц, движущихся в едином направлении, в физике называют силой тока. По своей сути это физическая величина, демонстрирующая заряд, происходящий в определенное время через специальный проводник. Найти силу тока можно несколькими способами. Первый — это расчет величины по выведенным готовым формулам при наличии первоначальных данных. Второй — это использование специальных измерительных приборов.
Зачем нужна сила тока
Работа любой электротехники напрямую связана с физической величиной заряженных частиц. Знание того, как найти силу тока, позволяет понимать нюансы работы такого оборудования, отдельной цепи либо схемы. Расчет подобного значения у настоящего профессионала не вызовет особых трудностей, а вот у начинающих электриков это может вызвать некоторые проблемы. Для этого стоит знать определенные расчетные формулы или иметь под рукой специальный измерительный прибор.
По своей сути различают несколько разновидностей тока — это постоянный (содержащийся в аккумуляторных батарейках) и переменный (находящийся в розетке). Именно второй вид отвечает за освещение в помещении, работу электроприборов. Особенность переменного тока заключается в быстрой передаче и трансформации, ярким примером тому может служить работа люминесцентных лампочек (движение токовых частиц при включении).
Расчет величины по формулам
Так как самым распространенным видом тока, использующимся в быту, является переменный, то для его расчета используется известная каждому школьнику формула расчета «Закон Ома». Выглядит она следующим образом — I = U / R (найти ток можно, разделив напряжение на сопротивление), где:
- I — это переменное токовое значение;
- U — это напряжение;
- R — это сопротивление.
Из этой формулы тока можно вывести и другие, не менее полезные вычисления, позволяющие определить другие значения, имея только фактические показатели двух других величин (R = U / I и U = I * R). При расчете рекомендуется использовать основные единицы измерения — амперы, вольты и омы. Данная расчетная формула чаще всего используется для вычисления силы в цепях с активной нагрузкой, например, нагревательных приборах, электрочайниках, светодиодах и т. д.
В других же случаях используется иная вычислительная формула, содержащая в себе мощность и напряжение. Выглядит она следующим образом — I = P / U. Также сила тока рассчитывается по формуле I = q / t, где q — это заряд, идущий по проводнику, измеряющийся в кулонах, а t — это время прохождения электрического заряда, вычисляющееся в секундах.
Вычисление значений приборными системами
Помимо формул при отсутствии четких показателей необходимых значений используются специальные приборные системы. Преимущество такого метода заключается в быстроте и точности получаемых данных, минус — в необходимости покупать требуемые устройства. К основным способам, как определить силу тока, стоит отнести:
- Магнитоэлектрический метод вычисления, отличающийся высокой чувствительностью, точностью показаний, минимальным потреблением электроэнергии. Используется он зачастую для определения значения силы постоянного тока.
- Электромагнитный, основным вычислительным элементом которого становится магнитомодульный датчик, на который из магнитного поля поступает сигнал. Таким способом можно узнать силу постоянного и переменного тока.
- Косвенный, где по старинке используется вольтметр, определяющий показания напряжения на определенном сопротивлении.
Стоит отметить, что подобные методы редко применяются самими электрикам, так как они отнимают много времени. Гораздо проще использовать специальные приборы, а не приборные системы.
Измерение амперметром
Самым простым способом узнать силу тока является измерение показаний амперметром. Особенности его использования заключаются в подключении прибора к разрывам электрической цепи. Для этого выбирается подходящее место, после чего остается дождаться, когда на экране амперметра высветится значение силы тока (заряда), прошедшего через кабельное сечение через определенное время.
Помимо классического прибора используются похожие на них аналоги, предназначенные для того, чтобы быстро найти силу тока малого электричества — это миллиамперметры, микроамперметры, гальванометры. Процедура подключения установки мало чем отличается от обычных измерительных приборов, их нужно зафиксировать на том участке цепи, где требуется узнать значение заряда. Подключение осуществляется несколькими методами — последовательным и параллельным. Условно весь процесс можно разделить на несколько этапов:
- подготовка прибора, из которого выходит провод с двумя кабелями питания;
- выставление необходимого измерительного диапазона на вычислительной установке;
- прикладывание одного щупа к проводу питания прибора;
- подключение второго щупа к любому контакту электропитания;
- подсоединение оставшегося провода ко второму щупу;
- включение измерительного прибора;
- получение величины токовой силы, показанной на измерителе.
При измерении токовой силы нельзя забывать о том, что особую роль в этом деле играет его вид (переменный либо постоянный). Особое внимание следует уделить постоянному типу тока, например, если внутри устройства установлен блок питания, снижающий сетевое напряжение до меньших значений.
В таком случае необходимо измерять токовую силу в той части цепи, где установлен выпрямляющий мост диодов.
Немаловажную роль в измерении играет напряжение, в таком случае измерительные щипы прибора прикладываются не к разрыву цепи, а к параллельным контактам электропитания. Тут также стоит уделить внимание типу напряжения, которое бывает переменным и постоянным.
Как узнать ток и напряжение светодиода
В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов. Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора. Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».
Определение тока
Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.
Измерение силы тока светодиодаТестирование проводится следующим образом:
- Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
- Анодный вывод у светодиода делается длиннее, чем катодный.
- Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.
Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:
- блок питания, рассчитанный на 12 В;
- мультиамперметр;
- постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
- переменный резистор – 470–680 Ом;
- вольтметр, желательно цифровой;
- провода для коммутации схемы.
Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».
Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.
Мультиметр для замера силы тока и напряжения светодиодаМожно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром. Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В. Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.
Как узнать падение напряжения?
Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.
Теоретический метод
Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.
Типы и виды светодиодовВ состав этих изделий входят различные полупроводниковые металлы. Этот фактор и влияет на падение напряжения на p-n-переходе. Чтобы обозначить такие характеристики, независимо от марок и производителей светодиода, их окрашивают в различные цвета. Но стоит знать, что конкретно утверждать, на сколько вольт светодиод, опираясь только на его окраску, будет неверно. Цвета этих приборов дают приблизительные значения для проведения измерений. Примерные параметры по цветовому признаку приведены в таблице.
Цвет прибора | Напряжение, В |
Красный | 1,63–2,03 |
Желтый | 2,1–2,18 |
Зеленый | 1,9–4,0 |
Синий | 2,48–3,7 |
Оранжевый | 2,03–2,1 |
Инфракрасный | до 1,9 |
Фиолетовый | 2,76–4 |
Белый | 3,5 |
Ультрафиолетовый | 3,1–4,4 |
На прямое напряжение светодиода не воздействуют габариты или вариации корпуса, однако может проглядываться количество кристаллов, которые излучают свет и соединяются последовательно. Бывают виды элементов SMD, где люминофор прячет цепочку кристаллов.
В корпусе SMD-светодиода последовательно соединяются три кристалла белого цвета. Наиболее часто они применяются в лампах на 220 В китайского производства. Из-за того, что такие светодиоды начинают реагировать только от 9,6 вольт, протестировать их мультиметром не удастся, так как его батарейка питания рассчитана на 9,5 В.
Теоретически можно воспользоваться интернетом, скачав специальную программу datasheet, в поисковике которой вписать известные параметры светодиода, его цвет. Это позволит найти приблизительные характеристики, где падение напряжения и значения тока могут быть неточными.
Практический метод
Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.
Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.
При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.
Схема проверки падения напряжения на светодиодеЕсли нет возможности применить блок питания на постоянные 12 В, можно использовать батарейку «Крона», рассчитанную на 9 вольт. При отсутствии вышеперечисленных источников питания отлично подойдет стабилизатор сетевого напряжения, который может выдавать необходимое выпрямленное напряжение, только потребуется заново рассчитать номинал сопротивления резистора, задействованного в схеме. В этом случае также нужно повышать напряжение до засвечивания светодиода. Напряжение, при котором произойдет свечение, и будет номинальным, на которое он рассчитан.
При неизвестных характеристиках светодиода обязательно необходимо рассчитывать его значения номинального тока и падения напряжения, чтобы предотвратить быстрый выход из строя.
Как измерить силу тока мультиметром: инструкции, фото, видео
Мультиметр — очень функциональное устройство, которое помогает дружить с электричеством. Им могут измеряться разные параметры. О том, как воплотить эти замеры в реальность своими руками, мы рассказываем в интересных статьях. Сейчас поговорим о том, как измерить силу тока мультиметром. И, конечно, будут полезные видео о том, как проверить ампераж мультиметром.
Что такое сила тока и зачем её измерять?
Это количество электричества (заряда или числа электронов), которое движется через поперечное сечение проводника за одну секунду. В формулах обозначается большой латинской буквой I. Единица силы тока — Амперы (А).
Силу тока часто называют просто током. Он бывает двух видов:
- Постоянный. Ток не меняется по направлению и величине. То есть это равномерное направленное движение заряженных частиц. Формула для вычисления: I=Δq/Δt ( Δq(Кл) – заряд в Кулонах, который прошел через поперечное сечение; Δt(c) – время, за которое прошел заряд).
- Переменный. Это ток, у которого изменяется даже одна характеристика. Он отличается в разные временные моменты. Чтобы вычислить такой ток, лучше использовать производную.
Принято считать, что ток в 1 А образуется в проводнике с сопротивлением 1 Ом, если имеется напряжение в 1 В.
Проверка тока мультиметром нужна для:
- Уточнения действительно потребляемой мощности электрического агрегата.
- Выявления дефектов электроустройств, если его мощность меньше заявленной производителем.
- Определения электроёмкости автономных источников энергии, например, аккумуляторов.
- Выявления утечки тока в электрических цепях.
Часто для определения силы тока или ампеража используются амперметры. Но, если у вас имеется мультиметр с такой функцией, смело используйте его.
На видео о том, как померить силу тока мультиметром:
Принципы измерения силы тока мультиметром
Измерять ток мультиметром не сложно, но есть определенные правила, которыми нельзя пренебрегать:
- Электрическая сеть должна быть обесточена.
- Кабели должны быть хорошо изолированы, иначе увеличивается риск поражения током.
- Работайте с измерителем в перчатках, которые не проводят электроток, например, из резины.
- Не пытайтесь определять ток при повышенной влажности воздуха, потому что она тоже увеличивает риск поражения током.
- Замеряйте быстро, чтобы щупы не соединялись с проводами дольше 1-2 секунд. Это особенно важно, если вы собираетесь работать с маломощными элементами. К примеру, если вы будете осуществлять мультиметром замер тока батарейки и продержите щупы долго, то они полностью или частично разрядятся.
Мы советуем проводить все работы с током с напарником, который окажет первую помощь/вызовет скорую, если произойдет внештатная ситуация.
Как измерить силу тока мультиметром: основные моменты
Измерение всех типов тока проводится разными методами внутри измерительного устройства. Поэтому на тестере всегда имеется элемент, с помощью которого выставляется нужный режим и диапазон. В более продвинутых моделях диапазон определяется автоматически.
Для выбора режима обычно нужно только повернуть ручку, поставив её к одному из следующих значений:
- Постоянный ток: A -, DCA, I -;
- Переменный: A ~, ACA, I ~;
Настоятельно советуем прочитать инструкцию к мультиметру, в котором приводятся имеющиеся на тестере обозначения. Они могут быть разными в зависимости от модели. Полезной будет и статья о том, как пользоваться мультиметром.
Учтите, что для замера силы тока мультиметром придётся создать разрыв цепи! Это главная разница данной проверки от измерения, к примеру, напряжения, когда мультиметр следует подключать к цепи по параллельной схеме.
Разрыв тестируемой цепи мастера осуществляют по-разному. Для включения в цепь ограничительного сопротивления применяются также резисторы, но чаще всего обычные лампочки.
Учтите, что разрыв электроцепи нужно сделать до начала замеров при отключенном напряжении!
Как измерить мультиметром ток постоянный
Чаще всего проверяют батарейки и АКБ, они являются постоянными источниками.
В том, как замерить амперы мультиметром, важно выбрать подходящую функцию на приборе, а также присоединить тестер в нужной полярности: красный кабель к положительному питанию, черный — к отрицательному. Если щупы перепутать, на дисплее будут указаны отрицательные цифры.
Также в отношении того, как замерить ток мультиметром, нужно понять, какой уровень сигнала будет проверяться. Если в цепочке миллиамперы, красный кабель присоединяется к отверстию на мультиметре, где указано VΩмА или прописан определённый диапазон. Если вы исследуете силовую цепь, где Амперы, соединяйте с надписью А или NA (как правило, здесь 5-10 А). Опять же, советуем внимательно изучить инструкцию к мультиметру. Если на данном этапе что-то напутать, мультиметр может поломаться.
Инструкция по измерению постоянного тока мультиметром:
- Расставляем щупы.
- Выбираем функцию постоянного тока.
- Если нужно, выставляем степень сигнала (ставьте выше того, что ожидаете).
- Соединяем тестер в разрыв цепочки ветви схемы, не забывая соблюдать полярность.
- Включаем источник энергии.
Если значений нет, скорее всего, диапазон выбран неправильно. Попробуйте снижать его, пока не увидите показания.
Посмотрите, как померить амперы мультиметром:
Как замерить ампераж мультиметром на батарейках
Это простой переносной источник энергии и не требуется применять нагрузку. Кроме этого, остальные действия прежние: выбрать нужную функцию на мультиметре, расставить щупы в соответствии с полярностью.
О чем могут говорить показания:
- 4-6 А — всё в порядке.
- Ниже четырёх — батарейка подходит только для использования в маломощных устройствах.
- Ниже 2,5 А — эта батарейка просится в мусор.
Сравнивайте показания с теми, что прописаны на батарейках.
Посмотрите полезное видео о том, как измерить мультиметром амперы у батареек:
Как проверить ток мультиметром у аккумулятора
Здесь действует правило с нагрузочным элементом, в роли которого можно взять простую лампочку накаливания. Скорее всего, её сопротивление будет не больше нескольких сот Ом. Как проверить нагрузку мультиметром? Тестером, выбирая нужный режим. К примеру, подробнее о проверке сопротивления мультиметром читайте здесь.
Затем используйте такую формулу: I = U / R (I — ток А, U — аккумуляторное напряжение, R — сопротивление лампочки).
С полученным значением сравните цифры, которые получите при измерении тока мультиметром. Если видите разницу, тем более существенную, речь может идти о плохом заряде.
Полезное видео, как проверить амперы мультиметром:
Как померить мультиметром ток переменный
Бывает, что нужно проверить электросеть, например, для дома с несколькими квартирами. Если вы сумеете измерить переменный ток, это поспособствует правильному ремонту проводки.
И снова не обойтись без нагрузки, и снова в её роли может выступить лампочка.
Инструкция, как мерить мультиметром ток переменный:
- Присоединяем провода к нужным отверстиям на мультиметре.
- Выбираем на мультиметре нужную функцию замера, если необходимо — степень сигнала.
- Последовательно с измерителем присоединяем к розетке выбранный нагрузочный элемент.
- Смотрим на показания. Лампочка начинает гореть.
Вы узнали, как измерить силу тока мультиметром.
Желаем безопасных и точных измерений!
Вопрос — ответ
Вопрос: Как правильно измерить амперы мультиметром?
Ответ: В амперах измеряется сила тока. Есть переменный и постоянный ток, измерения каждого немного отличаются. Для них на мультиметре есть свои режимы, которые нужно выбрать до начала измерения. Есть и другие правила, которые важно выполнить.
Вопрос: Как измерить переменный ток мультиметром?
Ответ: Расставить щупы по подходящим гнездам, выбрать режим на мультиметре, последовательно с измерителем присоединить к розетке нагрузку.
Вопрос: Как быстро проверить ампераж обычным мультиметром?
Ответ: Это действительно нужно делать быстро, чтобы щупы не соединялись с проводами дольше 1-2 секунд. Разрыв электроцепи нужно сделать до начала измерений при отключенном напряжении!
Вопрос: Как померить силу тока цифровым мультиметром?
Ответ: Для выбора режима обычно нужно только повернуть ручку, поставив её к подходящему значению: постоянный ток: A -, DCA, I -; переменный: A ~, ACA, I ~. Для замера силы тока нужно создать разрыв цепи!
Вопрос: Как лучше всего измерить постоянный ток мультиметром?
Ответ: Нужно выбрать подходящую функцию на приборе, а также присоединить тестер в правильной полярности: красный щуп к положительному питанию, черный — к отрицательному. Если перепутать, на дисплее будут указаны отрицательные цифры. Не забываем о разрыве электроцепи!
Работа и мощность тока — урок. Физика, 8 класс.
При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.
При прохождении заряда \(q\) по участку цепи электрическое поле будет совершать работу: \(A=q\cdot U\), где \(U\) — напряжение электрического поля, \(A\) — работа, совершаемая силами электрического поля по перемещению заряда \(q\) из одной точки в другую.
Для выражения любой из этих величин можно использовать приведённый ниже рисунок.
Рис. \(1\). Зависимость между работой, напряжением и зарядом
Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда: q=I⋅t.
Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку: A=U⋅q.
Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи: A=U⋅I⋅t.
Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.
Рис. \(2\). Зависимость между работой, силой тока и временем прохождения заряда
Единицы измерения величин:
работа электрического тока \([A]=1\) Дж;
напряжение на участке цепи \([U]=1\) В;
сила тока, проходящего по участку \([I]=1\) А;
время прохождения заряда (тока) \([t]=1\) с.
Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.
Рис. \(3\). Схема и часы для измерения
Например:
I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж
Обрати внимание!
Работа чаще всего выражается в килоджоулях или мегаджоулях.\(1\) кДж = 1000 Дж или \(1\) Дж = \(0,001\) кДж;
\(1\) МДж = 1000000 Дж или \(1\) Дж = \(0,000001\) МДж.
Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.
Рис. \(4\). Электросчетчик
Механическая мощность численно равна работе, совершённой телом в единицу времени: N = Аt. Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока, A=U⋅I⋅t, разделить на время.
Мощность электрического тока обозначают буквой \(Р\):
P=At=U⋅I⋅tt=U⋅I. Таким образом:Мощность электрического тока равна произведению напряжения на силу тока: P=U⋅I.
Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.
Рис. \(5\). Зависимость между мощностью, напряжением и силой тока
За единицу мощности принят ватт: \(1\) Вт = \(1\) Дж/с.
Из формулы P=U⋅I следует, что
\(1\) ватт = \(1\) вольт ∙ \(1\) ампер, или \(1\) Вт = \(1\) В ∙ А.
Обрати внимание!
Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
\(1\) гВт = \(100\) Вт или \(1\) Вт = \(0,01\) гВт;
\(1\) кВт = \(1000\) Вт или \(1\) Вт = \(0,001\) кВт;
\(1\) МВт = \(1 000 000\) Вт или \(1\) Вт = \(0,000001\) МВт.
Пример:
Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.
Рис. \(6\). Схема
Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:
I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт.
Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.
В зависимости от сферы применения у них различаются пределы измерения.
Аналоговый ваттметр | Аналоговый ваттметр | Аналоговый ваттметр | Цифровой ваттметр |
Рис. \(7\). Приборы для измерения
Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.
Рис. \(8\). Лампы различной мощности в цепи
Сила тока в лампочке мощностью \(25\) ватт будет составлять \(0,1\) А. Лампочка мощностью \(100\) ватт потребляет ток в четыре раза больше — \(0,4\) А. Напряжение в этом эксперименте неизменно и равно \(220\) В. Легко можно заметить, что лампочка в \(100\) ватт светится гораздо ярче, чем \(25\)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в \(4\) раза больше, потребляет в \(4\) раза больше тока. Значит:
Обрати внимание!
Мощность прямо пропорциональна силе тока.
Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение \(110\) В и \(220\) В.
Рис. \(8\). Лампа, подключенная к источнику тока с различным напряжением
Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:
Обрати внимание!
Мощность зависит от напряжения.
Рассчитаем мощность лампочки в каждом случае:
I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт | I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт. |
Можно сделать вывод о том, что при увеличении напряжения в \(2\) раза мощность увеличивается в \(4\) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).
Рис. \(9\). Маркировка
В таблице дана мощность, потребляемая различными приборами и устройствами:
Таблица \(1\). Мощность различных приборов
Название | Рисунок | Мощность |
Калькулятор | \(0,001\) Вт | |
Лампы дневного света | \(15 — 80\) Вт | |
Лампы накаливания | \(25 — 5000\) Вт | |
Компьютер | \(200 — 450\) Вт | |
Электрический чайник | \(650 — 3100\) Вт | |
Пылесос | \(1500 — 3000\) Вт | |
Стиральная машина | \(2000 — 4000\) Вт | |
Трамвай | \(150 000 — 240000\) Вт |
Источники:
Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1. Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.
Текущая формула — Что такое текущая формула? Примеры
Текущая формула получена из закона Ома. Ток определяется как поток электронов в электрической цепи. Поток электронов происходит из-за разности потенциалов. Сила тока также известна как скорость изменения заряда во времени. Сила тока обозначается буквой I, а единица измерения тока в системе СИ — Ампер. Давайте изучим применение текущей формулы в разделе ниже.
Какова текущая формула?
Согласно закону Ома, ток — это отношение разности потенциалов и сопротивления.Таким образом, текущая формула имеет вид: I = V / R
где
- Представляю ток в амперах,
- В — разность потенциалов в вольтах
- R — сопротивление в Ом (Ом).
Давайте посмотрим на применение текущей формулы в следующем разделе решенных примеров.
Хотите найти сложные математические решения за секунды?
Воспользуйтесь нашим бесплатным онлайн-калькулятором для решения сложных вопросов.Cuemath находит решения простым и легким способом.
Забронируйте бесплатную пробную версию Класс
Примеры использования текущей формулы
Пример 1: В электрической цепи разность потенциалов и сопротивление задаются как 20 В и 4 Ом соответственно. Используя формулу тока, найдите ток, протекающий в цепи.
Решение:
Чтобы найти: Ток (I), протекающий в цепи.
Дано:
V = 20 В, R = 4 Ом
Используя текущую формулу
I = V / R
I = 20/4
I = 5
Ответ: В цепи протекает ток 5 ампер.
Пример 2: Полный ток, протекающий в электрической цепи, составляет 50 Ампер, а сопротивление проводов — 14 Ом. Используя текущую формулу, найдите разность потенциалов.
Решение:
Чтобы найти разность потенциалов:
Дано:
I = 50 А, R = 14 Ом
Используя текущую формулу
I = V / R
50 = V / 14
V = 50 × 14
V = 700
Ответ: Разность потенциалов 700 В.
Пример 3: В электрической цепи разность потенциалов составляет 20 В, а значение тока составляет 5 А соответственно. Используя формулу тока, найдите сопротивление цепи.
Решение:
Чтобы найти сопротивление (R) цепи:
Дано:
V = 20 В, I = 5 А
Используя текущую формулу
R = V / I
R = 20/5
R = 4 Ом
Ответ: Сопротивление цепи 4Ω.
Часто задаваемые вопросы по текущей формуле
Как рассчитать ток по текущей формуле?
Если заданы напряжение (В) и сопротивление (R) какой-либо цепи, мы можем использовать формулу тока для вычисления тока, то есть I = V / R (амперы).
Как рассчитать напряжение по формуле тока?
Если заданы ток (I) и сопротивление (R) любой цепи, мы можем составить формулу тока для вычисления напряжения, то есть V = IR (Вольт).
Как рассчитать сопротивление по текущей формуле?
Если заданы ток (I) и разность потенциалов (V) любой цепи, мы можем составить формулу тока для расчета сопротивления, т.е.е., R = V / I (Ом Ом).
Что такое определение текущей формулы? Напишите его единицу СИ.
Ток — это отношение разности потенциалов и сопротивления. Он представлен как (I). Текущая формула представлена как I = V / R. Единица измерения тока в системе СИ — Ампер (Ампер).
Определить ток и напряжение для данной диодной цепи
Обычно рекомендуется расположить устройства так, чтобы обычный ток протекал от верха листа к низу листа, а поток сигналов, если он присутствует, течет с левой стороны листа на правую.Одно это простое правило улучшает читаемость схемы, хотя есть и другие хорошие правила.
Это означает \ $ + 10 \: \ textrm {V} \ $ вверху и \ $ — 15 \: \ textrm {V} \ $ внизу. Также в этом случае ваш единственный сигнал — это \ $ V_o \ $. Так как для этого вопроса вывод должен быть размещен в правой части схемы. Как в:
смоделировать эту схему — Схема создана с помощью CircuitLab
Если вы просто взглянете на схему, то увидите, что самая отрицательная точка внизу, вероятно, не может пройти за \ $ D_2 \ $, поскольку \ $ D_2 \ $ ориентирован неверно.Это, вероятно, означает, что \ $ D_2 \ $ — это OFF , как предварительный вывод. Это также означает, что \ $ V_O = -15 \: \ textrm {V} \ $, поскольку тогда в \ $ D_2 \ $ нет тока, который мог бы вызвать падение напряжения на \ $ R_2 \ $.
С этой точки зрения следующее, что нужно сделать, это рассмотреть оставшуюся часть. Поскольку \ $ D_2 \ $ ориентировочно OFF , это вряд ли повлияет на то, что происходит с \ $ R_1 \ $ и \ $ D_1 \ $. Итак, теперь это просто. Этот узел находится в \ $ 700 \: \ textrm {mV} \ $ над землей, поскольку \ $ R_1 \ $ подает ток через \ $ D_1 \ $ (который правильно ориентирован так, чтобы быть ON .)
Теперь мы можем перепроверить заключение о \ $ D_2 \ $. Катод \ $ D_2 \ $ находится на \ $ 700 \: \ textrm {mV} \ $ над землей, его анод смотрит в сторону \ $ — 15 \: \ textrm {V} \ $, и это означает, что он находится в факт, OFF . Итак, теперь это проверено, и мы готовы к работе.
Ток в \ $ R_1 \ $ равен \ $ I_ {R_1} = \ frac {10 \: \ textrm {V} -700 \: \ textrm {mV}} {R_1} \ $, и это работает до \ $ 930 \: \ mu \ textrm {A} \ $ в случае \ $ R_1 = 10 \: \ textrm {k} \ Omega \ $ и \ $ 1.86 \: \ textrm {mA} \ $ в \ $ R_1 = 5 \ : \ textrm {k} \ Omega \ $ case.\ $ V_O = -15 \: \ textrm {V} \ $ в обоих случаях, поскольку \ $ D_2 \ $ OFF в обоих случаях, и в \ $ R_2 \ $ нет тока, чтобы создать разность напряжений на нем.
Одно из этих «хороших правил» — просто указать имя узла для напряжения, когда что-то подключается к шине питания, так же, как схемы часто делают с узлами заземления, вместо того, чтобы путать схему со всеми бессмысленными деталями проводки связывания питающей сети вместе. Подключение шины к рельсам питания просто создает множество отвлекающих проводов, которые в конечном итоге ничего не добавляют к пониманию схемы.Вы ошибочно пришли к мысли, что вам нужно следить за этими проводами, и это заставляет вас перемещаться повсюду при чтении схемы. И редко нужно иметь такой удар прямо в лицо. Кроме того, это просто еще больше черных проводов, бегущих вокруг, чтобы отвлечь ваше внимание от того, что вам действительно нужно увидеть и понять.
[Может наступить время, когда вы узнаете, что сеть связана вместе, и узнаете подробности о проводке (индуктивности трассировки, емкости, волноводные эффекты и т. Д.)) может иметь значение, и может стать важным «увидеть» все, что связано таким образом. Но к тому времени, когда такие детали будут иметь значение для вас, ваш уровень навыков работы со схемами станет настолько лучше, что вам все равно не придется подключать шины питания.]
Итак, во втором примере схемы я первым делом удалил символы источника напряжения. Они не нужны, поскольку не являются источниками сигналов. Просто отметьте напряжение в узле, где он подключается, и избавьтесь от источников питания.Они просто занимают место и отвлекают ваше внимание от важных дел. И затем я бы использовал первое правило, которое я упомянул об обычном потоке тока и потоке сигналов, чтобы изменить схему, как я вам показал. Вместе эти вещи делают схемы намного более удобочитаемыми и обеспечивают согласованность, что со временем увеличит скорость, с которой вы сможете мысленно разбить схемы на важные, более мелкие функциональные блоки, которые легче понять по отдельности.
Хорошей идеей было бы найти в сети какие-нибудь грубые схемы.Все, с чем у вас возникают проблемы, включая источники напряжения, и где провода шины подачи напряжения проложены повсюду, и где приведенные выше правила потребуют значительного переписывания. Затем перепишите их по этим правилам. Посмотрим, поможет ли это вам. Держу пари, что так и будет. И гораздо быстрее, чем вы думаете сейчас.
(Этим и многим другим правилам меня научили учителя электроники на занятиях, которые я посещал в Tektronix, когда я работал там около 35 лет назад.)
Электрический ток — Веб-формулы
Электрический ток определяется по формуле:I = В / R
Соответствующие единицы:
ампер (А) = вольт (В) / Ом (Ом)
Эта формула получена из закона Ома. . Где у нас:
В: напряжение
I: ток
R: сопротивление
Если электрическая мощность и полное сопротивление известны, то ток можно определить по следующей формуле:
I = √ ( P / R )
Соответствующие единицы:
Ампер (А) = √ (Ватт (Вт) / Ом (Ом))
Где P — электрическая мощность.
Электрический ток
Скорость потока заряда через поперечное сечение некоторой области металлического провода (или электролита) называется током через эту область.
Если скорость потока заряда непостоянна, тогда ток в любой момент задается дифференциальным пределом: I = dQ / dt.
Если заряд Q протекает по цепи в течение времени t, то
I = Q / t.
Единица измерения тока S.I называется ампер (А) (кулон в секунду).
1 ампер = 6,25 × 10 8 электронов / сек
В металлических проводниках ток возникает из-за движения электронов, тогда как в электролитах и ионизированных газах и электроны, и положительные ионы движутся в противоположном направлении. Направление тока принимается за направление движения положительных зарядов.
В проводимости, хотя ток возникает только за счет электронов, ранее предполагалось, что ток возникает из-за положительных зарядов, протекающих от положительного полюса батареи к отрицательному.Поэтому направление тока считается противоположным потоку электронов.
Если ток постоянный: Δq = I.Δt
функция времени:
Заряд = Площадь под графиком = ½ × t 0 × I 0
To Найти ток в электрической цепи
Для простой цепи или одиночного провода мы имеем:
Для сложной цепи с более чем одним проводом мы можем определить ток с помощью двух законов Кирхгофа
Первый закон: Этот закон основан на на принципе сохранения заряда и утверждает, что в электрической цепи (или сети проводов) алгебраическая сумма токов, встречающихся в точке, равна нулю.
Стрелка, отмеченная на схеме, представляет направление обычного тока, то есть направление потока положительного заряда, тогда как направление потока электронов дает направление электронного тока, которое противоположно направлению обычного тока.
I 1 + I 4 + I 5 = I 3 + I 2 + I 6
Второй закон: Алгебраическая сумма произведения тока и сопротивление в любом замкнутом контуре цепи равно алгебраической сумме электродвижущих сил, действующих в этом контуре.
Математически.
Электродвижущие силы — ЭДС (𝜖) источника определяется как работа, совершаемая на единицу заряда при прохождении положительного заряда через гнездо ЭДС от конца с низким потенциалом к концу с высоким потенциалом. Таким образом,
𝜖 = w / Q
Когда ток не течет, ЭДС источника в точности равна разности потенциалов между его концами. Единица ЭДС такая же, как и у потенциала, то есть вольт.
Средний поток электронов в проводнике, не подключенном к батарее, равен нулю, т.е. количество свободных электронов, пересекающих любой участок проводника слева направо, равно количеству электронов, пересекающих участок проводника справа налево. ток не течет по проводнику, пока он не будет подключен к батарее.
Скорость дрейфа свободных электронов в металлическом проводнике
В отсутствие электрического поля свободные электроны в металле беспорядочно вращаются во всех направлениях, поэтому их средняя скорость равна нулю.При приложении электрического поля они ускоряются в направлении, противоположном направлению поля, и поэтому имеют общий дрейф в этом направлении. Однако из-за частых столкновений с атомами их средняя скорость очень мала. Эта средняя скорость, с которой электроны движутся в проводнике под действием разности потенциалов, называется дрейфовой скоростью .
Если E — приложенное поле, e — заряд электрона, m — масса электрона и τ — временной интервал между последовательными столкновениями (время релаксации), то ускорение электрона составляет
Поскольку средняя скорость сразу после столкновения равна нулю, а непосредственно перед следующим столкновением это τ, скорость дрейфа должна быть:
Если I — ток через проводник и n — это количество свободных электронов на единицу объема, тогда можно показать, что:
Подвижность µ носителя заряда определяется как скорость дрейфа на единицу электрического поля:
Плотность тока (J)
(i)
(ii) S.I Единица J = Am -2 .
(iii) Плотность тока — это векторная величина, ее направление — это направление потока положительного заряда в данной точке внутри проводника.
(iv) Размеры плотности тока = [M 0 L -2 T o A 1 ]
Носители тока: заряженные частицы, поток которых в определенном направлении составляет электрический ток, являются носителями тока. . Носители тока могут иметь положительный или отрицательный заряд.Ток переносится электронами в проводниках, ионами в электролитах, электронами и дырками в полупроводниках.
Пример 1: Частица с зарядом q кулонов описывает круговую орбиту. Если радиус орбиты равен R, а частота орбитального движения частиц равна f, то найти ток на орбите.
Решение: Через любой участок орбиты заряд проходит f раз за одну секунду. Следовательно, через этот участок общий заряд, проходящий за одну секунду, равен fq.По определению i = fq.
Пример 2: Ток в проводе изменяется со временем в соответствии с уравнением I = 4 + 2t, где I в амперах, а t в секундах. Вычислите количество заряда, прошедшего через поперечное сечение провода за время от t = 2 с до t = 6 с.
Решение: Пусть dq будет изменением, которое произошло за небольшой интервал времени dt.
Тогда dq = I dt = (4 + 2t) dt
Следовательно, общий заряд, прошедший за интервал t = 2 секунды и t = 6, равен
q = ∫ 6 2 (4 + 2t) dt = 48 кулонов
Пример 3: Дан токоведущий провод неоднородного сечения.Что из следующего является постоянным по всей сети?
(a) Только ток
(b) Ток и скорость дрейфа
(c) Только скорость дрейфа
(d) Ток, скорость дрейфа
Решение : (a)
Пример4 : Когда разность потенциалов на данном медном проводе увеличивается, скорость дрейфа составляет
.
носители заряда:
(а) Уменьшается
(б) Увеличивается
(в) Остается прежним
(г) Уменьшается до нуля
Решение : (б)
Электрический Current — Summary — The Physics Hypertextbook
Electric Current — Summary — The Physics Hypertextbook.Сводка
- Электрический ток — это скорость, с которой заряд протекает через поверхность.
- Электрический ток часто называют просто током .
- Как скаляр, ток имеет только величину.
- Обозначение тока — I (курсив) из силы тока.
- В форме уравнения ток можно записать как…
Где…средний ток мгновенный ток I = ∆ д = dq ∆ т дт I = электрический ток [A] ∆ q , dq = заряд проходит через некоторую область [C] ∆ t , dt = интервал, момент времени [с] - Единица измерения тока в системе СИ — ампер [А].
- Ампер — это кулон в секунду.
- Ампер — одна из семи основных единиц Международной системы единиц.
- Написание без ударения ампер также допустимо в письменном английском.
- Укороченная форма amp часто приемлема или даже предпочтительна.
- Единица заряда в системе СИ — кулон [C]
- Кулон — производная единица.
- Один кулон — это количество заряда, переносимого одним ампером тока за одну секунду времени [C = A s].
- Плотность тока — это величина, связанная с электрическим током.
- Обозначение плотности тока: Дж (жирный шрифт).
- Как вектор, плотность тока имеет величину и направление.
- По определению, плотность тока является произведением плотности заряда (ρ) и скорости ( v ).
- Величина плотности тока также эквивалентна отношению тока ( I ) к площади ( A ).
- В форме уравнения плотность тока можно записать как…
Где…определение вектора Эквивалентзвездной величины Дж = ρ v Дж , Дж = плотность тока [А / м 2 ] как вектор или ее скалярная величина I = электрический ток [A] ρ = плотность заряда [Кл / м 3 ] против = скорость дрейфа [м / с] A = площадь [м 2 ] - Единица измерения плотности тока в системе СИ — ампер на квадратный метр [А / м 2 ].
- Микроскопическое описание тока
- Макроскопическое явление электрического тока можно описать чистым движением микроскопических заряженных частиц.
- В форме уравнения можно записать микроскопическое описание тока и плотности тока…
Где…микроскопический ток микроскопический плотность тока I = nqAv J = nq v I = электрический ток [A] Дж = плотность тока [А / м 2 ] n = плотность частиц [частиц / м 3 ] q = заряд на частицу [Кл] v , v = скорость дрейфа [м / с] A = площадь [м 2 ]
Нет постоянных условий.
- Механика
- Кинематика
- Движение
- Расстояние и перемещение
- Скорость и скорость
- Разгон
- Уравнения движения
- Свободное падение
- Графики движения
- Кинематика и расчет
- Кинематика в двух измерениях
- Снаряды
- Параметрические уравнения
- Dynamics I: Force
- Силы
- Сила и масса
- Действие-реакция
- Масса
- Динамика
- Статика
- Трение
- Силы в двух измерениях
- Центростремительная сила
- Кодовые рамки
- Энергия
- Работа
- Энергия
- Кинетическая энергия
- Потенциальная энергия
- Сохранение энергии
- Мощность
- Простые станки
- Dynamics II: Импульс
- Импульс и импульс
- Сохранение импульса
- Импульс и энергия
- Импульс в двух измерениях
- Вращательное движение
- Кинематика вращения
- Инерция вращения
- Вращательная динамика
- Вращательная статика
- Угловой момент
- Энергия вращения
- Прокат
- Вращение в двух измерениях
- Сила Кориолиса
- Планетарное движение
- Геоцентризм
- Гелиоцентризм
- Вселенская гравитация
- Орбитальная механика I
- Гравитационная потенциальная энергия
- Орбитальная механика II
- Плотность вытянутых тел
- Периодическое движение
- Пружины
- Простой генератор гармоник
- Маятники
- Резонанс
- Эластичность
- Жидкости
- Плотность
- Давление
- Плавучесть
- Расход жидкости
- Вязкость
- Аэродинамическое сопротивление
- Режимы потока
- Кинематика
- Теплофизика
- Тепло и температура
- Температура
- Тепловое расширение
- Атомная природа материи
- Закон о газе
- Кинетико-молекулярная теория
- Фазы
- Калориметрия
- Явное тепло
- Скрытое тепло
- Химическая потенциальная энергия
- Теплопередача
- Проводимость
- Конвекция
- Радиация
- Термодинамика
- Тепло и работа
- Диаграммы давление-объем
- Двигатели
- Холодильники
- Энергия и энтропия
- Абсолютный ноль
- Тепло и температура
- Волны и оптика
- Волновые явления
- Природа волн
- Периодические волны
- Интерференция и суперпозиция
- Интерфейсы и барьеры
- Звук
- Природа звука
- Интенсивность
- Эффект Доплера (звук)
- Ударные волны
- Дифракция и интерференция (звук)
- Стоячие волны
- ударов
- Музыка и шум
- Физическая оптика
- Природа света
- Поляризация
- Эффект Доплера (светлый)
- Черенковское излучение
- Дифракция и интерференция (свет)
- Тонкопленочная интерференция
- Цвет
- Геометрическая оптика
- Отражение
- Преломление
- Зеркала сферические
- Сферические линзы
- Аберрация
- Волновые явления
- Электричество и магнетизм
- Электростатика
- Электрический заряд
- Закон Кулона
- Электрическое поле
- Электрический потенциал
- Закон Гаусса
- Проводники
- Электростатические приложения
- Конденсаторы
- Диэлектрики
- Аккумуляторы
- Электрический ток
- Электрический ток
- Электрическое сопротивление
- Электроэнергия
- Цепи постоянного тока
- Резисторы в цепях
- Батареи в цепях
- Конденсаторы в цепях
- Правила Кирхгофа
- Магнитостатика
- Магнетизм
- Электромагнетизм
- Закон Ампера
- Электромагнитная сила
- Магнитодинамика
- Электромагнитная индукция
- Закон Фарадея
- Закон Ленца
- Индуктивность
- Цепи переменного тока
- Переменный ток
- RC-цепи
- Цепи RL
- Цепи LC
- Электромагнитные волны
- Уравнения Максвелла
- Электромагнитные волны
- Электромагнитный спектр
- Электростатика
- Современная физика
- Теория относительности
- Пространство-время
- Масса-энергия
- Общая теория относительности
- Quanta
- Излучение черного тела
- Фотоэффект
- Рентгеновские снимки
- Антиматерия
- Волновая механика
- Волны материи
- Атомарные модели
- Полупроводники
- Конденсированное вещество
- Ядерная физика
- Изотопы
- Радиоактивный распад
- Период полураспада
- Энергия связи
- Деление
- Fusion
- Нуклеосинтез
- Ядерное оружие
- Радиобиология
- Физика элементарных частиц
- Квантовая электродинамика
- Квантовая хромодинамика
- Квантовая динамика аромата
- Стандартная модель
- За пределами стандартной модели
- Теория относительности
- Фундаменты
- шт.
- Международная система единиц
- Гауссова система единиц
- Англо-американская система единиц
- Единицы разного назначения
- Время
- Преобразование единиц
- Измерение
- Значащие цифры
- По порядку величины
- Графики
- Графическое представление данных
- Линейная регрессия
- Подгонка по кривой
- Исчисление
- Векторы
- Тригонометрия
- Сложение и вычитание векторов
- Векторное разрешение и компоненты
- Умножение вектора
- ссылку
- Специальные символы
- Часто используемые уравнения
- Физические константы
- Астрономические данные
- Периодическая таблица элементов
- Люди в физике
- шт.
- Назад дело
- Предисловие
- Об этой книге
- Связаться с автором
- гленнелерт.сша
- Behance
- Твиттер
- YouTube
- Аффилированные сайты
- hypertextbook.com
- midwoodscience.org
- Предисловие
Электрический ток и условный ток
Современное электричество — это движущиеся заряженные частицы. Если вы позволите заряду, который накапливается в статическом электричестве, течь, вы получите ток.
Ток — это скорость потока заряда; — это количество заряда, протекающего через проводник в секунду.
Уравнение для расчета тока:
Где:I = ток (амперы, A)
Q = заряд, протекающий через точку в контуре (кулоны, Кл)
t = время, необходимое для прохождения заряда (секунды, с)
Таким образом, ток в 1 ампер равен 1 кулону заряда, проходящего через точку каждую секунду.
Точно так же кулон — это то же самое, что и ампер-секунда!
( Примечание: , если вы построите график зависимости тока от времени, площадь под графиком будет равна перемещенному заряду.)
Ну, сначала вам нужно иметь проводник, чтобы он протекал через него, а затем вам нужно притягивать или отталкивать заряженные частицы, чтобы заставить их двигаться. Величина вашего притяжения или отталкивания измеряется в вольтах и называется напряжением или разностью потенциалов (стр.d. для краткости).
Эти заряженные частицы заставляют их двигаться, поэтому напряжение является мерой количества энергии, выделяемой на один кулон заряда.
1 вольт = 1 джоуль на кулон.
Уравнение для расчета напряжения:
Где:
Вт = количество энергии (джоуль, Дж)
В = напряжение (вольт, В)
Q = заряд (кулон, Кл)
Когда заряженные частицы обтекают контур, они не расходуются; это энергия, которую переносят заряженные частицы, которая уменьшается при движении по цепи.
(бегуны, бегающие по беговой дорожке длиной 400 м, бегают полностью, но при беге теряют энергию).
Таким образом, ток не расходуется — если у вас остается 12 ампер, выходящих из батареи, в цепи будет 12 ампер и 12 ампер возвращаются в батарею.
Напряжение изменяется при перемещении заряда по цепи. Потенциальная энергия, передаваемая заряду, в контуре превращается в тепловую энергию. Электрон может покинуть батарею с напряжением 6 В, но вернется к батарее с напряжением 0 В.Это дает изменение потенциала на 6 В, отсюда и слова «разность потенциалов».
Существует два основных типа схем, о которых вам нужно знать, и у каждого из них есть два правила, упрощающих вычисления:
Последовательные цепи:
В последовательной цепи …
- ток одинаковый по всей цепи.
- напряжение делится между компонентами в цепи.
Параллельные цепи:
В параллельной цепи …
- ток делится, чтобы пройти по каждой петле.
- напряжение в каждом контуре одинаковое.
Первоначально ученые полагали, что в цепях текут положительно заряженные частицы, и поэтому цепи всегда помечены током, протекающим от положительного к отрицательному выводу ячейки в цепи.Мы называем этот ток обычным током. На самом деле электроны текут в противоположном направлении!
Нажмите на кнопки ниже, чтобы увидеть это в действии:
Обычный ток — это поток положительных частиц. Все ссылки на ток в диаграммах и в вопросах на уровне A относятся к обычному току, если в вопросе специально не указано иное.
Для измерения тока используется амперметр . Он включен последовательно в цепь для измерения количества заряда, протекающего через него за секунду. (Вы можете сравнить это с турникетом, подсчитывающим людей на стадионе.)
Для измерения напряжения используем вольтметр. Он размещается параллельно для сравнения потенциала в двух разных точках по обе стороны от компонента. Затем он может измерить разность потенциалов или напряжение на компоненте.
Расчет мощности переменного тока — Видео и стенограмма урока
Power Equations
Но этот урок называется «Мощность переменного тока», так как же нам рассчитать мощность, используемую цепью переменного тока? Как обсуждалось в другом видеоуроке, мощность — это энергия, используемая в секунду, измеряемая в ваттах (или джоулях в секунду).А в схеме его можно вычислить, умножив ток на напряжение. Мы можем сделать то же самое для цепи переменного тока; мы просто используем среднеквадратичное значение тока и среднеквадратичное напряжение. Итак, ниже представлено наше основное уравнение для мощности в цепи переменного тока: действующее значение напряжения, измеренное в вольтах, умноженное на действующее значение тока, измеренное в амперах.
Но что, если вы не знаете действующее значение напряжения или тока? Что, если вместо этого вы знаете пиковое напряжение V-ноль и пиковое значение тока I-ноль? Что ж, тогда нам нужно будет использовать предыдущие уравнения для среднеквадратичного напряжения и действующего тока.Но чтобы избежать использования более одного уравнения, мы можем подставить эти уравнения в уравнение мощности, например:
Это упрощает представление о том, что мощность, используемая в цепи переменного тока, равна пиковому току, умноженному на пиковое напряжение, деленному на два.
Пример расчета
Хорошо, давайте попробуем пример! Вы проводите испытания энергосберегающей лампочки.Вы обнаружите, что максимальное напряжение, которое он когда-либо использует, составляет 240 вольт, а максимальный ток, который проходит через него, составляет 0,12 ампер. Для обычной лампочки вы просматриваете некоторые значения и обнаруживаете, что среднеквадратичное напряжение составляет 120 вольт, а среднеквадратичный ток — 0,5 ампер. Какая разница в мощности, используемой двумя лампочками?
Хорошо, нам нужно выяснить, сколько энергии потребляет каждая лампочка, а затем сравнить их. Для первого нам даны максимальные значения, а для второго — среднеквадратичные значения.Итак, нам нужно использовать разные уравнения для каждого, а затем сравнить два значения мощности.
Что касается энергосберегающей лампочки, мы знаем, что V-ноль составляет 240 вольт, а I-ноль — 0,12 ампер. Итак, мы можем вычислить мощность, используя это уравнение: (240 * 0,12) / 2 = 14,4 Вт.
Для обычной лампочки известно, что среднеквадратичное напряжение составляет 120 вольт, а среднеквадратичное значение — 0,5 ампер. Итак, все, что нам нужно сделать здесь, это использовать это уравнение и умножить два вместе: 120 * 0,5 = 60 Вт.
Наконец, чтобы найти разницу между ними, вычтите меньшее число из большего: 60 — 14.4 = 45,6 Вт. Таким образом, разница в потребляемой мощности между двумя лампочками составляет 45,6 Вт. И все — готово!
Краткое содержание урока
Почти все электрические устройства, которые мы используем в повседневной жизни, питаются от переменного тока. Переменный ток (или AC) — это когда ток очень быстро переключает направление, а не течет только в одном направлении по цепи — в одну сторону, а затем в противоположную, снова и снова. Это создает ток, который изменяется синусоидально, что означает, что он изменяется в форме синусоидальной кривой, например, этой:
Поскольку ток переключается, изменяется и напряжение, и потребляемая мощность.Все они следуют синусоиде. Из-за этого мы склонны выражать ток и напряжение как специальные средние значения, называемые среднеквадратичным значением (или среднеквадратичным значением ). Цепь переменного тока будет иметь среднеквадратичный ток и среднеквадратичное напряжение, и эти значения определяются следующими уравнениями, где V-ноль — пиковое или максимальное напряжение, а I-ноль — пиковый или максимальный ток. Это вершины и основания синусоиды.
Как обсуждалось в другом уроке, мощность — это энергия, используемая в секунду, измеряемая в ваттах (или джоулях в секунду).В цепи переменного тока есть два основных уравнения, которые вы можете использовать для расчета мощности: верхнее уравнение, в котором вы умножаете среднеквадратичное напряжение на среднеквадратичное значение тока; или нижний, где вы умножаете пиковое напряжение на пиковый ток, а затем делите на два. Основываясь на том, что вам задают в вопросе, вы можете выяснить, какое из двух уравнений использовать.
Результаты обучения
По завершении этого урока вы должны уметь:
- Определение переменного тока, среднеквадратичного значения и мощности
- Определите синусоидальную кривую переменного тока, напряжения и мощности
- Объясните, как использовать два основных уравнения для расчета мощности в цепи переменного тока.
Как определить требования к питанию
Одна из самых сложных концепций при размещении центров обработки данных — это определение необходимого количества энергооборудования.Есть много способов узнать, каковы ваши требования к питанию, но независимо от того, какой метод вы используете, все вычисления включают три электрические концепции:
- Ток (амперы)
- Напряжение (вольт)
- Электрическая мощность (ватты)
Расчет потребляемой мощности
Для расчета потребляемой мощности эти электрические концепции применяются к простой формуле:
ампер * вольт = ватт
Эта формула определяет, сколько энергии использует оборудование в данный момент.
Метод №1: Использование измерителей и лицевых панелей для определения требований к электропитанию вашего оборудования
Большинство современного оборудования для распределения электроэнергии имеет встроенный счетчик, который отображает использование мощности. На ЖК-дисплее PDU ниже вы можете видеть, что как основной, так и резервный PDU потребляют 9 ампер:
Индикация на ЖК-дисплее PDUПроизводители также должны отображать допустимые диапазоны напряжения и силы тока, потребляемые на нагрузку, на лицевой панели оборудования:
Лицевая панель оборудования с указанием допустимого диапазона напряжения и потребляемого тока на нагрузку Подобное ИТ-оборудованиеобычно работает в диапазоне напряжений от 100 до 240 В и совместимо с питанием как 120 В, так и 208 В.К этим конкретным блокам распределения питания относятся APC AP7941, которые рассчитаны на ток до 30 ампер в цепях на 208 В (80% от 30 ампер в соответствии с Национальным электротехническим кодексом по соображениям безопасности). Поскольку мы знаем, что оборудование, подключенное к PDU, потребляет 9 ампер, мы можем подставить значения в формулу:
9 ампер * 208 вольт = 1872 ватта
Причина, по которой мы используем только одно из значений 9 ампер, связана с тем, как сконфигурированы первичная и резервная мощность. Первичное и резервное питание означает два или более блока питания от разных источников питания.Поскольку к каждому PDU подключено одно и то же устройство, они должны потреблять одинаковое количество энергии.
При планировании резервирования мощности каждая цепь (первичная и резервная) должна быть рассчитана таким образом, чтобы выдерживать общую нагрузку обеих в случае отказа одной из них.
Мы обнаружили, что оборудование шкафа потребляет 1872 Вт (почти 1,9 кВт).
Не забудьте оставить место для маневра для «снижения мощности», поскольку все ИТ-оборудование со временем потребляет больше энергии.
Метод № 2: Использование списков оборудования для определения требований к питанию вашего оборудования
Если у вас нет PDU со считыванием показаний усилителя, вы можете определить требования к питанию, используя полный список оборудования.Вам нужно будет изучить спецификации производителя по мощности для каждой единицы оборудования, чтобы определить:
- Конфигурация оборудования CPU / RAM / HDD / SSD
- Назначение оборудования (DNS, база данных, сервер приложений, веб-сервер)
- Возраст оборудования (более новое оборудование будет иметь более эффективные источники питания)
- Особые требования, такие как «Power-over-Ethernet» (общие для сетевых коммутаторов)
Например, один из наших клиентов может перечислить следующие единицы оборудования:
- 4 сервера Dell PowerEdge R420
- 1 коммутатор Juniper EX4200-48T
- 1 межсетевой экран FortiGate Fortinet 310B
Давайте определим максимальное энергопотребление для всех шести единиц оборудования.Сначала мы ищем в Интернете спецификации производителя по питанию и находим:
- Dell PowerEdge R420 имеет блок питания мощностью 550 Вт.
- Juniper EX4200-48T имеет блок питания мощностью 320 Вт.
- FortiGate Fortinet 310B может потреблять максимум 5–3 А в системах на 100–240 В. Мы знаем, что нам нужна максимальная потребляемая мощность в ваттах. (И мы знаем, что для расчета ватт нам нужно умножить ампер на вольт.) В таблице данных 310B указано, что наш максимальный диапазон составляет от 5 до 3 ампер.Поскольку устройство фактически потребляет на ампер меньше, чем на ампер, чем выше напряжение, наш максимум на самом деле меньше: 3 ампера. Для вольт в таблице данных указан диапазон: 100-240 вольт. Мы можем предположить, что это цепь на 120 В, потому что это стандарт для центров обработки данных в Соединенных Штатах.
Итак, чтобы определить максимальное энергопотребление в любой момент времени, мы сначала должны преобразовать все в ватты:
- 4 сервера Dell: 4 сервера * 550 Вт каждый = 2200 Вт
- 1 коммутатор Juniper: 320 Вт (оставьте как есть)
- 1 межсетевой экран FortiGate: 3 ампера * 120 вольт = 360 Вт
Затем сложите их вместе :
2200 Вт + 320 Вт + 360 Вт = 2880 Вт
Максимальное энергопотребление этих шести единиц оборудования составляет 2880 Вт.