Как понизить напряжение в сети: Как уменьшить повышенное напряжение в электросети? Какие могут быть варианты?

Содержание

Как понизить напряжение. Следствия снижения напряжения в сети. Чем опасно высокое и повышенное напряжение

Внимание новинка! Стабилизатор напряжения для всего дома SKAT ST-12345 разработан специально для сетей с нестабильным сетевым напряжением. Стабилизирует напряжение в диапазоне от 125 до 290 Вольт! Имеет большую мощность 12 кВА! Гарантия — 5 лет! Видео испытания стабилизатора смотрите .

Высокое и повышенное напряжение. Причины возникновения

Как в наших в наших электросетях могут появиться высокое или повышенное напряжение. Как правило к повышению напряжения могут привести некачественные электрические сети или аварии в сетях. К недостаткам сетей можно отнести: устаревшие сети, низкокачественное обслуживание сетей, высокий процент амортизации электрооборудования, неэффективное планирование линий передач и распределительных станций, не управляемый роста количества потребителей. Это приводит к тому, что соти тысяч потребителей, получают высокое или повышенное напряжение. Значение напряжения в таких сетях может достигать 260, 280, 300 и даже 380 Вольт.

Умные системы и индивидуальное энергосберегающее освещение великолепны. кандидатов для низковольтной проводки. Установка линии низкого напряжения для этих огней означает меньшее количество конверсий в вашем доме. Аналогичным образом, создание умного дома использует несколько. цифровых устройств. Установка низковольтных цепей для удовлетворения этих требований может быть плохой идеей в зависимости от того, сколько. цепи, в которых вы нуждаетесь.

Не уверен, работаете ли вы на низком или высоком напряжении? Мы рассмотрим ваше напряжение, и мы даже поможем вам в вашем текущем проекте, если хотите! Для получения дополнительной информации о домашних и деловых электрических осмотрах посетите. Это зависит от функции схемы!

Одной из причин повышенного, как не странно, может быть пониженное напряжение потребителей, находящихся далеко от трансформаторной подстанции. В этом случае часто электрики умышленно повышают выходное напряжение электрической подстанции, что бы добить удовлетворительных показателей тока у последних в линии передач потребителей. В итоге у первых в линии напряжение будет повышенным. По этой же причине можно наблюдать повышенное напряжение в дачных поселках. Здесь изменение параметров тока связаны с сезонностью и периодичностью потребления тока. Летом мы наблюдаем рост потребления электроэнергии. В этот сезон на дачах находится много людей они используют большое количество энергии, а зимой потребление тока резко падает. В выходные дни потребление на дачных участках растет, а в рабочие дни падает. В результате имеем картину неравномерно потребления энергии. В этом случае, если установить выходное напряжение на подстанции (а они как правило не достаточной мощности) нормальным (220 Вольт), то в летом и в выходные напряжение резко просядет и будет пониженным. Поэтому электрики изначально настраивают трансформатор на повышенное напряжение. В итоге зимой и в рабочие дни напряжение в поселках высоко или повышенное.

Эти различные напряжения достигаются с помощью резисторов от основной линии питания последовательно до конкретной точки цепи. Если вам известно, что измеряемый ток измеряется определенной точкой цепи, требуемое напряжение в точке и напряжение питания, значение последовательного резистора рассчитывается по закону Ома, используя требуемое падение напряжения на резисторе.

Если часть схемы потребляет различное количество тока в работе из-за его конструкции — например, привод двигателя с изменяющейся нагрузкой, такой как модельный бак, идущий в гору — падение напряжения, вызванное резистором, будет увеличиваться с увеличением нагрузки, компоненты будет получать более низкое напряжение, чем вы рассчитывали. Это может иметь различные эффекты, такие как питание, нестабильность или просто схема, просто отказывающаяся функционировать.

Вторая большая группа причин появления высокого напряжения — это перекосы по фазам при подключении потребителей. Часто бывает так, что подключение потребителей происходит хаотично, без предварительного плана и проекта. Или в ходе реализации проекта или развития поселений происходит изменение значения потребления на разных фазах линии передач. Это может привести к тому, что на одной фазе напряжение будет пониженным, а на другой фазе повышенным.

В этом случае требуется какая-то регулировка напряжения к нижней части напряжения цепи. Для получения постоянного напряжения используются различные методы. Рядный резистор, работающий на стабилитрон в интересующей точке, является одним из способов. Есть интегрированные регуляторы напряжения доступны с двумя терминалами в серии с поставкой, на котором выполняется до точки интереса, а третий терминал, подключенный к точке отсчета, как правило, отрицательной линии электропитания.

Проблема с любыми типами резисторов серии и интегральных схем регулятора напряжения заключается в том, что ток, протекающий через резистор, генерирует тепло. Если ток находится в миллиамперном диапазоне с сопротивлением в тысячах Ом, это тепло незначительно. В более высоких силовых цепях нагрев становится проблемой и должен быть удален радиаторами или вентиляторами.

Третья группа причин повышенного напряжения в сети — это аварии на линиях электропередач и внутренних линиях. Здесь следует выделить две основные причины — обрыв нуля и попадание тока высокого напряжения в обычные сети. Второй случай — это редкость, случается в городах в сильный ветер, ураган. Бывает, что линия питания электротранспорта (трамвая или троллейбуса) попадает при обрыве на линии городских сетей. В этом случае в сеть может попасть и 300, и 400 Вольт.
Теперь рассмотрим, что происходит при пропадании «нуля» во внутренних домовых сетях. Этот случай бывает довольно часто. Если в одном подъезде дома используется две фазы, то при пропадании нуля (например нет контакта на нуле) происходит происходит изменение значения напряжения на разных фазах. На той фазе, где сейчас нагрузка в квартирах меньше, напряжение будет завышенным, на второй фазе заниженным. Причем напряжение распределяется обратно пропорционально нагрузке. Так если на одной фазе нагрузка именно в этот момент в 10 раз больше чем на другой, то мы можем получить на первой фазе 30 Вольт (низкое напряжение), а на второй фазе 300 Вольт (высокое напряжение). Что приведет к сгоранию электрических приборов, и возможно пожару.

В оборудовании с батарейным питанием значительная часть емкости аккумулятора и, следовательно, время работы от батареи, теряются в тепле. Для решения проблемы потери энергии требуется другое решение. Когда конденсатор заряжается до требуемого напряжения, импульсы останавливаются до тех пор, пока напряжение не упадет очень немного ниже требуемого напряжения из-за выведенного из него тока, который перезапускает импульсы и, таким образом, удерживает конденсатор. Это называется схемой «доллар», потому что напряжение «баксов», то есть, подает напряжение питания.

Чем опасно высокое и повышенное напряжение

Высокое напряжение опасно для электрических приборов. Значительное повышение напряжения может привести к сгоранию приборов, их перегреву, дополнительному износу. Особенно критичны к высокому напряжению электронное оборудование и электромеханические приборы.

Подобная схема может использовать свертывающее магнитное поле индуктора для повышения напряжения, идущего на нагрузочный конденсатор, к более высокому напряжению или даже инвертирования полярности выходного напряжения. Это означает, что в цепи может использоваться более низкое напряжение, но более высокая общая емкость аккумулятора.

Преимущество балансировки последовательных регуляторов заключается в том, что при правильном проектировании они теряют очень мало энергии в качестве тепла, а это означает, что они могут работать без больших радиаторов и вентиляторов. У регуляторов усиления есть дополнительное преимущество, что они могут повышать напряжение. Таким образом, можно изменить оригинальную схему схемы, чтобы доставить более высокое напряжение на часть схемы с низким током, причем секция высокого тока подключена непосредственно к источнику питания.

Повышенное напряжение может привести к пожару в доме, нанести большой ущерб.

Если речь идет о снижении напряжения в сети, то нахождение проблемы является более сложной задачей, поскольку она зависит от типа используемого потребителя электроэнергии. Можно выделить два основных типа потребителей: сопротивления и двигателя.

Для приложений с высоким током можно использовать метод, называемый широтно-импульсной модуляцией. В этом случае напряжение не уменьшается, но ток течет очень короткими импульсами. Ширина отдельных импульсов выбирается таким образом, чтобы средний ток был тем, что вы получили бы при более низком напряжении. Этот тип управления с контролем длительности импульса часто используется в таких приложениях, как управление скоростью и яркость подсветки.

Когда относительно высокий вход 24 В или более должен быть очень точно отрегулирован до гораздо более низкого напряжения, например 3 В или менее, с очень низким током покоя, нет доступного готового решения. Например, если необходимо эффективно запускать маломощный микроконтроллер из 24-х или 48-вольтовой батареи, обычно требуется два каскадных регулятора. А ток покоя, вероятно, будет больше, чем ток нагрузки.

Что касается потребителя типа сопротивления, то для них снижение напряжения прямо пропорционально падению потребляемого тока (з-н Ома l = U /R). Для предохранителей слабый ток не несет никаких опасностей. Если взять сопротивление, потребляющее 300 Вт (рис. 55.2) при 240 В, то при напряжении 24 В оно будет потреблять только 3 Вт.

Что касается типа двигателя, то вначале необходимо отличать их по действию большего момента сопротивления (рис. 55.3). Так, можно сравнить поршневые (больший момент сопротивления? и приводные двигатели (меньший момент сопротивления?.

Простая схема с низкой себестоимостью, показанная на рисунке, будет работать на 75 мкА. Менее точные оценки также доступны по более низкой цене. Это может быть сделано гораздо больше, если медленнее, коммутируемой желателен, хотя. Это также ограничило бы ток в случае короткого выхода. Что может вызвать такое повышенное электрическое давление? Мы отключили электрическую нагревательную подушку, а затем мы отсоединили лампу с зажимом, прикрепленную к изголовью.

Урок состоит в том, что электрические устройства, подключенные к кровати, вызывают электрическое напряжение, независимо от того, включены ли они или нет, а некоторые, возможно, все люди чувствительны к этому давлению. Давление воды присутствует на кране, даже когда кран выключен. Аналогичным образом электрическая система и электрические устройства, подключенные к ней, вызывают электрическое давление, даже если устройства не включены.

Относительно центробежных вентиляторов, то они находятся между двумя данными категориями. Преимущественно их характеристики не выдерживают значительного падения напряжения питания, в связи, с чем их относят к категории устройств с большим моментом сопротивления.

Вы можете взять небольшой инструмент, известный как датчик напряжения, и переместить его к лампе, вставленной рядом с кроватью. Датчик напряжения начнет издавать звуковой сигнал, когда он приближается к лампе, независимо от того, выключена ли лампа или нет. Датчик напряжения указывает на невидимое давление, поступающее от выключенной лампы.

Ваше тело действует как антенна в постели. Напряжение влияет на ваше тело от всего, что заперто рядом с кроватью, а также от верхнего света и от проводки в стене. Напряжение также влияет на ваше тело из соседнего металла, который может действовать как антенна на вашей кровати. Например, металлическая рама может действовать как антенна и увеличивать напряжение на вашем теле.

Напомним, что способность двигателя приводить в движение устройство (момент на валу) зависит от квадрата напряжения питания. То есть, если он предназначен для работы от питания 220 В, а напряжение снизится до 110 В, то крутящий момент уменьшится в 4 раза (рис. 55.4). Если при снижении напряжения момент сопротивления слишком велик, то двигатель остановится. При этом потребляемый двигателем ток, будет равен пусковому, который он будет потреблять во время вынужденной остановки. В этот момент спасти его от сильного перегрева может только встроенная защита (тепловое реле), которое быстро отключит питание.

Почему напряжение влияет на ваше тело? Система связи организма — это нервная система, а сигналы, которые проходят вверх и вниз по нервам, а также к органам и клеткам, являются электрическими. Если электрические сигналы поступают в ваше тело снаружи, они могут воздействовать на организм различными способами. Возможно, воздействие избыточного напряжения выбивает вашу иммунную систему на ступеньку, не зная об этом.

Хотя нет гарантии, что вы заметите какое-либо улучшение в первую ночь, когда вы спите с уменьшенным напряжением, помните, что снижение напряжения тела до нуля — это хорошо и что ваше тело, по всей вероятности, испытает полезные долгосрочные эффекты. В некоторых сообщениях снова появляется мечта или с более яркими мечтами.

При низком моменте сопротивления приводимого устройства снижение напряжения приведет к уменьшению скорости вращения, поскольку мотор обладает меньшей располагаемой мощностью. Данное свойство широко применяется в большинстве многоскоростных двигателей, которые вращают вентиляторы кондиционеров (рис. 55.5). При переключении на БС (большая скорость) сопротивление замкнуто на коротко и двигатель запитывается от 220 В. Скорость его вращения номинальная.

Как измерить и уменьшить напряжение тела у меня в постели? Вам понадобятся простые материалы. 5-6 из нержавеющей стали, меди или железной трубы из отдела сантехники в магазине домашних товаров — минимальная стоимость.

  • Заземляющий шнур.
  • Если ваша кровать имеет металлическую раму, заказывайте 2 заземляющих шнура.
Если вы используете заземляющий стержень на земле, вам также понадобится длинная отвертка и стакан воды.

Примечание: вы можете сделать эти измерения с человеком, лежащим на кровати. Ткань будет привлекать напряжение так же, как и тело. Номера не будут точными, но они не будут точными в любом случае, поэтому заменитель тела будет работать для наших измерительных целей. Вы всегда можете ложиться или кого-то еще ложиться на кровать, чтобы получить фактические цифры.

При переключении на МС (малая скорость) сопротивление соединено последовательно с обмоткой двигателя, из-за чего напряжение на нем снижается. Соответственно уменьшается и крутящий момент на валу, таким образом, вентилятор начинает вращаться с пониженной скоростью. Потребляемый ток становится меньше. Данной свойство широко применяется при изготовлении электронных регуляторов скорости (на основе тиристоров), служащих для регулирования давления конденсации, изменяя скорость вращения вентиляторов в конденсаторах с воздушным (рис. 55.6).

Ваши цифры с проводящей тканью, вероятно, будут меньше, чем у фактического человека, лежащего на кровати. Для выполнения этих инструкций необходимо иметь надлежащую рабочую розетку с 3 отверстиями. Если ваш дом старше, и у вас есть только отверстия с 2 отверстиями, вы также можете сделать эти измерения, но вы не можете использовать свои выходы. Не используйте в этом упражнении какую-либо розетку, которая неправильно подключена или имеет только 2 отверстия. Как только вы определили правильно подключенную 3-луночную розетку, вы можете использовать ее в этом упражнении. Поместите 2-футовый кусок проводящей ткани на кровать, где человек будет спать, или кто-то другой лежит в постели. Ваша цель будет измерять напряжение на одной части проводящей ткани по сравнению с напряжением в земле. Для этого должен быть провод из проводящей ткани на землю, с метром между ними для считывания различий в напряжении. Теперь возьмите ваш вольтметр и наблюдайте за двумя проводами, которые исходят от него. Один вывод красный, а другой черный. Красный провод идет к проводящей ткани на кровати, а черный провод заземлен на землю. Сначала сделаем красное знакомство. Используя один комплект зажимов для аллигатора, соедините металлический конец красного провода с куском металлической трубы. Металл должен коснуться металла. Поместите металлическую трубу на проводящую ткань. Затем поместите черный провод. Закрепите зажим аллигатора на металлическом конце черного провода. Подключите фиктивный штекер к правильно подключенной розетке с 3 отверстиями. Штепсельная вилка является «манекеном», потому что только контакт заземления входит в розетку. Другие два зубца не вступают в контакт с живыми проводами. Их единственная цель — удерживать заземляющий штырь. Штырь заземления соединяется с электрической системой заземления вашего дома. Электрическая система заземления находится в контакте с землей. Если у вас нет правильно подключенной 3-луночной розетки, или если в вашей спальне есть только отверстия с 2 отверстиями, вам придется использовать комплект зажима для аллигатора, чтобы прикрепить длинный провод к черному проводу, пропустить более длинный вытащите окно, удлините длинный провод до земли и прикрепите его другим набором зажимов для крокодилов к металлической части отвертки, помещенной в грязь. Вместо того, чтобы использовать систему заземления дома, вы фактически будете непосредственно заземлять свою установку на земле. Если грязь сухая, залейте стакан воды вокруг отвертки, чтобы улучшить проводимость. Хорошо, теперь у вас должна быть правильная настройка. Красный провод идет к замене тела, а черный провод заземлен на земле. Пришло время посмотреть, что такое напряжение вашего тела. Включите измеритель напряжения тела, с настройкой на «2 В.». Если показания больше 2 В, перейдите к набору до следующей более высокой настройки. Выберите настройку 2 вольта, если у вас есть выбор. Если показание больше 2 В, поднимите диск до следующей более высокой настройки. Поскольку мы хотим опуститься до 20 мВ или ниже, мы будем говорить в терминах милливольт, а не вольт. Переместите десятичную точку 3 места вправо, чтобы читать милливольта. Посмотрите на единицы после этого номера. Они могут быть милливольтами, и в этом случае просто запишите это число. Или они могут быть в вольтах, а затем мысленно перемещать десятичную точку над тремя местами вправо. Например, предположим, что ваше чтение составляет 749 В, тогда вы должны записать 749 мВ. Все наши разговоры будут в милливольтах, хотя электрик будет более привык говорить о вольтах. Иногда уровни намного выше. Теперь давайте посмотрим, какие предварительные шаги вы можете предпринять, чтобы уменьшить свои числа. В идеале мы хотим получить показание менее 20 мВ.

  • В большинстве домов есть 3 отверстия в спальнях.
  • Электрик должен быть вызван для ремонта любых неисправных выходов.
Первые шаги по уменьшению напряжения на корпусе.

Данные регуляторы, называемые преобразователями или вентилями тока, функционируют, как и остальные регуляторы-ограничители, работая по принципу «срезания» частоты амплитуды переменного тока.

В первой позиции давление высокое и регулятор скорости полностью пропускает полупериоды сети. На клеммах двигателя напряжение (заштрихованная область) соответствует питанию в сети, и он начинает вращаться с максимальной скоростью, при этом потребляя номинальный ток.

Во второй позиции давление конденсации начинает снижаться. Вступает в регулятор, срезая часть каждого полупериода, поступающего на вход двигателя. Напряжение на клеммах двигателя уменьшается, вместе со скоростью и потребляемым током.

В третьей позиции напряжение слишком слабое. Поскольку крутящий момент двигателя меньше момента сопротивления вентилятора, он останавливается и начинает нагреваться. Таким образом, регуляторы скорости в основном настраиваются на предельно допустимое значение минимальной скорости.

Кроме того, метод «срезания» может применяться в однофазных двигателях, когда те используются для приводов с низким моментом сопротивления. Что касается трехфазных двигателей (используемых для привода машин с большим сопротивлением), то рекомендовано применение многоскоростных двигателей, двигателей постоянного тока или частотных преобразователей.

В повседневной жизни нам приходится часто сталкиваться с падением напряжения. Оно может быть вызвано кратковременным отключением или резким падением силы тока. Для того чтобы ограничить падение напряжения необходимо правильно подбирать сечение питающих проводов. Но в некоторых случаях снижение уровня напряжения не обусловлено снижением питания в подводящих проводах.

Для примера возьмем катушку электромагнита 24 В, управляющую небольшим контактором (рис. 55.7). Когда электромагнит срабатывает, то потребляет ток равный 3 А, а при удержании он составляет 0,3 А (10 раз меньше). Другими словами, подключенный электромагнит потребляет ток, равный десятикратному току режима удержания. Несмотря на то, что продолжительность включения невелика (20 мс), данный фактор может иметь влияние в больших командных цепях с большим количеством контакторов и реле.

На представленной схеме (рис. 55.8) установлено 20 контакторов — С1-С20. Как только ток выключается, все они находятся в ждущем режиме, а при включении одновременно срабатывают. При срабатывании каждый контактор потребляет 3 А, а это значит,что через вторичную обмотку трансформатора будет идти ток 3×20=60 А. Если сопротивление вторичной обмотки составляет 0,3 Ом, то снижение напряжения на ней при срабатывании контакторов составит 0,3×60=18 В. Поскольку напряжение контакторов достигает всего 6 В, они не смогут работать (рис. 55.9).

В этом случае трансформатор вместе с проводкой будут сильно перегреваться, а сами контакторы гудеть. И так будет продолжаться до тех пор, пока не сработает автомат защиты или не перегорит предохранитель.

Если сопротивление вторичной обмотки трансформатора составит 0,2 Ома, то при включении контакторов напряжение в ней составит 0,2×60=12 В. При этом контакторы будут запитаны от 12 В, вместо 24 В, и нет никакой вероятности, что они включатся. Их работа будет аналогичной кА в предыдущем примере, поскольку напряжение в сети аномально высокое.

Трудности с сопротивлением на вторичной обмотке объясняются значительным напряжением холостого хода на выходе трансформатора, в отличие от напряжения под нагрузкой. С увеличением потребляемого тока, выходное напряжение снижается.

В качестве примера рассмотрим трансформатор 220/24 (рис. 55.10) мощностью 120 ВА, подключенный к сети 220 В. Если трансформатор выдает ток 5 А, то выходное напряжение составит 24 В (24×5=120 ВА). Но при снижении потребляемого тока до 1 А, выходное напряжение становится большим, например, 27 В. Это спровоцировано воздействием сопротивления провода вторичной обмотки.

Как только ток начинает снижаться, выходное напряжение повышается. И обратная ситуация: как только потребляемый ток становится больше 5 А, выходное напряжение уменьшается до 24 В, в результате чего трансформатор перегревается.

Если трансформатор небольшой мощности, то могут возникнуть определенные трудности, поэтому не следует пренебрегать подбором мощности трансформатора.

Высокое напряжение в сети | Вольт-Ампер

Высокое напряжение в электросети — достаточно частое явление. Достаточно частое и достаточно опасное. Повышение сетевого напряжения может привести к поломке подключенных электрических приборов, к перегреву домовой электропроводки, к аварийным ситуациям.

Причины повышения напряжения в сети

Давайте выясним, по какой причине может возникать высокое напряжение в сети.  Все причины можно разделить на две группы:

  • аварийное повышение напряжения в сети;
  • повышенное напряжение в сети в результате плохой регулировки или неравномерности нагрузки.

Высокое напряжение в результате аварии

Напряжение в электросети может резко вырасти в результате различных аварий:

  • обрыв нуля в результате плохого соединения проводки;
  • попадание высокого напряжения в результате аварии соседней линии высокого напряжения;
  • быстрое отключение нагрузки большой мощности в этой линии сети;
  • аварии на электрораспределительной подстанции.

Наиболее частой причиной резкого повышения напряжения является «обрыв нуля», происходит это в случае «обгорания» нулевого провода или потери контакта нулевого провода в месте коммуникации. В этом случае в подключенных домах или квартирах может оказаться до 380 Вольт.  

Высокое напряжение в результате неверного регулирования или планирования

Напряжение в сети может стать  высоким в следующих случаях:

  • неверная работа трансформаторов на распределительной подстанции;
  • значительная неравномерность подключения нагрузок  по фазам;
  • недостаточная мощность линии электропередач или оборудования подстанции;
  • сезонные значительные колебания мощности потребления электроэнергии летом и зимой;
  • повышение напряжения на выходе с подстанции для обеспечения приемлемого напряжения в самом конце линии электроснабжения.

Наиболее частой причиной повышенного  напряжения  в сети является неравномерность подключенной нагрузки по фазам. Происходит это, как правило, в частном секторе, в сельских поселениях, дачных поселках. Подключение домов в таких местах происходит часто, без предварительного планирования, к ближайшей линии электропередач. В результате таких подключений к одной фазе может быть подключено потребителей значительно больше, чем к другой фазе. А значит, у потребителей на одной фазе будет пониженное напряжение, а у потребителей на другой фазе будет повышенное напряжение. По этой причине в двух соседних дачных домах может быть напряжение в сети 250 и 180 Вольт.

Чем опасно высокое напряжение в электросети

Высокое напряжение в сети может быть очень опасным. Существенное повышение напряжения несет опасность здоровью человека, опасность развития аварийной ситуации, опасность воспламенения и пожара.

Что происходит при повышении напряжения?

Первая опасность — это нагрев элементов электрической проводки, нагрев изоляции проводников, нагрев элементов электрических приборов. Дополнительный нагрев, может быть, сразу и не приведет к поломке оборудования или аварии, но, в любом случае, скажется на прочности и долговечности изоляции проводников и существенно снизит сроки эксплуатации приборов.

Высокое напряжение очень опасно для приборов, имеющих магнитные трансформаторы, электромагнитные излучатели, микроволновые излучатели, индукционные катушки. При увеличении напряжения в сети в таких устройствах существенно растет мощность магнитного или индукционного потока, что приводит к поломке прибора. По этой причине, при повышенном напряжении быстро выходят из строя микроволновые печи, индукционные варочные панели, индукционные котлы отопления и другие подобные приборы.

Высокое напряжение опасно для приборов, имеющих электродвигатели и компрессоры. К таким прибором относятся холодильники, стиральные машины, пылесосы, электрические насосы, кондиционеры, сплит-системы, кухонные миксеры, мясорубки, кофемолки. При повышении напряжения растет нагрузка на подвижные части этих приборов, на обмотки и контакты электродвигателей, что приводит к  их поломке и дорогостоящему ремонту.

Большую опасность высокое напряжение представляет для электронных приборов и электронных схем управления. Достаточно высокое напряжение приводит к полному уничтожению элементов электронных плат. 

 

Существенное повышение напряжения выше 300-400 Вольт может приводить к взрывам конденсаторов и других емкостных элементов, к перегреву электрических проводников и короткому замыканию. Такие аварии могут приводить к воспламенению и пожару.  

Как понизить напряжение в электросети

Прежде всего необходимо выяснить причины повышения напряжения в сети.

Если причиной высокого напряжения является неравномерность нагрузки  в вашей линии электропередач, то можно рассмотреть вопрос о переключении части абонентов на другую линию.

Если причиной повышения напряжения стала некорректная работа электрораспределительного оборудования, то необходимо обратиться в сервисную службу городских или поселковых электросетей.

Если устранить причину повышения напряжения административным путем не удается, то необходимо использовать стабилизаторы напряжения для обеспечения безопасного и эффективного электроснабжения.

В зависимости от значения напряжения, мощности подключаемых устройств, возможности установки дополнительного оборудования, следует выбрать необходимый стабилизатор напряжения.

Наиболее эффективным решением является установка мощного стабилизатора напряжения на входе в дом. Если установка такого прибора невозможна, можно использовать отдельные локальные стабилизаторы для защиты наиболее чувствительного оборудования и приборов.

При выборе стабилизатора напряжения следует обратить внимание на следующие параметры:

  • номинальная мощность стабилизатора;
  • фактическая мощность стабилизатора во всем диапазоне входных напряжений;
  • скорость стабилизации напряжения;
  • возможность эксплуатации в круглосуточном режиме;
  • надежность прибора.

Мы рекомендуем использовать стабилизаторы напряжения серии SKAT ST. Стабилизаторы этой серии имеют высокую мощность, высокую скорость стабилизации, не боятся перегрузок, могут работать круглосуточно. Более подробную информацию о технических параметрах смотрите в разделе «Стабилизаторы напряжения»

Стабилизаторы напряжения SKAT ST являются надежными устройствами, заводская гарантия — 5 лет!

Стабилизаторы напряжения SKAT ST помогут Вам эффективно решить проблемы низкого и высокого напряжения в сети. Стабилизаторы будут служит Вам долго и надежно. 

Причины повышения и понижения напряжения в сети

Во многих российских регионах электрические сети находятся в очень плохом состоянии. Нередко там возникает повышение или понижение, скачки напряжения, из-за чего случаются сбои в функционировании всех видов электронной аппаратуры, бытовой техники, а иногда и их возгорание.

Каковы показатели аномального напряжения?

В ГОСТе строго прописано, что нормальным отклонением напряжения от показателя в 220 В можно считать 10%, то есть, пределы 200-240 В считаются приемлемыми. На данный момент чаще встречается проблема пониженного напряжения, связанного с износом линий электропередач, а также увеличением нагрузки на них. Повышенное напряжение встречается реже, но это явление считается более опасным, так как из-за него техника выходит из строя намного быстрее.

В некоторых случаях при внезапном отключении подачи напряжения возникают импульсные помехи, при которых происходит бросок напряжения и тока. В редких случаях в квартирные электросети попадает напряжение в 380 В, а не 220 В, как это должно быть. Это становится причиной поломки электрических устройств и бытовой техники, а также возникновения очагов возгорания.

Повышенное напряжение

Повышение напряжения может наблюдаться в жилых домах, где проводка находится в аварийном состоянии. При этом из-за отсоединения общего нулевого провода случается «обгорание нуля», а соседние фазы получают опасное напряжение в 360 вольт. Однофазное напряжение в квартирах берется из трехфазного. Обрыв нуля делает так, что напряжение становится зависимым от нагрузки, влияющей на соседние фазы. При разном значении нагрузки отмечается и различное напряжение на бытовой электронике, иногда достигающее 380 В. С этим связано отсутствие предохранителей на нулевом проводе. При повышении напряжения даже до 250 вольт бытовая техника будет служить вдвое меньше, а при сильном превышении нормального уровня напряжения на входе можно говорить о возможности выхода техники из строя и ее возгорании. Чаще всего, напряжение в бытовой электросети ниже нормального уровня.

Пониженное напряжение

Напряжение может понизиться по разным причинам, к примеру, при одновременном подключении ряда мощных электрических приборов, включении отопительных приборов в большом количестве (свойственно для зимы), сбои в функционировании подстанции и прочих. При продолжительной работе электротехники в условиях пониженного напряжения можно говорить о вероятности ускорения износа компонентов, перегрева деталей, а также возгорания. Статистика такова, что количество пожаров заметно увеличивается именно во время холодного сезона. Первая причина состоит в халатном отношении со стороны самих жильцов, а вторая связана со скачками напряжения и неисправностями электрической сети.

Как же поступить рядовому потребителю, если в доме наблюдаются скачки напряжения? Самым очевидным вариантом выхода из ситуации и защиты от повышения или понижения напряжения является монтаж бытового стабилизатора подходящей мощности. Ее требуется рассчитать в зависимости от электроприборов, которые будут подключены к стабилизатору. Наиболее востребованными показателями мощности стабилизаторов является 8-10 кВт.

Симисторные стабилизаторы российского и украинского производства считаются более надежными. Их особенностями является более продолжительный срок эксплуатации, отсутствие шума при работе и лучшие эксплуатационные качества, а также безопасность в эксплуатации. Их установка освободит вас от беспокойства за правильность работы техники, подключенной к ним.

Подключение стабилизатора напряжения выполняется между энергосетью и электронным устройством. Этот прибор берет из сети имеющееся напряжение, которое он преобразует в «правильное», подавая его к конечному электроустройству. При возникновении критической ситуации, когда происходит чрезмерное падение или повышение сетевого напряжения, устройство просто отключает его от потребителя, переходя в состояние ожидания до того момента, пока не произойдет восстановление напряжения до разумных пределов. Это позволяет стабилизатору не только выполнять функцию по стабилизации напряжения, но и защищать электроприборы, с чем не способны справиться предохранители или автоматические выключатели.

Принцип работы стабилизатора

В стандартном варианте контролером сравнивается напряжение на выходе с опорным, после чего происходит изменение воздействия на регулирующий элемент. В качестве последнего может выступать проходной транзистор или ключевая схема в зависимости от типа устройства. Изменение направлено на компенсацию возникающего расхождения. Воздействие может быть таким, что на регулирующем элементе меняется напряжение, либо производится изменение частоты или скважности управляющих импульсов.

Как понизить напряжение на 1 вольт

чтобы не затронуть мощность и снижать вольты, ампера придется затронуть

придется сопротивление снижать

Допустимый выходной ток трансформатора определяется сечением его обмоток: если нагрузка потребляет слишком большой ток — обмотки греются, а могут и сгореть. Коэффициент трансформации определяется конструкцией трансформатора — числом витков первичной и вторичной обмоток. Чтобы уменьшить напряжение, возникающее на вторичной обмотке — надо во столько же раз уменьшить напряжение, подаваемое на первичную обмотку (поставив еще один трансформатор).

ищешь кандидата на нобелевскую премию

Снизить напряжение можно: 1) В сети переменного тока понижающим трансформатором. 2). В сети постоянного тока преобразователем (мультивибратор, трансформатор, выпрямитель) 3). В любой сети поможет ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ из двух резисторов, НО он ограничит и ток, и мощность, и часть энергии бесполезно затратит в нагрев делителя. Третий пункт выкинь из головы, второй сложен, первый не подходит к твоей «Кроне».

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

Зарядное устройство вашего смартфона;

Блок питания ноутбука;

Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

Зарядное устройство вашего смартфона;

Блок питания ноутбука;

Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Защита от понижения напряжения

Бытовая техника не любит повышенного напряжения сети. Не менее опасно для нее и понижение напряжения в сети. Если оно опустится ниже 190 В, может выйти из строя блок питания компьютера. С ним вместе иногда ломаются и некоторые другие комплектующие. Низкое напряжение – частая причина поломки стиральных машин, компрессоров холодильников, спутниковых тюнеров и другой техники.

Причины пониженного напряжения с сети

  1. Аварии в сетях электроснабжения. Не всегда аварийные ситуации приводят к полному отключению потребителей, случаются и такие, когда напряжение на участках сети понижается ниже допустимых пределов.
  2. Перегрузки сети. Происходят в районах по соседству с промышленными объектами. В спальных районах перегрузки возникают в жаркие дни из-за массового использования устройств кондиционирования и вентиляции и в холодные – из-за подключения обогревателей.
  3. Нарушение контактов в электрощитах. Увеличение сопротивления в месте контакта приводит к нагреву, что еще больше увеличивает его сопротивление. И так – до полного обрыва.
  4. Использование мощных электроприемников в сетях, не рассчитанных для их работы. Сварочный аппарат, работающий у соседей, вызывает понижение напряжения, так как сечение проводов сети не рассчитано на потребляемый им ток.
  5. Не соответствие электропроводки существующей нагрузке. В старом жилом фонде проводка не рассчитана на подключение такого количества современных бытовых проборов, используемых теперь повсеместно.
  6. Проектные ошибки. Например, при подключении коллективных автостоянок в целях экономии сечение кабелей занижают. При подключении мощных потребителей увеличенное сопротивление кабельной линии гасит часть напряжения и до абонента доходит его пониженное значение.

Внешние признаки понижения напряжения

  • Резкое или плавное изменение яркости ламп накаливания.
  • Внезапные отключения бытовой техники: телевизоров, компьютеров, стиральных машин.
  • Гудение компрессора холодильника и его нагрев.
  • Переход UPS на работу от аккумулятора, о чем он сообщает прерывистым звуковым сигналом.
  • Не нормальное поведение бытовой техники.

Наименьшее напряжение в сети соответствует вечернему времени, когда начинается активное использование бытовой техники. В сельской местности — это время приезда дачников, то есть выходные и праздничные дни.

Если Вам показалось, что напряжение в сети понижено – отключите от сети всю бытовую технику и проверьте величину напряжения в ней. Если нет под рукой вольтметра или мультиметра, а ситуация регулярно повторяется – обратитесь в энергоснабжающую организацию с жалобой.

Защита от пониженного напряжения в квартире

  • 1. Установка устройств защиты от перепадов напряжения. Современные устройства многофункциональны. Они устанавливаются стационарно в распределительном щите и защищают всю квартиру или втыкаются в розетку у потребителя и защищают его персонально. При понижении напряжения эти устройства выжидают некоторое время, а потом отключают нагрузку. При восстановлении номинальной величины напряжения устройство автоматически подключает нагрузку снова.
Стационарное устройство защиты от перепадов напряженияПерсональное устройство защиты от перепадов напряжения
  • 2. Установка ИБП (источников бесперебойного питания) или стабилизатора напряжения. Применение ИБП обязательно для компьютерной техники. Стабилизатор имеет смысл устанавливать в случаях, когда колебания величины напряжения происходят постоянно и применение устройств защиты приводит к постоянному отключению ими электропитания.
UPS

Защита от пониженного напряжения в доме

Понижения напряжения в сельской местности – частое явление. Особенно в местах, где строительство только начинается, а питание берется от существующей подстанции, и без того перегруженной. Чтобы уберечь технику от поломки используются три варианта:

  • 1. Установка реле напряжения. Недостаток – при длительных перепадах напряжения придется сидеть без электричества до тех пор, пока перепады не закончатся. При наличии компьютера этот метод не защищает от потери информации.
Реле напряжения
  • 2. Установка стабилизатора напряжения для электрооборудования всего дома. Это эффективно и экономически оправдано в случае, когда напряжение ниже нормы или колебания величины происходят постоянно. При выборе модели стабилизатора учитывается количество фаз питающей сети и максимальная нагрузка потребителей в доме.
Стабилизатор напряжения
  • 3. Установка ИБП для компьютерной техники и части устройств, для которых не желательны резкие перебои в электропитании. К ним относятся телевизионная техника и спутниковый тюнер. При понижении величины напряжения ниже допустимого ИБП переключится на аккумуляторы и звуковым сигналом предупредит об этом. Услышав сигнал, можно принять меры по отключению оставшихся потребителей от сети. Это – дешевый метод защиты, так как применение ИБП для компьютера желательно при использовании любого метода защиты от пониженного напряжения.
Источник бесперебойного питания

Оцените качество статьи:

Понравилась статья? Поделиться с друзьями:

Как понизить постоянное и переменное напряжение — обзор способов

Простые способы понижения напряжения постоянного и переменного тока

Известно, что для работы любого электроприбора и электрооборудования необходимо напряжение определённой величины, однако, для питания разных приборов эта цифра может отличаться. Процесс понижения постоянного и переменного напряжения неотъемлемая составляющая любой электрической подстанции, электроустановки и работы бытовых приборов, гаджетов и техники, используемой в домашних условиях.

Например, согласно ПУЭ 6.1.16-18 питание переносных светильников должно быть не выше 50 вольт, для безлопастного их использования, но стандартная величина напряжения применяемого во многих странах равна 220 или 230 Вольт. Для питания любой электронной системы собранной на микропроцессорных элементах составляет порядка 5 Вольт постоянного тока. В связи с этим, существуют несколько способов изменения, в сторону понижения, величины постоянного и переменного тока.

Стабилизатор от пониженного напряжения

Электричество, как правило, замечают тогда когда оно или плохое, или его вообще нет. Разберём первый вариант, когда оно есть, но напряжение не совсем то, которое нужно. Потребителю нужно 220 В. Многим домашним приборам чуть поменьше, примерно 195 В, тогда они включаются.

Итак, минимально возможное напряжение электрической сети 195 В, при котором приборы будут работать. Что делать, если низкое напряжение в сети, меньше 195 В? Ответ: покупать повышающий стабилизатор напряжения, который обеспечит стабильную работу техники. Он будет подавать на неё 220 В, даже если в сети — меньше 195 В.

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

Делитель напряжения на индуктивностях

Индуктивность – это катушка, намотанная медным (как правило) проводом на металлическом или ферромагнитном сердечнике. Трансформатор – это один из видов индуктивности. Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания. Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.

Но можно использовать несколько катушек (для примера можно взять две), соединить их последовательно и включить в сеть переменного тока. Зная значения индуктивностей, несложно произвести расчет падения на каждой из них:

  1. U(L1) = U1 * (L1 / (L1 + L2)).
  2. U(L2) = U1 * (L2 / (L1 + L2)).

В этих формулах L1 и L2 – индуктивности первой и второй катушек, U1 – напряжение питающей сети в Вольтах, U(L1) и U(L2) – падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.

Сопротивление медного провода постоянному току

Сопротивление провода зависит от удельного сопротивления ρ,  которое измеряется в Ом·мм²/м. Величина удельного сопротивления определяет сопротивление отрезка провода длиной 1 м и сечением 1 мм².

Сопротивление того же куска медного провода длиной 1 м рассчитывается по формуле:

R = (ρ l) / S, где                 (3)

R – сопротивление провода, Ом,

ρ – удельное сопротивление провода, Ом·мм²/м,

l – длина провода, м,

S – площадь поперечного сечения, мм².

Сопротивление медного провода равно 0,0175 Ом·мм²/м, это значение будем дальше использовать при расчетах.

Не факт, что производители медного кабеля используют чистую медь “0,0175 пробы”, поэтому на практике всегда сечение берется с запасом, а от перегрузки провода используют защитные автоматы, тоже с запасом.

Из формулы (3) следует, что для отрезка медного провода сечением 1 мм² и длиной 1 м сопротивление будет 0,0175 Ом. Для длины 1 км – 17,5 Ом. Но это только теория, на практике всё хуже.

Ниже приведу табличку, рассчитанную по формуле (3), в которой приводится сопротивление медного провода для разных площадей сечения.

Таблица 0. Сопротивление медного провода в зависимости от площади сечения

S, мм²0,50,7511,52,54610
R для 1м0,0350,0233330,01750,0116670,0070,0043750,0029170,00175
R для 100м3,52,3333331,751,1666670,70,43750,2916670,175

Как понизить напряжение?

За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.

В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос, как понизить напряжение, следует рассматривать в ключе каждого из них отдельно.

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.

Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.

Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy),
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Два простых способа снизить напряжение на электролампах

Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.

В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп.

Подсчитано,что повышение напряжения всего лишь на 4% по сравнению с номинальным(то есть с 220 до 228В) сокращает срок службы электроламп на 40%, а при повышенном «питании» в 6% этот срок снижается более чем наполовину. 

В то же время уменьшение напряжения на лампах всего на 8%(до 200-202В) увеличивает «стаж» их работы в 3,5 раза, при 195В он возрастает почти в 5 раз

Разумеется с понижением напряжения, снижается и яркость свечения, но во многих случаях, в частности в служебных помещениях, и в местах общего пользования, это обстоятельство не так уж и важно

Как же снизить напряжение на электролампах? Существуют два простых способа.

Первый-включают последовательно две лампы (рис 1). А какую же лампу взять в качестве дополнительной?. Можно такую же, как и основная. Но тогда обе лампы будут светить слабо.

Лучше всего подбирать лампу так, чтобы мощности ламп отличались в 1,5-2 раза, например 40 и 75 Вт, 60 и 100 Вт и.т.д.

Тогда лампа меньшей мошности будет светиться достаточно ярко, а более мощная слабее, выполняя роль своеобразного балласта, гасящего избыточное напряжение (рис.2.).

На первый взгляд выигрыша нет-ведь приходится использовать сразу две лампы вместо одной. Но вот что показывает простейший расчет; падение напряжения на лампах при последовательном соединении распределяется обратно пропорционально их мощности.

Поэтому при напряжении в сети 220В (возьмем пару ламп на 40 и 75 Вт) на 40- ваттной лампе напряжение будет около 145В, а на её 75-ваттной «партнерше»-чуть больше 75В.

Так как долговечность зависит от величины напряжения, понятно, что менять придется в основном лампу меньшей мощности. Да и та, как показывает практика, в худшем случае служит не менее года.

В обычных условиях за это же время приходится менять от 5 до 8 ламп (имеется в виду ежесуточная работа в течении 12 часов). Как видите, экономия весьма ощутима.

Другой способ-последовательное включение лампы и полупроводникового диода. Благодаря малым размерам его можно установить в конусе выключателя между клеммой и одним из подводящих проводов. При этом варианте происходит едва заметное мерцание ламп (за счет однополупериодического выпрямления переменного тока), а среднее значение напряжения на них составляет около 155В.Теперь о выборе типа диода. Он должен иметь определенный запас по допустимому току и быть рассчитан на напряжение не ниже 400В. Из миниатюрных диодов этому требованию отвечают серии КД150 и КД209. Однако диоды марки КД105 следует применять с лампами, у которых мощность не превышает 40Вт, а диоды КД209 (с любым буквенным индексом)-для совместной работы с 75-ватными осветительными приборами. Разумеется использовать можно и более мощные диоды других типов, но тогда их придется устанавливать вне выключателя. Правильно подобранный диод служит практически неограниченное время. Теперь разберем ещё один вопрос. Как быть тем, если в доме общий выключатель на весь подъезд? В этом случае устанавливают один диод большой мощности. Его крепят на металлическом уголке, привинчивают шурупами к стене рядом с выключателем, и закрывают кожухом с веньтиляционными отверстиями. Рекомендуемые типы диодов: КД202М, Н,Р или С, КД203, Д232-Д234, Д246-248 с любым буквенным индексом. При выборе типа диода помните, что его максимально допустимый  рабочий ток (указан в паспорте полупроводникового прибора) на 20-25% должен превышать суммарный  ток, потребляемый одновременно всеми  лампами, относящимися к данному выключателю. Если диод допускает ток всех лампочек (его нетрудно посчитать разделив общую мощность всех ламп на напряжение сети 220В ) не должен превышать 4А.

Закон Ома при понижении напряжения

Собственно был такой дядька Георг Ом, который изучал протекание тока в цепи. Производил измерения, делал определенные выводы и заключения. Итогами его работы стала формула Ома, как говорят закон Ома. Закон описывает зависимость падения напряжения, тока от сопротивления. Сам закон весьма понятен и схож с представлением таких физических событий как протекание жидкости по трубопроводу. Где жидкость, а вернее ее расход это ток, а ее давление это напряжение. Ну и само собой любые изменения сечения или препятствия в трубе для потока, это будет сопротивлением. Итого получается, что сопротивление «душит» давление, когда из трубы под давлением, могут просто капать капли, и тут же падает и расход. Давление и расход величины весьма зависящие друг от друга, как ток и напряжение. В общем если все записать формулой, то получается так:

R=U/I; То есть давление (U) прямо пропорционально сопротивлению в трубе (R), но если расход (I) будет большой, то значит сопротивления как такового нет… И увеличенный расход должен показывать на пониженное сопротивление.

Весьма туманно, но объективно! Осталось сказать, что закон то этот впрочем, был получен эмпирическим путем, то есть окончательные факторы его изменения весьма не определены. Теперь вооружившись теоретическими знаниями, продолжим наш путь в познании того, как же снизить нам напряжение.

Делитель на резисторах

Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:

  1. U(R1) = (R1 * U) / (R1 + R2).
  2. U(R2) = (R2 * U) / (R1 + R2).

Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.

Как выбрать?

Выбрать трансформаторное устройство представленного типа может профессионал. Существует несколько правил в проведении этого процесса. В первую очередь следует обратить внимание на показатель входного напряжения. Оборудование должно быть рассчитано на прием определенного напряжения.

Затем нужно установить, какой уровень тока требуется потребителю. В соответствии с этой характеристикой выбирают параметры выходного напряжения. Мощность приборов, подведенных к трансформатору, должна быть немного ниже, чем его выходное напряжение.

Качественные изделия выдерживают аварийные ситуации. В них предусмотрена особая защита от короткого замыкания, перенапряжения, резких скачков электричества, перегрузок. В этом случае система работает стабильно даже в неблагоприятных условиях.

Практическая схема блока питания: трансформатор

Для выбора питающего трансформатора вам потребуется знать несколько основных данных:

  1. Мощность потребителей, которые нужно подключать.
  2. Значение напряжения питающей сети.
  3. Значение необходимого напряжения во вторичной обмотке.

Чтобы рассчитать число витков в первичной обмотке, вам нужно 50 разделить на площадь сечения сердечника. Сечение вычисляется по формуле:

S = 1,2 * √P1.

А мощность Р1 = Р2 / КПД. Коэффициент полезного действия трансформатора никогда не будет более 0,8 (или 80%). Поэтому при расчете берется максимальное значение – 0,8.

Мощность во вторичной обмотке:

Р2 = U2 * I2.

Эти данные известны по умолчанию, поэтому произвести расчет не составит труда. Вот как понизить напряжение до 12 вольт, используя трансформатор. Но это не все: бытовая техника питается постоянным током, а на выходе вторичной обмотки — переменный. Потребуется совершить еще несколько преобразований.

Как понизить напряжение с помощью резистора

Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:

В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:

Uвых= (Uвх*R2)/(R1+R2), где

Uвх – напряжение на входе, В;

Uвых – напряжение на выходе, В

R1 – показатель сопр. 1-ого резистора (Ом)

R2 – показатель сопр. 2-ого элемента, (Ом)

Подбор резистора для понижения напряжения

Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.

Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:

  • EasyEDA;
  • Circuit Sims;
  • DcAcLab;

и другие.

В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.

Куда обращаться для решения проблемы

Вы можете повлиять на ситуацию, но давайте определимся куда жаловаться если в сети высокое напряжения. Нужно узнать у соседей, как обстоят дела у них в домах и квартирах. После того как вы придете к общему мнению, обращайтесь в снабжающую компанию или сетевую организацию, или узнайте кто балансодержатель питающей трансформаторной подстанции.

После этого нужно подавать коллективное заявление от лица жильцов дома или микрорайона. Одного заявления обычно недостаточно, поэтому чем больше повторных обращений, тем скорее устранят проблему! Заявление нужно подавать в двух экземплярах, один остается у заявителей, но в нём организация, в которую обращается заявитель, должна поставить пометку о принятии. В противном случае вы не сможете доказать, что обращались.

Если у вас вышла из строя бытовая техника из-за скачков или нестабильной электросети, поступайте также. Подробнее мы этот процесс описали в статье: https://samelectrik.ru/sgorela-bytovaya-texnika-iz-za-skachka-napryazheniya.html.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

Схема блока питания: выпрямитель и фильтр

Далее идет преобразование переменного тока в постоянный. Для этого используются полупроводниковые диоды или сборки. Самый простой тип выпрямителя состоит из одного диода. Называется он однополупериодный. Но максимальное распространение получила мостовая схема, которая позволяет не просто выпрямить переменный ток, но и избавиться максимально от пульсаций. Но такая схема преобразователя все равно неполная, так как от переменной составляющей одними полупроводниковыми диодами не избавиться. А понижающие трансформаторы напряжения 220 В способны преобразовать переменное напряжение в такое же по частоте, но с меньшим значением.

Электролитические конденсаторы используются в блоках питания в качестве фильтров. По теореме Кирхгофа, такой конденсатор в цепи переменного тока является проводником, а при работе с постоянным — разрывом. Поэтому постоянная составляющая будет протекать беспрепятственно, а переменная замкнется сама на себя, следовательно, не пройдет дальше этого фильтра. Простота и надежность – это именно то, что характеризует такие фильтры. Также могут применяться сопротивления и индуктивности для сглаживания пульсаций. Подобные конструкции используются даже в автомобильных генераторах.

Методы регулировки

Преобразователь частоты

Существуют три вида регулирования в системах импульсных преобразователей:

  1. Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
  2. Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
  3. Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
  4. Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.

Стабилизация напряжения

Вы узнали, как понизить напряжение до нужного уровня. Теперь его нужно стабилизировать. Для этого используются специальные приборы – стабилитроны, которые изготовлены из полупроводниковых компонентов. Они устанавливаются на выходе блока питания постоянного тока. Принцип работы заключается в том, что полупроводник способен пропустить определенное напряжение, излишек преобразуется в тепло и отдается посредством радиатора в атмосферу. Другими словами, если на выходе БП 15 вольт, а установлен стабилизатор на 12 В, то он пропустит именно столько, сколько нужно. А разница в 3 В пойдет на нагрев элемента (закон сохранения энергии действует).

Чем опасно пониженное напряжение

Большинство приборов с импульсными блоками питания работают при напряжении до 120-150 В. Однако есть устройства, для которых понижение напряжения может быть губительно: холодильники, морозильные камеры, кондиционеры, стиральные и посудомоечные машины и другие устройства, в которых есть электрические двигатели.

 

Для нормальной работы электрического двигателя необходима определенная мощность, потребляемая из сети. Как известно, электрическая мощность — это произведение тока на напряжение. При снижении напряжения двигатель начинает потреблять из сети больший ток, чтобы компенсировать снижение мощности, что приводит к повышенному нагреву двигателя и быстрому выходу его из строя.

 

Еще более сложная ситуация с пуском двигателя при пониженном напряжении. Даже при нормальных параметрах электрической сети ток, потребляемый двигателем, превышает рабочий в 3-5 раз. При пониженном напряжении двигателю просто не хватаем мощности, чтобы запуститься, или пуск затягивается, что гарантированно выводит двигатель из строя. Именно поэтому при опасном понижении напряжения оборудование также должно отключаться от сети.

 

Чтобы защитить электроприборы от губительного влияния пониженного напряжения, Schneider Electric выпускает реле напряжения Easy9, отключающее питание, если напряжение в сети падает ниже 160 В – то есть после достижения предела относительно безопасного включения холодильников, кондиционеров и т.д.

 

В то же время Easy9 спасает и от повышенного напряжения с порогом 265 В. Выдержка времени на включение и после отключения реле составляет 30 секунд.

 

В устройствах Easy9 зашиты неизменяемые заводские настройки – так реализуется защита от вмешательства неопытных пользователей, которые пытаются включить питание или изменить параметры сети с опасным напряжением.


4 шага к минимизации падений напряжения

Падение напряжения — это то, как подаваемая энергия источника напряжения уменьшается при прохождении электрического тока через пассивных элементов (элементы, которые не подают напряжение) электрической цепи. Падения напряжения на нагрузках и на других активных элементах схемы являются предпочтительными, поскольку подаваемая энергия выполняет полезную работу.

Падение напряжения более 5% может нанести вред сроку службы и эксплуатационной эффективности электрических цепей и оборудования.Поэтому необходимо предпринять усилия, чтобы удерживать падение напряжения ниже 5%. Существует много способов минимизировать эти падения напряжения, в том числе снижение температуры проводника, уменьшение длины проводника, увеличение количества / размера проводников или уменьшение силовой нагрузки.

1. Понижение температуры проводника

Что касается потока энергии, высокие температуры проводников будут сопротивляться потоку и вызовут увеличение процента падения напряжения.Решение этой проблемы простое: уменьшите температуру проводника, если вы хотите, чтобы падение напряжения было значительно меньше. Существует важная формула, относящаяся к сопротивлению температуре:

R2 = R1 [1 + a * (T2-T1)]

Где R — сопротивление, T — температура, а «a» — коэффициент электрического сопротивления меди. Из этого уравнения можно понять, что по мере уменьшения разницы между температурами сопротивление «а» также уменьшается.

2.Уменьшение длины проводника

Длина проводника напрямую зависит от подаваемого сопротивления. Поэтому, когда длина проводника уменьшается, сопротивление также падает, что приводит к снижению падения напряжения. Лучшим способом уменьшения проводимости будет установка панелей и подпанелей рядом с внешними нагрузками. Этот тип панели рекомендуется для высокочувствительного электронного оборудования.

3.Увеличение количества / размера проводников

Если вы увеличите количество / размер проводов, сопротивление уменьшится, что приведет к уменьшению падения напряжения и увеличению эффективности. Это также может снизить общие потери мощности, связанные с проводниками стандартного сечения. Вставка изолированного проводника может минимизировать падение напряжения, вызванное заземлением.

4. Снижение силовой нагрузки

Еще один способ уменьшить падение напряжения, уменьшив количество электрического оборудования, подключенного к вашей цепи.Следует проявлять осторожность, чтобы убедиться, что количество розеток, подключенных к каждой ответвленной цепи, не превышает шести. Каждая розетка должна быть подключена к отдельной цепи с минимальной мощностью 12 AWG. Это может способствовать снижению падения напряжения.

Минимизация падений напряжения с помощью высококачественных пользовательских панелей управления

Электрики PanelShop.com являются экспертами в области производства панелей и имеют большой опыт в тестировании и установке панелей управления .Свяжитесь с нами сейчас, чтобы узнать о решениях для электрических испытаний и получить профессиональный опыт, необходимый для вашего следующего проекта:

Возможно, вам будет интересно прочитать

Снижение напряжения с помощью резисторов — Обмен электротехнического стека

Есть несколько способов получить 5 В от источника 12 В. У каждого есть свои преимущества и недостатки, поэтому я составил 5 основных схем, чтобы показать их плюсы и минусы.

  • Цепь 1 — это простой последовательный резистор, точно такой же, как тот, о котором вам рассказывали «некоторые».

Работает, НО работает только при одном значении тока нагрузки и расходует большую часть подаваемой мощности. Если значение нагрузки изменится, изменится и напряжение, так как регулирования нет. Однако он выдержит короткое замыкание на выходе и защитит источник 12 В от короткого замыкания.

  • Цепь 2 представляет собой последовательный стабилитрон (или вы можете использовать несколько обычных диодов, последовательно включенных для компенсации падения напряжения — скажем, 12 кремниевых диодов)

Работает, НО большую часть мощности рассеивает стабилитрон.Не очень эффективно! С другой стороны, это дает некоторую степень регулирования при изменении нагрузки. Однако, если вы закоротите выход, волшебный синий дым вырвется из стабилитрона … Такое короткое замыкание может также повредить источник 12 В после разрушения стабилитрона.

  • Схема 3 — это последовательный транзистор (или эмиттерный повторитель) — показан переходной транзистор, но аналогичная версия может быть построена с использованием полевого МОП-транзистора в качестве истокового повторителя.

Работает, НО большая часть мощности должна рассеиваться транзистором, и он не защищен от короткого замыкания.Как и в схеме 2, вы можете повредить источник 12 В. С другой стороны, регулирование будет улучшено (из-за эффекта усиления тока транзистора). Стабилитрон больше не должен принимать полный ток нагрузки, поэтому можно использовать стабилитрон с гораздо более дешевым / меньшим / меньшим энергопотреблением или другое устройство опорного напряжения. Эта схема на самом деле менее эффективна, чем схемы 1 и 2, потому что для стабилитрона и связанного с ним резистора требуется дополнительный ток.

  • Контур 4 — трехконтактный регулятор (IN-COM-OUT).Это может быть выделенная ИС (например, 7805) или дискретная схема, построенная из операционных усилителей / транзисторов и т. Д.

Работает, НО устройство (или цепь) должно рассеивать больше мощности, чем подается на нагрузку. Это даже более неэффективно, чем схемы 1 и 2, потому что дополнительная электроника потребляет дополнительный ток. С другой стороны, он выдержит короткое замыкание и, следовательно, является усовершенствованием схем 2 и 3. Он также ограничивает максимальный ток, который может потребоваться в условиях короткого замыкания, защищая источник 12 В.

  • Circuit 5 — это понижающий стабилизатор (импульсный регулятор постоянного / постоянного тока).

Работает, НО вывод может быть немного резким из-за высокочастотной коммутации устройства. Однако он очень эффективен, поскольку использует накопленную энергию (в катушке индуктивности и конденсаторе) для преобразования напряжения. Имеет разумную регулировку напряжения и ограничение выходного тока. Он выдержит короткое замыкание и защитит аккумулятор.

Все эти 5 цепей работают (т.е. все они вырабатывают 5 В при нагрузке), и у всех есть свои плюсы и минусы. Некоторые работают лучше других с точки зрения защиты, регулирования и эффективности. Как и большинство инженерных задач, это компромисс между простотой, стоимостью, эффективностью, надежностью и т. Д.

Что касается «постоянного тока» — у вас не может иметь фиксированное (постоянное) напряжение и постоянный ток с переменной нагрузкой . Приходится выбирать — постоянное напряжение ИЛИ постоянный ток.Если вы выберете постоянное напряжение, вы можете добавить какую-либо схему к , чтобы ограничить максимального тока до безопасного максимального значения — например, в схемах 4 и 5.

Передача электроэнергии при высоком напряжении

От побережья к побережью электричество передается по высоковольтным линиям электропередачи, чтобы обеспечить электроэнергией наши дома. В некоторых частях сетки в США Штаты, электричество передается напряжением до 500 000 вольт. Потребность в высоком напряжении передачи возникает, когда необходимо передать большое количество энергии. на большое расстояние.

Почему высокое напряжение

Основная причина того, что мощность передается при высоком напряжении, заключается в повышении эффективности. Поскольку электричество передается на большие расстояния, существуют неотъемлемые потери энергии в пути. Передача высокого напряжения сводит к минимуму потери мощности при перетекании электричества из одного места в другое. Как? Чем выше напряжение, тем меньше ток. Чем меньше ток, тем меньше потери сопротивления в проводниках. И когда сопротивление теряет низки, малы и потери энергии.Инженеры-электрики учитывают такие факторы, как передаваемая мощность. и расстояние, необходимое для передачи при определении оптимального напряжения передачи.

Есть также экономическая выгода, связанная с передачей высокого напряжения. Более низкий ток, который сопровождает передачу высокого напряжения, снижает сопротивление в проводниках, поскольку электричество течет по кабелям. Это означает, что тонкие и легкие провода можно использовать для передачи на большие расстояния. Как результат, Опоры электропередачи не должны проектироваться так, чтобы выдерживать вес более тяжелых проводов, которые могут быть связаны с большим током.Эти соображения сделать передачу высокого напряжения на большие расстояния экономичным решением.

Рынок высокого напряжения

В последние годы быстрорастущий рынок возобновляемых источников энергии сыграл особенно большую роль на рынке высокого напряжения. Как более возобновляемые источники локализованных Электроэнергетика будет запущена, спрос на передачу высокого напряжения будет продолжать расти.

По всей территории Соединенных Штатов замена и модернизация существующей инфраструктуры передачи, а также добавление новых мощностей генерации и передачи являются ключевыми драйверами для рынка высокого напряжения.

О бета-версии

Beta Engineering спроектировала и построила множество высоковольтных проектов по всей стране. Мы специализируемся на услугах EPC для подстанции с газовой изоляцией (КРУЭ), распределительные устройства и подстанции, ФАКТЫ и ЛЭП высокого напряжения. Взгляните на избранные проекты из нашего портфолио, чтобы узнать больше о решениях EPC, которые может предоставить вам бета-версия.

OT: Допустимые уровни напряжения на служебном входе [Текст] — PLCS.net

Lancie1

8 февраля 2006 г., 23:44

Stasis,

Вы абсолютно правы .. если вы говорите об оборудовании электропитания. Дик Д.В. прав … если он говорит о номинальных напряжениях двигателя и привода.

Скажу еще раз. Правильный уровень напряжения зависит от того, говорите ли вы об устройстве, потребляющем энергию (460 вольт), или устройстве подачи питания (480 вольт). Да, 480 — это нормальное напряжение, подаваемое через трансформатор в США за последние 40 лет.(Убедитесь в этом сами с помощью простого вольтметра или прочитайте паспортную табличку ближайшего трансформатора новее 1965 года). С другой стороны, большинство двигателей, приводов, стартеров и т. Д. Рассчитаны на работу при напряжении, указанном на паспортной табличке, всего 460 вольт. Вы можете убедиться в этом, прочитав ближайшую паспортную табличку двигателя.

Правильный уровень напряжения зависит от вашей точки зрения, от того, «обеспечиваете» вы или «потребляете» энергию. Помните, что предоставленная мощность выше, но потребительские устройства рассчитаны на работу при более низком напряжении.Это всего лишь здравый смысл, не так ли? Кто-нибудь купил бы устройство, которое не работало бы при более низком напряжении? 480 Вольт — нормальный источник питания, 500 — высокий-нормальный, а более 505 Вольт — СЛИШКОМ ВЫСОКОЕ.

Glen C, велика вероятность того, что:

(a) Вы находитесь в промышленной зоне;
(b) На одной и той же линии электропередач есть несколько заводов, на которых установлены конденсаторы для коррекции коэффициента мощности;
(c) На подстанции энергокомпании, вероятно, также есть конденсаторы;
(d) Напряжение на подстанции энергокомпании было отрегулировано до правильного уровня для работы в дневную смену, с работающими двигателями и подключенными конденсаторами;
(e) Ночью и по выходным напряжение поднимается выше нормы, поскольку все конденсаторы ВСЕ ЕЩЕ подключены к сети, но двигатели в основном ВЫКЛЮЧЕНЫ.

Решения:
1. Самым простым и быстрым решением является замена ответвлений на трансформаторе вашей установки для понижения напряжения.
2. Поговорите с энергокомпанией о понижении напряжения питания в ночное время, возможно, отключив некоторые из их конденсаторов после дневной смены.
3. Установите автоматические выключатели на СВОЙ заводской конденсаторный блок или установите переменный переключаемый конденсаторный блок.
4. Рассмотрите возможность установки стабилизатора мощности или стабилизатора мощности.
5. Установите несколько индукторов регулятора напряжения.

Взгляд в будущее: управление низковольтными сетями в режиме реального времени

В то время как операторы распределения электроэнергии имеют представление о своих высоковольтных и средневольтных сетях, они, как правило, не имеют такого же уровня оперативности, близкой к реальному времени. видимость их подземных низковольтных и вторичных сетей. Это особенно остро стоит в мегаполисах с большим количеством коммерческих подземных сетей в центре города.

Исторически сложилось так, что высокая надежность и внутреннее резервирование этих подземных низковольтных сетей означало, что видимость оператора не была приоритетом.Однако сегодня коммунальные предприятия видят больше сбоев и отказов в подземных низковольтных / вторичных сетях из-за устаревания инфраструктуры и добавления периодически возникающих распределенных ресурсов на краю сети.

Для городов полная видимость сети становится все более важным фактором для дальнейшего повышения надежности. Например, в 2013 году 86 процентов электрической нагрузки Нью-Йорка и 82 процента потребителей электроэнергии в городе обслуживались подземными низковольтными распределительными сетями, согласно исследованию, проведенному Управлением долгосрочного планирования и устойчивого развития Управления мэр города Нью-Йорк.Многие европейские и азиатские энергокомпании также поставляют электроэнергию потребителям через обширные низковольтные сети, которые, как правило, не видны и не подотчетны сетям высокого или среднего напряжения. В динамичной сети будущего видимость становится дополнительным приоритетом наряду с надежностью и избыточностью.

Низковольтная сеть имеет другие характеристики.

Как отмечалось ранее, во многих городских районах для обслуживания клиентов используются коммерческие подземные вторичные сети в центре города.Эти сети объединены в сеть, поэтому несколько источников электроэнергии объединяются для обеспечения избыточного питания и высокой доступности электроэнергии. Более высокая концентрация плотности нагрузки в городских районах обычно оправдывает большую избыточность и доступность ячеистой сети, которая не обеспечивается типичными радиальными распределительными системами (которые имеют меньше резервов). Обычно в составные низковольтные сети входят крупные предприятия-клиенты, которым требуется более качественное обслуживание и доступность.

Типичные системы управления отключениями энергоснабжения неэффективны для низковольтных ячеистых сетей в центре города, поскольку системы управления отключениями используют информацию о вызовах для отслеживания проблемы с каналом. В ячеистой сети с несколькими каналами невозможно отследить единственный путь к источнику проблемы.

Коммерческие подземные сети в центре города также представляют более опасную перспективу для сотрудников коммунальных служб, направленных для решения проблемы: доступ к сетевым активам осуществляется через подземные хранилища, которые плотно упакованы из-за большого количества клиентов, концентрации стареющих подземных кабелей и стесненные условия труда.

Управление низковольтной сетью в приоритете

В отличие от распределительной сети среднего напряжения, низковольтные цепи и устройства обычно не моделируются в централизованном программном приложении, чтобы учесть сложные характеристики ячеистой сети. Хотя данные о низковольтных ячеистых сетях доступны в системах планирования коммунальных предприятий, электронных таблицах и бумажных картах, доступных оператору распределительной сети, они не помогают оператору сети отслеживать неисправности и устранять их в автоматическом режиме.Из-за различий низковольтные сети часто не имеют такой видимости и управленческого надзора, как остальные системы передачи и распределения электроэнергии. Таким образом, когда случаются перебои в работе, они могут привести к усилению контроля со стороны регулирующих органов и общественности.

Непостоянство распределенных энергоресурсов (РЭР), таких как солнечная энергия, вызывает дополнительные нарушения на низковольтном краю сети, делая видимость и оптимизацию как самих РЭЭ, так и низковольтных сетей, которые соединяют их с сетью. растущий приоритет, эффективно объединяющий всю распределительную сеть под одним контролем.Доступность недорогих датчиков для DER на краю сети делает это еще более эффективным, позволяя оператору распределения добывать и анализировать данные датчиков вместе с погодными и другими данными для выявления активов DER, подверженных риску отказа, а также для моделирования и прогнозировать проблемы перемежаемости DER для упреждающего реагирования на энергоснабжение.

По мере того, как инфраструктура продолжает стареть, затраты, связанные с невозможностью моделировать и управлять низковольтными сетями, будут продолжать расти. Вкратце, к ним относятся:

• Повышенные накладные расходы из-за периодических посещений бригады для устранения неисправностей и отключений,

• Неадекватное планирование сети из-за неточных прогнозов нагрузки,

• Уменьшение возраста активов из-за периодических колебаний напряжения, которые не отслеживаются ,

• Повышенные опасности и проблемы безопасности при отсутствии мониторинга пределов нарушения сетевых активов, и

• Сниженная надежность системы.

Первые шаги по обеспечению прозрачности низковольтных сетей

Лучшая видимость в режиме реального времени для оператора распределения низковольтных вторичных сетей коммунального предприятия начинается с правильного набора данных. В отличие от первичных сетей, которые стандартизированы на SCADA или архиваторах, вторичная сеть коммунального предприятия может еще не иметь единого хранилища информации об активах, поэтому данные необходимо извлекать из таких систем, как ГИС, SCADA, архиватор, планирование и другие системы, а также любые бумажные карты сети необходимо оцифровать.

Собранные данные затем необходимо проанализировать, исправить и улучшить для правильного подключения устройств, чтобы устройства можно было подключать к нужным цепям и сетевому потоку и отображать в модели сети. Как только модель построена, система управления сетью коммунального предприятия может обновлять ее почти в реальном времени по мере изменения состояния подключенных устройств и цепей в полевых условиях — и эти обновления также используются в исходных системах данных, включая GIS, AMI и SCADA.

Также необходима дальнейшая работа для поддержания модели в актуальном состоянии, включая интеграцию информации на уровне клиента через AMI, а также информации о погоде в рабочую модель.Это поможет утилите в создании улучшенных профилей нагрузки, которые учитывают фактическую нагрузку клиентов на основе данных интеллектуальных счетчиков, а также активы DER и их нагрузку на индивидуальном уровне.

С помощью этой новой оптимизированной модели всей распределительной сети — как первичной, так и вторичной — оператор распределения может обнаруживать неисправности, видеть точные потоки мощности, изучать влияние на сеть и моделировать сеть вплоть до ее краев. UP

Об авторе: Брайан Брэдфорд — вице-президент подразделения Asset Solutions глобального бизнес-подразделения Utilities корпорации Oracle.Брэдфорд отвечает за прибыль и убытки, связанные с эксплуатационными программными приложениями и их доставкой. Он имеет более чем 20-летний опыт работы в сфере коммунальных услуг и пришел в Oracle из GE, где он был генеральным директором по размещенному программному обеспечению и аналитическим решениям. Брэдфорд имеет степень магистра делового администрирования Гарвардской школы бизнеса и степень бакалавра финансов в Уортонской школе Пенсильванского университета.

Как работает электросеть

Что составляет электросеть?

Электросеть нашей страны состоит из четырех основных компонентов, каждый из которых подробно описан ниже.

Индивидуальные генераторы

Электроэнергия вырабатывается различными предприятиями, включая электростанции, работающие на угле и природном газе, плотины гидроэлектростанций, атомные электростанции, ветряные турбины и солнечные батареи. Расположение этих электрогенераторов и их удаленность от конечных потребителей сильно различаются.

Эти технологии также физически, отличаются, и в результате они по-разному используются и управляются в энергосистеме.Например, некоторые типы электростанций, такие как угольные и атомные электростанции, имеют небольшую краткосрочную гибкость в регулировании выработки электроэнергии; увеличение или уменьшение выработки электроэнергии занимает много времени [1].

Другие установки, такие как установки, работающие на природном газе, могут быть быстро расширены и часто используются для удовлетворения пикового спроса. Более разнообразные технологии, такие как ветровая и солнечная фотоэлектрическая энергия, обычно используются всякий раз, когда они доступны, в значительной степени потому, что их топливо — солнечный свет и ветер — является бесплатным.

В любой момент времени всегда есть «запас», определенный объем резервных генерирующих мощностей, которые доступны для компенсации возможных ошибок прогноза или неожиданных остановов электростанции. Спрос на электроэнергию, ее предложение, запасы наценки и сочетание технологий производства электроэнергии постоянно контролируются и управляются операторами сети, чтобы гарантировать бесперебойную работу.

Электрогенераторы принадлежат электроэнергетическим компаниям или коммунальным предприятиям, которые, в свою очередь, регулируются Комиссией по коммунальным предприятиям штата (PUC) или Комиссией по коммунальным услугам (PSC).PUC и PSC — это независимые регулирующие органы, назначаемые законодательным собранием штата. Генераторы могут быть построены только с одобрения PUC или PSC, и эти агентства устанавливают соответствующие тарифы на электроэнергию в пределах своего штата, которые коммунальные предприятия должны соблюдать [2].

Линии передачи

Линии электропередачи необходимы для передачи электроэнергии высокого напряжения на большие расстояния и соединения генераторов электроэнергии с потребителями электроэнергии.

Линии электропередачи представляют собой воздушные линии электропередач или подземные силовые кабели.Воздушные кабели не изолированы и уязвимы к погодным условиям, но их установка дешевле, чем подземные силовые кабели. Воздушные и подземные линии электропередачи выполнены из алюминиевого сплава и армированы сталью; подземные линии обычно изолированы [3].

Линии электропередачи находятся под высоким напряжением, потому что это снижает долю электроэнергии, теряемой при транспортировке, — в среднем около 6% в США [4]. Когда электричество течет по проводам, часть его рассеивается в виде тепла в результате процесса, называемого сопротивлением.Чем выше напряжение на линии электропередачи, тем меньше электроэнергии она теряет. (Большая часть электрического тока протекает вблизи поверхности линии передачи; использование более толстых проводов минимально повлияет на потери при передаче.)

Напряжение на уровне передачи обычно составляет 110 000 вольт или 110 кВ или выше, при этом некоторые линии передачи имеют напряжение до 765 кВ [5]. Однако генераторы вырабатывают электроэнергию при низком напряжении. Чтобы сделать возможной транспортировку электроэнергии высокого напряжения, электричество необходимо сначала преобразовать в более высокое напряжение с помощью трансформатора.

Эти высокие напряжения также значительно превышают то, что вам нужно в вашем доме, поэтому, когда электричество приближается к конечным потребителям, другой трансформатор преобразует его обратно в более низкое напряжение, прежде чем оно попадет в распределительную сеть.

Линии электропередачи

тесно связаны между собой для обеспечения резервирования и повышения надежности электроснабжения, как показано на этой карте линий электропередачи США. В Соединенных Штатах есть три основные сети электропередачи: Западное межсетевое соединение, Восточное межсетевое соединение и Совет по надежности электроснабжения Техаса (ERCOT).

Как и генераторы электроэнергии, линии электропередачи должны быть одобрены государством (PUC или PSC) перед строительством. Однако оптовые сделки с электроэнергией, которые заключаются между региональными сетевыми операторами, регулируются национальным агентством, именуемым Федеральной комиссией по регулированию энергетики (FERC) [6].

FERC регулирует электросеть в более широком масштабе, чем PUC, и может разрешать споры между различными участниками рынка в сети. Сетями передачи иногда управляют коммунальные предприятия, но некоторые сети управляются отдельными объектами, известными как независимые системные операторы (ISO) или региональные передающие организации (RTO).Эти компании способствуют конкуренции между поставщиками электроэнергии и обеспечивают доступ к передаче путем планирования и мониторинга использования линий передачи.

Распределение

Распределительная сеть — это просто система проводов, которые собираются там, где заканчиваются линии передачи. Эти сети начинаются с трансформаторов и заканчиваются домами, школами и предприятиями. Распределение регулируется на уровне штата PUC и PSC, которые устанавливают розничные тарифы на электроэнергию в каждом штате.

Потребительское использование или «нагрузка»

Передающая сеть заканчивается, когда электричество наконец попадает к потребителю, позволяя включать свет, смотреть телевизор или запускать посудомоечную машину. Образцы нашей жизни складываются в меняющийся спрос на электроэнергию по часам, дням и сезонам, поэтому управление энергосистемой является сложным и жизненно важным для нашей повседневной жизни.

GC3190_FinalPaper_2016-09-05_19.28.12_YUIWLA

% PDF-1.4 % 2 0 obj > / OCGs [96 0 R] >> / Pages 3 0 R / Type / Catalog / ViewerPreferences 93 0 R >> эндобдж 94 0 объект > / Шрифт >>> / Поля 100 0 R >> эндобдж 95 0 объект > поток application / pdf

  • Администратор
  • GC3190_FinalPaper_2016-09-05_19.28.12_YUIWLA
  • 2016-10-05T23: 34: 12 + 08: 00pdfFactory Pro www.pdffactory.com2016-11-02T21: 36: 31 + 01: 002016-11-02T21: 36: 31 + 01: 00pdfFactory Pro 3.50 (Windows XP Professional) uuid: e5720ccd-5b30-41d7-8d64-85ee69fd2566uuid: 35d4c7de-d940-441c-8557-90ddaa5c09f5 конечный поток эндобдж 3 0 obj > эндобдж 93 0 объект > эндобдж 5 0 obj > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 11 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 17 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 19 0 объект > / Font> / ProcSet [/ PDF / Text / ImageB] / XObject >>> / Type / Page >> эндобдж 82 0 объект > / Font> / ProcSet [/ PDF / Text] / XObject >>> / Type / Page >> эндобдж 126 0 объект > поток HW [с ~ _

    qC% c e ~} mvNsFEѹ ח wV ۫ U1 / 竓 Y] 3 _, \} ߬ Tzny [ͳ [ո # + r꛼Qye64m7VE ߘ v_F.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *