Как подсоединить датчик температуры: Схема подключения датчика температуры охлаждающей жидкости – АвтоТоп

Содержание

Схема подключения датчика температуры охлаждающей жидкости – АвтоТоп

Собственно он стоит но толком ничего не показывает. Установлен указатель от ВАЗ, а вот датчик температуры — родной рено рапид. Сопротивление у указателя и у датчика разное — как результат указатель, грубо говоря, показывает среднюю температуру на луне. Вазовский датчик, вроде как не подходит (чисто визуально по диаметру больше + резьба под конус).

Теперь собственно, вопрос к знающим людям — какой датчик поставить вместо штатного, чтобы показания указателя были верными.

Ну и немного фото и схема подключения всего этого. Возможно будет полезно.

Белый провод и белый с черным — идут на лампочку подсветки указателя (подключил так — белый с черным — на массу, а белый — на габариты на стрекозе. Получается свет включил — указатель светится)

Зеленый — на датчик температуры, который стоит на двигателе (стоит с левой стороны за помпой ближе к салону)

Оранжевый на любой плюс от замка зажигания (напрямую на аккум не бросайте, а то он будет работать постоянно, независимо от того включено ли зажигание). К белому проводу тоже подключать не стоит — как только включите габариты — будет врать (у меня постоянно показывал температуру 120 градусов)

Так же поставил родной расширительный бачок, вместо ВАЗовской фигни.

Датчик температуры охлаждающей жидкости (ДТОЖ) – это важный элемент системы управления двигателем, который контролирует температуру ОЖ в системе охлаждения. Блок управления двигателем получает информацию от ДТОЖ и в соответствии с ней корректирует состав топливно-воздушной смеси, частоту вращения коленвала, а также угол опережения зажигания.

Устройство и принцип работы датчика температуры охлаждающей жидкости

«Прародителем» современного датчика температуры охлаждающей жидкости было термореле, которое устанавливалось на некоторые двигатели (например, в системе распределенного впрыска K-Jetronic). Контакт термореле открыт – идет прогрев двигателя, контакт закрыт – мотор работает в своей нормальной температуре.

В настоящее время основа датчика температуры охлаждающей жидкости – это термистор (резистор, который измеряет сопротивление в зависимости от температуры). Контроль за температурой ОЖ осуществляется непрерывно. Материалом для изготовления термистора служит обычно оксид никеля или кобальта. Особенность этих соединений в том, что при увеличении температуры у них увеличивается количество свободных электронов и, соответственно, уменьшается сопротивление.

Чаще всего термистор, который находится внутри ДТОЖ, имеет отрицательный температурный коэффициент. Максимальное сопротивление датчик имеет при холодном двигателе. На датчик температуры охлаждающей жидкости подается напряжение (5В), и по мере изменения сопротивления оно уменьшается. Блок управления двигателем фиксирует изменения напряжения и в соответствии с ним определяет температуру охлаждающей жидкости.

На некоторых двигателях (например, на моторах Renault) установлен датчик температуры охлаждающей жидкости с положительным температурным коэффициентом. Он устроен так же, однако при увеличении температуры сопротивление на нем не уменьшается, а увеличивается.

Где находится датчик температуры охлаждающей жидкости

Термистор находится внутри защитного теплопроводного корпуса, а на самом корпусе размещена резьба для крепления датчика, а также электрический разъем. Обычно ДТОЖ вкручивается в выпускной патрубок головки блока цилиндров. На некоторых моторах стоит сразу два датчика: один фиксирует температуру на выходе из двигателя, второй – из радиатора.

Датчик температуры охлаждающей жидкости располагается таким образом, чтобы его наконечник имел прямой контакт с охлаждающей жидкостью. Соответственно, если антифриза в системе мало, то и показатели ДТОЖ могут быть неточными.

Признаки неисправности ДТОЖ

Как и любой другой датчик, ДТОЖ может выйти из строя, вызвав сбои в работе мотора. Первые признаки, по которым можно распознать поломку датчика температуры охлаждающей жидкости:

  • проблемы с запуском двигателя в холодную погоду,
  • плохой выхлоп на холодном двигателе,
  • повышенный расход топлива и т.д.

Чаще всего при возникновении подобных симптомов замена датчика температуры охлаждающей жидкости не требуется. Скорее всего, проблема в отошедшем или поврежденном контакте, повреждении проводки или утечке охлаждающей жидкости. Поэтому для начала следует провести визуальный осмотр датчика на предмет повреждений или коррозии.

Проверка датчика температуры охлаждающей жидкости

Если осмотр не дал результатов, необходимо измерить сопротивление и напряжение датчика при различных температурах. После запуска холодного двигателя по мере его прогрева сопротивление должно падать (или повышаться – в случае положительного температурного коэффицента датчика) в соответствии с нормальными показателями.

Проверку датчика температуры охлаждающей жидкости можно выполнить самостоятельно

Нормальные показатели сопротивления и напряжения для датчика температуры охлаждающей жидкости с отрицательным температурным коэффициентом

Температура ОЖ (°С)Сопротивление (Ом)Напряжение (В)
4800 – 66004,00 – 4,50
1040003,75-4,00
202200 – 28003,00 – 3,50
3013003,25
401000-12002,50 – 3,00
5010002,5
608002,00-2,50
80270 – 3801,00-1,30
1100,5
разрыв цепи5,0 ±0,1
замыкание на «землю»

Нормальные показатели сопротивления и напряжения для ДТОЖ с положительным температурным коэффициентом

AutoOt. ru » Ремонт авто » Где находится датчик температуры охлаждающей жидкости?

Предназначение устройства

Датчик указателя температуры охлаждающей жидкости является очень важным элементом всей системы управления двигателем. Ведь именно он контролирует состояние температуры охлаждающей жидкости в общей системе охлаждения.

К таким данным относятся:

  • качественный состав топливно-воздушной смеси;
  • частота оборотов коленчатого вала;
  • угол опережения зажигания.

Таким образом, устройство обеспечивает быстрое прогревание двигателя при его запуске, а также поддержание его оптимальной температуры во всех режимах.

Проверка ДТОЖ, видео:

Как” проверить датчик температуры охлаждающей жидкости?

Для того чтобы проверить устройство, его необходимо сначала снять.

Провести демонтаж очень просто:

  1. как правило, датчик располагается на патрубке ГБЦ и чтобы его снять, сначала нужно демонтировать воздушный фильтр ;
  2. потом снимается минусовый провод с аккумулятора;
  3. сливается охлаждающая жидкость из радиатора;
  4. от прибора отключается проводка;
  5. с помощью подходящего ключа (чаще всего 19–21) ослабляется затяжка , после чего датчик легко демонтируется.

После того как датчик сняли, его помещают в ёмкость с охлаждающей жидкостью и начинают её постепенно нагревать. Процесс сопровождается постоянным контролем над температурой и показаниями омметра, который подключён к датчику.

Существует специальная таблица соответствия температуры охлаждающей жидкости к показателям омметра.

Температура, °CСопротивление, ОмНапряжение, В
4800 — 66004,00 — 4,50
1040003,75-4,00
202200 — 28003,00 — 3,50
3013003,25
401000-12002,50 — 3,00
5010002,50
608002,00-2,50
80270 — 3801,00-1,30
1100,50
разрыв цепи5,0 + 0,1
замыкание на «землю»

Когда показания вашего устройства не сходятся с данными из таблицы, датчик необходимо заменить, так как ремонту он уже не подлежит.

В случае когда выяснилось, что датчик в рабочем состоянии, неисправность нужно искать дальше. Возможно, возникли какие-либо проблемы с термостатом.

Пример, как проверить датчик температуры охлаждающей жидкости вы можете увидеть, просмотрев данное видео:

Признаки неисправности ДТОЖ

Датчик для охлаждения жидкости, как и любой другой датчик, может иметь неисправности, которые когда-либо приведут к сбоям в работе мотора.

Основные признаки, которые указывают на поломку устройства:

  • повышенный расход топлива;
  • плохой выхлоп, когда двигатель в холодном состоянии;
  • проблемы запуска двигателя в морозы.

Как правило, если возникают подобные неполадки, то замена датчика не требуется. Возможно, проблема появилась из-за отхода или повреждения контакта, неполадок в проводке или утечке жидкости для охлаждения.

Иногда холодный двигатель троит и «колбасит», а его холостые обороты прыгают с минимальных до максимальных значений в минуту, а через несколько минут или с повторного старта ситуация исправляется.

Такая проблема может образоваться из-за поломки датчика температуры жидкости для охлаждения.

Проверить состояние прибора можно с помощью омметра . При этом вывинчивать его не нужно. Проверяется не его сопротивление, а масса-датчик.

Когда датчик в порядке, то сопротивление стремится к бесконечности, если же он сломан, то сопротивление равно 10 кОм или менее.

Датчик уровня охлаждающей жидкости

Так как двигатель является самой важной и дорогой частью любого автомобиля, ему необходимо периодически уделять должное внимание.

Часто причиной поломки мотора становится его закипание . Но такую ситуацию очень легко предупредить. Достаточно постоянно следить за показаниями датчика уровня охлаждающей жидкости.

Схема устройства датчика уровня охлаждающей жидкости

Прибор представляет собой специальный герметизированный переключатель, который сделан из специального материала, обладающего ферромагнитными свойствами.

В механизме есть пружинные контакты. Если напряжение магнитного поля повышается, поля соприкасаются друг с другом, вследствие чего возникает замыкание.

Когда напряжение поля становится ниже, контакты размыкаются.

Как подключить датчик температуры охлаждающей жидкости?

Датчик устанавливается очень легко: вкручивается в посадочное гнездо, после чего подтягивается резьба и подключается проводка, ставится на своё место воздушный фильтр и соединяется колодка проводов питания ДМРВ.

Категорически запрещается использовать при этом герметик. При работе двигателя система охлаждения и металлические элементы очень сильно нагреваются, и герметик может расплавиться.

Если это случится, то герметик попадёт в тосол и система охлаждения может дать сбой.

Схема подключения датчика температуры охлаждающей жидкости:

Замена ДТОЖ, видео:

Проверка уровня охлаждающей жидкости

Многие владельцы автомобилей часто проверяют уровень охлаждающей жидкости визуально, не используя показатели специальных приборов. Необходимо просто посмотреть на расширительный бачок.

Если мотор холодный, то охлаждающее вещество должно находиться между максимальным и минимальным уровнем отметок на бачке. При прогретом моторе, уровень вещества может незначительно повышаться.

Если ваш автомобиль полностью исправен, то когда уровень антифриза снижается, датчик незамедлительно даёт об этом знать. Автомобилист видит специальный сигнал на приборной панели и доливает тосол или охлаждающую жидкость.

Также противопоказано доливать одну воду. Ведь антифриз имеет особые свойства, благодаря которым защищает головки цилиндров от коррозии.

Если проверка датчика температуры охлаждающей жидкости, не показывает температуру охлаждающей жидкости. В таком случае вам лучше обратиться в сервис технического обслуживания.

В любом автомобиле все взаимосвязано. Автомобильная система могла выйти из строя по какой-либо сопутствующей причине. К примеру, вы могли снять какую-то деталь, находящуюся с датчиком, и неправильно её поставить.

Но бывает и так, что проблема связана именно с датчиком температуры. Уровень охлаждающей жидкости может быть непостоянным или существует поломка в датчике измерения уровня охлаждающей жидкости.

В сервисе могут заменить датчик, при этом дают гарантию на качественную его замену и правильную сборку всех деталей на нужные места.

Таким образом, датчик температуры охлаждающей жидкости является очень важной составляющей вашего автомобиля, которая требует постоянного внимания и ухода.

Если ремонт этого устройства необходим, то сделайте его качественно, не жалея о потраченных средствах. После ремонта, двигатель будет работать ровно, особенно это будет заметно на низких оборотах.

>

Как подсоединить датчик температуры охлаждающей жидкости

На чтение 17 мин. Просмотров 24 Обновлено

Пару недель назад поставил наконец-то дополнительный датчик температуры ОЖ Defi BF 60 мм (реплика) =)
Те кто следит за моим авто, уже известно, что ранее я уже врезал переходник Defi (реплика) на 34 мм в верхний («горячий») патрубок радиатора еще при замене охлаждающей жидкости в рамках ТО-4. Сразу скажу, что с него нужно кинуть «массу» на кузов иначе датчик ничего не покажет вам!
Так же протянул проводку от датчика в салон.
И наконец-то установил сам «будильник» =)
По фото все думаю будет понятно, но хочу сказать несколько слов про подключение (после моего видео).
Питание я тупо взял с разветвителя прикуривателя Espada E 13U =), всякие приглушения подсветки мне не по кайфу, сделал себе тупо белую подсветку — скрутив белый провод с красным и на «+» и черный соответственно на «-«. Все! Готово! =)

Сразу скажу для чего мне нужен дополнительный датчик температуры ОЖ — контроль открытия термостата, предупреждение случайного перегрева ДВС и просто эстетическое удовольствие наличия самого «будильника» на панели =).

Вот видосик работы сего девайса ⇩⇩⇩

На задней панели датчика имеется 3 разъема:

Разъем №1.
Отвечает за подачу питания на датчик, в него подключается четырехконтактный штекер питания (Рис. 2).

Чтобы дисплей датчика подсвечивался белым цветом, нужно подключить к плюсу белый провод, желтый провод следует оставить не подключенным.
Чтобы дисплей датчика подсвечивался красным цветом, нужно подключить к плюсу желтый провод.

Также можно сделать комбинированную подсветку, используя в дневное время белую подсветку, а в темное время суток (когда включены габариты) красную подсветку.
Для этого нужно белый провод подключить к плюсу, а желтый провод подключить к питанию габаритных огней и наоборот.

Разъем №2.
Управляющий, отвечает за подачу информации на датчик от сенсора.
В него подключается двухконтактный штекер (Рис. 3).

Разъем №3.
Дублирует разъем №1. В случае, если на автомобиль устанавливается больше одного прибора, то питание для последующих датчиков можно брать от разъема №3. что бы не тянуть лишних проводов.

Позицией 4 обозначена кнопка настроек.

Как, собственно, настроить прибор:

1. Отключение звуковых сигналов.


Чтобы отключить звуковой сигнал на датчике, необходимо зажать управляющую кнопку на задней панели и включить зажигание автомобиля. Удерживать кнопку пока идет тестовый режим. Кнопку необходимо отпустить после завершения звукового сигнала. Звук будет отключен. Для включения звука нужно будет проделать аналогичную операцию.

2. Установка пиковых значений.
Чтобы задать критическое значение, при котором сработает звуковое и световое оповещение (PEAK), необходимо подать питание на датчик, дождаться когда пройдет тестовый режим, зажать управляющую кнопку на задней панели и удерживать в течение 5 сек. Стрелка встанет на предустановленный критический уровень. Изменять значения можно либо короткими нажатиями на кнопку (стрелка будет двигаться по каждому делению) либо удерживанием кнопки (стрелка будет двигаться через 5 делений). Чтобы уменьшить значения (Peak) нужно довести стрелку до максимума, затем она пойдет в обратном направлении.

Автомобили ВАЗ 2108, 2109, 21099 в щитке приборов имеют стрелочный указатель температуры охлаждающей жидкости.

Схема подключения датчика указателя температуры охлаждающей жидкости в системе охлаждения автомобилей ВАЗ 2108, 2109, 21099 до 1998 г.в. с монтажным блоком 17.3722 и «низкой» панелью приборов

Схема подключения датчика указателя температуры охлаждающей жидкости в системе охлаждения автомобилей ВАЗ 2108, 2109, 21099 после 1998 г.в. с монтажным блоком 2114 и «высокой» панелью приборов

Примечания и дополнения

— Система охлаждения карбюраторных двигателей автомобилей ВАЗ 2108, 2109, 21099 оборудована еще одним температурным датчиком — датчик включения вентилятора системы охлаждения (ТМ-108). Он установлен в бачке радиатора и по его сигналу включается вентилятор радиатора.

— В системе охлаждения инжекторного двигателя также имеется датчик указателя температуры ОЖ. Функцию контроля за включением вентилятора осуществляет блок управления (ЭБУ) по сигналу с датчика температуры охлаждающей жидкости (ДТОЖ), установленного в патрубок возле термостата.

Еще статьи по системе охлаждения двигателя автомобилей ВАЗ 2108, 2109, 21099

Для контроля работы двигателя внутреннего сгорания используются разнообразные сигнализаторы. Предлагаем рассмотреть, как работает датчик температуры охлаждающей жидкости, как производится его проверка и замена, если он неисправен.

Что это такое

Стандартный датчик охлаждающей жидкости – это устройство, которое используется для измерения антифриза, находящегося в двигателе внутреннего сгорания. Зафиксированные параметры датчика при помощи сигналов возвращаются в блок управления двигателем, который в свою очередь использует эти данные, чтобы отрегулировать нужное количество топлива и определенный угол зажигания.

Без этого термометра действительно трудно понять, когда наш двигатель работает при рабочей температуре, а время его достижения зависит от разных факторов, таких как проводимость, которую мы практикуем в первые моменты, или экологический фактор, Наружная температура. Именно по этой причине приоритетным должен быть принцип предосторожности. Лучше исцелять себя здоровьем, грехом предосторожностей, избегая брать мотор нашего автомобиля в высокий режим на несколько минут, чем грех смелости и слишком долго вращать двигатель.

Для этого нам не обязательно стоять без дела. Температура термометра хладагента не обязательно покажет нам, что двигатель нашего автомобиля достиг рабочей температуры. В чем разница между масляным термометром и термометром хладагента? Излишне говорить, что важно провести различие между термометром охлаждающей жидкости и термометром смазки. Первый обычно обозначается пиктограммой термометра в воде, а второй – бутылкой масла. На приборной панели в дополнительной консоли с тремя метрами мы находим температуру смазки, давление турбонаддува и давление в контуре смазки.

В некоторых моделях автомобилей сигнализатор может применяться для переключения на элекровентиляционную систему охлаждения. Скажем, так работает датчик температуры автомобильной охлаждающей жидкости в ВАЗ-1117 (и номер 1119) Лада Калина, Лада Приора и Гранта, Ланос, Тойота Камри (Toyota).

Фото — датчик температуры охлаждающей жидкости ВАЗ 2010

Эти метры особенно важны в спортивном автомобиле, в котором понимается, что ваш двигатель должен будет реагировать на требования интенсивного использования. Его отсутствие в других версиях, менее мощных и в других автомобилях, не отвечает ни на какой другой аспект, а на то, что производители считают, что они не актуальны для своих клиентов. И в этом случае они считают предпочтительным сохранить их установку, а не экономию, но прежде всего показать нам более простую и ясную панель приборов.

Избыток температуры хладагента может показать проблему в радиаторе или отсутствие хладагента, частоту, которую мы должны решить как можно скорее, чтобы избежать серьезных повреждений. То, что температура хладагента достигла показателей, которые мы считаем нормальными, не обязательно отражает то, что смазка двигателя достигла рабочей температуры. Вот почему мы считаем наличие этого индикатора настолько важным.

На многих иностранных машинах, показания прибора также выводятся на приборной панели. Например, в Volkswagen Golf (Фольксваген Гольф), Subaru (Субару), Mazda (Мазда), Opel Vectra (Опель Вектра) и Passat (Пассат), BMW (БМВ), Ford Focus (Форд Фокус), Daewoo Nexia (Дэу Нексия), Fiat (Фиат), Audi (Ауди) и прочих.

По мере измерения температуры датчика, его уровень сопротивления может меняться. Существует два вида таких датчиков в зависимости от изменения сопротивления:

Почему так важно, чтобы мы не пренебрегали изменениями масла, и что наша мера предосторожности возрастает с требованиями использования? В потоке рабочей температуры двигателя неудивительно, почему очень важно быть очень осторожным и уважать периоды обслуживания нашего автомобиля. Но мы не должны забывать, что производительность этой смазки и, следовательно, ее способность защищать те компоненты, которые подвержены трению, не только уменьшаются с холодом, но и с использованием, погодой, климатологией или даже требованием Что мы делаем из нашей машины.

  1. Датчики с отрицательным температурным коэффициентом, работают по принципу: внутреннее сопротивление уменьшается при росте температуры и наоборот;
  2. Датчики с положительным температурным коэффициентом. При росте температуры они увеличивают сопротивление.

У практически всех автомобилей установлены сигнализаторы с отрицательным коэффициентом. Датчики отрицательной температуры охлаждающей жидкости есть в Газель, ГАЗ, МАЗ, Камаз, Мерседес, Ниссан, Нива, Мицубиси, ОКА, Пежо, Вольво, Renault Logan (Рено Логан), OPEL Astra (Опель Астра), Geely, ЗМЗ.

Большую часть времени цель, которая ведет к установке кондиционирования воздуха, – дать человеку среду, более благоприятную для его благополучия. С другой стороны, это действенный способ защиты от инфекций и от загрязнения воздуха крупными населенными пунктами в замкнутых пространствах. Он помогает в терапевтическом лечении многих заболеваний; в отраслях, является фактором, способствующим увеличению производства за счет более высоких доходов работников, размещенных в более комфортных условиях.

Кондиционирование воздуха – это система обработки воздуха, которая проникает в определенное место, обеспечивая определенные условия температуры и влажности. Обработки могут быть очень разными, поскольку желаемые условия меняются в зависимости от места, которое подается. Например, склад для хранения продуктов питания требует условий, отличных от тех, которые требуются для крупного коммерческого магазина, офиса или смотровой комнаты кинотеатра.

Фото — температурный датчик

Принцип работы датчика

Блок управления автомобилем отправляет регулируемое напряжение (9-вольтовое) непосредственно в датчик указателя температуры охлаждающей жидкости. В зависимости от падения вольтажа на контактах сигнализатора, будет падать сопротивление, что сразу же зафиксирует блок управления.

Эти различные потребности привели к появлению многочисленных систем кондиционирования воздуха, отличающихся размерами, конструкцией и оборудованием управления. Однако принцип работы не меняется существенно от одного к другому, от малого до большого. В организме высших животных, и в частности в организме человека, происходит серия химических превращений, посредством которых поглощенная пища преобразуется в тепловую и механическую энергию. Это производство тепла зависит от многих факторов. Одним из них является постоянный обмен тепла между телом и окружающей средой.

В таком случае, автомобильная компьютерная или механическая система сможет вычислить температуру двигателя, а затем (используя данные других приборов) применить справочные таблицы для выполнения корректировки приводов двигателя, т.е. изменить уровень и поступления топлива или угол опережения зажигания.

Это изменение зависит от условий воздуха, в которых погружается тело, в зависимости от разницы температур между поверхностью тела и окружающей средой, с вентиляцией и т.д. При температурах воздуха, близких к воздуху, тепло, выделяемое организмом, не легко устраняется, и индивидуум чувствует чувство угнетения. В эти жаркие сезоны очень влажная атмосфера, насыщенная водяным паром, столь же вредна, как и избыточное тепло, поскольку она не позволяет испарения пота. По этой причине кондиционер должен регулировать не только температуру, но также количество пара, содержащегося в воздухе.

Фото — схема датчика температуры охлаждающей жидкости

Сопротивление датчика охлаждающей жидкости очень зависит от внешних факторов. Это температура воздуха вне автомобиля, различные особенности привода. Для наиболее корректной работы сигнализатора нужно использовать охлаждающую жидкость, рекомендованную для определенного времени года, она стоит дорого, но продлевает жизнь Вашему авто.

В дополнение к температуре и влажности есть третий фактор, влияющий на состояние воздуха: вентиляция. Эти три не являются независимыми; они взаимодействуют таким образом, что в кондиционировании изменение одного должно быть компенсировано соответствующим изменением двух других, чтобы организм всегда находился в состоянии достаточного комфорта.

В большой системе кондиционирования воздуха есть несколько этапов. Тем не менее, объекты не всегда включают все компоненты, которые в небольших единицах объединяются в одну коробку. Воздух сначала входит в участок, где он смешивается с рециркулированным воздухом самой окружающей среды, потому что требуется только определенная доля свежего воздуха. Затем смешанный воздух проходит через секцию фильтрации, которая может иметь две стадии. Первый удаляет толстую пыль с помощью волокнистого материала, обычно стекловолокна, в виде экрана, который заменяется при загрязнении.

Видео: проверка датчика температуры двигателя

Замена датчика

Чтобы начать ремонт датчика охлаждающей жидкости, нужно определить его расположение. Чаще всего он установлен возле термостата или радиатора, в некоторых случаях бортовой компьютер использует показания с обоих датчиков или одного из них, в зависимости от марки авто и его модели. Например, так датчик расположен в Рено, Шевроле, Ситроен, Шкода, Чери, КИА, Субару Импреза.

Затем фильтр второй ступени, который обычно имеет электростатический тип, удаляет более мелкие частицы, такие как сигаретный дым. В этом фильтре высокое напряжение используется для электрического заряда частиц пыли, которые затем притягиваются к сетке заряженных пластин с противоположной полярностью. При прохождении через два набора труб воздух контролируется температурой. Один из них циркулирует горячей водой или паром, а для другой холодной воды или хладагента.

В области вентиляции установлен датчик температуры, который настроен на требуемое значение. Разница между желаемой температурой и температурой окружающей среды автоматически определяет, будут ли использоваться нагревательные или охлаждающие трубы. Следующим этапом является фильтр запаха, изготовленный из активированного угля, вещество, способное поглощать молекулы запаха в воздухе. Уголь необходимо периодически активировать с помощью нагревания для извлечения поглощенного материала.

Есть несколько способов, которые помогут узнать, что датчик нужно поменять. Если у Вас рабочие все остальные системы в авто, то на приборной панели о неисправности сообщит при помощи светового сигнала. Если в автомобиле компьютерное управление, то определить проблему можно будет при помощи расшифровки комбинации на мониторе.

Желаемая влажность вырабатывается путем впрыскивания в воздух пара или очень мелкие капли воды с помощью испарителя. Это также контролируется датчиком, находящимся в окружающей среде. В случае чрезмерной влажности обычным способом является охлаждение воздуха, а затем, при необходимости, подогревание на стадии контроля температуры, так что влажность будет конденсироваться в холодильных трубах.

От самой маленькой до самой большой системы используются одни и те же принципы. Единицы для небольшой среды содержат простой моющийся фильтр, холодильный компрессор и электрический воздухонагреватель. В более крупных средах используются более мощные блоки, и часто секция охлаждения размещается вне здания.

Фото — датчик температуры на приборной панели

Зависимо от года выпуска машины, а также её марки, многие автолюбители отмечают возрастание затрат топлива у двигателя. Но при этом нужно понимать, что дизель так не определишь (УАЗ, ПАЗ и прочие). Если у Вас механика, а не компьютерная система управления, то вот сигналы того, что нужно купить новый датчик температуры охлаждающей жидкости:

Его изобретение придет, чтобы помочь промышленности. В жаркие летние месяцы у нью-йоркской компании были проблемы с печатными работами. Бумага поглощала влагу из воздуха и расширялась. Цвета, напечатанные в сырые дни, не выстраивались в линию, создавая размытые и неясные изображения.

Перевозчик считал, что он может удалить влагу с завода, охлаждая воздух. Для этого он разработал машину, которая циркулировала воздухом через воздуховоды, искусственно охлажденные. Этот процесс, который контролировал температуру и влажность, был первым примером кондиционирования воздуха механическим процессом. Тем не менее, текстильная промышленность стала первым крупным рынком для кондиционеров, который вскоре стал использоваться во многих зданиях и учреждениях в бумажных, фармацевтических, табачных и коммерческих заведениях.

  1. Автомобиль стал потреблять топлива больше, чем обычно;
  2. Когда машина заводится, и двигатель достигает своей максимальной температуры, он глохнет;
  3. Появились проблемы с запуском;
  4. Из трубы глушителя выходит черный дым.

Рассмотрим, как осуществляется замена датчика температуры охлаждающей жидкости типа G62 на автомобиле Kia Sportage с двигателем объемом 2 литра. Аналогичная инструкция также пригодится при ремонте Acura, BMW, Buick, Chevrolet, Ford, Toyota, Volkswagen, Ваз 2110/2112 инжектор, Рено Гранд Сценик и прочих.

Первая жилая заявка находилась в особняке Миннеаполиса, в Карриере спроектировано специальное оборудование для резиденций, большее и простое, чем современные кондиционеры. Система вводила дополнительную влагу в детскую для преждевременных родов, помогая снизить смертность от обезвоживания.

Фактически, кондиционер помог киноиндустрии, потому что в летние месяцы частота кинотеатров упала много, и в то время несколько комнат закрылись. Также в 1930-х годах Уиллис Карьер разработал систему, которая сделала кондиционер более жизнеспособным в небоскребах.

Фото — разные датчики температуры охлаждающей жидкости

В этой модели при поломке датчика охлаждающей жидкости, поступает аварийный сигнал 117, который говорит о том, что дальнейшая работа прибора невозможна и необходима установка нового сигнализатора. В Шевроле номер PO118 это высокий сигнал. Общая схема работы выглядит так:

В 1950-х годах модели жилых кондиционеров стали серийно выпускаться. Акции были проданы через две недели. Десять лет спустя эти растения уже не были новыми и все еще приносят решения во всех частях мира. Энергосберегающие приборы будут иметь большое значение в вашем световом счете, особенно летом, когда кондиционирование воздуха составляет треть потребления энергии в доме.

Избегайте чрезмерного холода, правильно регулируя термостат. Установите прибор в место с хорошей циркуляцией воздуха. Держите двери и окна плотно закрытыми, чтобы воздух не попадал в окружающую среду. Периодически очищайте фильтры. Грязные фильтры предотвращают свободную циркуляцию воздуха и усиливают работу устройства.

Совет от автолюбителей на форумах: если по какой-то причине Вы не можете сразу при поломке понять датчик температуры охлаждающей жидкости, то вместо него можно подключить дополнительный (такое подключение может по показателям температуры немного отличаться от основного).

Защищайте внешнюю часть устройства от солнечного света, не блокируя вентиляционные решетки. Привыкайте к выключению кондиционера, когда вам нужно долгое время покидать помещение. Избегайте солнечного тепла в окружающей среде, закрывая шторы и шторы. Не закрывайте воздуховыпускное отверстие прибора.

Покупая, отдавайте предпочтение моделям с функциями программирования, такими как таймер. Очень важно, чтобы размер выбранного блока соответствовал размеру участка и тепловой нагрузке, поскольку, если установленный блок ниже тепловой нагрузки окружающей среды, он должен работать в течение более длительных периодов времени, следовательно, потребляя больше энергии, пока не достигнет температуры комфорт.

Указатель температуры работает от датчика. Как правило, датчики температуры охлаждающей жидкости в автомобиле не требуют никакого обслуживания. Но зачастую у автолюбителя закрадывается сомнение в правильности его показаний. А неисправный датчик температуры может стать причиной поломки двигателя, ремонт которого выльется в кругленькую сумму. В этом случае проверьте правильность его показаний.

набор инструментов, тестер, горячая вода, резистор на 100 Ом

Спонсор размещения P&G Статьи по теме «Как проверить указатель температуры» Как повысить температуру двигателя Как заменить датчик температуры охлаждающей жидкости Почему двигатель греется

Отсоедините разъем датчика температуры охлаждающей жидкости на двигателе, когда он выключен. Возьмите резистор на 100 Ом, и соедините его с разъемом датчика температуры. После этого поворотом ключа включите зажигание. Если указатель температуры исправен, стрелка на нем должна показать 90?С. При выполнении этих работ двигатель должен быть холодным. Если же стрелка на приборной доске ничего не показывает, прозвоните проводку, ведущую к указателю температуры. В том случае, если проводка целая, а указатель не работает, просто замените это устройство – проблема в нем.

В том случае, если указатель работает нормально, подключите разъемы к датчику температуры охлаждающей жидкости. Заведите двигатель, и дайте ему полностью прогреться. Если указатель температуры ничего не показывают, или его показания не соответствуют нормальной температуре двигателя – проблема в самом датчике, замените его.

Есть и другой способ проверки указателя температуры. Отсоедините на автомобиле минусовую клемму аккумулятора. Слейте с двигателя тосол, чтобы при откручивании датчика он не пролился. Двигатель при этом не должен быть горячим. Сдвиньте защитный кембрик со жгута, который подходит к датчику, и отсоедините его от разъема, к которому он подключался.

Ключом аккуратно ослабьте затяжку датчика, а затем выверните его из гнезда. Возьмите тестер, отрегулируйте его в режим работы омметра. Присоедините один контакт к выводу датчика, а второй к его корпусу. Тестер должен показать сопротивление 700-800 Ом при комнатной температуре. При погружении датчика в горячую воду, его сопротивление должно уменьшиться, а по мере остывания воды, опять увеличиться. Если этого не происходит – проблема в датчике. В том случае, если датчик цел – позванивайте проводку, и при необходимости меняйте указатель температуры.

Другие новости по теме:

Датчик детонации в автомобиле – это устройство, которое предназначено для определения времени появления детонации в двигателе внутреннего сгорания. Датчик детонации двигателя является одним из устройств в электронной системе управления двигателем машины с впрыском топлива. Чтобы заменить

В карбюраторных двигателях для визуального слежения за температурой охлаждающей жидкости предназначен указатель температуры на шкале приборов, получающий данные от температурного датчика, расположенного в блоке цилиндров двигателя. Спонсор размещения P&G Статьи по теме «Как проверить датчик

Как правильно подключить датчик температуры охлаждающей жидкости

Пару недель назад поставил наконец-то дополнительный датчик температуры ОЖ Defi BF 60 мм (реплика) =)
Те кто следит за моим авто, уже известно, что ранее я уже врезал переходник Defi (реплика) на 34 мм в верхний («горячий») патрубок радиатора еще при замене охлаждающей жидкости в рамках ТО-4. Сразу скажу, что с него нужно кинуть «массу» на кузов иначе датчик ничего не покажет вам!
Так же протянул проводку от датчика в салон.
И наконец-то установил сам «будильник» =)
По фото все думаю будет понятно, но хочу сказать несколько слов про подключение (после моего видео).
Питание я тупо взял с разветвителя прикуривателя Espada E 13U =), всякие приглушения подсветки мне не по кайфу, сделал себе тупо белую подсветку — скрутив белый провод с красным и на «+» и черный соответственно на «-«. Все! Готово! =)

Сразу скажу для чего мне нужен дополнительный датчик температуры ОЖ — контроль открытия термостата, предупреждение случайного перегрева ДВС и просто эстетическое удовольствие наличия самого «будильника» на панели =).

Вот видосик работы сего девайса ⇩⇩⇩

На задней панели датчика имеется 3 разъема:

Разъем №1.
Отвечает за подачу питания на датчик, в него подключается четырехконтактный штекер питания (Рис. 2).

Чтобы дисплей датчика подсвечивался белым цветом, нужно подключить к плюсу белый провод, желтый провод следует оставить не подключенным.
Чтобы дисплей датчика подсвечивался красным цветом, нужно подключить к плюсу желтый провод.
Также можно сделать комбинированную подсветку, используя в дневное время белую подсветку, а в темное время суток (когда включены габариты) красную подсветку.
Для этого нужно белый провод подключить к плюсу, а желтый провод подключить к питанию габаритных огней и наоборот.

Разъем №2.
Управляющий, отвечает за подачу информации на датчик от сенсора.
В него подключается двухконтактный штекер (Рис. 3).

Разъем №3.
Дублирует разъем №1. В случае, если на автомобиль устанавливается больше одного прибора, то питание для последующих датчиков можно брать от разъема №3. что бы не тянуть лишних проводов.

Позицией 4 обозначена кнопка настроек.

Как, собственно, настроить прибор:

1. Отключение звуковых сигналов.
Чтобы отключить звуковой сигнал на датчике, необходимо зажать управляющую кнопку на задней панели и включить зажигание автомобиля. Удерживать кнопку пока идет тестовый режим. Кнопку необходимо отпустить после завершения звукового сигнала. Звук будет отключен. Для включения звука нужно будет проделать аналогичную операцию.

2. Установка пиковых значений.
Чтобы задать критическое значение, при котором сработает звуковое и световое оповещение (PEAK), необходимо подать питание на датчик, дождаться когда пройдет тестовый режим, зажать управляющую кнопку на задней панели и удерживать в течение 5 сек. Стрелка встанет на предустановленный критический уровень. Изменять значения можно либо короткими нажатиями на кнопку (стрелка будет двигаться по каждому делению) либо удерживанием кнопки (стрелка будет двигаться через 5 делений). Чтобы уменьшить значения (Peak) нужно довести стрелку до максимума, затем она пойдет в обратном направлении.

Для контроля работы двигателя внутреннего сгорания используются разнообразные сигнализаторы. Предлагаем рассмотреть, как работает датчик температуры охлаждающей жидкости, как производится его проверка и замена, если он неисправен.

Что это такое

Стандартный датчик охлаждающей жидкости – это устройство, которое используется для измерения антифриза, находящегося в двигателе внутреннего сгорания. Зафиксированные параметры датчика при помощи сигналов возвращаются в блок управления двигателем, который в свою очередь использует эти данные, чтобы отрегулировать нужное количество топлива и определенный угол зажигания.

В некоторых моделях автомобилей сигнализатор может применяться для переключения на элекровентиляционную систему охлаждения. Скажем, так работает датчик температуры автомобильной охлаждающей жидкости в ВАЗ-1117 (и номер 1119) Лада Калина, Лада Приора и Гранта, Ланос, Тойота Камри (Toyota).

Фото — температурный датчик

Принцип работы датчика

Блок управления автомобилем отправляет регулируемое напряжение (9-вольтовое) непосредственно в датчик указателя температуры охлаждающей жидкости. В зависимости от падения вольтажа на контактах сигнализатора, будет падать сопротивление, что сразу же зафиксирует блок управления.

В таком случае, автомобильная компьютерная или механическая система сможет вычислить температуру двигателя, а затем (используя данные других приборов) применить справочные таблицы для выполнения корректировки приводов двигателя, т.е. изменить уровень и поступления топлива или угол опережения зажигания.

Читайте также:  Как заваривать сушеную калину

Видео: проверка датчика температуры двигателя

Замена датчика

Чтобы начать ремонт датчика охлаждающей жидкости, нужно определить его расположение. Чаще всего он установлен возле термостата или радиатора, в некоторых случаях бортовой компьютер использует показания с обоих датчиков или одного из них, в зависимости от марки авто и его модели. Например, так датчик расположен в Рено, Шевроле, Ситроен, Шкода, Чери, КИА, Субару Импреза.

Есть несколько способов, которые помогут узнать, что датчик нужно поменять. Если у Вас рабочие все остальные системы в авто, то на приборной панели о неисправности сообщит при помощи светового сигнала. Если в автомобиле компьютерное управление, то определить проблему можно будет при помощи расшифровки комбинации на мониторе.

Фото — датчик температуры на приборной панели

Зависимо от года выпуска машины, а также её марки, многие автолюбители отмечают возрастание затрат топлива у двигателя. Но при этом нужно понимать, что дизель так не определишь (УАЗ, ПАЗ и прочие). Если у Вас механика, а не компьютерная система управления, то вот сигналы того, что нужно купить новый датчик температуры охлаждающей жидкости:

  1. Автомобиль стал потреблять топлива больше, чем обычно;
  2. Когда машина заводится, и двигатель достигает своей максимальной температуры, он глохнет;
  3. Появились проблемы с запуском;
  4. Из трубы глушителя выходит черный дым.

Рассмотрим, как осуществляется замена датчика температуры охлаждающей жидкости типа G62 на автомобиле Kia Sportage с двигателем объемом 2 литра. Аналогичная инструкция также пригодится при ремонте Acura, BMW, Buick, Chevrolet, Ford, Toyota, Volkswagen, Ваз 2110/2112 инжектор, Рено Гранд Сценик и прочих.

  1. Чтобы добраться к датчику, Вам нужно снять воздуховод, который охлаждает корпус воздушного фильтра и присоединяется к радиатору при помощи двух болтовых соединений и шланга подачи воздуха. Открутите болты и снимите хомут, аккуратно достаньте всю систему. Отключите от датчика электрические провода, чтобы корректно провести замеры сопротивления. Установите мультиметр на режим омметра и задайте значение в 1000 Ом. Подключите контакты устройства к положительному и отрицательному контактам. Нормальное сопротивление должно быть в пределах 2700 Ом при выключенном моторе. Для проверки датчика при включенном движке, нужно убрать тестер подальше от вращающихся частей авто; Фото — проверка датчика мультиметром
  2. Убедившись, что датчику температуры необходим ремонт, нужно отсоединить его от двигателя. Чтобы продолжить снятие, Вы должны предварительно слить антифризную жидкость из радиатора при помощи сливного клапана. После проверить еще раз радиатор и контакты датчика и открутить регулирующий болт как на фото; Фото — снятие датчика
  3. Сборка производится в обратной форме. Нужно помнить, что практически основная характеристика датчика температуры охлаждающей жидкости – это материал шайбы. Если шайба медная, то резьбу сигнализатора не нужно обрабатывать герметиком, в противном случае обязательно смажьте устройство. Фото — медный температурный датчик

Совет от автолюбителей на форумах: если по какой-то причине Вы не можете сразу при поломке понять датчик температуры охлаждающей жидкости, то вместо него можно подключить дополнительный (такое подключение может по показателям температуры немного отличаться от основного).

Проверка датчика температуры является несложной процедурой, с которой может справиться даже начинающий автолюбитель. Датчик температуры охлаждающей жидкости (сокращенно — ДТОЖ) представляет собой термистор, то есть, резистор, изменяющий значение своего внутреннего сопротивления в соответствии с температурой, куда помещен его исполнительный элемент. Чаще всего для этого используют мультиметр (другое название — тестер, «цэшка»), который в состоянии измерять значение электрического сопротивления в цепи.

Как работает датчик температуры ОЖ

Перед тем как перейти к обсуждению вопроса о том, как проверить датчик температуры охлаждающей жидкости, необходимо вкратце остановиться на признаках его неисправностях и разобраться с тем, как он работает. Это поможет определиться с диагностикой. Как указывалось выше, датчик температуры охлаждающей жидкости (иногда его называют просто датчик температуры двигателя) представляет собой термистор — резистор, изменяющий свое сопротивление в зависимости от изменения температуры, в частности охлаждающей жидкости системы охлаждения двигателя. Соответствующее значение сопротивления и его изменение фиксируется электронным блоком управления двигателем (сокращенно, ЭБУ), на основании которого он выдает соответствующие команды.

По информации от датчика температуры охлаждающей жидкости ЭБУ при запуске выставляет необходимое количество шагов регулятора холостого хода (РХХ), тем самым регулируя подачу топлива. Упомянутый термистор обладает так называемый «отрицательный температурный коэффициент». Это означает, что при холодной температуре его электрическое сопротивление имеет большое значение, а при нагреве чувствительного элемента это сопротивление падает.

Управление датчиком происходит путем подачи на него электрического сигнала с постоянным напряжением 5 Вольт от электронного блока управления через резистор с постоянным сопротивлением, которое находится внутри управляющего контроллера. Соответственно, температуру охлаждающей жидкости блок управления вычисляет по падению напряжения на датчике, который, как указывалось выше, имеет переменное сопротивление. На холодном двигателе падение напряжения будет больше, соответственно, на прогретом — меньше. И на холодном двигателе напряжение на датчике будет выше, а на горячем — ниже.

Признаки выхода из строя датчика ОЖ

О необходимости выполнения проверки датчика температуры охлаждающей жидкости, будут свидетельствовать ряд признаков. Однако тут стоит отметить, что перечисленные ниже ситуации могут быть признаками и других поломок в двигателе автомобиля, поэтому для получения точного результата необходимо выполнить дополнительную диагностику. Итак, к признакам поломки датчика температуры охлаждающей жидкости относится:

  • Активизация контрольной лампы на панели Check Engine. Однако она может активироваться и при других поломках, поэтому необходимо выполнить дополнительное сканирование кода ошибки.
  • Повышение расхода топлива. Это вызвано тем, что на электронный блок управления подается некорректная информация, и соответственно, он также не в состоянии определить сколько именно топлива нужно не только создания оптимальной топливовоздушной смеси, но и для поддержания температуры двигателя в нормальном (не аварийном) диапазоне.
  • Нестабильная работа мотора. В частности, нестабильная его работа на холостых оборотах, сложности с запуском (особенно в холодное время года), самопроизвольная остановка при низких оборотах.
  • Двигатель глохнет «на горячую». То есть, он может внезапно заглохнуть при достижении критической температуры охлаждающей жидкости. Причем это не зависит от того, какая именно охлаждающая жидкость была залита в систему (в частности, фабричный антифриз или обыкновенная вода).
  • Проблемы в работе охлаждающего вентилятора на радиаторе. Это может проявляться по-разному. В одних случаях вентилятор не включается вовсе, в других — не включается в аварийных режимах, в третьих — не выключается даже при остывании двигателя. При отключении датчика температуры охлаждающей жидкости электронный блок управления воспринимает это как обрыв цепи датчика и принудительно включает вентилятор. В любом случае для получения точной картины необходимо выполнить дополнительную диагностику датчика и/или термостата.

В связи с тем, что указанный датчик имеет достаточно простое устройство и чаще всего неразборной корпус, то при выходе его из строя он подлежит замене. Это касается практически всех машин, на которых установлено данное устройство.

Расположение датчика на двигателе

Для того чтобы выполнить проверку датчика температуры ОЖ необходимо знать, где он расположен. Естественно, что данная информация будет разниться у автомобилей различных марок и моделей. Однако существует несколько типовых признаков, по которым можно найти то место, где непосредственно закреплен датчик. Так, в большинстве случаев он расположен на выпускном патрубке головки блока цилиндров. Конструктивно он имеет металлическую резьбу, с помощью которой и вкручивается в соответствующее отверстие. Основное требование в данном случае — обеспечение прямого контакта его чувствительного элемента и охлаждающей жидкости. Именно такой контакт и обеспечивает точность показаний датчика.

Обратите внимание, что на некоторых автомобилях конструкцией может быть предусмотрена установка двух датчиков температуры. В этом случае первый из них фиксирует температуру охлаждающей жидкости на выходе из двигателя (цилиндров), а второй — на выходе из радиатора. Такой подход дает возможность более точного контроля за состоянием как двигателя в целом, так и его охлаждающей системы в частности. Однако два датчика обычно устанавливают на мощные и/или дорогие машины, где этот параметр критически важен, а в ЭБУ заложены специальные программы для работы двигателя. Дополнительную информацию об устройстве конкретного автомобиля вы можете найти в соответствующем мануале или технической документации.

Причины поломки датчика температуры ОЖ

Конструктивно датчик охлаждающей жидкости достаточно прост, и соответственно, выходит из строя редко. Обычно это происходит банально из-за его старости или механического повреждения. Например, коррозия контактов и металлических деталей корпуса может возникнуть из-за того, что вместо тосола или антифриза в систему охлаждения была залита обыкновенная вода (а тем более если эта вода «жесткая», то есть, с большим содержанием солей металлов). Также причинами выхода из строя этого устройства могут быть:

  • Повреждение корпуса. Это может выражаться в различных аспектах. Зачастую при этом видны потеки охлаждающей жидкости, которая вытекает из резьбы датчика или его корпуса. Также при этом могут быть повреждены электрические контакты и/или непосредственно терморезистор, который будет выдавать некорректный сигнал.
  • Окисление контактов. Иногда возникают ситуации, когда под воздействием испарений или просто от старости окисляются контакты на датчике, поэтому электрический сигнал не проходит через них.
  • Повреждение «фишки». В некоторых случаях при механических повреждениях возможен выход из строя так называемой «фишки», то есть, группы контактов, которая подсоединяется к датчику температуры ОЖ. Проще говоря, перетираются провода у основании разъема. По статистике отзывов, найденных в интернете, это одна из самых распространенных неисправностей, которая случается с датчиком и соответствующей системой.
  • Нарушение электрического контакта внутри датчика. В этом случае, к сожалению, ремонт вряд ли возможен, поскольку обычно его корпус запаян и не дает возможности доступа к внутренностям ДТОЖ. Соответственно, в этом случае датчик нужно только менять на новый.
  • Нарушение изоляции проводов. В частности, речь идет о питающих и сигнальных проводах, которые идет на датчик от электронного блока управления и обратно. Изоляция может быть повреждена вследствие механического воздействия, перетирания или даже просто от старости, когда она «лущится» кусками. Особенно актуально это для тех машин, которые эксплуатируются в условиях большой влажности и резких перепадов температуры окружающего воздуха.

В случае, если существует возможность просто почистить корпус/резьбу/контакты датчика, то для восстановления его нормальной работы достаточно выполнить соответствующие мероприятия. Однако, если поврежден корпус, и/или выведен из строя внутренний терморезистор, то ремонт вряд ли возможен. В этом случае необходимо просто выполнить замену датчика на новый. Его цена невысока, а процесс замены несложный, и не займет много времени и усилий даже у начинающих автовладельцев.

Как проверить работоспособность датчика охлаждающей жидкости

Существует два основных метода проверки исправности датчика температуры охлаждающей жидкости. Первый — с его демонтажом, второй — прямо на посадочном месте в двигателе автомобиля. В свою очередь первый метод также можно разделить еще на два. Первый — с использованием термометра, второй — без него. Демонтаж датчика обычно можно сделать с помощью обыкновенного гаечного ключа подходящего размера, предварительно отсоединив контактные клеммы от него. Но перед тем как выполнить демонтаж датчика, необходимо убедиться, что на ДТОЖ подается питание. Обычно оно равно 5 Вольтам постоянного напряжения. Это можно легко выяснить, отсоединив от датчика его фишку, и с помощью мультиметра, переведенного в режим замера постоянного напряжения (с соответствующим диапазоном) щупами проверить значение напряжения. Если напряжение присутствует и имеет указанное значение, то можно выполнять дальнейшую проверку датчика охлаждающей жидкости.

Проверка датчика температуры на машине

Многих автолюбителей интересует вопрос о том, каким образом проверить датчик температуры охлаждающей жидкости, не снимая его с посадочного места, чтобы упростить работу и выполнить ее как можно быстрее. А делают это при помощи многофункционального тестера, измерив сопротивление между его выводными контактами, то есть, сопротивление его электрической обмотки.

Прямо на машине делают проверку ДТОЖ, отсоединив фишку от датчика, чтобы был нормальный доступ к его электрическим контактам (выводам). Обратите внимание, что если двигатель горячий, то работать нужно осторожно, чтобы не обжечься самому и не оплавить электронный мультиметр и/или его щупы! Далее с помощью мультиметра, переведенного в режим измерения сопротивления необходимо замерить это значение между его выводами. Как указывалось выше, на холодном двигателе значение будет достаточно высоко, а при горячем — ниже. В качестве примера приведем техническую информацию для автомобиля ВАЗ-2110, дающую общее понимание о значениях сопротивления. При этом необходимо понимать, что у других легковых машин (использующих датчики похожих моделей) эти значения будут очень похожими, то есть, критически не будут отличаться.

Температура воды, °СЗначение сопротивления, ОмТемпература воды, °СЗначение сопротивления, Ом
+57280+451188
+105670+50973
+154450+60667
+203520+70467
+252796+80332
+302238+90241
+401459+100177

Справедливости ради надо сказать, что ломаются датчики не так часто, но вместо этого встречаются ситуации, когда ДТОЖ «врет», то есть, выдает некорректную информацию. Поэтому можно сравнить показания температуры по приборной панели и сравнить их с полученным значением сопротивления. Если датчик таки выдает неверную информацию, то имеет смысл его демонтировать и провести дополнительную диагностику с помощью термометра и нагревательного прибора для воды.

Проверка с термометром

Итак, необходимо предварительно демонтировать датчик с его посадочного места на двигателе автомобиля. Обычно это не представляет больших сложностей, и выполняется с помощью гаечного ключа подходящего размера. Заодно можно выполнить профилактику его резьбы в патрубке, почистить и смазать ее, да и сам датчик тоже в случае, если он исправен и автовладелец не будет заменять его на новый.

Далее необходимо налить воду в электрический чайник или другой сосуд, но в этом случае нужно воспользоваться для нагрева воды в дальнейшем кипятильником. Также для работы вам понадобится электронный мультиметр, работающий в режиме измерения электрического сопротивления. Чувствительный элемент датчика необходимо поместить в нагреваемую воду, а к электрическим контактам обеспечить нормальный доступ с помощью щупов мультиметра. Также в воду поместить термометр (желательно электронный, поскольку он обеспечивает более высокую точность измерения и удобство получения соответствующей информации о температуре воды).

Далее нужно пошагово произвести измерения сопротивления датчика в соответствии с повышением температуры. Желательно это делать с интервалом в 5°С (например, +15°С, +20°С, +25°С и так далее). В результате у вас получится массив данных, который можно оформить в таблицу. Эти данные нужно сравнить с данными, которые имеются в технической документации конкретного автомобиля или, в крайнем случае, с таблицей, приведенной выше.

Естественно, что в процессе измерения допускаются некоторые некритические погрешности, которые будут зависеть, во-первых, от условий проведения опыта, а во-вторых, особенностей конкретного датчика, поскольку зачастую даже у датчиков одинаковой модели сопротивление будет незначительно отличаться при одинаковых условиях проведения измерений.

Проверка без термометра

Данный метод проверки датчика температуры охлаждающей жидкости мультиметром аналогичен предыдущему, однако для его проведения не нужно применять термометр. Так, необходимо довести воду до кипения и поместить в нее чувствительный элемент датчика. Далее аналогично необходимо измерить значение сопротивления на его выводных контактах. Как указывалось в приведенной выше таблице соответствующее значение должно быть приблизительно равно 177 Ом. Однако необходимо учитывать погрешность и допускать, что температура воды в момент измерения может быть на пару градусов ниже, поэтому и сопротивление чуть-чуть выше.

Как проверить датчик температуры на ВАЗ 2110

В целом, проверка датчика температуры охлаждающей жидкости на ВАЗ 2110, 2112, «Приоре», «Калине» и других аналогичных «Ладах» идентична процессам, описанным в предыдущих разделах. Как правило, на упомянутых ВАЗах используют датчики с артикулами 23.3828 и 405213, или их аналог — 423.3828. Для проверки этого датчика автовладельцам будет полезно знать его сопротивление при разных температурах:

  • сопротивление при 15°С — 4033…4838 Ом;
  • сопротивление при 128°С — 76,7…85,1 Ом;
  • выход напряжения при 15°С — 92,1…93,3%;
  • выход напряжения при 128°С — 18,1…19,7%.

Что касается демонтажа датчика для его дальнейшей проверки/замены, то это мероприятие необходимо начинать с того, что немного слить охлаждающую жидкость. Причем делать это необходимо, когда мотор холодный с тем, чтобы не получить ожог, и не повредить инструменты/детали двигателя. Для демонтажа вам понадобится гаечный ключ на 19 мм. С его помощью нужно отвернуть датчик и демонтировать его вместе с уплотнительным кольцом. Также не забывайте вовремя менять антифриз в системе охлаждения двигателем!

Измеряем сопротивления датчика с шагов в 10 градусов цельсия начиная от закипания воды в сосуде с ДТОЖ и до ее остывания к комнатной температуры. Результаты сверяем с табличными данными.

Заключение

Датчик температуры охлаждающей жидкости (или датчик температуры двигателя) — устройство несложное, и его проверка не составляет больших сложностей. Для этого необходимо лишь иметь инструменты для его демонтажа, а также электронный мультиметр, воду и нагревательный элемент. Что касается ремонта датчика, то в большинстве случаев его выполнять нецелесообразно, поскольку этот процесс не стоит потраченного времени и усилий, а цена датчика охлаждающей жидкости не такая высокая. Исключением может стать чистка его контактов от грязи и/или коррозии. В некоторых случаях это дает возможность восстановить работоспособность ДТОЖ.

«>

Указатель температуры охлаждающей жидкости 14.3807, проверка

Указатель температуры охлаждающей жидкости 14.3807 электромагнитный, логометрического типа. Предназначен для контроля температуры охлаждающей жидкости в двигателе. Оснащен сигнализатором перегрева. На автомобилях УАЗ входит в состав щитка приборов 14.3805 или КП116-3805010. Работает совместно с датчиком температуры ТМ100. 

Указатель температуры охлаждающей жидкости 14.3807, характеристики.

Указатель температуры охлаждающей жидкости 14.3807 представляет собой электромагнитный логометр с неподвижными катушками и подвижным постоянным магнитом связанным со стрелкой. Кроме автомобилей семейства УАЗ-31512, фургонов УАЗ-3741 и УАЗ-3909, санитарных УАЗ-3962, автобусов УАЗ-2206, грузовых УАЗ-3303 и УАЗ-39091, указатель температуры охлаждающей жидкости 14.3807 применяется на автомобилях ГАЗ, ЗИЛ, УРАЛ, ЛУАЗ, и автобусах ПАЗ, ЕРАЗ, КАВЗ.

Основные характеристики указателя 14.3807 :

— Диапазон показаний, градусов Цельсия : 40-120
— Цена деления, градусов Цельсия : 20
— Тип измерительного механизма : магнитоэлектрический
— Номинальное напряжение, В : 12
— Посадочный диаметр кожуха, мм : 60
— Посадочный диаметр для ламподержателя подсветки и сигнализатора, мм : 11,5
— Конструкция электрического соединения : штекер 6,35 мм
— Масса, кг : 0,18

Датчик температуры охлаждающей жидкости ТМ100, характеристики.

Указателя 14.3807 получает показания от датчика температуры ТМ100, который установлен в головке блока цилиндров двигателя. Рабочим элементом датчика является термистор помещенный в металлический корпус.

Основные характеристики датчика температуры ТМ100 :

— Пределы измерения температуры, градусов : 40-120
— Номинальное напряжение, В : 12, 24
— Ток нагрузки, А : 0,1
— Присоединение : винт М3
— Размер под ключ : S19
— Резьба : K3/8
— Вес, г : 45

Схема подключения указателя температуры 14.3807 и датчика температуры ТМ100.

Контрольная лампа предельной температуры охлаждающей жидкости в радиаторе и датчики температуры ТМ104 или ТМ111-09.

Контрольная лампа расположена на панели приборов УАЗ и работает совместно с датчиком температуры ТМ104 или ТМ111-09, который расположен в верхней части радиатора. Биметаллическая пластина внутри датчика замыкает контакты и контрольная лампа загорается при температуре охлаждающей жидкости в радиаторе в пределах 91-98 градусов.

Во время эксплуатации автомобиля не допускается значительное понижение уровня охлаждающей жидкости в системе охлаждения двигателя и как следствие обнажение трубок в верхнем бачке радиатора, так как от перегрева датчик температуры может выйти из строя.

Перестановка местами датчика ТМ100 указателя температуры охлаждающей жидкости и датчика ТМ104 или ТМ111-09 контрольной лампы аварийного перегрева охлаждающей жидкости не допускается, так как указатель и лампа в таком случае работать не будут.

Схема подключения и работы аварийного датчика температуры ТМ104 или ТМ111-09.

Расположение датчиков температуры ТМ100 и ТМ104 в автомобилях семейства УАЗ-31512.

Расположение датчиков температуры ТМ100 и ТМ111-09 в автомобилях семейства УАЗ-3741.

Проверка исправности указателя температуры 14.3807 и датчика температуры ТМ100.

Указатель температуры охлаждающей жидкости 14.3807 проверяется путем сравнения его показаний с показаниями термометра. Для этого надо вывернуть датчик температуры ТМ100, при необходимости удлинить его провод, соедините датчик отдельным проводом с массой автомобиля и поместите вместе с термометром в середину сосуда с водой нагретой до кипения. Клемму датчика погружать в воду не следует.

Затем остается сравнивать показания указателя температуры 14.3807 и термометра. Температура воды до требуемой величины доводится путем долива в сосуд холодной воды. При температуре воды в 100 и 80 градусов погрешность показаний указателя не должна превышать +-5 градусов, а при температуре воды в 40 градусов погрешность не должна превышать +4 или -12 градусов.

Если показания указателя превышают указанные пределы, то сначала надо попробовать заменить датчик ТМ100, а если это не даст положительных результатов, то заменить указатель температуры охлаждающей жидкости 14.3807.

Если стрелка указателя постоянно находится в начале шкалы.

То при включенном зажигании отсоединить провод от датчика указателя и соединить его наконечник с массой. Если стрелка отклонится, то следовательно неисправен датчик и его необходимо заменить. Если стрелка не отклоняется, снять щиток приборов и при включенном зажигании соедините с массой клемму «Д» указателя. Отклонение стрелки в этом случае укажет на его исправность и на повреждение провода, соединяющего датчик с указателем. Если стрелка не отклоняется, то неисправен сам указатель.

Если стрелка указателя постоянно находится в конце шкалы.

То при включенном зажигании отсоединить провод от датчика. При неисправном датчике стрелка должна вернуться в начало шкалы. Если стрелка остается в конце шкалы, то провод имеет замыкание на массу или неисправен указатель. Его исправность можно проверить, отсоединив провод от клеммы «Д». При включенном зажигании стрелка должна находиться в начале шкалы.

Проверка указателя температуры 14.3807 при помощи контрольного реостата.

Для проверки указателя 14.3807 таким способом, его надо подсоединить к контрольному реостату. При сопротивлении контрольного реостата в 400-530 Ом стрелка должна находиться около отметки 40 градусов. При сопротивлении 80-95 Ом — около отметки 80 градусов. При сопротивлении 51-63 Ом — около отметки 120 градусов.

Диагностика исправности датчика температуры ТМ100 по его сопротивлению.

При температуре 40 градусов сопротивление на датчике должно быть в пределах 400-530 Ом, при температуре 80 градусов — в пределах 130-157 Ом, при температуре 100 градусов — в пределах 80-95 Ом, а при температуре 120 градусов — в пределах 51-63 Ом.

Ремонт указателя температуры охлаждающей жидкости и его датчика.

Указатель температуры охлаждающей жидкости 14.3807 и датчики ТМ100, ТМ104 и ТМ111-09 ремонту не подлежат. Поэтому в случае их неисправности следует проверить только электрические соединения и исправность проводки, и если они в порядке, то заменить указатель или датчики на новые. Рекомендуется сначала попробовать заменить датчики, так как они обычно чаще выходят из строя.

Похожие статьи:

  • Указатель давления масла 15.3810 и датчик давления ММ358, проверка исправности, основные характеристики.
  • Указатель уровня топлива 13.3806, проверка исправности указателя и его датчиков, их основные характеристики.
  • Экранированное электрооборудование автомобилей Уаз, схемы, уход и особенности обслуживания.
  • Прямозубая раздаточная коробка Уаз, схема работы, механизм управления, общий конструктивный недостаток.
  • Не соответствия показаний спидометра Уаз Хантер его скорости движения, особенности привода спидометра.
  • Четырех и пятиступенчатые коробки передач Уаз, производства АМЗ, АДС и HYUNDAI DYMOS, типы и общее описание.

Как подключить датчик температуры двигателя

Всем доброй ночи.
Так как у нас нет датчика температуры, то решил внедрить дополнительный. Покупал на предыдущую машину, но не успел. Сразу скажу, что пока это испытания, и сам датчик будет облагорожен в дальнейшем. Такой же датчик, только зелёный будет показывать температуру с салоне. 3 датчик будет вольтметр. Всё это планирую установить за рулём. Резать, портить панель категорически против. Поэтому буду делать накладную конструкцию. Яркость тоже потом возможно приглушу.
В процессе прокладывания провода в салон столкнулся с сложностями. Потом случайно увидел резиновую заглушку. Туда и протянул провод датчика.
Однако столкнулся с проблемой установки самого датчика на двигателе. Не могу подобрать место, где будет показывать реальную температуру. Облазил весь двигатель. Прикручивал. Разница от десяти до пятнадцати градусов в минус. Ехать и высчитывать не хочется что то. Пока оставил так. Потом продолжу.

Может кто тоже такой ставил-то напишите куда. Буду признателен

Автомобили ВАЗ 2108, 2109, 21099 в щитке приборов имеют стрелочный указатель температуры охлаждающей жидкости.

Схема подключения датчика указателя температуры охлаждающей жидкости в системе охлаждения автомобилей ВАЗ 2108, 2109, 21099 до 1998 г.в. с монтажным блоком 17.3722 и «низкой» панелью приборов

Схема подключения датчика указателя температуры охлаждающей жидкости в системе охлаждения автомобилей ВАЗ 2108, 2109, 21099 после 1998 г.в. с монтажным блоком 2114 и «высокой» панелью приборов

Примечания и дополнения

— Система охлаждения карбюраторных двигателей автомобилей ВАЗ 2108, 2109, 21099 оборудована еще одним температурным датчиком — датчик включения вентилятора системы охлаждения (ТМ-108). Он установлен в бачке радиатора и по его сигналу включается вентилятор радиатора.

— В системе охлаждения инжекторного двигателя также имеется датчик указателя температуры ОЖ. Функцию контроля за включением вентилятора осуществляет блок управления (ЭБУ) по сигналу с датчика температуры охлаждающей жидкости (ДТОЖ), установленного в патрубок возле термостата.

Еще статьи по системе охлаждения двигателя автомобилей ВАЗ 2108, 2109, 21099

Датчик температуры двигателя StarLine включен в общую систему сигнализации автомобиля. При хранении машины на стоянке зимой наличие устройства автоматического подогрева мотора облегчает его пуск. Двигатель может запускаться не только по сигналу температурного датчика, но и через назначенное время, по таймеру. Заводские установки обеспечивают автозапуск мотора каждые 2 часа, независимо от температуры силового агрегата и наружного воздуха.

Как установить

Комплект сигнализатора температуры Старлайн состоит из термометра сопротивления и соединительных проводов. Производитель рекомендует располагать датчик на выходном патрубке радиатора. Место установки может быть изменено установщиком системы или водителем. Измеритель температуры двигателя StarLine A91 должен плотно прилегать к патрубку либо устанавливаться на шпильку М6 таким образом, чтобы не повредить корпус. Место расположения должно быть защищено от набегающего потока воздуха, возникающего при движении автомобиля.

Некоторые специалисты рекомендуют размещать термометр на крышке блока цилиндров, т. к. эта деталь нагреется гораздо раньше, чем охлаждающая жидкость в радиаторе. Такое расположение сенсора позволяет уменьшить время работы двигателя без снижения качества его прогрева. Иногда термодатчик располагают на крышке картера. Этот вариант размещения возможен при наличии нижней защиты двигателя. В противном случае сенсор быстро выйдет из строя из-за попадания грязи и воды.

Где нельзя устанавливать

Для корректного измерения температуры двигателя существуют ограничения, связанные с местом установки датчика. Некоторые узлы мотора нагреваются до +100 °С и выше. Иногда водители пытаются установить датчик на выхлопной коллектор. В этом случае он просто сгорит. Не рекомендуется размещать датчик в местах, которые сильно охлаждаются во время движения авто. Тогда после остановки двигателя он может снова запуститься из-за того, что устройство измерит температуру охлажденной детали, которая не будет отличаться от наружной.

Как подключить

Монтаж датчика температуры StarLine A91 проводится в 2 этапа:

  • установка измерительной части;
  • подсоединение проводов к блоку сигнализации.

Подключение датчика температуры проводят через сигнализатор открытия капота. Провод от сенсора подсоединяется к нештатному концевому выключателю капота и коммутируется с оранжево-серым проводом, идущим к блоку автосигнализации. Т. е. для корректной работы системы автозапуска двигателя крышка моторного отсека должна быть закрыта (концевик нажат).

В случае, если датчик подключен неверно, то вместо температуры двигателя брелок будет показывать Lo или Hi. Это значит, что измеряемый параметр имеет либо слишком низкое, либо высокое значение. Если такая индикация появилась в процессе эксплуатации системы автозапуска, то это свидетельствует о выходе из строя измерителя температуры двигателя StarLine A91.

При монтаже нужно помнить, что система сигнализации не связана с бортовой электросетью и получает питание от аккумулятора. Соединение датчиков должно быть только с проводами относящимися к Старлайн. В противном случае возможна не только некорректная работа автозапуска, но и отказ всех или некоторых функций системы. При монтаже необходимо хорошо закрепить провода датчика, т. к. наиболее слабым узлом является место пайки проводников с измерительным элементом.

Чем заменить

В случае возникновения дефекта в датчике его необходимо демонтировать и заменить на заведомо исправный. Если нет возможности приобрести новый сенсор, то можно временно установить самодельный. Для его изготовления потребуются некоторые радиодетали:

  • термосопротивление 10 кОм;
  • конденсатор 0,1 мкФ;
  • резистор 1,5 кОм.

Паять термодатчик нужно качественно, т. к. из-за вибрации могут возникнуть дефекты в местах соединения деталей. Самодельный измеритель температуры будет иметь параметры, как и заводской, предназначенный для сигнализации StarLine.

Технологии — ТЭРА Чернигов

При использовании термопреобразователей сопротивления для измерения температуры внести дополнительную погрешность могут провода подключения датчиков, так как провода также имеют свое собственное сопротивление, которое зависит от температуры окружающей среды.
 

Термопреобразователи сопротивления подключаются по двухпроводной и по трехпроводной схеме.
 

Термопреобразователи сопротивления подключаются медными проводами, т.к. медные провода имеют низкое удельное сопротивление.
При двухпроводной схеме подключения сопротивление датчика температуры и сопротивление проводов складываются, что вносит погрешность в результат измерения:

Rизм= Rt+ r1+ r2,

где:
Rизм — измеренное сопротивление;
Rt — сопротивление датчика;
r1, r2 — сопротивления проводов подключения.

Сопротивление проводов подключения датчиков зависит от температуры, окружающей среды, поэтому эта погрешность зависит от температуры. Поэтому двухпроводную схему подключения используют только при небольшой длине проводов, в тех случаях, когда сопротивление проводов намного меньше погрешности измерительного преобразователя.
 

При удалении датчика на большие расстояния следует применять трехпроводную схему подключения. Все три провода должны быть выполнены из одного и того же медного кабеля с одинаковым сечением и длиной. Максимальная длина проводов не должна превышать 150 м.

При трехпроводной схеме подключения измерительный преобразователь по очереди измеряет сопротивление цепи «датчик+ провода подключения» (Rt+r2+r3) и цепи «провода подключения» (r1+r2), вычисляет разность этих значений и получает точное значение сопротивления датчика.
 

Иногда заказчики стараются сэкономить на стоимости проводов подключения и подключают датчики двумя проводами, даже если оборудование поддерживает трехпроводную схему подключения. Рассмотрим на примере, к чему это может привести.

Предположим, датчик температуры расположен в центре помещения, где диапазон изменения температур небольшой. Длина провода подключения составляет 20 м, удельное сопротивление провода 0,1 Ом/м, относительное изменение сопротивления меди равно примерно 0,004/°С. Сопротивление проводов подключения будет равно r1+r2 = 20*0,1+20*0,1 = 4,0 Ом при 20 °С; 3,92 Ом при 15 ° С; 4,08 Ом при 25 ° С. Это приведет к погрешности, вносимой проводами: 10,0 ° С при 20 ° С; 9,8 ° С при 15 ° С; 10,2 ° С  при 25 ° С. Если же провода или часть проводов проходят по помещению, в котором температуры не регулируется, погрешность из-за двухпроводной схемы подключения будет еще выше.
 

Как правило, приборы позволяют ввести коррекцию показаний датчика температуры, в наших приборах это называется «смещение характеристики преобразования». В вышеизложенном случае при использовании двухпроводной схемы подключения следует ввести в прибор коррекцию показаний датчика на 10 °С, но погрешность, вызванная температурными изменениями сопротивления проводов подключения, останется и составит 0,2 °С.
 

Все приборы, изготавливаемые нашим предприятием, позволяют выполнять преобразование сопротивления в температуру с погрешностью не больше 0,1°С. Это позволяет после окончания монтажа системы ввести в прибор поправки, компенсирующие как погрешность датчика, так и погрешность, вносимую проводами подключения. Для этого после окончания прокладки кабелей подключения датчиков следует выполнить сравнение показаний прибора по каждому каналу с показанием образцового термометра (см. “Проверка правильности показаний датчиков температуры” ). Полученные поправки нужно ввести в прибор и убедиться, что отклонение показаний датчиков от показаний образцового термометра не превышает 0,1 °С.

Как подключить датчик температуры

Датчик температуры является одним из наиболее важных датчиков на любом транспортном средстве с двигателем внутреннего сгорания, в котором используются радиатор и рубашки охлаждения. Температура двигателя напрямую влияет на сгорание и перемещение внутренних деталей. Без датчика температуры двигатель будет подвергаться различным режимам нагрева без ведома оператора, и это может привести к выходу из строя подшипника и заклиниванию двигателя. Владелец транспортного средства может подключить датчик температуры в своем автомобиле на подъездной дороге или в гараже.

Шаг 1


Поместите транспортное средство в парк или нейтраль, в зависимости от его типа передачи. Установить аварийный тормоз. Поднимите капот и отсоедините отрицательный аккумуляторный кабель с помощью разъема. Обратитесь к руководству пользователя для определения местоположения проводки датчика температуры. Некоторые из них подключены к верхней части корпуса термостата и прикреплены к датчику. Другие провода можно найти в боковой части блока двигателя, где датчик ввинчивается в крепежный фланец. Помните местоположение.

Шаг 2


Найдите место на вашей приборной панели для датчика. Убедитесь, что за местом установки нет компонентов. Используйте кольцевую пилу и электродвигатель для сверления отверстия, которое соответствует диаметру фланца датчика температуры. Большинство датчиков температуры устанавливаются с задней стороны, с помощью крепежных скоб, которые уже установлены на датчике. Установите датчик в отверстие, чтобы определить его размер, затем удалите его. Отсоедините кронштейн малого калибра с гнездом, если он не подходит изначально.

Шаг 3


Измерьте длину провода 14-го калибра и пропустите конец провода через прокладку на брандмауэре под приборной панелью. Вытяните провод из моторного отсека. Проложите провод, пока не достигнете положения датчика.

Шаг 4


Вернитесь в кабину и обрежьте провод, позволяя достаточно провисать, чтобы прикрепить его к задней части датчика на приборной панели. Проведите провод через заднюю часть датчика в отсек водителя. Это будет провод «Отправитель».

Шаг 5


Зачистите конец провода отправителя с помощью устройства для зачистки проводов и обожмите проволочную петлю на конце. Поместите ушко над измерительной шпилькой с надписью «S.» Подключите его к датчику. Затяните гайку с помощью гнезда. Подойдите к моторному отсеку и обожмите штепсельную вилку или гнездовой разъем на проводе отправителя. Подключите его к датчику.

Шаг 6


Ищите винт под приборной панелью, который прикреплен к металлической раме. Удалите винт с помощью отвертки. Отрежьте отрезок провода, который простирается от задней части манометра до отверстия для винта. Зачистите оба конца провода, который будет проводом заземления.

Шаг 7


Обожмите два проволочных проушины на каждом конце провода заземления. Подсоедините один конец провода к винту заземления и затяните винт отверткой. Подсоедините другое ушко заземляющего провода к клемме заземляющего провода, помеченной буквой «G» на индикаторе. Затяните гайку с помощью гнезда. Найдите свой блок предохранителей в пассажирском салоне.

Шаг 8


Снимите крышку блока предохранителей и найдите 12-вольтный предохранитель, который имеет питание; сработает предохранитель прикуривателя или радиоприемник. Отрежьте отрезок провода, который дойдет от блока предохранителей до места расположения манометра. Зачистите оба конца провода. Скрутите один конец провода и поместите его под разъем предохранителя.

Шаг 9


Используйте кусачки, чтобы вырезать выемку в нижней кромке крышки блока предохранителей, и поместите провод в выемку при повторной установке крышки блока предохранителей. Проведите провод вверх в приборную панель и через заднюю часть измерительного отверстия. Обожмите проволочную петлю на конце проволоки и прикрепите ее к клемме измерительного прибора с маркировкой «I». Закрепите гайку на клемме датчика с помощью гнезда.

Шаг 10


Вставьте датчик в монтажное отверстие. Под приборной панелью снова подсоедините монтажный кронштейн датчика и расставьте кронштейны кронштейнов, чтобы они соприкасались с металлической поверхностью приборной панели. Затяните болты кронштейна с помощью гнезда, регулируя поверхность манометра.

Пройдите по каждому проводу и используйте стяжки для крепления каждого провода к раме или ткацкому станку. Убедитесь, что провод датчика в моторном отсеке не касается нагреваемого компонента или контакта с движущейся частью. Подсоедините отрицательный кабель аккумулятора и запустите двигатель. Обратите внимание на функцию датчика температуры при прогреве двигателя.

Предметы, которые вам понадобятся


  • Руководство по ремонту автомобиля
  • Набор розеток
  • Гаечный ключ
  • Датчик температуры
  • Дрель мотор
  • Отверстие пилы
  • Провод (14-го калибра)
  • Инструмент для зачистки проводов
  • Проволочные проушины
  • Отвертка
  • Разъемы “папа”
  • Кусачки
  • Ремни для галстуков

Как подключить датчик температуры к системе управления?

Сегодня существует масса способов подключить контрольно-измерительные приборы к системе управления, но, как всегда, у всех вариантов есть свои плюсы и минусы. В статье объясняются варианты, которые могут лучше всего подойти вам с приложением, в котором вам нужно подключить датчики температуры к системе управления.

Конечно, ваш выбор будет зависеть от многих факторов, некоторые из которых уникальны для вашей системы. Однако, узнав плюсы и минусы доступных опций, вы можете сузить список и упростить свой выбор.

Выбор датчика температуры для вашей системы управления

Технологии постоянно развиваются. Вы можете подключить датчик температуры разными способами — с помощью прямого кабеля, полевых преобразователей, HART, беспроводной связи и т. Д. Если вам не хватает глубоких знаний об этих возможностях, вы, естественно, выберете известные вам типы, например, прямой провод или аналоговый.

Давайте поговорим о реальном примере с металлургической компанией. В этом случае проблема управления технологическим процессом повредила все кабели, соединяющие датчики поля с системой.Однако эта проблема возникала более одного раза, и каждый раз они слишком долго работали без важных измерений.

N1030 Регулятор температуры с 1 релейным выходом

Надеясь навсегда починить этот вагон, инженер попросил поставщиков предложить решения. И каждый продавец предлагал беспроводную связь. Они даже объяснили и продемонстрировали свои устройства, как они это делают, когда чувствуют запах горячей распродажи в воздухе.В конце концов, победил один из поставщиков, и заказчик выдернул ненужные кабели и настроил беспроводные устройства для передачи всех данных процесса.

Сегодня вы можете купить передатчики с несколькими входами, которые сообщают вам обновления за секунды и поставляются с мощными батареями для загрузки. Новая технология решает множество старых проблем, но заказчик должен знать об этом в первую очередь. Итак, давайте обсудим некоторые способы подключения измерения температуры к системе управления!

Прямое соединение между датчиком температуры и системой управления

Ваша система управления может использовать карту для считывания показаний датчика без полевого передатчика.Такая установка может сэкономить деньги, пропуская передатчик, но это требует небольшой работы. Например, для некоторых резистивных датчиков температуры (RTD) требуются кабели с определенными изоляционными материалами, такими как стекло или поливинил. Для термопар также нужны специальные кабели, соответствующие типу датчика.

Чтобы узнать, в чем разница между RTD и термопарой, вы можете прочитать нашу статью о RTD, термопаре и термисторе

Если вам нужно преодолеть небольшое расстояние, прямое подключение упрощает настройку, чем полевой передатчик.Но для больших расстояний установка будет стоить дороже, чем передатчики. Более того, иногда возникают проблемы с внешним шумом, например с электромагнитными помехами (EMI), частотными помехами (RFI) или электростатическим разрядом (ESD). Большие провода датчика могут действовать как антенны, вызывая ошибки измерения из-за шума.

Минусы
  • Высокое обслуживание
  • Без диагностики и анализа производительности
  • Склонность к вмешательству
  • Высокая стоимость установки

Полевой преобразователь

Многие процессы используют полевые преобразователи для подключения датчиков температуры к своим системам управления.Передатчик транслирует сигнал датчика и отправляет его в систему разными способами.

В зависимости от связи с вашей системой управления вы можете иметь только измерение температуры или больше. Аналоговые установки показывают только температуру. Многие компании в разных сегментах по-прежнему предпочитают этот вариант, но вы теряете много данных из-за диагностических функций передатчиков. Тем не менее, эта установка надежна и страдает не только от прямых проводов.

Visaya

Или вы можете подключить полевой преобразователь с помощью цифрового протокола, такого как FOUNDATION Fieldbus, PROFIBUS или HART.Эти протоколы будут передавать вам диагностическую информацию и другие интеллектуальные функции передатчика, и вы получите точные и надежные измерения в своей системе.

Плюсы

В зависимости от структуры вашей системы вы можете установить удаленное управление вводом / выводом. Датчики, подключенные таким образом, требуют меньше проводов, все преобразования происходят в полевых условиях, и это обеспечивает цифровую связь.

Visaya

Подобно передатчику, эта установка уменьшит помехи. Многие системы могут его поддерживать, и вы можете подключать не только датчики температуры, но и другие преобразователи и датчики локально.

Минусы
  • Собственная архитектура
  • Без диагностики и дополнительных функций

Беспроводная связь

Wireless сегодня стал стандартной опцией. В последнее время технология сильно изменилась, поэтому теперь вы можете получать данные за секунды, а время автономной работы составляет более года, в зависимости от настройки и устройства.

Visaya

Кроме того, его установка намного проще по сравнению с кабелями, но вам необходимо выбрать размер вашей сети, чтобы обеспечить надежность.Время от времени вам придется менять батарею, но, передав все данные по беспроводной сети, вы можете спланировать этот обмен. Ура, планирование! С другой стороны, беспроводная связь не обеспечивает максимальной скорости.

Плюсы
  • Низкая стоимость установки
  • Продолжительное время автономной работы в некоторых приложениях
  • Интеллектуальная диагностика и функции

Мультиплексоры

Вы также можете использовать локальные мультиплексоры для подключения ваших датчиков температуры.Они выполняют все преобразования локально и могут связываться с системой управления, используя собственный протокол или открытые протоколы, такие как MODBUS или PROFIBUS.

Вам понадобится конструкция для установки мультиплексора и кабели для подключения датчика к конструкции, но такая настройка также снизит вероятность EMI / EDS / RFI.

Минусы
  • Медленное обновление
  • Ограниченная точность
  • Устаревшая техника

Заключение

Мы просто скользим по поверхности.Чтобы найти лучший способ подключить датчик температуры к вашей системе управления, вы должны проверить свой процесс и посмотреть, какой метод даст вам необходимые данные. Вы также должны решить, хотите ли вы, чтобы интеллектуальные функции избегали незапланированных простоев.

Если вам нужна помощь в выборе подходящего датчика температуры для вашего приложения, обратите внимание на наш новый интеллектуальный помощник по температуре.

Чтобы узнать больше о системах управления и датчиках температуры, свяжитесь с нашими инженерами!

Учебное пособие по датчику температуры

DS18B20 с Arduino и ESP8266

Привет, как дела, ребята! Акарш здесь от CETech.

Сегодня мы собираемся добавить новый датчик в наш арсенал, известный как датчик температуры DS18B20. Это датчик температуры, аналогичный DHT11, но имеющий другой набор применений. Мы будем сравнивать его с различными типами доступных датчиков температуры и рассмотрим технические характеристики этих датчиков.

Ближе к концу этого руководства мы будем сопрягать DS18B20 с Arduino и ESP8266 для отображения температуры. В случае Arduino температура будет отображаться на последовательном мониторе, а для ESP8266 мы будем отображать температуру на веб-сервере.

Давайте начнем с веселья сейчас.

Получите печатные платы для вашего проекта, изготовленные

Вы должны проверить нашу печатную плату, чтобы получить печатные платы для вашего проекта, изготовленные онлайн.

Они используют надежные компоненты, полученные от аккредитованных поставщиков, таких как Arrow, Avnet, Future Electronics и т. Д., И предлагают разумные цены, в конечном итоге максимизирующие прибыль пользователя. Специализируясь на многослойных и жестко-гибких технологиях, их приоритетом является поддержание высоких стандартов качества.

Наша печатная плата ориентирована на заказы малых и средних объемов и обеспечивает очень конкурентоспособную цену для объемов от 1 до 100 кв.метров. Вам просто нужно загрузить файлы в любом из доступных форматов (Gerber, .pcb, .pcbdoc или .cam), и прототипы печатных плат будут доставлены к вашему порогу.

Вы также можете проверить их партнера WellPCB за хорошими предложениями.

Сравнение различных типов датчиков температуры

В приведенном выше сравнении используются три датчика: DS18B20, DHT11 и термистор NTC, но здесь мы ограничим наше сравнение только цифровыми датчиками. Это не означает, что термистор NTC не так важен, как цифровые датчики. Фактически, развитие цифровых датчиков возможно только благодаря термистору NTC.Цифровые датчики состоят из термистора NTC, соединенного с некоторыми микропроцессорами, которые в конечном итоге выдают цифровой выход.

Основными пунктами сравнения являются: —

1. DS18B20 является водонепроницаемым и прочным, в то время как DHT11 — нет, поэтому в реальных сценариях и приложениях, где требуется контактное зондирование, обычно используется DS18B20, тогда как DHT11 используется в приложения на открытом воздухе.

2. DS18B20 выдает данные размером 9–12 бит, а DHT11 выдает данные размером 8 бит.

3. DS18B20 показывает только температуру, в то время как DHT11 может использоваться для получения температуры, а также влажности.

4. DS18B20 охватывает более широкий диапазон температур по сравнению с DHT11, а также имеет лучшую точность по сравнению с DHT (+ 0,5 градуса по сравнению с + 2 градусом для DHT11).

5. Когда дело доходит до цен, эти датчики имеют небольшую разницу между собой, поскольку два разных варианта DS18B20, которые представляют собой упакованные провода, и корпус TO92, стоят около 1 и 0 долларов.4, в то время как DHT11 стоит около 0,6 доллара.

Таким образом, мы можем сказать, что DS18B20 несколько лучше, чем DHT11, но лучший выбор может быть сделан только на основе приложения, для которого требуется датчик.

Вы можете получить больше информации о DS18B20, прочитав его техническое описание отсюда.

Подключение DS18B20 к Arduino

Здесь мы будем подключать датчик температуры DS18B20 к Arduino, чтобы получать температуру и отображать ее на последовательном мониторе.

Для этого шага нам требуются — датчик температуры Arduino UNO, DS18B20 (в корпусе или в корпусе TO92, какой доступен) и резистор 4,7 кОм.

Датчик DS18B20 имеет 3 провода: черный, красный и желтый. Черный — для GND, красный — для Vcc, а желтый — для сигнального контакта

1. Подключите контакт GND или черный провод датчика к GND.

2. Подключите вывод Vcc или красный провод датчика к источнику питания 5 В.

3. Подключите сигнальный контакт или желтый провод к 5V через 4.7 кОм, а также подключите этот сигнальный контакт к цифровому контакту № 12 Arduino.

Для лучшего понимания вы можете обратиться к схеме, показанной выше.

Кодирование Arduino для отображения температуры

На этом этапе мы будем кодировать нашу плату Arduino для получения и отображения температуры на последовательном мониторе.

1. Подключите плату Arduino UNO к ПК.

2. Перейдите отсюда в репозиторий Github для этого проекта.

3. В репозитории GitHub вы увидите файл с именем « Basic code », откройте этот файл, скопируйте код и вставьте его в вашу Arduino IDE.

4. Выберите правильную плату и COM-порт на вкладке «Инструменты» и нажмите кнопку загрузки.

5. После загрузки кода откройте Serial Monitor и выберите правильную скорость передачи (9600 в нашем случае), и вы сможете увидеть там температуру, измеренную DS18B20.

Вы можете наблюдать за повышением и понижением температуры, выполняя подходящие действия для повышения или стабилизации температуры, например, протирая металлическую часть или поджигая зажигалку рядом с металлической частью датчика упакованного типа.

Подключение DS18B20 к ESP8266

На этом этапе мы будем подключать DS18B20 к модулю ESP8266 для получения температуры.

Для этого шага нам понадобятся = модуль ESP8266, резистор 4,7 кОм и датчик температуры DS18B20 (в корпусе или в корпусе TO92, в зависимости от того, что доступно).

Подключения для этого шага аналогичны подключениям, выполненным с помощью Arduino.

1. Подключите контакт GND или черный провод датчика к GND.

2. Подключите контакт Vcc или красный провод датчика к контакту 3.Питание 3 В.

3. Подключите сигнальный контакт или желтый провод к 3,3 В через резистор 4,7 кОм, а также подключите этот сигнальный контакт к GPIO12, который является контактом D5 модуля.

Для лучшего понимания вы можете обратиться к схеме, показанной выше.

Настройка Arduino IDE

Для кодирования ESP8266 с использованием Arduino IDE нам необходимо установить плату ESP8266 в дополнительные платы Arduino IDE, поскольку они не предустановлены. Для этого нам необходимо выполнить шаги, указанные ниже: —

1.Перейдите в Файл> Настройки

2. Добавьте http://arduino.esp8266.com/stable/package_esp8266com_index.json в URL-адреса диспетчера дополнительных плат.

3. Перейдите в Инструменты> Плата> Менеджер плат

4. Найдите esp8266 и установите плату.

5. Перезагрузите среду IDE.

Кодирование ESP8266 для отображения температуры

На этом этапе мы собираемся кодировать ESP8266 для считывания температуры, а после этого, вместо того, чтобы отображать эту температуру на последовательном мониторе, мы собираемся отображать ее на веб-сервере.

1. Отсюда перейдите в репозиторий Github для этого проекта.

2. В репозитории вы увидите код с именем « ESP8266 Temperature Web Server », вам просто нужно скопировать этот код и вставить его в Arduino IDE.

3. После вставки кода измените SSID и пароль в коде на коды вашей сети Wi-Fi.

4. На вкладке «Инструменты» выберите правильную плату и COM-порт, а затем нажмите кнопку загрузки.

5.Когда код будет загружен, откройте последовательный монитор IDE, а затем нажмите кнопку обновления на модуле ESP8266, вы получите запись на каком-то неизвестном языке, а под ним будет присутствовать IP-адрес. Вам необходимо скопировать этот IP-адрес, так как это адрес веб-сервера, который будет отображать температуру.

И все готово

Когда код загружен и IP-адрес получен. Откройте веб-сервер, используя этот IP-адрес

На веб-сервере будут отображаться показания температуры в градусах Цельсия, а также в градусах Фаренгейта.

Помимо веб-сервера, показания температуры также можно наблюдать на последовательном мониторе.

Вы заметите, что по мере изменения температуры рядом с датчиком, показания на веб-сервере также изменяются.

Вот и все для демонстрации.

Руководство по сборкам датчиков температуры для точных измерений

Точное измерение температуры и контроль температуры необходимы по нескольким причинам, включая безопасность, стабильность материала, оптимизацию выхода и качество; Фактически, температура является наиболее широко измеряемой величиной для всех процессов.

В зависимости от области применения для промышленного измерения температуры обычно используются термопары или датчики RTD, однако могут применяться и другие типы датчиков, такие как термисторы, ИК-датчики и полупроводниковые устройства.

И термопары, и датчики RTD по своей природе хрупкие устройства, чувствительные как к механическим силам, так и к электрическим помехам.

Поскольку промышленные системы управления полагаются на стабильные и точные входные сигналы, свободные от шума и внешних помех, имеет смысл защитить датчики температуры от внешних сил, присутствующих в точке измерения, таких как давление или вибрация.

Обычно датчики температуры защищаются путем помещения хрупкого чувствительного элемента в защитную оболочку и упаковки керамическим порошком. Это защищает датчик от вибраций и потенциально агрессивных технологических сред, которые могут повредить элемент.

Датчик Pt100 с оболочкой из нержавеющей стали и гибкими выводами Датчики термопары с оболочкой из нержавеющей стали и штекерными соединениями

Для завершения сборки температуры к датчику обычно присоединяется соединительная головка.Это позволяет подключать провода датчика либо к клеммной колодке, либо к датчику температуры. Доступны различные типы головок в зависимости от области применения и от того, расположен ли узел датчика температуры в опасной зоне. Если установлен датчик температуры, он также должен иметь сертификат ATEX, если он устанавливается в опасной зоне.

Выбор стандартных типов головок

Предоставлено: www.kp-as.com

Для того, чтобы датчики могли использоваться в управлении промышленными процессами, им требуются особые материалы конструкции, присоединения к процессу и размеры, специфичные для конкретных применений.Доступен широкий выбор стандартных датчиков в сборе, которые можно настроить в соответствии с конкретными требованиями процесса.

Датчик температуры с соединительной головкой для преобразователя Датчик температуры с резьбовым присоединением к процессу Датчик температуры для пищевой промышленности
Предоставлено: www.kp-as.com

Преобразователь температуры «на головке» часто устанавливается внутри соединительной головки. Передатчик усиливает сигнал датчика низкого уровня и обеспечивает точный, стабильный сигнал, доступный для системы управления. Рекомендуются изолированные преобразователи температуры, так как они дополнительно улучшают качество сигнала за счет фильтрации шума и электромагнитных помех.

Дополнительные преимущества использования преобразователя температуры включают возможность линеаризации сигнала и возможность включения локального дисплея, например, в полевом преобразователе 7501.

В качестве альтернативы можно установить клеммную колодку на соединительную головку, а сигнал датчика направить на преобразователь температуры, установленный на DIN-рейке. В этом случае следует тщательно учитывать наведенные помехи и ухудшение сигнала датчика. Это часто наблюдается при увеличенной длине кабеля между датчиком и преобразователем температуры.

PR 5437A 2-проводный датчик температуры HART 7 для монтажа на головке PR 6337A Двухпроводный датчик температуры HART для DIN-рейки PR 7501 Датчик температуры HART, устанавливаемый на месте

Также доступны преобразователи

, которые поддерживают простую интеграцию в полевую шину и цифровые схемы, такие как HART, Foundation Fieldbus, Profibus и канал ввода-вывода.Преобразователь PR 5350, установленный на головке, и преобразователь PR 6350, установленный на DIN, поддерживают как Foundation Fieldbus, так и Profibus PA в одном устройстве, в то время как PR 5335, 5337, 5437, 6335, 6337 являются преобразователями температуры HART.

Хотя эти датчики в сборе могут использоваться напрямую, в промышленных приложениях часто требуется, чтобы датчик температуры был легко заменяемым, вставлялся в труднодоступные места или подвергался воздействию давления и скорости потока, которые могут вызвать повреждение.

Накопительные резервуары и трубопроводы, например, требуют простой замены датчика температуры без утечки технологического материала или необходимости слива воды из системы.Эту проблему можно решить с помощью защитных гильз или карманов Thermo.

Защитные гильзы используются для защиты датчиков температуры от повреждений из-за чрезмерного давления, высоких скоростей потока и коррозионного воздействия. Кроме того, они позволяют заменять датчик без опорожнения системы или процесса. Защитные гильзы, предназначенные для работы с высоким давлением, обычно изготавливаются из пруткового материала для обеспечения целостности. Защитные гильзы для использования в средах с низким давлением могут быть изготовлены из трубок с одним закрытым сварным концом.Защитная гильза обычно крепится к процессу либо резьбовым соединением, либо сваркой. Затем датчик температуры вставляется в защитную гильзу и закрепляется.

В зависимости от области применения защитная гильза должна быть выбрана так, чтобы соответствовать техническим требованиям процесса.

Защитная гильза на стержне с резьбовым присоединением к процессу Изготовленная защитная гильза с резьбовым присоединением к процессу Сварной стержень в защитной гильзе
Предоставлено: www.kp-as.com

Дополнительную информацию об ассортименте датчиков температуры и устройств формирования сигналов PR electronics можно найти здесь.

Вернуться к библиотеке знаний по связям с общественностью

Полезна ли эта информация?

Как выбрать и использовать правильный датчик температуры

Вернуться на предыдущую страницу

Введение

За 20 лет работы в области разработки, производства и применения датчиков температуры я провел ряд обучающих семинаров по датчикам температуры.После длинных объяснений того, как сконструированы и используются резистивные датчики температуры (RTD) и термопары, люди обычно задают вопрос: «Хорошо, а как мне определить, какой датчик использовать в моем приложении?». Настоящая статья призвана ответить на этот вопрос.

После краткого обзора конструкции и использования RTD и термопар для измерения температуры мы обсудим, что отличает эти датчики друг от друга. Мы обсудим темы температурного диапазона, допусков, точности, взаимозаменяемости, а также относительные сильные и слабые стороны каждого типа.Изучив эти темы, вы лучше поймете, когда следует использовать каждый тип датчика и почему.

Обзор основ RTD и термопар

RTD:
ТС

содержат чувствительный элемент, представляющий собой электрический резистор, сопротивление которого изменяется в зависимости от температуры. Это изменение сопротивления хорошо известно и может повторяться. Чувствительный элемент в RTD обычно содержит катушку с проводом или сетку из проводящей пленки, в которой вырезан рисунок проводника (см. Рисунок 1).Удлинители прикрепляются к чувствительному элементу, поэтому его электрическое сопротивление можно измерить на некотором расстоянии. Затем чувствительный элемент упаковывается, чтобы его можно было разместить в процессе, где он будет достигать той же температуры, которая существует в процессе (см. Рисунок 2).

Термопары:
С другой стороны, термопары

содержат два электрических проводника, изготовленных из разных материалов, которые соединены одним концом. Конец проводов, который будет подвергаться воздействию технологической температуры, называется измерительным переходом.Точка, в которой заканчиваются проводники термопары (обычно там, где проводники подключаются к измерительному устройству), называется опорным спаем (см. Рисунок 3).

Когда измерительный и эталонный спая термопары находятся при разных температурах, внутри проводников образуется милливольтный потенциал. Знание типа используемой термопары, величины милливольтного потенциала внутри термопары и температуры эталонного спая позволяет пользователю определять температуру на измерительном спай.

Милливольтный потенциал, создаваемый проводниками термопары, различается в зависимости от используемых материалов. Некоторые материалы делают термопары лучше, чем другие, потому что милливольтные потенциалы, создаваемые этими материалами, более воспроизводимы и хорошо известны. Этим термопарам присвоены определенные обозначения типа, такие как Тип E, J, K, N, T, B, R и S. Различия между этими типами термопар будут объяснены ниже.

Ограничения температуры для RTD и термопар:

Материалы, используемые в RTD и термопарах, имеют температурные ограничения, которые могут быть важным фактором при их использовании.

RTD

Как указывалось ранее, RTD состоит из чувствительного элемента, проводов для подключения чувствительного элемента к измерительному прибору и какой-то опоры для позиционирования чувствительного элемента в процессе. Каждый из этих материалов устанавливает пределы температуры, которой может подвергаться RTD.

Таблица 1: Материалы чувствительного элемента и пределы температуры
Материал Рабочий диапазон температур
Платина от -450 ° F до 1200 ° F
Никель от -150 ° F до 600 ° F
Медь от -100 ° F до 300 ° F
Никель / железо От 32 ° F до 400 ° F

Чувствительный элемент в RTD обычно содержит платиновый провод или пленку, керамический корпус и керамический цемент или стекло для герметизации чувствительного элемента и поддержки провода элемента.Обычно платиновые чувствительные элементы могут подвергаться воздействию температур примерно до 1200 ° F. Также можно использовать другие материалы, такие как никель, медь и сплав никель / железо, однако их полезные температурные диапазоны несколько ниже, чем для платины. Температуры использования для всех этих материалов показаны в Таблице 1.

Провода, соединяющие чувствительный элемент с контрольно-измерительными приборами, обычно изготавливаются из таких материалов, как никель, никелевые сплавы, луженая медь, посеребренная медь или никелированная медь.Используемая изоляция провода также напрямую влияет на температуру, которой может подвергаться RTD. В таблице 2 представлены обычно используемые провода и изоляционные материалы, а также их максимальные температуры использования.

Таблица 2: Пределы температуры соединительного провода
Провода / изоляционные материалы Максимальная рабочая температура
Луженая медь / изоляция ПВХ 221 ° F
Посеребренная медь / FEP с тефлоновой изоляцией 400 ° F
Посеребренная медь / ТФЭ с тефлоновой изоляцией 500 ° F
Никелированная медь / ТФЭ с тефлоновой изоляцией 500 ° F
Никелированная медь / изоляция из стекловолокна 900 ° F
Сплошная никелевая проволока 1200 ° F

Размещение чувствительного элемента в технологическом процессе также требует использования материалов.Наиболее распространенная компоновка заключается в помещении резистора и присоединенных проводов в металлическую трубку с закрытым концом, заполнение трубки демпфирующим вибрацию и / или теплопередающим материалом, например керамическим порошком, и герметизация открытого конца трубки эпоксидной смолой или керамический цемент. Металлические трубки, наиболее часто используемые в RTD, изготовлены из нержавеющей стали (используется примерно до 900 ° F) или инконеля (используется примерно до 1200 ° F). Используемые материалы для гашения вибрации / теплопередачи широко различаются по температурному диапазону.Эти материалы выбираются производителем для обеспечения оптимальных характеристик в зависимости от максимальной температуры, ожидаемой при использовании. Эпоксидные герметики обычно никогда не используются при температуре выше 400-500 ° F. Керамический цемент может подвергаться воздействию температур 2000 ° F и более, но для этого требуются герметики, чтобы не допустить попадания влаги в цемент и материал, поглощающий вибрацию / теплопередачу под ним.

Материалом платинового RTD с наименьшими температурами обычно являются провод и изоляция, используемые для подключения чувствительного элемента к приборам.Производители обычно предлагают две конструкции: низкотемпературную и высокотемпературную. В низкотемпературных конструкциях используется никелированная или посеребренная медная проволока с тефлоновой изоляцией и эпоксидное уплотнение. Эта конструкция обычно ограничивается температурой от 400 до 500 ° F.

В высокотемпературных конструкциях обычно используются никелированная медная проволока с изоляцией из стекловолокна и керамический цемент с максимальной температурой от 900 ° F до 1200 ° F. Некоторые производители также предлагают линейку RTD, в которых используется проволока из никеля или никелевого сплава с керамической изоляцией для работы при температуре до 1200 ° F.

Термопары:
Материалы для термопар

доступны в типах E, J, K, N, T, R, S и B. Эти типы термопар можно разделить на две категории: термопары из недрагоценных металлов и термопары из благородных металлов.

Термопары типов E, J, K, N и T известны как термопары из недрагоценных металлов, потому что они сделаны из обычных материалов, таких как медь, никель, алюминий, железо, хром и кремний. Каждый тип термопары имеет предпочтительные условия использования, например, использование голых термопар типа J (железо / константан) обычно ограничено максимальной температурой 1000 ° F и не рекомендуется для использования в окислительной или сернистой атмосфере из-за разрушения железа. дирижер.Термопары типа T (медь / константан) не используются при температуре выше 700 ° F из-за износа медного проводника. Температурные диапазоны для этих типов термопар включены в Таблицу 3, а дополнительная информация о применении — в Таблице 4.

Термопары типа R, S и B известны как термопары из благородных металлов, потому что они сделаны из платины и родия. Эти термопары используются в приложениях, которые превосходят возможности термопар из недрагоценных металлов. Термопары типов R и S рассчитаны на использование при температурах от 1000 ° F до 2700 ° F, а термопары типа B рассчитаны на использование от 1000 ° F до 3100 ° F.Если ожидается длительное воздействие при температурах выше 2500 ° F, разумно указать термопары типа B для увеличения срока службы термопар. В термопарах типа R&S может наблюдаться значительный рост зерна, если они удерживаются около их верхнего предела использования в течение длительных периодов времени.

Поскольку термопары не имеют чувствительных элементов, они не содержат многих материалов для ограничения температуры, которые есть в RTD. Термопары обычно конструируются с использованием неизолированных проводников, которые затем изолируются спрессованным керамическим порошком или формованными керамическими изоляторами.Такая конструкция позволяет использовать термопары при гораздо более высоких температурах, чем термометры сопротивления.

Допуск, точность и взаимозаменяемость:

Допуск и точность — это наиболее неправильно понимаемые термины при измерении температуры. Термин толерантность относится к определенному требованию, которое обычно составляет плюс или минус некоторая сумма. С другой стороны, точность относится к бесконечному количеству допусков в указанном диапазоне.

Например, RTD содержат чувствительный элемент, который изготовлен так, чтобы иметь определенное электрическое сопротивление при определенной температуре.Самый распространенный пример этого требования — так называемый стандарт DIN. Чтобы соответствовать требованиям стандарта DIN, RTD должен иметь сопротивление 100 Ом — 0,12% (или 0,12 Ом) при 32 ° F (0 ° C), чтобы считаться датчиком класса B (датчик класса A имеет сопротивление 100 Ом. — 0,06%). Допуск — 0,12 Ом применяется только к сопротивлению при 32 ° F и не может применяться к любой другой температуре. Многие поставщики предоставят таблицу взаимозаменяемости для

.
Таблица 3: Типы термопар, диапазоны температур, пределы погрешности
Стандартный Специальный
Тип Материалы Диапазон температур Пределы ошибки Диапазон температур Пределы ошибки
Дж Утюг / константан 32 до 559F (от 0 до 293C) 4F (2.2C) 32 до 527F (0 до 275C) 2F (1.1C)
550 до 1400F (от 293 до 760 ° C) 0,75% 527 до 1400F (от 275 до 760 ° C) 0,40%
К Хромель / Алюмель от -328 до -166F (от -200 до -110 ° C) 2%
-166 до 32F (-110 до 0C) 4F (2.2C)
32 до 559F (от 0 до 293C) 4F (2.2C) 32 до 527F (0 до 275C) 2F (1.1C)
559 до 2282F (от 293 до 1250C) 0,75% 527 до 2282F (от 275 до 1250C) 0,40%
Т Медь / константан от -328 до -89F (от -200 до -67C) 1.50%
-89 до 32F (-67 до 0C) 1,8F (1C)
32 до 271F (0 до 133C) 1,8F (1C) от 32 до 257F (от 0 до 125 ° C) 0,9F (0,05 ° C)
271 до 662F (от 133 до 350 ° C) 0,75% 257 до 662F (от 125 до 350 ° C) 0,40%
E хромель / константан от -328 до -89F (от -200 до -67C) 1%
-274 до 32F (-170 до 0C) 3.1F (1,7C)
32 до 644F (от 0 до 340 ° C) 3,1F (1,7 ° C) от 32 до 482F (от 0 до 250 ° C) 1,8F (1C)
644 до 1652F (от 340 до 900C) 0,50% 482 до 1652F (от 250 до 900 ° C) 0,40%
N Никросил / Нисил 32 до 559F (от 0 до 293C) 4F (2.2C)
559 до 2300F (от 293 до 1260C) 0,75%
R Платина / Платина — 13% родий от 32 до 1112F (от 0 до 600 ° C) 2,7F (1,5 ° C) от 32 до 1112F (от 0 до 600 ° C) 1,1F (0,6C)
1112F до 2642F (от 600 до 1450C) 0,25% 112F до 2642F (от 600 до 1450C) 0.10%
S Платина / Платина — 10% родий от 32 до 1112F (от 0 до 600 ° C) 2,7F (1,5 ° C) от 32 до 1112F (от 0 до 600 ° C) 1,1F (0,6C)
1112F до 2642F (от 600 до 1450C) 0,25% 112F до 2642F (от 600 до 1450C) 0,10%
B Платина / Платина-30% родий 1472 до 3092F (от 800 до 1700 ° C) 0.50% 1472 до 3092F (от 800 до 1700 ° C)

Таблица 4: Информация о применении термопары

Тип Информация о приложении
E Рекомендуется для постоянно окислительной или инертной атмосферы. Минусовые пределы погрешности не установлены. Самый высокий термоэлектрический выход из распространенных типов термопар.
Дж Подходит для вакуума, восстановительной или инертной атмосферы, окислительной атмосферы с сокращенным сроком службы.Железо быстро окисляется при температуре выше 1000 ° F (538 ° C), поэтому для высоких температур рекомендуется использовать только толстую проволоку. Открытые элементы не должны подвергаться воздействию сернистой атмосферы выше 1000 ° F (538 ° C).
К Рекомендуется для непрерывной окислительной или нейтральной атмосферы. В основном используется при температуре выше 1000 ° F (538 ° C). Возможны поломки при контакте с серой. Предпочтительное окисление хрома в положительной ветви при определенных низких концентрациях кислорода вызывает «зеленую гниль» и большие отрицательные отклонения калибровки, наиболее серьезные в диапазоне 1500–1900 ° F (816 1038 ° C).Этому может помешать вентиляция или инертное уплотнение защитной гильзы.
N Может использоваться в приложениях, где элементы типа K имеют более короткий срок службы и проблемы со стабильностью из-за окисления и развития «зеленой гнили».
Т Может использоваться в окислительной, восстановительной или инертной атмосфере, а также в вакууме. Не подвержен коррозии во влажной атмосфере. Пределы погрешности опубликованы для диапазонов отрицательных температур.
R&S Рекомендуется для высоких температур. Должен быть защищен неметаллической защитной трубкой и керамическими изоляторами. Продолжительное использование при высоких температурах вызывает рост зерна, что может привести к механическому повреждению. Отрицательный дрейф калибровки, вызванный диффузией родия в чистую ветвь платины, а также испарением родия. Тип R используется в промышленности, тип S — в лаборатории.
B То же, что и R&S, но имеет меньшую мощность.Кроме того, имеет более высокую максимальную температуру и менее подвержен росту зерна.

RTD, которые предоставляют пользователю таблицу допусков при определенных температурах (см. Таблицу 5):

Таблица 5: Типовая таблица взаимозаменяемости RTD
Температура Допуск при температуре
Температура Сопротивление
-200 ° C –1.3 ° С –0,56 Ом
-100 ° C — 0,8 ° С — 0,32 Ом
0 ° С — 0,3 ° С — 0,12 Ом
100 ° С — 0,8 ° С — 0,30 Ом
200 ° С — 1,3 ° С — 0.48 Ом
300 ° С — 1,8 ° С — 0,64 Ом
400 ° С — 2,3 ° С — 0,79 Ом
500 ° С — 2,8 ° С — 0,93 Ом
600 ° С — 3,3 ° С — 1,06 Ом

С другой стороны, термопары специфицированы иначе, чем термометры сопротивления, потому что они изготавливаются по-другому.В отличие от чувствительного элемента в RTD, милливольтный потенциал, генерируемый термопарой, является функцией состава материала и металлургической структуры проводников. Следовательно, термопарам не присваивается значение при определенной температуре, а задаются пределы погрешности, которые охватывают весь температурный диапазон.

Эти пределы, присвоенные термопарам, известны как стандартные или специальные пределы погрешности. Таблица 3 содержит стандартные и специальные пределы погрешностей для каждого стандартного типа термопары.Следует отметить, что пределы значений погрешности, перечисленные в таблице 3, относятся к новым термопарам перед использованием. Когда термопары подвергаются воздействию технологических условий, изменения в проводниках термопары могут привести к увеличению ошибок. Пользователям рекомендуется периодически выполнять тесты для определения состояния термопар, используемых в приложениях с высокой надежностью или высокой точностью.

Сильные и слабые стороны

У каждого типа датчика температуры есть свои сильные и слабые стороны.

RTD Сильные стороны:
ТС

обычно используются в приложениях, где важны повторяемость и точность. Правильно сконструированные платиновые термометры сопротивления имеют очень стабильные характеристики сопротивления в зависимости от температуры с течением времени. Если процесс будет выполняться при определенной температуре, удельное сопротивление RTD при этой температуре может быть определено в лаборатории, и оно не будет существенно меняться с течением времени. RTD также допускают более легкую взаимозаменяемость, поскольку их первоначальная вариация намного ниже, чем у термопар.Например, термопара типа K, используемая при 400 ° F, имеет стандартный предел погрешности — 4 ° F. Платиновый RTD стандарта DIN 100 Ом класса B имеет взаимозаменяемость — 2,2 ° F при той же температуре. RTD также могут использоваться со стандартным приборным кабелем для подключения к дисплею или контрольному оборудованию, где термопары должны иметь соответствующий провод термопары для получения точных измерений.

Слабые стороны RTD:

В той же конфигурации вы можете рассчитывать заплатить от 4 до 10 раз больше за RTD, чем за термопару из недрагоценных металлов.RTD дороже, чем термопары, потому что для его изготовления требуется более сложная конструкция, включая изготовление чувствительного элемента, подключение удлинительных проводов и сборку датчика. RTD не работают так же хорошо, как термопары в условиях сильной вибрации и механических ударов из-за конструкции чувствительного элемента. RTD также ограничены по температуре примерно до 1200 ° F, а термопары могут использоваться до 3100 ° F

.
Прочность термопары:
Термопары

можно использовать при температурах до 3100 ° F, как правило, они стоят меньше, чем RTD, и их можно сделать меньше по размеру (примерно до 30 ° C).020 дюймов в диаметре), чтобы обеспечить более быструю реакцию на температуру. Термопары также более долговечны, чем RTD, и поэтому могут использоваться в приложениях с высокой вибрацией и ударами.

Слабые стороны термопары:
Термопары

менее стабильны, чем термометры сопротивления, при воздействии умеренных или высоких температур. В критических случаях применения термопары следует снимать и испытывать в контролируемых условиях, чтобы проверить работоспособность. Удлинительный провод термопары должен использоваться для подключения датчиков термопары к прибору термопар или контрольному оборудованию.Использование измерительного провода (покрытого медью) приведет к ошибкам при изменении температуры окружающей среды.

Резюме:

И термопары, и термометры сопротивления являются полезными приборами для определения температуры процесса. RTD обеспечивает более высокую точность, чем термопары в своем температурном диапазоне, поскольку платина является более стабильным материалом, чем большинство материалов для термопар. В RTD также используется стандартный измерительный провод для подключения к измерительному или контрольному оборудованию.

Термопары

, как правило, дешевле, чем термометры сопротивления, они более долговечны в условиях сильной вибрации или механических ударов и могут использоваться при более высоких температурах.Термопары могут быть меньше по размеру, чем большинство RTD, чтобы их можно было подобрать для конкретного применения.

Департамент компьютерных наук и технологий: Датчик температуры Raspberry Pi

В этом уроке мы построим схему для подключения датчик температуры к нашему Raspberry Pi и написать программа для чтения данных датчика. Схема, которую мы построим собирается подключиться к Raspberry Pi с помощью GPIO булавки.

GPIO означает ввод / вывод общего назначения.Общий цель, потому что все они — простые связи, которые может быть либо высоким, либо низким, двоичный выбор. Это означает мы можем легко делать то, что подразумевает бинарный выбор, и все равно будет приятно и просто понять, что такое продолжается. В этом уроке мы собираемся превратить Светодиоды гаснут и загораются, а также проверяется, работают ли кнопки. нажаты — все очень бинарные действия, что делает их идеально подходит для контактов GPIO.

Однако это не все, для чего можно использовать контакты GPIO.Большой диапазон аппаратных устройств может обмениваться данными передача двоичных данных по соединению, и это может также идите прямо на GPIO. Если у нас есть право программа для определения значения данных, мы можем даже более сложные вещи. Мы собираемся использовать датчика температуры, который передает температуру информацию в вывод GPIO и некоторое программное обеспечение для преобразования эти двоичные данные в полезный формат.

После того, как мы построили нашу схему, следующим шагом будет написание программа, которая считывает температуру и передает ее нам в красивом формат.Как только это будет сделано, мы добавим несколько светодиодов и кнопку к нашей схеме, и узнайте, как измерить кнопку нажимает и включает и выключает светодиоды из нашей программы.

Наконец, мы соберем все эти кусочки вместе, чтобы получился Регистратор температуры с кнопочным управлением — программа, которая будет измерять температуру каждую секунду и помещать это в файл, который может быть запущен и остановлен нажатием кнопка.

Шаг первый: Обновление ядра

  • Первый шаг — изменить, откуда обновляется наш Pi, с помощью редактирование текстового файла.Нам нужно открыть файл /etc/apt/sources.list.d/raspi.list как root, введите:
    sudo leafpad /etc/apt/sources.list.d/raspi.list
  • Теперь измените строку в этом файле так, чтобы она читалась как «deb http://archive.raspberrypi.org/debian/ wheezy main untested «, затем сохраните и закройте файл.
  • Далее выполните следующие команды:
    apt-get update
    apt-получить обновление

Мы делаем само обновление Pi, используя самое последнее ядро.Ядро — бит самого низкого уровня программного обеспечения, которое устанавливает связь между фактическими оборудование и все другое программное обеспечение, которое может работать. Однажды Пи знает, что может обновляться из этого нового места, мы обновить ядро. В этом новом ядре есть весь дополнительный код. ему нужен доступ к датчику температуры, который мы будем использовать.

Шаг второй: Подключение датчика температуры

  • Выключите Pi — вообще плохая идея подключать провода, пока есть электричество булавки.
  • Получить:
  • Припаяйте детали ленточного соединителя вместе и прикрепите разъем ленточного кабеля к Pi и макетной плате.
  • Подключите контакт 3 датчика к контакту 3.3V GPIO. (помечено как 3V3 на разъеме AdaFruit).
  • Подключите контакт 1 к контакту GPIO заземления (обозначен GND на разъеме AdaFruit).
  • Подключите контакт 2 к контакту 4 GPIO (обозначен # 4 на коннекторе AdaFruit).
  • Поставил 4.Резистор 7 кОм между контактами 2 и 3 разъема датчик температуры.
  • Включите Pi, затем приложите палец к датчику. Если он подключен неправильно, тогда он будет очень горячий в течение секунды или двух, в этом случае выключите Pi как только он загрузится, и подождите некоторое время (он все еще был горячим после 10 минут, когда я это сделал), чтобы он остыл, а затем подержите извлеките датчик и вставьте его снова в правильном направлении.

Разъем ленточного кабеля AdaFruit избавляет нас от необходимости для подключения проводов непосредственно к плате Raspberry Pi, как это было бы очень неудобно.Он также лучше маркировка на контактах GPIO, которая упрощает работать с.

Датчик температуры, который мы здесь используем, DS18S20, имеет три ножки. Два из этих штифтов ставят датчик в цепи между выводом высокого напряжения и земля. Это соединение обеспечивает питание для датчик для измерения температуры. Третий контакт подключается к контакту GPIO, и именно с этим соединение, которое мы можем общаться с датчиком. Резистор, который мы поместили между этим выводом данных а вывод высокого напряжения — это так называемый подтягивающий резистор — если только ветвь данных не заземляется на отправьте 0 по проводу, его напряжение на проводе будет быть «подтянутым» к 3.3В. Это упрощает датчик для связи с нашим Pi, чтобы отправить сигнал 1, ему вообще ничего не нужно делать.

Шаг третий (A): считывание показаний датчика с Терминал

  • Включите Pi.
  • После того, как пользователь вошел в систему Pi, введите эти команды в терминал или просто по запросу при входе в систему и перед вводом «startx»:
    sudo modprobe w1-gpio
    sudo modprobe w1-therm
    cd / sys / bus / w1 / devices /
    ls
  • Запись на экране, состоящая в основном из чисел, — это серийный номер датчика.Датчик, используемый для этого У учебника есть серийный номер «10-000802824e58». Замените серийный номер в следующей команде на один для используемого датчика.
    cd 10-000802824e58
    cat w1_slave
  • Будут напечатаны две строки текста. Во второй строке секция, начинающаяся с «t =», — это температура в градусах. Цельсия. Десятичная точка идет после первых двух цифр, поэтому пример значения «t = 22250» на самом деле «t = 22,250» градусов Цельсия:

Первым шагом здесь был запуск команды modprobe.Эта команда может загружать отдельные модули, которые делают определенные вещи в ядро, чтобы мы могли их использовать. Если вы хотите избежать набираем modprobe команд каждый раз, когда вы запускаете свой Pi, вам нужно будет сообщить Linux что вы хотите, чтобы эти модули загружались автоматически, когда это начинается. Это можно сделать, открыв файл / etc / modules — вам необходимо для этого root, поэтому введите sudo листовую панель / etc / modules в терминал. Теперь добавьте строки «w1-gpio» и «w1-therm» в конец этого файла, сохраните и закройте.

Бизнес с поиском нужной папки и последующим чтением файл для измерения температуры может показаться достаточно простым, но, как вы могли догадаться, скрывается немного работы здесь. Что на самом деле происходит, когда вы пытаетесь прочитать то, что находится в файл w1_slave — это то, что Pi отправляет сообщение на датчик температуры с просьбой какая температура. Датчик тратит полсекунды или поэтому прорабатываем его и отправляем обратно (вот почему небольшая задержка после ввода команды), после чего Pi помещает эту информацию в файл и возвращает ее тебе.

Попробуйте открыть файл, как любой другой, в графическом файле. интерфейс менеджера. Откройте файловый браузер, перейдите в каталог файл находится внутри и откройте файл в Leafpad. Тот же текст как и раньше будет отображаться.

Шаг третий (B): считывание температуры из Python

  • Откройте терминал и введите python.
  • В командной строке python IDLE введите команды ниже, игнорируя строки, начинающиеся с # — они объясните, что делают команды:
    # Откройте файл, который мы просматривали ранее, чтобы python может видеть, что в нем.Замените серийный номер на до.
    tfile = открыть («/ sys / bus / w1 / devices / 10-000802824e58 / w1_slave»)
    # Прочитать весь текст в файле.
    текст = tfile.read ()
    # Закройте файл теперь, когда в тексте есть был прочитан.
    tfile.close ()
    # Разделить текст на новые строки (\ n) и выберите вторую строку.
    secondline = text.split («\ n») [1]
    # Разбить строку на слова, имея в виду на пробелы и выберите 10-е слово (считая от 0).
    temperaturedata = secondline.split («») [9]
    # Первые два символа — «t =», поэтому избавиться от них и преобразовать температуру из строка к числу.
    температура = float (температурные данные [2:])
    # Ставим десятичную запятую справа поместите и покажите это.
    температура = температура / 1000
    температура печати

В этом раздел, который может быть незнакомым.В Python IDLE терминал, введите help (что-нибудь) и описание того, что было заключено в скобки отобразит и некоторую общую информацию о том, что может быть сделано с командой. Например, с tfile.read () существует также tfile.readline () и tfile.readlines (), которые в качестве имени предлагает делать разные вещи. Если присвоение переменной (температура = бит) не включены в строки, написанные выше, результат .метод разделения будет выведен.

В командах только что текст медленно разбивается пока не останутся только значения температуры, с несколькими строками кода. В этом большом количестве строк кода нет необходимости, temperaturedata = text.split («\ n») [1] .split («») [9] также будет работать или разделение пробелами из начало, а не новые строки. Код может быть труднее читать, если однако он сдавлен на одну линию. Эта операция может быть сделано быстрее — поиграйте с ним, и если более быстрый способ становится очевидным, может быть, одноклассник сможет понять, что это делает?

Смотрите здесь мой пример кода.

Шаг четвертый: напишите сценарий для распечатки Температура.

  • Установите текстовый редактор, например Geany или SciTE, или воспользуйтесь предустановленный Leafpad или аналогичный.
  • Откройте редактор и скопируйте код, написанный выше (или версия с другим предложенным разбиением).
  • Сохранить файл как temperature.py в / home / pi.
  • Откройте терминал и запустите python temperature.py. Программа должна вывести температура, как и раньше.

Здесь мы поместили команды, которые мы напечатаны ранее в скрипт, чтобы мы могли легко запустить программу, не вводя все команды опять таки.

Здесь рекомендуется установить другой текстовый редактор для написания кода. Причина в том, что текстовый редактор по умолчанию — Leafpad — что приходит Pi with на самом деле не предназначен для написания кода. Если вы откроете запустите свой скрипт Python в IDLE и в Leafpad, вы увидите что IDLE добавил цвет к коду — это называется подсветка синтаксиса.Это то, что почти весь текст редакторы, предназначенные для написания кода в do, потому что это делает его легче увидеть, что происходит в программе. SciTE или В этом руководстве рекомендуется использовать Geany. SciTE немного быстрее открывать файлы и выглядит проще, в то время как Geany имеет гораздо больше функций, которые начинают быть полезными когда ваша программа становится немного длиннее, например, перечисляет все имена переменных в вашей программе внизу, которые упрощает запоминание использованных имен.

Шаг пятый: Подключение светодиода

  • Выключите Pi.
  • Приобретите светодиод, резистор 220 Ом и, возможно, больше проводов.
  • Выберите один из пронумерованных контактов на ленточном кабеле, который соединяет ваш Pi с макетной платой и подсоединяет длинный ножка (с противоположной стороны от плоского края светодиода base) светодиода к этому выводу.
  • Подключите резистор 220 Ом между контактом заземления. Пи и другой (более длинной) ножки светодиода.

Что мы здесь сделали, так это настроили цепь от одного из выводов GPIO через светодиод и резистор, на землю. С помощью Pi мы можем включить определенный Вывод GPIO, поэтому он имеет высокое напряжение, и ток будет течь через светодиод и резистор. Вставленный резистор прекращает протекание слишком большого тока, который может вызвать нагрев светодиода так много, что выгорело бы.

Шаг шестой: Включение светодиода

  • Включите Pi.
  • Откройте корневой терминал из меню или запустив sudo su в обычном терминале.
  • Теперь введите эти команды, где «18» в этом примере заменяется тем контактом, к которому подключен светодиод:
    cd / sys / class / gpio /
    echo «18»> export
    cd gpio18
    echo «out»> direction
    echo «1»> value
  • Светодиод должен загореться.
  • Чтобы выключить светодиод, введите:
    echo «0»> значение
    cd ..
    echo «18»> экспортировать

Мы открыли здесь корневой терминал, чтобы контролировать светодиод.Почему мы должны были это сделать здесь, а не когда мы работали с нашим датчиком температуры? С датчик температуры, все, что мы могли сделать, это попросить температура, что довольно безвредно. С помощью светодиода мы хотел что-то изменить в оборудовании (сделать GPIO выбранный нами вывод в выход), что может привести к что происходит, если мы что-то изменили, мы не должны имеют или изменили неправильный пин-код. С малиной Пи, он разработан таким образом, что вы ничего не можете сломать просто изменив неправильный контакт GPIO, но ограничение остатки от более дорогих компьютеров, которые легче сломанный.

После открытия корневого терминала сначала мы должны сказать Пи, что мы хотим что-то сделать с конкретный вывод GPIO, который мы делаем, используя эхо, чтобы записать пин-код в файл экспорта. Pi замечает, что мы это сделали, и устанавливает создайте папку для этого пина, чтобы мы могли его контролировать. потом мы говорим Pi, что хотим, чтобы этот вывод был выходным, снова используя эхо, чтобы мы может включать и выключать светодиод. Записав цифру «1» в файл значения включает штифт, так что ток течет этого штифта.Как только светодиод заработает, мы его включаем. выключить, повторив «0», а затем сообщая Пи, что мы закончили работу с этим контактом, запись пин-кода в неэкспортный файл.

Мы только что видели, как включать и выключать светодиод с помощью терминал, так что теперь пора заставить его работать с Python. В программе нужно записать в файл. Вот пример запись «Hello» в файл с именем «example». Опираться на что.

# Открыть файл и записать в него, следовательно «ш»
f = open («пример», «ш»)
ф.написать («привет»)
f.close ()

Запустите эту программу в терминале с использованием sudo python по причинам объяснено выше. Должен загореться светодиод.

Смотрите здесь мой пример кода.

Шаг седьмой: есть более простой способ!

Мы собираемся установить библиотеку для Python, которая позволит мы включаем контакты GPIO, не проходя через хлопоты при открытии и закрытии большого количества файлов, как в последнее упражнение.

  • Установите пакет с sudo apt-get install python-rpi.gpio в терминале.
  • Запустите Python как root с помощью sudo python и введите:
    import RPi.GPIO as GPIO
    # Используйте номера контактов с ленты кабельная плата.
    GPIO.setmode (GPIO.BCM)
    # Установите используемый штифт («18» — пример) в качестве вывода.
    GPIO.setup (18, GPIO.OUT)
    # Включите штифт и увидите светодиодный индикатор вверх.
    GPIO.выход (18, GPIO.HIGH)
    Выключите штифт, чтобы выключить ВЕЛ.
    GPIO.выход (18, GPIO.LOW)

Эта библиотека, которую мы установили, просто кусок кода, на этот раз написанный на языке C язык, скрывающий все детали того, что должно быть сделано для включения и выключения контактов GPIO. Когда Библиотека команды Python GPIO.setup (18, GPIO.OUT) уходит и делает все, что мы делали до — запись пин-кода в файл экспорта, и записывают «наружу» в файл с именем direction, но они просто спрятан.

Режим установки команда сообщает библиотеке, что мы маркируем наши контакты как будто они находятся на плате ленточного кабеля. Доска ссылается к штифтам с точки зрения того, что они делают, поэтому штифты имеют такие метки, как «3V3», «GND», «5V0». Альтернатива, которая будет сделано с GPIO.setmode (GPIO.BOARD) предназначен для пронумеруйте булавки так же, как нумерацию домов на улица закончена — на булавках с одной стороны нанесены номера 1,3,5 до 25, а штифты с другой стороны имеют числа от 2,4,6 до 26.

Шаг восьмой: Подключение кнопки

  • Здесь кнопка включения и 1кОм будут нужный.
  • Выберите другой свободный входной контакт и подключите этот контакт к одному сторону кнопки, а другую сторону кнопки — вывод 3,3 В.
  • Поместите резистор между входным контактом и массой. булавка на пи.

Тип кнопки, который мы здесь используем, называется push-to-make, что означает, что две стороны переключатель не подключается, если вы не нажимаете на него.Существуют и кнопки с нажимом, которые всегда подключены. если только кнопка на них не нажата. Мы также используем резистор для подключения входного вывода GPIO к земле, который гарантирует, что вход отключен, когда кнопка не нажимается, а не плавает напряжение где-то между высоким и низким. Нам нужно большее сопротивление чем мы обычно используем для других вещей, чтобы остановить текущее течет прямо на землю при нажатии кнопки.

Шаг девятый (A): проверка нажатия кнопки от Терминала

  • Включите Pi.
  • Откройте корневой терминал.
  • Введите следующее, заменив «17» булавкой, кнопка подключена к:
    cd / sys / class / gpio /
    echo «17»> экспорт
    cd gpio17
    echo «in»> direction
    кот цена
  • Если кнопка не нажата, этот код должен напечатать «0».
  • Удерживая кнопку нажатой, снова запустите программу: цифру «1» следовало распечатать.
  • На этом тестирование завершено, наберите:
    cd ..
    echo «17»> неэкспорт

Как и в случае со светодиодами, мы должны сказать Pi, что мы хотим что-то сделать с конкретным контактом GPIO, что мы делаем с помощью эха, как и раньше. Затем мы говорим Пи, что хотим этого pin, чтобы быть входным контактом, потому что мы повторяем «in», а не «out», поэтому что мы можем измерить, нажата кнопка или нет.Когда мы читаем «значение» файла, мы проверяем, вход высокий или низкий (1 или 0 соответственно). Наконец, «не экспортировать» булавку, как и раньше.

Шаг девятый (B): проверка кнопки Пресса с использованием Python

  • Запустите Python как root и введите:
    import RPi.GPIO as GPIO
    # Используйте номера контактов с ленты кабельная доска
    GPIO.setmode (GPIO.BCM)
    # Установите этот вывод как вход.
    GPIO.setup (17, GPIO.В)
    # Нажата кнопка или нет?
    GPIO.вход (17)
    # Зажимаем кнопку, запускаем команду опять таки. Результат должен быть «истинным».
    GPIO.вход (17)

В приведенных выше инструкциях показано, как проверить наличие кнопки. Нажмите. Как насчет того, чтобы поместить это в цикл, чтобы каждый при нажатии кнопки происходит что-то вроде печать сообщения на экран. Однако Pi будет можно распечатать сообщение и перейти к проверке кнопку снова намного быстрее, чем палец может быть снят с кнопка.Итак, ваша программа должна будет сидеть и ждать секунд, возможно, с помощью цикла «while» и команды «pass». Как только это сработает, попробуйте настроить температуру всякий раз, когда нажимается кнопка.

Смотрите здесь мой пример кода.

Шаг десятый: Запись температуры Программа регистрации

Последний шаг в этом уроке — собрать воедино все разные вещи, которые мы можем сделать для регистрации температуры программа — что-то, что будет записывать температуру до файл столько, сколько мы хотим.

  • Нам нужен еще один светодиод и еще резистор 220 Ом. Два светодиода будут использоваться, чтобы показать, когда наша программа готов начать измерение температуры, и когда она фактически записывая его в файл. Чтобы сделать это более очевидным, здесь может пригодиться светодиод другого цвета.
  • С помощью этих дополнительных деталей подключите светодиод к другому свободному pin, как и первый светодиод.
  • Откройте текстовый редактор и выполните следующие действия:
    • Импортируйте RPi.Библиотека GPIO.
    • Установите три контакта GPIO (кнопка и два Светодиоды) в качестве входа и выхода.
    • Включите один из светодиодов, чтобы указать, что мы готовы чтобы начать регистрацию.
    • Используйте код из предыдущего упражнения, чтобы проверить для нажатия кнопки и подождите, пока кнопка не будет нажата.
    • Когда кнопка нажата, нам нужен наш первый светодиод выключить, а другой — включить, чтобы указать, что наш Пи теперь принимает данные.
    • Затем откройте файл, который мы можем записать, чтобы дать нам куда-нибудь поместить данные.
    • Добавьте еще один цикл while, чтобы дождаться, пока кнопка снова нажимаем, и в цикле считываем температуру в так же, как мы делали раньше.
    • Вместо того, чтобы печатать температуру, мы будем записываем температуру в файл, который мы открыли ранее. Одно изменение, которое нам нужно будет внести в то, как мы научились писать в файлы раньше, теперь мы хотим каждое значение температуры должно быть на новой строке.Это может быть выполняется добавлением «\ n» в конец строки, в которой мы писать, как str (температура) + «\ n».
    • Когда существует последний цикл while, мы хотим закрыть файл, так как мы закончили с ним, и мы делаем это с datafile.close () и поверните выключить светодиод.

Смотрите здесь мой пример кода.

Обучение окончено! Наслаждайтесь мониторингом температуры и смотрите ниже для приложений.

Программы почти всегда могут быть улучшено, возможно, добавив еще немного кода, чтобы он мог сделать что-то новое или просто изменив то, что нужно сделать он лучше или читабельнее. Это то, что это за раздел все о — указывать на вещи, которые тоже не работают как могли, или то, что лучше было бы сделать в по-другому.

Приложение первое: имя файла данных

Для сценария всегда используется одно и то же имя файла, так что старый данные исчезают каждый раз, когда их становится больше.Имена файлов можно сделать уникальным с помощью «temperaturedata1.log», «temperaturedata2.log», но более полезный способ — добавить то, что известно как временная метка имени. Сделать это в Python:

  • Импортируйте модуль «время» в Python, узнайте текущий время для файла журнала и поместите его в удобный для чтения форма, затем добавьте это к имени файла, например:
    время импорта
    # Показывает время в формате год-месяц-день, час-минута-секунда.
    timestamp = time.strftime («% Y-% m-% d-% H-% M-% S»)
    # Соедините разные части имя файла в один и откройте файл.
    filename = «» .join ([«temperaturedata», отметка времени, «.log»])
    datafile = open (имя файла, «w», 1)

Есть еще несколько более сложных битов. в этом новом фрагменте кода. В Функция strftime () возвращает время, отформатированное особым образом, список которых может можно найти в Документация Python.Формат в примере означает, что если файлы отсортированы по алфавиту, самые новые файлы идут последними, а самые старые — первыми.

Функция соединения — это функция, строки имеют, что позволяет нам брать любой список строк и быстро соединить их вместе, сложив любую строку, которую мы используются для вызова соединения между каждым элементом в списке. Здесь мы используем пустую строку, чтобы биты просто помещались прямо вместе. Как правило, это самый быстрый способ соединить кучу текста вместе в Python.

Вы также увидите, что команда открытия файл получил дополнительную опцию, цифру «1» в конце. Если вы запускаете старый код, который у нас был, и смотрите в своем файловом браузере при этом вы заметите, что файл появляется, как только когда мы начинаем регистрацию, но указан как имеющий нулевой размер байтов, пока мы не нажмем кнопку, чтобы остановить запись. Этот происходит потому, что Python хранит все данные в памяти где-нибудь, и только на самом деле кладет на SD карту когда вы закрываете файл.Проблема с этим поведением что, если бы мы внезапно вытащили вилку из розетки или остановили программа запущена, мы потеряем все данные, которые у нас были собраны, потому что ничего из этого не было на карте. К добавляя опцию «1» к нашей команде открытия, мы сообщаем Python что мы хотели бы, чтобы в память за раз, и что он должен записывать каждый бит текст на SD-карту, когда строка закончится.

Смотрите здесь мой пример кода.

Приложение 2: Изменение контактов GPIO

Другая идея состоит в том, что здесь номера контактов для наших поставлены два светодиода, кнопка и датчик температуры прямо в программу по мере необходимости. Что отлично работает, но что происходит, когда мы перемещаем предметы по доске? Вдруг все подключено к другому выводу GPIO, и все наши умные инструкции отправляются не тому вещи — мы будем проверять включение светодиода, и пытаюсь зажечь кнопку.Исправить это значит идти всю нашу программу, проверяя каждый раз, когда мы использовали номер пина, и замена каждого из них на новый. Так вместо этого, как насчет того, чтобы исправить это как следует?

  • В начале скрипта введите несколько переменных называется, скажем, LED1_GPIO_PIN, LED2_GPIO_PIN и BUTTON_GPIO_PIN. Дайте им значение соответствующего номера вывода. Затем замените все наличие фактических номеров контактов в коде с эти переменные.

Итак, теперь, если мы изменим положение контактов на Pi, все, что нам нужно сделать, это изменить стоимость этих новых переменные, и все по-прежнему будет работать.

В этом новом фрагменте кода заглавные буквы используется для имен переменных. Это признают большинство программисты, как это означает, что эти переменные являются константами которые не должны меняться в процессе бега код.

Смотрите здесь мой пример кода.

Приложение 3: Регистрация с переменной скоростью

В текущей программе температура составляет всегда измеряется как можно быстрее, то есть примерно раз в три четверти секунды (это в основном то, сколько времени требуется сам датчик для измерения температуры, а не какой-либо медленная работа Pi). Если мы измеряем температуру выше 30 секунды или, возможно, несколько минут, такая частота дискретизации вполне подойдет. Но если бы мы хотели посмотреть, как температура меняется в час, или даже день, тогда у нас будут тысячи, может быть, десятки тысяч показаний, которые будут меняться довольно медленно.В этом случае было бы неплохо сделать нашу программу проводите измерения только с гораздо большими интервалами.

Если мы хотим это сделать, нам нужно заставить нашу программу ждать правильное время между измерениями, чтобы они сделано с правильными интервалами. Используя функцию время в Python модуль времени, мы можем понять, как давно прошло с тех пор, как мы в последний раз спрашивали температуру, а потом сравните это с тем, как долго мы хотим ждать между измерениями.

  • Итак, добавьте в свой код переменную, которая хранит время непосредственно перед тем, как вы прочитаете температуру, и в конце пока цикл. Вы можете сравнить эти два раза, и если разница меньше, чем мы хотим ждать, сделайте программу подождите столько времени, сколько потребуется, чтобы компенсировать разницу. В Python заставить вашу программу ждать некоторое время так же просто как использование команды сна в модуль времени и давая это время, которое вы хотите поспать.

Но вот с этим проблема. Когда программа спит, он не обращает внимания ни на что другое — в в частности, не кнопка, которая говорит нашей программе, чтобы остановить протоколирование. Это означает остановить нашу программу, так как в настоящее время есть, требует, чтобы вы нажали кнопку во время небольшого времени, когда Pi не спит или не считывает температуру. Чтобы решить эту проблему, мы заставим Pi много спать, и проверьте кнопку между каждым из них.

  • Заменить одинарный сон на цикл for, который будет спать в течение 0,1 секунды, однако требуется много раз для восполнения разницу и проверяйте нажатие кнопки после каждого небольшого спать. Если кнопка нажата, вы захотите использовать команда break для выхода из для цикла, но сначала установите некоторые значение True, чтобы мы могли проверить эту переменную во внешнем в то время как цикл, и вырваться из этого это правда. Не забывай определите эту переменную как False перед запуском цикла, чтобы Python не запутался.
  • Ваш код для этого раздела, вероятно, будет выглядеть примерно так:
    , если (время_2 — время_1) <ожидание_измерения: no_of_sleeps = int (round ((измерение_wait - (время_2 - время_1)) / 0,1))
    для i в диапазоне (no_of_sleeps): time.sleep (0,1)
    , если GPIO.input (BUTTON_GPIO_PIN):

    button_pressed = Верно
    перерыв

    если button_pressed:

    перерыв

Смотрите здесь мой пример кода.

Где дальше?

Теперь у нас есть полная программа датчиков температуры, что может что делать дальше? Ну, написав весь этот код, чтобы измерить температура, было бы хорошо, если бы мы могли просто написать немного небольшой фрагмент кода для использования другого типа датчика, а затем это просто работает?

К счастью для вас, это именно то, что следующая страница все о. Итак, давайте продолжим и посмотрим, как мы можем начать использовать плагины.

Как упростить интерфейс между микрофоном

Аннотация: Температура — это аналоговая величина, но цифровые системы часто используют температуру для выполнения функций измерения, управления и защиты.Если вы примените правильные методы и компоненты, необходимое преобразование аналоговой температуры в цифровую информацию не составит труда. В данном руководстве по применению рассматриваются термокомпараторы, датчики температуры с ШИМ-выходом и датчики температуры с выносными диодами (или термодиодами).

Температура — это аналоговая величина, но цифровые системы часто используют температуру для выполнения функций измерения, управления и защиты. Если вы примените правильные методы и компоненты, необходимое преобразование аналоговой температуры в цифровую информацию не составит труда.

Считывание температуры с помощью микроконтроллера (µC) очень просто. Микроконтроллер считывает выходной код аналого-цифрового преобразователя (АЦП), управляемого терморезисторным делителем напряжения, аналоговым выходным датчиком температуры или другим аналоговым датчиком температуры (, рис. 1, ). АЦП, встроенный в некоторые контроллеры, может упростить эту конструкцию. Для АЦП требуется опорное напряжение, которое может генерироваться внешним устройством. Например, опорное напряжение для термисторного датчика обычно такое же, как и напряжение, подаваемое на верхнюю часть делителя напряжения резистор-термистор.Однако в этих системах могут возникнуть следующие сложности:

  • Диапазон выходного напряжения датчика значительно меньше диапазона входного напряжения АЦП. Типичный АЦП для этой цели может иметь 8-битное разрешение и опорное напряжение 2,5 В, что обычно эквивалентно диапазону входного напряжения. Если максимальный выходной сигнал датчика для интересующего температурного диапазона составляет всего 1,25 В, эффективное разрешение снижается до 7 бит. Для достижения 8-битного разрешения либо увеличьте коэффициент усиления через внешний операционный усилитель, либо уменьшите опорное напряжение АЦП (что может снизить точность некоторых АЦП).
  • Бюджет ошибок ограничен. Комбинирование ошибки комбинации термистор-резистор или устройства аналогового датчика с ошибками, вносимыми АЦП, напряжением смещения усилителя, допуском резисторов настройки усиления и ошибкой опорного напряжения может быть большей ошибкой, чем может выдержать ваша система.
  • Вам нужна линейная передаточная функция от температуры к коду, и вы используете термистор. Передаточная функция термисторов очень нелинейна, но может быть достаточно линейной в узком температурном диапазоне, необходимом во многих приложениях.Вы можете компенсировать нелинейность с помощью таблицы поиска, но этот подход требует ресурсов, которые могут быть недоступны.
  • Входы АЦП ограничены. Если количество температур, которые вы хотите измерить, превышает количество доступных входов АЦП, вам может потребоваться добавить мультиплексор, что увеличит стоимость и время разработки.
  • Количество выводов ввода / вывода микроконтроллера ограничено. Это не будет проблемой для внутреннего АЦП, но для внешнего последовательного АЦП потребуется от двух до четырех контактов ввода / вывода в качестве интерфейса для микроконтроллера.

Рис. 1. В этом простом интерфейсе опорное напряжение АЦП определяется напряжением источника питания. Аналоговый датчик температуры может заменить термистор-резисторный делитель напряжения. В этом случае АЦП (который может быть внутренним по отношению к микроконтроллеру) требует достаточно точного опорного напряжения.

Проблемы проектирования упрощаются, если вы используете датчик температуры с цифровым интерфейсом. Точно так же датчики температуры с выходами, основанными на времени или частоте, могут облегчить проблему измерения, когда не хватает входов АЦП и выводов микроконтроллера ввода / вывода (, рис. 2, ).Например, датчик температуры MAX6576 выдает на выходе прямоугольную волну, период которой пропорционален абсолютной температуре. Он поставляется в 6-контактном корпусе SOT23, который требует очень мало места на плате. Одиночный вывод ввода / вывода связывает это устройство с микроконтроллером; после того, как его внутренний счетчик измеряет период, микроконтроллер рассчитывает температуру.


Рис. 2. MAX6576 выдает прямоугольный сигнал с периодом, пропорциональным абсолютной температуре; MAX6577 выдает выходную частоту, пропорциональную температуре.Результирующая константа пропорциональности устанавливается на одно из четырех значений выводами TS0 и TS1. Никаких внешних компонентов не требуется.

Подача заземления или положительного напряжения питания на каждый из двух логических входов выбирает одну из четырех констант пропорциональности период / температура в диапазоне от 10 мкс / ° K до 640 мкс / ° K.

Соответствующий датчик температуры (MAX6577) генерирует выходной прямоугольный сигнал, частота / температурный коэффициент которого программируется в диапазоне от 0,0675 Гц / ° K до 4 Гц / ° K. Оба устройства упрощают измерение температуры за счет уменьшения требуемой площади печатной платы, количества компонентов и ресурсов аналогового / цифрового ввода-вывода.Они передают данные о температуре на микроконтроллер через один цифровой вывод ввода / вывода, а добавление одного оптического изолятора делает их идеальными для приложений, требующих гальванической развязки между датчиком и процессором.

Для измерения нескольких температур в разных местах выбор становится более сложным. Термисторы или обычные аналоговые датчики могут быть размещены в соответствующих местах и ​​подключены к входам АЦП при условии, что АЦП имеет достаточное количество входов. В качестве альтернативы MAX6575 передает данные о температуре непосредственно на микроконтроллер; к одному входу ввода / вывода микроконтроллера можно подключить до восьми MAX6575.Одна трасса ввода / вывода соединяет микроконтроллер с этими восемью MAX6575 (, рис. 3, ). Для измерения температуры микроконтроллер на короткое время устанавливает низкий уровень на линии ввода-вывода, а после небольшой задержки первый MAX6575 также устанавливает низкий уровень на линии ввода-вывода. Эта временная задержка пропорциональна абсолютной температуре, а константа пропорциональности программируется с помощью двух выводов на MAX6575.


Рис. 3. Используя схему задержки для кодирования информации о температуре, несколько MAX6575 передают до восьми значений температуры на микроконтроллер через один цифровой вывод ввода / вывода.

Первый датчик удерживает низкий уровень на линии в течение периода, пропорционального температуре (5 мкс / ° K), а затем сбрасывает его. После второй временной задержки, выбранной установкой выводов программирования на большую константу пропорциональности, второй MAX6575 устанавливает низкий уровень ввода / вывода и удерживает его в течение интервала, определяемого 5 мкс / ° K. Таким образом к линии ввода-вывода можно подключить четыре MAX6575. К той же линии ввода / вывода можно добавить еще четыре MAX6575 другой версии с большей задержкой. MAX6575L имеет множители задержки в диапазоне от 5 мкс / ° K до 80 мкс / ° K, а множители задержки MAX6575H — от 160 мкс / ° K до 640 мкс / ° K.Таким образом, до восьми MAX6575 могут быть расположены в разных местах системы, подключенных к микроконтроллеру одной линией ввода / вывода.

Для некоторых систем необходима информация не о точной температуре, а о том, находится ли температура выше или ниже определенного значения. Эта информация может запускать охлаждающий вентилятор, кондиционер, обогреватель или другой элемент управления окружающей средой. В приложениях защиты системы «бит перегрева» может инициировать упорядоченное завершение работы системы, чтобы избежать потери данных при отключении питания системы.Этот единственный бит информации может быть получен путем измерения температуры, как в приведенных выше примерах, но этот подход требует больше программного и аппаратного обеспечения, чем требует функция.

Замена АЦП на рисунке 1 компаратором напряжения дает простой 1-битный выходной сигнал, который может управлять одним выводом ввода / вывода на микроконтроллере ( Рисунок 4 ). Опять же, показанный термистор можно заменить аналоговым датчиком температуры на выходе по напряжению. Большинство таких устройств имеют взаимосвязь между температурой и выходным напряжением, на которую не влияет напряжение питания.Для защиты от колебаний напряжения питания подключите верхнюю часть резистора-делителя компаратора к источнику опорного напряжения вместо напряжения питания.


Рис. 4. Комбинация датчика с компаратором дает 1-битный цифровой выход, который может предупреждать µC о скачках температуры за пределы заранее определенного порога или точки срабатывания.

Систему можно упростить, заменив комбинацию датчик-компаратор термовыключателем, таким как MAX6501. Это монолитное устройство сочетает в себе функции датчика, компаратора, опорного напряжения и внешних резисторов.Когда температура превышает предварительно установленный уровень срабатывания, выходной сигнал с открытым стоком становится низким. Некоторые устройства в этом семействе имеют выходы с открытым стоком, которые становятся низкими, когда температура падает ниже точки срабатывания (MAX6503), а другие имеют двухтактные выходы, которые становятся высокими, когда температура поднимается выше или ниже точки срабатывания (MAX6502, Рисунок 5 или MAX6504). Кроме того, гистерезис можно установить на 2 ° C или 10 ° C, подключив вывод корпуса к V + или заземлению. Доступные температуры срабатывания находятся в диапазоне от -45 ° C до + 115 ° C с шагом 10 ° C.


Рис. 5. MAX6502 выдает на выходе высокий логический уровень, когда его температура превышает предварительно установленное пороговое значение.

Как и в случае с MAX6575, подключение нескольких MAX6501 или MAX6503 к одной трассе ввода / вывода позволяет получать уведомление микроконтроллера, когда температура превышает пороговое значение в одном или нескольких местах. Если система должна знать, какое место пересекло пороговое значение, каждый выход переключателя должен быть подключен к отдельному контакту ввода / вывода.

Эти датчики измеряют собственную температуру кристалла, и поскольку температура кристалла точно соответствует температуре выводов, каждый датчик следует размещать так, чтобы его выводы принимали температуру контролируемого компонента.В некоторых случаях, однако, вы должны измерять температуру, не имеющую тесной связи с датчиком, например, у силовой ASIC, кристалл которой может быть намного горячее, чем окружающая плата. Внутренний датчик температуры может позволить ASIC отключиться в ответ на температурный сбой, но одной только этой возможности не хватает точности, и он редко предупреждает систему о надвигающейся тепловой перегрузке.

Добавив к кристаллу ASIC доступный извне p-n переход, вы можете измерять температуру кристалла напрямую, пропуская два или более различных прямых тока через чувствительный переход и измеряя результирующие напряжения.Разница между двумя напряжениями пропорциональна абсолютной температуре кристалла:

, где I 1 и I 2 — это два уровня тока, протекающих через pn переход, V1 и V2 — результирующие прямые напряжения на переходе. , k — постоянная Больцмана, T — абсолютная температура перехода в градусах Кельвина, q — заряд электрона.

Это измерение, конечно же, требует прецизионной схемы для генерации точных соотношений токов и измерения очень малых разностей напряжений при устранении шума, создаваемого большими переходными процессами на кристалле силовой ASIC.К счастью, датчики температуры с удаленным переходом от Maxim объединяют эти прецизионные аналоговые функции с простым и универсальным цифровым интерфейсом.

MAX6654, например, измеряет температуру удаленного перехода с 8-битным (1 ° C) разрешением и передает результат на микроконтроллер через шину SMBus (, рис. 6, ). Первоначально разработанное для мониторинга температуры процессора на ПК, это устройство имеет другие функции, которые устраняют некоторые накладные расходы контроллера. Например, MAX6654 контролирует температуру удаленного перехода с помощью оконного компаратора и прерывает микроконтроллер, когда температура поднимается выше или ниже предельных значений, ранее загруженных микроконтроллером в его регистры.Вместо того, чтобы постоянно опрашивать MAX6654, микроконтроллер может устанавливать пороговые значения температуры при запуске, а затем игнорировать MAX6654 до тех пор, пока тепловая проблема не потребует его внимания.


Рис. 6. MAX6654 измеряет температуру внешнего P-N перехода (часть дискретного транзистора, ASIC или CPU), пропуская токи через переход и измеряя результирующие прямые напряжения.

Доступный в 10-выводном корпусе µMAX®, MAX6654 может быть размещен рядом с измеряемым переходом.В свою очередь, короткие длины дорожек между сенсорным переходом и MAX6654 помогают избежать наводки шума.

Руководство по работе с датчиком температуры для начинающих

Мониторинг температуры в реальном времени с помощью специальных датчиков температуры гарантирует, что современные меньшие и более быстрые системы работают в безопасной тепловой зоне. Датчики нового поколения отслеживают горячие точки внутренних и внешних компонентов с предельной точностью. Наличие точных, недорогих и простых в использовании сенсорных iC позволяет разработчикам проводить измерения температуры на кристалле, чтобы добиться максимальной производительности от своих систем.

Температура — это наиболее часто измеряемая величина окружающей среды, и многие биологические, химические, физические, механические и электронные системы подвержены влиянию температуры. Некоторые процессы работают хорошо только в узком диапазоне температур. Поэтому необходимо соблюдать осторожность, чтобы контролировать и защищать систему.

При превышении температурных пределов электронные компоненты и схемы могут быть повреждены из-за воздействия высоких температур. Измерение температуры помогает повысить стабильность цепи.Измеряя температуру внутри оборудования, можно определить высокие уровни температуры и предпринять действия для снижения температуры системы или даже отключения системы для предотвращения аварий.

Полностью автономный беспроводной датчик температуры с питанием от вибрационного комбайна

В настоящее время используется несколько методов измерения температуры. Наиболее распространенными из них являются термопары, термисторы и интегральные схемы датчиков (ИС). Что больше всего подходит для вашего приложения, зависит от требуемого диапазона температур, линейности, точности, стоимости, характеристик и простоты проектирования необходимой вспомогательной схемы.

Четыре наиболее распространенных типа датчиков температуры:

  1. Термистор с отрицательным температурным коэффициентом (NTC)
  2. Температурный датчик сопротивления (RTD)
  3. Термопара
  4. Полупроводниковые датчики

Термистор NTC

Термистор NTC обеспечивает высокое сопротивление при низких температурах. При повышении температуры сопротивление быстро падает. Это связано с тем, что термистор NTC испытывает такое большое изменение сопротивления на ° C, небольшие изменения температуры отражаются очень быстро и с высокой точностью (0.От 05 до 1,5 ° C). [1]

Датчик температуры RTD

Резистивный датчик температуры измеряет температуру, коррелируя сопротивление элемента RTD с температурой.

Термопары

Термопара состоит из двух разнородных металлов, соединенных вместе на одном конце, для создания небольшого уникального напряжения при заданной температуре. Термоэлектрическое напряжение, возникающее в результате разницы температур от одного конца провода к другому, на самом деле является суммой всех разностей напряжений вдоль провода от конца до конца.

Термопары

доступны в различных комбинациях металлов или калибровок. Четыре наиболее распространенных калибровки — это J, K, T и E. Каждая калибровка имеет свой диапазон температур и среду, хотя максимальная температура зависит от диаметра провода, используемого в термопаре. Например, термопара типа J изготовлена ​​из железа и константановой проволоки.

Термопары типа K

Термопары очень популярны из-за их низкой тепловой массы и широкого диапазона рабочих температур, который может достигать примерно 1700 ° C для обычных типов.Однако чувствительность термопар довольно мала (порядка десятков микровольт на градус Цельсия). Для получения приемлемого выходного напряжения необходим усилитель с низким смещением.

Термисторы

Термисторы — это специальные твердотельные датчики температуры, которые ведут себя как термочувствительные электрические резисторы. Обычно они состоят из полупроводниковых материалов. В основном существует два типа термисторов: отрицательный температурный коэффициент (NTC), который используется в основном для измерения температуры, и положительный температурный коэффициент (PTC), который в основном используется для управления электрическим током.

Термистор показывает изменение электрического сопротивления при изменении его температуры. Сопротивление измеряется путем пропускания через него небольшого измеренного постоянного тока и измерения возникающего при этом падения напряжения. Когда дело доходит до типа NTC, отрицательный коэффициент может достигать нескольких процентов на ºC, что позволяет схеме термистора обнаруживать мельчайшие изменения температуры, которые нельзя наблюдать с помощью схемы термопары.

Недорогие термисторы часто выполняют простые функции измерения (и определения точки срабатывания) в системах низкого уровня.Термисторы низкой точности часто бывают недорогими. Вы можете найти термометры, которые будут работать в диапазоне температур от -100 ° C до + 550 ° C, хотя большинство из них рассчитаны на максимальные рабочие температуры от 100 ° C до 150 ° C. Простые термостаты или контроллеры на основе термисторов могут быть реализованы с очень небольшим количеством компонентов. Только термистор, компаратор и несколько других компонентов могут сделать эту работу.

Термисторы PTC

Поскольку термисторы являются чрезвычайно нелинейными устройствами, которые сильно зависят от параметров процесса, и их характеристики могут ухудшаться из-за самонагрева, они имеют недостатки в некоторых приложениях.Например, температурная функция сопротивления термистора очень нелинейна, поэтому, если необходимо измерить широкий диапазон температур, вам потребуется выполнить существенную линеаризацию.

ИС датчиков

Существует широкий спектр микросхем датчиков температуры, которые позволяют упростить самый широкий спектр задач по мониторингу температуры. Эти кремниевые датчики температуры существенно отличаются от вышеупомянутых типов по нескольким важным параметрам.

Первый — это диапазон рабочих температур. ИС датчика температуры может работать в номинальном диапазоне температур ИС от -55 ° C до + 150 ° C. Второе важное отличие — функциональность. Кремниевый датчик температуры представляет собой интегральную схему и поэтому может включать в себя обширную схему обработки сигналов в том же корпусе, что и датчик. Нет необходимости добавлять схемы компенсации (или линеаризации) для микросхем температурных датчиков.

Некоторые из них представляют собой аналоговые схемы с выходом по напряжению или по току.Другие комбинируют аналоговые чувствительные схемы с компараторами напряжения для обеспечения функций оповещения. Некоторые другие сенсорные ИС сочетают в себе аналоговую чувствительную схему с цифровыми входами / выходами и регистрами управления, что делает их идеальным решением для микропроцессорных систем.

Цифровой выходной датчик обычно содержит датчик температуры, аналого-цифровой преобразователь (АЦП), двухпроводной цифровой интерфейс и регистры для управления работой ИС. Температура постоянно измеряется и может быть считана в любое время.При желании хост-процессор может дать команду датчику контролировать температуру и установить высокий (или низкий) выход на выходном контакте, если температура превышает запрограммированный предел. Также можно запрограммировать более низкую пороговую температуру, и хост может быть уведомлен, когда температура упадет ниже этого порога. Таким образом, цифровой выходной датчик может использоваться для надежного контроля температуры в микропроцессорных системах.

Как пользоваться?

Датчик температуры выдает аналоговый или цифровой выходной сигнал, мощность которого зависит от температуры датчика.Тепло передается к чувствительному элементу через корпус датчика и его металлические провода. Как правило, датчик в металлическом корпусе имеет преобладающий тепловой путь через корпус. Для датчиков в пластиковых корпусах преобладающим тепловым трактом являются выводы. Таким образом, датчик IC, установленный на плате, отлично справляется с измерением температуры печатной платы.

Если необходимо измерить температуру чего-либо, кроме печатной платы, необходимо убедиться, что датчик и его выводы имеют ту же температуру, что и объект, который вы хотите измерить.Обычно это включает в себя обеспечение хорошего механического (и теплового) контакта путем прикрепления датчика и его выводов к измеряемому объекту с помощью теплопроводящей эпоксидной смолы.

Если необходимо измерить температуру жидкости, датчик можно установить внутри металлической трубки с закрытым концом и погрузить в ванну или ввинтить в резьбовое отверстие в резервуаре. Датчики температуры и вся сопутствующая проводка и цепи должны быть изолированными и сухими, чтобы избежать утечки и коррозии.

Любая линейная цепь, подключенная к проводам в неблагоприятных условиях окружающей среды, может иметь отрицательное влияние на работу мощных электромагнитных источников, таких как реле, радиопередатчики, двигатели с искрящими щетками и т. Д., Поскольку ее проводка может действовать как антенна, а внутренние переходы могут действовать как выпрямители.В таких случаях небольшой байпасный конденсатор между контактом источника питания и шиной заземления помогает устранить шум источника питания.

Контроллер интеллектуального вентилятора охлаждения, основанный на ИС датчика температуры LM56, который включает вентилятор при одной температуре, а затем увеличивает его скорость, если температура поднимается выше второго порогового значения.

Также можно добавить фильтрацию выходного сигнала. При использовании аналоговых датчиков, которые не должны напрямую управлять большими емкостными нагрузками, конденсатор выходного фильтра может быть изолирован с помощью резистора низкого номинала (например, цепи Зобеля), включенного последовательно с конденсатором.

Трехконтактный датчик требует трех проводов для питания, заземления и выходных сигналов. При измерении температуры в удаленном месте желательно минимизировать количество проводов между датчиком и основной платой. В таких ситуациях можно использовать двухконтактный датчик. Переход на два провода означает, что питание и сигнал должны сосуществовать на одних и тех же проводах.

От усилителей звука до персональных компьютеров

Усилители звука, которые рассеивают более нескольких ватт, всегда имеют силовые транзисторы или всю интегральную схему усилителя мощности, прикрученную к радиатору.Часто желательно контролировать температуру в усилителе мощности звука, чтобы защитить электронику от перегрева, включив охлаждающий вентилятор или выключив систему. Хороший способ контролировать температуру — установить датчик температуры на радиаторе. Установите корпус датчика, просверлив отверстие в радиаторе и приклейте датчик к радиатору термопастой или теплопроводящей эпоксидной смолой.

Персональные компьютеры последних поколений рассеивают много энергии, что означает, что они имеют тенденцию к нагреву.Микросхемы высокопроизводительных компьютерных процессоров потребляют слишком много энергии и могут сильно нагреваться, чтобы получить чрезвычайно опасные повреждения из-за высокой температуры. Для повышения стабильности системы часто желательно контролировать температуру процессора и включать охлаждающий вентилятор, замедлять системные часы или полностью выключать компьютер, если процессор становится слишком горячим.

Хорошее место для установки датчика температуры находится в центре отверстия, просверленного в радиаторе микропроцессора, который может быть прикреплен к процессору или прикреплен эпоксидной смолой.Другое место — это полость под процессором с разъемом. Также возможно установить датчик на печатной плате рядом с разъемом микропроцессора.


Автор — международно сертифицированный внештатный разработчик электронных схем, технический писатель, обозреватель, консультант, эксперт в предметной области и инструктор.

Эта статья была впервые опубликована 20 августа 2017 г. и обновлена ​​2 апреля 2020 г.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *