Как узнать на сколько вольт стабилитрон
При монтаже, конструировании, ремонте радиоэлектронной аппаратуры, стараемся заранее подбирать весь комплект деталей, необходимый для предстоящего процесса. Иногда роемся в своих запасах при нехватке той или иной детали, тем более, если нам не хватило какой-то мелочи. Любая маркировка уже проставлена на корпусе компонента, схема всегда под рукой и остается дополнить монтаж не достающим .
Представленный здесь прибор – это стабилитронометр для тестирования значения напряжения неизвестного стабилитрона. Стабилитрон – это радиоэлектронный компонент, который поддерживает постоянное напряжение на его контактах, причём напряжение источника Vs должно быть больше, чем собственное напряжение стабилитрона Vz, а ток ограничивается с помощью сопротивления Rs, чтоб его текущее значение всегда было меньше, чем его максимальная мощность.
Схема простейшего метода проверки напряжения стабилитрона
Радиолюбители и все те, кто хорошо дружит с электроникой знают, что задача нахождения стабилитрона с нужными характеристиками (рабочим напряжением) скучная и кропотливая. Случается, что нужно перебрать очень много разных экземпляров, пока не найдётся нужное значение Vz. Проверка состояния стабилитрона обычно делается с помощью обычной шкалы мультиметра для измерения диодов, этот тест дает нам точное представление о состоянии компонента, но не дает нам определить значение Vz. В общем тестер стабилитронов это действительно удобный прибор, когда мы хотим быстро выяснить значение напряжения Vz.
Параметры прибора
- Питание 220 В.
- Цифровая индикация Vz
- Меряет стабилитроны на напряжения от 1 В до 50 В
- Два токовых режима – 5 мА и 15 мА
Схема устройства для проверки стабилитронов
Как видно, схема проста. Напряжение с трансформатора с двумя вторичными обмотками 24V, выпрямляется и фильтруется для получения постоянного напряжения около 80 В, затем поступает на стабилизатор напряжения, образованный элементами (R1, R2, D1, D2 и Q1), который снижает напряжение до 52V, чтобы избежать превышения максимального предела рабочего напряжения микросхемы LM317AHV.
Обратите внимание на буквенный индекс микросхемы. У LM317AHV входное напряжение, в отличии от LM317T, может достигнуть максимума 57V.
На LM317AHV собран генератор постоянного тока, куда добавлен выключатель (S2) совместно с резистором (R4), чтобы выбрать два тестовых режима (5 мА и 15 мА) в качестве источника тока для испытуемого стабилитрона.
Этот тестер легко собрать из стандартных компонентов. Готовый импульсный блок питания от какого-нибудь DVD или тюнера спутниковой системы, а вольтметр либо в виде промышленного модуля на микроконтроллере, либо взять мультиметр D-830 .
Немного теории
Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.
Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.
В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.
Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.
Стабилитрон или диод Зенера
Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:
Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.
Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза
Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.
Напряжение стабилизации
Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?
Давайте возьмем стакан и будем наполнять его водой…
Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.
Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.
Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.
Маркировка стабилитронов
Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:
Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.
Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:
5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?
Катод у зарубежных стабилитронов помечается в основном черной полосой
Как проверить стабилитрон
Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.
Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.
Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:
где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение
Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:
Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.
Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл 😉
Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания, а справа замеряем мультиметром полученное напряжение:
Теперь внимательно следим за показаниями мультиметра и блока питания:
Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.
Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!
Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.
Вольт-амперная характеристика стабилитрона
Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:
Iпр – прямой ток, А
Uпр – прямое напряжение, В
Эти два параметра в стабилитроне не используются
Uобр – обратное напряжение, В
Uст – номинальное напряжение стабилизации, В
Iст – номинальный ток стабилизации, А
Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.
Imax – максимальный ток стабилитрона, А
Imin – минимальный ток стабилитрона, А
Iст, Imax, Imin – это сила тока, которая течет через стабилитрон при его работе.
Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.
Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).
Заключение
Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения блока питания. В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:
Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного. Справа же, в зеленой рамке, схема стабилизации ;-).
В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.
На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.
ПРОБНИК ДЛЯ ПРОВЕРКИ СТАБИЛИТРОНОВ
Долгое время использовал такой пробник стабилитронов. У него только один единственный недостаток – необходимо наличие стационарной телефонной линии, ибо питается он от неё, от её 50 вольт с уникальным током в 20 миллиампер. Очевидно, что напряжение линии покрывает всю обозримую линейку вольтажа применяющихся в практике радиолюбителей стабилитронов. Слов нет как удобно.
Но вот телефона не стало, а потребность в измерениях осталась, пришлось делать новый пробник, схема при этом подверглась изменениям только в плане количества задействованных электронных компонентов, причём в сторону уменьшения. Питание пробника будет осуществляться от лабораторного БП с регулируемым выходным напряжением 0 – 30 вольт.
В набор необходимого для изготовления входят:
- конденсатор на 22 нФ, резистор 2,4 МОм / 0,5 Вт, резистор 10 кОм / 2 Вт
- две крышки и горлышко от любой подходящей пластиковой ёмкости
- пара соединительных контактов, пара сетевых штырей и гайки с винтами М4
В крышках шилом протыкаются отверстия, в одной на расстоянии 19 мм друг от друга и в них устанавливаются штыри, в другой на произвольном расстоянии для соединительных контактов. Электронные компоненты соединяются между собой пайкой (смотрите на фото и схему).
Компонентная сборка устанавливается по месту, крепиться при помощи гаек. Одна из крышек закручивается по резьбе, втора надевается «в натяг» на противоположную сторону горлышка (получается подобие защёлки, надо только правильно подрезать края – «поймать» необходимый диаметр). И не забываем организовать подвод питания.
На верхнюю крышку корпуса готового пробника ставим информационные наклейки и им можно пользоваться. Схема пробника и метод проверены пятью годами эксплуатации. Это именно тот случай, когда изделие характеризуют поговоркой «и дёшево и сердито». Время необходимое на его изготовление составляет не более часа.
Как пользоваться пробником
Порядок пользования пробником следующий: пробник вставляется штырями в соответствующие гнёзда мультиметра, предел измерения выбирается «20» или «200» вольт постоянного тока в зависимости от ожидаемого напряжения стабилизации стабилитрона. Далее идёт подключение к источнику постоянного тока, лучший вариант блок питания с регулировкой выходного напряжения от нуля и током до 1 ампера. Правильно ставим на контакты тестируемый стабилитрон, не спеша увеличиваем выходное напряжение и смотрим на дисплей мультиметра. Там и увидим напряжение стабилизации интересующего нас стабилитрона. Но всё получиться, даже если и нет регулируемого блока питания, можно использовать обычные батарейки, подключая их последовательно до достижения необходимого напряжения.
Из пользовательского опыта: контакты для установки проверяемого стабилитрона не должны быть короткими, зато должны иметь возможность поворота вокруг своей оси, это даст удобство тестирования деталей, как с короткими выводами, так и с длинными. А если на верхнем ребре сделать парные пропилы, то отпадёт необходимость удержания электронного компонента при его проверке. Пробник собирал Babay iz Barnaula.
Форум
Форум по обсуждению материала ПРОБНИК ДЛЯ ПРОВЕРКИ СТАБИЛИТРОНОВ
Принцип работы и маркировка стабилитронов ⋆ diodov.net
Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.
Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.
Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.
Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.
Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.
Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.
Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.
Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.
Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.
Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.
Вольт-амперная характеристика стабилитронаНа обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).
Встречное, параллельное, последовательное соединение стабилитроновДля повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.
Параллельное соединение применяется с целью повышения тока и мощности.
Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.
В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.
Маркировка стабилитроновМаркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.
Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.
Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.
Маркировка SMD стабилитроновНаибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.
Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.
Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения Rб и Iн:
Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т. п. Чем больше Pст, тем больше габариты полупроводникового прибора.
Как проверить стабилитронПроверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.
Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.
Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.
Еще статьи по данной теме
Как проверить стабилитрон простую схему. Как проверить стабилитроны
Всего несколько часов потребуется, чтобы изготовить это устройство. Оно предназначено для проверки исправности. определения цоколевки и напряжения стабилизации стабилитронов. Но с его помощью можно проверять и другие полупроводниковые приборы, например, определить напряжение пробоя эмиттерного перехода транзистора, которые иногда используются в качестве стабилитронов.
И так, как же проверить стабилитрон? При проверке не ставилась задача определять зависимость напряжения стабилизации от протекающего тока. Схема устройства показана на рис. 1. В его состав входят повышающий , собранный на микросхеме DD1 и транзисторе VT1, а также специализированный модуль F08508G. В Интернете этот модуль (рис. 2) позиционируется как тестер аккумуляторной батареи автомобиля и представляет собой трехразрядный измеритель напряжения с цифровым светодиодным индикатором. Он позволяет измерять постоянное напряжение до 99,9 В
На логических элементах DD1.1 — DD1.3 собран генератор импульсов, элемент DD1.4 — буферный. Частоту задают параметры элементов С2 и R1, и для указанных на схеме она — примерно 9 кГц. Импульсы с его выхода через резистор R2 поступают на базу транзистора VT1, который работает в ключевом режиме. Когда он открыт, через дроссель L1 протекает ток и энергия накапливается в его магнитном поле.
Когда транзистор закрывается, на коллекторе возникает ЭДС самоиндукции и формируется импульс напряжения амплитудой около 60 В, который затем выпрямляется диодом VD1, и конденсатор СЗ заряжается до этого напряжения. Через токоограничивающий резистор R3 это напряжение поступает на испытываемый стабилитрон и на вход модуля. С помощью переключателя SA2 изменяют полярность напряжения на стабилитроне, но не на входе модуля.
Снимая показания с индикатора модуля, можно определить напряжение стабилизации и цоколёвку стабилитрона.
Печатная плата устройсто для проверки стабилитронов
При этом следует учесть, что, если стабилитрон обычный, в его состав входит один p-n переход (VD1 на рис. 3). Поэтому при напряжении обратной полярности (плюс — на катод, минус — на анод) будет индицироваться напряжение пробоя, для стабилитрона это и есть напряжение стабилизации. При смене полярности на р-n переходе будет прямое напряжение, если он кремниевый, то это около 0,6 В. Если стабилитрон симметричный (VD2 рис. 2), при смене полярности напряжение стабилизации меняется незначительно. Но есть еще и так называемые термокомпенсированные стабилитроны, в состав которых входит дополнительный диод (VD3 на рис. 3).
В этом случае при одной полярности подключения на вход модуля А1 поступит напряжение стабилизации, а при другой — выходное напряжение преобразователя. Генератор импульсов можно собрать и на других микросхемах, фрагменты схемы устройства в случае применения микросхем К561ЛН2 и К561ЛА7 (К561ЛЕ5) показаны на рис. 4 и рис. 5 соответственно.
Элементы устройства смонтированы на макетной плате (рис. 6) с использованием проводного монтажа. Применён резистор МЛТ, С223, оксидные конденсаторы — импортные, конденсатор С2 — К1017. Транзистор — любой из серий КТ815 и КТ817. Выключатель питания и переключатель — малогабаритные любого типа. Дроссель — штатный дроссель от КЛЛ, который намотан на Ш-образном ферритовом магнитопроводе (рис. 7).
Обычная индуктивность таких дросселей — несколько миллигенри. Для подключения исследуемых приборов можно использовать зажимы «крокодил» (XS1, XS2). Взамен модуля можно применить цифровой мультиметр в режиме измерения постоянного напряжения. Налаживание сводится к изменению частоты генератора для получения выходного напряжения (без нагрузки) около 60 В. Сделать это можно подборкой конденсатора С2 (увеличивая или уменьшая ёмкость) или резистора R1 (только в сторону увеличения сопротивления). Питается устройство от батареи 6F22 (Крона), максимальный потребляемый ток — 38 мА.
Последние сообщения
Популярные сообщения
Информация для начинающих радиолюбителей:
функции проверки стабилитронов в мультиметрах нет.
И не ищите мультиметр со стабилитронометром. Но понятно, что проверять надо. Более того, надо тестировать даже исправный компонент на предмет параметра фактического напряжения стабилизации. Истина прописная. Вот только как, чтобы не собирать отдельного прибора и не использовать одну из существующих методик, занимающих, пусть и не очень, но относительно продолжительное время, причём не только по времени проведения проверки, но и по подготовки к ней. Но прав оказался один известный юморист, утверждающий, что на всём постсоветском пространстве проблем с «соображалкой» у народа нет.
Собрать решил устройство как приставку к мультиметру, причём компактную. Корпус от упаковки безопасных лезвий «Schick ». Розетка для оконечника телефонного кабеля подошла и по размеру и по цвету, а к ней удалось приладить кнопку включения питания. Учитывая некоторое своеобразие корпуса, сборку пришлось выполнять, так сказать, «пошаговым» способом.
Шаг первый
Шаг второй — уборка в нишу корпуса всего выше перечисленного и установка по месту штырей (образующих импровизированную вилку для соединения пробника с мультиметром) путём использования на них резьбового соединения и двух гаек М4 на каждый. Расстояние между центров штырей 18,5 мм.
Шаг третий — установка светодиодов и ограничительных резисторов.
Спрятал содержимое «от глаз подальше» и сверху прикрутил подходящие контакты для подсоединения проверяемых стабилитронов. Контакты можно поворачивать вокруг своей оси и тем самым менять расстояние между ними в зависимости от длины проверяемого компонента. Пробую в деле:
Импортный стабилитрон BZX85C18 — чуток не дотянул до заявленного параметра.
Зато отечественный КС515А не подкачал, как говориться «в яблочко». И вот теперь имею в арсенале Schick арный тестер стабилитронов.))
Видео
Сам мультиметр конечно можно заменить любым, даже стрелочным, вольтметром — это будет полезно, если по ходу работы в мастерской вам часто приходится проверять такие детали. Желаю успехов, Babay. Россия, Барнаул.
Здравствуйте уважаемые посетители. За сорок лет увлечения радиотехникой скопилась целая куча стабилитронов и отечественных, и импортных, и с маркировкой и без, в связи с этим появилась необходимость в изготовлении приставки для мультиметра для определения целостности и параметров стабилитронов. По крайней мере напряжения стабилизации. На изготовление приставки ушло пару часов, это с травлением платы. За основу взял схемку стабилизатора тока (см. рис. 1)из документации на микросхему LM431, аналог 142ЕН19.
Схема получившейся приставки представлена на рисунке 2. На транзисторе VT1 и микросхеме DA1 142ЕН19 собран стабилизатор тока, при номиналах резисторов, указанных на схеме, ток стабилизации равен примерно семнадцати миллиамперам. В качестве индикатора прохождения тока при измерении с схему включен светодиод. Можно использовать любой светодиод с прямым током не менее 20ма. Для изготовления приставки потребуется сетевая вилка от какой ни будь не нужной китайской хрени(см. фото 1, 2).
Вернее запчасть от нее, показанная на фото 2. Приставка собрана на небольшой печатной платке из стеклотекстолита. Внешний вид платы показан на фото 3 и 4. Конструкция приставки надеюсь тоже понятна. Что бы контактные штыри бывшей сетевой вилки свободно входили в гнезда прибора, припаивают их к платке будучи вставленными в них.
На схеме указано максимально возможное входное напряжение для данных элементов – 35В. Но если при этом напряжении проверять, например стабистор КС107А, то на нем упадет напряжение 0,7В, а 34,3В — I Ur2 упадет на транзисторе VT1. Где I Ur2 – падение напряжения на резисторе R2 = 0,017А 200 = 3,4В. 34,3 – 3,4 = 30,9В – это такое напряжение упадет на транзисторе VT1, отсюда мощность коллектора транзистора составит U I = 30,9В 0,017А? 0,525Вт. Мощность коллектора транзистора КТ503 – 0,35Вт. Так, что замер надо производить очень быстро или заменить транзистор более мощным, или уменьшить напряжение питания приставки, что уменьшит количество марок проверяемых стабилитронов. Ну я думаю вы для себя это решите. Скачать рисунок печатной платы.
Да, ток стабилизации зависит от номинала резистора R2, R2 = 2,5/Iст, где Iст – величина тока стабилизации. До свидания. К.В.Ю.
Еще одно дополнение. С помощью этой приставки можно определять диоды с барьером Шоттки, у которых, как известно маленькое прямое падение напряжения. На снимке показана проверка 1N5819 — с барьером Шоттки. Uпр. = 0,24В. Отлично!
В радиоэлектронике в основном применяются два типа диодов — это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.
На фото ниже у нас простой диод и светодиод.
Диод состоит из P-N перехода , поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром? .
Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному — катод и анод . Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет.
Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.
Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. 436 миллиВольт — это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 800 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.
Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.
А как же проверить светодиод ? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус.
Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.
Меняем щупы местами. Светодиодик не загорелся.
Выносим вердикт — вполне работоспособный светодиод!
А как же проверить диодные сборки, диодные мосты и стабилитроны ? Диодные сборки — это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.
Полупроводниковый диод можно проверить и при помощи стрелочного прибора в режиме Ом-метра: стрелка должна показать проводимость лишь в одну сторону.
Какие неисправности могут быть у полупроводникового диода:
1. Обрыв. Диод не «прозванивается» ни в одну сторону.
2. Пробой. Диод показывает проводимость в обеих направлениях. При этом сопротивление очень низкое (КЗ или практически КЗ).
3. Утечка. Диод в обратном включении показывает небольшую проводимость.
Пока речь идет о полупроводниковом диоде, давайте заодно рассмотрим и его разновидности:
Как проверить светодиод.
Светодиод проверить можно достаточно легко при помощи обыкновенной батарейки (по его свечению).
Если-же вдруг под рукою батарейки не оказалось, то можно проверить и мультиметром как обыкновенный диод. Причем мы увидим не только проводимость светодиода, но так-же сможем наблюдать и его свечение (равда не очень яркое).
Свет, излучаемый такими светодиодами не видим человеческим глазом, но его очень легко можно увидеть при помощи камеры любого мобильного телефона.
Как проверить стабилитрон.
Так как стабилитрон по-сути является всего-лишь разновидностью полупроводникового диода, то и проверяется он так-же (при помощи мультиметра на проводимость в одну сторону), но с небольшой особенностью: значение падения напряжения на P-N переходе в стабилитроне как правило ниже (то есть мультиметр покажет более высокое сопротивление). Это обусловлено рабочими характеристиками самого стабилитрона: в отличие от простого диода у стабилитрона другое предназначение: он должен «пробиваться» при определенном напряжении.
Если не совсем понятно, то вот пример: если при проверке полупроводникового диода в прямом включении мультиметр показывает значение в пределах 450..550, то когда проверяем стабилитрон, мультиметр покажет 700…800.
Кстати, таким образом можно отличить диод от стабилитрона если вдруг нам «выпало счастье» иметь дело с SMD приборами…
Ну и это еще не все…
Многие стабилитроны имеют свойство «плыть». Говоря простым языком у стабилитрона может измениться напряжение стабилизации. Причем это значение можно или просто измениться (например вместо положенных 12V вдруг стало 9V) или может изменяться кратковременно.
Второй вариант дефекта самый непредсказуемый и выявляется очень тяжело.
Такие «катаклизмы» со стабилитронами чаще всего происходят из-за внешних воздействий (статика например или при «грозовых» неисправностях), но бывают случаи просто низкого качества производителей.
Как определить неизвестный стабилитрон.
Такая необходимость может возникнуть в тех случаях, когда возникли сомнения в исправности стабилитрона или просто на корпусе стабилитрона вдруг оказалось стерто название.
Ну здесь, в общем-то, можно поступить следующим образом: можно просто подключить стабилитрон к источнику напряжения через балластный резистор (если используем источник напряжения в пределах 9..12V, выбирать резистор следует в пределах от 150…500 Ом).
Напряжение на самом стабилитроне и будет его напряжение стабилизации.
Прибор для проверки стабилитронов, схема
Радиолюбители иногда сталкиваются с проблемой проверки стабилитронов без маркировки. Естественно существует множество способов, например лабораторный блок питания с функцией ограничения тока и т.п., но многие пользуются самодельными регулируемыми стабилизаторами напряжения без функции ограничения тока, либо блок питания имеет функцию не стабилизации, а защиты по току. Было решено построить простой автономный тестер, который может проверить напряжение стабилизации стабилитронов. Для этих целей использованы готовые модули купленные в китайских интернет-магазинах.
1) Повышающий DC-DC преобразователь напряжения на базе микросхемы MT3608. Такие преобразователи довольно популярны и стоят копейки, могут обеспечивать выходное напряжение 28-30 Вольт.
2) Плата заряда LI-ION аккумуляторов от USB. Плата по сути из себя представляет автоматическое зарядное устройство для одной банки Li-Ion аккумулятора, обеспечивает максимальный ток заряда до 1 Ампер.
3) Литий-ионный аккумулятор любого стандарта, емкость тоже особо большой роли не играет.
4) Цифровой Вольт-Амперметр на напряжение 30 Вольт
5) Панелька для микросхем DIP, такие панельки предназначены для беспаечного монтажа, сюда будет вставляться стабилитрон, который нужно тестировать.
Это основные компоненты, остальное мелочь.
В качестве корпуса для этой конструкции был использован футляр от дешевого повербанка за доллар.
Из-за ограниченного места в корпусе я использовал никель-металл-гидридные аккумуляторы по 1,2 Вольт, которые соединены последовательно. В этом случае можно и не ставить специализированную плату для зарядки, поскольку никелевые аккумуляторы не так критичны к зарядке как литиевые.
Схема конструкции сейчас перед вами.
Изначально берем плату DC-DC преобразователя и вращаем подстроечный резистор до тех пор, пока на выходе не получим максимально возможное напряжение.
Исходя из этого, становиться ясно, что наш тестер может проверять стабилитроны с напряжением стабилизации не более 28-30 Вольт.
Ограничительный резистор предназначен для ограничения тока через стабилитрон, если его не устанавливать, то подопытный стабилитрон сгорит.
Электролитический конденсатор на выходе платы предназначен для сглаживания пульсаций с преобразователя, это нужно для избежания ложных показаний вольтметра, поскольку на выходе таких плат довольно большие пульсации.
Выключатель, думаю понятно для чего предназначен, может быть заменен на кнопку любой мощности.
С учетом того, что такой тестер будет работать кратковременно, заряда батареи хватит на очень долгое время, поэтому при желании источник питания может быть заменен на батарейку стандарта 6F22 (обычная крона на 9 Вольт).
Показания снимаются напрямую со стабилитрона, прибор работает довольно точно и может корректно проверять стабилитроны буквально любой мощности.
В практике применяется не так часто как мультиметр, но является незаменимым инструментом, когда быстро нужно проверить стабилитрон.
Автор; АКА КАСЬЯН
⚡️Как проверить стабилитрон | radiochipi.ru
На чтение 3 мин. Опубликовано Обновлено
Всего несколько часов потребуется, чтобы изготовить это устройство. Оно предназначено для проверки исправности. определения цоколевки и напряжения стабилизации стабилитронов. Но с его помощью можно проверять и другие полупроводниковые приборы, например, определить напряжение пробоя эмиттерного перехода транзистора, которые иногда используются в качестве стабилитронов.
И так, как же проверить стабилитрон? При проверке не ставилась задача определять зависимость напряжения стабилизации от протекающего тока. Схема устройства показана на рис. 1. В его состав входят повышающий преобразователь напряжения, собранный на микросхеме DD1 и транзисторе VT1, а также специализированный модуль F08508G. В Интернете этот модуль (рис. 2) позиционируется как тестер аккумуляторной батареи автомобиля и представляет собой трехразрядный измеритель напряжения с цифровым светодиодным индикатором. Он позволяет измерять постоянное напряжение до 99,9 В
На логических элементах DD1.1 — DD1.3 собран генератор импульсов, элемент DD1.4 — буферный. Частоту задают параметры элементов С2 и R1, и для указанных на схеме она — примерно 9 кГц. Импульсы с его выхода через резистор R2 поступают на базу транзистора VT1, который работает в ключевом режиме. Когда он открыт, через дроссель L1 протекает ток и энергия накапливается в его магнитном поле.
Когда транзистор закрывается, на коллекторе возникает ЭДС самоиндукции и формируется импульс напряжения амплитудой около 60 В, который затем выпрямляется диодом VD1, и конденсатор СЗ заряжается до этого напряжения. Через токоограничивающий резистор R3 это напряжение поступает на испытываемый стабилитрон и на вход модуля. С помощью переключателя SA2 изменяют полярность напряжения на стабилитроне, но не на входе модуля.
Снимая показания с индикатора модуля, можно определить напряжение стабилизации и цоколёвку стабилитрона.
Печатная плата устройсто для проверки стабилитронов
При этом следует учесть, что, если стабилитрон обычный, в его состав входит один p-n переход (VD1 на рис. 3). Поэтому при напряжении обратной полярности (плюс — на катод, минус — на анод) будет индицироваться напряжение пробоя, для стабилитрона это и есть напряжение стабилизации. При смене полярности на р-n переходе будет прямое напряжение, если он кремниевый, то это около 0,6 В. Если стабилитрон симметричный (VD2 рис. 2), при смене полярности напряжение стабилизации меняется незначительно. Но есть еще и так называемые термокомпенсированные стабилитроны, в состав которых входит дополнительный диод (VD3 на рис. 3).
В этом случае при одной полярности подключения на вход модуля А1 поступит напряжение стабилизации, а при другой — выходное напряжение преобразователя. Генератор импульсов можно собрать и на других микросхемах, фрагменты схемы устройства в случае применения микросхем К561ЛН2 и К561ЛА7 (К561ЛЕ5) показаны на рис. 4 и рис. 5 соответственно.
Элементы устройства смонтированы на макетной плате (рис. 6) с использованием проводного монтажа. Применён резистор МЛТ, С223, оксидные конденсаторы — импортные, конденсатор С2 — К1017. Транзистор — любой из серий КТ815 и КТ817. Выключатель питания и переключатель — малогабаритные любого типа. Дроссель — штатный дроссель от КЛЛ, который намотан на Ш-образном ферритовом магнитопроводе (рис. 7).
Обычная индуктивность таких дросселей — несколько миллигенри. Для подключения исследуемых приборов можно использовать зажимы “крокодил” (XS1, XS2). Взамен модуля можно применить цифровой мультиметр в режиме измерения постоянного напряжения. Налаживание сводится к изменению частоты генератора для получения выходного напряжения (без нагрузки) около 60 В. Сделать это можно подборкой конденсатора С2 (увеличивая или уменьшая ёмкость) или резистора R1 (только в сторону увеличения сопротивления). Питается устройство от батареи 6F22 (Крона), максимальный потребляемый ток — 38 мА.
Как узнать на сколько вольт стабилитрон — MOREREMONTA
Предлагаемая схема служит для простого определения номинала напряжения стабилизации стабилитрона с помощью вольтметра, а также для определения его исправности.
Сейчас промышленностью выпускается невероятное количество различных электронных компонентов и зачастую при сборке радиоэлектронного изделия возникает множество затруднений по определению номинала компонента. Особенно в этом плане «отличилась» отечественная промышленность — в частности стабилитроны в стеклянном корпусе имеют, порой, очень похожую маркировку, отличить которую не представляется возможным. Хороший пример это стабилитроны КС211 и КС175 — иногда встречаются варианты маркировки, в которых оба выглядят как маленький выводной стеклянный диод с чёрной полосой. Их также можно спутать, например, со стабилитроном Д814. Так или иначе, запоминать цветовую маркировку стабилитронов не самая лучшая идея, учитывая насколько просто их можно проверить.
Для определения напряжения стабилизации понадобится простая схема:
Обычно диапазон рабочего тока маломощных стабилитронов лежит в пределах 1-10 мА, поэтому сопротивление резистора выбрано 2.2 кОм. Это оптимально для проверки маломощных стабилитронов. Для проверки мощных стабилитронов сопротивление возможно придётся уменьшить — для этого в схеме предусмотрена перемычка. Для проверки маломощных стабилитронов перемычку нужно ставить в верхнее положение, для проверки мощных — в нижнее.
Оптимальное напряжение питания — 25В.
Если стабилитрон подсоединён правильно — анодом к X1, катодом к X2, то вольтметр покажет его напряжение стабилизации, а если неправильно — какое-то очень малое напряжение около нуля. Если при одном подключении мультиметр показывает минимум напряжения, а при другом — максимальное, равное напряжению источника питания, значит испытуемый радиоэлемент либо простой диод, либо стабилитрон с напряжением стабилизации выше напряжения источника питания. Если вы уверены что это стабилитрон — нужно увеличить напряжение источника до предполагаемой величины и проверить ещё раз.
Если вольтметр показывает минимальное напряжение, либо напряжение питания при любом подключении — значит данный стабилитрон или диод неисправен.
Если напряжение стабилизации показывается при любом подключении — значит это двусторонний стабилитрон.
Аналогичным способом можно проверять исправность диодов и светодиодов, только полярность будет противоположная. Способ хорош тем, что позволяет узнать падение напряжения, что бывает очень важно. Проверяя светодиоды необходимо помнить, что некоторые светодиоды очень чувствительны к завышенному обратному напряжению, поэтому напряжение источника при их проверке желательно выставлять не выше 9В.
Многие люди сталкиваются с проблемой частого отключения электроэнергии, перегрузки сети и короткого замыкания, в результате действия которого ломается дорогая аппаратура в доме. В качестве решения проблемы осуществляется установка стабилизатора напряжения или стабилитрона. Что собой представляет устройство, каков принцип его работы, какова сфера его применения и как проверить стабилитрон? Об этом и другом далее.
Описание устройства
Стабилизатор напряжения считается коммутационным устройством, главное предназначение которого кроется в защите сети от большого количества электричества, образующегося из-за короткого замыкания и перегрузки. Данный аппарат включается и отключается от электроцепи. Оснащен магнитным видом расцепителя или электромагнитным. Главным его плюсом служит тот факт, что он позволяет защитить электрическую установку или трансформаторную подстанцию от перенапряжения, перегрузки сети и поломки в результате частого отключения сети.
Назначение проверки
Стабилизатор напряжения — аппарат, используемый в качестве вводного устройства. Его ставят перед счетчиком. Используется в сети с одной, двумя и тремя фазами. Может быть применен для одного электроприбора с мощностью более 6 киловатт. Трехполюсный может быть использован для оборудования более 9 киловатт.
Чаще всего его используют, чтобы защитить бытовые электрические или нагревательные приборы. Также он может быть использован, чтобы уберечь систему освещения, двигатель, трансформатор и электронные электроприборы промышленного масштаба.
Обратите внимание! Проверять стабилизатор напряжения нужно, чтобы он мог исправно работать и помогать пользователю защищать электрическую цепь от перенапряжения, короткого замыкания и прочих неприятностей. Делать это нужно обязательно, поскольку иногда сам стабилизатор может стать причиной поломки электроцепи и всего бытового оборудования.
Емкость стабилитрона
Как правило, информация о том, сколько вольт имеет стабилитрон, указана на корпусе самого аппарата. Также эти данные указываются в технической документации. В случае, если надписи и документации нет, есть третий вариант того, как узнать, на сколько вольт стабилитрон — поискать эту информацию в интернете. Старые модели можно отыскать в интернет-справочниках. Зарубежные модели имеют более простую маркировку, нежели российские аналоги. Все сведения отражаются на корпусе устройства под буквой V.
Проверка мультиметром
Перед тем как проверить стабилизатор напряжения мультиметром, стоит ознакомиться с инструкцией проверки классического диода на плате и схеме. Вначале нужно выставить переключатель на положение диодной проверки и соединить щупы с детальными контактами и кренком. Затем нажать на кнопку старта и начинать узнавать по индикатору определенный показатель.
Прямой вид подключения мультиметрового индикатора показывает, как протекает ток, а обратный — в каком состоянии находится проводниковый переход и кренка.
Обратите внимание! Проводное напряжение должно быть ниже, чем значение радиоэлементного срабатывания. В противном случае проверка не будет осуществлена. Он будет открыт одинаково в каждом направлении. Этот тест говорит об отсутствии пробитого элемента системы. Замерить подобные параметры не получится.
Стоит указать, что стабилитрон можно проветрить, не выпаивая светодиод из сети. Однако таким образом тестирование происходит не во всех радиоэлементных режимах. Аппарат всегда взаимосвязан с другими элементами цепи, поэтому проверить его на пробой, не выпаивая контакты, невозможно.
Для тестирования двухстороннего стабилитрона необходимо увеличение напряжения, изменение полярности и измерения токов и сравнение ВАХ исследуемой модели. Благодаря совокупности этих действий можно понять исправность диодов.
Стабилитрон — современный аппарат, который сегодня используют люди, чтобы защищать электрическую сеть от перенапряжения, скачков электроэнергии и короткого замыкания. Перед тем как его подсоединить к сети, стоит проверить его работоспособность и проверить технические параметры на соответствие сети. Эти данные указаны в технической документации. Проверить работоспособность стабилитрона можно с помощью мультиметра, руководствуясь соответствующей пошаговой инструкцией к измерительному тестеру.
Имея дома радиоэлектронную лабораторию, можно своими руками сделать самые различные приспособления для электрооборудования или сами приборы, что позволит значительно сэкономить на покупке техники. Важным элементом многих электрических схем приборов является стабилитрон.
Такой элемент (smd, смд) является необходимой частью многих электросхем. Благодаря обширной области применения, стабилитрон имеет различную маркировку. Маркировка, нанесенная на корпус такого диода, дает подробную, но зашифрованную, информацию о данном элементе. Наша сегодняшняя статья поможет вам разобраться в том, какая цветовая маркировка встречается на корпусе (стеклянном и нет) импортных стабилитронов.
Что представляет собой данный элемент электрических схем
Прежде чем приступить к рассмотрению вопроса о том, какая цветовая маркировка таких элементов существует, нужно разобраться, что это вообще такое.
Вольт-амперная характеристика стабилитрона
Стабилитрон представляет собой полупроводниковый диод, который предназначается для стабилизации в электросхеме постоянного напряжения на нагрузке. Наиболее часто такой диод используется для стабилизации напряжения в различных источниках питания. Данный диод (smd) имеет участок с обратной веткой вольт-амперной характеристики, которая наблюдается в области электрического пробоя.
Имея такую область, стабилитрон в ситуации изменения параметра тока, протекающего через диод от IСТ.МИН до IСТ.МАКС практически не наблюдается изменений показателя напряжения. Данный эффект применяется для стабилизации напряжения. В ситуации, когда к смд подключена параллельно нагрузка RH, тогда напряжение диода будет оставаться постоянным, причем в указанных пределах изменения тока, текущего через стабилитрон.
Обратите внимание! Стабилитрон (smd) способен стабилизировать напряжение выше 3,3 В.
Кроме смд существуют еще и стабистроны, которые включаются при прямом включении. Они применяются в ситуации, когда есть необходимость стабилизировать напряжение в определенном диапазоне. Обычный диод можно использовать тогда, когда нужно стабилизировать напряжение в диапазоне от 0,3 до 0,5 В. Область их прямого смещения наблюдается при падении напряжения до 0,7 – 2v. При этом оно практически не зависит от силы тока. Стабисторы в своей работе применяют прямую ветвь вольт-амперной характеристики.
Их также следует включать при прямом подключении. Хотя это будет не самое лучшее решение, поскольку стабилитрон в такой ситуации будет все же более эффективен.
Стабисторы, как и smd, производятся зачастую из кремния.
Стабилитроны маркируют по их основным характеристикам. Эта маркировка имеет следующий вид:
- UСТ. Эта маркировка означает номинальное напряжение для стабилизации;
- ΔUСТ. Означает отклонение показателя напряжения номинального напряжения стабилизации;
- IСТ. Обозначает ток, который протекает через диод при номинальном напряжении стабилизации;
- IСТ.МИН — минимальное значение тока, которые течет через стабилитрон. При этом значении такой smd диод будет иметь напряжение в диапазоне UСТ ± ΔUСТ;
- IСТ.МАКС. Означает максимально допустимую величину тока, которая может течь через стабилитрон.
Такая маркировка важна при выборе элемента под определенную электросхему.
Обозначения работы элемента электросхемы
Схематическое обозначение стабилитрона
Поскольку стабилитрон представляет собой специальный диод, то его обозначение не отличается от них. Схематически smd обозначается следующим образом:
Стабилитрон, как и диод, имеет в своем составе катодную и анодную часть. Из-за этого имеется прямое и обратное включение данного элемента.
На первый взгляд, включение такой диод имеет неправильное, ведь он должен подключаться «наоборот». В ситуации подачи на смд обратного напряжения наблюдается явление «пробоя». В результате чего напряжение между его выводами остается неизменным. Поэтому он должен быть последовательно подключен к резистору с целью ограничения проходящего через него тока, что будет обеспечивать падение «лишнего» напряжения от выпрямителя.
Обратите внимание! Каждый диод, предназначенный для стабилизации напряжения, обладает своим напряжением «пробоя» (стабилизации), а также имеет свой рабочий ток.
Из-за того, что каждый стабилитрон обладает такими характеристиками, для него можно рассчитать номинал резистора, который будет подключаться с ним последовательно. У импортных стабилитронов их напряжение стабилизации представлено в виде маркировки, нанесенной на корпусе (стеклянном или нет). Обозначение такого диода smd всегда начинается с BZY… или BZX…, а их напряжение пробоя (стабилизации) имеет маркировку V. Например, обозначение 3V9 расшифровывается как 3.9 вольта.
Обратите внимание! Минимальное напряжение для стабилизации у таких элементов составляет 2 В.
Принцип функционирования стабилизационных диодов
Несмотря на то, что смд похож на диод, он по сути является иным элементом электросхемы. Конечно, он может выполнять функцию выпрямителя, но обычно используется для стабилизации напряжения. Данный элемент способен поддерживать в цепи постоянного тока постоянное напряжение. Этот его принцип работы применяется в питании различного радиотехнического оборудования.
Стабилитрон и диод
Внешне смд очень похож на стандартный полупроводник. Схожесть сохраняется и в конструкционных особенностях. Но при обозначении такого радиотехнического элемента, в отличие от диода, на схеме ставится буква Г.
Если не вникать в математические расчеты и физические явления, то принцип функционирования smd будет достаточно понятным.
Обратите внимание! При включении такого smd диода нужно соблюдать обратную полярность. Это означает, что подключение проводится анодом к минусу.
Проходя через этот элемент, небольшое напряжение цепи провоцирует сильный ток. При увеличении обратного напряжения ток так же растет, только в этом случае его рост будет наблюдаться слабо. Доходя до отметки, она может быть любой. Все зависит от типа устройства. При достижении отметки происходит «пробой». После случившегося «пробоя» через smd начинает течь обратный ток большого значения. Именно в этот момент и начинается работа данного элемента до времени превышения его допустимого предела.
Как отличить стабилизационный диод от обычного полупроводника
Очень часто люди задаются вопросом, как можно отличить стабилитрон от стандартного полупроводника, ведь, как мы выяснили раньше, оба этих элемента имеют практически идентичное обозначение на электросхеме и могут выполнять схожие функции.
Самым простым способом отличить стабилизационный полупроводник от обычного является использование схемы приставки к мультиметру. С его помощью можно не только отличить оба элемента друг от друга, но и выявить напряжение стабилизации, которое характерно для данного смд (если оно, конечно, не превышает 35В).
Схема приставки мультиметра является DC-DC преобразователем, в которой между входом и выходом имеется гальваническая развязка. Эта схема имеет следующий вид:
Схема приставки мультиметра
В ней генератор с широтно-импульсной модуляцией выполняется на специальной микросхеме МС34063, а для создания гальванической развязки между измерительной частью схемы и источником питания контрольное напряжение следует снимать с первичной обмотки трансформатора. Для этой цели имеется выпрямитель на VD2. При этом величина для выходного напряжения или тока стабилизации устанавливается путем подбора резистора R3. На конденсаторе С4 происходит выделение напряжения примерно в 40В.
При этом проверяемый смд VDX и стабилизатор для тока А2 будут формировать параметрический стабилизатор. Мультиметр, который подключили к выводам Х1 и Х2, будет измерять на данном стабилитроне напряжение.
При подключении катода к «-«, а анода к «+» диода, а также к несимметричному смд мультиметра, последний покажет незначительное напряжение. Если подключать в обратной полярности (как на схеме), то в ситуации с обычным полупроводником прибор будет регистрировать напряжение около 40В.
Обратите внимание! Для симметричного смд напряжение пробоя будет появляться при наличии любой полярности подключения.
Здесь трансформатор Т1 будет намотан на торообразном ферритовом сердечнике с внешним диаметром в 23 мм. Такая обмотка 1 будет содержать 20 витков, а вторая обмотка — 35 витков провода ПЭВ 0,43. При этом важно при намотке укладывать виток к витку. Следует помнить, что первичная обмотка идет на одной части кольца, а вторая – на другой.
Проводя настройку прибора, подключите резистор вместо smd VDX. Этот резистор должен иметь номинал 10 кОм. А сопротивление R3 нужно подбирать для того, чтобы добиться напряжения в 40В на конденсаторе С4
Вот так можно выяснить, стабилитрон у вас или обычный диод.
Подробно о цветовой маркировке стабилизирующего диода
Любой диод (стабилитрон и т.д.) на своем корпусе содержит специальную маркировку, которая отражает то, какой материал использовался для изготовления каждого конкретного полупроводника. Такая маркировка может иметь следующий вид:
Кроме этого маркировка отражает электрические свойства и назначение прибора. Обычно за это отвечает цифра. Буква, в свою очередь, отражает соответствующую разновидность устройства. Кроме этого маркировка содержит дату изготовления и условное обозначение изделия.
Смд интегрального типа часто содержат полную маркировку. В такой ситуации на корпусе изделия имеется условный код, который обозначает тип микросхемы. Пример расшифровки нанесенной на корпус кодовой маркировки для микросхем приведен на рисунке:
Пример маркировки микросхем
Кроме этого имеется еще и цветовая маркировка. Она существует в нескольких вариантах, но наиболее часто используется японская маркировка (JIS-C-7012). Обозначения цветовой маркировки приведены в следующей таблице.
Цветовая маркировка стабилитрона
- первая полоска обозначает тип устройства;
- вторая – полупроводник;
- третья – что это за прибор, а также, какая у него проводимость;
- четвертая — номер разработки;
- пятая — модификация устройства.
Нужно отметить, что четвертая и пятая полоски не очень важны для выбора изделия.
Заключение
Как видим, существует много разных маркировок и обозначений для стабилитрона, о которых нужно помнить при его выборе для домашней лаборатории и изготовления своими руками различных электротехнических приборов. Если хорошо владеть этим вопросом, то это залог правильного выбора.
Как проверить диод, светодиод и стабилитрон с помощью другого теста диодов
Как проверить диод? Методы испытаний диодов, светодиодов и стабилитроновВ проектах электронной техники диод является одним из наиболее важных компонентов. Очень важно и необходимо выполнить тест диода, прежде чем вставлять его в печатную плату. Чтобы избежать каких-либо бедствий или напрасно тратить ваше время, рекомендуется провести эти тесты диодов, прежде чем внедрять их в какую-либо схему.Мы проводим эти диодные испытания диодов, светодиодов и стабилитронов, чтобы увидеть, не повреждены ли они, сгорели или повреждены. Мультиметр — важный инструмент, используемый для этих испытаний диодов.
Перед установкой и поиском неисправностей любого диода, светодиода или стабилитрона необходимо иметь базовые знания об этих компонентах. В этой статье мы объяснили эти компоненты столько, сколько нам нужно для проверки диода, светодиода и стабилитрона.
Давайте перейдем к первому — «как проверить диод».
Как проверить диод?Перед проверкой диода вам необходимо получить базовые знания о диоде.
Что такое диод?Диод — это однонаправленный полупроводниковый компонент , который позволяет протекать току только в одном направлении и блокирует прохождение тока в другом направлении. если ток находится в пределах номинала диода.
Диод имеет очень низкое (идеально нулевое) сопротивление в одном направлении и очень высокое (идеально бесконечное) сопротивление в другом направлении.
Клеммы диода:Диод имеет две клеммы, которые называются , катод, (отрицательная клемма) и , анод, (положительная клемма).
Катод изготовлен из полупроводника N-типа , а анод изготовлен из полупроводника P-типа.
Когда катод и анод подключены к отрицательному и положительному выводу источника питания соответственно, диод начинает проводить и, как говорят, находится в прямом смещении .В этой конфигурации падение напряжения на диоде составляет около 0,3 В (в случае германиевого диода) или 0,7 В (в случае кремниевого диода).
И когда эти соединения меняются местами, то есть катод с положительным выводом и анод с отрицательным выводом, диод прерывает ток и, как говорят, находится в перевернутом смещении . В этом состоянии диод имеет очень высокое сопротивление и на нем появляется напряжение питания.
Визуальная идентификация анода и катода:Визуальная идентификация анодных и катодных выводов диода очень проста и удобна. Белая сторона с полосами диода — это Катод , а сторона без полосок — это Анод .
Тест сопротивления диода:Для проверки сопротивления диода необходимо использовать цифровой мультиметр DMM (цифровой мультиметр).
- Сначала установите цифровой мультиметр в режим сопротивления или Омметра с помощью ручки.
- Следующим шагом является удаление диода, если он находится в какой-либо цепи.
- Определите клеммы ( анод и катод ), используя приведенные выше инструкции.
- Поместите общий зонд (черный зонд) цифрового мультиметра на катод, а красный зонд на анод диода. Это конфигурация с прямым смещением . Теперь запишите чтение.
- Теперь поменяйте местами зонды так, чтобы красный зонд был на катоде, а черный зонд (общий зонд) был на аноде диода.Такая конфигурация становится обратным смещением . Теперь запишите также показания.
В конфигурации прямого смещения диод закроется, и омметр покажет очень низкое сопротивление (в идеале ноль).
Примечание. Во время проверки диода некоторые омметры могут иметь очень низкое испытательное напряжение для измерения сопротивления, которого может быть недостаточно, чтобы перевести диод в режим прямого смещения (диоду требуется 0,7 или более 0,7 В для смещения в прямом направлении).
В таком случае омметр считывает его в разомкнутом состоянии, и показание будет очень высоким. Для этих счетчиков отлично работает следующий метод
В конфигурации с обратным смещением диод открывается и обеспечивает очень высокое сопротивление . Таким образом, омметр покажет высокое сопротивление (в идеале — бесконечное).
Заключение :- В , прямое смещение , если показание сопротивления очень низкое (в идеале ноль), тогда диод исправен .
- В обратное смещение , если сопротивление очень (в идеале бесконечно), тогда диод исправен .
- Если в оба условия (прямое и обратное смещение), показание очень высокое , тогда говорят, что диод открыт , и вам необходимо его заменить.
- Если в оба условия (прямое и обратное смещение), показание очень низкое , то диод, вероятно, закорочен и его также необходимо заменить.
Режим тестирования диодов в мультиметре специально разработан для тестирования диодов. Он может совместно использовать другие функции в разных измерителях, такие как режим проверки целостности и т. Д.
- Установите цифровой мультиметр в режим проверки диодов .
- Удалите диод, если он установлен в какой-либо схеме.
- Определите терминалов, используя приведенные выше инструкции.
- Поместите общий зонд (черный зонд) на катод, а красный зонд на анод диода.Это делает его прямым смещением . Запишите чтение.
- Теперь поменяйте местами датчик на диоде так, чтобы черный датчик соединялся с анодом, а красный датчик — с катодом. Сейчас это обратное смещение . Запишите чтение.
- При прямом смещении исправный диод равен замкнутому , и цифровой мультиметр будет показывать менее 0,7 В (в случае кремниевого диода ) или 0.3v (в случае германия ).
- При обратном смещении диод будет в открытом состоянии , и цифровой мультиметр покажет бесконечность ( 1 или OL , что в цифровом мультиметре показывает бесконечность или превышение предела).
- Если показания в чем-то совпадают с показаниями, приведенными выше, то диод находится в исправном и хорошем состоянии.
- Если показание не находится рядом с этим, особенно в с прямым смещением , то диод, вероятно, сгорел или поврежден, и его необходимо заменить.
Чтобы проверить диод с помощью вольтметра , вам необходимо подключить диод к батарее и резистору, как показано ниже.
- Вам необходимо последовательно подключить резистор , чтобы ограничить ток, протекающий через него.
- Подайте напряжение, подключив его к аккумулятору в прямом смещении .
- Измерьте напряжение на диоде.
- Теперь поменяйте местами клеммы аккумулятора, чтобы поставить диод в обратном смещении .
- Измерьте напряжение на диоде.
- При смещении вперед вольтметр должен показывать 0,7 В (для кремниевого диода ) или 0,3 В (для германиевого диода ).
- При обратном смещении вольтметр должен считывать то же напряжение , что и источник питания.
- В смещение вперед , если показание вольтметра 0 В , то диод короткий .Если вольтметр показывает то же , что и , подает напряжение , тогда диод открыт . В обоих случаях диод неисправен и требует замены .
- В обратное смещение , если вольтметр показывает что-либо, кроме напряжения питания, диод неисправен .
Диод открыт и неисправен, его необходимо заменить в следующих случаях:
- В тесте сопротивления показания омметра показывают очень высокое сопротивление в в обеих конфигурациях (прямое и обратное).
- В режиме проверки диодов , если показание равно бесконечное ( 1 или 0L ) в обеих конфигурациях.
- В тесте вольтметр , если вольтметр показывает , равное напряжению питания в , обе конфигурации .
Диод закрыт и неисправен, его необходимо заменить в следующих случаях:
- Во время теста сопротивления , если показания очень низкие, в обеих конфигурациях (прямое и обратное).
- В режиме проверки диодов , если показания несколько соответствуют , то же в обеих конфигурациях.
- В тесте вольтметра , если вольтметр показывает 0 В, в одной или обеих конфигурациях.
LED — это светодиод . Это тип диода, который излучает свет, когда через него проходит ток. Как и диод, LED имеет удельное прямое падение напряжения от 1.8В на 3,3В в зависимости от цвета. Светодиод имеет две клеммы, известные как Anode & Cathode .
Визуальная идентификация светодиодных клемм:Обычно при производстве LED оконечная ножка Anode делается на длиннее , а клемма катода делается на короче . Итак, это один из способов распознать клеммы.
Второй способ — заглянуть внутрь светодиода .Плоский вывод по сравнению с другим выводом — это катод , а другой тонкий вывод — анод .
Использование режима тестирования диодов:- Переведите цифровой мультиметр в режим проверки диодов с помощью ручки.
- Отключите питание цепи от светодиода , если он находится под напряжением.
- Обозначьте клеммы, как показано в приведенных выше инструкциях.
- Поместите общий зонд (черный зонд) на катод , а красный зонд на анод светодиода .
- Светодиоды не работают при обратном смещении, поэтому нет необходимости проверять обратное смещение.
Если LED светится, значит хорошо . Если он не светится, значит, LED , вероятно, сгорел или поврежден .
Как проверить стабилитрон:Что такое стабилитрон:
Стабилитрон — это особый тип диода, который обычно работает при обратном смещении .При смещении вперед он действует как общий диод . Но что отличает его от обычного диода, так это то, что он также пропускает ток при обратном смещении , когда напряжение питания достигает напряжения стабилитрона (напряжения пробоя).
Идентификация клемм:Как и обычный диод, стабилитрон имеет ту же полоску над катодом , а сторона без полосок — это анод .
Тестирование Стабилитрон Диод:Стабилитрон можно проверить двумя следующими способами. Второй способ очень важен.
Использование диодного режима:Как мы уже говорили, стабилитрон работает так же, как и общий диод , поэтому метод проверки диода будет таким же для стабилитрона.
Смещение вперед покажет меньше, чем 0,7 В , а смещение назад покажет бесконечное ( 1 или OL ), потому что он будет блокировать ток, если измеритель не может обеспечить большее напряжение, чем его пробой стабилитрона напряжение .
С помощью вольтметра:Это важный метод проверки стабилитрона при обратном смещении . Вам необходимо узнать о напряжении пробоя стабилитрона из его таблицы данных, прежде чем тестировать его.
Допустим, у нашего стабилитрона напряжение пробоя 9в . И мы поставляем его 12v в обратном смещении . Стабилитрон должен построить на нем 9v и не превышать его.
Чтобы проверить стабилитрон, мы собираемся создать схему с резистором для ограничения тока и подключить его, как показано на рисунке ниже.
- С помощью вольтметра проверим на нем напряжение .
- Если показание напряжения совпадает с напряжением пробоя стабилитрона e из его таблицы данных, то стабилитрон находится в хорошем состоянии .
- Если напряжение увеличивается от номинального напряжения пробоя, то стабилитрон поврежден и его необходимо заменить.
Диоды бывают разных типов, и все диоды имеют одинаковые свойства.Таким образом, эти тесты диодов можно использовать для тестирования диодов любого типа.
вы также можете прочитать:
Идентификация и использование стабилитронов
Введение
Стабилитрон — это кремниевый диод, который оптимизирован для работы в так называемой области пробоя. Это означает, что они могут вести себя, когда у них обратное смещение. Это не похоже на обычные диоды, которые самоуничтожаются. Напряжение пробоя стабилитрона может составлять от 2 до 200 вольт, что делает его полезным во множестве приложений.
Одно из популярных применений — стабилизатор напряжения. Это связано со способностью стабилитрона поддерживать постоянное выходное напряжение при изменении тока в цепи. Это делает стабилитроны идеальными в качестве входов для других схем или в качестве источников опорного напряжения для операционных усилителей.
Тестирование
Стабилитроны проверяются так же, как и обычные диоды. Напомним, что диоды ведут себя как переключатель, который открыт в одном направлении, но закрыт в другом. Перед тестированием убедитесь, что мультиметр поставлен на диодную настройку.
Измерьте прямое смещение диода, поместив положительный или красный провод мультиметра на анодную часть диода. Это немаркированная сторона стабилитрона. Отрицательный или черный вывод мультиметра должен находиться на катоде или маркированной стороне диода. Кремниевый диод с прямым смещением должен показывать от 0,5 до 0,7 вольт, так что это значение, которое вы должны видеть для стабилитрона.
Для проверки напряжения обратного смещения переключите провода мультиметра. Мультиметр должен показывать перегрузку или отсутствие падения напряжения, указывая на отсутствие тока или бесконечное сопротивление.
Идентификация
Стабилитроны могут быть неотличимы от обычных диодов. Стабилитроны могут иметь темный пластиковый корпус с темной полосой, такой же окраски, как и у других диодов. Многие другие стабилитроны окрашены в медный цвет и заключены в стеклянный корпус с белой, черной или синей полосой. Третьи могут иметь металлические кожухи.
Если диод не закреплен и упаковки у вас нет, найдите номер на корпусе. Например, это может быть 1N4734A или 1N751.Этой информации достаточно, чтобы выполнить поиск с помощью любимой поисковой системы. Другой способ — перейти непосредственно на веб-сайт производителя или дистрибьютора, например Fairchild Semiconductor или Newark, и найти там компонент.
Иногда диод не болтается, а припаивается к плате. Он может быть спаян таким образом, что вы не сможете увидеть номер. В подобных случаях посмотрите, отображается ли на плате символ стабилитрона. Этот символ такой же, как и у обычного диода, за исключением того, что полоса, представляющая катод, имеет дополнительные линии, указывающие вверх и вниз.
Ссылки
Мальвино, Альфред. Электронные принципы. McGraw-Hill
Horowitz, Paul; Хилл, Уинфилд. Искусство электроники. Издательство Кембриджского университета
Ресурсы
Fairchild Semiconductor
Newark
National Semiconductor
Zener Diode Circuits & Design »Electronics Notes
Существует множество схем на стабилитронах, от схем опорного напряжения до схем, обеспечивающих защиту от переходных процессов напряжения.
Учебное пособие по стабилитрону / эталонному диоду В комплект входит: Стабилитрон
Теория работы стабилитрона
Технические характеристики стабилитрона
Схемы на стабилитронах
Другие диоды: Типы диодов
Стабилитроны или диоды опорного напряжения используются в различных схемах, чтобы они могли обеспечивать опорное напряжение.Они также могут использоваться в других схемах, кроме как просто обеспечивать опорное напряжение.
Существует множество схем, в которых используются стабилитроны, от очень простых схем на стабилитронах до гораздо более сложных.
Несколько примеров схем на стабилитронах приведены ниже вместе с некоторыми советами по проектированию схем.
Простая схема на стабилитроне, обеспечивающая опорное напряжение
Самая простая схема стабилитрона состоит из одного стабилитрона и резистора.Стабилитрон обеспечивает опорное напряжение, но для ограничения тока в диоде должен быть установлен последовательный резистор, в противном случае через него будет протекать большой ток, и он может выйти из строя.
Следует рассчитать номинал резистора в цепи стабилитрона, чтобы получить требуемое значение тока для используемого напряжения питания. Обычно максимальная рассеиваемая мощность большинства свинцовых стабилитронов с малой мощностью составляет 400 мВт. В идеале схема должна быть спроектирована так, чтобы рассеивать менее половины этого значения, но для правильной работы ток в стабилитроне не должен опускаться ниже примерно 5 мА, иначе они не будут регулироваться правильно.
Схема базового опорного напряжения на стабилитронеПример схемы
Возьмем случай, когда схема на стабилитроне используется для питания регулируемой шины 5,1 В, потребляющей 2 мА, от источника входного напряжения 12 В. Для расчета необходимого резистора можно использовать следующие простые шаги:
- Рассчитайте разность напряжений на последовательном резисторе 12 — 5,1 = 6,9 В
- Определите ток резистора. Выберите 15 мА.Это обеспечит достаточный запас выше минимального тока стабилитрона для некоторого изменения тока нагрузки.
- Проверить рассеиваемую мощность стабилитрона. При токе 15 мА и напряжении на рассеиваемой мощности: 15 мА x 5,1 В = 76,5 мВт
Это вполне соответствует максимальному пределу для диода . - Определите ток через последовательный резистор. Это 15 мА для стабилитрона плюс 2 мА для нагрузки, то есть 17 мА.
- Определите номинал последовательного резистора.Используя закон Ома, это можно рассчитать, исходя из падения напряжения на нем и полного тока через него: 6,9 / 17 мА = 0,405 кОм
Ближайшее значение составляет 390 Ом - Определите мощность последовательного резистора. Это можно определить, используя значение тока через резистор и рассчитанное ранее напряжение на нем: В x I = 6,9 В x 17 мА = 117 мВт
Резистор должен рассеивать этот уровень тепла. Для этого должно хватить резистора на четверть ватта.
Эта простая схема на стабилитроне широко используется в качестве простого метода обеспечения опорного напряжения.
Схема стабилитрона для БП с последовательным транзистором
Очень простая схема стабилитрона, обеспечивающая функцию шунтирующего стабилизатора, как показано выше, не особенно эффективна и не применима для многих приложений с более высокими токами. Одним из решений является использование схемы стабилитрона, в которой используется транзисторный буфер, который действует как транзистор с последовательным проходом.Ниже показана простая схема, в которой транзистор используется в качестве эмиттерного повторителя.
Схема простого стабилизатора напряжения на стабилитроне
При использовании этой схемы на стабилитроне необходимо рассчитать ток, требуемый от датчика потенциала стабилитрона. Это ток эмиттера транзистора, деленный на коэффициент усиления.
При выборе напряжения стабилитрона следует помнить, что напряжение эмиттера будет ниже напряжения стабилитрона на величину напряжения база-эмиттер — около 0.6 вольт для кремниевого транзистора.
Схема стабилитрона для защиты от перенапряжения
Другой вид схемы на стабилитроне — это схема защиты от перенапряжения. Эта схема стабилитрона использует стабилитрон несколько иначе, обнаруживая ток пробоя через диод при достижении определенного напряжения.
Хотя блоки питания обычно надежны, последствия отказа последовательного транзистора или полевого транзистора могут быть катастрофическими. Если устройство последовательной передачи выйдет из строя из-за короткого замыкания, полное нерегулируемое напряжение будет подаваться на цепи с использованием регулируемой мощности.Это может уничтожить все микросхемы, на которые подается питание.
Одно из решений — использовать схему с ломом. Когда эта форма схемы обнаруживает ситуацию перенапряжения, она запускает SCR. Это быстро снижает выходное напряжение и в показанном случае перегорает предохранитель, который отключает питание источника входного сигнала.
Схема защиты от перенапряжения на стабилитроне / тиристореСхема работает путем срабатывания тринистора при обнаружении перенапряжения. Стабилитрон выбирается так, чтобы иметь напряжение выше нормального рабочего напряжения — достаточный запас, чтобы не срабатывать при нормальных рабочих условиях, но достаточно малый, чтобы позволить току течь быстро при обнаружении неисправности.
В нормальных условиях работы выходное напряжение ниже обратного напряжения стабилитрона, и через него не течет ток, а затвор тиристора не срабатывает.
Однако, если напряжение поднимается выше допустимого напряжения, то есть напряжения пробоя стабилитрона, стабилитрон начинает проводить ток, тиристор срабатывает и предохранитель перегорает.
Наконечники стабилитронов
Стабилитрон — очень гибкий и полезный компонент схемы. Однако, как и в случае с любым другим компонентом электроники, есть несколько советов и подсказок, которые позволяют сделать из стабилитрона наилучшее.Их количество приведено ниже.
- Буферная схема стабилитрона с помощью цепи эмиттера или истокового повторителя: Чтобы напряжение на стабилитроне было как можно более стабильным, ток, протекающий через стабилитрон, должен быть постоянным. Любые изменения тока, потребляемого нагрузкой, должны быть минимизированы, так как они изменят ток через стабилитрон и вызовут небольшие колебания напряжения. Изменения, вызванные нагрузкой, можно минимизировать, используя каскад схемы эмиттерного повторителя для уменьшения тока, потребляемого от схемы стабилитрона, и, следовательно, наблюдаемых изменений.Это также имеет то преимущество, что можно использовать стабилитроны меньшего размера.
- Привод с источником постоянного тока для лучшей стабильности: Другой способ улучшить стабильность стабилитрона — использовать хороший источник постоянного тока. Простая схема, в которой используется только резистор, подходит для многих приложений, но более эффективный источник тока может обеспечить некоторые улучшения характеристик схемы, поскольку ток может поддерживаться практически независимо от любых изменений в шине питания.
- Выберите правильное напряжение для лучшей стабильности: В приложениях, где требуется стабильность при изменении температуры, стабилитрон опорного напряжения следует выбирать так, чтобы он имел напряжение около 5,5 вольт. Ближайшее предпочтительное значение составляет 5,6 В, хотя 5,1 В — еще одно популярное значение, учитывая его близость к 5 В, требуемым для некоторых семейств логики. Там, где требуются разные уровни напряжения, можно использовать стабилитрон на 5,6 В, а окружающую электронику можно использовать для преобразования его в требуемое выходное значение.
- Обеспечьте достаточный ток для обратного пробоя: Необходимо убедиться, что через диод проходит достаточный ток, чтобы он оставался в режиме обратного пробоя. Для типичного устройства мощностью 400 мВт необходимо поддерживать ток около 5 мА. Для получения точных значений минимального тока следует обращаться к таблице данных для конкретного устройства и напряжения. Если этот минимальный ток не подается, диод не будет проводить должным образом, и вся цепь не будет работать.
- Убедитесь, что максимальные пределы тока для стабилитрона не превышены: Хотя необходимо обеспечить прохождение достаточного тока через стабилитрон, максимальные пределы не должны превышаться. Это может быть немного уравновешивающим действием в некоторых схемах, поскольку изменения тока нагрузки будут вызывать изменение тока стабилитрона. Следует соблюдать осторожность, чтобы не превысить максимальный ток или максимальную рассеиваемую мощность (напряжение стабилитрона x ток стабилитрона). Если это кажется проблемой, можно использовать схему эмиттерного повторителя для буферизации стабилитрона и увеличения допустимого тока.
Стабилитроны очень просты в использовании, поэтому существует множество различных схем стабилитронов. При использовании с некоторыми мерами предосторожности они работают хорошо, но иногда могут вызывать некоторые проблемы, но следование указанным выше советам и рекомендациям поможет избежать большинства проблем.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
Стабилитрон делает паршивый стабилизатор
Стабилитрон часто используется для создания опорного напряжения. В учебных пособиях и даже учебных пособиях упоминается создание стабилизатора на основе стабилитрона. Идея состоит в том, что стабилитрон поддерживает известное падение напряжения. Проблема в том, что текущее имеет значение. В этом посте представлен краткий обзор стабилитронов и показано, что произошло, когда я попытался запитать микроконтроллер с помощью стабилизатора стабилитрона.”
Обзор стабилитроновКраткий обзор, если вы не знакомы с стабилитронами. Как и обычные диоды, стабилитроны имеют низкое прямое напряжение. Обычно у вас напряжение около 0,7. Однако разные наборы материалов могут иметь разное прямое напряжение.
Также, как и в обычных диодах, существует обратное напряжение пробоя. Если вы посмотрите на здоровенный диод, такой как 1n4001, вы обнаружите, что напряжение пробоя начинается с 50 вольт.
1n4001 Напряжение обратного пробоя
Стабилитроныуникальны тем, что их обратное напряжение пробоя относительно низкое.Например, у меня есть такие, которые на 3,3, 5,0, 9,1 и 12 вольт. (Интересные цифры, не правда ли?)
Кривая показывает, что выше прямого напряжения и «ниже» обратного напряжения диод проводит. Я заключил ниже в кавычки, потому что это предполагает отрицательный потенциал. Этот комментарий не означает, что вам нужен источник отрицательного напряжения, просто диод имеет обратное смещение. Также известен как обернулся.
Стабилитрон
Как уже упоминалось, идея стабилитрона заключается в том, что на диоде падает стабильное напряжение при обратном смещении.Более того, с такими значениями, как 3.3 и 5.0, о которых я упоминал ранее, это начинает звучать как хороший вариант, не так ли?
BZX79C3V3 от Fairchild (на полу)
Давайте возьмем BZX79C3V3 в качестве примера стабилитрона. Обратите внимание в таблице характеристик, что обратное напряжение составляет 3,3 В при 5,0 мА.
Идея состоит в том, что вы выбираете номинал резистора, возможно, даже прецизионное значение, чтобы создать ток, достаточный для обратного смещения стабилитрона на 5,0 мА.
Однако есть проблема с этой базовой схемой.Ток, протекающий через нагрузку, также должен протекать через резистор. В соответствии с законом Ома падение напряжения на резисторе изменяется в зависимости от протекающего тока.
Питание ESP8266 с стабилитроном
Используя приведенную выше схему, я попытался запитать ESP8266 от источника питания 5,0 В. Перед построением этой схемы я измерил, что ток, потребляемый ESP8266, составляет 60 мА при питании от источника питания 3,3 В.
При использовании стабилитрона 3,3 В на последовательном резисторе падает 1.7 вольт. При 60 мА на нагрузке и 5 мА для стабилитрона закон Ома говорит нам, что нам нужен резистор 28 Ом. Ближайшее значение, которое у меня есть, 22 Ом.
Когда я подключил схему, с ESP8266 ничего не произошло. Узел VOUT измерял около 0,9 вольт. Что еще хуже, независимо от того, какое напряжение источника я сделал, на узле VOUT оставалось 0,9 вольт.
Догадавшись, я уменьшил сопротивление резистора примерно на 10 Ом.
Когда я измерил мультиметром, то увидел только 1.8 вольт на делителе. Однако ESP8266 работал. После сброса ESP8266 увидел 2,5 вольта. И в зависимости от того, какой вес был на моей левой или правой ноге, любое промежуточное значение.
Так что, черт возьми, здесь происходит? Что ж, во-первых, спасибо, что продолжаете читать, прежде чем переходить к комментариям, чтобы сказать следующее утверждение. Вы не можете рассматривать микроконтроллер, особенно систему на кристалле (SOC), как постоянную нагрузку.
Когда я нажимаю и удерживаю кнопку RESET, узел Vout переходит к хорошему чистому 3.4 вольта. В этот момент большинство активных цепей в микросхеме отключено.
Поскольку ESP8266 был нагрузкой с высоким импедансом, почти весь ток в этой цепи протекает через последовательный резистор и ESP8266. Величина тока была ошеломляющей, почти 200 мА. Что ж, ошеломляюще, когда можно было ожидать только около шестидесяти.
Больше проблем с стабилитроном
Все это упражнение должно было показать, почему стабилитрон — плохой стабилизатор. Падение напряжения слишком сильно зависит от тока, протекающего через переход.Это означает, что «схема регулятора» зависит от постоянной нагрузки. Любое активное устройство вызовет нестабильность узла VOUT.
Так что же хорошего в этой схеме стабилитрона? Ну это не регулятор. Вместо этого это ссылка.
Например, вы можете использовать аналогичную схему на AREF Arduino. Допустим, вы используете аналоговый датчик, который выдает максимум 3 В. Использование опорного стабилитрона может дать аналого-цифровому преобразователю большее разрешение.
Вы можете использовать стабилитрон в качестве эталона для операционного усилителя.Эта схема не слишком отличается от того, как работают линейные регуляторы.
Урок здесь в том, что если вы хотите использовать схему стабилизатора на стабилитроне, вам необходимо пересмотреть свою конструкцию. В некоторых очень редких или сложных случаях это сработает.
Если вы использовали стабилитрон в качестве регулятора, а не для справки, оставьте комментарий ниже. Я хотел бы услышать, как вы это использовали.
Что такое стабилитроны? | Диоды и выпрямители
Что такое стабилитрон?
Стабилитрон — это особый тип выпрямительного диода, который может выдерживать пробой из-за обратного напряжения пробоя без полного отказа.Здесь мы обсудим концепцию использования диодов для регулирования падения напряжения и то, как стабилитрон работает в режиме обратного смещения для регулирования напряжения в цепи.
Как диоды регулируют падение напряжения
Если мы подключим диод и резистор последовательно к источнику постоянного напряжения так, чтобы диод был смещен в прямом направлении, падение напряжения на диоде останется довольно постоянным в широком диапазоне напряжений источника питания, как показано на рисунке (а) ниже.
Ток через смещенный в прямом направлении PN-переход пропорционален величине e , возведенной в степень прямого падения напряжения.Поскольку это экспоненциальная функция, ток растет довольно быстро при небольшом увеличении падения напряжения.
Другой способ рассмотреть это — сказать, что напряжение, падающее на диоде с прямым смещением, мало изменяется при больших изменениях тока диода. В схеме, показанной на рисунке (а) ниже, ток диода ограничен напряжением источника питания, последовательным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольт.
Прямо смещенный Si-эталон: (а) одиночный диод, 0.7В, (б) 10-диодов последовательно 7.0В.
Если бы напряжение источника питания было увеличено, падение напряжения резистора увеличилось бы почти на такую же величину, а напряжение диода упало бы совсем немного. И наоборот, уменьшение напряжения источника питания привело бы к почти одинаковому уменьшению падения напряжения на резисторе с небольшим уменьшением падения напряжения на диодах.
Короче говоря, мы могли бы резюмировать это поведение, сказав, что диод регулирует падение напряжения примерно на 0.7 вольт.
Использование регулирования напряжения
Регулировка напряжения — это полезное свойство диодов. Предположим, мы строим какую-то схему, которая не может выдерживать колебаний напряжения источника питания, но должна питаться от химической батареи, напряжение которой изменяется в течение срока ее службы. Мы могли бы сформировать схему, как показано выше, и подключить схему, требующую постоянного напряжения на диоде, где он будет получать неизменное 0,7 вольт.
Это, безусловно, сработает, но для большинства практических схем любого типа требуется напряжение источника питания выше 0.7 вольт для нормальной работы. Один из способов увеличить нашу точку стабилизации напряжения — это соединить несколько диодов последовательно, чтобы их индивидуальные прямые падения напряжения по 0,7 вольта добавлялись к каждому, создавая большую сумму.
Например, в нашем примере выше [рисунок (b)], если бы у нас было десять последовательно соединенных диодов, регулируемое напряжение было бы в десять раз 0,7 или 7 вольт.
До тех пор, пока напряжение батареи никогда не опускается ниже 7 вольт, на десятидиодной «стопке» всегда будет падать около 7 вольт.”
Как стабилитроны регулируют напряжение
Если требуются более высокие регулируемые напряжения, мы могли бы либо использовать больше диодов последовательно (на мой взгляд, это неэлегантный вариант), либо попробовать принципиально другой подход.
Мы знаем, что прямое напряжение на диоде является довольно постоянной величиной в широком диапазоне условий, как и напряжение обратного пробоя . Напряжение пробоя обычно намного больше прямого напряжения.
Если бы мы поменяли полярность диода в нашей схеме однодиодного стабилизатора и увеличили напряжение источника питания до точки, в которой диод «сломался» (то есть он больше не мог выдерживать напряжение обратного смещения, подаваемое на него) диод аналогичным образом регулирует напряжение в этой точке пробоя, не позволяя ему расти дальше.Это показано на рисунке (а) ниже.
(a) Кремниевый малосигнальный диод с обратным смещением выходит из строя при напряжении около 100 В. (b) Символ стабилитрона.
К сожалению, когда обычные выпрямительные диоды «выходят из строя», они обычно разрушаются. Однако можно создать диод особого типа, который выдержит пробой без полного отказа. Этот тип диода называется стабилитроном , и его символ показан на рисунке (b) выше.
При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: у них прямое падение напряжения, которое соответствует «уравнению диода» и составляет около 0.7 вольт. В режиме обратного смещения они не проводят до тех пор, пока приложенное напряжение не достигнет или не превысит так называемое напряжение Зенера , в этот момент диод может проводить значительный ток, и при этом будет пытаться ограничить падение напряжения на это к той точке напряжения Зенера.
Пока мощность, рассеиваемая этим обратным током, не превышает тепловые пределы диода, диод не будет поврежден. По этой причине стабилитроны иногда называют «диодами пробоя».”
Схема стабилитрона
Стабилитроныпроизводятся с напряжением стабилитрона от нескольких вольт до сотен вольт. Это напряжение стабилитрона незначительно изменяется с температурой, и, как и обычные значения резисторов из углеродного состава, может быть от 5 до 10 процентов с погрешностью от спецификаций производителя. Однако эта стабильность и точность обычно достаточно хороши для использования стабилитрона в качестве устройства регулятора напряжения в общей цепи питания, показанной на рисунке ниже.
Схема стабилитрона, напряжение стабилитрона = 12,6 В).
Работа стабилитрона Обратите внимание на ориентацию стабилитрона в приведенной выше схеме: диод имеет обратное смещение , и это сделано намеренно. Если бы мы сориентировали диод «нормальным» образом, чтобы он был смещен в прямом направлении, он бы упал всего на 0,7 В, как и обычный выпрямительный диод. Если мы хотим использовать свойства обратного пробоя этого диода, мы должны использовать его в режиме обратного смещения.Пока напряжение источника питания остается выше напряжения стабилитрона (в данном примере 12,6 вольт), падение напряжения на стабилитроне будет оставаться на уровне примерно 12,6 вольт.
Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Чрезмерная температура разрушит стабилитрон, и, поскольку он снижает напряжение и проводит ток, он производит собственное тепло в соответствии с законом Джоуля (P = IE). Следовательно, нужно быть осторожным при проектировании схемы регулятора таким образом, чтобы не превышалась допустимая мощность рассеиваемой мощности диода.Достаточно интересно, что когда стабилитроны выходят из строя из-за чрезмерного рассеивания мощности, они обычно выходят из строя , закорачивая , а не открываясь. Диод, вышедший из строя таким образом, легко обнаруживается: он падает почти до нуля при смещении в любую сторону, как кусок проволоки.
Математический анализ цепи стабилитрона
Давайте рассмотрим схему стабилизации стабилитрона математически, определив все напряжения, токи и рассеиваемую мощность. Взяв ту же форму схемы, показанную ранее, мы выполним вычисления, предполагая, что напряжение Зенера равно 12.6 вольт, напряжение источника питания 45 вольт и номинальное сопротивление последовательного резистора 1000 Ом (мы будем считать, что напряжение стабилитрона равно , ровно 12,6 вольт, чтобы не квалифицировать все цифры как «приблизительные» на рисунке а) ниже
Если напряжение стабилитрона составляет 12,6 вольт, а напряжение источника питания составляет 45 вольт, на резисторе будет падать 32,4 вольт (45 — 12,6 вольт = 32,4 вольт). Падение 32,4 В на 1000 Ом дает 32,4 мА тока в цепи. (Рисунок ниже (b))
(a) Зенеровский стабилизатор напряжения с резистором 1000 Ом.(б) Расчет падений напряжения и тока.
Мощность рассчитывается путем умножения тока на напряжение (P = IE), поэтому мы можем довольно легко рассчитать рассеиваемую мощность как для резистора, так и для стабилитрона:
Подойдет стабилитрон с номинальной мощностью 0,5 Вт, а также резистор с мощностью рассеяния 1,5 или 2 Вт.
Схема стабилитрона с повышенным сопротивлением
Если чрезмерное рассеивание мощности вредно, то почему бы не спроектировать схему с наименьшим возможным рассеиванием? Почему бы просто не рассчитать резистор на очень высокое значение сопротивления, тем самым резко ограничив ток и сохранив очень низкие показатели рассеиваемой мощности? Возьмем, например, эту схему с резистором 100 кОм вместо резистора 1 кОм.Обратите внимание, что как напряжение источника питания, так и напряжение стабилитрона диода на рисунке ниже идентичны последнему примеру:
Стабилизатор стабилитрона с резистором 100 кОм.
При токе только 1/100 от того, что было раньше (324 мкА вместо 32,4 мА), оба значения рассеиваемой мощности должны быть в 100 раз меньше:
Рекомендации по сопротивлению нагрузки
Кажется идеальным, не правда ли? Меньшая рассеиваемая мощность означает более низкие рабочие температуры как диода, так и резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления действительно снижает уровень рассеиваемой мощности в цепи, но, к сожалению, создает другую проблему.Помните, что цель схемы регулятора — обеспечить стабильное напряжение для другой схемы . Другими словами, мы в конечном итоге собираемся запитать что-то с напряжением 12,6 вольт, и это что-то будет иметь собственное потребление тока.
Рассмотрение понижающего резистора с меньшим значением
Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону на рисунке ниже.
Стабилизатор стабилитрона с последовательным резистором 1000 Ом и нагрузкой 500 Ом.
Если на нагрузке 500 Ом поддерживается 12,6 В, нагрузка потребляет ток 25,2 мА. Чтобы «падающий» резистор с сопротивлением 1 кОм упал на 32,4 В (уменьшив напряжение источника питания с 45 В до 12,6 на стабилитроне), он все равно должен проводить ток 32,4 мА. Это оставляет 7,2 мА тока через стабилитрон.
Рассмотрение резистора с понижением более высокого значения
Теперь рассмотрим нашу схему «энергосберегающего» регулятора с понижающим резистором 100 кОм, обеспечивающую питание той же нагрузки 500 Ом.Что он должен делать, так это поддерживать 12,6 вольт на нагрузке, как и в последней цепи. Однако, как мы увидим, не может выполнить эту задачу. (Рисунок ниже)
Нерегуляторный стабилитрон с последовательным резистором 100 кОм и нагрузкой 500 Ом.>
При большем значении понижающего резистора на месте будет только около 224 мВ напряжения на нагрузке 500 Ом, что намного меньше ожидаемого значения 12,6 вольт! Почему это? Если бы у нас действительно было 12,6 вольт на нагрузке, она бы потребляла 25.2 мА тока, как и раньше. Этот ток нагрузки должен был пройти через последовательный понижающий резистор, как это было раньше, но с новым (гораздо большим!) Понижающим резистором на месте падение напряжения на этом резисторе при токе 25,2 мА, проходящем через него, составит 2520 вольт! Поскольку очевидно, что аккумулятор не имеет такого большого напряжения, этого не может произойти.
Анализ более высокого сопротивления падению без стабилитрона
Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.
Нерегулятор со снятым стабилитроном.
Понижающий резистор 100 кОм и сопротивление нагрузки 500 Ом включены последовательно друг с другом, что дает общее сопротивление цепи 100,5 кОм. При общем напряжении 45 В и общем сопротивлении 100,5 кОм закон Ома (I = E / R) говорит нам, что ток будет 447,76 мкА. Рассчитав падение напряжения на обоих резисторах (E = IR), мы получаем 44,776 В и 224 мВ соответственно.
Если бы мы переустановили стабилитрон в этот момент, он также «увидел бы» 224 мВ на нем, параллельно сопротивлению нагрузки.Это намного ниже напряжения пробоя стабилитрона диода, поэтому он не «пробивается» и не проводит ток. Если уж на то пошло, при таком низком напряжении диод не будет проводить, даже если он будет смещен в прямом направлении! Таким образом, диод перестает регулировать напряжение. Чтобы «активировать» его, необходимо упасть минимум 12,6 вольт.
Аналитическая методика удаления стабилитрона из схемы и проверки наличия достаточного напряжения, чтобы заставить его проводить, является правильной. Тот факт, что стабилитрон включен в цепь, не гарантирует, что на нем всегда будет падать полное напряжение стабилитрона! Помните, что стабилитроны работают по принципу , ограничивая напряжение до некоторого максимального уровня; они не могут заменить из-за отсутствия напряжения.
Правило в работе стабилитрона
Таким образом, любая схема стабилизации на стабилитронах будет работать до тех пор, пока сопротивление нагрузки равно некоторому минимальному значению или превышает его. Если сопротивление нагрузки слишком низкое, он будет потреблять слишком большой ток, слишком большое падение напряжения на последовательном понижающем резисторе, оставляя недостаточное напряжение на стабилитроне, чтобы заставить его проводить. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение нагрузки упадет ниже точки регулирования.
Расчет сопротивления нагрузки для некоторых резисторов падения
Однако наша схема регулятора с понижающим резистором 100 кОм должна подходить для некоторого значения сопротивления нагрузки. Чтобы найти это приемлемое значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в последовательной цепи с двумя резисторами (без диода), вставив известные значения общего напряжения и сопротивления падающего резистора и рассчитав ожидаемое напряжение нагрузки 12,6 В. :
С общим напряжением 45 В и 12.6 вольт на нагрузке, у нас должно быть 32,4 вольт на R , падение :
При 32,4 В на падающем резисторе и сопротивлении 100 кОм ток через него будет 324 мкА:
Поскольку цепь является последовательной, ток во всех компонентах в любой момент времени одинаков:
Расчет сопротивления нагрузки теперь является простым делом закона Ома (R = E / I), что дает нам 38,889 кОм:
Таким образом, если сопротивление нагрузки равно 38.889 кОм, на нем будет 12,6 вольт, диод или без диода. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению нагрузки менее 12,6 В, диод или отсутствие диода. При установленном диоде напряжение нагрузки будет регулироваться максимум до 12,6 В для любого сопротивления нагрузки больше , чем 38,889 кОм.
При исходном значении падающего резистора 1 кОм наша схема регулятора смогла адекватно регулировать напряжение даже при сопротивлении нагрузки всего 500 Ом.Мы видим компромисс между рассеиваемой мощностью и допустимым сопротивлением нагрузки. Понижающий резистор большего номинала дал нам меньше рассеиваемой мощности за счет повышения допустимого минимального значения сопротивления нагрузки. Если мы хотим регулировать напряжение для низких сопротивлений нагрузки, схема должна быть подготовлена к более высокому рассеиванию мощности.
Как стабилитрон регулирует напряжение
Стабилитронырегулируют напряжение, действуя как дополнительные нагрузки, потребляя больше или меньше тока, если это необходимо для обеспечения постоянного падения напряжения на нагрузке.Это аналогично регулированию скорости автомобиля путем торможения, а не путем изменения положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть сконструированы так, чтобы справляться со всей мощностью двигателя, когда условия движения этого не требуют.
Несмотря на эту фундаментальную неэффективность конструкции, схемы стабилизаторов на стабилитронах получили широкое распространение благодаря своей простоте. В приложениях с большой мощностью, где неэффективность недопустима, применяются другие методы регулирования напряжения.Но даже в этом случае небольшие схемы на основе стабилитронов часто используются для обеспечения «эталонного» напряжения для управления более эффективной схемой усилителя, управляющей основной мощностью.
Напряжение общего стабилитрона
Стабилитроныпроизводятся со стандартными номинальными напряжениями, указанными в таблице ниже. В таблице «Общие напряжения стабилитронов» указаны стандартные напряжения для компонентов мощностью 0,3 Вт и 1,3 Вт. Мощность соответствует размеру кристалла и корпуса и представляет собой мощность, которую диод может рассеять без повреждений.
Напряжение на обычных стабилитронах
0.5 Вт | ||||||
2,7 В | 3,0 В | 3,3 В | 3,6 В | 3,9 В | 4,3 В | 4,7 В |
5,1 В | 5,6 В | 6,2 В | 6,8 В | 7,5 В | 8,2 В | 9,1 В |
10 В | 11 В | 12 В | 13 В | 15 В | 16 В | 18 В |
20 В | 24 В | 27 В | 30 В | |||
1.3Вт | ||||||
4,7 В | 5,1 В | 5,6 В | 6,2 В | 6,8 В | 7,5 В | 8,2 В |
9,1 В | 10 В | 11 В | 12 В | 13 В | 15 В | 16 В |
18 В | 20 В | 22 В | 24 В | 27 В | 30 В | 33В |
36 В | 39 В | 43В | 47 В | 51 В | 56 В | 62 В |
68 В | 75 В | 100 В | 200 В |
Ограничитель стабилитрона: Схема ограничения, которая ограничивает пики формы сигнала приблизительно при напряжении стабилитрона диодов.В схеме на рисунке ниже два стабилитрона соединены последовательно друг с другом, чтобы симметрично ограничить форму волны почти при напряжении стабилитрона. Резистор ограничивает ток, потребляемый стабилитронами, до безопасного значения.
* SPICE 03445.eps D1 4 0 диод D2 4 2 диода R1 2 1 1.0k V1 1 0 SIN (0 20 1k). Модель диода d bv = 10 .tran 0,001 м 2 м. Конец |
Ограничитель стабилитрона:
Напряжение пробоя стабилитрона для диодов устанавливается равным 10 В параметром модели диода «bv = 10» в списке цепей spice на рисунке выше.Это приводит к срезанию стабилитронов при напряжении около 10 В. Вставные диоды срезают оба пика. Для положительного полупериода верхний стабилитрон смещен в обратном направлении, выходя из строя при напряжении стабилитрона 10 В. Нижний стабилитрон падает примерно на 0,7 В, поскольку он смещен в прямом направлении. Таким образом, более точный уровень отсечения составляет 10 + 0,7 = 10,7 В. Аналогичное отрицательное ограничение полупериода происходит при -10,7 В. (Рисунок ниже) показывает уровень ограничения при чуть более ± 10 В.
Ограничитель стабилитрона: вход v (1) ограничивается формой волны v (2).
ОБЗОР:
- Стабилитроны предназначены для работы в режиме обратного смещения, обеспечивая относительно низкий стабильный пробой, или напряжение Зенера, , при котором они начинают проводить значительный обратный ток.
- Стабилитрон может работать как регулятор напряжения, действуя как дополнительная нагрузка, потребляя больше тока от источника, если напряжение слишком высокое, и меньше, если оно слишком низкое.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Как собрать тестер стабилитронов | Как попасть в Wiki
Это схема для проверки стабилитронов.Он подключается к линии 120 В переменного тока и повышает выходное напряжение до более 300 В, что позволяет тестировать стабилитроны любого напряжения. В схеме также есть кнопочный переключатель для утроения тока, если это необходимо. К выходу крепятся 2 пары зажимов типа «крокодил». Одну пару нужно прикрепить к диоду. Вторая пара — для подключения к мультиметру. Напряжение на диоде отображается на мультиметре.
Предупреждение
Следует отметить, что эта цепь может быть опасной. Он подключен непосредственно к линии переменного тока и имеет выходное напряжение 300 В.У выхода есть резисторы на каждой линии, которые ограничивают ток, что делает его немного безопаснее, но все равно вас сильно шокирует.
При установке и снятии стабилитрона он должен быть выключен и свет не должен светиться
Компоненты
Схема
Описание
- Выходное напряжение
В этой схеме используются два выпрямителя и конденсаторы для повышения и выпрямления входного переменного напряжения примерно до 320 В постоянного тока.R4 и R5 относительно большие и ограничивают выходной ток небольшой величиной. Поэтому, когда вы подключаете стабилитрон, он создает шунтирующую цепь, а выходное напряжение устанавливается стабилитроном.
- Выходной ток
R4 и R5 относительно велики и ограничивают выходной ток небольшой величиной. С диодом низкого напряжения максимальный ток составляет около 4 мА. Если вы нажмете кнопку, сила тока утроится. Если стабилитрон большой, ток будет очень низким, возможно, слишком низким, поэтому вам, возможно, придется использовать кнопку тройника тока.
- Ток стабилитрона против напряжения стабилитрона
- Нормальный режим тока: Iz = (320 — Vz) / (R4 + R5)
- Режим тройного тока: Iz = (320 — Vz) / (R4)
- Разряд
320 В — высокое напряжение и может быть опасным. Поэтому важно снизить напряжение до безопасного уровня, прежде чем прикасаться к контактам. R3 используется для разряда нижнего конденсатора, а R2 используется для быстрого разряда нижнего конденсатора при отключении питания.R1 используется для разряда верхнего конденсатора, а неоновая лампа разряжает верхний конденсатор, когда его напряжение превышает 80 В. Поэтому, когда переключатели выключены, нижний конденсатор быстро разряжается, и выходное напряжение почти мгновенно снижается до 160 В. Верхний конденсатор разряжается медленнее. Понижение напряжения до 80 В и выключение лампы занимает около 2–3 секунд, а для снижения до 10 В требуется около 7 секунд. Но когда лампа погаснет, ее можно будет коснуться и добавить / убрать диод.
Как использовать
- Проверка стабилитрона
- Отключите питание, убедитесь, что свет не горит
- Присоедините мультиметр, положительный к положительному (красный), отрицательный к отрицательному (зеленый)
- Установите мультиметр на постоянное напряжение в диапазоне, который вы ожидаете от диода
- Присоедините стабилитрон, положительный к положительному (красный), отрицательный к отрицательному (зеленый)
- Включить тестер
- Считайте показания мультиметра, и это обратное напряжение стабилитронов.
- Если напряжение меньше 1 В, возможно, диод подключен в обратном направлении, или это не стабилитрон
- Если напряжение не является относительно постоянным, стабилитрон неисправен или это не стабилитрон
- Если вам нужно проверить его с большим током, нажмите кнопку, и сила тока будет утроена.
- Если вы тестируете высоковольтные стабилитроны, вам, вероятно, понадобится этот
- Если вы тестируете стабилитроны с более низким напряжением, напряжение должно измениться лишь незначительно.
- Снять диод
- Отключить питание
- Подождите, пока не погаснет свет
- Удалите диод
Стабилитрон — Last Minute Engineers
Обычные кремниевые диоды блокируют любой ток через них, когда они смещены в обратном направлении, и выходят из строя, когда обратное напряжение слишком велико.Поэтому эти диоды никогда намеренно не эксплуатируются в области пробоя.
Стабилитроны разные. Они специально разработаны для безотказной работы в зоне пробоя. По этой причине стабилитроны иногда называют диодами пробоя .
Стабилитроны являются основой регуляторов напряжения и схем, которые поддерживают почти постоянное напряжение нагрузки, несмотря на большие изменения напряжения сети и сопротивления нагрузки.
На следующих рисунках показаны схематические обозначения стабилитрона.В любом символе линии напоминают « Z », что означает « Zener ».
Стабилитрон, работающий
Стабилитрон может работать в любом из трех регионов: прямой, утечка и пробой. Давайте разберемся в этом через график ВАХ стабилитрона.
Область прямого смещения
При прямом смещении стабилитроны ведут себя так же, как обычные кремниевые диоды, и начинают проводить при напряжении около 0,7 В
Область утечки
Область утечки существует между нулевым током и пробоем.
В области утечки через диод протекает небольшой обратный ток. Этот обратный ток вызван термически образованными неосновными носителями.
Область пробоя
Если вы продолжите увеличивать обратное напряжение, вы в конечном итоге достигнете так называемого напряжения стабилитрона В Z диода.
В этот момент в слое обеднения полупроводников происходит процесс, называемый лавинным пробоем, и диод начинает сильно проводить в обратном направлении.
На графике видно, что пробой имеет очень резкий перегиб, за которым следует почти вертикальное увеличение тока. Обратите внимание, что напряжение на стабилитроне практически постоянно и примерно равно V Z на большей части области пробоя.
На графике также показан максимальный обратный ток I Z (Макс) . Пока обратный ток меньше I Z (макс.) , диод работает в безопасном диапазоне. Если ток превысит I Z (Max) , диод выйдет из строя.
Стабилитрон напряжения
Стабилитрон поддерживает постоянное выходное напряжение в области пробоя, даже если ток через него меняется. Это важная особенность стабилитрона, который можно использовать в стабилизаторах напряжения. Поэтому стабилитрон иногда называют диодом-стабилизатором напряжения .
Например, выход полуволнового, двухполупериодного или мостового выпрямителей состоит из пульсаций, наложенных на напряжение постоянного тока. Подключив простой стабилитрон к выходу выпрямителя, мы можем получить более стабильное выходное напряжение постоянного тока.
На следующем рисунке показан простой стабилизатор напряжения стабилитрона (также известный как стабилитрон).
Для работы стабилитрона в состоянии пробоя стабилитрон имеет обратное смещение путем подключения его катода к положительной клемме входного источника питания.
Последовательный (токоограничивающий) резистор R S включен последовательно с стабилитроном, так что ток, протекающий через диод, меньше его максимального номинального тока. В противном случае стабилитрон перегорит, как и любой прибор, из-за слишком большого рассеивания мощности.
Источник напряжения V S подключен к комбинации. Кроме того, чтобы поддерживать диод в состоянии пробоя, напряжение источника V S должно быть больше, чем напряжение пробоя стабилитрона V Z .
Стабилизированное выходное напряжение V out снимается через стабилитрон.
Работа при пробое
Чтобы проверить, работает ли стабилитрон в области пробоя, нам нужно рассчитать, какое напряжение Тевенина испытывает диод.
Напряжение Thevenin — это напряжение, которое существует, когда стабилитрон отключен от цепи.
Из-за делителя напряжения можно написать:
Когда это напряжение превышает напряжение стабилитрона, происходит пробой.
Последовательный ток
Напряжение на последовательном резисторе равно разнице между напряжением источника и напряжением стабилитрона. Следовательно, согласно закону Ома, ток через последовательный резистор равен:
Последовательный ток остается неизменным независимо от того, есть ли нагрузочный резистор или нет.Это означает, что даже если вы отключите нагрузочный резистор, ток через последовательный резистор будет равен напряжению на резисторе, деленному на сопротивление.
Напряжение нагрузки и ток нагрузки
Поскольку нагрузочный резистор включен параллельно стабилитрону, напряжение нагрузки совпадает с напряжением стабилитрона.
Используя закон Ома, мы можем рассчитать ток нагрузки:
Ток Зенера
Стабилитрон и резистор нагрузки включены параллельно.Полный ток равен сумме их токов, которая равна току через последовательный резистор.
Это говорит нам о том, что ток стабилитрона равен последовательному току минус ток нагрузки.
Напряжение на обычных стабилитронах
Стабилитроны производятся со стандартными номинальными напряжениями, указанными в таблице ниже. В таблице указаны стандартные напряжения для деталей 0,3 Вт и 1,3 Вт .
2,7 В | 3,0 В | 3.3V | 3,6 В | 3,9 В | 4,3 В | 4,7 В | ||||||||||
5,1 В | 5,6 В | 6,2 В | 6,8 В | 7,5 В | 8,2 В | 10В | 11В | 12В | 13В | 15В | 16В | 18В | ||||
20В | 24В | 27В | 30В 56 | 7 В | 5,1 В | 5,6 В | 6,2 В | 6,8 В | 7,5 В | 8,2 В | ||||||
9,1 В | 10 В | 11 В | 12 В | 13 В | 12 В | 13 В | ||||||||||
18V | 20V | 22V | 24V | 27V | 30V | 33V | ||||||||||
36V | 39V | 511059 43V59594759 | 75V | 100V | 200V |
Мощность соответствует мощности, которую диод может рассеивать без повреждений.
Приложения на стабилитронах
До сих пор мы видели, как стабилитроны можно использовать для регулирования постоянного источника постоянного тока. Кроме того, стабилитроны используются в различных приложениях. Вот некоторые из них.
Пререгулятор
Основная идея, лежащая в основе пререгулятора, состоит в том, чтобы обеспечить хорошо регулируемый вход для стабилитрона, так что конечный выход очень хорошо регулируется.
Ниже приведен пример предварительного регулятора (первый стабилитрон), управляющего стабилитроном (второй стабилитрон).
Форма волны
В большинстве случаев стабилитроны остаются в области пробоя. Но есть исключения, такие как волновые схемы.
В приведенной выше схеме формирования сигнала два стабилитрона включены друг за другом для генерации прямоугольной волны. Эту схему также в шутку называют « Генератор прямоугольных сигналов бедняка ».
В положительном полупериоде верхний диод Z1 проводит, а нижний диод Z2 выходит из строя. Следовательно, вывод обрезается.
В отрицательном полупериоде действие меняется на противоположное. Нижний диод Z2 проводит, а верхний диод Z1 выходит из строя. Таким образом, выходной сигнал представляет собой примерно прямоугольную волну.
Уровень ограничения равен напряжению стабилитрона (пробитый диод) плюс 0,7 В (диод с прямым смещением).
Производство нестандартных выходных напряжений
Комбинируя стабилитроны с обычными кремниевыми диодами, мы можем получить несколько нестандартных выходных напряжений постоянного тока, например:
Управление реле
Как вы, возможно, знаете, подключение реле 6 В к системе 12 В может вызвать повреждение реле.Вам нужно немного снизить напряжение. На рисунке ниже показан один из способов сделать это.
В этой цепи стабилитрон 5,6 В последовательно соединен с реле, так что на реле появляется только 6,4 В, что находится в пределах допустимого диапазона напряжения реле.
PREVПолноволновой мостовой выпрямитель
NEXTСветоизлучающий диод (LED)
.