Как проверить конденсатор мультиметром на работоспособность не выпаивая
Конденсатор – это важный элемент, обеспечивающий эффективную работу электронных схем по своему функциональному назначению. Прежде чем ознакомиться с методами, как проверить конденсатор мультиметром, рассмотрим виды этих деталей и принципы их работы. Тогда проверку мультиметром работоспособности конденсаторов можно будет делать осознанно, с пониманием того, какие параметры в заданных пределах измеряются.
Проверяем конденсатор мультиметром
Устройство и принципы работы
Практически все электронные схемы включают в свой состав конденсаторы, за исключением отдельно взятых микросхем.
Конденсаторы выполняют роль накопителя энергии, применяются в электронных схемах разного назначения:
- в фильтрах выпрямителей и стабилизаторов источников питания;
- передают сигналы между каскадами усилительной аппаратуры;
- на их основе строятся частотные фильтры, разделяющие звуки на высокие и низкие частоты;
- в таймерах задаются временные интервалы пусковой системы электродвигателей стиральной машины или режимов микроволновки;
- в генераторах подбирается определенная частота колебаний и многие другие функции.
Классическая конструкция конденсатора представляет собой две токопроводящие пластины, расположенные друг против друга. Между ними находится диэлектрическая прокладка, в качестве которой может быть даже воздух.
Формула для расчета емкости
е – диэлектрическая проницаемость прокладки;
S – площадь пластин в кв/м;
С – фарады, емкость.
Соотношение формулы показывает, что емкость увеличивается при увеличении площади пластин и уменьшении расстояния между ними.
В промышленности плоские конденсаторы изготавливаются с малыми емкостями, для получения больших емкостей используются технологии изготовления деталей цилиндрической формы. Так, в цилиндрическом корпусе сворачиваются две полоски из фольги, между которыми бумажная лента, пропитанная трансформаторным маслом. Такая конструкция позволяет достичь больших площадей пластин, малых расстояний между ними, получить большую емкость конденсатора.
Классический пример работы конденсатора
Схема работы конденсатора
Конденсатор заряжается до напряжения источника питания за время Т = RC = 500 ОМ х 0,002 Ф = 1 сек. При переключении тумблера накопленный заряд разрядится на лампочку, при этом можно будет заметить кратковременную вспышку.
Виды конденсаторов
Все конденсаторы делятся на два вида: без полярности и полярные – электролитические,
По конструктивным особенностям их разделяют на:
- простые;
- диэлектрические;
- с фиксированной и переменной емкостью.
Электролитические полярные конденсаторы в схемах подключаются обязательно с соблюдением полярности: контакты со знаком «+» на плюсовую дорожку платы, «–» – на минусовую дорожку. Другие конденсаторы можно припаивать на плату любыми выводами, не обращая внимания на полярность.
Причины неисправности
Простые конденсаторы с постоянной или переменной емкостью практически не выходят из строя – нечему ломаться, если только при механическом повреждении токопроводящих пластин.
Электролитические диэлектрические конденсаторы имеют ограниченные сроки службы, со временем диэлектрический слой между пластинами теряет свои свойства.
Полярные конденсаторы в схемах подключаются строго по полюсам, ошибка приводит к потере конденсатором заданных параметров или полному пробою, обрыву цепи или короткому замыканию.
При замене конденсаторов даже новые надо обязательно проверять, электролитический слой может просто высохнуть за время его хранения.
Проверка конденсаторов мультиметром
Мультиметр – это универсальный прибор, с помощью которого можно измерять целый ряд параметров электротехнических цепей и отдельных деталей:
- величину переменного и постоянного тока;
- напряжение;
- сопротивление и другие элементы.
Рассмотрим, как проверить конденсатор.
Существует два вида мультиметров: аналоговые и цифровые. На цифровом варианте измеряемые параметры отображаются в виде чисел в жидкокристаллическом дисплее. Аналоговый прибор имеет стрелочный индикатор с градуировкой на шкале – для проверки конденсаторов этот вариант более удобный. Измеряемые параметры и пределы устанавливаются переключателем, который находится на корпусе, концы проводов для измерения оборудованы контактными клеммами и щупами.
Проще всего проверяются конденсаторы, которые не имеют полярности. Для этого надо установить переключатель мультиметра в режим измерения «мегомы», на шкале переключателя он обозначен как 2000k. Один провод вставить в гнездо со знаком VОм.mA, второй – в гнездо со знаком заземления. Затем нужно подсоединить концы щупов к контактам конденсатора; показания стрелки или чисел на дисплее должны быть на уровне 2Мом или выше. При сопротивлении ниже 2Мом конденсатор считается неработоспособным.
Двухполюсные электролитические конденсаторы надо проверять на исправность обязательно с соблюдением полярности. На корпусе конденсатора есть маркировка с указанием допустимого напряжения в вольтах и максимальной емкости в микрофарадах.
На импортных моделях со стороны отрицательного вывода на корпусе ставят знак минуса черным цветом. На отечественных конденсаторах возле ножек стоят знаки «–» и «+».
Маркировка на корпусе конденсатора для соблюдения полярности
Переключатель мультиметра выставляется в режим измерения сопротивления или прозвонки. Затем подсоединяют щупы к выводам конденсатора, соблюдая полярность. На конденсатор подается постоянное напряжение с элементов питания мультиметра, он начинает заряжаться.
Стрелка индикатора при этом постепенно отклоняется в правую сторону, на цифровом варианте значение цифры увеличивается, сопротивление растет. Значение сопротивления может дойти до бесконечности, это зависит от номиналов конденсатора.
Если стрелка прибора остается на значении «0», значит в цепи конденсатора есть обрыв; при резком повороте стрелки в пределы бесконечности пластины конденсатора короткозамкнуты. В этих случаях пробитые детали подлежат замене.
Особенности проверки
Для того чтобы правильно проверить работоспособность конденсаторов тестером или мультиметром, очень важно знать некоторые особенности этой методики.
По причине технических ограничений в пределах измерений мультиметром или тестером можно проверить только конденсаторы емкостью выше 0,25 микрофарад. Другие конденсаторы проверяются специальным прибором LC- метром.
Перед замерами конденсаторы надо обязательно разряжать, особенно высоковольтные – выше 100В. Для этого используются лампы накаливания. Если напряжение конденсатора более 220 Вольт, подключается несколько ламп последовательно.
В процессе эксплуатации заряд конденсатора может оставаться длительное время; при соединении его клемм с контактами ламп происходит разряд, при этом лампы могут кратковременно вспыхнуть. Низковольтные конденсаторы можно разряжать, перемыкая контакты отверткой. При таком замыкании максимум будет небольшая искра, которая не явится угрозой здоровью.
Нельзя прозванивать конденсаторы в схеме, обязательно надо выпаивать и проверять отдельно. Остальные детали в цепи схемы будут влиять на измерения, что помешает получить истинные значения сопротивления конденсатора. Допускается отпаять одну ножку и сделать замеры, но это не всегда удается, выводы на печатных платах у деталей очень короткие.
Проверяем конденсатор на пригодность
Не стоит тратить время на конденсаторы с явными признаками неисправности, отечественные изделия при превышении допустимого напряжения или ошибки в подключении полярности может разорвать на части.
В импортных электролитических конденсаторах предусмотрены крестообразные оттиски в верхней части корпуса. В этих местах толщина стенок тоньше, при пробое энергия прорывает эти полосы, остается маленькое выжженное отверстие. Внимательно осматривайте и отбраковывайте такие элементы.
Проверка. Видео
Видео на практике покажет, как проверить конденсатор мультиметром, чтобы у читателей и вовсе не осталось вопросов.
Оцените статью:
проверка емкости электролитического, танталового или керамического двухполюсника с видео
Конденсаторы относятся к категории электронных компонентов, наиболее часто выходящих из строя. Поэтому при ремонте аппаратуры в первую очередь тестируются именно эти элементы. Перед выполнением процедуры необходимо ознакомиться, как проверить конденсатор мультиметром и какие типы этой детали встречаются чаще всего.
Содержание
Открытьполное содержание
[ Скрыть]
Виды конденсаторов
Конденсаторы бывают:
- Электролитические. Это полярные элементы с «плюсом» и «минусом». Паять их нужно только определенным образом — плюсовый контакт конденсатора к плюсу схемы, минусовый контакт — к минусу.
- Неполярные — это все остальные конденсаторы (керамические, танталовые, SMD-конденсаторы). Они монтируются на поверхность платы, что соответствует современным технологиям.
О том, как проверить конденсаторы на плате, не выпаивая их, рассказывается на видео от канала Радиолюбитель TV.
Что понадобится
В процессе выполнения измерения необходим мультиметр. Желательно, чтобы он измерял емкость.
Кроме этого, понадобится:
- адаптер на 9 Вольт;
- отвертка;
- пинцет;
- если конденсатор в плате, то понадобится паяльник с припоем и флюсом.
Измерение сопротивления
Проверить на 100% элемент, не выпаивая из платы, не получится. Это следует помнить, тестируя деталь на материнской плате компьютера. Правильной проверке будут мешать другие детали. Единственное, что можно сделать – убедиться в отсутствии пробоя. Для этого прикоснитесь щупами к выводам конденсатора и измерьте сопротивление.
Измерение сопротивления будет отличаться в зависимости от вида конденсатора.
Электрический конденсатор
Для того чтобы прозвонить электролитический конденсатор мультиметром, следует выполнить действия:
- Разрядите деталь, замкнув оба полюса пинцетом или отверткой.
- Поставьте мультиметр (шкалу омметра) на максимальный предел измерений и подсоедините к конденсатору, соблюдая полярность. Стрелка прибора должна отклониться на определенное значение, а затем «уйти» на бесконечность.
Керамический конденсатор
Для проверки керамического конденсатора выставьте наибольший предел измерений. Мультиметр покажет значение более 2 МоМ. Если оно меньше, прибор неисправен.
Танталовый конденсатор
Чтобы убедиться в исправности танталового элемента, подсоедините щуп к контактам конденсатора, предел поставьте максимальный. Измерять нужно в омах. Если прозвонка покажет «0», значит, компонент пробит и его нужно заменить.
SMD-конденсаторы
SMD-элементы проверяются по аналогии с керамическими деталями.
Измерение емкости мультиметром
Здесь также хорошую помощь окажет мультиметр, способный определять значение емкости конденсатора.
Для измерения следует выполнить:
- Переключите прибор в режим измерения.
- Установите соответствующий предел и присоедините щупы к контактам. Показания прибора должны соответствовать надписи на корпусе элемента.
Измерение напряжения
Чтобы проверить конденсатор мультиметром, используя постоянное напряжение, нужно:
- Взять адаптер и, соблюдая полярность, подключить его к выводам детали (ее нужно отпаять от платы). Через несколько секунд она зарядится.
- Затем подсоедините щупы тестера к детали и измерьте напряжение. В первый момент оно должно соответствовать тому, что указано на адаптере.
Как проверить без приборов
Осмотрите конденсатор, наличие следующих признаков свидетельствует о пробое элемента:
- темные пятна;
- вздутие и разрывы оболочки;
- протечка электролита.
Вздувшиеся электролитические конденсаторы
Есть и другой способ проверки работоспособности, для реализации которого понадобится источник тока, а также провода и низковольтная лампочка. Зарядите конденсатор и подключите к его выводам лампочку. Она должна гореть в течение нескольких секунд, а затем погаснуть. Это говорит об исправности элемента.
Загрузка …Фотогалерея
Видео «Проверка конденсатора мультиметром»
На видео от пользователя Влад ЧЩ можно узнать о том, как проверить конденсатор мультиметром.
с помощью мультиметра, на работоспособность не выпаивая, с применением тестера, исправность и емкость
Конденсатор — незаменимое средство в любой электротехнике. Что он собой представляет, каков принцип его работы и сфера применения? Как осуществляется проверка конденсатора мультиметром? Об этом далее.
Что это такое
Конденсатор является устройством, способным делать накопление заряда электрического тока и передавать его по электрической цепи. Самый простой конденсатор включает в себя несколько пластинчатых электродов, которые разделены с помощью диэлектрика. На этих электродах накапливается заряд, имеющий разную полярность. На одной пластине положительный заряд, а на другой — отрицательный.
Проверка конденсатора мультиметромЕсть множество классификаций устройства конденсатора. Он бывает постоянным и переменным, неполярным и полярным, бумажным и металлобумажным. Последние считаются наиболее привычными и распространенными конденсаторами, которые напоминают прямоугольные кирпичи. Они относятся к неполярным устройствам.
Конденсаторы часто сделаны из керамики. Бывают пленочными, электролитическими и полимерными. Керамический вид позволяет фильтровать различные виды высокочастотных помех энергии. Благодаря их относительной диэлектрической проницаемости, можно создавать многослойные элементы, имеющие емкость, которая сопоставима электролитам. Они не являются полярными.
Пленочные агрегаторы распространены везде, к примеру, их можно встретить в кондиционерах. Они отличаются тем, что у них малый ток утечки, небольшая емкость, высокое рабочее напряжение и отсутствие чувствительности к полярности приложенного напряжения. Полимерные виды выдерживают различные виды больших импульсных токов, работают при низких температурах.
Пленочный агрегатОбратите внимание! Что касается приборов, оснащенных воздушным диэлектрическим элементом, то самым лучшим конденсатор выступает подстроечный прибор, имеющий резонансный радиоприемный контур. Его могут рекомендовать все пользователи. Емкость подобных элементов маленькая, но удобная в реализации изменений.
К электролитическим относятся агрегаты, напоминающие бочонки или батарейки. Они устанавливаются в сетевые пульсации в блоках питания. Благодаря механизму и принципу действия получается большая емкость при малом размере. Диэлектриком выступает оксид металла. Если в блоке питания используется диэлектрик с алюминиевым электролитом, то, чтобы работал автомобильный конденсатор на высокой частоте, используется танталовый электролит, поскольку обладает меньшим током утечки, большой устойчивостью к внешним воздействиям.
Конструкция конденсатораГде используется
Конденсатор используется широко в сфере электротехники. Его используют пиротехники в разных электроцепях. Чаще всего его можно найти в блоке питания, фильтре с высокими и низкими частотами, балластном блоке питания, аккумуляторной зарядке, аналогичном аккумуляторе питания маломощных пассивных устройств, к примеру, в светодиодных лампочках и радиоприемниках.
Как работает
В электрической схеме подобные устройства могут быть использованы с разными цепями, однако их основным предназначением считается сохранение заряда. Таким образом, конденсатор берет ток, но сохраняет его и потом отдает в цепь.
Подключая конденсатор к электроцепи, на конденсаторных электродах накапливается электрозаряд. Сначала конденсаторная зарядка потребляет наибольший электрический ток. По мере того, как заряжается конденсатор, электрический ток снижается и когда конденсаторная емкость наполняется, ток исчезает насовсем.
В момент отключения электроцепи от источника питания и при подключении нагрузки цикла, конденсаторный прибор перестает получать заряд и отдает накопившийся ток иным элементам. Сам выступает в роле источника питания.
Основной технической характеристикой конденсатора является емкость. В свою очередь, емкость — способность устройства делать накопления электрического заряда.
Обратите внимание! Чем больше этот показатель, тем больше заряд сможет быть накоплен и передан к электрической цепи. Конденсаторная емкость измеряется в фарадах. Отличаются устройства друг от друга по конструкции, материалам изготовления и области применения.
Принцип работы устройстваТипы неисправностей
Обычно у конденсатора случается обрыв электролита, снижается емкость, получается электролитический пробой, снижается максимально допустимое напряжение и увеличивается внутреннее конденсаторное сопротивление. Пробой возникает из-за того, что превышается допустимое напряжение, обрыв из-за механических повреждений, вибраций, встрясок, некачественной конструкции и нарушения предписанных условий эксплуатации.
Инструкция по проверке мультиметром
Поскольку аппарат способен аккумулировать в себе электрозаряды, то, перед тем, как проверить конденсатор, его нужно разрядить. Это возможно сделать при помощи отвертки, жалом прикоснувшись к выводам для образования искры. Затем необходимо делать прозвон компонентов. Проверка конденсатора возможна при помощи мультиметра и лампочки с проводами. Первый способ надежнее и точнее, поскольку мультиметр показывает точные данные.
До того, как проверить электролитический конденсатор мультиметром, необходимо посмотреть на конденсатор. В случае наличия трещин с нарушением изоляционного слоя, подтеками либо вздутием, проводить тестирование не имеет смысла из-за поломки конденсатого прибора и необходимости замены. Если внешние дефекты отсутствуют, можно осуществлять проверку.
Обратите внимание! До проведения измерений, необходимо определиться с разновидностью конденсатора. Бывает неполярный и полярный тип. Во втором случае необходимо соблюдать полярность, а в первом — проводить измерения по другой технологии. Определение полярности можно провести, взглянув на метку корпуса. На детали имеется черная полоса с нулевым обозначением. Возле нее есть отрицательный с положительным контактом.
Для начала процедуры с полярным агрегатом, необходимо поставить мультиметр на режим омметра и посмотреть, есть ли обрыв с коротким замыканием или нет. Чтобы проверить неполярный прибор, необходимо выставить цифру 2 МОм в диапазоне измерений, а для полярного прибора выставить 200 Ом.
Сам конденсатор отпаивается от схемы и помещается на поверхность стола. Щупы ставятся к конденсаторным выводам с соблюдением полярности. При соприкосновении щупов, на дисплее будут постепенно расти показатели. Спустя некоторое время измерений на экране появится точное число. При единице прибор исправен. В случае, если загорается сразу единица, это говорит об обрыве. При появлении нуля, это говорит о коротком замыкании. Для неполярного устройства оптимальное значение выше двух.
Керамических конденсаторов
Керамические с бумажными и прочими неполярными конденсаторами можно проверить с помощью мультиметра, настроив прибор на замер сопротивления и максимальный измерительный предел. Далее необходимо прикоснуться с помощью измерительных проводов к контактам. Затем получить результат. Если на экране мультиметра получается значение в 2 МОм и более, можно говорить об исправности прибора. В противоположном случае, необходима замена оборудования.
Обратите внимание!
Осуществляя измерения на максимальном режиме сопротивления, необходимо исключить тот факт, чтобы проводящие части соприкасались друг с другом. В противном случае получить достоверные данные невозможно. Проверка керамического прибора мультиметромПолярных конденсаторов
Чтобы протестировать полярный агрегат, необходимо переключить мультиметр на режим замера сопротивления, установить пределы измерений в 200 тысяч Ом, зафиксировать щупы, соблюдая полярность, и измерить утечку по уровню сопротивления.
Измерение емкости
Емкость — основная конденсаторная характеристика, которую указывают производители на приборе. При тестере делаются замеры реального значения и сравниваются с номиналом. Мультиметровый переключатель переводится в диапазон измерений. Показатель ставится равный или близкий к номинальному. На самом конденсаторе ставятся отверстия —CX+ или щупы. Подключение происходит так же, как и при режиме сопротивления. В случае подключения щупов на мониторе появляется значение сопротивления. Если оно имеет близкое к номинальному число, то можно говорить об исправности конденсатора. В противоположном случае, можно утверждать о пробитом устройстве и срочной замене.
Без выпаивания
В ответ на то, как проверить конденсатор мультиметром не выпаивая, стоит указать, что необходимо параллельное подключение на плате заведомо исправного конденсатора, имеющего такую же емкость. Если устройство будет функционировать, то определить проблему без выпайки просто: она находится в первом неисправном элементе. Необходимо его смена. Подобный способ применим лишь в схемах, где небольшое напряжение.
Иногда осуществляют проверку конденсатора на искры, разрядку и общую неисправность в связи с этим. Для этого нужна подзарядка и при помощи металлического инструмента, имеющего заизолированную рукоятку, замыкание выводов. Должна быть получена высоковольтная искра, имеющая характерный звук. При малом разряде делается вывод о необходимости срочной смены детали.
Проведение подобной процедуры возможно только при помощи резиновых перчаток. Такой метод нужен, чтобы проверить работоспособность мощных пусковых устройств, рассчитанных на работу при более 200 вольт.
Обратите внимание! При этом проверять без выпаивания устройство, не имея измерителя в виде функционального мультиметра, нельзя. Подобные методы могут быть небезопасными из-за возможного получения электрического удара и нарушения объективности картины участка. Точные значения получить будет нельзя, даже вольтметром и амперметром.
Измерение емкости мультиметром без выпаиванияТехника безопасности
Замерять устройство нельзя в помещении с повышенной влажностью. Кроме того, нельзя переключать функции измерений при замере. Нужно заменять напряжение с силой тока, если величины больше рассчитанных на мультиметре. Чтобы подсчеты были верны, а измерение было безопасным, необходимо использовать щупы, имеющие исправную изоляцию. Также необходимо проводить измерения в резиновых перчатках во избежание получения микротравм от электрического тока, даже если перед этим оборудование будет разряжаться. Самостоятельно конструировать щупы для проверки прибора при этом не рекомендуется, как и другие части мультиметра. Пользоваться при замерах только измерительным электронным устройством от производителя.
В целом, проверить конденсатор мультиметром можно по представленной выше инструкции, в зависимости от разновидности прибора и его функций. Делать это необходимо, соблюдая технику безопасности.
Как правильно проверить, работает ли конденсатор?
Конденсаторы широко применяют в технике. Их повреждения вызывают потерю работоспособности бытовых приборов, электроники, других устройств. Внешний осмотр не всегда даёт правильное заключение о неисправности, поэтому проверка конденсатора на повреждение осуществляется электроизмерительными приборами – мультиметром или тестером.
Блок: 1/4 | Кол-во символов: 328
Источник: https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost
Подготовительные работы
Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.
Блок: 2/5 | Кол-во символов: 321
Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html
Необходимый минимум сведений
Как известно, конденсаторы имеют определенную емкость и служат для накопления и непродолжительного хранения электрического заряда. При подаче напряжения заряд какое-то время должен увеличиваться, затем происходит резкое снижение уровня — разряд, и все повторяется снова — заряд/разряд. Чем больше емкость конденсатора, тем более длительное время необходимо для накопления заряда. По сути, это все свойства, которые стоит знать для проверки конденсатора мультиметром.
Узнать рабочий конденсатор или нет несложно. Нужен только мультиметр. Можно недорогой. Главное — рабочий
Если говорить о видах, то способ производства конденсаторов на проверку не влияет. Проверяют работоспособность бумажных, тонкопленочных, электролитических, жидкостных, керамических, твердотельных и всех других, абсолютно одинаково. Не влияет на способ проверки и положение элемента на плате — входные, помехоподавляющие, шунтирующие — без разницы. Не имеет значения и вольтаж. Низковольтные — на 6 В или 50 В, высоковольтные на 1000 В — проверка одинаковая.
Единственное, что необходимо принимать во внимание — полярный конденсатор или нет. Как, наверное, понятно по названию, полярные конденсаторы требовательны к полярности питания. Так как при проверке мультиметром, прибор тоже подает питание на проверяемый элемент, положение щупов при проверке полярного конденсатора должно быть строго определенным:
- Красный щуп — к положительному выводу.
- Черный щуп — к минусовому (отрицательному).
Для неполярных положение щупов может быть любым. Еще, наверное, стоит сказать, как опознать полярные конденсаторы. Это всегда электролитические (полярные) емкости, которые выглядят обычно как небольшие бочонки. На полярных на корпусе у одного из выводов идет полоса контрастного цвета. Если корпус белый — полоса черная, корпус черный — полоса белая (светло-серая). Вот этой полосой отмечается отрицательный вывод (минус).
Внешний вид электролитического (полярного) конденсатора и его обозначение на схемах
Перед тем как проверить конденсатор мультиметром, осмотрите его корпус. Если полосы нет — можно не задумываться о положении щупов.
Блок: 2/6 | Кол-во символов: 2129
Источник: https://elektroznatok.ru/info/elektronika/proverka-kondensatora-multimetrom
Проверка без приборов
Без измерения параметров о неисправности свидетельствуют дефекты внешнего вида:
- пятна на поверхности корпуса;
- вздутие, деформация верхней насечки на импортных электролитических конденсаторах;
- протечка электролита.
Другие способы контроля неисправности применяют в домашних условиях. Следует:
- подключить к источнику питания, напряжение не должно превышать номинальное;
- взять светодиод (низковольтную лампу с двумя проводами), дотронуться выводами светодиода до ножек конденсатора;
- вспышка светодиода (кратковременное свечение лампы) подтвердят исправность.
Для определении работоспособности конденсатора большой ёмкости:
- подключить к источнику питания, напряжение которого меньше номинального;
- снять заряд металлическим предметом.
Наличие искры при разряде подтвердит годность. При снятия заряда соблюдать осторожность, принимать защитные меры, так как разряд сопровождается мощной искрой и звуком. Для уменьшения искры применяют разряд через резистор.
Блок: 3/4 | Кол-во символов: 961
Источник: https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost
Проверка конденсаторов
Как обнаружить неисправность по внешним характеристикам? Конечно, только лишь по внешним признакам невозможно достоверно судить о работоспособности какого-либо элемента. Тем не менее, таким путем можно заподозрить неисправность, опираясь на признаки:
- отверстия на основании и вытекание электролита, из-за чего конденсатор теряет герметичность;
- нехарактерная, раздутая форма корпуса и множество выступающих бугорков (в нормальном состоянии они имеют форму цилиндра).
Внешняя проверка особенно необходима в том случае, если вы устанавливаете в схему уже использованные конденсаторы. Тем не менее, некоторый процент брака можно обнаружить и среди новых элементов.
Здесь произошло замыкание, которое спровоцировало пробой в элементе
Если вы приобрели новый конденсатор, на котором уже имеются дефекты, то его не стоит использовать, ведь со временем это может привести к нарушению целостности всей схемы. Будет разумно приобрести и подсоединить другой элемент.
Схема конденсатора
Повреждения в виде пробоев в основном встречаются на неполярных элементах или на некоторых полярных с высокой чувствительностью к высокому напряжению.
Боковая пробоина в конденсаторе из алюминия – это редкое явление
Для того, чтобы предупредить повреждение других частей электросхемы после разрыва конденсатора, производителями была предусмотрена слабая верхняя крышка, на которой располагаются небольшие разрезы. Таким способом создается «слабое» место корпусной части. Это значит, что в случае разрыва электролит вытекает сверху, не затрагивая элементы схемы.
Вздутый конденсатор потребуется немедленно утилизировать, иначе через некоторое время все равно произойдет взрыв (как показано на изображении ниже).
Последствия взрыва конденсатора
Если у конденсатора начинает вздуваться верхняя часть, то уже не стоит проверять его дополнительными способами. Лучшим решением будет приобретение нового элемента.
На фото представлены неисправные конденсаторы — у двух из них вздувается крышка, а на других имеются прорывы
Обратить внимание следует и на другой немаловажный признак. Так, у некоторых элементов «слабая» крышка остается целой без каких-либо дефектов, но их можно заметить на нижней части – пробка становится выпуклой. Конечно, такая проблема возникает в редких случаях, но все-таки некоторым пользователям приходится с ней сталкиваться. Даже если причиной такой проблемы является брак, все равно конденсатор рекомендуется утилизировать.
Верхняя часть не повреждена, зато пробка заметно деформировалась
Стоит отметить, что даже при наличии внешних дефектов на корпусе, компонент может соответствовать требованиям после проверки прибором. Тем не менее, использовать его будет опасно.
В другом же случае, когда внешние повреждения отсутствуют, но имеются подозрения плохой функциональности конденсатора, из-за общего падения работоспособности радиосхемы, его понадобится проверить другими методами, поэтому сначала дефективный элемент выпаивают из общей схемы.
Демонтаж компонентов является обязательным шагом
Многие «умельцы» склонным к мнению, что проверить компонент можно и без выпаивания. Конечно, такой способ тестирования возможен, но он не гарантирует точных результатов, поэтому конденсаторы желательно демонтировать.
Блок: 4/8 | Кол-во символов: 3230
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/
Способ № 2 – Обойдемся без приборов
Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, как сделать контрольную лампу электрика, мы также рассказывали.
Блок: 4/5 | Кол-во символов: 498
Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html
Особенности проверки конденсаторов разных типов
Существует множество типов радиодеталей, которые отличаются материалом диэлектрика, пластин, видом электролита, поэтому они имеют разные способы диагностики рабочего состояния.
Для проверки годности керамического конденсатора задают наибольший предел измерения омметра. Признаком исправности будет измеренное сопротивление не менее 2 МОм. При других значениях деталь меняют.
Для испытания танталового конденсатора выбирают наибольший предел измерения в омах. При сопротивлении равном 0 его меняют. Перед проверкой электролитического конденсатора большой ёмкости и высокого напряжения необходима максимальная разрядка. Остаточное напряжение испортит прибор.
SMD конденсаторы неполярные, поэтому их проверяют как керамические, определяя годность в режиме омметра.
У плёночного конденсатора с коротким замыканием показание будет равно 0. При внутреннем обрыве аналоговый мультиметр покажет бесконечность, цифровой – 1.
Проверка без выпаивания
Исследовать радиодеталь не выпаивая, нельзя, показание будет неверным от влияния других элементов схемы.Вносит погрешность в измерение соседство трансформаторов, индуктивности, предохранителей. Параллельное или последовательное соединение их будет увеличивать или уменьшать итог тестирования. Для правильной оценки состояния конденсатор выпаивают.
Без выпаивания можно приблизительно определить работу участка схемы. Для этого прикасаются щупами к ножкам детали и измеряют сопротивление. Если показание увеличивается, затем уменьшается – деталь исправна.
Необходимо помнить, что контроль конденсаторов возможен только до максимальной величины 200 мкФ. Электроизмерительные приборы не измеряют большие параметры. При значении менее 0,25 мкФ конденсаторы проверяют только на короткое замыкание.
Блок: 4/4 | Кол-во символов: 1772
Источник: https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost
Как проверить конденсатор с помощью приборов
Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.
Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.
Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.
Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке «+», а минусовой к ножке «-».
При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.
Проверяем конденсатор мультиметром в режиме омметра
В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.
Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.
Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).
Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.
Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.
Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается. Скорость заряда напрямую зависит от емкости. Спустя время конденсатор зарядится и его сопротивление будет равно «бесконечности», а на дисплее мультиметра мы увидим «1». Это показатель того что конденсатор исправен.
Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.
Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.
В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.
Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.
Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).
Сперва нужно снять заряд, для этого закорачиваем выводы отверткой:
На дисплее прибора наблюдаем как начинает изменятся сопротивление:
По результатам данной проверки можно сделать вывод, что все варианты конденсаторов находятся в исправном состоянии.
Как проверить емкость конденсатора мультиметром
Одной из основных характеристик любого конденсатора является «емкость». Для того чтобы понять рабочий конденсатор или нет необходимо измерить данную характеристику и сравнить показатели с теми которые указаны производителем на корпусе устройства. Если под рукой есть хороший прибор, то измерить емкость конденсатора мультиметром не составит труда. Но здесь есть свои нюансы.
Если пытаться измерить емкость с помощью щупов (как в моем случае с мультиметром DT9208A) то у Вас ничего не получится. Дело в том, что емкость нельзя проверить, просто подключив щупы к конденсатору. Так как проверить емкость конденсатора мультиметром и можно ли вообще это сделать?
Для этой цели на мультиметре есть специальные разъемы «гнезда» -CX+. «-» и «+» означают полярность подключения.
Давайте проверим емкость керамического кондера «104К». Напомню, маркировка 104 расшифровывается: 10 – значение в пФ, 4-количество нулей (100000 пФ = 100 нФ = 0.1 мкФ).
Выставляем переключатель мультиметра на необходимую отметку — ближайшее большее значение (я установил на отметке 200 нФ). Берем конденсатор и вставляем ножки в разъемы мультиметра -CX+. Какой стороной вставлять не важно, так как данный кондер — неполярный. На дисплее мы видим значение емкости – 102.6 нФ. Что соответствует номинальным характеристикам.
Следующий экземпляр электролитический конденсатор с номинальной емкостью 3.3 мкФ. Переключатель выставляем на отметке 20 мкФ. Теперь нужно правильно «воткнуть» кондер в разъемы с соблюдением полярности. Для этого нужно знать какая ножка «плюс», а какая «минус». Узнать это не составит труда, так как производитель уже позаботился об этом. Если присмотреться на корпусе видно специальная отметка — черная полоса с обозначением нуля. Со стороны этой ножки располагается «минус», с противоположной «плюс».
Вставляем наш конденсатор в посадочные гнезда мультиметра. На фото видно, что емкость данного экземпляра равна 3.58 мкФ, что соответствует номинальным параметрам. Таким простым способом выполняется проверка конденсатора мультиметром.
Другой пример кондер емкостью 5.6 мкФ. При проверке данный экземпляр показал емкость 5.9 мкФ, что тоже соответствует норме.
Кондер МБГО, емкостью 1 мкФ показал результат 1.08, что также соответствует норме.
Если при замерах окажется что емкость сильно отличается от номинальных значений (или вовсе равна нулю) это значит, что конденсатор неисправен и его нужно заменить.
Как проверить конденсатор тестером (стрелочным прибором)
Друзья завалялся у меня в гараже измерительный прибор времен СССР — Ц4313. Он вполне рабочий, поэтому я решил поэкспериментировать и выполнить проверку им.
Почему я решил использовать его? Методика проверки не изменяется но, аналоговыми приборами (стрелочными) работу выполнять наглядно проще. Проще в плане визуального отслеживания. Здесь придется наблюдать не за изменением цифр на дисплее, а за отклонением стрелки прибора. Причем стрелка будет отклоняться сначала в одну сторону, затем в другую.
Чтобы настроить тестер Ц4313 на измерение сопротивления нужно нажать кнопку «rx». Вставляем щупы прибора в рабочие контакты. Для начала берем конденсатор и разряжаем его. Затем касаемся щупами контактов кондера. Если конденсатор исправный стрелка сначала отклонится, а затем по мере заряда плавно возвратится в исходное (нулевое) положение. Скорость перемещения стрелки зависит от того какой емкости испытуемый конденсатор.
Если стрелка прибора не отклоняется или отклонилась и зависла в определенном положении, это говорит о том, что конденсатор неисправный.
На этом все дорогие друзья, надеюсь, данная статья, как проверить конденсатор мультиметром цифровым и стрелочным была для вас интересной и раскрыла все вопросы. Если что, не стесняйтесь писать . Также особая благодарность за РЕПОСТ в соц.сетях.
Блок: 3/3 | Кол-во символов: 8106
Источник: https://electricvdome.ru/instrument-electrica/kak-proverit-kondensator-multimetrom.html
Что еще важно знать?
Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).
Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.
Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.
Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!
Также читают:
Блок: 5/5 | Кол-во символов: 1701
Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html
Как проверить элемент без выпаивания?
Для того, чтобы провести тестирование компонента без демонтажа, понадобится использовать специальный прибор. Его отличительной особенностью является минимальный уровень напряжения на клеммах, что не позволит нанести вред другим компонентам цепочки.
Тем не менее, не у каждого мастера имеется подобное оборудования, поэтому соорудить его можно даже из стандартного мультиметра, если подключить его через специальную приставку. Схематическое строение приставок можно обнаружить на просторах интернета.
Наглядный пример создания прибора для тестирования конденсатора без предварительного демонтажа
Таблица №1. Другие методы проверки компонента без выпаивания.
Метод | Описание |
---|---|
Частичное выпаивание | Можно демонтировать компонент не до конца (один вывод). Это позволит провести стандартную проверку прибором. Правда, осуществить это можно при наличии полярного конденсатора. |
Подрезка путей | Эффективным способом проверки без демонтажа является подрезка дорожек, которые направляются по схеме к конденсатору. Удалить их можно острым предметом, после чего допускается без опасений проводить тестирование.Конечно, это опасный метод, ведь так вы рискуете безвозвратно испортить плату. На некоторых схемах применять такой способ недопустимо. |
По завершению проверки следует восстановить целостность дорожек
Блок: 6/8 | Кол-во символов: 1330
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/
Особенности SMD конденсаторов
Современные технологии позволяют делать радиодетали очень малых размеров. С применением SMD технологии компоненты схем стали миниатюрными. Несмотря на малые размеры, проверка SMD конденсаторов ничем не отличается от более габаритных. Если надо узнать, рабочий он или нет, сделать это можно прямо на плате. Если необходимо измерить емкость, надо выпаять, затем провести измерения.
SMD технологии позволяют делать миниатюрные радиоэлементы
Проверка работоспособности SMD конденсатор проводится точно также как электролитических, керамических и всех других. Щупами надо прикасаться к металлическим выводам по бокам. Если они залиты лаком, лучше плату перевернуть и тестировать «с тыльной» стороны, определив, где находятся выводы.
Танталовые SMD конденсаторы могут быть полярными. Для обозначения полярности на корпусе, со стороны отрицательного вывода, нанесена полоса контрастного цвета
Даже обозначение полярного конденсатора похоже: на корпусе возле «минуса» нанесена контрастная полоса. Полярными SMD конденсаторами могут быть только танталовые, так что если видите на плате аккуратный прямоугольник с полосой вдоль короткого края, к полоске прикладывайте щуп мультиметра который подключен к минусовой клемме (черный щуп).
Блок: 6/6 | Кол-во символов: 1267
Источник: https://elektroznatok.ru/info/elektronika/proverka-kondensatora-multimetrom
Другие способы проверки
Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!
Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.
Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.
Блок: 7/9 | Кол-во символов: 985
Источник: https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/
Проверка компонента замыканием: возможно ли это?
Применяют такой метод в основном только для проверки крупногабаритных компонентов с большой емкостью, которые работают на напряжении выше двухсот вольт.
Для начала компонент заряжают от сети при стандартном напряжении, после чего его разряжают с помощью замыкания выводов. В процессе тестирования можно заметить искры, которые доказывают, что элемент обладает способностью к накоплению зарядов.
При замыкании выводов крупногабаритного конденсатора появляется яркая вспышка
Тем не менее, этот метод относится к разряду опасных и его категорически запрещено применять на практике новичкам по следующим причинам:
- В случае неосторожности мастер может получить неслабый удар током, который представляет опасность для его жизни. Особенно опасно замыкание заряженного конденсатора двумя руками, ведь при таких обстоятельствах электрический разряд поражает сердце, и человек умирает.
- Кроме того, таким методом все равно не получится достоверно узнать о работоспособности компонента, ведь неопытный человек не сможет отличить искру с разницей в 100 вольт. Это значит, что тестирование заведомо безрезультатное.
Блок: 7/8 | Кол-во символов: 1151
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/
Сложности проверки
Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.
В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.
Блок: 8/9 | Кол-во символов: 451
Источник: https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/
Подводим итоги
Вышеперечисленные методы проверки пригодятся тем мастерам, которые занимаются ремонтом стиральных машин, микроволновых печей, кондиционеров и прочей бытовой техники. Ведь именно в таких приборах чаще всего возникает поломка конденсатора, которую требуется своевременно определить. Обращаем ваше внимание — не следует применять опасные для жизни методики тестирования, потому что невозможно исключить ошибку во время работы!
Блок: 8/8 | Кол-во символов: 454
Источник: https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/
Как проверить емкость – видео ролики в Youtube
Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.
Еще одно видео:
Блок: 9/9 | Кол-во символов: 172
Источник: https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/
Количество использованных доноров: 7
Информация по каждому донору:
- https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html: использовано 3 блоков из 5, кол-во символов 2520 (8%)
- https://electricvdome.ru/instrument-electrica/kak-proverit-kondensator-multimetrom.html: использовано 1 блоков из 3, кол-во символов 8106 (26%)
- https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/: использовано 5 блоков из 8, кол-во символов 8455 (27%)
- https://ArduinoMaster.ru/uroki-arduino/kak-proverit-kondensator-multimetrom/: использовано 3 блоков из 9, кол-во символов 1608 (5%)
- http://electro-shema.ru/remont/kak-proverit-kondensator.html: использовано 2 блоков из 9, кол-во символов 1392 (4%)
- https://odinelectric.ru/knowledgebase/proverit-kondensator-na-rabotosposobnost: использовано 3 блоков из 4, кол-во символов 3061 (10%)
- https://elektroznatok.ru/info/elektronika/proverka-kondensatora-multimetrom: использовано 4 блоков из 6, кол-во символов 5934 (19%)
Поделитесь в соц.сетях: | Оцените статью: Загрузка… |
Как проверять конденсаторы мультиметром? Как проверить конденсатор мультиметром не выпаивая.
Знаете – ходит одна байка: для проверки конденсатора мультиметр излишен. Школьники-плохиши обижали ребят послабее экстравагантным методом. Заряжали большую емкость розеткой, били током. Проверить работоспособность основных конденсаторов импульсного блока питания не составит труда. В персональном компьютере напряжение достигает 650 вольт, тронешь — шарахнет сильно, уши задымятся. Избегайте также лезть отверткой. Температура дуги столь высока, что желание узнать емкость конденсатора может обернуться неплохими практическими навыками сварщика. Для целей разрядки народные умельцы применяют патрон, снабженный лампочкой Ильича. Высокий реактивный импеданс спирали позволит легко решить задачу, как проверить конденсатор мультиметром.
Процесс проверки конденсатора
Увидите, проверить мультиметром конденсатор может каждый. Вопрос составлен требуемой точностью. Как говаривал Кашпировский: даже 100% не стопроцентны. В остальном, неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.
Проверка конденсатора
Ищущие шуток ошибаются. Простейшим методом проверки конденсатора называют натурное испытание. Причем в составе изначальной схемы. Потрудитесь:
Итак, инструкция по работе с тестером понадобится, цвет проводов покажет, куда тыкать. Кажется смешным, пока не попытаешься измерить высокое напряжение, нарезаемое импульсами крошечной микросхемой. Будут мешаться рядом лежащий корпус, провода, много другого. В таких условиях применяют специальные тончайшие щупы, набор лишен аксессуаров. Рекомендуем заранее потренироваться мультиметром вести работу. Особенно внимательны будьте с пределами. В большинстве современных тестеров имеются следующие варианты ведения работ:
Проверить емкость конденсатора мультиметром
Мультиметр
Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр. Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Будет неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.
На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Необходимо, чтобы оценить параметры. Например, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.
Зная указанные вещи, можно представить, что делать дальше:
- Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
- Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
- Попутно сопротивлению будет расти от нуля до бесконечности.
Любой конденсатор, обладающий рабочим напряжением выше 5 вольт, проверим таким способом. Единственный фокус могут выкинуть полярные, например, электролитические емкости. Параллельно отслеживаем правильность расположения щупов (красного, черного). Взорваться, по идее ничего не должно… Теперь проводим анализ. Выяснили, годен ли конденсатор, имеются некоторые особенности. Обсуждали 5 вольт на щупах мультиметра, значение сильно зависит от модели. Можем измерить на концах заведомо исправного конденсатора: пока звоним контакты, емкость зарядится до нужной величины.
Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:
- Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) — внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
- По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.
Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.
Имеется простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Прикупив прибор, избегаем выдумывать. Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр сам проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, может не выйти. Параллельно емкости включены резисторы, дроссели другие элементы (включая конденсаторы), мешающие оценить исправность. Будь то электролитический конденсатор, пленочный конденсатор, любой другой. Разумеется, многое определят конкретные номиналы.
Можно провести сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — можно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.
Конденсатора на плате без предварительного демонтажа возникают проблемы. Конденсатор всегда включен в цепь и может соседствовать на плате с другими элементами схемы. Особенно влияют на измерения емкости обмотки трансформаторов, индуктивности, предохранители — у них маленькое сопротивление постоянному току.
Поэтому необходимо убедиться, что в цепях измеряемого конденсатора нет влияния таких элементов. Если в цепях с конденсатором включены транзистор или диод, тогда при измерении можно увидеть отклонение стрелки до определенного положения и падение до определенного значения, равному сопротивлению переходов полупроводника. И если нет короткого замыкания, то конденсатор может быть исправным.
При прикосновении щупами мультиметра на конденсатор подается постоянный ток от тестера. Конденсатор будет заряжаться, а сопротивление плавно увеличиваться.
На электронном тестере значение будет расти от отрицательных или положительных чисел до единицы, указывающей на сопротивление, превышающее предел измерений, выбранный ручкой переключения. После перестановки щупов тестера местами конденсатор должен перезарядиться, прибор должен действовать также.
По отклонению стрелки стрелочного мультиметра при подключении конденсатора и возврате ее в исходное положение можно заметить по шкале максимальное отклонение.
Если поменять местами щупы тестера, стрелка прибора должна снова отклониться на максимум и плавно упасть на исходное положение. После необходимо взять похожий и заведомо исправный конденсатор, и если стрелка тестера на контрольном элементе отклонится больше, то проверяемый конденсатор нерабочий.
Если при измерении и соответствии плюсов и минусов на тестере и выводах конденсаторов прибор покажет сопротивление, то такой конденсатор неисправен.
Проверка конденсатора другими приборами
Существуют приборы, позволяющие проверять конденсаторы прямо на плате. Такие приборы работают на низких напряжениях для уменьшения опасности вывода из строя других элементов.
Можно самому изготовить приставку к тестеру по схемам, опубликованным в журналах и интернете. Но не всегда ими можно провести измерения точно из-за влияния других элементов схем. Например, несколько установленных параллельно конденсаторов в итоге покажут общую емкость.
В автомобиле есть множество электрических систем, которые выполняют определенные функции. Среди этих систем есть основная — система зажигания. В случае, если двигатель начинает работать неустойчиво, «троит», т.е. один из цилиндров двигателя не вступает в работу, необходимо проверить систему зажигания.
Для этого нужно убедиться, что свечи зажигания вырабатывают искру, с помощью которой производится воспламенение топливовоздушной смеси в цилиндре двигателя. Если одна или несколько свечей выдают слабые искры красного цвета или их появление неравномерно, нужно обратить внимание на работу распределителя зажигания, который еще называют трамблер (от французского «trembleur», что в переводе означает «прерыватель»).
В новых моделях автомобилей вместо механического трамблера используется электронный коммутатор, который в случае отказа меняется целиком. Чтобы обнаружить причину неустойчивой работы трамблера, необходимо снять с него крышку, которая сделана из эбонита. В крышке за время эксплуатации могут возникнуть микротрещины, в которые попадает пыль и грязь, что вызывает пробои в электрической цепи, и напряжение не подается на свечи зажигания. После осмотра крышки нужно уделить внимание зазорам между контактами прерывателя. Также необходимо проверить конденсатор в трамблере . Если зазоры нормальные, а при работе возникает сильное искрение, значит проблема в конденсаторе . Для проверки его работы потребуется амперметр.
Подключив прибор к контактам, включите зажигание и рукой разомкните контакты в трамблере. Понаблюдайте за показаниями стрелки амперметра . Если стрелка или цифровое значение на экране приблизились к нулю с положения разрядки 2-4А, то существует неисправность в работе конденсатора , и его следует заменить.
Также можно проверить конденсатор самостоятельно, когда есть подозрение в пробое на «массу». Для этого потребуется переносная автомобильная лампочка. Сначала нужно отсоединить провод катушки зажигания вместе с проводом конденсатора от зажима прерывателя и произвести
Как проверить электролитический конденсатор мультиметром
Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.
В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.
В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.
Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.
Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).
Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.
Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.
Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.
Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.
Как проверить пусковой неполярный керамический конденсатор мультиметром
Электролитический неполярный конденсатор используется в схеме запуска однофазного и трехфазного электродвигателей в однофазной сети. Этот конденсатор можно проверить мультиметром таким же способом, как и электролитический полярный накопитель заряда. Для него полярность мультиметра, при проверке работоспособности не имеет значения. Проверяются они на тех же пределах измерения резисторов, что и полярные ёмкости.
Проверка конденсаторов мультиметром V 890D в режиме измерения емкости
Керамические емкости имеют диэлектрик с большим сопротивлением (керамика, стекло), поэтому при проверке емкости сопротивление должна быть более 2 Мом. Если сопротивление меньше, это говорит о неисправности ёмкости. Таким образом проверяются накопители заряда от 0,25 мкф и выше. Ёмкости ниже 0,25 мкф проверить обычным мультиметром невозможно. Для этих целей имеются измерители LC.
Хотя функцию измерения емкостей до 200 мкф можно встретить в некоторых типах мультиметров. Проверить конденсатор мультиметром не выпаивая из схемы, тоже возможно. При этом необходимо соблюдать полярность при прозвонке и не касаться щупов руками. Погрешность проверки ёмкостей установленных на плате будет выше, так как на заряд накопителя влияют элементы схемы.
Проверить работоспособность емкости приблизительно можно и на искру, т. е. зарядить рабочим напряжением ёмкость, и далее закоротить металлической отверткой с изолированной ручкой ее вывода. По силе разряда можно приблизительно судить о работоспособности ёмкости. При проверке накопителя на искру предназначенных для работы в сети 220 В и выше, нужно предпринимать меры безопасности и разряжать емкости через резистор 10 Ком.
Проверка конденсаторов стрелочным тестером Ц 4353
Стрелочный тестер более удобен при проверке работоспособности накопителей. Стрелка тестера во время измерения емкости плавно перемещается по циферблату, что дает более правильную картину проверки, чем мелькающие цифры цифрового мультиметра. Неисправность накопителей заряда также можно определить визуально по вспучиванию торца корпуса, тёмным пятнам и прожженным отверстиям на элементе.
С помощью специального технического оборудования можно обнаружить различные радиоэлементы, которые вышли из строя или износились. Но все становится весьма непросто, когда требуется произвести тестирование емкостных элементов при помощи мультитестера, потому как самых обычных «прозвонов» элементы данного типа не боятся.
Что такое мультиметр? Это универсальное устройство, которое позволяет выполнять электрические измерения. При помощи этого аппарата можно произвести измерения показателей тока постоянного и переменного типа, а также замерить мощностной показатель сети, емкость конденсатора, мощность сопротивления и радиодеталей.
На данный момент все приборы этого типа подразделяют на два основных типа:
- цифровой – этот прибор отображает все полученные результаты на табло цифрового вида;
- аналоговый – для отображения показателей используется специальная цифровая шкала.
На корпусе прибора устанавливают специальный регулятор. В некоторых случаях таких регуляторов бывает несколько. Они необходимы для того, чтобы переключать режимы и величины измерения. Для того, чтобы выполнить замер применяют щупы (специальный провод на одном конце которого имеется разъем, а на второй – наконечник из металла).
Электролитический конденсатор можно проверить мультиметром не выпаивая. Специально для этого используют омметр, который входит в состав устройства этого вида.
Показатель сопротивления электрического конденсатора будет выше отметки в 100 Мом:
- Прибор разряжают. Для этого устраивают короткое замыкание на ножках.
- Непосредственно на корпусе прибора выставляют соответствующую величину измерения.
- Оба вывода подводят к ножкам. Левую к минусу, а правую к плюсу.
- Если показатель сопротивления выше указанной величины, то прибор исправен.
Для наглядного ознакомления с проведением данного технического процесса можно воспользоваться видеоматериалом, представленным ниже:
Чтобы измерить емкость конденсатора при помощи мультиметра, необходимо следовать инструкции:
- Измерительные прибор переводят в состояние измерения емкости.
- Дважды производят подключение щупов. Второй раз их меняют местами.
- Фиксируют результат. Сравнивают оба показания.
- В том случае, если в первый раз на экране появился «0», а во втором «-», то прибор абсолютно исправен. Если же показания одинаковы, то устройство можно считать нерабочим.
Этот метод используют для определения утечки или наличия обрывов. При необходимости проведения проверки конденсатора на плате с помощью мультиметра используют зарядку устройства и разрядку его, при этом практически полностью меняют полярность. По мнению опытных специалистов этот вариант является весьма сомнительным.
Проверка разных видов
При проверке керамического конденсатора (неполярного) с помощью мультиметра применяют различные диэлектрики. К примеру, это может быть бумага, стекло или воздух.
Весь процесс сводится к следующему:
- Переводят устройство в режим измерения реального сопротивлении.
- На приборе выставляют максимальный предел.
- Устройство настраивают и щупами касаются к ножке
В том случае, если устройство рабочее, то на нем покажется величина в 2 Мом. Если же показатель будет меньше, то прибор вышел из строя.
Проверяя пленочный конденсатор мультиметром, проверяют показатель сопротивления. Если в устройстве «утечка», то ничего не изменится. Если существует внутренний обрыв, то на аналоговом мультиметре стрелочка уйдет в бесконечность.
Если с помощью мультиметра необходимо произвести проверку на работоспособность пускового конденсатора, то первоначально извлекают пусковой механизм. Затем проверяют его на наличие утечек электрического типа. Присоединяют щупы к клеммам. После этого выполняют проверку емкости.
Когда речь заходит о проверки неполярного конденсатора, то следует обратиться к материалу, предоставленному выше, потому как с точки зрения принципиального устройства прибор этого типа ничем не отличается от керамического конденсатор.
Проверка smd конденсатора проводится также, как и обычного устройства. С помощью измерения максимального показателя сопротивления.
Внимание! Проверяя высоковольтный конденсатор всего-то и надо, что зарядить его свыше нормы. Тогда все будет заметно сразу же.
Конденсатор переменного тока проверяют при помощи мультиметра с помощью измерения данного показателя дважды с переменой полярности. После чего их сравнивают и на основе этого делают вывод. Если показатель №2 будет выше, то прибор исправен.
Как проверить в бытовой технике?
В некоторых отдельных случаях приходится проверять конденсатор, который находится в корпусе бытовой техники:
- конденсатор от стиральной машины – измерят с помощью мультметра или тестера. Измерение производится на максимальное сопротивление устройства. Если оно исправно, то стрелочка прибора отклонится.
- конденсатор микроволновки – при подключении мультиметра показатель сопротивления должен быть бесконечным (при условии, что измерительный прибор стоит в положении Rх 1000).
- автомобильный конденсатор – для этого пользуются стандартным методом.
Как проверить без мультиметра?
Для того чтобы проверить конденсатор на работоспособность без использования специального измерительного оборудования необходимо работать с конденсаторами высокой мощности. При этом пользуются одним из свойств конденсатора – копить заряд и подзаряжаться. конденсатор заряжают высоким напряжение (больше чем номинал, указанный на корпусе устройства). Делают это на протяжении нескольких секунд.
Внимание! Руки не должны прикасаться к металлическим элементам устройства. Железо должно быть полностью изолировано от человека. После аккуратно замыкают при помощи железного элемента контакты конденсатора. Появится искра.
Видео
Смотрите на видео как проверить конденсатор:
Сегодня создано большое количество технических средств, предназначенных для измерения и замера различных электрических и технических показателей. При помощи них можно вовремя выявить неполадки и произвести замену. Ко всему прочему можно будет избежать серьезных трат на покупку нового оборудования. Вес что потребуется – это отремонтировать или заменить износившийся элемент.
Окт 5, 2015 Татьяна Сумо
На данный момент практически каждый человек может столкнуться с поломкой конденсатора. Чтобы определить его исправность вам не потребуется изучать основы электротехники. Достаточно будет просто знать, как проверить мультиметром конденсатор.
Благодаря этому можно восстановить работоспособность микроволновки или холодильника. Перед тем, как выполнить ремонт необходимо определить, какая именно деталь неисправна. Для проверки конденсатора отлично подойдет цифровой мультиметр.
Как измерить емкость
Во время проверки вам необходимо помнить, что не все неисправности будут поддаваться тестированию в режиме омметра. Если мультиметр будет показывать бесконечно большое сопротивление полярного элемента, тогда это будет считаться признаком его неисправности. Проверить потерю номинальной емкости в режиме омметра у вас не получится. Чтобы измерить эту характеристику необходимо использовать цифровой мультиметр. Это устройство поможет проводить тестирование в пределах от 20 нф до 200 мкф.
Благодаря мультиметрам с подобной функцией появится возможность тестировать любые конденсаторы, даже электролитические. Если вы желаете выполнить проверку электролитического конденсатора, тогда необходимо соблюдать полярность.
На фото выше вы видите, что для проверки емкости конденсатора необходимо вставить выводи детали в гнезда Сх, а ручку необходимо установить в положение необходимого диапазона измерений. После этого все параметры емкости будут отображаться на дисплее.
Основные неисправности и причины их возникновения
Неважно, какой тип конденсатора вы используете. Любой конденсатор может выйти из строя в связи со следующими проблемами:
- Снижение номинальной емкости, которая будет происходить в процессе высыхания.
- Ток утечки будет превышать необходимо значение.
- Возрастание активных потерь цепи.
- Возникло короткое замыкание обкладок.
- Потеря контакта, которая произошла между обкладкой и выводом детали.
Все неисправности, которые мы описали выше чаще всего могут возникнуть в результате нарушения температурного режима или превышения порога допустимого напряжения. Специалисты уверяют, что благодаря понижению рабочей температуры можно значительно продлить срок службы радиоэлемента.
На практике чаще всего неисправность конденсатора может быть вызвана коротким замыканием. Теперь мы решили подробно рассказать о том, как выполнить диагностику конденсатора.
Диагностика неисправностей
Выявить пробой конденсатора также можно благодаря визуальному осмотру. Если произошел пробой, тогда на конденсаторе могут образоваться трещины или вздутие. На фотографии ниже вы можете увидеть признаки пробоя конденсатора.
В большинстве случаев обнаружить пробой во время визуального осмотра не всегда возможно. Если внешний вид детали действительно нормальный, тогда возможно проблема произошла из-за внутреннего короткого замыкания. Перед тем как начать проверять мультиметром неполярный пленочный, керамический, электролитический, smd или sbb конденсатор необходимо будет снять его с платы. Отпаивать конденсатор не всегда обязательно. В некоторых случаях можно проверить сопротивление цепи прямо на плате. Но вам необходимо помнить, что для этого потребуется карта сопротивлений.
Проведение диагностики устройств неполярного типа
Для проверки устройства с помощью мультиметра вам не потребуется замерять емкость конденсатора неполярного типа. В этом случае будет достаточно просто измерить его сопротивление. Оно в обязательном порядке должно быть бесконечно большим. Если произошел пробой, тогда мультиметр покажет незначительную величину. Для тестирования, вам потребуется выполнить следующий алгоритм действий:
- Следует выставить максимальный режим измерений в режиме омметра.
- Щупами прибора, вам потребуется прикоснуться к выводам радиодетали.
- Если на табло вы увидите цифру «1», тогда это укажет на то, что сопротивление будет больше 2 мегаом. Если мультиметр покажет другую величину, тогда в этом случае произошло короткое замыкание.
Важно знать! Во время проведения измерений помните, что нельзя держать щупы прибора за неизолирование места. В этом случае показания могут быть просто недостоверные.
При необходимости вести тестирование вы также можете в режиме проверки диодов. Если в этом случае будет присутствовать пробой, тогда мультиметр издаст характерный сигнал. У нас вы также можете воспользоваться калькулятором для .
Диагностика полярных конденсаторов
Проверять конденсаторы полярного типа необходимо подобным образом. Единственной особенностью считается то, что порог измерения должен быть больше 100 ком. Перед проведением диагностики вам потребуется разрядить радиодеталь. Для этого можете просто соединить выводы. Если вы используете высоковольтный конденсатор, тогда его необходимо «закорачивать» через нагрузку.
Если вы не уберете заряд, тогда можете испортить мультиметр. Кроме этого, следует помнить о том, что, если вы дотронетесь одним из выводов до тела, тогда можете провести разряд через себя. Если во время разрядки вы увидите искры, тогда это будет говорить о том, что устройство исправно.
Для проверки мультиметром конденсатора необходимо подсоединить щупы. В результате этого электрический ток, который поступает с прибора будет накапливаться в тестируемой детали. Если мультиметр будет показывать увеличение сопротивления, тогда это говорит об исправности. Наиболее детально этот процесс можно будет изучить в аналоговых измерительных приборах.
Метод проверки в режиме омметра считается косвенным. Для получения более точно оценки необходимо воспользоваться цифровым мультиметром. Для проведения измерения вы можете использовать мультиметр DT890B+.
Ремонт бытовых приборов
Если конденсаторы выходят из строя, тогда соответственно и бытовая техника постепенно перестает функционировать. Наши советы помогут просто определить исправность конденсатора. После проведения анализа необходимо заменить конденсатор и техника вновь заработает.
Перед тем, как приступать к ремонту бытовых приборов необходимо убедиться в том, что они отключены от электропитания. Теперь вы знаете как проверить конденсатор мультиметром своими руками. Надеемся, что эта информация была полезной и интересной.
Как прозвонить конденсатор мультиметром: инструкция и методы проверки
Что такое конденсатор?
Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.
Существует большое количество конденсаторов, которые отличаются между собой по габаритам и другим параметрам
Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:
- Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
- Неполярные. К этой группе относятся любые другие варианты конденсаторов.
Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.
Расположенные на расстоянии обкладки (пластинки) обладают свойством накопления зарядов
Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.
По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.
Принцип функционирования
Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.
Где применяется?
Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.
Конденсаторы имеются в электросхемах различных приборов
Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.
Цены на различные виды конденсаторов
Видео – Для чего нужен конденсатор?
Полярные и неполярные разновидности
Среди огромного количества конденсаторов, выделяют два основных типа: полярные (электролитические), неполярные. Как диэлектрик в этих устройствах применяют бумагу, стекло, воздух.
Особенности полярных конденсаторов
Название «полярные» говорит само за себя — они обладают полярностью и являются электролитическими. При включении их в схему, необходимо точное ее соблюдение — строго «+» к «+», а «-» к «-». Если проигнорировать это правило, работать элемент не только не будет, но может и взорваться. Электролит бывает жидким или твердым.
Диэлектриком здесь служит пропитанная электролитом бумага. Емкость элементов колеблется в пределах от 0,1 до 100 тысяч мкФ.
Предназначение полярных конденсаторов — фильтрация и выравнивание сигналов. Вывод «плюс» имеет несколько большую длину. Метка «минус» нанесена на корпус
Когда происходит замыкание пластин, выходит тепло. Под его воздействием электролит испаряется, происходит взрыв.
Современные конденсаторы сверху имеют небольшое вдавливание и крестик. Толщина вдавленного участка меньше, чем остальной поверхности крышки. При взрыве его верхняя часть раскрывается наподобие розочки. По этой причине можно наблюдать на торцах корпуса неисправного элемента вспучивание.
Отличия неполярных конденсаторов
Неполярные пленочные элементы имеют диэлектрик в виде стекла, керамики. По сравнению с конденсаторами электролитическими, у них меньший самозаряд (ток утечки). Объясняется это тем, что у керамики сопротивление выше, чем у бумаги.
Соблюдение полярности при включении неполярного конденсатора в схему необязательно. Часто они бывают просто микроскопическими, и в некоторых проектах применяются в больших количествах
Все конденсаторы делят на детали общего назначения и специального, которые бывают:
- Высоковольтными. Используют в высоковольтных приборах. Их выпускают в различных исполнениях. Существуют керамические, пленочные, масляные, вакуумные ВВ конденсаторы. От обычных деталей они значительно отличаются и доступ к ним ограничен.
- Пусковыми. Применяют в электродвигателях для обеспечения их надежной работы. Они повышают стартовый момент двигателя, например, насосной станции или компрессора при запуске.
- Импульсными. Предназначены для создания сильного скачка напряжения и его транзакции на принимающую панель прибора.
- Дозиметрическими. Созданы для функционирования в цепях, где уровень токовых нагрузок небольшой. У них очень малый саморазряд, высокое сопротивление изоляции. Чаще всего это элементы фторопластовые.
- Помехоподавляющими. Они смягчают электромагнитный фон в большой частотной вилке. Характеризуются незначительной собственной индуктивностью, что позволяет поднять резонансную частоту и расширить полосу сдерживаемых частот.
В процентном соотношении самое большое число выходов деталей из рабочего строя приходится на случаи, когда подают напряжение, превышающее нормативное. Ошибки в проектировании также могут стать причиной неисправности.
Если диэлектрик меняет свои свойства, при этом тоже возникает сбой в работе конденсатора. Это происходит, когда он вытекает, высыхает, растрескивается. Емкость при этом сразу меняется. Измерить ее можно только посредством измерительных приборов.
Что делать в случае пробоя
Самая распространенная проблема, которая возникает с конденсаторами – это появление пробоя на диэлектрике. Диэлектрики являются своеобразным слоем изоляционного материала с большим сопротивлением, расположенного между одним и вторым проводником, препятствующего протеканию тока между ними.
У исправных элементов допускается небольшое просачивание тока сквозь изоляционное покрытие, именуемое как «ток утечки». Если в диэлектрике возникает пробой, то происходит резкое снижение сопротивления, и он становится обыкновенным проводником. Пробой может возникнуть в результате резкого перепада напряжения в электросети, от которой работает техника. Характерный признак пробоя: вздувшийся корпус устройства, потемневшая поверхность и черные пятна на нем. Перед тем, как проверить конденсаторы мультиметром на факт исправности, стоит осмотреть его визуальным методом, чтобы определить возможные внешние дефекты.
Как прозвонить мультиметром неполярный конденсатор
Чтобы проверить сопротивление диэлектрика с помощью мультиметра, необходимо перевести устройство в режим омметра. Для изготовления диэлектриков в неполярных моделях могут использоваться различные материалы и формы: стекло, керамика, бумага, воздушная прослойка. В результате этого можно достичь крайне высокого сопротивления, которое в исправных устройствах будет отображаться в виде бесконечной величины на мультиметре. При наличии электрических пробоев, сопротивление будет находится на уровне нескольких десятков Ом.
До того момента, как прозванивать конденсаторы мультиметром, на приборе нужно выбрать специальный режим, который предусматривает максимально возможное измерение уровня сопротивления.Для этого достаточно подвести к каждому выводу щуп тестера и посмотреть на дисплее прибора следующее:
- Если элемент исправен, то на экране отобразится единица, свидетельствующая о том, что сопротивление выше, нежели установленный максимум.
- Если же высвечивается определенный показатель, который ниже измерительного максимума, то это говорит про неисправность проверяемых устройств.
При этом, не стоит забывать про технику безопасности, чтобы случайно не взяться за щуп устройства и вывод конденсатора, поскольку меньшее сопротивление электрического тока у тела спровоцирует прохождение тока через него.
Как прозвонить полярный конденсатор тестером
В сравнении с неполярным типом в полярном сопротивление у диэлектриков в разы ниже, в связи с этим максимальное значение сопротивления на мультиметре должно быть выставлено соответствующем диапазоне. У большинства устройств сопротивление составляет около 100 кОм, у более мощных до 1 мОм. Прежде чем, померить конденсатор мультиметром, нужно замкнуть вывод накопителя, таким образом, чтобы он полностью разрядился.
Далее нужно установить соответствующие пределы измерений, и подключить щуп тестера к конденсатору, с учетом соблюдения полярности. У электролитических конденсаторов имеется достаточно большая емкость, в связи с чем в процессе их подключения сразу же начинается зарядка. На протяжении периода пока длится зарядка, значение сопротивления будет увеличиваться в прямой пропорции, что будет указываться на дисплее устройства.
Конденсаторы считаются исправными, в том случае если показатель сопротивления превышает значение в 100 кОм.
Как разрядить конденсатор
Чтобы разрядить низковольтные конденсаторы необходимо лишь закоротить каждый вывод. Однако для высоковольтных и тех, которые имеют большую емкость, к выводу следует подключать 5-10-килоомные резисторы. Резисторы необходимы, чтобы препятствовать возникновению искр при замыкании.
В процессе работы важно помнить про безопасность. Нельзя прикасаться к выводу на конденсаторе, поскольку это может спровоцировать замыкание через ваше тело.
Выявление обрыва конденсаторов
Неисправность в виде обрыва случается достаточно редко. Такое нарушение обусловлено механическими повреждениями на накопителе. После подобной поломки у устройства в полной мере теряется накопительная функция, его емкость становится равна нулю. Целостный элемент после повреждения оказывается в виде двух проводников, которые изолированы друг от друга. Выявить такие повреждения конструкции посредством омметра не представляется возможным.
Своеобразные симптомы обрыва у полярного электролитического конденсатора проявляются в том, что в случае изменения сопротивления никакие изменения на экране прибора не проявляются. Что касается неполярных типов, стоит отметить что он имеет малую емкость и обладает высоким сопротивлением, поэтому проверить его также невозможно. Единственным правильным выходом является возможность измерения емкости.
Проверка на короткое замыкание
Есть три способа сделать это.
Способ №1: определение КЗ в режиме прозвонки
Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора. В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд). Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.
Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки
Если нет мультиметра (и даже старой советской “цешки” нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор. Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна.Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится). Если же светодиод горит постоянно, конденсатор 100% неисправен. Если при проверке конденсатора наблюдается эффект постепенного роста сопротивления вплоть до бесконечности (ну или светодиод на какое-то время вспыхивает и гаснет) то конденсатор совершенно точно имеет какую-то емкость.
Следовательно, проверку на обрыв можно не делать.
Способ №3: проверка конденсатора лампочкой на 220В
Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.). Все что нужно сделать – просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор.
Проверка на отсутствие внутреннего обрыва
Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).
Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.
Таблица характеристик надежности конденсаторов.
Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки
Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.
Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!
Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва
Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки. Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.
При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).
Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва
Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли. Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор. Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)!
Это очень маленькая емкость. Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости – от малюсеньких до самых больших, а также любого типа – полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д. Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.
Порядок проверки мультиметром
Проверку конденсаторов лучше выполнять с изъятием их из электрической схемы. Так можно обеспечить более точные показатели.
Простые детали, обладающие переменной или постоянной емкостью очень редко выходят со строя. Здесь можно только механически повредить токопроводящие пластины. Чаще всего поломке подвержены электролитические диэлектрические элементы
Основным свойством всех конденсаторов является пропуск тока исключительно переменного характера. Постоянный ток конденсатор пропускает только в самом начале в течение очень короткого времени. Сопротивление его зависит от емкости.
Как проверить полярный конденсатор?
При проверке элемента мультиметром, нужно соблюсти условие: емкость должна быть больше 0,25 мкФ.
Технология измерения конденсатора для выявления неисправностей мультиметром следующая:
- Берут конденсатор за ножки и закорачивают каким-нибудь металлическим предметом, пинцетом, например, или отверткой. Это действие необходимо для того, чтобы разрядить элемент. О том, что это произошло, засвидетельствует появление искры.
- Устанавливают переключатель мультиметра на прозвонку или замер показателей сопротивления.
- Касаются щупами до выводов конденсатора с учетом полярности — к плюсовой ножке подводят щуп красного цвета, к минусовой — черного. При этом вырабатывается постоянный ток, следовательно, через какой-то временной промежуток сопротивление конденсатора станет минимальным.
Пока щупы находятся на вводах конденсатора, он заряжается, а его сопротивление продолжает расти до достижения максимума.
Проверку лучше делать аналоговым мультиметром. В этом случае можно наблюдать за поведением стрелки, а не за мельканием цифр на цифровом приборе. Это намного удобней.
Если при контакте со щупами мультиметр начнет пищать, а стрелка остановится на нулевой отметке, это указывает на короткое замыкание. Оно и стало причиной неисправности конденсатора. Если сразу же стрелка на циферблате показывает 1, значит, в конденсаторе случился внутренний обрыв.
Такие конденсаторы считаются неисправными и подлежат замене. Если «1» высветится лишь через некоторое время — деталь исправна.
Важно выполнять измерения так, чтобы неправильное поведение не отразилось на качестве измерений. Нельзя в процессе к щупам прикасаться руками. Тело человека обладает очень малым сопротивлением, а соответствующий показатель утечки превышает его во много раз.
Ток пойдет по пути меньшего сопротивления в обход конденсатора. Следовательно, мультиметр покажет результат, к конденсатору не имеющий никакого отношения. Разрядить конденсатор можно и при помощи лампы накаливания. В этом случае процесс будет происходить более плавно.
Такой момент, как разрядка конденсатора, является обязательным, особенно, если элемент высоковольтный. Делают это из соображений безопасности и для того, чтобы не вывести со строя мультиметр. Повредить его может остаточное напряжение на конденсаторе.
Обследование неполярного конденсатора
Конденсаторы неполярные проверить мультиметром еще проще. Сначала на приборе выставляют предел измерения на мегаомы. Далее прикасаются щупами. Если сопротивление будет меньше 2 Мом, то конденсатор, скорей всего, неисправен.
При проверке неполярных конденсаторов полярность не соблюдают. Для наглядности лучше взять два конденсатора, один из которых исправный, а другой неисправный. Сравнив результаты, можно более точно сделать вывод о работоспособности детали
Во время зарядки элемента от мультиметра возможно проверить его исправность, если емкость начинается от 0,5 мкФ. Если этот параметр меньше, изменения на приборе незаметны. Если все же необходимо проверить элемент меньше 0,5 мкФ, то при помощи мультиметра это возможно сделать, но только на короткое замыкание между обкладками.
Если необходимо обследовать неполярный конденсатор с напряжением свыше 400 В, это можно сделать при условии его зарядки от источника, защищенного от к.з. автоматического выключателя. Последовательно с конденсатором подсоединяют резистор, рассчитанный на сопротивление более 100 Ом. Такое решение ограничит первичный токовый бросок.
Существует и такой метод определения работоспособности конденсатора, как проверка на искру. При этом его заряжают до рабочей величины емкости, затем закорачивают вывода металлической отверткой, имеющей изолированную ручку. О работоспособности судят по силе разряда.
Проверяя элемент, предназначенный для функционирования в сети от 220 В, нельзя забывать о мерах безопасности. Емкость нужно разряжать посредством резистора 10 Ком
Сразу после зарядки и через некоторое время замеряют напряжение на ножках детали. Важно, чтобы заряд сохранялся долго. После нужна разрядка конденсатора посредством резистора, через который он заряжался.
Измерение емкости конденсатора
Емкость — одна из ключевых характеристик конденсатора. Ее необходимо измерять для уверенности, что элемент накапливает, и хорошо удерживает заряд.
Чтобы убедиться в работоспособности элемента, необходимо измерить этот параметр и сопоставить его с тем, который обозначен на корпусе. Перед тем как проверить любой конденсатор на работоспособность, нужно учесть некоторую специфику этой процедуры.
Пытаясь выполнить измерение посредством щупов, можно не получить желаемых результатов. Единственное, что удастся сделать — определить, рабочий этот конденсатор или нет. Для этого выбирают режим прозвона и касаются щупами ножек.
Услышав писк, меняют местами щупы, звук должен повториться. Слышно его при емкости 0,1 мкФ. Чем больше это значение, тем звук дольше.
Если нужны точные результаты, лучший выход в этой ситуации — использование модели, имеющей специальные контактные площадки и возможность регулировки вилки для определения емкости элемента.
Контактные площадки — это специальные разъемы, обозначенные буквосочетанием «-СХ+». Минус и плюс перед буквенными символами — это полярность подключения
Прибор переключают на номинальное значение, указанное на корпусе конденсатора. Вставляют последний в посадочные «гнезда», предварительно разрядив его при помощи металлического предмета.
На экране должна высветиться величина емкости, равная примерно номинальной. Когда этого не происходит, делают вывод о том, что элемент поврежден. Нужно проследить за тем, чтобы в приборе находилась новая батарейка. Это обеспечит более точные показания.
Измерение напряжения мультиметром
Узнать о работоспособности конденсатора можно и путем замера напряжения и сравнения полученного результата с номиналом. Чтобы выполнить проверку, потребуется источник питания. Напряжение у него должно быть несколько меньшим, чем у проверяемого элемента.
Так, если у конденсатора 25 В, то достаточно 9-вольтового источника. Щупы подключают к ножкам, учитывая полярность, и выжидают некоторое время — буквально несколько секунд.
Если на конденсатор имеется гарантия, она обозначает, что за какое-то время его параметры не выйдут за пределы, превышающие 20% от номинальных значений
Бывает, время истекло, а просроченный элемент все еще работоспособный, хотя характеристики у него другие. В этом случае его необходимо постоянно контролировать.
Мультиметр настраивают на режим измерения напряжения и выполняют проверку. Если почти сразу же на дисплее появится значение идентичное номиналу, элемент пригоден к дальнейшему использованию. В противном случае конденсатор придется заменить.
Как проверить работоспособность конденсатора альтернативными методами
Проверку конденсатора можно выполнить, не выпаивая его из рабочей платы. Просто параллельно сомнительному нужно подключить заведомо исправный. Если всё заработает, значит, сомнительный действительно неисправен, его нужно менять. Этим методом проверяется наличие обрыва. Метод можно применять в схемах с невысоким рабочим напряжением.
Вместо светодиода можно взять обычную маломощную электролампу, а в качестве источника использовать розетку 220 В. Если всё в порядке, то лампа будет светиться вполнакала. При пробое она загорится полным светом, а при обрыве вообще не будет гореть.
Схема для проверки конденсатора прозвонкой с лампочкой
Проверка работоспособности конденсатора электролампой
Схемы для проверки светодиодом и электролампой одинаковые, только в случае использования диода источником служит батарейка, а для электролампы – сеть 220 В.
Можно проверить работоспособность конденсатора «на искру». Если при замыкании выводов искра яркая, с хорошим звуком, то элемент можно считать исправным.
Возможные поломки
Поломка радиосхемы или электрического двигателя свидетельствует о неисправности элементов. В то время, как неисправность самого конденсатора часто бывает вызвана следующими причинами:
- Замыканием двух обкладок. Происходит это в результате повышенного напряжения на выводах. Получается, что фрагмент цепи, который должен «разорваться» конденсатором, остается замкнутым.
- Нарушение целостности внутренней цепочки компонента. Произойти это может при сильном ударе или напряжении, из-за чего случится вибрация. Тем не менее, часто причиной является брак во время производства. Получается, что в радиосхеме отсутствует конденсатор, а имеется только разорванная цепочка.
- Утечка тока в недопустимых пределах. Происходит это из-за нарушения целостности изоляционного слоя пластинок. Это приводит к тому, что они не могут сохранять заряд.
- Резкое падение номинальной емкости. Причиной такой проблемы тоже является утечка тока или же брак во время производства. В итоге, радиосхема работает с перебоями или не функционирует совсем.
Видео – Проверка неисправностей конденсаторов
Электролитические компоненты еще отличаются другим недостатком – превышением преобразования сопротивления. Получается, что во время работы в радиосхемах такие конденсаторы не улавливают импульсивные сигналы.
Вывод
Среди многих начинающих мастеров-радиолюбителей бытует мнение, что можно прозвонить конденсатор мультиметром не выпаивая его, но мало кто знает, что такие измерения имеют очень большую погрешность. Единственным наиболее правильным методом проверки элемента является визуальная оценка его состояния, на наличие потемнения, взбухания и других дефектов.
Примечательно, что поломка такого характера зачастую происходит в стиральных машинах, телевизорах, микроволновых печах и других видах бытовой техники. В связи с этим, столкнувшись с подобной проблемой вы самостоятельно сможете прозвонить конденсаторы мультиметром, благодаря описанной выше инструкции.
Источники
- https://remont-book.com/kak-proverit-kondensator-multimetrom-na-rabotosposobnost/
- https://sovet-ingenera.com/elektrika/provodka/kak-proverit-kondensator-multimetrom.html
- https://pro-instrymenti.ru/elektronika/kak-proverit-kondensator-multimetrom/
- https://ElectroInfo.net/praktika/kak-proverit-kondensator-pri-pomoshhi-multimetra.html
- https://homius.ru/kak-proverit-kondensator-multimetrom.html
[свернуть]
Как проверить твердотельный конденсатор. Как проверить работоспособность конденсатора при помощи мультиметра
Причиной поломки электротехники часто является выход из строя конденсатора. Для проведения ремонта нужно знать, как проверить конденсатор мультиметром. Из инструментов еще потребуется паяльник, поскольку деталь придется выпаивать из платы.
Полярные конденсаторы легко проверить в режиме омметра. Если сопротивление детали бесконечно большое (горит единица в левом углу), это означает, что произошел обрыв.
Тестирование емкости конденсатора
Электролитический конденсатор со временем высыхает, и его емкость изменяется. Чтобы ее измерить, нужен специальный прибор. Как проверить электролитический конденсатор мультиметром? Прибор подключается к детали, и переключателем выбирается необходимый предел измерения.
При появлении на индикаторе сигнала о перегрузке, инструмент переключается на меньшую точность. Аналогично измеряется емкость неполярных конденсаторов.
Виды неисправностей конденсаторов
- Емкость снизилась по причине высыхания.
- Повышенный ток утечки.
- Выросли активные потери в цепи.
- Пробой изоляции (замыкание обкладок).
- Обрыв внутри между обкладкой и выводом.
Визуальный контроль конденсаторов
Неисправности возникают из-за механических повреждений, перегрева, скачков напряжения и др. Чаще всего наблюдается выход из строя конденсатора по причине пробоя. Его можно увидеть по следующим дефектам: потемнению, вздутию или трещинам. У отечественных деталей при вздутии может произойти небольшой взрыв. Зарубежные конденсаторы защищены от него крестовидной прорезью на торце детали, где происходит небольшое вздутие, различимое глазом. Деталь с данной неисправностью может иметь нормальный вид, но при этом быть неработоспособной.
Для проверки элемент выпаивается из платы, иначе протестировать его невозможно. Проверку можно сделать по карте сопротивлений на плате, но для конкретной модели она не всегда имеется под рукой, даже при сервисном обслуживании.
Диагностика неисправностей неполярных конденсаторов
У неполярного конденсатора замеряется сопротивление. Если оно имеет величину меньше 2 мОм, здесь налицо неисправность (утечка или пробой). Исправная деталь обычно показывает сопротивление более 2 мОм или бесконечность. При замерах нельзя касаться щупов руками, поскольку будет измеряться сопротивление тела.
Тестирование на пробой также можно проводить в режиме проверки диодов.
Обрыв у конденсаторов малой емкости косвенным методом обнаружить невозможно. Как проверить емкость конденсатора мультиметром в подобной ситуации? Здесь нужен прибор, где есть необходимая функция.
Проверка электролитических конденсаторов
Существуют небольшие отличия, как проверить конденсатор мультиметром в режиме омметра. Полярные конденсаторы проверяются аналогично, но порог измерения у них составляет 100 кОм. Как только устройство зарядится и показание перевалит за эту величину, здесь можно судить о том, что деталь исправна.
Важно! Перед тем как проверить работоспособность конденсатора мультиметром, его следует разрядить путем соединения выводов. Высоковольтные детали из блоков питания подключаются на активную нагрузку, например через лампу накаливания. Если заряд оставить, можно испортить прибор или получить ощутимый разряд, дотронувшись до выводов руками.
К конденсатору подсоединяются щупы, показывающие рост сопротивления у исправной детали. Черный щуп с отрицательной полярностью подключается к минусовому проводнику, а красный — к положительному. На поверхности электролитического конденсатора минус обозначается белой полосой на боковой стороне.
На стрелочных приборах подобную проверку производить удобней, поскольку по скорости перемещения стрелки можно судить о величине емкости. Можно протестировать исправные детали с известными показателями и составить таблицу, по которой приблизительно определяется емкость по показаниям скорости падения напряжения.
После того, как конденсатор зарядится при тестировании (обычно до 3 В), на нем замеряется величина напряжения. Если она составляет 1 В или меньше, деталь нужно заменить, поскольку она не зарядилась. После проверки исправный конденсатор припаивается обратно, но его следует предварительно разрядить, закоротив ножки щупом.
Гарантия на электролитический конденсатор означает, что в течение заданного времени величина его емкости не выйдет за указанные пределы, обычно не превышающие 20 %. Когда срок службы превышен, деталь остается работоспособной, но величина емкости у нее другая, и ее необходимо контролировать. Как проверить конденсатор мультиметром в этом случае? Здесь емкость измеряют специальным прибором.
Обрыв трудно обнаружить с помощью омметра. Его признаком служит отсутствие изменения показаний в режиме омметра.
Как проверить конденсатор мультиметром не выпаивая
Сложность проверки конденсатора без демонтажа заключается в том, что с ним соседствуют такие элементы, как обмотки трансформаторов или индуктивности, обладающие незначительным сопротивлением постоянному току. Измерения можно производить обычным способом, когда рядом нет низкоомных деталей.
Заключение
Домашний мастер должен знать, как проверить конденсатор мультиметром. Для этого существуют прямые и косвенные методы. Не следует забывать о необходимости разрядки конденсатора перед каждым измерением.
Не знаете, как проверить конденсатор на работоспособность мультиметром? Технология проверки этого элемента схемы довольно простая, главное – уметь пользоваться тестером и соблюдать несколько простых рекомендаций. Итак, далее мы расскажем с помощью каких приборов легче всего определить исправность конденсатора и как это правильно сделать.
Подготовительные работы
Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.
Способ №1 – Мультиметр в помощь
Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи. О том, мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.
Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу. В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.
Измеряем сопротивление
Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.
После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.
Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!
После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.
Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.
Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло .
Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки. Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.
Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки. Если это не так, конденсатор не рабочий и его нужно заменить.
Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.
Измеряем емкость
Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).
Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.
Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.
Измеряем напряжение
Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом. Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт. Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.
После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.
Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!
Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом. Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра. Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее — не держит заряд.
Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:
Способ № 2 – Обойдемся без приборов
Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, мы также рассказывали.
Что еще важно знать?
Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).
Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.
Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.
Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!
Также читают:
Как проверить целостность «кондера»
Нравится(0 ) Не нравится(0 )
Отсутствует маркировка или нет доверия к указанным на его корпусе параметрам, требуется как-то узнать реальную емкость. Но как это сделать, не имея специального оборудования?
Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Но что же делать, если в наличии только и какой-нибудь блок питания, а измерить емкость конденсатора необходимо здесь и сейчас? На помощь в этом случае придут известные законы физики, которые позволят с достаточной степенью точности измерить емкость.
Рассмотрим сначала простой способ измерения емкости электролитического конденсатора подручными средствами. Как известно, при заряде конденсатора от источника постоянного напряжения через резистор, имеет место закономерность, по которой напряжение на конденсаторе станет экспоненциально приближаться к напряжению источника, и в пределе когда-нибудь, наконец, его достигнет.
Но чтобы долго не ждать, можно задачу себе упростить. Известно, что за время, равное 3*RC, напряжение на конденсаторе в процессе зарядки достигнет 95% напряжения, приложенного к RC-цепочке. Значит, зная напряжение блока питания, номинал резистора, и вооружившись секундомером, можно легко измерить постоянную времени, а точнее — троекратную постоянную времени для большей точности, и вычислить затем емкость конденсатора по известной формуле.
Для примера рассмотрим далее эксперимент. Допустим, есть у нас , на котором присутствует какая-то маркировка, но мы ей не особо доверяем, так как конденсатор давно валялся в закромах, и мало ли высох, в общем нужно измерить его емкость. Например, на конденсаторе написано 6800мкф 50в, но нужно узнать точно.
Шаг №1. Берем резистор номиналом 10кОм, измеряем его сопротивление мультиметром, поскольку своему мультиметру в этом эксперименте мы будем изначально доверять. Например, получилось сопротивление 9840 Ом.
Шаг №2. Включаем блок питания. Поскольку мультиметру мы доверяем больше, чем калибровке шкалы (если таковая имеется) блока питания, переводим мультиметр в режим измерения постоянного напряжения, и подключаем его к выводам блока питания. Выставляем напряжение блока питания на 12 вольт, чтобы мультиметр точно показал 12,00 В. Если напряжение блока питания не регулируется, то просто замеряем его и записываем.
Шаг №3. Собираем RC-цепочку из резистора и конденсатора, емкость которого нужно измерить. Конденсатор закорачиваем на время так, чтобы его легко можно было раскоротить.
Шаг №4. Подключаем RC-цепочку к блоку питания. Конденсатор все еще закорочен. Измеряем мультиметром еще раз напряжение, подаваемое на RC-цепочку, и фиксируем это значение для верности на бумаге. К примеру, оно так и осталось 12,00 В, или таким же, каким было в начале.
Шаг №5. Вычисляем 95% от этого напряжения, например если 12 вольт, то 95% — это 11,4 вольта. Теперь мы знаем, что за время, равное 3*RC, конденсатор зарядится до 11,4 В.
Шаг №6. Берем в руки секундомер, и раскорачиваем конденсатор, начинаем одновременно отсчет времени. Фиксируем время, за которое напряжение на конденсаторе достигло 11,4 В, это и будет 3*RC.
Шаг №7. Производим вычисления. Получившееся время в секундах делим на сопротивление резистора в омах, и на 3. Получаем значение емкости конденсатора в фарадах.
Например: время получилось 220 секунд (3 минуты и 40 секунд). Делим 220 на 3 и на 9840, получаем емкость в фарадах. В нашем примере получилось 0,007452 Ф, то есть 7452 мкф, а на конденсаторе написано 6800 мкф. Таким образом, в допустимые 20% отклонение емкости уложилось, поскольку составило примерно 9,6%.
Но как быть с малых емкостей? Если конденсатор керамический или полипропиленовый, то здесь поможет переменный ток и знание о емкостном сопротивлении.
К примеру, есть конденсатор, емкость его предположительно несколько нанофарад, и известно, что в цепи переменного тока работать он может. Для выполнения измерений потребуется сетевой трансформатор со вторичной обмоткой, скажем, на 12 вольт, мультиметр, и все тот же резистор на 10 кОм.
Шаг №1. Собираем RC-цепь, и подключаем ее ко вторичной обмотке трансформатора. Затем включаем трансформатор в сеть.
Шаг №2. Измеряем мультиметром переменное напряжение на конденсаторе, затем — на резисторе.
Шаг №3. Производим вычисления. Сначала вычисляем ток через резистор, — делим напряжение на нем на значение его сопротивление. Поскольку цепь последовательная, то переменный ток через конденсатор точно такой же величины. Делим напряжение на конденсаторе на ток через резистор (ток через конденсатор такой же), получаем значение емкостного сопротивления Хс. Зная емкостное сопротивление и частоту тока (50 Гц), вычисляем емкость нашего конденсатора.
Например: на резисторе 7 вольт, а на конденсаторе 5 вольт. Мы посчитали, что ток через резистор в этом случае 700 мкА, следовательно и через конденсатор — такой же. Значит емкостное сопротивление конденсатора на частоте 50 Гц составляет 5/0,0007 = 7142,8 Ом. Емкостное сопротивление Xc = 1/6,28fC, следовательно C = 445 нф, то есть номинал 470 нф.
Описанные здесь способы являются весьма грубыми, поэтому применять их можно только тогда, когда других вариантов просто нет. В иных случаях лучше пользоваться специальными измерительными приборами.
Конденсатор — электронный элемент, относящийся к категории пассивных. Его основная способность — медленно (с электротехнической точки зрения, в течение нескольких секунд) накапливать заряд, и при необходимости мгновенно отдавать. При отдаче происходит это разряд. В отличие от аккумулятора конденсатор отдает всю энергию импульсом, а не постепенно, после чего снова начинается цикл зарядки.
Основная характеристика этого элемента — ёмкость. Она измеряется в пФ и мкФ — пико- и микрофарадах. Кроме того, каждый конденсатор имеет определенные характеристики рабочего напряжения и напряжения пробоя, при котором он выходит из строя. Они либо указываются на корпусе числами, либо их приходится определять по каталогам, ориентируясь по типоразмеру и цветовой маркировке детали.
В силу своих конструктивных особенностей конденсаторы относятся к категории элементов, которые наиболее часто выходят из строя на электронной плате. Поэтому любой ремонт устройства, содержащего электронику (от микроволновки до системной платы ПК) начинается с проверки этих элементов на работоспособность — визуально, с помощью мультиметра или других приборов.
Самый простой способ
Самым простым и в то же время предварительным способом проверить этот элемент, не выпаивая его из схемы, является визуальный осмотр. Отломившаяся ножка автоматически превращает деталь в нерабочую и подлежащую замене.
При наличии на плате электролитических конденсаторов — они легко опознаются по цилиндрической форме с крестообразной риской на шляпке, а также фольгированному покрытию — в первую очередь надо проверить их. Для данной группы элементов характерно «вздутие». Это микровзрыв находящегося внутри электролита, который может произойти, например, из-за скачка рабочего напряжения. Если «цилиндрик» вздут, лопнул по риске на верхушке, на плате обнаруживаются потеки электролита, то его безоговорочно меняют. Зачастую после этого прибор начинает нормально работать. Если этого не происходит — рекомендуется проверить остальные конденсаторы и другие детали.
В профессиональных ремонтных или наладочных организациях для этого используют профессиональные же приборы — LC-тестеры, или тестеры емкости. Они достаточно дороги, а потому в «хозяйстве» обычного электромонтера встречаются редко. Но при ремонте большинства плат бытовых устройств в них и нет необходимости — провести проверку емкости конденсатора можно и обычным мультиметром.
Применение тестера для проверки
Настало время ответить на вопрос, как проверить конденсатор мультиметром. В первую очередь нужно оговорить сразу: мультиметром можно проверять только детали емкостью не менее 0,25 мкФ и не более 200 мкФ. Эти ограничения базируются на принципах их работы, и вообще принципе самой проверки — для малоемкостных не хватит чувствительности прибора, а мощные, например, высоковольтный конденсатор, способны повредить как прибор, так и самого испытателя.
Дело в том, что любой конденсатор перед началом измерения емкости или проверки на короткое замыкание необходимо разрядить. Для этого оба его вывода замыкаются между собой любым проводником — куском провода, отверткой, пинцетом и так далее. При этом в случае со слабым элементом происходит негромкий хлопок и вспышка. Но мощный, к примеру, пусковой конденсатор (особенно советского производства, для пуска люминесцентных ламп) даст вспышку, сравнимую по мощности со вспышкой электросварки. Металлический проводник даже может оказаться оплавлен.
Поэтому необходимо использовать либо отвертку или пассатижи с изолированной рукояткой, либо электротехнические резиновые перчатки. В противно случае можно получить электрический удар.
Присутствует разъем для измерения емкости
Дальнейшая методика проверки зависит от функциональности самого мультиметра: обладает ли он специальными разъемами и функцией измерения емкости (обозначается Cx) или нет. Если да, то все предельно просто:
Обратите внимание! Чтобы проверить электролитический конденсатор, необходимо соблюдать полярность — плюс к плюсу, минус к минусу. Если на гнездах прибора обозначены плюс и минус, то устанавливать его нужно только так. Если не обозначены — не имеет значения.
Электролитический конденсатор — это мини-аккумулятор, в нем содержится электролит, и подключается он только с соблюдением полярности. Плюс на нем не отмечается, но минус промаркирован галочкой на золотистом фоне, кроме того, «минусовая» ножка иногда бывает длиннее. Неправильное подключение полярного элемента приведет к однозначному выходу его из строя.
После установки детали в гнезда мультиметр начнет заряжать его постоянным током. На дисплее появится число, которое будет постепенно увеличиваться. Когда показания перестанут меняться — элемент максимально заряжен. Если показатель заряда аналогичен или хотя бы близок номиналу — элемент работоспособен.
А как проверить керамический конденсатор? Точно так же. Керамические элементы этого вида всегда неполярны, поэтому можно не опасаться неправильного подключения.
Нет разъема для измерения емкости
Прозвонить полярный или неполярный конденсатор мультиметром, не имеющим специальной функции, можно в режиме максимального сопротивления, при котором происходит его зарядка постоянным током. Этот способ проверки подходит даже для таких элементов, как smd конденсатор (для поверхностного монтажа) или пленочный конденсатор. Проверка полярного элемента отличается только необходимостью соблюдать полярность.
Алгоритм следующий:
- разрядить элемент, закоротив его ножки;
- выставить максимальный предел измерения сопротивления — вплоть до мегаом, если позволяет прибор;
- подключить черный щуп мультиметра к гнезду COM — это ноль или, в нашем случае, минус, а красный щуп — в гнездо для измерения напряжения и сопротивления;
- коснуться черным щупом минуса детали, а красным — плюса;
- наблюдать за показаниями прибора.
Обратите внимание, что электролитический тип всегда полярен, все остальные — неполярные.
Что происходить в этом случае? Мультиметр начинает заряжать деталь постоянным током. Во время зарядки его сопротивление увеличивается. Быстрый рост показаний сопротивления вплоть до значения «1» (бесконечно большое) означает, что конденсатор потенциально исправен, хотя таким способом и невозможно определить его фактическую емкость.
Возможная ошибка! Во время такой проверки нельзя касаться щупов или ножек элемента пальцами. Вы зашунтируете его сопротивлением собственного тела, и тестер покажет ваше собственное сопротивление. Рекомендуется применять щупы-крокодилы, если таковые есть.
Что означают результаты проверки
При проверке конденсатора мультиметром методом максимального сопротивления можно получить три варианта результатов.
Сопротивление росло быстро и достигло «1» — бесконечности. Означает, что элемент исправен.
Сопротивление очень мало либо вовсе отсутствует. Это означает пробой обкладок конденсатора между собой. Установка на плату приведет к короткому замыканию.
Сопротивление растет до значительного порога, но не до «1». Это означает наличие утечки по току. Конденсатор «условно работоспособен», его использование в приборе приведет к искажениям сигнала, помехам и другим негативным последствиям.
Кроме того, в последнем случае нет гарантии, что при включении «условно рабочего» элемента в схему не произойдет окончательного пробоя.
Проверка на вольтаж
Конденсатор должен выдавать определенное напряжение — оно указано на корпусе или в ТТХ по каталогу. Перед использованием в работе можно проверить его фактическую способность выдавать положенный разряд. Для этого конденсатор заряжается напряжением ниже номинального в течение нескольких секунд. Для высоковольтного, на 600 В, подойдет напряжение в 400 В, для низковольтного на 25 В — 9 В, и тому подобное.
После этого мультиметр переводится на измерение постоянного (!) напряжения, и подключается к испытываемой детали. Начальное значение на экране и есть значение разряда.
Обратите внимание, что цифры на экране будут очень быстро уменьшаться — конденсатор разряжается .
Если начальное значение на дисплее мультиметра меньше номинала — элемент не держит заряда. Учтите, что в любом случае разряжается он быстро.
При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов. О том, как с достоверной точностью проверить исправность конденсаторов перед их использованием и пойдёт речь.
Самым доступным и распространённым прибором, с помощью которого можно проверить практически любой конденсатор, является цифровой мультиметр, включенный в режим омметра.
Наиболее важным является проверка конденсатора на пробой.
Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.
При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки неисправности элемента.
Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальных конденсаторах диэлектрик, несмотря на то, что он является, по сути, изолятором, пропускает незначительный ток. Этот ток для исправного конденсатора очень мал и не учитывается. Он называется током утечки.
Проверка конденсаторов с помощью омметра
Данный способ подходит для проверки неполярных конденсаторов. В неполярных конденсаторах, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух, сопротивление утечки бесконечно большое и если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое сопротивление.
Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.
На практике проверить на пробой любой неполярный конденсатор можно так:
Переключаем цифровой мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов измерения сопротивления. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x это будет предел 2M (2000k), то бишь, 2 Мегаома.
Далее подключаем измерительные щупы к выводам проверяемого конденсатора. При исправном конденсаторе прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки конденсатора более 2 Мегаом. Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, меньшее 2 Мегаом, то, скорее всего, конденсатор неисправен.
Следует учесть, что держаться обеими руками выводов и щупов мультиметра при измерении нельзя. Так как в таком случае прибор зафиксирует сопротивление Вашего тела, а не сопротивление утечки конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Поэтому не стоит забывать о правилах при проведении измерения сопротивления.
Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.
Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных полярных конденсаторов это значение не менее 1 Мегаом. При проверке таких конденсаторов омметром следует сначала разрядить конденсатор, замкнув выводы накоротко.
Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200.000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки конденсатора. Так как электролитические конденсаторы имеют довольно высокую емкость, то при проверке конденсатор начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти, и будет расти до тех пор, пока конденсатор не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности конденсатора.
Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась аналогичным образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелочным прибором росло, в конечном итоге достигая значения сопротивления утечки.
По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем соответственно, была больше ёмкость конденсатора. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости конденсатора, а вот при проверке конденсаторов с большой ёмкостью (1000 мкф и более), стрелка отклонялась значительно медленнее.
Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения ёмкости конденсатора.
При проверке электролитических конденсаторов необходимо перед проведением измерения ёмкости полностью разрядить проверяемый конденсатор. Особенно этого правила стоит придерживаться при проверке полярных конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор.
Например, часто приходиться проверять исправность конденсаторов, которые выполняют роль фильтрующих, и применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче измерительного прибора.
Поэтому такие конденсаторы перед проверкой следует разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью), либо подсоединив к выводам резистор, сопротивлением 5-10 килоОм (для высоковольтных конденсаторов).
При проведении данной операции не стоит касаться руками выводов конденсатора, иначе можно получить неприятный удар током при разряде обкладок. При закорачивании выводов заряженного электролитического конденсатора проскакивает искра. Чтобы исключить появление искры, выводы высоковольтных конденсаторов и закорачивают через резистор.
Одной из существенных неисправностей электролитических конденсаторов является частичная потеря ёмкости, вызванная повышенной утечкой. В таких случаях ёмкость конденсатора заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра довольно сложно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.
Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости.
Для полярных электролитических конденсатором косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления. Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор также имеет очень высокое сопротивление.
Обнаружить обрыв в конденсаторе возможно лишь с помощью приборов для измерения ёмкости конденсатора.
На практике обрыв в конденсаторах встречается довольно редко, в основном при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.
Например, люминесцентные компактные лампы частенько выходят из строя по причине электрического пробоя конденсаторов в электронной схеме преобразователя.
Причиной неисправности телевизора может служить потеря ёмкости электролитического конденсатора в схеме источника питания.
Потеря ёмкости электролитическими конденсаторами легко обнаруживается при замере ёмкости таких конденсаторов с помощью мультиметров с функцией измерения ёмкости. К таким мультиметрам относиться мультиметр Victor VC9805A+, который имеет 5 пределов измерения ёмкости:
20 нФ (20nF)
200 нФ (200nF)
2 мкФ (2uF)
20 мкФ (20uF)
200 мкФ (200uF)
Данный прибор способен измерять ёмкость в диапазоне от 20 нанофарад (20 нФ) до 200 микрофарад (мкФ). Как видно, с помощью этого прибора есть возможность замерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических. Правда, максимальный предел измерения ограничен значением в 200 микрофарад (мкФ).
Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность подключения щупов. Как уже упоминалось, перед измерением ёмкости следует в обязательном порядке полностью разрядить проверяемый конденсатор. Несоблюдение этого правила может привести к порче прибора.
Неисправность конденсатора можно определить при внешнем осмотре, например, корпус электролитических конденсаторов имеет разрыв насечки в верхней части корпуса. Это свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый «взрыв” конденсатора. Корпуса неполярных конденсаторов при значительном превышении рабочего напряжения имеют свойство раскалываться, на поверхности образуются расколы и трещины.
Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозовых разрядов и сильных скачков напряжения электроосветительной сети.
Как проверить конденсатор без демонтажа [испытание электрической цепи]
Эй! надеюсь, у вас все хорошо.
Печатная плата обычно имеет резисторы, конденсаторы, катушки индуктивности, микросхемы, разъемы и некоторые другие компоненты. Часто эти компоненты перегорают и требуют замены.
Компоненты, которые имеют более высокую вероятность сгорания, — это резисторы, конденсаторы и, реже, микросхемы. Причина в том, что в основном резисторы и конденсаторы находятся на передней панели любой платы. А иногда перенапряжение их выгорает.
Что касается резистора и микросхемы, вы можете определить неисправный, просто взглянув на него на плате. Сгоревшая микросхема или резистор вскрываются, и вы можете найти их на плате за секунды.
Однако это не относится к конденсатору.
В случае с конденсатором дела обстоят немного иначе. Если вам повезет, вы найдете неисправный конденсатор, просто взглянув на его верхнюю часть, он будет взломан.
Но что, если тебе не повезло?
Настоящая проблема, с которой вы столкнетесь, — нормально выглядящий конденсатор может оказаться плохим.Таким образом, вам нужно снять весь конденсатор с платы, проверить каждый, найти плохого парня и перепаять всех без исключения на плате. Это не лучший способ, и никто не хочет этого делать.
Не волнуйтесь.
В этом посте мы определенно найдем способ проверить конденсатор, не снимая его с корпуса.
Надеюсь, вам понравится эта статья.
Проверить конденсатор без демонтажа его
Давай посмотрим правде в глаза.
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы, измерив его значение емкости с помощью измерителя конденсаторов или мультиметра. Потому что в такой ситуации упомянутые устройства приводят вас к ложным показаниям, и вы не сможете на самом деле сказать, был ли конденсатор, который вы тестировали, действительно плохим или правильным.
Почему?
- Причина в том, что когда конденсатор находится внутри печатной платы, есть много других компонентов, включенных последовательно или параллельно с ним.Таким образом, вы получаете эквивалентное значение, а не фактическое.
- Когда конденсатор находится за пределами платы, иногда неисправный конденсатор может дать вам правильное значение емкости на мультиметре или измерителе конденсатора.
Несомненно, для измерения емкости используются мультиметр или емкостной измеритель. Им просто нельзя доверять, чтобы сказать вам, плохой или хороший конденсатор, вне зависимости от того, находится он снаружи или внутри печатной платы.
Итак, как я могу проверить эту суку?
Остался один вариант, который мы можем использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).
Таким образом, лучшим решением для проверки конденсатора без его фактического демонтажа является использование измерителя ESR или интеллектуального пинцета. Оба работают одинаково и их можно использовать. Но измеритель ESR предпочтительнее для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.
В оставшейся части статьи я подробно расскажу, что это за устройства, и как они проверяют внутрисхемные конденсаторы.
Измеритель СОЭ
Термин ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления реального конденсатора без его отсоединения от цепи.
Это устройство не может измерять емкость и может использоваться только для проверки конденсатора.
У идеального конденсатора значение ESR равно нулю, но на самом деле оно очень-очень меньше; близка к идеальной стоимости. Высокое значение ESR является первым признаком неисправности конденсатора.
Увеличение значения ESR увеличивает как падение напряжения внутри конденсатора, так и нагрев. Тепло, выделяемое в конденсаторах, происходит из-за резистивного нагрева, и это тепло вызывает утечку конденсатора.
Если вы не проверите электролитический конденсатор на значение ESR с помощью измерителя ESR, вы не сможете определить, хороший или плохой конденсатор.
Как проверить конденсатор с помощью измерителя ESR?
Ниже приведены быстрые шаги для проверки любого внутрисхемного конденсатора с помощью измерителя ESR.
- Сначала разрядите проверяемый конденсатор. Это настолько важно и важно, что если вы случайно забудете этот шаг, вы можете в конечном итоге разрушить свой измеритель СОЭ. Для получения дополнительных сведений всегда разряжайте конденсатор перед измерением любого его параметра.
- Разряд конденсатора может производиться закорачивая его ноги любыми доступными способами. Но не просто закорачивайте ножки вместе с проводом с низким сопротивлением, рекомендуется использовать материал с высоким сопротивлением.
- Включите измеритель СОЭ и закоротите его провода, пока на экране не появится 0. Если на экране уже отображается 0 показаний, то закорачивать провода нет необходимости.
- Подключите красный провод измерителя ESR к положительному, а черный провод к отрицательному выводу тестируемого конденсатора.
- Запишите показания ESR-метра.
- Сравните показание с таблицей на корпусе измерителя ESR. Если значение ESR находится в заданном диапазоне, конденсатор исправен и не требует изменений, если нет, то конденсатор плох и нуждается в замене.
- Если тело ESR не дает никакой таблицы, используйте техническое описание конденсатора, чтобы прочитать его значение ESR.
В техническом описании каждого конденсатора указано его значение ESR при частоте 100 кГц и определенное номинальное напряжение.Отклонение от этого значения помогает нам решить, нужно ли заменять конденсатор или нет. Обычно ESR неисправного конденсатора увеличивается.
Более того, хороший конденсатор будет иметь измерения почти как короткое замыкание, а все другие части, подключенные параллельно ему, будут иметь минимальное влияние на конечные измерения. Это функция, которая делает измеритель СОЭ незаменимым инструментом для поиска и устранения неисправностей электронного оборудования.
Итак, если вы действительно хотите обнаружить и исправить неисправные конденсаторы в своих устройствах, вам понадобится приличный измеритель ESR.Хорошее СОЭ можно найти где угодно.
Просто найдите это.
Я рекомендую и мне нравится этот измеритель СОЭ (ссылка на Amazon) . Прелесть этого счетчика в том, что он надежен и продается по очень приемлемой цене. Если вам нравится этот, купите его. Теперь, если вы не хотите платить высокую прибыль на Amazon при покупке счетчика с опцией зажимов ( Amazon продает счетчик с двумя вариантами, один с зажимами и один без зажимов ), вы можете напрямую купить тот же измеритель с двумя типами зажимов (один для SMD и один для компонентов со сквозным отверстием) по низкой цене и бесплатной доставкой от нас. Yaman Electronics (ESR Meter Link). Бесплатная доставка доступна для всех только в этот священный месяц Рамадан.
Просто дополнительный обмен для настоящих любителей электроники и любителей: Если вы любитель или новичок и думаете о создании собственного недорогого измерителя ESR, альтернативного вышеуказанному, то вы должны попробовать этот тестер компонентов (ссылка на продукт) . Вы знаете, это устройство помогает вам идентифицировать компоненты электроники и выдает значения за считанные секунды, включая конденсатор, а также измеряет его емкость и значения ESR.Было бы здорово заставить это устройство работать как измеритель ESR, припаяв зажимы к его плате. Это был бы классный проект для вас. Но эй! покупайте только если вы знаете, что делаете.
Интеллектуальный пинцет
Обычно измеритель ESR может сделать всю работу за вас, но когда дело доходит до SMD-компонентов, он не так удобен, как умный пинцет. Если вы решите использовать ESR, все будет в порядке, но умный пинцет (ссылка на Amazon) — это весело и, на мой взгляд, замечательный инструмент для вашей лаборатории.
Настоящая проблема умных пинцетов в том, что они дорогие. Когда я в последний раз проверял, его цена была около 300 долларов. Но помимо использования его только для проверки конденсаторов, он также может быть отличным портативным измерителем LCR.
Все шаги измерения такие же, как я обсуждал выше для измерителя ESR.
Визуально неисправный конденсатор
Вместо того, чтобы использовать измеритель ESR или пинцет, мы также можем проверить конденсатор, не снимая его, путем общего осмотра.
Плохой электролитический конденсатор проглатывает верхнюю часть, вы видите такой в цепи; просто замените его, не теряя времени на тестирование.
Значение емкости может быть в хорошем диапазоне, когда вы проверяете его вне цепи с помощью мультиметра или емкостного измерителя, но все же оно плохое.
Заключение
Вы просто не можете проверить неисправный конденсатор внутри или снаружи печатной платы с помощью измерителя емкости или мультиметра. Причина в том. оба они могут привести к ложным результатам.
Единственное решение для проверки конденсаторов без демонтажа припайки — это измерение их эквивалентного последовательного сопротивления (ESR).Это значение измеряется измерителем СОЭ.
Измеритель ESR посылает переменный ток частотой 100 кГц в проверяемый конденсатор. Ток создает напряжение на конденсаторе, а затем с помощью математики рассчитывается и отображается на экране ESR.
Вы получаете смещенное значение ESR после сравнения его с диаграммой ESR, у вас плохой конденсатор.
Ну вот и все. Теперь, если такой читатель, как я, сначала прочитает заключение. Вы это читаете. Пора перейти к началу.Но вы читатель, зашедший так далеко. Надеюсь, вам понравилось.
Спасибо и хорошо проводите время.
Другие полезные посты
Как проверить конденсатор без распайки (испытание цепи)
Довольно сложно исследовать любую часть «в цепи», а не просто конденсаторы.
Вы должны иметь некоторое представление об окружающей схеме, чтобы вы могли решить, чего ожидать, когда будете применять свой собственный тест.
Это ведет к другому этапу, если вы используете мультиметр для измерения обеих сторон детали, вы хотите понять, как мультиметр взаимодействует со всей схемой.
В ваших обстоятельствах я бы по крайней мере начал с моего мультиметра в режиме постоянного тока, начал со стороны низкого напряжения этого входа питания и оценил правильные напряжения, обнаруженные как при правильной работе устройства, так и, в частности, когда он находится в режиме отказа.
Работа в компьютерной системе.
Вам вполне может потребоваться осциллограф, если ваш DVM ничего не раскрывает.
Но не делайте этого, если на машину поступает сетевое напряжение и у вас есть некоторая неуверенность в том, какие части находятся под высоким напряжением !!!
Электролитические конденсаторы имеют традицию пренебрегать с течением времени, проверять наличие выпуклых головок или, если они увеличены на поверхности печатной платы, загляните между их ножек, чтобы определить, не вытолкнулась ли герметизирующая крышка — определенное указание на разрушенную крышку.
Кабельные межблочные соединения также являются слабым местом, поэтому убедитесь, что все они полностью вставлены в исходное положение.
Когда где-нибудь есть чип от машины, проверьте, есть ли тактовый сигнал.
Этого достаточно, чтобы рассмотреть сегодня.
Оценка конденсатора без демонтажа его
Позвольте только взглянуть правде в глаза.
Вы просто не можете исследовать ужасный конденсатор внутри или снаружи печатной платы, просто измерив его значение емкости с помощью измерителя конденсаторов или мультиметра.
Потому что в этой ситуации упомянутое устройство приведет вас к ошибочному изучению, а также у вас может не быть возможности действительно сказать, действительно ли проанализированный вами конденсатор был плохим или подходящим.
Почему?
Основная причина в том, что даже когда конденсатор находится внутри печатной платы, существует множество различных элементов, включенных параллельно или последовательно с ним.
Значит, вы получаете равные показания, возможно, не настоящие.
После того, как конденсатор выходит за пределы планки, иногда неисправный конденсатор может дать вам подходящее значение емкости на мультиметре или измерителе конденсатора.
Без сомнения, мультиметр или емкостной измеритель используется для количественного определения емкости.
Им просто нельзя доверять, чтобы вы знали, плохой или исправен конденсатор, вне или внутри печатной платы.
Итак, как мне это проверить?
Остался один вариант, который мы могли использовать для проверки конденсатора, и это измерение его эквивалентного последовательного сопротивления (ESR).
В заключение, идеальный способ проверить конденсатор без его полного демонтажа — использовать измеритель ESR или умный пинцет.
Оба работают одинаково и все в порядке.
Однако измеритель ESR предпочтителен для сквозных конденсаторов, а последний — для проверки конденсаторов SMD.
В оставшейся части руководства я предоставлю дополнительную информацию о том, что будет за упомянутое устройство, и о том, как они проверяют внутрисхемные конденсаторы.
Измеритель СОЭ
Выражение ESR означает эквивалентное последовательное сопротивление, измеряемое в Ом, что означает, что измеритель ESR — это устройство, используемое для определения эквивалентного последовательного сопротивления настоящего конденсатора без его демонтажа с помощью цепи.
Это устройство не может измерять емкость, его можно просто использовать для проверки конденсатора.
У большого конденсатора значение ESR равно нулю, но на самом деле оно намного меньше; рядом с идеальной стоимостью.
Высокое значение ESR является первым признаком разрушения конденсатора.
Увеличение значения ESR увеличивает как падение напряжения в конденсаторе, так и нагрев.
Тепло, выделяемое конденсаторами, происходит из-за тепла, и это тепло вызывает утечку конденсатора.
Если вы не исследуете электролитический конденсатор на значение ESR с помощью измерителя ESR, то у вас может не быть возможности определить, хороший ли конденсатор или плохой.
Как проверить конденсатор с помощью измерителя ESR?
Здесь перечислены быстрые действия по проверке любого внутрисхемного конденсатора с помощью измерителя ESR.
Сначала разрядите конденсатор, указанный ниже.
Это действительно важно и важно, если вы случайно забудете этот шаг, вы можете испортить свой измеритель СОЭ.
Чтобы получить дополнительную информацию, постоянно снимайте конденсатор перед измерением какого-либо его параметра.
Разряд конденсатора может производиться закорачиванием его ножек любыми доступными способами.
Но не просто укорочите ноги кабелем с низким сопротивлением, фантастической практикой будет использование материала с высоким сопротивлением.
Включите измеритель СОЭ, также кратко проинформируйте о его перспективах, пока не получите 0 результатов на его собственном дисплее.
Если в настоящий момент на дисплее отображается 0 исследований, то нет необходимости в кратком изложении результатов.
Подключите красный провод измерителя ESR к полезному выводу, а черный провод к отрицательной клемме проверяемого конденсатора.
Обратите внимание, что показания на измерителе ESR.
Оцените показания, используя таблицу, размещенную на корпусе измерителя ESR.
Если значение ESR находится в указанном диапазоне, конденсатор отличный и не требует изменений, или даже тогда он плохой и требует замены.
Если весь корпус ESR не соответствует обеденному столу, используйте техническое описание этого конденсатора, чтобы увидеть его значение ESR.
В техническом описании каждого конденсатора записано его значение ESR при частоте 100 кГц и номинальном напряжении.
Отклонение от этого отношения помогает нам определить, нужно ли заменять конденсатор или нет.
Обычно ESR плохого конденсатора увеличивается.
Более того, фантастический конденсатор можно было бы измерить почти как короткую цепь, а остальные части, подключенные параллельно с его использованием, будут иметь минимальное влияние на размер конца.
Это качество, которое делает измеритель СОЭ незаменимым прибором для поиска неисправностей электроники.
Следовательно, если вы действительно хотите изучить и исправить неисправные конденсаторы на своих устройствах, вам понадобится соответствующий измеритель ESR.
Вы можете обнаружить приличное СОЭ где угодно.
Интеллектуальный пинцет
Обычно измеритель ESR может выполнять всю работу за вас, но что касается деталей SMD, это не так просто, как мудрый пинцет.
Если вы выберете СОЭ, все будет в порядке, но интеллектуальный пинцет (ссылка на Amazon) — это приятно и, по моему мнению, отличный инструмент для вашей лаборатории.
Настоящая проблема умных пинцетов в том, что они дороги.
В последний раз я проверял его стоимость около 300 долларов.
Но помимо использования его просто для проверки конденсаторов, он также может работать как замечательный портативный измеритель LCR.
Все измерения точно такие же, как я говорил ранее для измерителя ESR.
Визуально видя плохой конденсатор
Вместо того, чтобы использовать измеритель ESR или пинцет, мы могли бы даже протестировать конденсатор, не выпаивая его, путем полного обзора.
Плохой электролитический конденсатор расходуется с другой стороны, вы видите это на схеме: просто замените его, не тратя время на его анализ.
Значение емкости может быть в большом диапазоне, если вы исследуете его вне цепи с помощью мультиметра или емкостного измерителя, но, тем не менее, оно паршивое.
Заключение
Вы просто не можете проверить ужасный конденсатор ни в помещении, ни за пределами печатной платы с помощью измерителя емкости или мультиметра.
Основная причина.
Они могут привести к ложным результатам.
Единственное средство для проверки конденсатора без демонтажа припайки — это измерение его эквивалентного последовательного сопротивления (ESR).
Это значение измеряется измерителем ESR.
Измеритель ESR передает переменный ток частотой 100 кГц на тестируемый конденсатор.
Ток генерирует напряжение на конденсаторе, а затем с помощью математики вычисляется ESR и отображается на мониторе.
Вы получаете смещенное значение ESR после сравнения его с графиком ESR, вы получаете неисправный конденсатор.
Как проверить конденсатор с помощью мультиметра -5 Методы
В сборке печатной платы используется множество электронных компонентов, таких как транзисторы, конденсаторы, интегральные схемы (ИС) и т. Д. Когда по какой-либо причине компоненты выходят из строя, их необходимо заменить на новые для ремонта устройства.
Во время поиска и устранения неисправностей ему необходимо определить неисправный компонент, выполнив измерения с помощью инструментов или визуальной проверки.
В частности, если мы говорим о конденсаторах, потому что они очень чувствительны к скачкам напряжения, а перенапряжение может сгореть и навсегда повредить конденсатор.
В этой статье мы собираемся обсудить, как проверить конденсаторы для выявления дефектов или рабочие условия для ремонта. Как проверить конденсатор с помощью мультиметра или других инструментов для устранения неполадок.
Что такое конденсатор?Конденсатор — это компонент, который накапливает энергию в виде электрического заряда и часто используется в электронных бытовых приборах, таких как двигатели вентиляторов и компрессоры кондиционеров, для выполнения различных функций.
Конденсаторы подразделяются на два типа: электролитические, которые в основном используются в вакуумных и транзисторных источниках питания, и другие, используемые для регулирования постоянного тока, называемые неэлектролитическими конденсаторами.
Как проверить конденсатор переменного тока цифровым мультиметром, а также как проверить конденсатор без мультиметра.
1.Использование цифрового мультиметра с настройкой емкостиЭто наиболее распространенный и самый простой способ проверки конденсаторов с помощью цифрового мультиметра с функцией измерителя емкости.В настоящее время максимальные цифровые мультиметры имеют встроенный измеритель емкости.
Этот метод также применим к крошечным SMD-компонентам. Как проверить конденсатор переменного тока с помощью цифрового мультиметра, вы можете найти ниже пошаговое руководство
- Отсоедините конденсатор от цепи и убедитесь, что конденсатор должен быть полностью разряжен, чтобы получить точное измеренное значение.
- Не уменьшайте емкость конденсатора на его корпусе, которая была упомянута в фарадах, поскольку единицей измерения емкости является фарад, обычно в микрофарадах (мкФ).
- Поверните ручку и выберите настройки «Емкость» на вашем мультиметре.
- Подключите щуп мультиметра к клеммам конденсатора. При соблюдении полярности Соедините положительный вывод с красным, а другой с черным щупом мультиметра.
- Проверьте показания мультиметра на дисплее и запишите фактическое значение на бумаге.
- Сравните оба показания. Если между напечатанным значением и измеренным значением существует большой разрыв или отображается нулевое значение, это означает, что конденсатор неисправен, и замените его на исправный.
Некоторые цифровые мультиметры не имеют функции измерения емкости, поэтому описанный выше метод неприменим, но все же мы можем проверить конденсатор, измерив значение сопротивления.
Ниже приведены пошаговые инструкции по проверке конденсатора мультиметром с сопротивлением
.- Отпаяйте конденсатор, выньте его из цепи и убедитесь, что он полностью разряжен.
- Установите ручку мультиметра в положение Ом (единица сопротивления) или букву омега (Ом), как показано на рис.
- Подключите выводы мультиметра к клеммам конденсатора и снова убедитесь, что красный — на положительном, а черный — на отрицательном.
- Проверьте и запишите начальное значение сопротивления, отображаемое на дисплее. Вскоре после отображения некоторого значения в течение короткого времени он устанавливает отображение бесконечного (открытого) значения.
- Отсоедините датчики и уважайте их снова и снова.Если показаны те же результаты, что и в первый раз, это означает, что конденсатор в порядке.
- И если нет изменений ни в одном из повторных тестов, это означает, что конденсатор неисправен (мертв).
Мы можем проверить конденсатор так же, как цифровые мультиметры, используя другие параметры, такие как ток (A), напряжение (V) и сопротивление (O) и т. Д. В этом разделе мы проверим конденсатор с помощью измерения сопротивления.
Ниже приведены пошаговые инструкции по тестированию конденсатора с помощью простого аналогового мультиметра
.- Повторите тот же шаг еще раз — распаяйте и удалите конденсатор из цепи и убедитесь, что он полностью разряжен.
- Установите ручку мультиметра на значение сопротивления ( Омметр Ом) и выберите более высокий диапазон.
- Поместите красный датчик на положительную клемму, а черный датчик на отрицательную клемму.
- В аналоговых мультиметрах указатель стрелки на дисплее измеряет показания, а положение стрелки определяет результат измерения емкости.
- Если стрелка на дисплее изначально имеет низкое значение, а через некоторое время перемещается в правую сторону и отображает более высокое значение, это означает, что конденсатор в порядке.
- Если стрелка сначала показывает низкое значение и не движется дальше, это указывает на неисправность конденсатора и внутреннее короткое замыкание.
- В третьем сценарии стрелка не показывает никакого значения сопротивления и не перемещается вправо или дальше при любом значении, это означает, что конденсатор разомкнут и неисправен.
Здесь мы узнаем, как проверить конденсатор с помощью простого вольтметра и получить номинальное напряжение конденсатора для проверки на наличие дефектов или правильной идентификации.
Ниже приведены пошаговые инструкции по проверке конденсатора с помощью проверки конденсатора с помощью вольтметра
- Отпаяйте конденсатор и выньте его из цепи после полной разрядки. Вы также можете попробовать убрать одну задержку для измерения.
- Проверьте номинальное напряжение конденсатора за пределами корпуса конденсатора и запишите его на бумаге, чтобы отобразить его на измерителе. Это число, напечатанное на корпусе, за которым следует заглавная буква «V», например 16 В, 50 В или любое другое значение.
- Теперь зарядите конденсатор известным источником напряжения, значение которого меньше номинального. Например, если номинальное напряжение конденсатора составляет 30 В, зарядите его напряжением 9 В и 600 В, зарядите его как минимум 400 В.
- Дайте ему зарядиться в течение нескольких секунд, но убедитесь, что красный зонд соединяет положительный вывод, а черный — для отрицательный терминал.
- Теперь следующий шаг — настроить вольтметр на считывание настроек напряжения постоянного тока и измерение напряжения на заряженном конденсаторе, подключив красный датчик к положительной клемме, а черный — к отрицательной клемме.
- Если измеренное значение близко к номинальному, это означает, что конденсатор исправен. Если разрыв напряжения больше, конденсатор неисправен.
Раньше этот метод был более популярен, потому что не требовал измерительного устройства для проверки. Как проверить конденсатор без мультиметра, здесь будут обсуждаться шаги
Этот метод является рискованным и не рекомендуется профессионалами, но при необходимости проведения необходимо принять меры безопасности.Необходимо надевать защитные перчатки и не прикасаться к проводящим металлическим поверхностям. Ниже приведены пошаговые инструкции по тестированию конденсатора путем замыкания клеммы конденсатора. Как проверить конденсатор, ниже задействованы шаги
- Отсоедините конденсатор де-припоем из монтажной платы и конденсатора должны быть освобождены полностью.
- Подключите красный к положительной клемме и черный к отрицательной клемме источника питания на 1–4 секунды.
- Теперь закоротите конденсаторы металлической проволокой или стержнем, соблюдая меры предосторожности для предотвращения поражения электрическим током.
- Сила искры указывает на зарядную емкость конденсатора. Если искра сильная и продолжительная, конденсатор в хорошем состоянии. В противном случае неисправен конденсатор.
Как проверить конденсатор мультиметром в цепи
Теперь другой вопрос, как проверить конденсатор без распайки или без снятия конденсатора с печатной платы.
Когда конденсатор установлен на печатной плате, невозможно измерить фактическое номинальное значение с помощью мультиметра или измерителя емкости, поскольку на той же печатной плате размещено несколько других компонентов.За счет этого конденсатор приобретает эквивалентное значение, а не реальное.
Теперь вопрос снова тот же: как проверить конденсатор без демонтажа компонента, и если да, то как это возможно.
Да, это возможно при использовании эквивалентного измерителя последовательного сопротивления (ESR) или интеллектуального пинцета, оба работают нормально, но измеритель ESR больше подходит для компонентов со сквозным отверстием, а интеллектуальный пинцет для крошечных компонентов SMD. Как проверить конденсатор без распайки. Для определения неисправного конденсатора используются 3 метода.
Устройство для измерения ESR, используемое для определения эквивалентного последовательного сопротивления конденсатора без демонтажа или снятия его с печатной платы. Это устройство не может измерить емкость, но может проверить конденсатор. Вы можете купить в Интернете (измеритель СОЭ (ссылка на Amazon)
)Ниже приведены шаги, которые необходимо выполнить, чтобы проверить понимание конденсатора схемы.
- Для проверки конденсатора первым и важным шагом является его полная разрядка.Для разряда можно закоротить клемму конденсатора с помощью металлических предметов.
- Включите измеритель СОЭ и соедините красную ножку с положительной клеммой конденсатора, а черную — с отрицательной клеммой. и закоротите его выводы, пока не отобразится нулевое значение.
- Запишите показания измерителя СОЭ и запишите его.
- Теперь сравните отмеченные показания таблицы на корпусе измерителя СОЭ. Если зазор находится в пределах допустимого диапазона, конденсатор исправен и его не нужно менять.
- ESR не дает никакой таблицы, которую вы можете проверить с помощью таблицы данных конденсатора и сравнить ее с измеренным значением.
более удобны и портативны, чтобы выполнять работу более увлекательно и комфортно. Измеритель ESR не более надежен в работе с крошечным SMD-компонентом.
Но недостатком умных пинцетов является то, что они слишком дороги, иначе они работают очень умно и эффективно. (Умный пинцет (ссылка на Amazon)
3. Визуальный осмотр неисправного конденсатораИногда вы можете проверить конденсатор визуально, а не просто с помощью интеллектуального пинцета или измерителя ESR.
Неисправный конденсатор проглатывается с верхней стороны и получает повреждения или обгоревшие пятна на корпусе. Если вы обнаружите такие наблюдения во время осмотра, замените подозрительный конденсатор на новый.
ЗаключениеТеперь вы получите ответ на вопрос, как проверить конденсатор с помощью мультиметра в обоих условиях: снимая с печатной платы или с печатной платы. А также как проверить конденсатор без мультиметра.
Неисправные конденсаторы можно определить с помощью цифровых мультиметров, измерителя ESR, а также с помощью интеллектуального пинцета.как проверить конденсатор мультиметром в цепи ответ — измеритель СОЭ и умный пинцет.
1994-2008 гг.Все права защищены.
Полное или частичное воспроизведение этого документа разрешено, если оба выполняются следующие условия:
1. Это примечание полностью включено в начало.
2. Плата не взимается, кроме расходов на копирование.
ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ Мы не несем ответственности за повреждение оборудования, ваше эго, взорванные детали, перебои в подаче электроэнергии в округе, спонтанно генерируемые мини (или больше) черные дыры, планетарные сбои или травмы, которые могут возникнуть в результате использования этого материала.
Введение
Объем Thie Document
Конденсаторы нельзя считать суперзвездами электронной техники. (кроме, возможно, таких устройств, как ксеноновые вспышки и импульсные лазеры), но больше нравятся помощники и массовки. Однако они играют жизненно важную роль практически в все, что так или иначе использует электроны. Неисправный конденсатор на 2 цента в телевизоре или мониторе может сделать его бесполезным.В этом документе описаны методы тестирования конденсаторов с использованием мультиметр без режима проверки емкости.Информация о сейфе разрядка конденсаторов высокой емкости или высокого напряжения и разряд Схема с визуальной индикацией заряда и полярности тоже включена.
Также есть общая информация о конденсаторах, измерителях емкости и ESR, и другие связанные темы.
Соображения безопасности
Базовая безопасность конденсатора
При этом случайного контакта с конденсаторами на плате логики 3,3 В не происходит. чтобы привести к шокирующему опыту, это не относится ко многим распространенным типам оборудование, включая телевизоры, компьютерные и другие мониторы, микроволновые печи; в импульсные источники питания в некоторых видеомагнитофонах, портативных компьютерах, батареях видеокамер зарядные устройства; электронная вспышка и другие ксеноновые стробоскопы; источники питания для лазеров и многие другие бытовые и промышленные устройства.Если оборудование подключено к сети переменного тока или использует высокое напряжение, специальные меры предосторожности необходимы как для личной безопасности, так и для предотвращения повреждения схемотехника от неосторожных действий. В дополнение к конкретным вопросам безопасности Что касается конденсаторов, обсуждаемых ниже, прочтите, поймите и соблюдайте Рекомендации, представленные в документе: Меры предосторожности при тестировании конденсаторов ВНИМАНИЕ: убедитесь, что конденсатор разряжен! Это и для вашей безопасности и постоянное здоровье вашего мультиметра.
Пара диодов 1N400x, включенных параллельно с противоположной полярностью, может помочь защитить схема цифрового мультиметра. Поскольку цифровой мультиметр обычно не подает более 0,6 В в диапазонах Ом диоды не будут влиять на показания, но будут проводить, если вы случайно зажали глюкометр на заряженной крышке или на выходе блока питания. Они мало что сделают с заряженным конденсатором 10 Ф или сильноточным источником питания, где вы забыли вытащить вилку, но можете сохранить микросхему LSI вашего цифрового мультиметра более скромными лохи.
Этот подход нельзя использовать с типичными аналоговыми ВОМ, потому что они обычно поставьте слишком высокое напряжение в диапазонах Ом.Однако мой 20-летний аналог У VOM есть что-то подобное по всему движению счетчика, что спасло это не раз.
Базовое испытание конденсаторов
Проверка конденсаторов мультиметром
Некоторые цифровые мультиметры имеют режимы проверки конденсаторов. Они достаточно хорошо работают, чтобы определить приблизительный рейтинг мкФ. Однако для большинства приложений они Не проводите испытания при напряжении, близком к нормальному рабочему напряжению, и не проверяйте утечку.Обычно этот тип тестирования требует отсоединения хотя бы одного провода. подозрительного конденсатора из схемы, чтобы получить достаточно точную чтение — или вообще любое чтение. Однако более новые модели могут также достойная работа по тестированию конденсаторов в цепи. Конечно, вся власть должна должны быть удалены, а конденсаторы должны быть разряжены. Обычно это работает до тех пор, пока компоненты, прикрепленные к конденсатору, являются либо полупроводниками (которые не работают при низком испытательном напряжении) или пассивные компоненты с достаточно высокий импеданс, чтобы не перегружать тестер слишком сильно.Чтение может не будет таким точным в схеме, но, вероятно, не приведет к ложному отрицательному результату — назвать конденсатор хорошим — это плохо. Но я не знаю, какие модели лучше в этом плане.ВНИМАНИЕ: Для этого и любых других испытаний конденсаторов большой емкости и / или конденсаторов. в блоке питания, усилителе мощности или аналогичных цепях убедитесь, что конденсатор полностью разряжен, иначе ваш мультиметр может быть поврежден или разрушен!
Однако VOM или цифровой мультиметр без диапазонов емкости могут тесты.
Для маленьких крышек (например, 0,01 мкФ или меньше) все, что вы действительно можете проверить, это шорты или протечка. (Однако на аналоговом мультиметре по шкале высоких сопротивлений вы можете увидеть кратковременное отклонение, когда прикоснетесь щупами к конденсатор или поменять местами. Цифровой мультиметр может вообще не давать никаких указаний.) Любой конденсатор с сопротивлением несколько Ом или меньше — плохой. Большинству следует проверить бесконечно даже в самом высоком диапазоне сопротивления.
Для электролитов в диапазоне мкФ или выше вы должны увидеть заряд конденсата, когда вы используете шкалу высокого сопротивления с правильной полярностью — сопротивление будет увеличиваться, пока не достигнет (почти) бесконечности.Если конденсатор закорочен, тогда он никогда не будет заряжаться. Если он открыт, сопротивление сразу станет бесконечным и не изменится. Если полярность щупы перевернуты, он также не будет заряжаться должным образом — определите полярность вашего измерителя и отметьте его — они не все одинаковы. красный обычно ** отрицательный ** с (аналоговыми) VOM, но ** положительный ** с большинством Цифровые мультиметры, например. Подтвердите с помощью отмеченного диода — низкое значение поперек исправный диод (ВОМ на Ом или цифровой мультиметр на тесте диода) указывает на то, что положительный свинец находится на аноде (треугольник), а отрицательный вывод — на катоде (стержень).
Если сопротивление никогда не становится очень большим, конденсатор негерметичен.
Лучший способ действительно проверить конденсатор — заменить его заведомо исправным. ВОМ или цифровой мультиметр не будет проверять колпачок при нормальных рабочих условиях или при полное номинальное напряжение. Однако это быстрый способ поиска серьезных неисправностей.
Простой способ довольно точно определить емкость — построить осциллятор, использующий таймер 555. Заменить колпачок в цепи, а затем рассчитать значение C по частоте.С несколькими номиналами резисторов это будет работать в довольно широком диапазоне.
В качестве альтернативы, используя источник питания постоянного тока и последовательный резистор, емкость можно рассчитать, измерив время нарастания до 63% источника питания напряжение от T = RC или C = T / R.
Заметки Рэя по тестированию конденсаторов
(Этот раздел от: Раймонд Карлсен ([email protected])Лучшая техника зависит от того, для чего используется колпачок. Полно электролиты считаются «негерметичными», когда они действительно частично открыты и просто не выполняют свою работу.Электролитики, которые на самом деле электрически негерметичные встречаются не так часто. Вы можете вынуть каждый конденсатор из цепь и проверьте ее с помощью средства проверки колпачка или даже VOM, но в цепи тестирование проходит быстрее. Я не люблю хвататься за паяльник, если я не почти уверен, что часть плохая. Время — деньги.
Сначала я провожу визуальный осмотр и смотрю, нет ли электролитов. выпуклые (они-неплотные и обычно нагреваются) или физически протекающие (коррозия вокруг клемм). Вздутие колпачков в импульсном блоке питания являются беспощадной распродажей, но также могут указывать на негерметичные диоды.Далее, если устройство включится, я ищу признаки открытия крышек фильтров … гул полосы в изображение, гул в звуке, мерцающие дисплеи, низкий уровень B +, но ничего не нагревается, и т. д. Вы можете многое сказать, просто наблюдая и делая несколько простые проверки. Попробуйте все элементы управления и переключатели … вы можете получить другие подсказки. Что работает, а что нет?
Если у вас очевидная неисправность … например, уменьшенная вертикальная развертка на телевизоре установить или контролировать, например, чтобы найти колпачок, который начинает открываться, вы можете соединить каждый из них с другим колпачком, по одному и посмотреть, это исправляет проблему.(Опыт научил меня, что плохие электролиты обычно не убивает вертикальную развертку полностью). несколько лет и более, может быть высохло несколько крышек (открыто). Проверь их все.
«Выталкивающие» фильтры (как это раньше называлось) путем объединения исходных с аналогичным значением не является хорошей практикой с твердотельной электроникой. В удар по цепи, находящейся под напряжением, может повредить другие компоненты или потрясите схему, чтобы она снова заработала … на некоторое время. Тогда ты сядешь там, как дурак, и ждите, пока он снова сойдет с ума… минут или недель позже. Для небольших электролитов я использую трюк, обходя каждый из них с помощью небольшой конденсатор от 0,1 до 0,47 мкФ во время работы установки. Если я увижу -любую- изменение производительности, Я ЗНАЮ, что оригинал не выполняет свою работу (сильно обесценившаяся или открытая). Конечно, если вы попадете в колпачки времени, это немного расстроит вертикальный осциллятор … это нормально. Для большего электролиты, подобные тем, которые используются для питания ярма или питающей сети фильтры, единственный эффективный способ проверить их — заменить на такая же или большая емкость.Выключите телевизор, вставьте новый колпачок в цепь и снова включите ее.
Как я уже говорил ранее, протекающие колпачки на самом деле довольно редки … но это действительно случается. Обычно они расстраивают цепь намного больше, чем открытые. Вещи имеют тенденцию быстро нагреваться, если крышка является фильтром в блоке питания. Закороченные танталы и электролиты в источниках питания могут буквально взорваться. Очевидно, что негерметичные колпачки необходимо удалить из контура, чтобы замените их в тестовых целях.
Большинство других типов малогабаритных конденсаторов: майларовые, дисковые керамические, и т.п.довольно прочные. Действительно, редко можно найти их плохими. Такое случается достаточно часто, чтобы технический специалист оставался скромным.
Комментарии Гэри об испытании конденсатора
(От: Гэри Коллинза ([email protected]).)Все, что вам говорит омметр, это закорочена ли крышка или нет, Достаточно большой электролит может сказать вам, открыта ли крышка. Я техник в крупной компании по промышленному контролю в заводском сервисном центре. Мы Считайте любую электролитическую крышку подозрительной, если ее кодовая дата превышает пять лет.У нас есть Fluke 97, и он бесполезен для тестирования схем. Все измеритель, как Fluke 97, может сказать вам, находится ли крышка на пути к открытию от потери электролита или короткого замыкания. На самом деле не все, что вам нужно знать. Несколько других фактов, которые вам необходимо знать, — это проводимость. (внутреннее сопротивление утечки), иногда оно зависит от напряжения. Вы тоже необходимо знать, что такое коэффициент мощности конденсатора в некоторых случаях. Это его способность пройти A.C. Это особенно важно для компьютерного оборудования, которое должно пройти гармоники и шум на землю.Импульсные источники питания, подобные почти все ПК в наши дни используют высокочастотные преобразователи напряжения для регулирования Напряжение. Гармоники и шум, создаваемые этим быстрым переключением, нагревают постоянный ток. крышки фильтра и заставляет их терять влагу из своих несовершенных уплотнений. Этот Эффект приводит к постепенному открытию конденсатора или падению емкостного значения.
Если вы говорите о других типах конденсаторов, вы можете проверить их значение. с измерителем, но я видел крышки, которые хорошо смотрятся с измерителем, но ломаются под напряжением.Существуют специальные измерители крышки, которые проверяют все эти параметры и позволяют вы оцениваете, хороша ли кепка или нет, но лучший тест за исключением этого — заменить колпачок и посмотреть, работает он или нет. Не стесняйтесь спросить, не так ли то, что вы хотели знать.
На самом деле, иногда лучший тест — это использовать осциллограф, чтобы посмотреть, что кап делает в цепи.
А как насчет измерителей емкости?
Простые шкалы емкости на цифровых мультиметрах просто измеряют емкость в мкФ и не проверяйте на утечку, ESR (эквивалентное последовательное сопротивление) или пробой Напряжение.Если результат измерения находится в пределах разумного процента от отмеченное значение (некоторые конденсаторы имеют допуски, которые могут достигать +100% / — 20% или более), то во многих случаях это все, что вам нужно знать. Однако утечка и СОЭ часто меняются на электролитах по мере старения и высохнуть.Многие измерители емкости не проверяют ничего другого, но, вероятно, точнее, чем дешевый цифровой мультиметр для этой цели. Счетчик этого типа будет не гарантирую, что ваш конденсатор соответствует всем спецификациям, но если он проверяет плохо — очень низко — конденсатор плохой.Это предполагает, что тест был проведен при снятом конденсаторе (хотя бы один вывод из цепи — в противном случае другие компоненты, включенные параллельно, могут повлиять на показания.
Чтобы более полно охарактеризовать конденсатор, вам необходимо проверить емкость, утечка, ESR и напряжение пробоя. Другие параметры, такие как индуктивность, не вероятно, изменится на вас.
Тестеры СОЭ, которые отлично подходят для быстрого устранения неполадок, предназначены только для Измерьте эквивалентное последовательное сопротивление, так как это отличный индикатор исправности электролитического конденсатора.Некоторые предлагают только «идти / не идти» индикация того, какой другой фактически отображает показание (обычно между 0,01 и 100 Ом, поэтому их также можно использовать в качестве низкоомных измерителей сопротивления в безиндуктивные цепи). См. Раздел: Что такое СОЭ и Как это можно проверить ?.
Примечание: всегда размещайте щупы на самих выводах конденсатора, если возможный. Любая проводка между вашим измерителем и конденсатором может повлиять на чтения. Хотя в вашем руководстве пользователя может быть указано, что вы можете тестировать конденсаторы в цепи, другие компоненты, подключенные параллельно конденсатору, могут испортить показания — обычно приводящие к индикации короткого замыкания конденсатора или слишком большое значение мкФ.Удаление лучше всего. Отпаял только один из контактов достаточно, если вы можете изолировать его от цепи.
Замена действительно лучший способ ремонта, если у вас нет очень сложный измеритель емкости.
В мартовском выпуске Popular Electronics за 1998 г. измеритель емкости с диапазоном от 1 пФ до 99 мкФ.
В майском выпуске журнала Popular Electronics за 1999 г. Метр », который точно измерит емкость и позволит определение некоторых других характеристик конденсаторов большой емкости — до нескольких сотен тысяч мкФ.Это в основном постоянная времени, основанная на тестер с использованием источника постоянного тока.
Больше о тестировании конденсаторов, чем вы, вероятно, хотели Знать
(От: Джона Уитмора ([email protected]).)Во-первых, вам понадобится источник переменного тока пульсаций. Затем вы настраиваетесь на частоту представляет интерес (обычно 120 Гц для конденсаторов фильтра блока питания выпрямителя) и приложите как переменный ток, так и смещение постоянного напряжения. Измерьте фазовый сдвиг между током и напряжением (для идеального конденсатора это 90 градусов) и измерьте наведенное напряжение (для идеального конденсатора это это I * 2 * pi * f * C).
Возьмите тангенс разности фазового сдвига и 90 градусов. (Этот ‘tan (delta)’ и появляется в спецификации конденсатора …)
Затем отключите переменный ток и увеличьте смещение постоянного тока до номинального значения скачка напряжения; измерить ток утечки. Понизьте смещение постоянного тока до номинального рабочего напряжения; измерить ток утечки.
Увеличьте температуру и повторите измерение емкости, фазового сдвига и рабочего напряжения. измерения при максимальной температуре, на которую рассчитан конденсатор.
Да, это ДЕЙСТВИТЕЛЬНО звучит довольно сложно, но это тест, который производители используют.
Безопасный разряд конденсаторов телевизоров, видеомониторов и микроволновых печей Духовки
Почему это имеет значение
Это важно — для вашей безопасности и для предотвращения повреждения устройства под тестируйте так же, как ваше испытательное оборудование — это большие или высоковольтные конденсаторы быть полностью разряженным до проведения измерений, попытки пайки, или схемотехника никак не тронута.Некоторые из больших конденсаторов фильтра Обычно находящийся в линейном хранилище оборудования потенциально опасен для жизни.Это не означает, что каждый из 250 конденсаторов в вашем телевизоре должен быть разряжается каждый раз, когда вы отключаете питание и хотите провести измерение. Тем не мение, большие конденсаторы основного фильтра и другие конденсаторы в источниках питания следует проверить и разрядить при обнаружении значительного напряжения до касаясь чего-либо — некоторых конденсаторов (например, высокое напряжение ЭЛТ в Телевизор или видеомонитор) сохранит опасный или, по крайней мере, болезненный заряд за дней или дольше!
Работающий телевизор или монитор может полностью разрядить свои крышки, когда он отключен, так как существует значительная нагрузка как на низком, так и на высоком напряжении источники питания.Однако телевизор или монитор, которые кажутся мертвыми, могут содержать заряд. как на низковольтном, так и на высоковольтном питании в течение длительного времени — часы в случае LV, дни или более в случае HV, так как на них может не быть нагрузки запасы.
Конденсаторы главного фильтра в блоке питания низкого напряжения должны иметь резисторы утечки, чтобы разрядить их относительно быстро, но резисторы может потерпеть неудачу. Не полагайся на них. Нет пути разряда для высокое напряжение, сохраненное на емкости ЭЛТ, кроме луча ЭЛТ ток и обратная утечка через высоковольтные выпрямители, которые довольно маленький.В случае старых телевизоров с вакуумными ламповыми высоковольтными выпрямителями, утечка была практически нулевой. Они будут держать заряд почти бесконечно.
(От: Эдвина Винета ([email protected]).)
Некоторые из нас работают в областях, где конденсаторы огромные, необычные, а иногда и то, и другое. Многие считают, что убить, сбить с толку могут только «большие» конденсаторы. через комнату, продырявить в вас дыру или привлечь ваше внимание. Вот пара комментариев:
Когда конденсатор благополучно разряжен, не останавливайтесь на достигнутом.Некоторые конденсаторы, из-за их способности протекать — «мертвы» после безопасной разгрузки с «сливной резистор» подходящего номинала для работы. Используя резистор, который занижена — по мощности — может привести к разрыву цепи дренажа ВО ВРЕМЯ последовательности разряда, ОСТАВЛЯЯ немного энергии! Конденсаторы высокого напряжения, или что еще хуже, конденсаторы с высокой энергией и высоким напряжением требуют правильной мощности И правильное сопротивление для безопасного кровотечения. Также высокое микрофарад низкое напряжение конденсаторы могут испарить отвертку и брызгать металлом вам в глаза.(Адекватный Запас по напряжению также важен для резисторов, используемых в цепях высокого напряжения. — Сэм.)
Определенные типы конденсаторов сделаны из ОЧЕНЬ хороших материалов, которые могут удерживать заряжаем на ГОДЫ! Убирать заряженные конденсаторы этого типа — приглашение к катастрофе!
Конденсаторы с низкой индуктивностью, которые многократно используются в схемах энергетических импульсов. относятся к маслонаполненному типу для высоких энергий / высокого напряжения. Этот тип может дать САМЫЙ неприятный сюрприз ПОСЛЕ того, как его полностью осушили сейфом. техника кровотечения.После того, как конденсатор был удален, НЕМЕДЛЕННО закоротите это, от клеммы к клемме И к внешней металлической банке (если применимо) !!! Эти конденсаторы перезаряжаются из своей внутренней жидкости и ЕЩЕ МОГУТ доставлять смертельны, так как они «восстанавливают» определенное количество энергии! Этот тип конденсатор или любой конденсатор любого высокого (достаточно) значения энергии ДОЛЖЕН быть СЛЕВА. закорочен.
Будьте особенно осторожны с любым конденсатором с оторванным проводом, который сидит в ящике! Иногда эти блоки ломаются во время тестирования и не получают выброшен — но остается обвиненным — чтобы убить или шокировать годы спустя.
Наконец, слово «поражение электрическим током» используется во многих письменных источниках, посвященных высоковольтным устройствам. Это плохо, потому что он был предназначен только для «электрического стула», короче для электро + исполнение.
Метод разряда конденсаторов
Я рекомендую использовать резистор высокой мощности примерно От 5 до 50 Ом / В рабочего напряжения конденсатора. Это не критично — немного более или менее будет нормально, но это повлияет на время, необходимое для полного разрядить конденсатор. Использование токоограничивающего резистора будет предотвратить дуговую сварку, связанную с разрядом отвертки, но иметь достаточно короткую постоянную времени, чтобы конденсатор упал до низкое напряжение в течение нескольких секунд (в зависимости, конечно, от Постоянная времени RC и его исходное напряжение).Затем проверьте с помощью вольтметра, чтобы быть уверенным вдвойне. А еще лучше контролировать при разряде (для ЭЛТ мониторинг не нужен — разряд почти мгновенно даже с резистором с сопротивлением несколько МОм).
Очевидно, убедитесь, что вы хорошо изолированы!
- Для основных конденсаторов в импульсном источнике питания, телевизоре или мониторе, что может быть 400 мкФ при 350 В, подойдет резистор 2 кОм 25 Вт. 2 / R), так как полная энергия, запасенная в конденсатор не такой уж и большой.
- Для ЭЛТ используйте высокую мощность (не для мощности, а для удержания высокой мощности). напряжение, которое может перепрыгнуть через крошечную работу 1/4 Вт) резистор от 1 до 10 МОм, разряженный на массу шасси, подключенную к внешней стороне ЭЛТ — НЕ СИГНАЛЬНОЕ ЗАЗЕМЛЕНИЕ НА ОСНОВНОЙ ПЛАТЕ, так как вы можете повредить чувствительные схема. Постоянная времени очень мала — мс или около того. Однако повторить несколько раз, чтобы убедиться. (Использование закорачивающего зажима может быть неплохой идеей а также во время работы на оборудовании — слишком много историй было болезненных переживаний от зарядки по тем или иным причинам готов кусать при повторном подключении высоковольтного провода.) Обратите внимание: если вы касаетесь небольшая доска на шейке ЭЛТ, вы можете захотеть разрядить HV даже если не отключаете жирный красный провод — фокус и экран (G2) напряжения на этой плате выводятся из ЭЛТ HV.
- Для высоковольтного конденсатора в микроволновой печи используйте 100 кОм 25 Вт.
(или резистор большего размера с зажимом, ведущим к металлическому шасси. Причина использования
большой (большой) резистор опять же не столько рассеивает мощность, сколько
задержка напряжения.Вы же не хотите, чтобы высоковольтное напряжение проходило через терминалы
резистор.
Прикрепите провод заземления к неокрашенному месту на шасси. Используйте разряд щупайте по очереди с каждой стороны конденсатора в течение секунды или двух. Поскольку постоянная времени RC составляет около 0,1 секунды, это должно быстро разрядить заряд и безопасно.
Затем подтвердите с помощью ОТВЕРТКИ С ХОРОШЕЙ ИЗОЛЯЦИЕЙ на конденсаторе. терминалы. Если есть большая искра, вы каким-то образом узнаете, что ваша первоначальная попытка была менее чем полностью успешной.По крайней мере, будет не будет опасности.
НЕ используйте для этого цифровой мультиметр, если у вас нет подходящего высоковольтного пробника. Если разрядка не сработала, можете взорвать все, в том числе сам.
Причины для разрядки конденсаторов использовать резистор, а не отвертку:
- Не повредит отвертки и клеммы конденсатора.
- Не повредит конденсатор (из-за импульса тока).
- Это снизит уровень стресса вашего супруга из-за того, что ему не нужно слышать эти страшные щелчки и треск.
Инструмент для разряда конденсаторов
Подходящий разрядный инструмент для каждого из этих приложений может быть выполнен в виде довольно легко. Схема индикатора разряда конденсатора, описанная ниже могут быть встроены в этот инструмент для визуального отображения полярности и заряда (на самом деле не требуется для ЭЛТ, так как постоянная времени разряда равна практически мгновенно даже с резистором мульти-МОм).Опять же, всегда дважды проверяйте с помощью надежного вольтметра или закорачивая изолированная отвертка!Цепь индикатора разряда конденсатора
Вот предлагаемая схема, которая разряжает главный фильтр высокого качества. конденсаторы в телевизорах, видеомониторах, импульсных источниках питания, СВЧ конденсаторы духовки и другие подобные устройства быстро и безопасно. Эта схема может быть встроен в разгрузочный инструмент, описанный выше (Примечание: другое значение резисторы необходимы для приложений низкого, высокого и сверхвысокого напряжения.)Визуальная индикация заряда и полярности обеспечивается с максимального входа до нескольких вольт.
Общее время разряда составляет примерно:
- LV (блоки питания телевизоров и мониторов, SMPS, электронные фотовспышки) — up до 1000 мкФ, 400 В. Время разряда 1 секунда на 100 мкФ емкости (5RC с R = 2 кОм).
- HV (высоковольтные конденсаторы СВЧ) — до 5000 В, 2 мкФ. Время разряда 0,5 секунды на 1 мкФ емкости (5RC с R = 100 кОм)
- EHV (вторые аноды ЭЛТ) — до 50 000 В, 2 нФ.Время разряда 0,01 секунды на 1 нФ емкости (5RC с R = 1 МОм). Примечание: разряд время настолько короткое, что мигание светодиода можно не заметить.
(Зонд) ------- + --------- + -------- + (Зажим GND)Два набора из 4 диодов (от D1 до D8) будут поддерживать почти постоянное напряжение. падение примерно 2,8-3 В на светодиоде + резистор, пока входной сигнал больше чем около 20 В. Примечание: это означает, что яркость светодиода НЕ индикация значения напряжения на конденсаторе до его падения ниже примерно 20 вольт.Затем яркость будет уменьшаться до тех пор, пока не исчезнет полностью выключен на уровне около 3 вольт.
ВНИМАНИЕ: Всегда проверяйте разряд с помощью вольтметра, прежде чем касаться любого высокого напряжения. конденсаторы напряжения!
Для конкретного случая крышек главного фильтра импульсных источников питания, Телевизоры и мониторы — это быстро и эффективно.
(От: Пола Гроэ ([email protected]).)
Я обнаружил, что лампа «ночник» на 4 Вт лучше, чем простой резистор. так как он дает немедленную визуальную индикацию оставшегося заряда — вплоть до ниже 10 В.
Как только он перестанет светиться, напряжение упадет до несмертельного уровня. Тогда уходи он подключился еще немного и закончил его с помощью `ole отвертка.
Они дешевы и легко доступны. Вы можете сделать дюжину «тестовых ламп» из старая гирлянда рождественских гирлянд ‘C7’ («самое время!»).
Примечание редактора: если задействован удвоитель напряжения (или вход 220 В переменного тока), используйте два такие лампочки в серию.
(От: Дэйва Талкотта ([email protected]).)
Я построил инструмент для разряда конденсаторов. У меня были все детали под рукой, кроме для последовательного резистора, для которого я использовал осевой блок на 2 Вт, так как мощность диссипация не критична. Я решил упаковать его в виде пробной версии для удобство. За исключением последовательного резистора, который находится в цековке, все устанавливается на поверхность и сообщается через МНОГО перфорированных дыры. Кусок термоусадочной трубки удерживает все на месте. Единственный Сложная часть заключалась в том, чтобы сделать два небольших углубления для размещения светодиодов.Наконечник зонда короткий кусок сплошного медного провода, взятый из домашней проводки Ромекса и заземлить до точки.
Устройство проверки напряжения
В то время как мультиметр предназначен для измерения напряжений (и прочего), чекер используется в основном для быстрого определения присутствия напряжения, его полярности и других основных параметров. Одно использование — быстрое, но надежная индикация состояния заряда на БОЛЬШОМ конденсаторе. An, примером простого варианта такого устройства является «конденсаторный разряд». схема индикатора », описанная выше.(От: Яна Филда ([email protected]).)
Версия чекера, которая у меня есть, тоже содержит миниатюрную 12 В. аккумулятор для проверки непрерывности — любое сопротивление менее 22 кОм будет произвести некоторое свечение. Это удобно для быстрой проверки полупроводниковых переходов — в общем, если он дает небольшое свечение, значит, он негерметичен, но транзистор B / E переходы имеют внутреннее напряжение стабилитрона, поэтому обычно наблюдается некоторое свечение. Также диоды с барьером Шоттки дают свечение с обратной утечкой — этого не происходит. означают, что они неисправны, проверьте Vf с помощью проверки диодов на цифровом мультиметре перед биннинг! Любой стабилитрон выше 10-11 В можно быстро проверить на S / C, более низкий Vz будет производить некоторое свечение — снова проверьте Vf перед биннингом.
Эти шашки становится все труднее достать, большинство продавцов компонентов здесь можно использовать только сложные (и дорогие) версии с встроенный измерительный компьютер и ЖК-дисплей — этого не хватит на 5 минут схема обратного хода! В некоторых магазинах автомобильных аксессуаров есть более простая версия. без батареи — всегда проверяйте, что он способен измерять Переменный или постоянный ток от 4 до 380 В перед расставанием с деньгами! Внутренний контур должен содержат светодиоды, резистор на 15 Ом для ограничения максимального импульсного тока при PTC холодный и специальный пленочный термистор PTC.Батарея может быть добавлен кнопкой с передней панели видеомагнитофона — но не обвиняйте меня, если вы убьете сами, потому что вы неправильно изолировали добавленные компоненты! Там есть более сложная безбатарейная версия с 2 светодиодами на передней панели ручка для индикации полярности и ряд светодиодов по длине дескриптор для указания диапазона напряжений. Эта версия содержит 2 специальных PTC и схема гистограммы на дискретных транзисторах — здесь есть место для добавления аккумулятор внутри корпуса. Что касается специального PTC, это единственное место, где я видел их — одна из возможностей, на которую стоит обратить внимание, — это Термистор запуска Siemens PTC SMPSU для микросхем управления TDA4600, обычно это имеет последовательный резистор не менее 270 Ом и с большей вероятностью включится в Европейские телевизоры, но я видел их в ранних дисплеях Matsushita IBM и у некоторых других (возможно, Tandon) термистор PTC всегда синий и выглядит как очень миниатюрная копия бело-пластикового размагничивания PTC Philips термистор.
(ESR) и связанные параметры
Что такое СОЭ и как его проверить?
ESR (эквивалентное последовательное сопротивление) — важный параметр любого конденсатора. Он представляет собой эффективное сопротивление, возникающее в результате комбинации проводка, внутренние соединения, пластины и электролит (в электролитическом конденсатор). ESR влияет на работу настроенных цепей (высокое ESR снижает коэффициент добротности) и может привести к полностью неправильному или нестабильному работа таких устройств, как импульсные источники питания и отклоняющие цепи в телевизорах и мониторах.Как и следовало ожидать, электролитические конденсаторы имеют тенденцию имеют более высокое СОЭ по сравнению с другими типами, даже если они новые. Однако из-за электрохимическая природа электролитического конденсатора, ESR действительно может меняться — и не в лучшую сторону — со временем.При устранении неисправностей электронного оборудования, электролитических конденсаторов, в в частности, может ухудшиться, что приведет к значительному и неприемлемому увеличению в ESR без аналогичного снижения емкости мкФ при измерении на типичном Шкала емкости цифрового мультиметра или даже дешевый измеритель LCR.
Вот несколько веб-сайтов, на которых подробно обсуждается тестирование СОЭ, а некоторые Включите полную информацию о создании собственного измерителя СОЭ:
Доступны коммерческие измерители СОЭ и наборы по цене от 50 до 200 долларов. или больше. Вот пара сайтов, на которые стоит обратить внимание:
Эти устройства обычно могут использоваться для измерения действительно низких сопротивлений неиндуктивные устройства или цепи (они используют переменный ток, поэтому индуктивность приводят к неточным показаниям). Поскольку их самый низкий диапазон составляет не менее 10 раз лучше, чем у типичного цифрового мультиметра (полная шкала 1 Ом — 0.Разрешение 01 Ом), их даже можно использовать для обнаружения закороченных компонентов на печатной плате доски.
Примечание: всегда размещайте щупы на самих выводах конденсатора, если возможный. Любая проводка между вашим измерителем и конденсатором может повлиять на чтения. Хотя обычно это не проблема, компоненты с очень низким сопротивлением в параллельно с конденсатором может привести к ложному отрицательному показанию — конденсатор, который тестирует хорошо, хотя на самом деле его ESR чрезмерно
(От: Ларри Сабо (ac274 @ FreeNet.Carleton.CA).)
Я считаю, что мой измеритель СОЭ неоценим для поиска высоких значений СОЭ, и никогда видел закороченную шапку, которая не взорвалась. Это такое удовольствие застегивать молнию через заглушки в блоке питания и найдите те, у которых есть имел, все не касаясь паяльника.
Были дни, когда мне хотелось иметь LC102 для измерения утечек. возможности, но по моему ограниченному опыту цифра 10% кажется высокой. В LC102 также может похвастаться звонком индуктивности, но вы обязательно заплатите премиум.Сначала я построю штуковину Сэма.
Кстати, я построил свой измеритель СОЭ из комплекта, приобретенного у Dick Smith Electronics. в Австралии: 52,74 австралийского доллара + 25 австралийских долларов за доставку. Прошло около 8 часов собрать, но я задница.
Подробнее о ESR, DF и Q
(От: Майкл Каплан ([email protected]).)Прежде чем я купил свой измеритель СОЭ, я тоже задавался вопросом — что именно он измеряет? Тем не менее, так много наслышавшись о счетчике, я пошел дальше и купил один. Это работает, и это настоящая прибыль.
Недавний вопрос о том, что именно измеряется (DF или Q), вызвал у меня внимание. снова интерес. Думаю, у меня есть ответ — «думай», будучи оперативником. слово. Вот моя интерпретация.
Таким образом, СОЭ действительно связано с фактором рассеяния (DF), но это не то же самое. Измерительный прибор радиопеленгации может не так легко определить неисправный конденсатор, как и измеритель ESR, потому что показания различаются и не являются прямыми, как описано ниже.
Конденсаторы можно рассматривать как имеющие чистую емкость (C) и некоторую чистую емкость. сопротивление (R), два последовательно.Идеальный конденсатор имел бы только C, а не R. Однако есть выводы и пластины, на которых сопротивление и составляют реальную R. Любая R, соединенная последовательно с C, уменьшит способность конденсатора пропускать ток в ответ на изменяющееся приложенное напряжение, как в приложениях фильтрации или изоляции постоянного тока, и он будет рассеивать тепло, которое является расточительным и может привести к отказу компонента. Как и в случае с СОЭ, более низкая DF (или более высокий Q, он инверсный) может быть приравнен к лучшей производительности, все при прочих равных.
Теперь я немного усложняю математику, но использую только основную электронную теорию и формулы, так что я надеюсь, что большинство сможет следовать этому.
DF определяется как Rc / Xc, отношение R в конденсаторе (Rc) к реактивное сопротивление конденсатора (Xc). Чем выше Rc, тем выше DF и «беднее» конденсатор. Все идет нормально.
Реактивное сопротивление (Xc) зависит от частоты. Хс = 1 / (2 * пи * f * C). Итак, как частота повышается, Xc понижается. Теперь вернемся к формуле DF.DF — это функция, обратная Xc. Когда Xc уменьшается, DF увеличивается, и наоборот. Так DF изменяется пропорционально частоте.
Вот пример использования вездесущего электролита 22 мкФ, 16 В, который, кажется, слишком часто быть виноватым во многих импульсных источниках питания.
При 1000 Гц этот конденсатор имеет Xc 7,2 Ом. Если серия Rc только 0,05 Ом (неплохо), тогда пеленгатор 0,0069.
При 50 000 Гц этот же конденсатор имел бы Xc всего 0,14 Ом.На это частота, пеленгатор 0,36, опять хорошо.
Теперь измените Rc с 0,05 до 25 Ом. На частоте 1000 Гц DF = 3,4. При 50 000 Гц, DF = 178.
Итак, мы видим, что пеленг — это функция тестовой частоты. Чем выше частота, тем выше пеленгатор. DF — это мера «качества» конденсатора, но цифра действительна только при частоте проведения теста. (Хороший конденсатор, с идеальным Rc, равным нулю, будет иметь DF, равный нулю, независимо от частоты.)
DF действительно может использоваться для идентификации неисправного конденсатора, но пользователь должен интерпретировать уровень измеренного пеленгации, который указывает на неисправный компонент.Любой «идти / нет» таблицы значений DF будут действительны только при указанной частоте. Как в качестве альтернативы пользователь может рассчитать Rc, сначала измерив как DF, так и C, а затем, зная частоту испытаний, определите, соответствует ли Rc излишний. (Rc = DP * Xc).
Однако система измерения ESR-метра, похоже, не является функцией Xc. Он измеряет напряжение на конденсаторе, возникающее в результате применение очень короткого импульса тока. Этого короткого импульса недостаточно для зарядки конденсатора так, чтобы напряжение, измеряемое на конденсаторе Количество отведений в первую очередь зависит от Rx, который не чувствителен к частоте.А также, с «таблицами» типичного СОЭ (= Rc), которые предоставляются измерителями СОЭ I увидели, дальнейшие вычисления не нужны.
Измеритель ESR не будет надежным с очень маленькими конденсаторами. В этом случае они будут более полно заряжены приложенным током в то время измеритель измеряет напряжение. Даже если Rc является идеальным нулевым сопротивлением, измеритель теперь будет считывать напряжение на конденсаторе и интерпретировать его как очень высокая (возможно, зашкаливающая) СОЭ.Таким образом, его преимущество и основная цель заключаются в тестирование электролитов, которые, как правило, являются конденсаторами большей емкости.
(Примечание: неспособность измерителя ESR проверить конденсаторы малой емкости верна. только если измеритель не различает синфазный и квадратурный напряжения, а это не так. Если бы он чувствовал только синфазное напряжение, которое возникает через Rx (т.е. синфазно с приложенным током), тогда он не будет быть чувствительным к задержанному (минус 90 градусов) напряжению, возникающему на обкладки конденсатора.)
Все тесты, которые я проводил с небольшими конденсаторами (менее 0,001 мкФ), похоже, предполагают, что измеритель СОЭ (Боб Паркер) не различает фазу, а Боб Паркер это подтвердил. Это не большой недостаток. Цель измерителя ESR предназначен для определения вышедших из строя конденсаторов. Это больше случай с электролитами, где диэлектрическая смесь имеет тенденцию к высыханию. Конденсаторы меньшего размера обычно не являются электролитическими и, следовательно, имеют тенденцию быть относительно стабильный. Неисправности последнего (например,грамм. керамика, слюда, полистирол) с большей вероятностью будут открытыми, закороченными или негерметичными, и все это будет обнаружено приборами для измерения емкости или сопротивления.)
(От: Роя Маккаммона ([email protected]).)
Обратите внимание, что «эквивалентное последовательное сопротивление» не обязательно то же самое, что «последовательное сопротивление. сопротивление».
«Последовательное сопротивление» — это просто сопротивление, соединенное последовательно с емкостью. Это то, с чем в большинстве описаний есть дельта, и с большими токами. и частоты, как вы склонны видеть в импульсном источнике питания, «истинная серия сопротивление «- вот что вам нужно знать.
«Эквивалентное последовательное сопротивление» — это сопротивление, которое вам нужно будет разместить последовательно с чистой емкостью, чтобы произвести такие же потери. Это может быть частотно-зависимый. Колпачок с резистором параллельно имеет esr. На одной частоты, вы не можете отличить колпачок от параллельного резистор и колпачок с резистором серии. Например, при 100 Гц 1 мкФ и 10 Ом последовательно имеет реактивное сопротивление 10 + J1591, как и 1 мкФ параллельно с 253K, следовательно, оба имеют ESR 10 Ом.
Вам нужно точно знать, что делает ваш глюкометр. Лучшее, что измерение относятся к вашему использованию.
Простые схемы и схемы измерителя СОЭ
Журналы по электронике опубликовали различные схемы измерителя ESR по всему миру. годы. Уникальность в том, что можно тестировать крышки в прямом эфире. оборудование, хотя я не уверен, какое это большое преимущество:(От: Пита Калфа ([email protected]).)
«В январском номере журнала» Телевидение «за 2003 год есть статья о под напряжением — в цепи электролитического тестера СОЭ.Аккумулятор работает проект Яна Филда основан на компараторе с высоким коэффициентом усиления TL431 с вход изолирован через оптрон. Он предназначен для живого тестирования. я еще не построил, так как я привык немного подождать и почитать о любые проблемы, которые обнаруживают другие ребята, прежде чем я попробую, но в последующих выпусках Я не слышал ни о каких проблемах «.
Вот пара основных схем аналогового измерителя ESR:
Марк Зениер ([email protected]) имеет СОЭ Схема измерителя настолько проста, насколько это возможно.
Тестирование СОЭ без измерителя СОЭ
Хотя описанные ниже методы в принципе применимы к любому конденсатор, они будут наиболее полезны для электролитических типов. Конечно, обязательно соблюдайте полярность и номинальное напряжение конденсатора. во время тестирования! Кроме того, следите за максимальным подаваемым напряжением. к другим компонентам, если вы попытаетесь проверить конденсаторы в цепи. Так должно быть достаточно мал, чтобы полупроводниковые переходы не смещались вперед (несколько макс. десятые доли вольт), а полное сопротивление должно быть таким, чтобы низкое значение резисторы не курят!Лучшее из дешевых, если у вас есть осциллограф, будет: 99 Cent ESR Test Адаптер.
(От: Рона Блэка ([email protected]).)
Недорогой (по стоимости резистора) способ измерения ESR конденсатор предназначен для подачи прямоугольного сигнала через резистор, включенный последовательно с тестируемый конденсатор. Следите за формой волны на конденсаторе, используя осциллограф. При использовании разумной прямоугольной частоты (несколько кГц — не тот, где индуктивность цепи становится проблемой) будет треугольная форма волны с шагом во временах перехода прямоугольной волны.В амплитуда шага будет пропорциональна ESR конденсатора. Откалибруйте вещи, добавив имитирующий резистор небольшого значения ESR в последовательно с конденсатором. Это не должно ничего стоить, если у вас есть генератор прямоугольной волны, или можно построить его дешево.
(От: Гэри К. Хенриксона ([email protected]).)
Воодушевленный дискуссиями о достоинствах тестирования СОЭ, я заказал подлинный измеритель СОЭ. Ожидая его прибытия, большая куча собак была накапливается в моем магазине.
Тем временем, чтобы быстро провести этот ремонт, я построил ESR метр ‘, подключив кабелем выход функционального генератора (50 Ом) ко входу осциллографа и, через тройник к набору измерительных проводов.
При коротком замыкании измерительных проводов на экране осциллографа отображаются только милливольты. Через хороший конденсатор, всего милливольт. Через больной конденсатор много вольт. В дефектные колпачки торчали как больной палец.
Вау, это слишком просто. Мгновенное внутрисхемное (отключение) надежное тестирование электролитики.Хотел бы я подумать об этом 50 лет назад.
Я использовал 100 кГц и 5 В размах. Установив осциллограф на 0,2 В / дел, вы также можете проверить диоды, окруженные низкоомными обмотками трансформатора или индуктора.
(Примечание редактора: чтобы избежать повреждения полупроводников из-за чрезмерное напряжение, используйте сигнал с меньшей амплитудой — скажем, 0,5 В размах — для внутрисхемное тестирование. Это также предотвратит большинство полупроводниковых переходов. от проведения и запутывания ваших показаний.
(Источник: Берт Кристенсен ([email protected]).)
Я читал различные сообщения о средствах проверки СОЭ, но пока не сомневаюсь в их ценности в электронном обслуживании, я думаю, что использование этих устройств добавляет лишний и ИМХО ненужный шаг. Мой метод диагностики возможен Электролитическая неисправность заключается в использовании только прицела. Помня, что электролиты проходят Переменного тока или сигналов через них, осциллограф должен показывать * одинаковую * форму волны на обоих стороны кепки. Если крышка является байпасной крышкой на землю, то форма волны должна быть ровная линия с двух сторон; если это крышка муфты, форма волны должна быть одинаковой с обеих сторон.
Есть несколько исключений, одно из которых — колпачок, который используется для формирования волны в вертикальный контур но таких приложений немного. Большинство электролитов либо муфта или байпас.
Использование метода «моя» область видимости имеет несколько преимуществ. Главный из них — это то, что он тестирует заглушки динамически в цепи, в которой они используются, и с использованием фактических сигналов применительно к ним в реальной жизни. Метод быстрый, потому что вам просто нужно идти от одного к другому (если вы используете метод рассеивания), используя только объем прод.Но, что лучше всего, он органично интегрирует тотальный динамический подход. на обслуживание по собственным сигналам установки или их отсутствие. Если вы отслеживаете видеосхема, вы можете найти открытую крышку, открытый транзистор или неисправную микросхему с использованием того же оборудования.
Я занимаюсь услугами более 40 лет. Большая часть моего бизнеса сегодня оказывает жесткую услугу другим сервисным компаниям.
Но, я должен признать, что иногда я исправляю наборы, просто меняя заглушки, которые вздутый.; -}
(От: Клифтона Т. Шарпа-младшего ([email protected]).)
Я все еще делаю достаточно работы, чтобы однажды сломаться и купить измеритель СОЭ. (Я всегда сдаюсь и балую себя игрушками своего «ремесла»). Пока что, Тем не менее, я использую быстрый метод — осциллограф. Это похоже на это:
- Положительный провод осциллографа. Любой значительный AC? Если нет, переходите к следующей шапке.
- Переменный ток превышает примерно 5% от постоянного тока? Если нет, отметьте это место и перейти к следующей шапке.
- Отрицательный провод осциллографа. AC здесь примерно такой же, как на плюсовом проводе? Если так, перейти к следующей шапке. (Если этот вывод * очевидно * заземлен, пропустите этот шаг.)
- Зачет; стоимость примечания; перемычка примерно на такое же значение при безопасном номинальном напряжении.
(Примечание: убедитесь, что обе крышки разряжены! — Сэм)
Установить на; положительный результат. Значительная разница? Если нет, обратите внимание на это место и перейти к следующей шапке.
- Заменить колпачок. Набор для испытаний. Если не в порядке, переходите к следующей шапке.
(От: Тони Уильямса ([email protected]).)
При измерении параметра компонента всегда лучше всего опереться на измерение. метод к какой-то эмуляции приложения, к которому параметр важен. Особенно это касается силовых компонентов, потому что значение параметра может изменяться в зависимости от условий эксплуатации.это необходимо для магнетиков, в меньшей степени для электролитов, но в любом случае это хорошая привычка.
Держите колпачок заряженным и найдите способ нанести повторяющийся квадрат * ток * подает импульс к нему, ампер или больше каждый раз, в зависимости от ожидаемого СОЭ.
Если у крышки нет ESR, то осциллограф на ее терминалах покажет, что каждый текущий импульс дает красивый плавный треугольник. Если в кепке есть СОЭ тогда каждому треугольнику будет предшествовать небольшая вертикальная ступенька. Если нынешний Известно, что измерение этого шага дает вам значение ESR.Ты можешь перепроверьте точность метода, увидев эффект увеличения «ESR» как R с низким значением подключаются последовательно с крышкой, от 0,01 до 0,1 Ом.
Будьте осторожны с размещением выводов прицела, вы не хотите измерять ИК-капля в проводке.
Если размер каждой ступеньки + треугольника мал по сравнению со стабильным напряжением на колпачок, то известный импульс разряда с постоянным I можно аппроксимировать с помощью не более чем резистор и коммутационный Fet.
(От: Оливер Бец (list_ob @ gmx.де).)
Если вам нужна возможность развязки, вы, возможно, захотите знать только ESR. на последовательной резонансной частоте. Это довольно просто:
Используйте синусоидальный генератор, подключите коаксиальный кабель к его выходу на конце кабель поставить последовательно 47 Ом и подключить резистор к одному концу колпачка, аналогичным образом подключите детектор (47R — кабель — детектор) к тот же свинец. Другой конец крышки (и коаксиальных экранов) к небольшой заземляющей пластине. Детектором может быть вольтметр, осциллограф или анализатор спектра, в зависимости от вашего оборудование и резонансная частота.Анализатор спектра со следящим генератором устраняет необходимость в отдельном генераторе, упрощает измерения и позволяет для измерения даже очень малых емкостей конденсаторов.
Настройтесь на минимальный сигнал на детекторе. С помощью прицела вы также можете проверить фазу shift (спасибо за подсказку, Winfield!), cap должен быть только резистивным (нет сдвиг фазы). Теперь можно легко рассчитать СОЭ.
(От: Джорджа Р. Гонсалеса ([email protected]).)
Увидев все светящиеся рекомендации по ESR-метрам на научныйВ группе новостей electronics.repair я решил разобраться в этом. Быть дешевым типа, я сначала попытался настроить свой собственный измеритель СОЭ, используя вещи, лежащие вокруг магазин: Функциональный генератор на 2 В p-p, синусоидальный сигнал 100 кГц, подключен к тройник BNC, одна сторона тройника идет к некоторым зажимам, другая сторона — к прицел, установленный на 0,1 вольт / см, развертка 10 мкс / см.
Когда зажимы свободно свисают, след прицела почти не виден, так как он увеличивается и уменьшается на 20 см в 10 раз по экрану. С зажимом провода закорочены, я получаю около 0.3 см синусоиды. С резистором 1 Ом через провода зажима я получаю синусоидальную волну около 1 см.
Ставлю ХОРОШИЙ конденсатор на 2 мкФ на выводы зажима, мы видим синус около 0,5 см. волна. Все тесты с различными хорошими электролитиками дают менее 1 см синуса. волна.
Теперь мы можем просто прыгать по печатной плате, перекрывая электролитические соединения, пока мы идти вместе. Хороший электролит будет показывать прогиб не более 1 см. Многие старые с кодами дат 1970-х годов показывают 2 или 3 см. Зондирование вокруг подозреваемая старая печатная плата показала, что 80% крышек дали более 2 см отклонения!
Это не всегда плохо.Вы должны немного рассудить. Если электролит находится в цепи с высоким импедансом, такой как соединение двух напряжений каскадов усилителя, несколько Ом не повредит. Но если это обходной путь конденсатор на линии Vcc, это может быть значительным. Просто поймите, что цепь Может показаться, что он отлично работает даже с крышками с большим сопротивлением СОЭ. Я все равно обычно заменяю эти кепки, так как они будут только кататься под гору. отсюда.
Я не могу сказать вам, сколько времени эта небольшая установка уже сэкономила мне!Раньше мне пришлось отпаивать один вывод конденсатора, воткнуть его в колпачок. мост, крутите циферблаты, пока я не добьюсь подобия баланса, или если это был плохой конденсатор, я бы потратил еще больше времени, пытаясь найти недостающий ноль. Теперь я могу просто проверить колпачки в цепи и пометить плохие большим красный магический маркер для последующей замены. Это быстро и здорово для морального духа.
Этот метод хорошо работает с крышками в диапазоне от 1 до 500 мкФ, со средними или высокая СОЭ. Но ему не хватает мощности, чтобы управлять БОЛЬШИМИ крышками.За это вам понадобится генератор с более низким выходным сопротивлением.
Следующий эксперимент — подключим трансмиссию от старого дохлого ИИП, чтобы понизить выходное сопротивление генератора, чтобы мы могли протестировать эти большие конденсаторы PS. Остаться настроен ….
Кстати, это не значит, что продажи встроенных измерителей СОЭ! Это может даже увеличивайте их, так как как только вы увидите, насколько прекрасна эта техника, вы можете захотеть купить специальный измеритель СОЭ.
Электролитические конденсаторы и специальные типы
Cool Electrolytics — номинальная температура по сравнению с ESR
(От: Йерун Х. Стессен ([email protected]).)Электролитические конденсаторы любят охлаждение! Если есть что-нибудь, что эти конденсаторы терпеть не могут, это тепло. Это заставляет их высыхать.
Электролитические конденсаторы существуют (как минимум) в двух разных температурах. рейтинги: 85 C и 105 C. Последние, очевидно, более устойчивы к температуре. К сожалению, они также, как правило, имеют более высокое ESR, чем их аналоги на 85 ° C.2 * Рассеивание ESR, 105 C type на самом деле может быть * худшим * выбором! Если жар вызван близлежащим горячим радиатор 105 C действительно лучший выбор.
От: Ральф В. М. ([email protected]).)
Хотя кажется правдой, что электролиты 105 C имеют примерно на 50% больше ESR, когда новый, по сравнению с аналогичными электролитами 85 C, IMO, что не имеет значения в схема. Если бы вы (могли) провести долгосрочный эксперимент и установить 85C и 105 C в той же цепи, и измерьте ESR через 1000 часов, я можно было бы ожидать увидеть ESR детали 105 C после старения / использования, теперь будет меньше чем 85 C.
Уход, подача и хранение электролита Конденсаторы
«Я, кажется, припоминаю, что читал (или это старая женская сказка?), Что электролитические служат дольше, если вы время от времени подаваете на них напряжение. Это мне подразумевает, что редко используемые устройства следует включать время от времени, чтобы сделать их дольше, не оставив сидеть на полке. Правда или ложь?»(От: Ральфа В. М. ([email protected]).)
Электролитики имеют срок хранения. Электролитики могут испортиться (т.е., высохнуть) на полку, даже если они ни разу не использовались / не включались.
Технически «несвежий» электролит (более чем через год после того, как он был изготовлены) будут иметь чрезмерную утечку постоянного тока и должны быть должным образом переформированы перед его использованием. На практике я никогда не обнаруживал, что это проблема. 99% время (единственное исключение составляет критическая синхронизация / цепи с прямой связью; очень редко В эти дни). Самое худшее, что я даже заметил, при установке устаревшего электролитическим, заключалась в том, что цепь была немного нестабильной в течение 15 минут, но прояснилось, и после этого все было в порядке и НИКОГДА не «подпрыгнуло».(все ставки отменены, если что-то настолько старое, что у него есть «усы», хотя пробуют).
Сколько лет слишком стар? Я бы предложил это до 5 лет на полке, в практика, не должно быть проблемой. Но 10 лет несвежего МОЖЕТ расстроить вещи немного.
Технически, если вы прочитаете спецификации электролитов, вы обнаружите, что лучшая (то есть самая низкая) утечка постоянного тока не будет, пока она ДЕЙСТВИТЕЛЬНО не будет использована для не менее 10% от общего прогнозируемого срока службы (т. е. 1000 часов при 105 ° C электролитический не достигнет самой низкой утечки постоянного тока, пока он не будет использован в течение 100 часов при 105 ° C (или используется в течение 600 часов при 65 ° C; но это преобразование — другое сказка).
На практике, IMO, огромное количество схемотехнических конструкций / типов схем в настоящее время разработан, имеет достаточно допусков для постоянного тока выше среднего утечка, то есть (в наши дни) чрезмерная / дрейфующая утечка постоянного тока редко является проблемой.
Что касается «тренировочного» редко используемого оборудования; не повредит.
Некоторые вопросы и ответы о выходе из строя конденсатора
Вот вопрос из трех частей, касающихся электролитических конденсаторов. Это автомобильное компьютерное приложение.Проблема: электролитические конденсаторы протекают через некоторое время, вызывая сбой компьютера.
Вопросов:
- Каков физический механизм, который вызывает утечку диэлектрика?
- Есть ли преимущества в повышении номинального напряжения для замены крышки?
- Каковы плюсы и минусы замены тантала?
- Тепло — враг диэлектрика, оно может проходить много высоких частотный ток, на который он не рассчитан. Ток утечки увеличивается экспоненциально с температурой.
- Это снижает возможность разрыва диэлектрического перехода, который, хотя обычно самовосстановление, может стать постоянным после повторных эпизодов.
- Тантал хорошо работает в субмегагерцовом диапазоне. Главная проблема с ними — это когда их диэлектрик разрывается, и он подключается через При подаче достаточного тока он может потреблять фантастическое количество энергии. Обычно это приводит к взрыву конденсатора, который разбрызгивает горячий воздух. расплавленный материал вокруг.Это происходит как выстрел и тантал Пеллета — это пуля.
Комментарии к рейтингам ESR и uF
(От: Азимова ([email protected]).)Я видел очень показательный график в каталоге Sprague относительно долговечные испытания при + 130 ° C, показывающие зависимость СОЭ от времени. Получается, что для 10 мкФ cap, СОЭ фактически падает в течение первых 1500 часов или около того. Интересный Часть состоит в том, что с 1500 часов до 5000 часов стоимость увеличивается примерно вдвое.
На другом графике результаты ограничения 47 мкФ не показывают изменений в СОЭ. в течение всего срока службы.Однако его значение мкФ падает примерно на 2,5%. Электроэнергия 10 мкФ, с другой стороны, показывает небольшое изменение емкости (менее чем 1%).
Если мы экстраполируем эти результаты, мы сможем увидеть общую тенденцию увеличения значения ограничивают потерю емкости с течением времени, но их СОЭ остается довольно значительным постоянные, а меньшие крышки сохраняют свое значение, но их СОЭ увеличивается. со временем. Таким образом, для меня это имеет некоторый смысл в том, почему эти маленькие Так пресловуты крышки 1 мкФ. Комментарии приветствуются …
Номинальное напряжение электролитических конденсаторов по сравнению с Надежность
Вот некоторые из вопросов:«Мне интересно, есть ли проблемы с заменой колпачка с более низким напряжением рейтинг с одним из более высоких оценок.Например, конденсатор 2,2 мкФ 50 В в целом работает нормально в качестве замены крышки 2,2 мкФ 16 В, которая используется в качестве фильтр в цепи 6 или 12 вольт? Я никогда не думал дважды о делает это, но недавно видел обсуждения, в результате которых я задал вопрос будет ли электролитик работать должным образом, если он работает только при небольшая часть его номинального напряжения ».
(От: Ральфа В. М. ([email protected]).)
Я знаю, что многие люди пытаются повысить надежность, увеличивая напряжение замена электролитической.А некоторые компании вроде Sony выпускают модификацию обновляет увеличивая номинальное напряжение. И да, НЕКОТОРЫЕ (но НЕ все) электролитические производители рекомендуют увеличивать номинальное напряжение для повышения надежности ОРГАНИЧЕСКИЕ электролиты. Но на мой взгляд, я бы не стал и не буду.
Чтобы повысить надежность, я сначала модернизирую темп. Или я мог бы выбрать обновление до электролитического низкого ESR. Иногда обстоятельства или логистика препятствуют продолжаются, и я увеличу мкФ до 200% от первоначального, если это приложение для фильтрации или развязки.
По сути, любое увеличение срока службы за счет увеличения номинального напряжения просто происходят из-за большего размера корпуса, позволяющего поддерживать температуру электролитического сердечника возможно, на 5С холоднее, т.е. снижение температуры происходит из-за большего размера корпуса будучи лучшим «радиатором». Я считаю, что увеличение номинального напряжения запасная часть не приведет к увеличению срока службы более чем на 50%; НО за счет большей / худшей утечки постоянного тока (большая утечка постоянного тока может не быть проблемой).
С другой стороны, я читал некоторых производителей компонентов, которые рекомендуют увеличивая мкФ для повышения надежности, и я считаю, что в 2 раза больше оригинального мкФ приведет к улучшению как минимум на 200% (возможно, на 400%) компонентов срок эксплуатации.
И, чтобы предвидеть возможный вопрос, например, «что, если бы вы попытались восстановить Колпачок «1,5X», который работал при более низком напряжении по сравнению с исходным номинальным напряжением, стараясь осторожно и медленно увеличивая приложенное напряжение, чтобы восстановить диэлектрик ». Может, не знаю, никогда не проводил такой эксперимент. Как минимум, потребовалось бы много труда на том, что стоят относительные копейки.
(От Стива Белла ([email protected]).)
По опыту я не вижу проблем с установкой конденсаторов чуть выше. номинальное напряжение.Я держу полный диапазон высокочастотных конденсаторов с низким ESR 105 градусов. я найди, например, когда я заменяю конденсатор 47 мкФ 35 В, он оказывается на 47 мкФ 50 В устройство. Из-за улучшений в производстве конденсаторов замена подогнанный обычно того же размера, возможно, меньше, и обычно имеет меньшую СОЭ, чем у оригинала до отказа ..
Проблемы могут возникнуть, если кто-то установит в критическая область, такая как источник питания переключения режима монитора или видеосхема. Конденсаторы с более высоким напряжением имеют более высокое ESR, что может не подходить для схема.
(От: Роберт Мэйси ([email protected]).)
Электролит с более высоким напряжением имеет более высокое значение esr.
Ток пульсаций будет одинаковым для конденсаторов и более высоких значений esr. большая мощность рассеивается в крышке, высушивая электролит и сокращая жизнь конденсатора много.
Комментарии о старых электролитах и неисправностях Механизмы
Часто (ну, по крайней мере, иногда) возникает вопрос: что делать с что касается электролитических конденсаторов в действительно старом оборудовании.Заменить все?Не вдаваясь в подробное обсуждение (см. Ниже):
- Общего правила нет.
- Оборудование, которое интенсивно использовалось и / или в жаркой среде, будет скорее всего у вас больше проблем с засохшими конденсаторами.
- Я бы просто проверил их и заменил те, которые сильно уменьшились в
uF, имеют более высокое ESR или более высокую утечку после того, как они
реформа. Я как раз работал над 30-летним стробоскопом Minox. Его электролиты, кажется,
быть такими же хорошими, как день, когда они были изготовлены.
(От: Дэвида Шермана ([email protected]).)
Я занимаюсь электроникой не менее 20 лет и изучил электронику. первоначально на старом военном снаряжении времен Второй мировой войны, которое было дешево в время. С тех пор я был дипломированным инженером и профессиональным инженером, а также заядлый сборщик мусора. К действительно старому военному снаряжению дизайнеры часто обращались к многим расходов, чтобы избежать электролитов. Они используют большой двухсекционный дроссель и соедините маслонаполненные бумажные конденсаторы 4 мкФ в блоке питания, а не только в одном большой электролитический, потому что электролиты в то время имели тенденцию «высыхать» и терпят неудачу с возрастом.
В ранней бытовой электронике я часто обнаруживал плохие электролиты. Первое то, что нужно сделать с этим старым материалом, — это посмотреть, не просочилось ли что-нибудь из конденсаторы. Затем включите его. В этот момент нет ничего необычного для что-то простаивающее, чтобы взорвать конденсатор струей пара! потом ты знаешь, какой из них плохой. Сигнальные конденсаторы (связь, эмиттер / катодный байпас, и т. д.) обычно не являются проблемой, потому что на них не так много напряжения как конденсаторы питания.После замены перегоревших конденсаторов (а может, другие, которые выглядят точно так же) снова зажгите эту штуку. Если не работает, проверьте напряжение постоянного тока на всех электролитах. Даже если ты не знаешь что они для, все они должны иметь постоянный ток правильной полярности и обычно в пределах изрядная доля рабочего напряжения, напечатанного на них. Также почувствуйте, если любой горячий. Думаю, вы уловили идею.
Теперь по поводу утилизации старых конденсаторов. Произведенные, может быть, с 1970 года — ДАЛЬШЕ лучше, чем модели 40-х и 50-х годов, и все они заслуживают экономии, если только они из них течет слизь или резиновая заглушка выпирает (вроде как оценивая старую банку с фасолью!).Я никогда не встречал ни одного в приспособлении после 1970 года, чтобы испортиться из хранилища. Если вы хотите быть уверенным, прежде чем устанавливать его в схему, просто подайте номинальное рабочее напряжение от переменного источника питания (справа полярность, конечно) и оставьте на несколько минут. Если вы можете установить ограничение тока на поставку до низкого значения, это предотвратит потенциально липкий взрыв. На самом деле, применение постоянного напряжения — это хорошо. Это называется «формируя» конденсатор, и он создает изолирующую оксидную пленку на алюминиевая фольга.
(От: Джона Попелиша ([email protected]).)
В электролизерах действуют как минимум два различных механизма износа. Один из них — потеря электролита из-за утечки из емкости. Это усугубляется плохие уплотнения и нагрев, поэтому сильно варьируется в зависимости от качества оригинала упаковка и такие вещи, как температура окружающей среды и внутренний нагрев пульсацией Текущий. Если они хранятся в прохладных условиях, они могут долго оставаться влажными. более 10 лет. Второй — разрушение оксидов, и это имеет тепловая и смещающая составляющие.Тепло ускоряет разрушение во время хранение и отсутствие напряжения смещения также ускоряют потерю. Я всегда очень сильно затыкаю старое оборудование в вариак, когда я в первый раз поднимаю его, и больше не применяю чем примерно 70% сетевого напряжения на некоторое время, и проверьте, не нагреваются ли колпачки. Если все выглядит хорошо, я буду медленно поднимать линию до полного напряжения примерно час. Это позволяет частично восстанавливать оксиды без катастрофического термического воздействия. подъем. Мне не приходилось заменять колпачки оптом, если надежность не была очень высокой. важно (где более поздняя неисправность будет намного дороже, чем все конденсаторы).
Электролитические колпачки имеют одну металлическую пластину и одну жидкостную пластину. Диэлектрик между ними находится очень тонкий слой оксида, который образуется на металлической пластине. после протравливания, чтобы сделать его поверхность очень губчатой и пористой. Этот процесс травления увеличивает площадь поверхности металла во много раз (увеличение емкости, пропорциональной площади поверхности), но означает что оксид образуется на очень шероховатой поверхности. Итак, часть оксида обернуты вокруг очень острых краев и точек.Это химически менее стабильная ситуация по сравнению с оксидом, образовавшимся на гладкой поверхности или внутри пустой. То же самое для оксида, образованного по границам зерен металла. Со временем некоторые этого оксида либо отламывается, либо трескается, либо он превращается в атомы металла и кислорода, в результате в изоляционном слое образуются тонкие пятна.
Если крышка хранится со смещением постоянного тока, эти тонкие точки потребляют ток, который высвобождает атомарный кислород из электролита, который повторно окисляет слабые пятна по мере их образования. Если он хранится без приложенного напряжения, все эти пятна нужно реформировать сразу при сдаче шапки в сервис.Это заставляет их протекать чрезмерный ток, выделяют много газа и выделяют тепло. Если утечка достаточно плохо, крышка может самоуничтожиться. Если большие и дорогие кепки, особенно высоковольтные, будут введены в эксплуатацию после продления хранения, их можно более изящно преобразовать, приложив напряжение последовательно с токоограничивающим сопротивлением. И они должны быть проверены на приемлемость ток утечки при номинальном напряжении перед использованием. Я думаю современный Ожидается, что электролитические колпачки прослужат около 10 лет при хранении в прохладном месте.Выше температуры сокращают их жизнь.
Если бы вы собирались реформировать множество похожих крышек, вы могли бы создать регулируемый источник постоянного тока, который имеет как регулировку напряжения, так и ограничение тока, можно установить значения, подходящие для крышек разного размера. Для одного или двух я использовали Variac перед простой нерегулируемой подачей. Дело в том, чтобы позволить течь некоторому формирующему току, но ограничить его до меньшего, чем то, что могло бы вызвать заметный подъем температуры в шапке. Для маленькой трубчатой крышки это на порядка десятой ватта.Разделите это на приложенное напряжение, и вы иметь некоторое представление о необходимом текущем пределе. Для больших бейсболок (размером с кулак) вы может позволить внутреннему рассеиванию приблизиться к ватту. Эти уровни мощности не поднимет температуру крышки, чтобы вы заметили это своим пальцами (хотя они могут вызвать довольно ощутимые горячие точки на небольших области в шапке).
(От: Dbowey)
Насколько я помню, формирование электролитов состоит в том, что ступенчатое во времени напряжение был применен.Таймер был мной, и я увеличил вариакционный выход до мощности. поставка в течение одного-двух дней, начиная с 10% номинального напряжения и в итоге получаем 100%.
(От: Джека Шидта ([email protected]).)
Это хорошо работает. Электролитические крышки NOS всегда должны быть выполнены до к использованию. Часто для старого снаряжения необходимо использовать NOS или использованные колпачки из соображений экономии. или доступность.
Так как я много ремонтирую ламповое оборудование, я построил небольшой изолированный тройник. легко поставить 450V для подачи электролита.Я использовал весь новый майлар колпачки.
Я немного изменил вашу процедуру, установив тройник на рабочий напряжение на крышке без нагрузки, подключив резистор 2 М или около того к колпачок и подключите его к источнику питания.
Для действительно больших (1000 мкФ +) конденсаторов я использую несколько сотен К; ты хочешь приложенный ток должен быть больше, чем средний ток утечки хорошего конденсатора.
Периодически проверяйте напряжение крышки с помощью DVM или VTVM, отключая измерительные щупы сразу после измерения.Если вы используете высокое напряжение, низкое транзистор утечки в качестве эмиттерного повторителя, счетчик можно оставить подключенным всегда. Я рекомендую это.
Часто вы видите, что более старая крышка достигает определенного напряжения, а затем падает. резко, поскольку его диэлектрик разрушается, процесс повторяется. Их следует выбросить, так как диэлектрик явно имеет тонкие пятна и будет выходят из строя.
Некоторые полностью зарядятся через несколько часов [t = RC], некоторые через несколько дней и некоторые никогда не отрываются от земли.Выбросьте те, которые не заряжаются.
Что это за штриховые линии на концах электролиза? Конденсаторы?
Они предназначены для того, чтобы направить мусор в известном направлении, если конденсатор превратиться в бомбу. Действительно :-).Однако взрывающиеся конденсаторы не все ТАК распространены в правильно спроектированных оборудование …. (Ну, кроме программатора СППЗУ, у которого был тантал Электролитик установлен задом наперед на заводе. Через полгода — К-Блам!)
(От: Гэри Вудс (gwoods @ wrgb.com).)
Если вы посмотрите в каталог DigiKey, там подробно описан «Vent Test», в котором электролитический колпачок определенным образом перегружен, и баллончик не выталкивается материал * только * через эту надрезанную часть. Похоже на материал для еще одна городская легенда; как поставщик, который тщательно проверял каждую входящую предохранитель на срабатывание за заданное время при заданной перегрузке. Конечно, люди, пытающиеся * использовать * эти предохранители, не оценили, насколько хорошо они прошли эти тесты!
Вы можете сделать тест на вентиляцию, подключив электролит к своей «суицидальной пуповине». и подключить его к сети 110 В переменного тока.Развлекательный. (Я НЕ рекомендовал вам делать это, и я НЕ несу ответственности!)
Изготовление неполяризованных конденсаторов из нормальных Электролитические
Вы можете найти неполяризованные электролитические конденсаторы в некотором оборудовании — обычно Телевизоры или мониторы, хотя некоторые из них также появляются в видеомагнитофонах и других устройствах. Большой их также можно найти в приложениях для запуска двигателей. Обычно это так необходимо заменить на неполяризованные конденсаторы. Поскольку поляризованные типы как правило, намного дешевле, производитель использовал бы их, если бы возможный.Для небольших конденсаторов — скажем, 1 мкФ или меньше — неэлектролитический тип будет очень полезен. скорее всего будет удовлетворительным, если его размер — они обычно намного больше — не проблема.
Существует несколько подходов к использованию электролитических конденсаторов с нормальной поляризацией. построить неполяризованный тип.
Ничто из этого не является действительно отличным, и получение надлежащей замены могло бы будь лучшим. В нижеследующем обсуждении предполагается, что 1000 мкФ, 25 В нужен неполяризованный конденсатор.
Вот три простых подхода:
- Подключите два электролитических конденсатора удвоенным номиналом мкФ и не менее
равное номинальное напряжение с обратной связью последовательно:
- + + - о ----------) | ----------- | (----------- o 2000 мкФ 2000 мкФ 25 В 25 В
Неважно, какой знак (+ или -) находится вместе, если они совпадают.Повышенная утечка в обратном направлении приведет к увеличению заряда центральный узел так, чтобы колпачки были смещены с соблюдением правильной полярности. Однако иногда обратное напряжение все же будет неизбежно. Для сигнальных цепей, это, вероятно, приемлемо, но используйте с осторожностью в источник питания и приложения высокой мощности.
- Подключите два электролитических конденсатора с удвоенным номиналом мкФ и не менее
равное номинальное напряжение с обратной связью. Чтобы свести к минимуму любые значительные
обратное напряжение на конденсаторах, добавить пару диодов:
+ --- |> | ---- + ---- | Обратите внимание, что изначально источник будет видеть емкость, равную полной емкость (не половина).Но очень быстро две крышки зарядятся до положительные и отрицательные пиковые значения входа через комбинацию через диоды. В установившемся режиме диоды вообще не будут проводить и поэтому будет так, как если бы их не было в цепи.
Однако при переходных процессах в цепи будет некоторая нелинейность. условия (и из-за утечки, которая приведет к разрядке конденсаторов) так что используйте с осторожностью. Диоды должны пропускать пиковый ток. без повреждений.
- Подключите последовательно два конденсатора емкостью в два раза больше мкФ и смещайте центр.
точка от положительного или отрицательного источника постоянного тока выше максимального сигнала
ожидается для схемы:
+12 В о | / \ 1K / - + | + - о ----------) | ----- + ----- | (----------- o 2000 мкФ 2000 мкФ 35 В 35 В
Сопротивление резистора должно быть высоким по сравнению с сопротивлением привода. цепь, но низкая по сравнению с утечкой конденсаторов.Конечно, номинальное напряжение конденсаторов должно быть больше, чем смещение плюс пиковое значение сигнала в обратном направлении.
О танталовых конденсаторах
(От: Ральфа В. М. ([email protected]).)
Во-первых, вам необходимо идентифицировать / указать конкретный тантал, который вы говоря о. Бывают как ТВЕРДЫЙ, так и ОРГАНИЧЕСКИЙ тантал. Если это знакомый стиль эпоксидной смолы слезоточивый корпус, это прочная разновидность; любой другой пакет может быть твердым или органическим (и это НЕ одно и то же).
Да, твердые танталы могут взорваться. Но это либо редкость в случае изготовленное оборудование в исходном состоянии ИЛИ модифицированное кем-то, схема и выбрана / выбрана неправильно. Твердые танталы ОЧЕНЬ непереносимы скачков / скачков; НО органические электролиты толерантны к скачкам / скачкам напряжения; (НО органические электролиты НЕ являются прямой заменой твердого тантала !!!).
Твердые танталы ОЧЕНЬ стабильны в отношении:
- Значение мкФ.
- Чрезвычайно стабильная утечка постоянного тока.Обратите внимание, я НЕ говорил о низкой утечке; они имеют средние утечки постоянного тока по сравнению с современными электролитиками.
Твердые танталы также имеют ОЧЕНЬ низкий импеданс на низких частотах; (органический тантала нет).
Утверждение, что твердые танталы имеют меньшие утечки постоянного тока по сравнению с Органические электролиты стали употребляться неправильно, т. е. 20 лет назад в основном быть правдой, но не сегодня. В настоящее время утечки постоянного тока в Solid тантал похож на средний органический электролит; есть некоторые органических электролитов, которые имеют примерно на 50% МЕНЬШЕ утечки постоянного тока (после допуска от 2 до 5 минут «разогрева»), (НО твердые танталы имеют ОЧЕНЬ стабильный постоянный ток протечки, и НЕТ «прогрева»).
Суперкапс и суперкапс
(От: Николаса Бодли ([email protected]).)В течение последних 2 недель или около того (текущая дата: 11 августа 1997 г.), вероятно под влиянием статьи в EE Times, я заставил Excite искать «суперконденсаторы». и «ультраконденсаторы». Я обнаружил, что когда вы используете «More Like This» option ‘достаточно, он дает те же результаты.
Во всяком случае:
То, что я обнаружил, было захватывающим для старика. Конденсаторная технология — это теперь в точке, где он может выполнять выравнивание нагрузки, чтобы продлить срок службы аккумуляторы для электромобилей.Высокая мощность, необходимая для разгона электромобиля может быть обеспечен ультраконденсатором. Ультракап. также может поглощать энергию для рекуперативного торможения, чтобы ограничить в противном случае очень высокую зарядку ток на аккумулятор.
Попутно был отмечен экспериментальный электромобиль Mazda, в котором используются колпачки. это способ; его зовут, хотите верьте, хотите нет, Бонго Фриэнди. Без шуток. (У меня есть коллекция из 7 или 8 других таких имен …)
Упоминались конденсаторы на 1800 фарад на 2.3В. Ага, мы сейчас находимся в эра килофарадов, ребята! Конденсаторная батарея состояла всего из 80, в группы из двух человек параллельно, 40 групп последовательно.Общее напряжение 92.
Другие характеристики отмечены попутно:
Ультракэпс. сейчас находятся в диапазоне от 0,1 до 8 кВтч (киловатт-час).
Некоторые из них сделаны из углеродных аэрогелей (это не новость …)
Maxwell имеет 8-элементный блок, рассчитанный на 24 В, биполярный, 4,5 Втч / кг. Тоже самое у компании также есть монополярный элемент (монополярный?) номиналом 2300 F, 3 В; 5 Втч / кг. Он может обеспечить более 100 А!
Некоторые ультраконденсаторы, по-видимому (почти наверняка) не используют электрические двойные послойная технология.3; отлично работает при температурах до -30 C, и может управлять мощностью более 7кВт / кг. Саморазряд через недели.
Я нашел эту информацию. совершенно захватывающе. Когда я получаю достойную работу, я приобретаю себе 100F Elna.
Кстати, вы слышали, что цифровой мультиметр использует суперконденсатор. для власти? я думаю цифры таковы, что 3-х минутная зарядка проработает 3 часа.
Что это за конденсаторы X и Y в линии переменного тока? Вход?
«Недавно я заметил, что в конденсаторах используются так называемые« X »и« Y »конденсаторы. входная силовая часть блоков питания.Когда я изучил это дальше, Я обнаружил, что есть разные степени X и Y — X1, X2, Y1, Y2 и т. Д. Очевидно, это связано с кодексом или регулирующим органом.
(От: Пола Касли ([email protected]).)- Каково определение или использование различных классов (X1, X2 и т. Д.)
- Где регулирующие органы говорят, что мы должны использовать различные типы.
- Что является хорошей методикой проектирования для фильтрации шума SMPS с использованием эти устройства и др. »
Крышки класса X предназначены для повсеместного использования.Бейсболки класса Y предназначены для линия на защитное заземление. Эти колпачки сконструированы так, чтобы «самоочищаться». То есть, если в устройстве возникает короткое замыкание, энергия, рассеиваемая в короткое «сдувает» короткое. Типичный линейный входной фильтр будет иметь один колпачок класса X от линии к нейтрали или от линии к линии и Цоколь класса Y от каждой линии до земли или от линии до земли и нейтрали К земле, приземляться. Никакие регулирующие органы не требуют их использования. Однако вы можете обнаружите, что они вам нужны, чтобы соответствовать нормам EMI / EMC и соответствовать вашим собственным Требования к восприимчивости к электромагнитным помехам / электромагнитной совместимости.UL, CSA, VDE и другие меры безопасности агентства потребуют, чтобы вы использовали соответствующие компоненты для обеспечения безопасности стандартов (что всегда является хорошей практикой) и получить разрешение на используйте их маркировку безопасности. Что касается точных различий между типов (X1, X2, Y1, Y2), я предлагаю вам связаться с производителями крышек, такими как Vishay-Roederstein за их каталоги и прикладные книги.
Конденсаторы для фотовспышки
Они встречаются не только в электронных вспышках и стробоскопах, но и в импульсных. источники питания для лазеров и другие приложения для быстрого разряда.Они созданы для быстрой разрядки с минимальными потерями и без самоуничтожения. Таким образом, ESR и индуктивность очень низкие, а внутренняя структура настроена на выдерживают очень высокие пиковые токи (сотни или тысячи ампер).Обычными из фотовспышек являются электролитические конденсаторы, но в более специализированных приложениях могут быть другие типы, которые могут иметь много меньшая длительность импульса.
Обратите внимание, что конденсаторы для фотовспышки могут иметь посредственные температурные характеристики, например 55 ° C вместо 70-105 ° C, которые обычно встречаются у потребителей электронное оборудование.Таким образом, они могут не подходить для использования в качестве службы. Замена деталей для общей электроники даже при мкФ и напряжении рейтинги совпадают.
- Подключите два электролитических конденсатора удвоенным номиналом мкФ и не менее
равное номинальное напряжение с обратной связью последовательно:
- Вернуться к содержанию тестирования конденсаторов.
— конец V2.44 —
Замена отсутствующего конденсатора — Обмен электротехнического стека
Замена отсутствующего конденсатора — Обмен электротехнического стекаСеть обмена стеками
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 556 раз
\ $ \ begingroup \ $Мне удалось сломать керамический конденсатор 1206 smd на материнской плате, над которой я работаю, я новичок в электронике, так что будьте осторожны! Как бы то ни было, этот проклятый конденсатор исчез в том месте, где, кажется, пропали все недостающие крошечные компоненты! Я не могу найти схемы платы, чтобы увидеть, что мне нужно заменить.Хорошие новости: у меня две платы, мне нужны обе, поэтому нет, я не могу их поменять. Итак, как мне проверить конденсатор, чтобы заменить отсутствующий, если маркировки нет вообще? У меня есть только мультиметр, и это базовый AstroAI AM33D. Любые советы были бы очень полезны! Прикрепил фото извиняюсь за качество детали маленькие.
Создан 11 июл.
Ясень3204Зола32046511 серебряный знак33 бронзовых знака
\ $ \ endgroup \ $ 4 \ $ \ begingroup \ $Это всего 805 случаев.
Если бы я проектировал это для лучшего времени нарастания тока для нагрузки от 1 МГц до 1 ГГц только с 4 керамическими конденсаторами, мои рассуждения следовали бы.
Причина, по которой 1 находится дальше, состоит в том, чтобы добавить изоляцию на несколько нГн с 3 меньшими конденсаторами 0,01 мкФ, которые имеют более низкое ESR и более высокую частотную характеристику.
Изолированный будет высококачественным конденсатором X7R 0,1 мкФ, что связано с физикой и геометрией. Рядом с нагрузкой <100 пФ будут / могут быть другие (NPO)
Круглая банка — это электронная крышка.
Создан 11 июл.
Тони Стюарт EE75 Тони Стюарт EE7510k33 золотых знака40 серебряных знаков148148 бронзовых знаков
\ $ \ endgroup \ $ 1 \ $ \ begingroup \ $Поскольку конденсаторы обычно не маркируются, единственный способ узнать значение — измерить их.
Вам понадобится измеритель, который может измерять емкость 1 , снять соответствующий конденсатор с хорошей платы, измерить его значение, а затем купить замену того же размера и стоимости. Припаяйте оба конденсатора обратно к соответствующим платам.
Кстати, даже без шкалы для измерения, для меня это больше похоже на 0805, чем на 1206.
1 На рынке есть множество дешевых комплектов тестеров LCR, которые могут это сделать.
Создан 11 июл.
Дэйв Твид, Дэйв Твид158k1515 золотых знаков208208 серебряных знаков363363 бронзовых знака
\ $ \ endgroup \ $ 1Не тот ответ, который вы ищете? Просмотрите другие вопросы с метками конденсатор или задайте свой вопрос.
Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Измерительные конденсаторы SMD на Arduino: 6 шагов
Поскольку этот проект прост и полезен, я хотел сделать из него печатную плату, просто чтобы упростить настройку моего измерителя позже, без необходимости запоминать схемы, поиск резисторов и все подключаем.В итоге я сделал два, но не нашел их более удобными или безошибочными, чем установка на макетной плате. Паразитная емкость меньше, но она все еще присутствует, потому что генерируется прямо на плате Arduino. Тем не менее, если вы никогда не делали печатных плат и хотите, чтобы проект был легким для начала, этот вариант подойдет.
Если вы используете Arduino Uno или любую другую большую плату с гнездовыми разъемами, вы можете увидеть, что у нее есть зазор между контактами 7 и 8. Вы можете либо продублировать этот зазор в конструкции вашей печатной платы, что сделает получившуюся плату несовместимой с макетной платой или используйте разные выводы для резисторов Rc и Rd — вот почему на приведенном выше эскизе есть возможность переключения с выводов 9/10 на 3/4.Обратите внимание, что использование контактов 3 и 4 (и 5, если на то пошло) по какой-то причине генерирует довольно большую «паразитную емкость». Кажется, что настройка все еще работает, и результаты все еще хорошие, но я не тестировал эту настройку много.
Хорошо, вот макеты платы для более простой конструкции с одним RC и последней с двумя RC и переключателями. Меньший — 15х10 мм, больший — 23х10 мм. Для изготовления простой самодельной печатной платы потребуются:
— односторонняя медная плата;
— паяльник;
— маленькая дрель — я использую дешевый мотор 5V с маленьким сверлильным патроном;
— маркер малярный 0,8мм типа Edding 780;
— резисторы SMD и штекерные разъемы;
— 3% перекись водорода из аптеки, лимонная кислота из вашей кухни, соль.
Отрежьте доску нужного вам размера, тщательно очистите (наждачная бумага и средство для мытья посуды), разметьте и просверлите отверстия. Нарисуйте контур маркером краски. Налейте перекись водорода в стеклянный или пластиковый контейнер подходящего размера (я использовал рюмку), добавьте лимонную кислоту (для этого размера половину чайной ложки) и щепотку соли. Тщательно перемешайте. В полученный раствор положить доску и подождать полчаса, периодически удаляя кисточкой или пером появляющиеся пузыри. Как только утилизированная медь растает, достаньте плату, удалите краску уайт-спиритом и просушите.Проверьте все соединения мультиметром, если какие-то следы закорочены, чего быть не должно — найдите проблему и удалите ее скальпелем. Нанесите оловянное покрытие, разместите и припаяйте все. Обратите внимание, что для платы большего размера вам необходимо соединить два отверстия проводом на задней стороне (синий на схемах).
Прокладки конденсатора можно просто покрыть большим количеством олова, или вы можете разместить там какое-нибудь удерживающее приспособление. Я не нашел здесь идеального решения, так что можете экспериментировать.
Полученную плату можно подключить напрямую к Arduino Uno или подключить к Nano на макетной плате.Если ваша печатная плата имеет ширину 10 мм, вы можете подключить ее к макетной плате двумя способами, используя контакты 3-4 или 9-10 для Rc (см. Рисунки выше).
Испытательные инструменты, которые помогают при ремонте печатных плат
Базовые инструменты, такие как цифровые мультиметры и осциллографы, могут быть единственным испытательным оборудованием, необходимым для небольшого ремонта печатных плат, но стоит знать, когда автоматизированные системы будут лучшим выбором. Алан Лоун | Saelig Co. Inc.
Печатные платы сегодня ремонтировать сложнее, чем несколько лет назад.Производственные ошибки и отказы компонентов в процессе эксплуатации стали реальностью. Платы будут изготовлены с ошибками, детали будут неправильно припаяны, а компоненты выйдут из строя. Хотя пайки и замены компонентов может быть достаточно для простых исправлений, для некоторых ремонтов может потребоваться более сложный подход для поиска причин неисправности. Ремонт сборок печатных плат может показаться пугающим, но методичный подход может помочь быстро найти и исправить проблемы.
Лучше сначала воздержаться от включения поврежденной печатной платы.Если, например, проблема заключается в простом перегоревшем предохранителе, необходимо определить причину проблемы, а не просто заменять предохранитель (на больший!) Короткие замыкания или перегрузки обычно оставляют контрольные признаки.
Если на печатную плату было нанесено конформное покрытие для защиты от влаги и пыли, это покрытие необходимо удалить (по крайней мере, в нескольких критических контрольных точках), прежде чем можно будет начать диагностику неисправностей. Конформные покрытия можно удалить растворителями, отслаиванием или струйной очисткой, но
Разрабатывается новая технология, при которой покрытие можно проткнуть острыми испытательными штырями.разрабатывается новая технология, при которой покрытие можно проткнуть острыми испытательными штырями.
Перед тем, как приступить к ремонту, соберите все принципиальные схемы и соответствующее испытательное оборудование, такое как цифровой мультиметр, ручные инструменты для пайки / демонтажа, осциллограф и т. Д. — желательно на стенде без статического электричества. Еще один полезный «инструмент» — это пользовательский отчет о том, как произошел сбой или какая ошибка была обнаружена. Самым универсальным инструментом является мультиметр, но в зависимости от сложности печатной платы для исследования работы схемы также могут потребоваться измеритель LCR, осциллограф, источник питания и логический анализатор.ВЧ схемам могут потребоваться более сложные инструменты, такие как анализатор спектра для проверки частот и уровней сигнала.
Микроскопы могут помочь найти плохие паяные соединения или мосты. Хорошие паяные соединения всегда выглядят гладкими, яркими и гладкими. Тусклая поверхность может указывать на дефектный сустав.Устранение неисправностей также намного проще, если доступна заведомо исправная плата, позволяющая проводить визуальное сравнение и сравнение сигналов. Отсутствие сравнительной платы или документации усложняет задачу.
Визуальный контроль
Проверьте, нет ли ослабленных разъемов или компонентов в гнездах, которые часто могут смещаться при транспортировке.Ищите сгоревшие или поврежденные детали или перемычки, вызывающие короткое замыкание сигнальных или силовых линий. Вот где чрезвычайно полезен мощный цифровой микроскоп! Визуальный осмотр — важный первый шаг в поиске и устранении неисправностей. Компоненты или детали, такие как трансформаторы, силовые выходные транзисторы, резисторы и конденсаторы, на которых видны следы перегорания, могут быть легко обнаружены путем наблюдения. По видимым ожогам и коричневым пятнам (и ужасному запаху) можно определить перегретые компоненты. Но почему они перегрелись? Плохое паяное соединение или перемычка — еще один частый предмет, обнаруживаемый при визуальном осмотре.Хорошие паяные соединения всегда выглядят гладкими, яркими и гладкими. Тусклая поверхность может указывать на дефектный сустав. Есть ли паяные перемычки между дорожками? Обратные или неправильные компоненты?
Быстрый способ найти короткую неисправность — это сравнить тепловые изображения заведомо «исправной платы» с тестируемым устройством. Значительные перепады температур указывают на место неисправности. Используя этот подход, можно визуально осмотреть целые сложные доски.Короткое замыкание также может быть трудным для устранения неисправностей.Тест на доске может показать, что короткое замыкание существует, но часто его местонахождение неуловимо. Техники могут потратить много времени на поиск единственного короткого замыкания, особенно межслойного короткого замыкания. Кратковременное включение платы при наблюдении под тепловизионной (ИК) камерой может показать место, которое нагревается сильнее, чем окружающие компоненты. Подайте на шину напряжение меньше требуемого 3,3 В или 5,0 В и ограничьте также ток источника питания. Начните с низких вольт / ампер и медленно увеличивайте оба.Печатные платы могут иметь ограниченный срок службы из-за плохой конструкции из-за чрезмерного нагрева компонентов.
Быстрый способ найти короткую неисправность — это сравнить тепловые изображения заведомо «исправной платы» с тестируемым устройством. Значительные перепады температур указывают на место неисправности. Используя этот подход, можно бесконтактно проверять целые сложные платы. С помощью этого метода можно быстро обнаружить распространенные дефекты, такие как замыкание на землю и неисправные компоненты. Изменение или иное цветовое представление изображения может указывать на перегрев в паяном соединении, на дорожке цепи или на неисправной части платы. Осмотрите конденсаторы.Если утечки, трещины, вздутия или другие признаки износа очевидны, замените его. Конденсаторы имеют ограниченный срок службы и часто являются причиной неисправности.
Ищите сломанные выводы на компонентах. У некоторых устройств есть крошечные провода, которые могут легко оборваться на печатной плате. Ножки ИС могут погнуться во время сборки. Ищите трещины на печатной плате, ведущие к обрыву цепей или сломанным компонентам.
Вы можете тщательно протестировать каждый резистор, конденсатор, диод, транзистор, катушку индуктивности, полевой МОП-транзистор, светодиод и дискретный активный компонент с помощью мультиметра или измерителя LCR, но это не эффективный способ отладки.
Если на плату можно подавать питание, цифровой мультиметр может проверять напряжения шин на ИС, выходы регуляторов напряжения и очевидные сигналы, такие как часы и связь ввода / вывода. Осциллограф можно использовать для проверки формы волны напряжения на плате с питанием. Для проверки наличия выхода сигнала WiFi может пригодиться даже мобильный телефон.
Негерметичные конденсаторы можно найти с помощью настройки сопротивления цифрового мультиметра. Установите измеритель на считывание в диапазоне высоких сопротивлений и прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к положительному, а черный к отрицательному.Измеритель должен начинаться с нуля, а затем медленно приближаться к бесконечности. Нарастание скорости будет медленным при больших значениях емкости. Примечание: исправный конденсатор сохраняет электрический заряд и может оставаться под напряжением после отключения питания. Перед измерением уровня электролитов отключите питание и осторожно разрядите конденсатор, подключив резистор между выводами. Когда измеритель установлен в сопротивление, между положительным и отрицательным выводами будет передаваться постоянный ток. Открытый колпачок покажет открытый, закороченный покажет сопротивление, близкое к нулю.
Проверка элементов интерфейса HMI, таких как сенсорные панели и переключатели, может выявить функциональные проблемы, вызванные проблемами соединения или компонентов.
Требуется некоторое понимание схемы, чтобы интерпретировать результаты зондирования сигнала с помощью цифрового мультиметра или осциллографа. Испытания постоянного напряжения начинаются с заземления пробников. Проверяя ИС, начните с проверки вывода напряжения питания.
Прикосновение к низковольтным частям цепи может изменить импеданс цепи, что может изменить поведение системы.Этот метод, используемый вместе с осциллографом, может помочь определить места, где требуется дополнительная емкость, например, для устранения нежелательных колебаний.
Большинство ИС можно идентифицировать по их маркировке, и многие из них могут быть протестированы в эксплуатации на соответствие опубликованным спецификациям с использованием осциллографов и логических анализаторов. Сравнение поведения ИС с заведомо исправным — это быстрый способ определить аномальное поведение.
Периодические сбои — наиболее сложный и трудоемкий аспект процесса устранения неполадок.Обычные нерегулярные неисправности могут быть вызваны перегревом или ухудшением характеристик компонентов, плохой пайкой и ослабленными соединениями. Длительная память в осциллографе может быть полезна для увеличения записи сигнала с целью обнаружения редких событий. Применение спрея для морозильной камеры в правильном месте иногда может усугубить и выявить временные проблемы.
Если питание платы невозможно безопасно включить, можно провести тестирование при отключении питания, такое как V / I и тестирование подписи.
Тестирование напряжения / тока при отключенном питании
ТестированиеV / I (также известное как анализ аналоговой сигнатуры) — это метод, который отлично подходит для поиска неисправностей на печатных платах и идеален, когда диаграммы и документация минимальны.Аналоговый сигнатурный анализ получил широкое распространение в серии приборов Huntron Tracker. Его можно использовать для поиска и устранения неисправностей электронных компонентов в сборках печатных плат. Его можно считать жизненно важным диагностическим инструментом для задач ремонта печатных плат, поскольку он подходит для «мертвых» плат, которые нельзя безопасно включить.
Короткие замыкания образуют вертикальную линию, потому что ток при любом приложенном напряжении теоретически может быть бесконечным; разомкнутые цепи генерируют горизонтальную линию, потому что ток всегда равен нулю независимо от приложенного напряжения.Чистые резисторы будут образовывать диагональную линию с наклоном, пропорциональным сопротивлению. Чем выше значение сопротивления, тем ближе линия к горизонтали (обрыв цепи). Разница в наклоне кривой при сравнении исправной и подозрительной плат указывает на разницу в значениях резисторов на двух платах. Конденсаторы малой емкости создают плоские, горизонтальные, эллиптические сигнатуры; конденсаторы с относительно высокими значениями дают плоские, вертикальные, эллиптические сигнатуры. Оптимальная сигнатура — это почти идеальный круг, полученный путем выбора соответствующей тестовой частоты и полного сопротивления источника.Как правило, чем выше емкость, тем ниже сопротивление и частота при испытании. Негерметичный конденсатор будет давать наклонную кривую из-за эффективного сопротивления параллельно конденсатору.Применение сигнала переменного тока с ограничением по току через две точки в цепи вызывает вертикальное отклонение кривой осциллографа, а приложенное напряжение вызывает горизонтальное отклонение. Это формирует характеристическую сигнатуру V / I, которая может показать, является ли компонент хорошим, плохим или маргинальным. Важно сосредоточиться на различиях между кривыми для хороших и подозрительных плат, а не анализировать значение кривых в деталях.Большинство узлов на печатной плате будут содержать параллельные и последовательные комбинации компонентов, что затрудняет точный анализ. Большинство отказов вышедших из строя плат — это серьезные отказы, такие как короткое замыкание или разрыв цепи, которые легко обнаружить с помощью техники V-I без сложного анализа.
Напряжение на ИУ откладывается по горизонтальной оси против тока через него по вертикальной оси. Форма волны стимула обычно представляет собой синусоидальную волну. Согласно закону Ома (Z = V / I) результирующая характеристика представляет собой импеданс ИУ.Импеданс таких компонентов, как конденсаторы и катушки индуктивности, зависит от частоты, поэтому для них требуется стимул переменной частоты.
В большинстве приложений используется сравнительное аналоговое тестирование V-I, поэтому нет необходимости понимать отображаемую характеристику. Сравнение кривых заведомо исправной платы и подозрительной платы часто позволяет выявить неисправности с минимальными знаниями. Различные устройства в разных конфигурациях создают разные сигнатуры, в зависимости от тока, протекающего через устройство при изменении приложенного напряжения.Например, при коротком замыкании будет образована вертикальная линия, потому что ток при любом приложенном напряжении теоретически будет бесконечным, тогда как при разомкнутой цепи будет генерироваться горизонтальная линия, потому что ток всегда равен нулю независимо от приложенного напряжения.
Чистый резистор дает диагональную линию с наклоном, пропорциональным сопротивлению, потому что ток пропорционален приложенному напряжению. Чем выше значение сопротивления, тем ближе линия к горизонтали (обрыв цепи).Импеданс источника V-I тестера следует выбирать так, чтобы наклон линии для хорошего резистора был как можно ближе к 45 °. Разница в наклоне кривой при сравнении исправной и подозрительной плат указывает на разницу в значениях резисторов на двух платах.
Более сложные кривые описывают частотно-зависимые компоненты, такие как конденсаторы и катушки индуктивности. То же самое для нелинейных устройств, таких как диодные и транзисторные переходы. Конденсаторы с относительно низкими номиналами имеют плоские, горизонтальные и эллиптические подписи.Конденсаторы с относительно высокими номиналами имеют плоские, вертикальные и эллиптические подписи. Оптимальная сигнатура — это почти идеальный круг, который можно получить, выбрав соответствующую тестовую частоту и полное сопротивление источника. Как правило, чем выше емкость, тем ниже сопротивление и частота при испытании. Негерметичный конденсатор будет давать наклонную кривую из-за эффективного сопротивления параллельно конденсатору.
Автоматизированное испытательное оборудование (АТО)
В ситуациях, когда неисправные печатные платы постоянно поступают, универсальные автоматизированные испытательные системы заменяют отдельные испытательные приборы.Внутрисхемные тестеры на базе ПК выполняют как внутрисхемное логическое тестирование цифровых, так и многих аналоговых ИС, а также анализ сигнатур V-I микросхем с использованием различных тестовых зажимов. Система Diagnosys PinPoint — одна из таких систем, которая содержит библиотеки выводов цифровых микросхем, чтобы помочь техническим специалистам в поиске и устранении неисправностей и определить схемы подключения цепей. ATE могут проверять цифровую функциональность микросхем, а также проводить анализ сигнатур как активных, так и пассивных компонентов.Неизвестные микросхемы можно идентифицировать по их логическому выводу.
Некоторые ATE могут быть чрезвычайно дорогими и требуют сложного обучения, что означает, что после покупки они бездействуют на складе. ATE могут выполнять автоматизированные или компьютеризированные процедуры тестирования тестируемого устройства, включая функциональное тестирование интегральных схем, аналоговых и цифровых компонентов, готовых плат и т. Д. Эти продукты различаются по сложности в зависимости от различных уровней тестовых возможностей, необходимых для различных потребностей платы.
Компьютерные автоматизированные процедуры тестирования могут выполняться надежно и согласованно с автоматическим сбором результатов тестирования, с высокой точностью, с высокой скоростью тестирования и с чрезвычайной гибкостью. Типичные ATE включают: внутрисхемные тестеры, выполняющие тесты на уровне устройств на монтажных платах, установленных на компонентах; Функциональные тестеры, используемые для проверки полной функциональности плат и модулей через граничные разъемы; Тестеры граничного сканирования для продуктов, совместимых с JTAG, таких как BGA, FPGA, CPLD, или даже комплектных плат с разъемом JTAG.
Примером системы ремонта печатных плат ATE является ABI Electronics System 8 — система тестирования плат, которая использует набор модулей размером с CD-привод для создания настраиваемой испытательной станции для печатных плат, управляемых ПК. Система 8, встроенная в корпус ПК или в 19-дюймовую стойку, представляет собой комбинированный набор испытательных инструментов, предназначенных для тестирования и поиска неисправностей.Другим примером системы ремонта печатных плат ATE является ABI Electronics System 8 — система тестирования плат, в которой используется набор модулей размером с дисковод компакт-дисков для создания настраиваемой испытательной станции для печатных плат, управляемой ПК.Система 8, встроенная в корпус ПК или монтируемую в 19-дюймовую стойку, представляет собой комбинированный набор испытательных инструментов, удовлетворяющий большинству потребностей в тестировании и поиске неисправностей.
Сравнивая результаты заведомо исправной платы с процедурами автоматического поиска неисправностей, диагностика неисправностей становится возможной с помощью минимально обученного персонала. Программное обеспечение System 8 можно настроить таким образом, чтобы оно пошагово проводило менее подготовленных пользователей через процедуру тестирования, с пользовательскими аннотированными изображениями, инструкциями и прилагаемыми таблицами данных, чтобы быстро получить результаты «прошел / не прошел».Это намного быстрее и экономичнее, чем использование традиционных осциллографов, измерителей и других методов стендовых испытаний. Модули системы 8 включают:
Board Fault Locator: 64 тестовых канала для различных методов тестирования для диагностики неисправностей и функционального тестирования цифровых ИС (в цепи / вне цепи), состояния соединений ИС и сбора напряжения, тестирования кривой V-I компонентов на платах без питания.
Аналоговый тестер ИС: для внутрисхемного функционального тестирования аналоговых ИС и дискретных компонентов (не требуется программирования или принципиальных схем).Полностью настраиваемый тестер V-I для обнаружения неисправностей на платах без питания.
Multiple Instrument Station: включает восемь высокотехнологичных испытательных и измерительных приборов в одном модуле (частотомер, цифровой запоминающий осциллограф, функциональный генератор, цифровой плавающий мультиметр, вспомогательный блок питания и универсальный ввод / вывод).
Advanced Test Module: предлагает мощные комбинации тестов для гибкой комплексной диагностики неисправностей, включая функциональные тесты, тесты соединений, напряжения, температуры и сигнатуры V-I.
Advanced Matrix Scanner: 64 канала для быстрого сбора данных для тестирования устройств с большим количеством выводов, а также готовых печатных плат; частота развертки сигнала для наблюдения за откликом тестируемого устройства в диапазоне частот.
Источник переменного тока с тройным выходом: обеспечивает необходимое напряжение питания для тестируемого устройства.
ПриложенияATE включают в себя: тестирование печатных плат и устранение неисправностей, цифровое / аналоговое испытание IC, цифровое / аналоговое испытание VI, короткую визуальную идентификацию со звуковой / визуальной индикацией расстояния между пробником до короткого замыкания, сравнение плат в реальном времени, анализ производственных дефектов, включение / выключение вне тестирования, отчетность по обеспечению качества, встроенное управление в реальном времени, расчет и регистрация, тестирование компонентов и плат, цифровые и аналоговые функциональные тесты, автоматизированные тестовые последовательности и т. д.
Выбор метода устранения неполадок зависит от сложности схемы, а также знаний и опыта лица, выполняющего поиск и устранение неисправностей. Методичное использование соответствующих средств тестирования поможет инженерам и техническим специалистам быстро и точно определить причину отказа и впоследствии повысить производительность ремонта печатных плат.
Когда дело доходит до печатных плат, ремонт зачастую оказывается более выгодным, чем замена. Компании начали понимать это и начали включать ATE в свою инфраструктуру поддержки и развития.
.