Как заряжать литий-ионные аккумуляторы
Li-ion аккумуляторы в последнее время широко используются в самых различных устройствах – от электрических автомобилей до смартфонов и игрушек. Учитывая, что такие элементы питания чрезвычайно требовательны к уровню напряжения при зарядке, важно использовать штатные зарядные устройства. Если вы хотите, чтобы любой аккумулятор служил вам максимально долго, требуется придерживаться при его зарядке нескольких простых правил. Каковы эти правила для литий-ионных аккумуляторов, мы и расскажем в этой статье.
В первую очередь важно понимать, что современные литий-ионные аккумуляторы существенно отличаются от более распространенных ранее кадмиевых или литий-металлогидридных элементов питания – как нюансами самого процесса подзарядки, так и особенностями эксплуатации и хранения. А значит следует забыть те рекомендации, которые были усвоены Вами ранее относительно предшественников Li-ion аккумуляторов, и усвоить новые.
Правильная зарядка литий-ионных аккумуляторов.
Если речь идет о новом аккумуляторе, перед использованием в любом устройстве его нужно зарядить. Что касается аккумуляторов данного типа для электровелосипедов и других средств электротранспорта, то самой распространенной ошибкой при первой эксплуатации аккумуляторов является их использование непосредственно после покупки. Начинающие драйверы часто считают, что АКБ продаются в заряженном виде. Это действительно так – производители заряжают аккумуляторы, однако только наполовину, и без первой полноценной зарядки емкость и срок службы АКБ снижается.
Другой важный момент – не рекомендуется доводить аккумулятор до полного разряда. После каждой даже самой непродолжительной поездки на электросамокате или на электровелосипеде аккумулятор следует подзарядить. Если Вы усвоите данное правило, то сможете значительно увеличить срок жизни АКБ. Таким образом, сразу же после разрядки литий-ионного аккумулятора его необходимо поставить на подзарядку.
К сожалению, часто неквалифицированные продавцы рекомендуют покупателям довести аккумулятор до полного разряда после первого заряда.
Категорически не рекомендуем делать это – так вы рискуете столкнуться с внезапным выходом новой АКБ из строя. Возможно, нерадивые продавцы дают такую рекомендацию из корыстных побуждений -ведь когда аккумулятор выйдет из строя вам потребуется купить новый.Литий-ионные АКБ очень чувствительны к высоким температурам, поэтому старайтесь не допускать их чрезмерного нагрева. При эксплуатации аккумулятора при температуре в пределах +25 градусов достигается максимальный ресурс и наибольшая отдача тока. Поэтому следите за тем, чтобы аккумулятор не оставался долго под солнцем и избегайте хранить АКБ в помещении, где температура выше указанного максимума.
В том случае, если литий-ионный аккумулятор продолжительное время находился на холоде, перед зарядкой его необходимо прогреть до комнатной температуры. Заряжать АКБ сразу после нахождения на морозе нельзя. Такие резкие температурные колебания могут нанести аккумулятору непоправимый вред.
И последняя важная рекомендация: при длительном перерыве в эксплуатации аккумулятор лучше хранить в холодном месте – зимой, к примеру, на неотапливаемом балконе или в гараже. Это продлит срок его жизни.
Сам процесс зарядки Li-ion аккумулятора не представляет сложности – необходимо сначала присоединить его к штатному устройству для зарядки, а потом соединить устройство с электрической сетью. После того, как полный заряд будет получен, просто отключите аккумулятор от ЗУ.
Перейти в раздел Li-ion аккумуляторовКак правильно заряжать аккумулятор Li-ion Все про Li-ion (литиевые аккумуляторы)
Аккумуляторные батареи типа литий-ион получили широкое распространение благодаря своему легкому весу, отсутствию «эффекта памяти», быстрой зарядке и длительному сроку эксплуатации. Но чтобы по максимуму оценить все достоинства приобретенной АКБ, нужно соблюдать правила её эксплуатации. Аккумуляторные батареи Li-ion неприхотливы в использовании и хранении – чтобы они долго и эффективно служили вам, достаточно соблюдать простые требования.
Инструкция по использованию Li-ion аккумуляторов
Не допускайте чрезмерного заряда и полного разряда АКБ. Перед тем, как заряжать Li-ion аккумулятор, ненужно дожидаться его максимального разряда. Уже при остатке в10–20% ставьте батарею заряжаться и останавливайте этот процесс при достижении уровня 80–90%. Это поможет существенно увеличить число рабочих циклов аккумуляторной батареи.
Не боятся избыточного заряда и полного разряда литий-ионные батареи со встроенной платой защиты.
- Храните АКБ типа литий-ион с уровнем заряженности в30–50% при температуре 15 °C. При превышении рекомендованного диапазона заряженности может снизиться емкость батареи, а при длительном хранении разряженного устройства его вряд ли удастся «реанимировать». Чтобы продлить срок службы таких устройств, можно хранить их в герметичной емкости в холодильнике (но не в морозильной камере!).
- Заботясь о том, как правильно зарядить Li-ion аккумулятор, всегда пользуйтесь оригинальными зарядными устройствами, рекомендованными производителем дляконкретной модели батареи. Они гарантированно выдают нужное напряжение и обеспечивают правильную зарядку всех элементов питания. Зарядные устройства неизвестного происхождения и сомнительного качества способны погубить аккумулятор.
- Избегайте перегрева и переохлаждения АКБ. Температурные скачки губительно действуют на аккумуляторные батареи Li-ion, поэтому использовать такие устройства рекомендуется при температуре окружающей среды от+10 до+25 °С.
- Вредят таким батареям и прямые солнечные лучи, и близость источников тепла. При использовании в температурном режиме ниже нуля срок службы АКБ стремительно сокращается, хотя в целом их применение допускается в диапазоне температур от–40 до+50 °C.
- В среднем аккумуляторные батареи категории литий-ион заряжаются порядка 3 часов. Точная продолжительность зарядки зависит от емкости конкретной модели.
Перейти в раздел литий-ионные аккумуляторы Li-ion
Как правильно заряжать литий-полимерные аккумуляторы, правильная зарядка Li Po аккумуляторов
27.09.2016
Литиево-полимерными аккумуляторами оснащаются практически все современные электронные гаджеты. Широкое применение они нашли на летающих радиоуправляемых моделях, квадрокоптерах, вертолетах и самолетах. У литий-полимерных аккумуляторов есть немало преимуществ, в том числе – высокая плотность энергии, низкий саморазряд и отсутствие так называемого «эффекта памяти».
В результате для моделей с силовыми электроагрегатами Li Pol батарее практически не существует достойной альтернативы. Следует ожидать, что они будут применяться все более широко, особенно в таких областях, как непилотируемые летательные аппараты, электромобили и т. п.
Несмотря на все преимущества, LiPol батареи имеют репутацию капризных, опасных и маложивущих источников питания. На самом деле, эти недостатки несколько преувеличены. Если их правильно использовать, проблемы будут сведены к минимуму.
Правила зарядки
Для того чтобы в эксплуатации источника питания не возникало проблем, необходимо правильно заряжать LiPo батареи. В противном случае велик риск их повреждения и даже самовозгорания. Рассмотрим, как правильно зарядить литий полимерный аккумулятор, чтобы избежать возможных проблем:
- Зарядить LiPo аккумулятор любым ЗУ не получится, для этого требуются специальные зарядные устройства. Связано это с особенностями двухфазного процесса зарядки.
- Зарядка аккумуляторов Li Pol проходит в две фазы (метод CC-CV). На первой стадии напряжение на всех банках АКБ возрастает. К окончанию фазы оно достигает 4,2 Вольт. По сути, к этому моменту зарядка Li Pol аккумуляторов достигает 95%. Дальше начинается вторая фаза.
- Не рекомендуется допускать полной разрядки источника питания, перед повторной зарядкой в нем должно оставаться около 10-20%, иначе он быстро выйдет из строя.
- Важно следить, чтобы напряжение не падало ниже 3 Вольт на каждой банке. При таком снижении показателей напряжения велик риск того, что батарея может вздуться. При этом вздувшийся LiPo аккумулятор потеряет более 50% своей емкости. Если вздулась LiPo батарея, ее останется только выбросить – потеря емкости необратима.
То, что литий-полимерные источники питания вздуваются, является одной из серьезных проблем их эксплуатации. Все банки должны заряжаться и разряжаться равномерно. При этом зарядное устройство для литий полимерных батарей отслеживает только суммарное напряжение, но при большом разбросе показателей вероятность того, что LiPo аккумулятор вздулся увеличивается в разы.
Также это приводит к перезаряду отдельных банок, увеличению риска самовозгорания.Для решения этой проблемы зарядку Li Pol батарей необходимо выполнять с использованием балансира, который способен отслеживать напряжение на каждой банке, либо ЗУ со встроенным балансиром. Не заряжайте источник питания ЗУ с таймером. Если ток будет недостаточным, ЗУ отключится, не зарядив его полностью. Ток заряда не должен превышать 1С и быть меньше 0,5 С. Также нужно помнить, что чем больше емкость LiPo аккумулятора, тем дольше он будет заряжаться.
Эксплуатация
Для того чтобы продлить срок службы Li Pol устройств или, как минимум, не сократить его, важна и правильная эксплуатация аккумуляторов. Когда мы заряжаем источник питания, нельзя допускать его нагрева выше 60 градусов. Если нагрев все же произошел, прежде чем использовать батарею, ей нужно дать остыть. Также нельзя и ставить на зарядку перегревшийся накопитель.
На хранение нельзя оставлять полностью разряженную АКБ. Обязательно зарядите ее. Самые оптимальные показатели – 60%. В целом, при соблюдении этих несложных правил, проблем с использованием литий-полимерных батарей не возникает.
Чем Li-ion аккумуляторы отличаются от гелевых?
Аккумулятор (химический источник тока) является настоящим прорывом не только для всех видов промышленности, но и для повседневной жизни. Поэтому с каждым годом выпускаются все новые и новые виды аккумуляторов из разных веществ.
Особенно вопрос выбора актуален, когда речь идет о тяговых аккумуляторах для погрузочной (электроштабелеры, электропогрузчики, ричтраки) и поломоечной техники. Так как в этом случае речь идет не только о непрекращающемся процессе работы, но и о безопасности сотрудников.
Какой же аккумулятор лучше – гелевый или литий-ионный? Давайте разбираться.
1. Срок службыНекоторые литий-ионные аккумуляторы имеют срок службы до 10 лет, в то время как гелевые работают в среднем около 3 лет.
2. СтоимостьЛитий-ионные аккумуляторы значительно дороже гелевых и любых других батарей, имеющихся на рынке. Однако, можно сказать, что это практически единственный существенный его недостаток.
3. Максимальное количество зарядовВ этом аспекте литий-ионные батареи заметно выигрывают, так как количество циклов заряда-разряда ровно 3000, к сожалению, гелевые аккумуляторы сработают всего на 800 циклов при глубине заряда равной 80%.
При этом у li-on аккумуляторов отсутствует «эффект памяти», то есть нет необходимости полностью разряжать, а потом заряжать аккумулятор перед работой.
После разряда гелевые аккумуляторы необходимо полностью зарядить, чтобы они прослужили весь заявленный срок гарантии.
4. Безопасность и экологичностьЛитиевые аккумуляторы абсолютно безопасны, так как не выделяют никаких вредных веществ в окружающую среду. Более того, их легко утилизировать, благодаря встроенной электронной защите, которая блокируется в экстренных ситуациях.
Гелевые аккумуляторы, в свою очередь, содержат вещество «силикагель». Оно представляет собой твердое вещество с множеством микропор, где и находится электролит.. Он является неопасным, но токсичным веществом.
5. ТемператураLi-on аккумуляторы способны работать при температуре от 0 до +40 градусов, при этом гелевые батареи могут выполнять свои функции даже при отрицательных значениях.
6. Вес и размерЕще одно преимущество литий-ионных аккумуляторов в том, что их вес практически в 3 раза меньше, чем у гелевых батарей.
7. Стоимость обслуживанияСтоимость обслуживания гелевого аккумулятора достаточно высока, тогда как литий-ионного практически равна нулю.
По многим показателям литий-ионные аккумуляторы выглядят лучше: их срок службы больше, чем у гелевых батарей, а количество циклов заряда-разряда намного превышает всех конкурентов-аналогов. Единственный аспект, который может заставить обратить внимание на гелевые аккумуляторы – это их стоимость. Они намного дешевле, чем литий-ионные представители.
Как правильно заряжать аккумулятор Li-ion?
На данный момент аккумуляторные батареи типа литий-ион являются наиболее совершенными из доступных потребителю. Их старшие братья Никель-Кадмий и Никель-Металлгидрид несколько устарели морально и пользуются спросом лишь за счет доступной цены. Тем не менее, Li-ion постепенно захватывает лидирующие позиции. Он обладает рядом преимуществ. Во-первых, литий-ионные батареи весят значительно меньше своих собратьев, и это при одинаковой емкости и мощности. Во-вторых, они практически лишены «эффекта памяти», от которого так страдают Ni-Cd и Ni-Mh. В-третьих, Li-ion быстро заряжается и имеет более долгий срок жизни. Тем не менее, несмотря на все его однозначные преимущества, такие аккумуляторы тоже требуют правильного ухода. Об этом речь в этой статье и пойдет. Итак, 4 основные момента, которые следует знать для длительной жизни Li-ion аккумулятора.
- Не допускать полного разряда и перезаряда аккумулятора. Исходя из особенностей химических составляющих данного типа аккумулятора, рекомендуется не допускать не только полного разряда, но и чрезмерного заряда аккумулятора. Благодаря тому, что в Li-ion практически отсутствует «эффект памяти», его вовсе не обязательно полностью разряжать, а скорее наоборот, не дожидаясь нулевого заряда, ставить аккумулятор на зарядку. Таким образом, можно значительно увеличить количество циклов «жизни» батареи. Обыкновенно производители аккумуляторов рекомендуют доводить разряд до остатка в 10-20%, ну а заряжать аккумулятор на 80-90%.
- Хранить аккумуляторы Li-ion рекомендуется частично заряженными. Наилучшим вариантом хранения литий-ионного аккумулятора считается показатель заряженности в 30-50%. Для уяснения последствий несоблюдения этого правила достаточно просто посмотреть на крайние стороны этого процесса. Если перед хранением полностью зарядить аккумулятор, то весьма вероятно, что может пострадать его емкость. Если же оставить аккумулятор на длительное время полностью разряженным, то весьма вероятен тот вариант, что после такого, его уже нельзя будет «оживить». Кстати, при хранении аккумулятор лучше вынимать из инструмента. Также есть небольшая хитрость. Можно хранить аккумулятор в холодильнике (но не в морозилке) в герметичной емкости. Это отлично способствует продлению жизни батареи.
- Используйте только оригинальные зарядные устройства. Производители инструментов и аккумуляторов достаточно внимательно относятся к тому, чтобы зарядные устройства идеально подходили под конкретную модель аккумулятора. Исходя из этого, не рекомендуется использовать для зарядки аккумуляторов зарядные устройства сомнительного качества. Весьма может так оказаться, что батарее это будет совсем не на пользу.
- Не допускайте перегрева и переохлаждения аккумуляторных батарей. Li-ion весьма чувствителен к таким перепадам температур. Они действуют на него весьма отрицательно и даже разрушающе. Именно поэтому рекомендуется эксплуатировать инструмент с Li-ion-аккумуляторами в диапазоне окружающей температуры от +10°С до +25°С. При работе в минусовых температурах срок жизни аккумулятора и вовсе резко сократится.
Следует отметить, что Li-ion является самым неприхотливым видом, как в эксплуатации, так и в хранении. Никаких невероятно сложных манипуляций производить с ним не нужно. Только соблюдать несколько правил, и жизнь аккумулятора станет значительно продолжительней.
Так как аккумуляторный инструмент в своей работе целиком и полностью зависит от своей батареи, лучше не пренебрегать простыми правилами ухода за аккумулятором. Вполне может случится, что при выходе аккумулятора из строя, инструмент может стать бесполезным (это, конечно же в том случае, если аккумуляторы конкретной модели будут сняты с производства). Кстати, сразу докупать запасные Li-ion аккумуляторы тоже не имеет смысла, потому что срок его жизни начинает тикать не с начала эксплуатации, а с даты выпуска.
Способы заряда Li-ion аккумуляторов и батарей на их основе
В данной статье мы не будем касаться самих электрохимических процессов, протекающих в Li-ion аккумуляторе, а рассмотрим все с точки зрения конечного пользователя. Для потребителя и разработчика электроники любой аккумулятор выглядит как некий двухполюсник, имеющий два контакта, выходящих из корпуса. Такой элемент схемы имеет ряд числовых характеристик, графиков зависимости и т. д., и практически ничем не отличается по количеству приводимых в документации параметров от, например, диода. С этой точки зрения мы и будем рассматривать способы заряда этих устройств.
Литий-ионные аккумуляторы производят как в корпусном (например, типоразмера 18650), так и в ламинированном исполнении (гель-полимерные), электроды и электродные массы которых помещены в герметичный пакет из специальной пленки. Электрохимические процессы протекают одинаково как в тех, так и в других, и все, сказанное ниже, в равной степени относится ко всем аккумуляторам вне зависимости от их исполнения.
Сразу отметим, что классический способ заряда Li-ion аккумулятора делится на два этапа. Первый — это заряд постоянным током, второй — заряд при постоянном напряжении (рис. 1).
Рис. 1. Этапы заряда Li-ion аккумулятора:
I — ток;
U — напряжение;
t — время
На рис. 1 можно увидеть этап 1′. Он необходим, когда напряжение на аккумуляторе ниже некоторого установленного значения (например, 2,5 В). При долгом хранении аккумулятора вследствие саморазряда и/или потребления системы обеспечения функционирования (СОФ) напряжение на аккумуляторе может упасть ниже, к примеру, 2,5 В (СОФ входит в состав аккумуляторной батареи, даже если она состоит из одного аккумулятора). Малый ток заряда обеспечивает постепенный выход активных электродных материалов на заданные уровни напряжения, при которых они штатно функционируют (например, при более 2,8 В), после чего включается основной ток заряда. Данный режим призван обеспечить более долгую жизнь аккумулятора при выходе его из заданного диапазона напряжений. Также этап 1′ применяется при заряде аккумулятора при низких температурах, например ниже +5 °C — для «разогрева» электродных масс.
Первоначальный заряд малым током используется и для обеспечения безопасности аккумулятора при заряде. Если внутри аккумулятора произошло микрокороткое замыкание (или просто КЗ), то по истечении некоторого времени заряда напряжение на нем не будет возрастать. Этот факт может свидетельствовать о неисправности. Если начать заряд достаточно большим током сразу, то при КЗ может произойти сильный разогрев аккумулятора и его разгерметизация. Хотя СОФ имеет температурный датчик, при быстром заряде и относительно большой теплоемкости аккумулятора и высоком конечном значении теплопроводности разгерметизация может произойти немного раньше, чем СОФ отключит аккумуляторы от заряда. Функция заряда малым током часто возлагается не на зарядное устройство, а на СОФ батареи. В схеме СОФ это может быть дополнительный MOSFET (управляющий зарядом), включенный через последовательный резистор, ограничивающий ток, подключенный к аккумуляторной батарее (АБ). Необходимо отметить, что данный этап часто исключают из цикла заряда батареи, начиная заряд сразу с этапа 1.
На первом этапе заряд осуществляется номинальным током, который измеряется в долях от номинальной емкости аккумулятора (Сн). Например, емкость аккумулятора 10 А·ч, номинальный ток заряда 0,2Сн, то есть 2 А — пятичасовой режим заряда. Понятно, что потребитель хочет, чтобы заряд осуществлялся как можно быстрее — в течение 1–2 ч, что соответствует 0,5–1Сн. Такой режим заряда обычно называют ускоренным. Для нормальной работы аккумулятора номинальный ток заряда лежит в пределах 0,2–0,5Сн, а ускоренный, как уже говорилось, — в диапазоне 0,5–1Сн. Каким максимальным током можно заряжать тот или иной аккумулятор, можно узнать в документации на конкретный тип устройства. График роста напряжения на аккумуляторе, показанный на рис. 1, носит линейный характер (для простоты восприятия).
Чем выше ток заряда (или меньше время, отводимое на полный заряд), тем меньше аккумулятор «наберет» емкости и тем пристальней необходимо следить за разогревом, чтобы его температура не вышла за установленный предел. При большом токе заряда существенно продлевается время 2-го этапа (рис. 1), когда ток постепенно падает до определенного предела. Так, например, при токе заряда 1Сн и отводимом на заряд времени в 1 ч аккумулятор достигнет своего конечного напряжения за 45–50 мин. Любой аккумулятор имеет внутреннее сопротивление (включающее в себя несколько составляющих — омическую, диффузионную и т. д.). Падение напряжения на внутреннем сопротивлении при большом токе заряда приведет к более быстрому достижению конечного зарядного напряжения. При достижении конечного напряжения заряд перейдет ко второму этапу — падающему току при постоянном напряжении. За оставшееся время 10–15 мин. аккумулятор «наберет» еще 0,1–0,15Сн, что в сумме составит не более 0,85–0,95Сн. При более коротком режиме заряда и лимите времени зарядная емкость будет еще меньше. Можно учитывать внутреннее сопротивление аккумулятора и ввести зависимость конечного зарядного напряжения от тока заряда, но это требует проработки для конкретного типа аккумуляторов и более сложных зарядных устройств. Обычно разработчики не используют данные зависимости при проектировании простых устройств.
Ускоренный и номинальный режим заряда необходимо чередовать, особенно при заряде батарей, состоящих из нескольких последовательно соединенных аккумуляторов. При номинальном токе заряда возрастает его продолжительность. Увеличение времени заряда способствует лучшей балансировке аккумуляторов в батарее [1]. Чем больше время такой балансировки, тем лучше будут сбалансированы аккумуляторы по емкости и, в конечном итоге, батарея отдаст емкость, близкую к номинальной при разряде. Обычно системы баланса делаются пассивными, и работают они только при заряде батареи. Заряд номинальным режимом особенно рекомендуется после длительного хранения батареи, когда степень заряженности отдельных аккумуляторов будет сильно зависеть от токов саморазряда, который у разных аккумуляторов разный, даже при специально подобранных аккумуляторах в одной батарее.
Второй этап — заряд при постоянном напряжении и падающем токе. Ток на этом этапе падает до определенного значения. Например, процесс считается завершенным при установлении тока заряда менее 0,1–0,05Сн (в нашем примере <100 мА). Как было показано выше, продолжительность фазы падающего тока зависит от тока заряда. Для номинального режима заряда (0,2Сн) она длится обычно не более нескольких десятков минут, при этом аккумулятор набирает до 0,1–0,15Сн. Время заряда падающим током также зависит от степени деградации аккумулятора в процессе эксплуатации (иначе говоря, от срока службы и количества циклов заряд/разряд). Чем больше деградация, тем длиннее фаза падающего тока.
После окончания заряда напряжение на аккумуляторе падает на 0,05–0,1 В (рис. 1), приходя к своему равновесному состоянию. Держать аккумулятор продолжительное время (десятки часов) при конечном напряжении (например, 4,2–4,3 В) не рекомендуется из-за несколько повышенной в этом состоянии скорости деградации электродных масс. Поэтому после фазы падающего тока желательно прекратить заряд.
Производители электроники предоставляют уже готовые схемотехнические решения, реализующие описанный выше алгоритм заряда, выполненные в одном корпусе микросхемы — например МАХ1551, МАХ745 и т. д. Одна из популярных микросхем, применяемых для заряда Li-ion аккумуляторов (мобильных телефонов, фототехники и т. д.) от сети постоянного тока 12–24 В, — MC34063 (рис. 2). На рис. 2 выходное напряжение MC34063 — 5 В, но его можно пересчитать на конечное зарядное напряжение аккумулятора 4,1–4,3 В, варьируя резисторами R1, R2. Дополнительный выходной фильтр для уменьшения пульсаций можно исключить.
Рис. 2. Структурная схема МС34063, реализующая алгоритм заряда Li-ion аккумулятора
Часто возникает желание осуществлять заряд устройством, на выходе которого есть только постоянный ток (без фазы постоянного напряжения в конце заряда). Это позволяют сделать, к примеру, зарядные устройства от никель-кадмиевых аккумуляторных батарей. Рассмотрим этот способ.
Необходимо отметить, что литий-ионная аккумуляторная батарея подключается через СОФ к зарядному устройству (ЗУ), имеющему внутренние ключи (для батарей небольшой емкости до 40–60 А·ч это обычно MOSFET). Поэтому прежде, чем подключать ЗУ к АБ, необходимо убедиться, что выходное напряжение ЗУ (напряжение разомкнутой выходной цепи) не слишком высокое, чтобы не вывести из строя коммутаторы заряда АБ. Сам алгоритм заряда можно осуществить с помощью постоянного тока (этап 1) и фазы импульсов (этап 2), показанной на рис. 3. Фаза импульсов заменяет фазу падающего тока (также этап 2), показанную на рис. 1.
Рис. 3. Заряд постоянным током с прерывистой фазой зарядного тока:
I — ток;
U — напряжение;
t — время
Критерием остановки заряда могут служить напряжение на аккумуляторе или время импульса тока (Tимп), за которое напряжение на аккумуляторе достигает конечного зарядного напряжения (например, 4,2 В). При каждом импульсе напряжение на аккумуляторе будет повышаться, как показано на рис. 3. Как только оно достигнет уровня полностью заряженного аккумулятора с фазой падающего тока (рис. 1, примерно 4,1–4,15 В), заряд можно прекращать. Измерение напряжения на аккумуляторе необходимо производить через некоторое время после завершения зарядного импульса. Этот критерий окончания заряда при фазе импульсного тока Li-ion аккумулятора в большей степени справедлив для аккумуляторов на основе кобальтата лития (так называемые кобальтатные аккумуляторы). Об отличительных особенностях этих типов аккумуляторов мы поговорим далее.
Если ориентироваться на Tимп, то как только длительность импульса, в течение которого напряжение на аккумуляторе достигнет своего конечного значения, будет достаточно маленькой, заряд можно прекращать. Длительность можно считать маленькой, если аккумулятор за это время наберет менее 0,2–1% от своей емкости Сн. Например, при емкости аккумулятора 10 А·ч — 0,5% от Сн составит 0,05 А·ч. При токе заряда 5 А расчетная длительность зарядного импульса составит порядка 30 с.
Реализацию данного алгоритма заряда можно возложить на СОФ АБ, если она спроектирована таким образом, что можно изменять алгоритм ее функционирования [2]. Тогда микроконтроллер СОФ может отслеживать напряжение на аккумуляторе или производить вычисления времени импульса и останавливать заряд, размыкая окончательно зарядный ключ.
Еще один способ — заряд ступенчатым током (рис. 4).
Рис. 4. Заряд ступенчатым током:
I — ток;
U — напряжение;
t — время
Для упрощения ЗУ обычно заряд осуществляют в два этапа: номинальный ток (этап 1) и ток вдвое меньше номинального. То есть существует всего две ступени заряда. На рис. 4 для наглядности показано три ступени. И действительно, если есть возможность уменьшать ток ЗУ дискретно не в два раза, а на меньшую величину, то заряд будет осуществляться почти так же, как показано на рис. 1, а на этапе 2 напряжение на аккумуляторе будет колебаться около конечного напряжения заряда.
Помимо аккумуляторов с катодом из кобальтата лития, в мире все большую популярность набирают железо-фосфатные аккумуляторы (литированный фосфат железа). Железо-фосфатные аккумуляторы хоть и имеют меньшие удельные характеристики (Вт·ч/кг, Вт·ч/дм3), но из-за меньшей стоимости (при той же емкости) становятся все более и более популярными. На рис. 5 представлены зарядные кривые двух типов аккумуляторов.
Рис. 5. Графики заряда при различных температурах аккумуляторов с материалом положительного электрода:
а) кобальтат лития;
б) литированный фосфат железа
Заряд производился током 0,5Сн. Из графиков видно, что аккумуляторы с положительным электродом на основе кобальтата лития имеют почти линейную характеристику роста напряжения от степени заряженности. Характеристика аккумуляторов с положительным электродом на основе литированного фосфата железа почти горизонтальна и только в конце заряда резко возрастает, а также существенно зависит от температуры. Конечное напряжение заряда у железо-фосфатных аккумуляторов обычно ниже и составляет 3,7–3,9 В. После заряда (фазы падающего тока) напряжение даже у заряженного на 100% такого аккумулятора при нормальных условиях упадет до 3,35–3,45 В. Поэтому не будет наблюдаться такого роста напряжения, как показано на рис. 3, оно будет снижаться после каждого импульса заряда до указанного уровня (3,35–3,45 В). Критерием оценки заряженности аккумулятора в этом случае будет только Tимп, если заряд ведется прерывистой фазой тока (рис. 3).
Существуют Li-ion аккумуляторы с положительным электродом на основе никель-кобальт-алюминия и никель-кобальт-марганца. Зарядные зависимости у них ближе к зависимостям кобальтатных (рис. 5а). В любом случае при выборе и эксплуатации конкретного устройства необходимо внимательно ознакомиться с рекомендациями и документацией производителя. Заряд таких аккумуляторов также производится в два этапа.
Фаза постоянного напряжения (падающий ток) на рис. 5 отражена на представленных зависимостях в виде горизонтальной площадки в конце заряда. По величине этой площадки можно судить о емкости, набранной аккумулятором на этом этапе. Приведем экспериментальные данные заряда аккумулятора, иллюстрирующие способы, рассмотренные выше (рис. 6).
Рис. 6. Изменение напряжения литий-железо-фосфатного аккумулятора емкостью 240 А·ч в процессе заряда токами от 0,5 до 3Сн
На рис. 6 представлены зарядные кривые аккумулятора емкостью 240 А·ч с положительным электродом на основе литированного фосфата железа. Зарядные зависимости нормированы относительно емкости аккумулятора, а не времени. Заряд осуществлялся токами 120 А (0,5Сн), 240 А (1Сн), 480 А (2Сн) и 720 А (3Сн) до напряжения 3,7 В (при токах 0,5, 1 и 2Сн) и до 3,8 В (при токе 3Сн), при нормальных климатических условиях и температуре +20 °C. На графике видно, что при токе заряда 0,5Сн фаза падающего тока (при постоянном напряжении) составляет 12–15 А·ч (плоская площадка в конце графика). При токе 1Сн это уже 35–40 А·ч. При токе заряда 2Сн емкость составила всего около 190 А·ч при достигнутом напряжении 3,7 В, затем ток уменьшили в два раза (провал по напряжению), после чего аккумулятор еще зарядился на 35–40 А·ч. При токе заряда 3Сн напряжение отключения было повышено до 3,8 В, емкость составила всего около 180 А·ч, фаза падающего тока при постоянном напряжении отсутствует. На графике видно также, что при токе заряда 3Сн произошел некоторый провал по напряжению в середине кривой заряда. Это связано с повышением температуры аккумулятора и, как следствие, понижением внутреннего сопротивления (при повышении температуры возрастает скорость электрохимических реакций).
Выводы
Существует несколько способов заряда Li-ion аккумуляторов, но все они отражают сущность двухэтапного процесса: заряд постоянным и падающим током при постоянном напряжении. При заряде аккумуляторов или батарей током 0,5–1 Сн и более фаза падающего тока обязательна для увеличения принятой аккумулятором зарядной емкости. При заряде током 0,1–0,3 Сн фазой падающего тока можно пренебречь, так как за 3,5–10 ч заряда аккумулятор и так зарядится почти на всю емкость.
Батарея смартфона. Часть 1. Как она работает и как правильно заряжать свой телефон
Последнее обновление:
Оценка этой статьи по мнению читателей:Этой статьей мы начинаем серию увлекательных материалов, посвященных аккумулятору смартфона. На первый взгляд слова «увлекательный» и «аккумулятор» не имеют логической связи. Однако, прочитав эту статью до конца, вы убедитесь в обратном!
Проблема с подобного рода статьями заключается в том, что советы по поводу «правильной» зарядки дает каждый второй пользователь смартфона и нередко можно увидеть прямо противоположную информацию.
Кто-то говорит, что можно без проблем оставлять смартфон на зарядке на всю ночь или разряжать телефон до нуля, ведь система управления питанием не допустит критического падения или превышения напряжения внутри аккумулятора. Другие с этим в корне не согласны, приводя в качестве аргументов личный печальный опыт.
В этой серии мы затронем все вопросы, начиная от принципа работы аккумулятора и заканчивая быстрыми и беспроводными зарядками. В первой части поговорим о том, как вообще работает аккумулятор, откуда там появляется ток и куда он девается, а также ответим на некоторые важные практические вопросы.
Загадочная «баночка с энергией» или как работает аккумулятор смартфона
Многие люди представляют себе аккумулятор телефона в виде небольшой баночки, в которую по проводу из розетки «заливается» ток. Набрали полную батарейку электронов — теперь можем в течение дня расходовать эту энергию на подпитку дисплея, динамиков, процессора и других компонентов смартфона. Закончились электроны в батарейке — телефон разрядился и нужна новая порция электронов.
Выглядит эта картина вполне логично, но не совсем верно. В реальности аккумулятор больше похож на закрытые песочные часы, только вместо песка у нас «засыпаны» электроны:
Когда верхний «сосуд» с электронами опустошится, нужно будет зарядить смартфон, то есть, как-то перевернуть часы, чтобы электроны снова посыпались вниз. Зарядка «переворачивает часы», забирая «песок» с нижней части аккумулятора и пересыпая его в «верхнюю» чашу, чтобы электроны снова могли двигаться в нужном направлении.
Мы все прекрасно понимаем, почему песок сыпется вниз. Это происходит под действием силы тяжести. Если бы часы лежали на боку, песок не пересыпался бы с одного сосуда в другой. Теперь представим, что часы лежат на столе (для простоты уберем лишние детали), но электроны «часов» почему-то продолжают «пересыпаться» с одной части в другую:
Движение электронов показано красными стрелкамиКак это происходит!? Для ответа на этот вопрос давайте вспомним, что вообще такое электрон. Всё, что нас окружает, состоит из атомов. Атомы, в свою очередь, состоят из ядра, вокруг которого, словно планеты вокруг солнца, вращаются электроны (на самом деле, это примитивная и устаревшая модель, так как электроны не летают по орбитам, да и орбит никаких нет, но для нашего разговора такая модель сгодится):
Электроны (синие шарики со знаком минус) — это отрицательно заряженные частицы, а внутри ядра находятся положительно заряженные (протоны) и нейтрально заряженные (нейтроны) частицы. Опять
Если количество электронов (-) и протонов (+) одинаково, атом считается электрически нейтральным. Если больше электронов (-), тогда атом обладает отрицательным зарядом, а если больше протонов (+), тогда атом обладает положительным зарядом.
Так вот, разноименные заряды (плюс и минус) всегда притягиваются друг ко другу, а одноименные (плюс-плюс или минус-минус) — отталкиваются. И не нужно пугаться слов «положительный» и «отрицательный» заряд. Это просто названия, не имеющие под собой никакого основания. Раньше такие заряды назывались «стеклянными» и «смоляными». Затем их решили называть «положительными» и «отрицательными». Главный смысл — показать, что заряды бывают двух типов и они между собой как-то взаимодействуют.
Теперь немножко подправим наши часы, сделав их более похожими на батарейку смартфона. Для этого изолируем две чаши и в одну из них поместим отрицательные заряды, а в другую — положительные:
Слева находится множество отрицательных электронов, а справа — положительных ионов. Ион — это просто другое название для атома, который потерял или получил электрон. В нашем случае, он потерял электрон («минус») и заряжен положительно. Получается, слева избыток электронов, а справа — их недостаток.
Но в природе все стремится к равновесию, атомы «хотят» быть нейтральными. То есть, количество положительных зарядов должно соответствовать количеству отрицательных зарядов. Если мы соединим обе чаши проводником (проводом), электроны слева моментально начнут движение по этому проводу в правую чашу:
И в этот момент в проводе возникнет электрический ток, так как ток — это и есть движение электронов в одном направлении. Теперь можно этот провод провести через все компоненты смартфона. Электроны, проходя от отрицательной «чаши» к положительной, будут давать электрический ток. Соответственно, будет работать экран, динамики и другие компоненты.
Теперь представьте, что чаша слева — это одна сторона аккумулятора (минус), а чаша справа — другая (плюс) и ток течет от отрицательной стороны батарейки к положительной. Но наступит момент, когда количество электронов выровняется. Больше нет «плюса» и «минуса», так как атомы везде стали нейтральными, все лишние электроны присоединились к ионам и телефон полностью разрядился.
Если бы это была обычная батарейка, толку от нее больше не было бы. Но так как это аккумулятор, можно попытаться снова разделить атомы на положительные ионы и отрицательные электроны, собрав «минусы» на одной стороне аккумулятора, а «плюсы» — на другой. И весь процесс запустится по кругу.
Что такое амперы и вольты?
Вернемся к потоку электронов. Чем большее их количество протекает по проводу за 1 секунду, тем выше сила тока, то есть, тем больше ампер выдает аккумулятор. Заряд одного электрона ничтожно мал, соответственно, нужно очень много электронов, чтобы силы тока было достаточно для питания смартфона. Амперы — это и есть наш ток. Если не будет ампер, значит, нет и электронов, которые бы двигались в одном направлении. Соответственно, нет и электричества. Если говорить точно, тогда 1 ампер — это поток из 6240 квадриллионов электронов, протекающих за 1 секунду.
Теперь возьмем батарейку смартфона, на одной стороне которой собралось много отрицательных частиц (со знаком «минус»), а на другой — положительных (со знаком «плюс»). В результате мы получаем два потенциала, один из которых «хочет» избавиться от лишних электронов. Их слишком много, им мало места, они выталкивают друг друга (электроны с одинаковым зарядом отталкиваются). А на втором конце наблюдается сильная недостача электронов и атомы пытаются их притянуть. Так вот, разница между такими потенциалами («плюс» и «минус») называется напряжением и измеряется в вольтах. Чем больше с одной стороны свободных электронов и сильнее их недостача с другой стороны, тем выше напряжение.
Если сравнить течение тока с водой в трубке, тогда сила тока (амперы) — это количество воды в трубке, а напряжение (вольты) — это давление, с которым мы толкаем воду. Соответственно, сколько бы воды не было в трубке, если мы не можем ее протолкнуть — никакого тока не будет. Верно и обратное — если воды очень и очень мало, то с каким бы давлением мы не пытались ее вытолкнуть, большой мощности не будет. То есть, эта вода будет бесполезной, так как она не сможет сделать никакой полезной работы, например, вращать водяную мельницу. Нужно не только много воды, но и хорошее давление.
Итак, только что мы рассмотрели базовый принцип работы батарейки. Электроны из одной части аккумулятора по проводам перетекают в другую часть. Только на нашей картинке обе части находились на расстоянии друг от друга, а внутри смартфона — это цельная конструкция. Просто электроны не могут попасть с одной стороны (минус) на другую (плюс) напрямую, так как между ними стоит «барьер». Соответственно, нужно между этими частями «проложить мостик», по которому электроны моментально начнут движение. Таким мостиком является проводка внутри смартфона.
Принцип работы литий-ионного (Li-ion) аккумулятора
Все смартфоны уже давно используют исключительно один тип аккумуляторов — это литий-ионные батареи (Li-Ion). О них и поговорим подробнее.
Кто-то может возразить и сказать, что в его смартфоне установлен литий-полимерный (Li-Po или LiPo) аккумулятор, который гораздо лучше литий-ионного. В доказательство можно привести тысячи статей на всевозможных сайтах, включая самые авторитетные. Однако в реальности, «литий-полимерный» аккумулятор — это не более, чем маркетинговая уловка, не имеющая никакого отношения к твердотелым аккумуляторам. Подробнее об этом я упомяну чуть позже. На этом этапе будет непонятной разница между литий-ионной и литий-полимерной батарейкой.
Итак, главным действующим лицом в литий-ионных аккумуляторах, как следует из названия, является литий, а точнее, его ионы. У лития всего 1 электрон на внешней оболочке атома (то есть, на самой дальней и нестабильной орбите). Соответственно, такой электрон очень легко может оторваться, превратив атом в положительно заряженный ион (вспоминаем, электрон — это отрицательная частица и если ее оторвать, атом станет положительным). По этой причине литий в чистом виде легко вступает в реакцию.
Но если атом лития станет частью оксида металла (соединение химических элементов), тогда он будет достаточно стабильным. Схематически это можно отобразить так:
Иллюстрация © Learn EngineeringСвободные атомы лития (зеленые шарики) очень нестабильные и могут вступать в реакцию, теряя электрон, а те, что в структуре оксида металла (в основном используется кобальт) — достаточно стабильные. Когда атом лития нестабилен, он, как и все мы, стремится к стабильности, возвращаясь на место в оксид металла.
Теперь вспоминаем устройство батарейки. Литий-ионный аккумулятор состоит из двух «камер» или частей. Одна из них будет отрицательной (называется Анод), а вторая положительной — Катод. Как и в нашем примере, электроны из Анода (-) должны попасть в Катод (+). Но сделать это напрямую внутри аккумулятора они не могут, так как между анодом и катодом находится жидкий электролит (переносчик положительных зарядов).
В современных аккумуляторах, кажется, что нет никакой жидкости внутри. Но это только так кажется. Многие современные аккумуляторы используют полимер, смоченный электролитом или же специальный пористый разделитель (сепаратор) из полимера, пропитанного электролитом. Но это всё тот же жидкий электролит, просто немного в другом виде. А существуют настоящие литий-полимерные аккумуляторы, у которых сам полимер проводит литий, то есть, там вообще нет никакого жидкого электролита. Такие аккумуляторы не используются в смартфонах.
Итак, посмотрим на схему нашего аккумулятора:
Мы видим здесь две части батареи: минус (слева) и плюс (справа). Они разделены по центру сепаратором, пропитанным электролитом. В левой части (в аноде) между слоями графита размещаются атомы лития. Кристаллическая решетка графита позволяет легко задерживать атомы лития между слоями. То есть, литий в нем, как бы, «застревает» (это явление называется интеркаляцией). Сам графит не вступает ни в какие реакции, он просто служит своеобразными «полочками», на которых можно удобно разместить все ионы.
Справа от электролита (в катоде) находится оксид кобальта, который вступает в реакцию с литием.
Разрядка телефона
Атомы кобальта на катоде (плюсе) из-за химической реакции потеряли электроны и их заряд стал еще более положительным. В результате они хотят вернуть свои электроны, чтобы нейтрализовать заряд. А как мы помним, на аноде (минусе) в графите «застряло» много лития, который без проблем отдаст свой электрон.
Но эти электроны не могут пройти через электролит, чтобы соединиться с кобальтом (оксидом металла).
Аккумулятор подключается плюсом и минусом к контактам смартфона. Дорожка от одного контакта (-) проходит через все компоненты смартфона и доходит до второго контакта (+). Она и соединяет две части батареи.
Как только между анодом и катодом появляется путь, электроны на аноде отрываются от лития и устремляются по нему, чтобы примкнуть к положительно заряженному кобальту. А литий в это же время свободно проходит через электролит и встраивается в оксид кобальта.
По дороге электроны «заходят» во все компоненты смартфона, которые встречаются им по пути и заставляют их работать.
Еще раз хочу обратить внимание на то, что электроны не «тратятся», как, например, топливо. Электрон вышел из точки А и пришел в точку Б, а если по пути встретилась лампочка, то еще и ее «зажег», но сам при этом никуда не испарился.
Зарядка телефона
Когда весь литий перейдет через электролит от анода к катоду, больше не останется электронов, которые бы могли путешествовать по внешнему проводу (по электрической цепи). Теперь нам нужно провернуть обратный процесс, а именно, «перетянуть» литий из катода в анод.
Для этого мы прикладываем внешний источник питания «плюсом» к катоду батарейки (+) и «минусом» к аноду батарейки (-). Так как напряжение внешнего источника выше напряжения батарейки, происходит химическая реакция. От кобальта отрываются электроны и уходят в «розетку». При этом атомы лития также вылетают из оксида металла.
В то же время от блока питания на «минус» батарейки залетают электроны и эта часть аккумулятора становится всё более и более отрицательно заряженной. В результате положительные ионы лития проходят через электролит и на аноде (в графите) встречаются с электронами.
Теперь весь литий снова на аноде и когда зарядка будет прекращена, начнется обратный процесс — электроны устремятся к положительному кобальту через весь смартфон, а литий следом — через электролит:
На этой иллюстрации вместо буквы А в кружочке и находятся компоненты нашего смартфона. Также на анимации не показан электролит по центру. Оранжевые кружочки — это положительные ионы лития, а белые кружочки — это электроны.
Так можно ли полностью разряжать свой смартфон или оставлять его на зарядке на всю ночь?
Вы можете делать все, что вашей душе угодно. Но стоит помнить, что у любого действия есть свои последствия. Это может прозвучать очевидно, но именно заряд/разряд смартфона и сокращает его емкость. По этой причине существует такое понятие как цикл разряда/заряда.
Я думаю, вы не раз слышали о том, что смартфоны рассчитаны на определенное количество циклов заряда/разряда, например, 500 полных циклов. Apple на своем сайте заявляет, что если полностью зарядить iPhone до 100%, после чего разрядить его до 0%, тогда через 500 таких зарядок/разрядок, емкость аккумулятора снизится до 80%. В случае с Apple Watch количество циклов увеличено до 1000.
Многие пользователи знают об этом и всё пытаются понять, как злобный производитель подсчитывает эти циклы, снижая емкость их аккумулятора. Кто-то старается выяснить, что считается полным циклом и как можно обмануть смартфон, разряжая его не совсем до нуля или заряжая не совсем до 100%.
На самом же деле, никто не считает циклы, чтобы специально испортить батарейку. Понятие полных/неполных циклов заряда введено для удобства. А портит батарейку именно заряд/разряд.
Понимая все, что мы разобрали в статье, посмотрим, кто же портит наш аккумулятор. Итак, при зарядке литий проходит через электролит от плюса к минусу, то есть, от катода к аноду.
Теперь, когда начинается разрядка смартфона, обратно вернутся не все ионы лития. Кто-то из них погибнет по пути домой. Возвращаясь через электролит, на внешней границе происходит реакция, в которой участвуют органические вещества электролита, сам литий и его электроны. В результате такой реакции образуется тонкая пленочка на аноде под названием SEI (Solid Electrolyte Interface).
С одной стороны, она и защищает слой электролита от бомбардировки электронами, которые стремятся пройти через электролит вслед за ионами лития, но не могут. С другой же стороны, на ее образование уходит часть атомов лития. То есть, самого лития становится меньше. А значит, уменьшается и емкость батарейки. И с каждым новым циклом заряда/разряда этот слой (SEI) становится все толще. Рано или поздно это приведет к созданию барьера, через который литий уже не сможет переходить к графиту анода.
На катоде тоже происходит реакция — окисление электролита. Чем выше напряжение — тем быстрее это происходит. Соответственно, собирать большое количество лития на одном из полюсов и держать его в таком состоянии, приводит к более быстрой деградации аккумулятора.
Получается, когда вы ставите смартфон на ночь на зарядку, конечно же, BMS (система управления батареей) не позволит аккумулятору «перезарядиться», то есть, получить большее напряжение, чем он способен выдержать. И проблема совершенно не в этом.
Всю ночь аккумулятор вашего смартфона будет находиться в состоянии, при котором деградация батареи будет максимально ускоряться. То же касается и падения заряда ниже 15-20%. В этом случае, мы получаем ту же ситуацию, что и с полностью заряженным аккумулятором, только наоборот. На ускорение вредных процессов влияет также и температура батареи.
Таким образом, для максимального срока службы литий-ионного аккумулятора нужно не только не оставлять свой смартфон на зарядке на всю ночь, но и не заряжать его вовсе до 100%, как и не разряжать ниже 20%. Гораздо лучше для батареи зарядить смартфон дважды в день (от 30 до 80%), нежели один раз в сутки ставить его на зарядку на всю ночь. Аккумулятор прослужит дольше, даже если вы будете заряжать его 4 раза в день от 40 до 70%, нежели проходить полный цикл заряда/разряда.
К слову, бывают случаи, когда человек использует свое устройство очень редко, например, зеркальную камеру. И в связи с этим хочет максимально эффективно хранить батарейку, чтобы она не теряла емкость. В таком случае, лучше всего разрядить аккумулятор до 40% и поместить его в полиэтиленовый пакет. А сам пакет с батареей хранить в холодильнике (не морозилке) при температуре от 0 до 3°C.
Ниже в таблице вы можете увидеть зависимость деградации аккумулятора от уровня его заряда и температуры хранения через 1 год:
Температура | 40%-уровень заряда | 100%-уровень заряда |
0°C | 98% | 94% |
25°C | 96% | 80% |
40°C | 85% | 65% |
60°C | 75% | 60% через 3 мес. |
Надеюсь, вам понравилась первая часть из нашей новой серии, а во второй мы поговорим о беспроводной зарядке.
Алексей, главный редактор Deep-Review
P.S. Мы открыли Telegram-канал и сейчас готовим для публикации очень интересные материалы! Подписывайтесь в Telegram на первый научно-популярный сайт о смартфонах и технологиях, чтобы ничего не пропустить!
Первая зарядка литиевых батарей_Greenway battery
Нет, вам не обязательно полностью заряжать литий-ионный аккумулятор в первый раз, так как это не оказывает существенного влияния. Литий-ионные батареи более эффективны по сравнению с батареями старого поколения, такими как никель-кадмиевые. Многие люди до сих пор придерживаются старых ограничений, которые применялись к никелевым батареям, популярным еще в 90-х годах.
Нет никакого вреда, если вы не зарядите аккумулятор на полную мощность в первый раз.Кроме того, полная зарядка устройства ничему не помешает. Точно так же он имеет небольшое влияние, когда вы не заряжаете. Если бы это было еще в 90-е, то корпусом были бы другие никелевые батареи, потому что их нужно было полностью зарядить перед первым использованием. Это была всего лишь мера предосторожности, чтобы клетки оставались в хорошей форме в течение длительного периода времени. Если их не зарядить должным образом в первый раз, это приведет к короткому сроку службы.
Технологии на основе никеля или свинцово-кислотные технологии все еще используются сегодня, но их мало.Они страдают потерей памяти и требуют много практики, чтобы поддерживать свою жизнь. Иначе они быстро испортятся. Теперь все изменилось с литий-ионными батареями, поэтому они не требуют особого внимания.
Но почему производители литий-ионных аккумуляторов до сих пор настаивают на полной зарядке вашего устройства в первый раз? Первая зарядка аккумулятора до полной емкости помогает ускорить процесс калибровки. Это помогает устройству изучить индивидуальное поведение теста. В этом по-прежнему нет необходимости, потому что в большинстве аккумуляторов встроена технология самокалибровки.Так что всегда заряжать аккумулятор перед первым использованием — это миф.
Как вы впервые заряжаете литиевый аккумулятор?
Вам не нужно заряжать литий-ионный аккумулятор в первый раз полностью. Однако, если вы находитесь в отличном положении для загрузки, в этом нет никакого вреда. Таким образом, вы сможете пользоваться своим новым устройством при полной зарядке, не подключая его обратно. Срок службы li-on зависит от количества циклов. Например, 80% из них остаются в хорошем состоянии на протяжении 1000-1500 полных циклов.
Один полный цикл состоит из одной полной зарядки и разрядки. Единственная причина, по которой производители настаивают на том, чтобы люди заряжали свои устройства полностью, — это поддержание культуры. Есть высокие шансы, что если вы полностью зарядите свое устройство в первый раз, вы, вероятно, продолжите эту культуру.
Есть несколько факторов, которые необходимо учитывать при первой зарядке. Во-первых, вам нужно использовать правильное зарядное устройство, иначе вы испортите свое устройство.Некоторые зарядные устройства опасны, особенно если они превышают предел напряжения. Чрезмерная зарядка литий-ионного аккумулятора может привести к короткому замыканию или производственным дефектам
Очень важно поддерживать рекомендованную температуру. Литий-ионные аккумуляторы ведут себя как люди в другой среде. Вы должны поддерживать оптимальную температуру не только в первый раз, но и в остальное время, чтобы сохранить ее долгий срок службы. Литий-ионные аккумуляторы лучше работают в условиях высоких температур по сравнению с условиями низких температур.
Высокие температуры имеют тенденцию к перегрузке аккумулятора, поэтому сокращается срок его службы при длительном использовании. Напротив, низкие температуры уменьшают емкость ячеек за счет увеличения внутреннего сопротивления.
Как долго вы заряжаете литиевый аккумулятор в первый раз?
Зарядка нового литий-ионного аккумулятора до 100% до 1400 мАч занимает примерно 150 минут. Вам не нужно заряжать его на ночь, чтобы он полностью зарядился.Большинство современных ячеек имеют возможность быстрой зарядки, что позволяет заряжать некоторые даже менее чем за час. Если у вас есть такой тип устройства, вы можете зарядить его в течение времени, указанного в инструкции.
Лучшее в литий-ионных аккумуляторах — это то, что в них есть механизмы, защищающие их от перезарядки. Так что нет ничего страшного, если вы забудете свое устройство на зарядном устройстве. Также в других гаджетах есть функции управления зарядкой. Они автоматически отключают ваш телефон, когда он заполнен, или если соединение нарушено.
Вам не следует заряжать аккумулятор до 100%, чтобы литий-ионный аккумулятор прослужил дольше. Также следует соблюдать постоянный ток заряда, насыщения и температуры. Зарядка до 100% может привести к чрезмерному растягиванию аккумулятора, что приведет к снижению его производительности со временем.
Заключительные мысли
Зарядка литиевого аккумулятора впервые стала очень спорной темой.Большинство людей не понимают, как обращаться с устройствами с такими типами ячеек. Вопрос о том, нужно ли кому-то впервые заряжать литий-ионный аккумулятор, стал настолько популярным. Путаница была вызвана старой школой на никелевой основе, которая требовала тщательного ухода. Его нужно было заряжать более 6 часов перед первым использованием, а также полностью слить перед повторным использованием. Правда в том, что литий-ионные более продвинутые, и они содержат механизмы, контролирующие зарядку.Однако вы должны следить за другими оптимальными условиями, такими как температура, зарядное напряжение и хранение.
Быстрая зарядка литий-ионных аккумуляторов при любых температурах
Значимость
Беспокойство о запасе хода является ключевой причиной того, что потребители неохотно выбирают электромобили (EV). Чтобы быть действительно конкурентоспособными с бензиновыми автомобилями, электромобили должны позволять водителям быстро перезаряжаться в любом месте в любую погоду, например, заправлять бензиновые автомобили. Однако ни один из современных электромобилей не допускает быструю зарядку при низких или даже низких температурах из-за риска литиевого покрытия, образования металлического лития, которое резко сокращает срок службы батареи и даже приводит к угрозе безопасности.Здесь мы представляем подход, который обеспечивает быструю зарядку литий-ионных аккумуляторов за 15 минут при любых температурах (даже при -50 ° C), сохраняя при этом значительный срок службы (4500 циклов, что эквивалентно> 12 лет и> 280000 миль электромобиля). срок службы), что делает электромобили действительно независимыми от погодных условий.
Abstract
Быстрая зарядка — ключевой фактор массового внедрения электромобилей (EV). Ни один из современных электромобилей не выдерживает быстрой зарядки при низких или даже низких температурах из-за риска литиевого покрытия.Попытки включить быструю зарядку затрудняются из-за компромиссного характера литий-ионной батареи: улучшение возможности быстрой низкотемпературной зарядки обычно приносит в жертву долговечность элементов. Здесь мы представляем управляемую структуру ячеек, чтобы устранить этот компромисс и обеспечить быструю зарядку без литиевого покрытия (LPF). Кроме того, элемент LPF обеспечивает унифицированную практику зарядки независимо от температуры окружающей среды, предлагая платформу для разработки материалов для аккумуляторов без температурных ограничений.Мы демонстрируем элемент LPF 9,5 А · ч 170 Вт · ч / кг, который может быть заряжен до 80% заряда за 15 минут даже при -50 ° C (за пределами рабочего предела элемента). Кроме того, элемент LPF выдерживает 4500 циклов зарядки 3,5-C при 0 ° C с потерей емкости <20%, что в 90 раз увеличивает срок службы по сравнению с базовым обычным элементом и эквивалентно> 12 лет и> 280000 миль. Срок службы электромобиля в таких экстремальных условиях использования, т. Е. 3,5 ° C или 15-минутная быстрая зарядка при отрицательных температурах.
Электромобили (электромобили) имеют большие перспективы в решении проблем изменения климата и энергетической безопасности (1).Автопроизводители выстраиваются в очередь, чтобы наводнить рынок серией новых электромобилей. Несмотря на быстрое падение стоимости литий-ионных аккумуляторов (LiB) на 80% за последние 7 лет (2), рынок электромобилей по-прежнему составляет лишь около 1% годовых продаж легковых автомобилей. Беспокойство о запасе хода, страх, что у электромобиля может закончиться заряд во время поездки с водителем, который остался в затруднительном положении, долгое время упоминался как основная причина, по которой потребители неохотно выбирают электромобили. Это беспокойство усугубляется тем фактом, что подзарядка электромобилей обычно занимает гораздо больше времени, чем заправка автомобилей с двигателем внутреннего сгорания (ICEV).Исследования показали, что годовой пробег электромобилей увеличился более чем на 25% в районах, где у водителей есть доступ к станциям быстрой зарядки, даже в тех случаях, когда быстрая зарядка использовалась для от 1 до 5% от общего числа случаев зарядки (3).
По всему миру идет захватывающая гонка за увеличение количества и мощности станций быстрой зарядки. BMW, Daimler, Ford и Volkswagen в прошлом году создали совместное предприятие (4), чтобы к 2020 году развернуть 400 «сверхбыстрых» зарядных станций по всей Европе с мощностью зарядки до 350 кВт, что позволяет заряжать электромобиль с пробегом 200 миль. (е.г., Chevy Bolt с батареей на 60 кВтч) за ∼10 мин. Honda также объявила о планах по выпуску электромобилей, способных к 15-минутной быстрой зарядке к 2022 году. Совсем недавно Министерство энергетики США объявило о финансировании проектов по разработке технологий сверхбыстрой зарядки (5) с целью дальнейшего увеличения мощности зарядки до 400 кВт.
Критическим препятствием для быстрой зарядки является температура. Чтобы быть действительно конкурентоспособными с ICEV, быстрая зарядка электромобилей не должна зависеть от региона и погодных условий, так же, как заправка бензинового автомобиля.Зимой на половине территории США средняя температура ниже 0 ° C, как показано на рис. 1 A (6). Однако ни один из современных электромобилей не поддерживает быструю зарядку при низких температурах. Nissan Leaf, например, можно зарядить до 80% за 30 минут (заряд ~ 2 ° C) при комнатной температуре, но для зарядки того же количества энергии при низких температурах потребуется> 90 минут (заряд
LPF Быстрая зарядка независимо от температуры окружающей среды. ( A ) Средняя зимняя температура в США. Половина из них <0 ° C, а 47 состояний <10 ° C. ( B ) Литературные данные о сроке службы при различных температурах, нормированные на срок службы при 25 ° C. Элемент LPF позволяет сместить парадигму от экспоненциальной линии обычных литий-ионных элементов к верхней горизонтальной линии.( C — E ) Схематическое изображение структуры управляемого элемента для быстрой зарядки LPF. Ячейка ( C ) первоначально при температуре замерзания ( D ) проходит этап быстрого внутреннего нагрева, чтобы поднять ее температуру выше порогового значения (T LPF ), которое устраняет литиевое покрытие до того, как ( E ) станет заряжено. Используется конструкция самонагревающейся батареи, которая имеет тонкую никелевую фольгу внутри элемента (подробности см. В приложении SI , рис. S4).Эта структура ячейки обеспечивает интеллектуальное управление разделением тока между никелевой фольгой (нагрев) и материалами электродов (зарядка) в зависимости от температуры ячейки (ячейка T , ). ( D ) Если ячейка T
Основным признаком литиевого покрытия является резкая потеря емкости в дополнение к угрозам безопасности. Действительно, недавние данные показали, что срок службы LiB значительно снижается с температурой. Коммерческий 16-Ач графит / LiNi 1/3 Mn 1/3 Co 1/3 O 2 ячеек в европейском проекте Mat4Bat потеряли 75% емкости за 50 циклов при 1-градусной зарядке при 5 ° C. (10), хотя одни и те же клетки могут выдержать 4000 циклов при 25 ° C. Schimpe et al. (11) циклически повторяли идентичные элементы графит / LiFePO 4 при разных температурах.Ячейки при 25 ° C потеряли 8% емкости за 2800 эквивалентных полных циклов (EFC). При такой же потере емкости срок службы элементов сокращается до 1800 EFC при 15 ° C, 1400 EFC при 10 ° C и 350 EFC при 0 ° C. На рис. 1 B обобщены некоторые недавние данные (11⇓⇓⇓ – 15) в литературе о сроке службы при различных температурах, нормированные на соответствующий срок службы при 25 ° C. Можно отметить явное экспоненциальное падение жизненного цикла с температурой в соответствии с законом Аррениуса, предложенным Waldmann et al. (12). Даже при низкой температуре 10 ° C срок службы элементов составляет лишь половину от срока службы при 25 ° C.Стоит отметить, что в 47 из 50 штатов США зимой средняя температура ниже 10 ° C (рис. 1 A ). Даже при ежегодном усреднении ( SI Приложение , рис. S1) 23 состояния имеют температуру ниже 10 ° C. Таким образом, даже когда станции быстрой зарядки становятся повсеместными, потребители все еще не могут быстро заправлять свои электромобили в течение большей части года из-за низких температур окружающей среды.
По сути, на литиевое покрытие влияют скорость ионной проводимости и диффузии в электролите, диффузия лития в частицах графита и кинетика реакции на графитовых поверхностях.Все ключевые параметры, управляющие этими процессами, подчиняются закону Аррениуса и существенно падают с температурой ( SI Приложение , рис. S2). Таким образом, подключаемый гибридный аккумулятор EV (PHEV), который может выдерживать заряд 4 ° C без литиевого покрытия при 25 ° C, может допускать заряд только 1,5 ° C при 10 ° C и C / 1,5 при 0 ° C для предотвращения литиевое покрытие ( SI, приложение , рис. S3), которое объясняет длительное время перезарядки современных электромобилей при низких температурах. Для повышения способности к быстрой зарядке исследования в литературе были сосредоточены на улучшении анодных материалов, таких как покрытие графита нанослоем аморфного кремния (16, 17), и разработке новых материалов, таких как титанат лития (18, 19) и графеновые шары (20), и по разработке новых электролитов (21, 22) и добавок (23).LiB, однако, хорошо известны своей компромиссной природой между ключевыми параметрами (24). Улучшение одного свойства без ущерба для другого всегда нетривиально. Например, электролит с превосходными характеристиками при низких температурах довольно часто нестабилен при высоких температурах (23, 24). Точно так же уменьшение размера частиц и / или увеличение площади поверхности активных материалов Брунауэра – Эммета – Теллера (БЭТ) способствует быстрой зарядке, но при этом страдает срок службы батареи и безопасность. Чрезвычайно сложно, если вообще возможно, разработать материалы с высокой скоростью зарядки, сохраняя при этом долговечность и безопасность в широком диапазоне температур.
Здесь мы делаем попытку освободить науку об аккумуляторах от компромиссов. В частности, мы представляем структуру ячеек, которой можно активно управлять для достижения быстрой зарядки без литиевого покрытия (LPF) при любых температурах окружающей среды, что позволяет изменить парадигму соотношения между сроком службы и температурой (рис. 1 B ), с корреляция Аррениуса обычных LiB с горизонтальной линией, нечувствительной к температуре. Мы выбрали пакетные ячейки емкостью 9,5 Ач с графитовым анодом, LiNi 0.6 Mn 0,2 Co 0,2 O 2 (NMC622) катод и плотность энергии на уровне ячейки 170 Втч / кг для демонстрации. Со структурой элемента LPF элемент выдержал 4500 циклов (2806 EFC) зарядки 3,5-C при 0 ° C до достижения 20% потери емкости, что означает, что даже если электромобиль заряжается один раз в день в этих суровых условиях, Элемент LPF имеет срок службы 12,5 лет и может обеспечить дальность действия> 280 000 миль (при условии, что 1 EFC ≈ 100 миль). Это уже выходит за рамки гарантии большинства ICEV.Для сравнения, обычный LiB-элемент с идентичными материалами батареи в тех же условиях тестирования (заряд 3,5 ° C при 0 ° C) потерял 20% емкости всего за 50 циклов и 23 EFC.
Кроме того, в этой работе подчеркивается концепция унифицированной практики зарядки, независимой от температуры окружающей среды. Для электромобилей профили разряда батареи зависят от поведения водителей, но протоколы зарядки определяются производителями. Сегодняшние электромобили должны снижать скорость зарядки при понижении температуры из-за опасений по поводу литиевого покрытия.С помощью элемента LPF зарядка при любой температуре окружающей среды превращается в зарядку при оптимальной температуре всего за десятки секунд. Как показано здесь, элемент LPF может быть заряжен до 80% состояния заряда (SOC) за 15 минут даже при температуре окружающей среды -50 ° C. Более того, кривая зарядного напряжения при -50 ° C почти такая же, как и при 25 ° C. Эта унифицированная практика зарядки может значительно упростить управление аккумулятором и продлить срок его службы.
Кроме того, ячейка LPF предлагает платформу для материаловедов.Постоянной проблемой при исследовании материалов для аккумуляторов является поиск материалов, которые могут поддерживать хорошие характеристики в широком диапазоне температур. Поскольку температурные ограничения снимаются с ячейками LPF, исследователям нужно только оптимизировать характеристики материала около одной температуры.
Результаты и обсуждение
Управляемая структура ячеек для быстрой зарядки LPF.
Ключевая идея быстрой зарядки LPF состоит в том, чтобы заряжать элемент всегда выше температуры, которая может препятствовать образованию литиевого покрытия, далее именуемой температурой LPF (T LPF ).Как показано на рис. 1 C — E , этап быстрого внутреннего нагрева (рис. 1 D ) добавляется перед этапом зарядки (рис. 1 E ), чтобы гарантировать, что аккумулятор заряжен при температура выше T LPF .
Быстрый нагрев необходим для быстрой зарядки LPF, так как общее время зарядки, включая нагрев, ограничено от 10 до 15 минут. Обычные методы нагрева батареи с использованием внешних нагревательных устройств или систем управления температурой ограничены внутренним конфликтом между скоростью нагрева и однородностью (т.е., высокая скорость нагрева приводит к неоднородной температуре и локализованному перегреву вблизи поверхности ячейки), как подробно описано в ссылке. 25; таким образом, их скорость нагрева ограничена ~ 1 ° C / мин (26), что означает, что нагрев от -20 ° C до 20 ° C уже займет> 40 мин. Добавляя время на зарядку, он уже не в категории быстрой зарядки. В этой работе мы используем самонагревающуюся структуру LiB (27), которая имеет тонкую никелевую (Ni) фольгу, встроенную в ячейку, которая может создавать огромный и равномерный нагрев, как показано в приложении SI , рис.S4. Фольга Ni является неотъемлемым компонентом отдельной ячейки вместе с электродами и электролитом. Он служит внутренним нагревательным элементом, а также внутренним датчиком температуры, поскольку его электрическое сопротивление изменяется линейно с температурой ( SI Приложение , рис. S5). Кроме того, введение никелевой фольги добавляет только 0,5% веса и 0,04% стоимости по сравнению с обычным одиночным элементом LiB.
Стратегия управления, основанная на структуре самонагревающейся батареи, разработана в этой работе, как показано на рис.1 C — E . Ключом к этой стратегии является интеллектуальное разделение входного тока между никелевой фольгой (нагрев) и материалами электродов (зарядка) в зависимости от температуры элемента (T , ячейка ). Если T элемент
Для демонстрации быстрой зарядки LPF мы выбрали 9,5 Ач графитовых / NMC622 ячеек. Элементы имеют емкость 1,85 мАч / см 2 и плотность энергии на уровне элементов 170 Втч / кг. Выбор скорости заряда и T LPF основан на результатах моделирования потенциала осаждения Li (LDP) в приложении SI , рис.S3 с использованием откалиброванной модели LiB. В общем, T LPF должна иметь минимальную температуру, при которой можно избежать литиевого покрытия при данной скорости заряда. Хотя более высокая температура всегда благоприятна для устранения литиевого покрытия, она также может ускорить рост межфазной границы твердого электролита (SEI). В этой работе скорость заряда 3,5 C и T LPF ∼25 ° C выбраны на основе SI Приложение , рис. S3 C .
На рис.2 показан общий процесс быстрой зарядки LPF 9.Элемент емкостью 5 Ач при экстремальной температуре −40 ° C. Перед испытанием полностью разряженный элемент выдерживали в климатической камере при -40 ° C на> 12 часов. Чтобы гарантировать, что элемент не был заряжен (без литиевого покрытия) на этапе нагрева, при включении переключателя было приложено напряжение 3,15 В, что немного ниже, чем OCV (~ 3,2 В) (см. Рис. 1 D ). ). Таким образом, весь входной ток проходил через никелевые фольги (рис. 2 E ) автоматически, не затрагивая материалы батареи.Поскольку напряжение ячейки было установлено на 50 мВ ниже, чем OCV, ячейка слегка разряжалась на этапе нагрева, которая постепенно увеличивалась до ~ 0,2 ° C к концу, когда ячейка стала нагретой (рис. 2 F ). Тем не менее, общая разрядная емкость во время этапа нагрева составляет только 6,85 × 10 -3 Ач или 0,072% емкости элемента и, следовательно, несущественна. Благодаря сильному току, протекающему через Ni-фольгу, ячейка быстро нагревается (рис. 2 C ).Когда температура поверхности достигала 20 ° C, выключатель открывался для завершения этапа нагрева, а затем ячейка отдыхала 10 с для релаксации внутреннего температурного градиента. Как показано на рис. 2 G , температура фольги Ni, самая высокая температура внутри ячейки, была <45 ° C во время нагрева и быстро падала и достигала температуры поверхности ~ 27 ° C после 10-секундного периода покоя. Это означает, что быстрый нагрев не вызывает никаких опасений по поводу безопасности. После этого ячейка переключилась в режим заряда с использованием протокола постоянного тока и постоянного напряжения (CCCV) при токе 3.5 C ограничено напряжением отсечки 4,2 В до достижения 80% SOC. Весь процесс занял 894,8 с (14,9 мин), включая 61,6 с нагрева и 10 с термической релаксации.
Рис. 2.Быстрая 15-минутная зарядка при −40 ° C. ( A — D ) Эволюция ( A ) напряжения элемента, ( B ) разделение тока между никелевой (Ni) фольгой и элементом, ( C ) температура поверхности и ( D ) SOC . Первоначально ячейка была при 0% SOC и -40 ° C, с OCV ~ 3.2 В. Весь процесс зарядки был разделен на этап быстрого внутреннего нагрева, за которым следовала 10-секундная пауза, а затем зарядка CCCV (3,5 ° C, 4,2 В) до достижения 80% SOC. ( E и F ) Интеллектуальное управление разделением тока между никелевой фольгой и материалами электродов в процессе нагрева. ( E ) Весь входной ток проходит в никелевые фольги, а ( F ) незначительный ток проходит в материалы анода (без покрытия) на этапе нагрева. ( G ) Эволюция температуры поверхности и фольги Ni во время стадий нагрева и релаксации.
Для сравнения, идентичную базовую ячейку заряжали без этапа быстрого нагрева с использованием того же протокола CCCV при -40 ° C ( SI, приложение , рис. S6). Из-за чрезвычайно медленной электрохимической кинетики и транспорта электролита и, следовательно, высокого внутреннего сопротивления, напряжение элемента достигло предела 4,2 В сразу после зарядки ( SI Приложение , рис. S6 A ), а пусковой ток составлял всего ∼0,2 C. ( SI Приложение , рис. S6 B ).Зарядный ток медленно восстанавливался при медленном повышении температуры ( SI Приложение , рис. S6 C ) из-за ограниченной скорости тепловыделения. Максимальный зарядный ток составлял всего 0,85 C, и потребовалось 115 минут, чтобы достичь 80% SOC, что в 7,7 раза больше, чем у элемента LPF.
В общем, при очень низких температурах можно разработать батарею, которая разряжает разумный процент емкости; однако зарядить аккумулятор с разумной скоростью практически невозможно.Это происходит из-за асимметричной электрохимической кинетики зарядки по сравнению с разрядкой, преобладающей в электрохимии. С другой стороны, приложения обычно требуют более высокой скорости зарядки для экономии времени. Представленный здесь способ нагрева-заряда с помощью самонагревающейся конструкции батареи позволяет разделить процессы заряда и разряда за счет быстрой модуляции внутренней температуры; таким образом, он способен преодолевать более слабую электрохимическую кинетику зарядки, чем разряд, для широкого набора электрохимических ячеек накопления энергии.
Унифицированная кривая зарядки, не зависящая от температуры окружающей среды.
На Рис. 3 сравнивается зарядка элемента LPF на 9,5 Ач при различных температурах окружающей среды (−50 ° C, −40 ° C, −20 ° C и 0 ° C). Протокол испытаний был одинаковым для всех случаев: ( и ) полная разрядка при 25 ° C, а затем охлаждение до температуры испытания; ( II ) быстрое нагревание путем приложения постоянного напряжения 3,15 В до тех пор, пока температура поверхности не станет> 20 ° C; ( iii ) 10-секундное расслабление; и ( iv ) Зарядка CCCV (3.5 C, 4,2 В) до 80% SOC. Видно, что кривые напряжения практически одинаковы во всех случаях, несмотря на огромную разницу в температуре окружающей среды (рис. 3 A ). Нагрев ячейки с -50 до 20 ° C (∼1 ° C / с) занял 69 с, а от 0 ° C до 20 ° C (0,66 ° C / с) — 30,2 с. Более быстрый нагрев при более низкой температуре окружающей среды выиграл от снижения сопротивления фольги Ni с повышением температуры ( SI Приложение , рис. S5), что привело к более высокому току нагрева при более низкой температуре (рис. 3 C ).Даже в случае -50 ° C этап нагрева составлял только 7,6% времени всего процесса. Общее время зарядки элемента до 80% SOC было одинаковым во всех четырех случаях (рис. 3 B , 905,7 с при –50 ° C и 863,2 с при 0 ° C, разница ∼5%). Таким образом, жесткие ограничения температуры окружающей среды на время зарядки, как и во всех современных электромобилях, полностью снимаются с помощью элемента LPF.
Рис. 3.Единая практика зарядки вне зависимости от температуры окружающей среды. ( A ) Кривые напряжения элемента LPF при различных температурах окружающей среды.Во всех тестах элемент прошел этап быстрого нагрева при 3,15 В до достижения температуры поверхности> 20 ° C, выдерживался в течение 10 с, а затем заряжался постоянным током 3,5 ° C с последующим постоянным напряжением 4,2 В. до достижения 80% SOC. ( B ) Сводка времени нагрева и общего времени, демонстрирующая, что ограничения температуры окружающей среды на время зарядки устранены. ( C и D ) Эволюция ( C ) тока через никелевую фольгу и ( D ) температуры поверхности ячейки на этапе быстрого нагрева.
Температура как поверхности, так и Ni-фольги достигла ∼27 ° C после 10-секундной термической релаксации ( SI Приложение , рис. S7) во всех четырех случаях, что указывает на то, что начальная точка зарядки аналогична. Таким образом, кривые напряжения при последующей зарядке CCCV были очень похожими ( SI Приложение , рис. S8, A ). Немного более высокое напряжение при более низкой температуре окружающей среды было приписано большему падению температуры во время зарядки ( SI Приложение , рис. S8, B ) из-за сильного охлаждения в климатической камере.При улучшении теплоизоляции и управления можно ожидать, что кривая зарядки станет унифицированной и независимой от температуры окружающей среды. Унифицированная кривая заряда может значительно упростить систему управления батареями и повысить точность оценки состояния батареи (SOC, состояние здоровья и т. Д.) И, следовательно, чрезвычайно полезна для электромобилей.
Следует отметить, что современные электромобили, в принципе, также могут быть нагреты до> T LPF перед зарядкой, используя системы терморегулирования вне отдельных элементов; однако изначально низкая скорость внешнего нагрева (<1 ° C / мин) не позволяет решить проблему быстрой зарядки.Кроме того, поскольку автомобильные элементы становятся все больше и толще для снижения стоимости производства, скорость внешнего нагрева должна быть дополнительно снижена, чтобы избежать локального перегрева на поверхности элемента (25). Наш метод вставки никелевой фольги обеспечивает быстрый и равномерный внутренний нагрев независимо от размера ячейки (равномерность нагрева может быть гарантирована добавлением нескольких никелевых фольг). Этот метод также может быть применен к ячейкам другой геометрии. Например, фольга Ni может образовывать оболочку, обернутую вокруг первой половины цилиндрического рулона с желе перед намоткой второй половины, таким образом помещая ее прямо в середину рулона с желе для цилиндрической ячейки.Несколько примеров конструкций из никелевой фольги для различных типов и форм-факторов ячеек можно найти в ссылке. 28. Кроме того, поток тока внутри элемента между нагревательным элементом и материалами батареи активно регулируется, обеспечивая плавное переключение между режимом быстрого нагрева и режимом зарядки в зависимости от температуры элемента. Даже в экстремальном случае -50 ° C, когда электролит уже перестает работать, элемент LPF по-прежнему заряжается до 80% SOC за 15 минут, как и при комнатной температуре, что еще раз демонстрирует свой потенциал сделать электромобили по-настоящему региональными и погодными. -независимый.
Значительный срок службы за счет отсутствия литиевого покрытия.
Далее мы демонстрируем устранение литиевого покрытия в элементе LPF. Зарядка ячейки LPF при 0 ° C сравнивается с двумя стандартными ячейками базовой линии с идентичными материалами и электродами, которые были заряжены по тому же протоколу CCCV (3,5 C, 4,2 В) до 80% SOC без этапа нагрева. Одна базовая ячейка была протестирована при 0 ° C, а другая — при 25 ° C. Как показано на рис. 4 A , кривая напряжения ячейки LPF при 0 ° C после этапа быстрого нагрева почти перекрывалась с кривой напряжения базовой ячейки при 25 ° C, с очень небольшой разницей из-за разницы в температуре. (Инжир.4 B ). Однако базовая ячейка при 0 ° C имеет гораздо более высокое напряжение, чем две другие ячейки из-за ее высокого внутреннего сопротивления. Все три ячейки были оставлены в разомкнутой цепи после зарядки до 80% SOC, и кривые напряжения во время релаксации сравниваются на рис. 4 C . Четкое плато напряжения наблюдается на кривой релаксации базовой ячейки при 0 ° C, что приводит к локальному пику на кривой дифференциального напряжения (рис. 4 D ). Плато напряжения и пик дифференциального напряжения указывают на появление металлического лития, и, таким образом, являются четким доказательством того, что покрытие литием произошло в 3.5-C зарядка базового элемента при 0 ° C. В двух других случаях напряжение элемента быстро падает до относительно стабильного значения, что указывает на отсутствие литиевого покрытия во время зарядки.
Рис. 4.Замечательный срок службы элемента LPF. Сравнение базовых ячеек при 0 ° C и 25 ° C с ячейкой LPF при 0 ° C с точки зрения напряжения ( A ) и температуры поверхности ( B ) во время зарядки и ( C ) напряжения и ( D ) производная напряжения во время релаксации ячейки после зарядки по времени.Все элементы были заряжены током 3,5 ° C, ограниченным 4,2 В, пока они не достигли 80% SOC. Плато напряжения в C и локальный пик дифференциального напряжения в D базовой ячейки при 0 ° C указывают на отрыв металлического лития. ( E ) Сохранение емкости в зависимости от количества циклов для элемента LPF и цикла базовой ячейки с зарядкой 3,5 ° C при температуре окружающей среды 0 ° C.
Отсутствие литиевого покрытия значительно увеличило срок службы при низких температурах. Велоспорт-тесты проводились с 3.Зарядка 5-C до 4,2 В с последующим 2-минутным перерывом и затем разряд 1-C до 2,7 В. Для элемента LPF этап быстрого нагрева при постоянном напряжении 3,4 В выполнялся в начале каждого цикла и завершался. при Т ячейка > 20 ° С с последующей 10-секундной релаксацией. Ячейки полностью охлаждались до 0 ° C после этапа разряда перед началом следующего цикла. Изменения напряжения и температуры во время цикла приведены в приложении SI , рис. S9 (один цикл) и в приложении SI , рис.S10 (10 циклов). Пропускная способность каждого цикла указана в приложении SI , рис. S11. Циклические испытания периодически приостанавливались для калибровки емкости элемента с эталонным тестом производительности (RPT) при 25 ° C ( SI Приложение , рис. S12). Измеренная разрядная емкость C / 3 в RPT была нанесена на график зависимости от номера цикла на рис. 4 E как для базовой линии, так и для ячеек LPF. Базовая ячейка потеряла 20% емкости всего за 50 циклов, тогда как ячейка LPF выдержала 4500 циклов при том же сохранении емкости, что составляет 90-кратное увеличение срока службы.Даже если водители электромобилей выполняют быструю зарядку один раз в день, 4500 циклов означают 12,5 года работы. При преобразовании в EFC (т. Е. Общая емкость, разряженная во время цикла, деленная на номинальную емкость 9,5 Ач), было получено 2806 EFC при сохранении емкости 80%, что в 122 раза больше по сравнению с базовой ячейкой (23 EFC). Предполагая 100-мильный запас хода на EFC (например, BMW i3), 2806 EFC указывают на срок службы> 280 000 миль, что намного превышает гарантии современных ICEV.
Две вышеуказанные ячейки на рис.4 E далее сравнивают с дополнительными базовыми клетками, один цикл подвергался 10 ° C, а другой — 22 ° C. Эти две базовые ячейки изначально были при 20% SOC и заряжались и разряжались фиксированным объемом, равным 60% SOC свежих элементов в каждом цикле, с CCCV (3 C, 4,2 В) зарядом и 1-C разрядом. Поскольку протоколы циклирования несколько отличаются, сохранение емкости этих ячеек показано в зависимости от EFC на рис. 5 A . Отметим, что элемент с зарядкой 3-C при 10 ° C продержался всего 317 EFC при сохранении 80% емкости.Более того, элемент LPF при 0 ° C имеет даже более длительный срок службы, чем элемент базового уровня при 22 ° C. Причина двоякая. Во-первых, поскольку литиевое покрытие исключается, доминирующим механизмом старения является рост SEI, который зависит в первую очередь от температуры. Как показано в приложении SI , рис. S10 B , на участках разряда и охлаждения элемента LPF температура ниже 22 ° C. Средняя температура ячейки LPF в 10 циклах, показанных в приложении SI , рис. S10 B , составляет 11,6 ° C, что намного ниже средней температуры базовой ячейки (~ 28 ° C).Таким образом, рост SEI в клетке LPF в целом был медленнее, чем в базовой клетке. Во-вторых, базовая ячейка заряжалась на фиксированную величину емкости в каждом цикле, которая равнялась 60% SOC свежей ячейки, но становилась больше, чем 60% SOC по мере разрушения ячейки. Таким образом, базовый элемент был заряжен до более высокого SOC, чем элемент LPF (заряжен до 4,2 В, без ступени постоянного напряжения) на поздней стадии цикла. Более высокий SOC также приведет к более быстрому росту SEI.
Рис. 5.Смена парадигмы влияния температуры окружающей среды на старение клеток.( A ) Сравнение срока службы элемента LPF при зарядке 3,5 ° C при 0 ° C с одинаковыми базовыми элементами при разных температурах. ( B ) Скорость старения в зависимости от обратной температуры четырех ячеек в A . Скорость старения определяется как отношение потери мощности (в процентах) к EFC в конце срока службы и отображается в логарифмической шкале. ( C ) Скорость старения HE ячеек следующего поколения (с толстым электродом) в литературе. Оптимальная температура зарядки HE EV ячеек сдвигается с ~ 25 ° C для существующих PHEV ячеек до ~ 40-50 ° C.
Рис. 5 B дополнительно сравнивает скорость старения в четырех вышеупомянутых случаях, которая определяется как отношение потери емкости (в процентах) к EFC в конце срока службы и отображается в логарифмической шкале в зависимости от обратной температуры. Для базовых ячеек логарифм скорости старения по отношению к 1 / T может быть описан линейной линией, подтверждающей, что скорость старения обычных LiBs следует закону Аррениуса (12). Энергия активации оценивается в -1,37 эВ, что находится в пределах диапазона, указанного в литературе (29).Мы отмечаем, что скорость старения ячейки LPF при 0 ° C была снижена на два порядка по сравнению с базовой стандартной ячейкой и стала близкой к скорости старения базовой ячейки при комнатной температуре, что указывает на сдвиг парадигмы в соотношении между скорость старения и температура окружающей среды.
LPF Быстрая зарядка высокоэнергетических элементов при повышенной температуре.
Для будущих электромобилей дальнего действия требуется плотность энергии на уровне системы не менее 225 Втч / кг, что требует плотности энергии на уровне элементов> 300 Втч / кг (30).Типичный подход к увеличению плотности энергии на уровне ячейки — увеличение площади поверхности (и толщины) электродов. Однако элементы с более толстыми анодами более склонны к нанесению литиевого покрытия из-за большего сопротивления переносу электролита. Недавняя работа (30) показала, что ячейка-пакет из графита / NMC622 с поверхностной нагрузкой 3,3 мАч / см 2 , ∼1,8 × ячейки PHEV в этой работе, потеряла 22,5% емкости за 52 цикла заряда 1,5-C при 30 ° С. После демонтажа старого элемента было обнаружено большое количество металлического лития, что указывает на то, что покрытие литием может быть серьезной проблемой в элементах с высокой энергией (HE) даже при комнатной температуре.
Возможный подход к устранению литиевого покрытия в элементах HE заключается в дальнейшем повышении температуры зарядки. Как показано в приложении SI , рис. S2, увеличение с 25 ° C до 45 ° C увеличивает кинетику интеркаляции лития на 5,6 раза, коэффициент диффузии лития в графите на 2,4 раза и проводимость электролита на 1,4 раза, и, следовательно, может способствовать снижению содержания лития. покрытие. SI Приложение , рис. S13 показывает прогнозируемый моделью LDP ячейки HE, имеющей 1,65-кратную емкость площади и толщину ячейки PHEV в этой работе.Отметим, что максимальный ток заряда при 25 ° C без литиевого покрытия падает с 4 C для элемента PHEV ( SI, приложение , рис. S3, C ) до ∼1,5 C для элемента HE ( SI, приложение , рис. .S13 A ) из-за увеличенной толщины электрода. Если заряжать элемент при 45 ° C, максимальная скорость заряда HE-элемента может быть увеличена до 3 C. Действительно, недавние исследования показали, что элементы с толстыми электродами имеют более длительный срок службы при 40-45 ° C, чем при температуре от 40 ° C до 45 ° C. комнатная температура.Группа Йоссена (31) сообщила, что ячейка графит / LiCoO 2 с анодом толщиной 77 мкм (1,6 × настоящей работы) потеряла 30% емкости за 250 циклов с зарядкой 1 ° C при 25 ° C, но потеряла только Емкость 5% после 400 циклов при 40 ° C. Аналогичным образом группа Винтера (32) обнаружила, что срок службы элемента из графита / NMC532 с анодом толщиной 77 мкм увеличился с 400 циклов при 20 ° C до 1100 циклов при 45 ° C при сохранении емкости 70%. Совсем недавно исследователи из Samsung (20) разработали элемент HE с возможностью зарядки 5 ° C при 60 ° C.
Рис. 5 C сравнивает скорость старения вышеупомянутых клеток HE с клетками PHEV в этой работе. Также добавляется скорость старения ячейки PHEV при 45 ° C. Как сообщается в литературе (33), старение клеток является комбинированным эффектом роста SEI и литиевого покрытия. Для элемента PHEV температура 25 ° C является достаточно высокой, чтобы предотвратить образование лития при скорости заряда 3,5 ° C ( SI Приложение , рис. S3). Дальнейшее повышение температуры до 45 ° C сократило срок службы до 613 EFC при сохранении емкости 80% из-за более быстрого роста SEI.Для клеток HE, однако, полезно работать при температуре от ~ 40 ° C до 45 ° C из-за уменьшения литиевого покрытия, которое превосходит негативные последствия более быстрого роста SEI. Следовательно, работа при более высоких температурах может быть многообещающим подходом для увеличения срока службы клеток HE. В этом отношении нагрев будет важным шагом для зарядки элементов HE. Учитывая изначально низкую скорость внешнего нагрева, нынешний элемент LPF имеет большие перспективы для электромобилей следующего поколения, поскольку он может практически мгновенно модулировать внутреннюю температуру элемента по запросу.
В широком смысле научное достоинство описанного здесь элемента LPF состоит в том, что он предлагает общее решение для разделения кинетики заряда и разряда в науке об аккумуляторах и для ускорения зарядки аккумулятора без необходимости использования новых материалов или химии. Он также предлагает платформу для материаловедов для разработки более совершенных материалов для аккумуляторов без учета температуры. Что касается приложений, настоящая работа навсегда устраняет давние ограничения температуры окружающей среды на зарядку аккумулятора, позволяя использовать широкий спектр новой электроники и устройств, таких как всепогодные смартфоны, наружные роботы, дроны и микроспутники, работающие на больших высотах, а также новые приложения, такие как спасение машин, застрявших в снегу, и исследования в космосе и Арктике.
Методы и материалы
Пакетные ячейки LPF емкостью 9,5 Ач были изготовлены с использованием NMC622 в качестве катода, графита в качестве анода и 1 M LiPF 6 , растворенного в этиленкарбонате (EC) / этилметилкарбонате (EMC) (3: 7). по массе) + 2 мас.% виниленкарбоната (ВК) в качестве электролита. Элементы имеют емкость 1,85 мАч / см 2 и плотность энергии на уровне элементов 170 Втч / кг. Каждая ячейка LPF имеет два куска никелевой фольги, встроенных внутрь, как показано в приложении SI , рис.S4. Каждая Ni-фольга, имеющая толщину 30 мкм и сопротивление 80,2 мОм при 25 ° C, покрыта тонким (28 мкм) полиэтилентерефталатом для электрической изоляции и зажата между двумя односторонними анодными слоями. Две трехслойные сборки уложены друг на друга внутри ячейки и соединены параллельно, причем одна сборка расположена на 1/4 толщины ячейки, а другая — на 3/4 толщины ячейки от верхней поверхности ячейки. Более подробную информацию о материалах, изготовлении, структуре и испытаниях ячеек можно найти в SI Приложение , Методы и материалы .
Благодарности
Финансовая поддержка Департамента охраны окружающей среды Пенсильвании; EC Power, LLC; и Министерство энергетики США присуждено награду DE-EE0006425. Мы также благодарны EC Power за предложение программного обеспечения AutoLion, которое было приобретено Gamma Technologies.
Сноски
Авторы: X.-G.Y., G.Z., and C.-Y.W. спланированное исследование; X.-G.Y., G.Z. и S.G. проводили исследования; X.-G.Y. и С.-Y.W. проанализированные данные; и X.-G.Y. и C.-Y.W. написал газету.
Авторы заявляют об отсутствии конфликта интересов.
Эта статья представляет собой прямое представление PNAS.
Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807115115/-/DCSupplemental.
Как заряжать литиевые батареи? Основы конструкции зарядного устройства для литиевой батареи
Обычно литиевые зарядные устройства заряжают литиевые батареи с помощью постоянного напряжения и постоянного тока.Полный заряд можно проверить по значениям обратной связи постоянного напряжения и постоянного тока.
Зарядка литиевой батареи
Напряжение аккумулятора при полной зарядке:
Литий-ионные аккумуляторы 4,2 В / элемент
Литий-железные батареи LiFePO4 3.6V / Cell
Когда разница между напряжением батареи и максимальным зарядным напряжением составляет менее 100 мВ, а зарядный ток уменьшается до C / 10, батарея считается полностью заряженной.C зависит от характеристик батарейного блока или аккумуляторных элементов.
Из соображений стоимости некоторые имеющиеся в продаже зарядные устройства не выключаются, а остаются в режиме постоянного тока после полной зарядки. Этот метод не может эффективно экономить энергию, и плавающая зарядка не рекомендуется для литиевых батарей. Это отличается от способа зарядки свинцово-кислотных аккумуляторов.
Что касается обратного механизма зарядных устройств, если антиреверсивный механизм не установлен, батареи с неправильной полярностью подключения к источнику питания зарядного устройства могут привести к повреждению зарядного устройства или короткому замыканию аккумулятора.Механизм защиты от обратного напряжения позволяет защитить аккумулятор и зарядное устройство. Это особое внимание уделяется дизайну, особенно для литиевых аккумуляторных батарей с большим количеством строк и большой емкостью.
Рекомендации по проектированию зарядного устройства для литиевых батарей
В современных электромобилях, электровелосипедах и автоматических носителях часто используются аккумуляторные блоки с большим количеством струн и большой емкостью, что приводит к более высоким требованиям безопасности при зарядке.Литиевые батареи с большим количеством строк и большой емкостью означают, что они состоят из большего количества аккумуляторных элементов с большей энергией батареи. Из соображений безопасности необходимы более строгие требования безопасности. Когда батареи заряжаются или разряжаются, необходимо учитывать и контролировать состояние каждого элемента батареи, такое как напряжение, ток и температура. Это касается срока службы и безопасности аккумуляторов при эксплуатации. Следовательно, важно иметь более всесторонние конструктивные решения, чтобы обеспечить безопасность батареи и эффективную зарядку.Таким образом, зарядные устройства с функцией цифровой связи получили более широкое распространение.
Перед зарядкой зарядных устройств и аккумуляторов с функцией связи система управления аккумулятором (BMS) в аккумуляторном модуле будет отправлять команды на зарядное устройство для установки зарядного напряжения и тока зарядки и включения зарядного устройства через изолированную сеть зон управления (шина CAN ).
Аккумуляторные модули и зарядные устройства периодически отправляют команды через фиксированные промежутки времени, чтобы обеспечить нормальную связь между аккумулятором и зарядным устройством.Зарядное напряжение, зарядный ток и температура также контролируются и записываются. Весь процесс зарядки в основном контролируется BMS для обеспечения безопасности во время зарядки аккумулятора.
Инструмент зарядного устройства CAN Bus, разработанный FSP, может моделировать обмен данными между батареей и зарядным устройством, чтобы существенно сократить весь график разработки продукта и повысить удобство проверки тестирования продукта.
Приложение CAN Bus Charger Tool позволит вам отправлять команды на зарядное устройство для установки зарядного напряжения и тока через изолированную коммуникационную сеть CAN Bus.Интервал широковещательной передачи команд также может быть установлен для имитации отправки модулем батареи периодических команд зарядному устройству, тем самым обеспечивая нормальную связь между батареей и зарядным устройством. Зарядное напряжение, зарядный ток и температура также контролируются и записываются. Во время процесса зарядки файл журнала, созданный из записей мониторинга CAN Bus Charger Tool, также можно использовать для получения профиля зарядки. С помощью данных в файле журнала можно проанализировать весь процесс зарядки, чтобы обеспечить безопасность и эффективность зарядки аккумулятора.
Блок-схема
Посетите следующие веб-сайты, чтобы узнать больше о сферах применения зарядного устройства для литиевых батарей и характеристиках продукта: Зарядное устройство
Зарядные батареи | Mastervolt
Напряжение заряда
АккумуляторыMastervolt gel (2 В, 12 В) и Mastervolt AGM (6 В, 12 В) должны заряжаться напряжением 14,25 В для систем 12 и 28.5 В для систем на 24 В. За фазой поглощения следует фаза подзарядки (см. 3-ступенчатая + характеристика зарядки на стр. 242), в которой напряжение снижается до 13,8 В для систем 12 В и 27,6 В для систем 24 В. Эти цифры предполагают температуру 25 ° C.
Для влажных свинцово-кислотных аккумуляторов напряжение поглощения составляет 14,25 В для систем 12 В и 28,5 В для систем 24 В. Напряжение холостого хода для этого типа батареи составляет 13,25 В для 12 В и 26,5 В для систем на 24 В. Все эти цифры приведены для 25 ° C.
Литий-ионные аккумуляторызаряжаются напряжением поглощения 14,25 В для 12 В и 28,5 В для систем на 24 В. Напряжение холостого хода составляет 13,5 В для 12 В и 27 В для 24 В.
Ток заряда
Практическое правило для гелевых и AGM аккумуляторов гласит, что минимальный зарядный ток должен составлять от 15 до 25% емкости аккумулятора. Во время зарядки вы обычно продолжаете подавать питание на подключенные устройства, и эту потребляемую мощность следует прибавить к 15-25%.
Это означает, что для аккумуляторной батареи на 400 Ач и подключенной нагрузки в десять ампер требуется зарядное устройство емкостью от 70 до 90 ампер, чтобы зарядить аккумулятор за разумное время.
Максимальный ток зарядки составляет 50% для гелевой батареи и 30% для батареи AGM. Литий-ионные аккумуляторы Mastervolt могут подвергаться гораздо более высоким токам заряда. Однако, чтобы максимально продлить срок службы литий-ионной батареи, Mastervolt рекомендует максимальный зарядный ток 30% от емкости. Например, для батареи на 180 Ач это означает максимальный зарядный ток 60 ампер.
Зарядное устройство с температурной компенсацией для оптимальной защиты
Для обеспечения максимально длительного срока службы гелевых, AGM и литий-ионных аккумуляторов требуется современное зарядное устройство Mastervolt с трехступенчатой + зарядной характеристикой.Эти зарядные устройства для аккумуляторов непрерывно регулируют напряжение заряда и ток заряда.
Для влажных гелевых и AGM аккумуляторов рекомендуется иметь датчик для измерения температуры аккумулятора. Это регулирует напряжение заряда в соответствии с температурой аккумулятора, продлевая срок его службы. Мы называем это «температурной компенсацией».
Кривая температурной компенсации
Поскольку устройства, такие как холодильники, всегда потребляют энергию от батареи, даже когда она заряжается, температурная компенсация Mastervolt включает максимальный эффект компенсации для защиты подключенных устройств.Компенсация составляет не более 14,55 В для системы 12 В и 29,1 В для системы 24 В.
При очень высоких (> 50 ° C) и низких (<-20 ° C) температурах влажные гелевые и AGM-аккумуляторы больше нельзя заряжать. За пределами этих пределов зарядное устройство Mastervolt будет продолжать питать подключенных потребителей, но не заряжать батареи.
Для литий-ионных батарей не требуется регулировка напряжения на более высокую или более низкую температуру.
Приведенная ниже формула используется для расчета времени зарядки гелевого или AGM аккумулятора:
Приведенная ниже формула используется для расчета времени зарядки литий-ионной батареи:
Lt = время зарядки
Co = емкость аккумулятора
eff = эффективность; 1.1 для гелевой батареи, 1,15 для батареи AGM и 1,2 для залитой батареи
Al = ток зарядного устройства
Ab = потребление подключенного оборудования в процессе зарядки
Расчет времени зарядки
При расчете времени зарядки аккумулятора необходимо учитывать следующее:
Первое, на что следует обратить внимание — это эффективность батареи. В стандартной влажной батарее это около 80%. Это означает, что если 100 Ач разряжены от батареи, необходимо зарядить 120 Ач, чтобы снова можно было извлечь 100 Ач.У гелевых и AGM аккумуляторов эффективность выше — от 85 до 90%, поэтому потери меньше и время зарядки меньше по сравнению с мокрыми батареями. В литий-ионных батареях КПД достигает 97%.
Еще одна вещь, которую необходимо иметь в виду при расчете времени зарядки, заключается в том, что последние 20% процесса зарядки (от 80 до 100%) занимают около четырех часов с влажными, гелевыми и AGM батареями (это не относится к литий-ионным батареям. батареи). Во второй фазе, также называемой фазой поглощения или постзарядки, тип батареи определяет, сколько тока потребляется, независимо от емкости зарядного устройства.
Явление фазы постзарядки снова не относится к литий-ионным батареям, которые заряжаются намного быстрее.
Вредное воздействие пульсаций напряжения на аккумуляторы
Батарея может выйти из строя преждевременно из-за пульсаций напряжения, создаваемых зарядными устройствами. Чтобы предотвратить это, пульсации напряжения, вызванные зарядным устройством, должны оставаться как можно более низкими.
Пульсации напряжения приводят к токам пульсаций. Как показывает практика, пульсирующий ток должен оставаться ниже пяти процентов от установленной емкости батареи.Если к аккумулятору подключено навигационное или коммуникационное оборудование, такое как устройства GPS или VHF, пульсации напряжения не должны превышать 100 мВ (0,1 В). Дальнейшее действие может привести к неисправности оборудования.
Зарядные устройстваMastervolt оснащены отличным стабилизатором напряжения, а создаваемое ими пульсирующее напряжение всегда ниже 100 мВ.
Еще одним преимуществом низкого напряжения пульсаций является предотвращение повреждения системы, если, например, клемма аккумулятора не закреплена должным образом или подверглась коррозии.Благодаря низкому напряжению пульсаций зарядное устройство Mastervolt может питать систему даже без подключения к аккумуляторной батарее.
Определение степени заряда аккумулятора
Приведенное рядом объяснение, касающееся экспоненты Пойкерта, показывает, что состояние заряда батареи не может быть просто определено на основе, например, измерения напряжения батареи.
Самый лучший и самый точный способ проверить состояние заряда — использовать амперметр (монитор батареи).Примером такого измерителя является монитор батареи Mastervolt MasterShunt, BTM-III или BattMan. Помимо тока заряда и разряда, этот монитор также показывает напряжение батареи, количество потребляемых ампер-часов и время, оставшееся до момента, когда аккумуляторная батарея нуждается в подзарядке.
Одна из вещей, которая отличает Mastervolt Battery Monitor от других поставщиков, — это наличие исторических данных. Это показывает, например, циклы заряда / разряда батареи, самый глубокий разряд, средний разряд, а также самое высокое и самое низкое измеренное напряжение.
Закон Пойкерта
На первый взгляд кажется несложным подсчитать, сколько еще батарея будет обеспечивать достаточную мощность. Один из наиболее распространенных методов — разделить емкость аккумулятора на ток разряда. Однако на практике такие расчеты часто оказываются неверными. Большинство производителей аккумуляторов указывают емкость аккумулятора, исходя из того, что время разряда составляет 20 часов. Например, батарея на 100 Ач должна обеспечивать 5 ампер в час в течение 20 часов, в течение которых напряжение не должно опускаться ниже 10.5 В (1,75 В / элемент) для аккумулятора 12 В. К сожалению, при разряде на уровне 100 ампер аккумулятор на 100 Ач обеспечивает всего 45 Ач, а это означает, что его можно использовать менее 30 минут.
Это явление описывается формулой — законом Пойкерта — изобретенной более века назад первопроходцами в области аккумуляторных батарей Пойкертом (1897) и Шредером (1894). Закон Пейкерта описывает влияние различных значений разряда на емкость батареи, то есть то, что емкость батареи уменьшается при более высоких скоростях разряда.Все мониторы аккумуляторов Mastervolt учитывают это уравнение, поэтому вы всегда будете знать правильное состояние своих аккумуляторов.
ЗаконПойкерта не применяется к литий-ионным батареям, поскольку подключенная нагрузка не влияет на доступную емкость.
Формула Пейкерта для определения емкости аккумулятора при заданном токе разряда:
Cp = емкость батареи, доступная при заданном токе разряда
I = уровень тока разряда
n = показатель Пейкерта = log T2 — logT1: log I1 — log I2
T = время разряда в часах
I1, I2 и T1, T2 можно найти, выполнив два испытания на разряд.Это включает в себя двукратную разрядку аккумулятора при двух разных уровнях тока.
Один высокий (I1) — скажем, 50% емкости батареи — и один низкий (I2) — около 5%. В каждом из тестов регистрируется время T1 и T2, которое проходит до того, как напряжение батареи упадет до 10,5 В. Провести два испытания на разряд не всегда просто. Часто большая нагрузка будет недоступна или не будет времени для теста медленной разрядки. Вы можете получить данные, необходимые для вычисления показателя Пойкерта, из технических характеристик батареи.
Вентиляция
В нормальных условиях гелевые, AGM и литий-ионные аккумуляторы практически не выделяют опасного газообразного водорода. Утечка газа незначительна. Однако, как и в случае со всеми другими батареями, во время зарядки выделяется тепло. Чтобы обеспечить максимально долгий срок службы, важно, чтобы это тепло отводилось от батареи как можно быстрее. Следующая формула может использоваться для расчета вентиляции, необходимой для зарядных устройств Mastervolt.
Q = требуемая вентиляция в м³ / ч
I = максимальный ток заряда зарядного устройства
f1 = 0.5 уменьшение для гелевых батарей
f2 = уменьшение 0,5 для закрытых батарей
n = количество используемых элементов (12-вольтовая батарея имеет шесть элементов по 2 вольта каждая)
Возвращаясь к примеру аккумуляторной батареи 12 В / 400 Ач и зарядного устройства на 80 А, минимальная необходимая вентиляция будет: Q = 0,05 x 80 x 0,5 x 0,5 x 6 = 6 м³ / ч
Этот воздушный поток настолько мал, что обычно достаточно естественной вентиляции. Если батареи установлены в закрытом корпусе, потребуются два отверстия: одно сверху и одно снизу.Размеры вентиляционного отверстия можно рассчитать по следующей формуле:
A = отверстие в см²
Q = вентиляция в м³
В нашем случае это составляет 28 x 6 = 168 см² (около 10 x 17 см) для каждого отверстия.
Литий-ионные батареине выделяют водород и поэтому безопасны в использовании. При быстрой зарядке аккумуляторов происходит некоторая степень выделения тепла, и в этом случае приведенная выше формула может использоваться для отвода тепла.
Обратитесь к установщику для более крупных систем с несколькими зарядными устройствами.
<< Назад к обзору
Можно ли оставлять литий-ионную батарею в зарядном устройстве? Часто задаваемые вопросы по зарядке аккумуляторов вилочного погрузчика и других устройств
Что такое ‘ Battery SoC’ и ‘ Battery DoD ’ ?
SoC или состояние заряда батареи — это уровень заряда электрической батареи относительно ее емкости: 0% — разряжена, а 100% — полна.Обратной формой этого показателя является DoD или глубина разряда, при которой 100% пусто, а 0% — заполнено.
Термин «батарея SoC» обычно относится к состоянию батареи во время ее использования, тогда как термин «батарея DoD» обычно означает, какая часть общей емкости батареи была разряжена.
Есть несколько способов измерения SoC, применимых к разным типам батарей. Свинцово-кислотные батареи с жидким электролитом могут быть измерены химически с помощью ареометра, в то время как большинство других батарей, включая литий-ионные, измеряются по их напряжению холостого хода.
Измерение напряжения батареи необходимо производить после того, как она находилась в состоянии разомкнутой цепи в течение как минимум нескольких часов, в противном случае на показания будут влиять ток и температура батареи, и они будут неточными.
Как можно перезарядить аккумулятор?
Перезаряд происходит, когда аккумулятор заряжается до напряжения выше указанного. Это может быть очень опасным для аккумуляторов вилочного погрузчика и, если его не контролировать, опасно для пользователей.
Правильное зарядное устройство для вашей батареи имеет решающее значение для предотвращения перезарядки; Зарядное устройство должно соответствовать аккумулятору с точки зрения выходного напряжения и номинальной мощности в ампер-часах.
В литий-ионных аккумуляторах легче избежать перезарядки, поскольку они могут частично заряжаться или заряжаться с перерывами.
Свинцово-кислотные батареи имеют более сложный процесс зарядки и должны получать полную зарядку каждый раз, когда они вставляются в розетку; по этой причине легче случайно перезарядить.
Свинцово-кислотные аккумуляторыв среднем рассчитаны на 1500 циклов зарядки, поэтому не рекомендуется заряжать их частично — вы должны делать это каждый раз полностью, чтобы продлить срок службы аккумулятора.
По тому же принципу, начинать зарядку свинцово-кислотного аккумулятора, когда его емкость превышает 50-60%, также является пустой тратой срока службы аккумулятора. Каждый цикл зарядки, независимо от SOC, по-прежнему считается одним циклом. Таким образом, чем чаще заряжается свинцово-кислотный аккумулятор, тем короче срок его службы.
Каковы последствия перезарядки аккумулятора?
В литий-ионном аккумуляторе перезарядка может создать нестабильные условия внутри аккумулятора, повысить давление и вызвать тепловой разгон.
Литий-ионные аккумуляторные блокидолжны иметь схему защиты для предотвращения чрезмерного повышения давления и отключения потока ионов при слишком высокой температуре.
Большинство литий-ионных аккумуляторных батарей также содержат систему управления батареями для контроля их состояния заряда и отключения тока при достижении предела.
Избыточный заряд свинцово-кислотной батареи вызывает коррозию катодов, приводит к повышенному расходу воды и повышению температуры внутри батареи. В лучшем случае это приведет к снижению емкости и сокращению срока службы, а в худшем — к тепловому разгоне. Кроме того, свинцово-кислотные батареи могут выделять вредные токсичные газы при перезарядке.
Какой газ выделяется при зарядке свинцово-кислотной батареи?
В процессе зарядки свинцово-кислотный аккумулятор выделяет небольшое количество газообразного водорода, что может быть опасно без надлежащей вентиляции аккумулятора.Газообразный водород может быть очень взрывоопасным, если его концентрация в воздухе составляет 4% или более.
Если свинцово-кислотный аккумулятор слишком заряжен, он может выделять сероводород, имеющий запах тухлых яиц и очень ядовитый. В низких концентрациях этот аккумуляторный газ может вызвать тошноту, усталость и головокружение, а в больших количествах может быть смертельным.
Большинство свинцово-кислотных аккумуляторов необходимо снимать с погрузчиков и помещать в отдельную зону для зарядки. Помещение должно хорошо проветриваться для количества заряжаемых аккумуляторов и иметь устройства для контроля уровня газа в воздухе.
Как происходит зарядка литий-ионной батареи?
В литий-ионных батареяхна первом этапе процесса зарядки используется метод постоянного тока и постоянного напряжения. После достижения пикового напряжения аккумулятор переходит в стадию заряда насыщения. В целом этот процесс занимает около 1-2 часов.
Литий-ионные аккумуляторыможно использовать до тех пор, пока не останется 20% их емкости. В отличие от свинцово-кислотных аккумуляторов, он не повредит аккумулятор, чтобы использовать возможность подзарядки, что означает, что пользователь может подключить аккумулятор во время обеденного перерыва, чтобы завершить зарядку и завершить смену, не разряжая аккумулятор слишком сильно.
Многие промышленные литий-ионные аккумуляторные батареи поставляются со встроенными в них зарядными устройствами, которые можно подключать к обычным электрическим розеткам, что означает, что аккумуляторы даже не нужно размещать рядом с установленным настенным зарядным устройством для зарядки аккумуляторов.
Могут ли литий-ионные батареи повысить производительность складских помещений?
Если ваш склад работает в несколько смен, упрощенный процесс зарядки литий-ионных аккумуляторов дает огромное преимущество.Операторы вилочных погрузчиков могут заряжать литий-ионные аккумуляторы во время перерыва или в перерывах между сменами, а аккумуляторы доступны всего через 15–30 минут, чтобы вернуться в рабочее состояние, даже если они еще не полностью заряжены.
Простой оборудования может быть дорогостоящим, поэтому тот факт, что оператор вилочного погрузчика может подключить аккумулятор к зарядному устройству, не тратя время на извлечение разряженного аккумулятора и повторную установку заряженного аккумулятора, повысит производительность склада.
Plus, устраняющий необходимость переносить тысячи фунтов батареи между погрузчиками и зарядными станциями, значительно снижает риски безопасности для рабочих.
Процесс зарядки аккумуляторов может быть сложным, но важно понимать все факторы, чтобы его можно было сделать правильно, чтобы обеспечить долгий срок службы аккумуляторов. Упрощенный процесс зарядки литий-ионных аккумуляторов делает их гораздо лучшим вариантом с точки зрения безопасности и производительности для компаний, работающих в несколько смен и непрерывно заряжающих аккумуляторы.
Часто задаваемые вопросы по переходу на литиевую зарядку
Одним из требований к литиевой батарее для получения этого списка UL является встроенная СИСТЕМА УПРАВЛЕНИЯ БАТАРЕЯМИ (BMS) .Этот электронный блок выполняет несколько функций, чтобы обеспечить безопасность и длительный срок службы батареи.
Функции безопасности BMS включают:Постоянный мониторинг каждого из четырех (3,2 В) литиевых элементов, соединенных последовательно, необходимых для производства литиевой батареи на 12,8 В. Этот мониторинг включает в себя напряжение каждой ячейки для пределов высокого или низкого напряжения и отключает аккумулятор от нагрузки или зарядного устройства, чтобы предотвратить повреждение. Каждая ячейка контролируется на предмет температуры и чрезмерного потребления тока, и снова батарея отключается от нагрузки, если эти пределы превышаются. BMS также отслеживает состояние заряда для каждой из четырех ячеек и автоматически уравновешивает их напряжения во время цикла перезарядки, чтобы полностью зарядить все элементы одновременно. Такая балансировка обеспечивает безопасную полную зарядку и длительный срок службы батареи. Основываясь на этих характеристиках, литий-железо-фосфатные батареи ( LFP ) очень безопасны и надежны. С 2015 года Progressive Dynamics отслеживает сотни систем литиевых батарей, установленных в жилых автофургонах, без каких-либо сообщений о сбоях литиевых батарей или зарядных устройств.
Как долго прослужит моя дорогая литиевая батарея?Срок службы литиевой батареи зависит от количества циклов зарядки и разрядки, которым она подвергается. Цикл требует полной зарядки аккумулятора, затем его полной разрядки и повторной полной зарядки. Литиевые батареи обычно рассчитаны на 3 000–5 000 циклов. Свинцово-кислотные батареи обычно служат всего 300-400 циклов. Это верно при условии, что они подзаряжаются как можно скорее после разрядки и поддерживаются на постоянной подзарядке с периодическими выравнивающими зарядами во время зимнего хранения для предотвращения сульфатации аккумулятора.Литиевые батареи можно хранить без подзарядки, и они сохранят более 90% своего заряда в течение года или более. Для увеличения срока службы литиевые батареи не следует хранить полностью заряженными. Рекомендуется заряд от 50% до 60%.
Предполагая, что срок службы вашей свинцово-кислотной батареи составляет 300 циклов, и она заряжается и разряжается, 100 циклов в год равняются трехлетнему сроку службы батареи. Предполагая, что 100 циклов в год для литиевой батареи со сроком службы 3000 циклов, теоретически может равняться 30 годам жизни.Опять же, это теоретическая цифра, и существует множество факторов, которые могут увеличить или уменьшить срок службы батареи, включая глубину разряда, рабочую температуру и старение материалов. Производители аккумуляторов обычно занижают свой срок службы, чтобы гарантировать, что срок их службы значительно превысит гарантийный срок до 5 лет.
Каковы верхние и нижние пределы рабочих температур для литиевых батарей (LFP)?Литиевые батареи имеют широкий диапазон рабочих температур (от -4 до +160 F / от -20 до +70 C).Литиевые батареи можно хранить и разряжать при верхних и нижних пределах температуры, однако зарядные токи должны быть ниже этих пределов, а литий-железо-фосфатные батареи нельзя заряжать при температурах ниже точки замерзания. Обратитесь к веб-сайту производителей аккумуляторов, чтобы узнать о предельных значениях температуры.
Каковы другие преимущества системы литиевых батарей ?Литиевые батареи служат на годы дольше, чем свинцово-кислотные батареи, и требуют минимального обслуживания, поддерживают заряд в течение длительных периодов хранения и имеют вес примерно на ½ или меньше, чем эквивалентный рейтинг AH свинцово-кислотных аккумуляторов.Сухие кемперы оценят то, что они обеспечивают до 3 раз большую мощность, чем свинцово-кислотные батареи , и заряжаются до 6 раз быстрее с помощью зарядного устройства того же размера. Это приводит к сокращению времени работы генератора и более быстрой подзарядке.
Причиной такой более быстрой перезарядки является уникальный химический состав литиевых батарей , который позволяет им принимать полный заряд зарядного устройства, пока оно почти не достигнет полной зарядки. Химический состав свинцово-кислотных аккумуляторов может принимать только полный заряд в фазе поглощения, а затем зарядный ток быстро падает, поэтому полная зарядка занимает гораздо больше времени.
Как быстро перезаряжается моя литиевая батарея?Ответ зависит от общего номинала в ампер-часах (AH) вашей литиевой батареи и номинального тока на выходе вашего зарядного устройства. Например, литиевая батарея емкостью 100 А · ч, подключенная к зарядному устройству Progressive Dynamics PD9160L (60 ампер), завершит время перезарядки следующим образом (100 ампер-часов, разделенная на скорость перезарядки 60 ампер в час), составит 1,7 часа. Однако по мере того, как состояние заряда приближается к завершению, ток заряда постепенно уменьшается, поэтому реальное общее время составит около двух часов.В тех же условиях свинцово-кислотная батарея потребует от 6 до 8 часов, более или менее, для полной зарядки.
Будет ли моя солнечная система зарядки работать вместе с литиевым зарядным устройством?Да, две системы могут работать одновременно. Ваша солнечная система должна иметь контроллер солнечной энергии, который позволяет ограничить максимальное напряжение зарядки от солнечных панелей . Это максимальное напряжение должно быть установлено на 14.6 вольт для литий-железо-фосфатных батарей .
Могу ли я перезарядить литиевый аккумулятор от автомобильного генератора ? — Да, но не обязательно до полной зарядки, поскольку большинство генераторов переменного тока настроены на более низкие требования к напряжению, предъявляемым к свинцово-кислотной аккумуляторной батарее автомобиля (приблизительно 13,9 В). Литиевые батареи требуют для полной зарядки от 14,4 до 14,6 В. При этом вы можете получить примерно до 70% заряда, в зависимости от глубины разряда и пройденного расстояния при подзарядке от генератора вашего автомобиля.
Могу ли я использовать свинцово-кислотные блоки серии Progressive Dynamics PD9200, PD4000 или PD4500 с мастером зарядки для зарядки литиевой батареи?Да, если вы готовы жить с дорогой батареей, которая заряжена только частично. Нормальное выходное напряжение серии PD9200, PD4000 и PD4500 составляет всего 13,6 В, а напряжение полной зарядки лития должно составлять 14,4 — 14,6 В. Мастер зарядки для серий PD9200, PD4000 и PD4500 сначала перейдет к 14.4 В в режиме ускорения при первом подключении к источнику питания 120 В переменного тока и будет оставаться там до тех пор, пока напряжение батареи не достигнет 13,8 В, а затем автоматически упадет до значения 13,6 В для нормального режима . Более высокая скорость зарядки лития означает, что в Boost Mode он достигнет этой точки 13,8 В уже через несколько минут подзарядки, а затем зарядный ток упадет до ZERO AMPS и не добавит никакого дополнительного заряда к вашему Литиевая батарейка.Это более низкий уровень заряда не повредит вашу батарею, но устранит большинство преимуществ, за которые вы заплатили.
Сколько мне будет стоить переход на литиевую батарею?Это будет зависеть от размера (номинальной емкости в ампер-часах) литиевой аккумуляторной батареи и номинальной мощности зарядного устройства, которое вы планируете установить. Типичный жилой домик будет иметь литиевую батарею емкостью не менее 100 Ач, которая будет эквивалентна свинцово-кислотной батарее 250 Ач, это в сочетании с зарядным устройством PD9160LAV (60 А) обеспечит двухчасовую перезарядку.Исходя из цен, доступных на веб-сайтах наших дистрибьюторов, это обновление будет стоить минимум около 1200 долларов США. Чтобы обновить свой нынешний RV до литиевой системы, щелкните здесь, чтобы просмотреть варианты замены литиевого блока.
My Present RV имеет преобразователь / зарядное устройство на 45 ампер. Могу ли я установить более мощный блок на 60 или 80 ампер, чтобы еще больше сократить время перезарядки?Нет, система проводки вашего дома на колесах рассчитана на безопасную работу с током 45 А, увеличение его до 60 или 80-амперного зарядного устройства может привести к перегреву! При переходе на литиевую батарею используйте преобразователь / зарядное устройство того же размера, что и в вашем доме на колесах! Опять же, с более высокой скоростью зарядки, которую литиевые батареи могут принимать, даже литиевое зарядное устройство на 45 А может перезарядить батарею на 100 Ач (100 Ач, разделенных на скорость заряда 45 А), что будет равняться примерно 2.2 часа плюс дополнительное время, необходимое в конце зарядки из-за более низкой скорости зарядки, равняются расчетному времени зарядки примерно 3 часа.
Как хранить литиевую батарею для автофургона зимой?Еще одно преимущество литий-железо-фосфатных батарей состоит в том, что они не требуют подзарядки при длительном хранении. Фактически, отключение зарядного устройства во время зимнего хранения или длительного простоя и предоставление аккумулятору отдохнуть на самом деле полезно и продлит срок службы аккумулятора.Перед тем, как поместить свой RV на зимнее хранение, просто подключите его к источнику питания 120 В переменного тока на срок до 10 часов для больших аккумуляторных блоков и полностью зарядите аккумулятор, затем отключите питание переменного тока и нажмите выключатель аккумулятора. Весной он будет готов принять полную зарядку перед вашим первым походом. Литиевые батареи имеют очень низкую скорость саморазряда и теряют от 2 до 4% своего заряда в месяц.
Как безопасно заряжать и хранить литиевые батареи для дрона
Хотя полет на дроне может показаться самым большим риском при эксплуатации, обращение с батареями потенциально более опасно.В 100 отделениях неотложной помощи больниц, которые сообщают о случаях травм, связанных с электроникой, в Комиссию по безопасности потребительских товаров США, в период с 2012 по 2017 год было зарегистрировано более 200 инцидентов (PDF) с батареями дронов, возникших в результате пожара, дыма и взрывов. Инцидент с батареей дрона приводит к травме, но у каждого пилота и эксперта, с которым я беседовал, была история о взорвавшейся или загорающейся литиевой батарее, особенно после того, как она неоднократно падала на землю внутри дрона. «Когда разряжаются батареи, это похоже на маленькую бомбу», — сказал Брэндон Райнерт, пилот беспилотника и сотрудник HubHobby.«Обычно это довольно эффектно».
Самым распространенным типом аккумулятора, который используется в гоночных и фотографических дронах, является литий-полимерный или Li-po, своего рода литий-ионный аккумулятор, который позволяет накапливать больше энергии в небольших помещениях. Чтобы узнать, как снизить риск серьезного отказа аккумулятора и заставить аккумуляторы дронов работать дольше и работать лучше, я поговорил с экспертами по аккумуляторам и дронам о правильном способе их зарядки, использования и ухода за ними.
Зарядка
Хотя недорогие аккумуляторы и подобные зарядные устройства заманчивы к покупке, безопаснее вкладывать средства в более качественные версии, чтобы избежать возгорания.Зарядка на улице также может снизить риск. Фото: Сигне БрюстерЗарядка — наиболее вероятное время для аккумулятора дрона, поэтому сконцентрируйте на этом большую часть усилий по обеспечению безопасности. По данным CPSC, более половины инцидентов с батареей дронов, задокументированных в отделениях неотложной помощи больниц, произошли во время зарядки беспилотника. Будьте особенно осторожны при зарядке аккумуляторов от неизвестных вам производителей. «Я просто предполагаю, что в какой-то момент загорятся более дешевые», — сказал Грег Функ, эксперт по аккумуляторным батареям и менеджер линейки продуктов Cadex Electronics.«Я бы не стал относиться к нему как к сотовому телефону, подключить его на ночь и пойти спать наверх».
По возможности заряжайте аккумуляторы на улице. Вместо этого, предположил Функ, самый безопасный способ зарядить аккумулятор дрона — это делать это на открытом воздухе. Это единственное место, где вы можете быть уверены, что поблизости нет ничего, что могло бы загореться. Взрывающаяся батарея также выделяет ядовитые газы, которые могут быть опасны в замкнутом пространстве. Обязательно храните батареи вдали от солнца, чтобы они не перегревались, и вдали от засохших растений и других горючих материалов.
Если вам нужно заряжать в помещении, на всякий случай примите меры по локализации пожара. Многие пилоты, такие как Брэндон Райнерт, выбирают зарядку в помещении и принимают меры по сдерживанию пожара. Если вы не можете заряжать на улице, вы можете использовать любую из нескольких различных настроек. Саймон Ченг и Меган Пру, ведущие сериала « Til Drones Do Us Part » на YouTube, заряжают батареи внутри шлакоблоков и держат рядом ведро с песком, чтобы погасить пламя. Команда разработчиков FliteTest , еще одной серии YouTube о дронах, предлагает аналогичные методы, в которых используются шлакоблоки или открытая банка с боеприпасами.Если вам нужно заряжать в помещении и вы выбираете один из этих методов, убедитесь, что рядом нет ничего, что могло бы загореться. Никогда не закрывайте аккумулятор в огнеупорном контейнере; вся эта энергия должна куда-то уйти, и ее закрытие просто приведет к взрыву контейнера. Вот почему хорошая защита от огня направлена на то, чтобы направить пламя и газ в безопасном направлении, а затем как можно быстрее направить туда песок или воду (да, как сказал нам Функ, вы можете потушить пожар батареи водой).
Хранение
Храните батареи примерно наполовину их емкости, чтобы продлить срок их службы.Фото: Сигне БрюстерРазрядите батареи, прежде чем хранить их в безопасном месте с умеренной температурой. Храните Li-po аккумуляторы при комнатной температуре или около нее в месте, где можно обнаружить потенциальный пожар. Если у вас исправный аккумулятор, который не перегревается, не имеет проколов или вздутия, его следует хранить в безопасном месте, но самопроизвольное возгорание аккумулятора случается. Компания DJI, которая продает более половины всех используемых сегодня персональных дронов, рекомендует, если вы не планируете использовать дрон в течение 10 или более дней, разрядить его аккумулятор до 40–65 процентов его емкости.Согласно тестам Cadex, частичный разряд снижает нагрузку на аккумулятор и помогает продлить срок его службы. Ознакомьтесь с рекомендациями производителя аккумулятора по разрядке, чтобы предотвратить ухудшение состояния аккумулятора.
Транспортировка
Не допускайте разбивания аккумуляторов во время транспортировки, независимо от того, едете ли вы в парк или летите в самолете. Фото: Сигне БрюстерХраните аккумуляторы в мягких и надежных местах во время транспортировки. Если вы следите за своими батареями, заряжаете и храните их надлежащим образом, их можно будет транспортировать без каких-либо крайних мер безопасности.Держите их в безопасном месте, где они не будут слишком сильно натыкаться. В нашем путеводителе по лучшим аксессуарам для дронов есть рюкзаки, которые нам больше всего нравятся для транспортировки дронов и их аккумуляторов.
Упакуйте дрон и его аккумуляторы в ручную кладь перед полетом. Если вы планируете использовать дрон в самолете, ознакомьтесь с действующими правилами FAA (PDF) для аккумуляторов. Обычно вы можете упаковать литиевую батарею в регистрируемую сумку, если она установлена в дрон, но вы не можете проверить запасные батареи.Тем не менее, рекомендуется держать дрон при себе во время путешествия, чтобы не потерять его, поэтому храните аккумуляторы в ручной клади.
Используйте
Производители аккумуляторов для дронов, такие как DJI, обычно рекомендуют диапазон температур полета для защиты аккумуляторов. Фото: Сигне БрюстерПодобно тому, как пилоты дронов рассказывают о том, как заряженные батареи зажигают огонь, многие рассказывают о том, как разбившийся дрон дымится или загорается. Слишком быстрый разряд батареи или врезание ее в землю внутри дрона может привести к серьезному выходу батареи из строя или просто к сокращению срока ее службы.
Избегайте полетов при экстремальных температурах. Чтобы обеспечить максимально долгий срок службы батарей, следуйте инструкциям производителя по полету, которые должны включать безопасный температурный диапазон и минимально допустимый уровень разряда. DJI, например, рекомендует управлять дронами при температуре от -10 ° C до 40 ° C (от 14 ° F до 104 ° F) — диапазон, аналогичный диапазону, предлагаемому многими другими брендами дронов.
Не разряжайте аккумулятор слишком быстро. Полет на полностью открытой дроссельной заслонке в течение длительного времени — что может быть предпочтительным для некоторых летных целей, таких как гонки и маневренность — также может разряжать батареи настолько быстро, что они вступают в опасный процесс, известный как тепловой разгон, когда материалы внутри батареи нагреваются и вызывают химические реакции, которые вызывают еще больший нагрев аккумулятора.
Осмотр
Утилизируйте треснувшую или раздутую батарею в специализированном центре по утилизации. Фото: Сигне БрюстерПеред и после полета на дроне или зарядки аккумулятора найдите время, чтобы осмотреть аккумулятор. Если аккумулятор вашего дрона имеет видимые повреждения или тает, его необходимо утилизировать. Однако не на каждой батарее будут обнаружены физические признаки повреждения. Пилоты, разработавшие FliteTest , рекомендуют использовать анализатор, такой как HobbyKing HK-010, чтобы увидеть состояние каждой ячейки в батарее и выявить проблемы, прежде чем они станут более серьезными.На батарее указано напряжение, скажем 3,7 В, которое должно быть одинаковым для всех ее ячеек. Со временем они могут начать выходить из равновесия, что некоторые зарядные устройства могут в некоторой степени исправить. Грег Функ из Cadex рекомендовал вывести из эксплуатации все батареи, в которых элементы не сбалансированы более чем на 0,1 В (100 мВ), потому что это признак того, что одни элементы слабее других.
«Эти блоки являются основными кандидатами на перегрев и возможное возгорание, поскольку отдельные элементы могут быть вынуты за пределы их безопасного рабочего диапазона во время зарядки и разрядки», — сказал Функ.
Утилизация поврежденной батареи
Не каждый центр утилизации батарей имеет оборудование для обращения с поврежденными батареями. Фото: Сигне БрюстерИзучите возможные варианты утилизации аккумуляторов. Посмотрите на такой сайт, как Recycle Nation, или на сайт вашего округа, чтобы найти пункт выдачи, который принимает опасные бытовые отходы. Проверьте, принимает ли центр сбора батареи, а затем позвоните людям, чтобы подтвердить, что они возьмут поврежденную батарею — не во всех местах.Перед включением поврежденного аккумулятора обязательно разрядите его как можно ближе к 0 процентам, чтобы снизить вероятность возгорания.
Выбор аккумулятора и зарядного устройства для дрона
Хотя описанные нами шаги могут помочь вам избежать катастрофы, вы можете избавить себя от многих проблем, выбрав в первую очередь правильные аккумуляторы. В Интернете часто можно найти в продаже аккумуляторы и зарядные устройства, о которых мало что известно о том, кто их производит и кто их продает, а некоторые из этих схематичных вариантов несут повышенный риск возгорания.Батареи, изготовленные из материалов более низкого качества или имеющие конструкцию с угловым вырезом, с большей вероятностью загорятся при столкновении или при зарядке и разряде на высокой скорости, как это часто бывает с батареями для дронов.
Ищите сертификаты безопасности и особенности. Как ни соблазнительно купить самые дешевые батареи, Грег Функ из Cadex сказал нам, что он порекомендовал искать батареи, соответствующие стандартам IEC 62133 (или эквивалентным) и UN38.3, чтобы убедиться, что они безопасны в использовании. Не во всех списках аккумуляторов указано, есть ли у них сертификаты, и иногда вам приходится копаться на веб-сайте производителя, чтобы найти сертификаты.
Производители аккумуляторов иногда отказываются от дополнительных функций безопасности — например, отказываются от твердой пластмассовой оболочки в пользу простой мягкой пластиковой упаковки — чтобы бюджетные аккумуляторы весили и стоили меньше. Мы настоятельно рекомендуем вам искать бренды с такими дополнительными характеристиками прочности или другими заметными функциями безопасности, даже если они стоят немного дороже.
Выберите программируемое зарядное устройство. Точно так же, как важно выбрать правильные батареи, позаботьтесь о правильном выборе зарядного устройства.Как пишет пилот беспилотника Оскар Лян, программируемое зарядное устройство стоит дополнительных затрат, потому что оно позволит вам выполнять больше задач по управлению батареей, таких как проверка того, что батарея заряжается и разряжается, как задумано, и полностью разряжает ее перед хранением. Грег Функ также рекомендовал использовать в качестве аккумулятора зарядные устройства того же производителя.
Все аккумуляторы для дронов, от самых дешевых безымянных брендов до более сложных, производимых производителями дронов, требуют особого внимания, чтобы поддерживать их эффективность и безопасность.