Можно ли и как проверить конденсатор мультиметром в домашних условиях: надо ли его обязательно выпаивать
Не знаете, как проверить конденсатор на работоспособность мультиметром? Технология проверки этого элемента схемы довольно простая, главное – уметь пользоваться тестером и соблюдать несколько простых рекомендаций. Итак, далее мы расскажем с помощью каких приборов легче всего определить исправность конденсатора и как это правильно сделать.
Подготовительные работы
Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.
Способ №1 – Мультиметр в помощь
Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой.
Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи.
О том, как пользоваться мультиметром мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.
Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу.
В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.
Измеряем сопротивление
Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.
После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.
Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!
После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.
- Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.
Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло короткое замыкание.
Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки.
Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.
Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки.
Если это не так, конденсатор не рабочий и его нужно заменить.
Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.
Измеряем емкость
Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).
Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.
Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.
Измеряем напряжение
Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом.
Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт.
Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.
После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.
Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!
Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом.
Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра.
Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее — не держит заряд.
Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:
Как проверить целостность «кондера»
Способ № 2 – Обойдемся без приборов
Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание.
Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит.
О том, как сделать контрольную лампу электрика, мы также рассказывали.
Что еще важно знать?
Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).
Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто.
Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора.
Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.
Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.
Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при ремонте микроволоновки либо стиральной машины своими руками, т.к.
у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах.
Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!
Также читают:
Источник: https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html
Как проверить конденсатор мультиметром в домашних условиях, пошаговая инструкция
Приветствую вас на своем блоге, друзья! После публикации статей про мультиметры появилась необходимость подробнее рассказать о том, как проверять конденсаторы . Известно, что конденсатор — это распространенная деталь в любой электронной конструкции, но в отличие от сопротивлений, диодов или транзисторов проверка обычным мультиметром вызывает много вопросов. Сегодня в выпуске:
Мастера и радиолюбители знают, что электронные детальки сегодня становятся все меньше и меньше в размерах. К тому же, маркировка на них не всегда видна, и узнать емкость по маркировке становиться довольно затруднительно.
Среди вороха запасных деталюшек, нужно найти нужную, а если это SMD деталь — по внешнему виду уже бывает трудно понять, что у тебя сейчас перед глазами. Слишком разнообразны стали электронные устройства и компоненты их наполняющие.
Сразу оговоримся — обычные тестеры не дают исчерпывающей информации о конденсаторе. Здесь нужен мультиметр в котором есть соответствующая функция. Или универсальныый прибор, который иземеряет и определяет большинство распростроненных деталей.
Есть отельный класс приборов, которые меряют только емкости. Они точны, но дороги.
Мы сегодня познакомимся с мультиметром в котором есть функция проверки конденсаторов и унивесальным елф метром, который подходит и для проверки конденсаторов
Как проверить конденсатор цифровым тестером на пробой
Начнем с самого простого. Пробитый конденсатор образуется, если на него подали слишком большое напряжение. Для начала проводим визуальный осмотр. Все «пробитые» конденсаторы имеют на корпусе следы воздействия излишней силы тока — пластмассовые корпус — оплавлен:
На металлическом корпусе — так же дыры или ожоги:
На пленочном конденсаторе так же можно безошибочно определить пробой. А вот SMD- кондесатор проще рассматривать под лупой, а иногда и под микроскопом:
В случае, когда не удается визуально определить пробит конденсатор или нет — на помощь приходит обычный мультиметр. Здесь нужно перевести его в режим измерения сопротивления.
Природа конденсатора такова, что если он исправен — его сопротивление будет бесконечным, прибор покажет единицу. Поэтому переводим его в самый максимальный режим (или в режим проверки диодов) и промеряем.
По мере того как конденсатор будет заряжаться сопротивление будет расти, пока не дойдет до единицы:
При измерении не касайтесь пальцами контактов конденсатора. Наше тело — носитель электричества, конденсатор это почувствует и измерения будут уже не точными и не такими быстрыми. Лучше всего для проверки деталей использовать щупы для мультиметра с зажимами типа «крокодил».
Если конденсатор пробит, то он будет вести себя как обычный электрический провод. Сопротивление его не будет бесконечным, а если переключить мультиметр в режим прозвонки , то иногда такой конденсатор может даже и «зазвенеть».
Еще одной неисправностью конденсатора, которая фиксируется визуально является вздутие корпуса. Эта особенность присуща так называемым электролитическим конденсаторам. Они имеют полярные контакты для подключения и внутри есть электролит.
Со временем (а так же при частых перегреавах) электролит начинает испаряться. Корпуса электролитических конденсаторов делают герметичными. Пары электролита сначала раздувают корпус, а потом уходят постепенно через образовавшиеся щели.
Конденсатор теряет емкость, «высыхает» и перестает обеспечивать заданные характеристики.
Как проверить конденсатор мультиметром пошаговая инструкция
На исправность конденсаторы проверить легко. У меня мультиметр модели Mastech MS8260G, у него есть функция измерения емкости конденсаторов. Правда не всех, у этого прибора ограниченный диапазон измерения емкости. Но некоторые конденсаторы он меряет. Если у Вас есть такой мультиметр, то по маркировке определите его емкость и промеряйте далее конденсатор мультиметром.
Если мультиметр показывает емкость такую же (или с отклонением не более 30 %) от той, какая указана на корпусе, то он исправен. Если проверяете полярный электролитический конденсатор, то при измерении нужно соблюдать полярность.
При проверке конденсаторов в высоковольтных устройствах (блоках питания) соблюдайте осторожность. Измерять нужно только полностью разряженный конденсатор. Разрядить его можно замкнув его контакты отверткой, а в отдельных случаях через резистор, чтобы исключить образование искры. Впаивать конденсатор так же нужно полностью разряженным.
Если у Вас стрелочный прибор, то проверяем конденсатор так. Переключаем прибор в режим измерения сопротивления. Подсоединив контакты конденсатора к мультиметру, смотрим на поведение стрелки прибора. Желательно под рукой иметь заведомо исправный конденсатор такой же емкости в качестве эталона .Сравнивая поведение стрелки с эталоном получаем результат:
Еще хотелось бы сказать пару слов о другом замечательном приборе, который идеально подходит для определения исправности большинства конденсаторов. Этот прибор является по сути определителем элементов. Это особенно актуально в наше время, когда по внешнему виду уже бывает трудно определить что за деталь в руках.
Прибор этот недорог, но определяет емкости конденсаторов, их ESR, исправность диодов, транзисторов, катушек, тиристоров, стабилизаторов. И резисторов. Множества резисторов. Есть у этого прибора и площадка для проверки SMD элементов.
Работает прибор от батареи типа «Крона». Площадка в которую вставляется деталь зажимается рычажком, который обеспечивает надежный контакт. Я слегка доработал прибор. Во-первых зажим у меня начал изнашиваться — я уже проверил много выпаянных элементов. Требуются длинные выводы, а у выпаянных деталей выводы уже обрезаны, короткие.
Поэтому я купил несколько разноцветных маленьких зажимов типа «крокодил», припаял их на провода, а провода к контактам с обратной стороны зажима на приборе.
Стало удобнее проверять детали, я так раскидал целую коробку выпаянных сопротивлений, диодов, конденсаторов по номиналам. Думаю даже подпаять туда пару щупов — как у обычного мультиметра.
А зажим использовать стал иногда — для проверки новых купленных деталей.
Во — вторых пока я проверял детали батарейка подсела. Поэтому я решил и здесь ввести усовершенствования. Не выпаивая разъема для «Кроны» я на те же места подпаял блок питания от какого то приборчика напряжением 9 в и 0,5 А. Можно было приделать и штекер, я его не стал искать, припаял напрямую, а чтобы провода не болтались, использовал стяжки и термоклей:
В — третьих прибор выглядел после распаковки посылки очень хрупким. То ли экономят китайцы, то ли не заморачиваются особо на мелочах. Есть сейчас версии этого прибора в корпусе, но люди все равно дорабатывают.
И я поместил его на пластмассовый корпус на саморезы — благо в плате прибора оказались под них отверстия. Осталось еще придумать прозрачную крышку на дисплей, но пока не подобрал подходящую. В итоге у меня получился вот такой девайс. На видео продемонстрирую его возможности по проверке конденсаторов:
Как проверить конденсатор мультиметром не выпаивая, на плате
Честно говоря желательно все же выпаивать детали. Если схема простая, можно попробовать перерезать контактные дорожки скальпелем — те которые ведут к конденсатору, около его ножек.
- Промеряем его емкость как обычно, потом паяльником залуживаем дорожки, порезы заполняются оловом, дорожка восстановлена. Я так проверил электролитический кондер на плате моим универсальным тестером, благо тут полярность не нужно соблюдать, что удобно:
Еще один способ проверки конденсаторов на плате это — пропайка или прогрев. Некоторые неисправные электролитические конденсаторы начинают снова работать если их контакты хорошенько пропаять. Сам конденсатор прогревается при этом, после этого устройство начинает работать. Если такое случилось, нужно все равно выпаять этот конденсатор и заменить на новый.
Если есть схема устройства на которой указаны напряжения или в опорных точках — то это самый правильный вариант проверки. Сняв показания с этих точек и сверив их с теми что на схеме по цепочке можем проверить элементы схемы. А на платах различных устройств так же есть контрольные точки, по которым мастер и «вычисляет» неисправные компоненты:
Для получения исчерпывающих характеристик снова подключаем наш универсальный прибор. У конденсатора есть такая важная характеристика — его эквивалентное последовательное сопротивление (ESR). Не будем сегодня углубляться в эту тему, скажу лишь, что наш прибор прекрасно «видит» эту характеристику.
Если величина ESR превышает 5 ом, то даже при отсутствии внешних признаков (вздутие, пробой) такой конденсатор нужно выпаивать и менять на новый. Опять же для чистоты эксперимента можно промерять сначала исправный конденсатор и взять его характеристики как эталонные.
Важно! При снятии характеристик нужно помнить что полученная ESR (так же как и емкость) зависит от того, как соединены конденсаторы между собой, последовательно или параллельно. При измерении будут погрешности ввиду того, что током от прибора будут запитываться и другие элементы схемы.
Проверяем конденсатор мультиметром на работоспособность на двигателе
Для автомобилистов так же будет интересно узнать, как проверить подозрительный кондёр. Ввиду того, что генератор вырабатывает ток, в пространство генерируются помехи.
Для подавления помех на генератор (а так же и на трамблеры) ставят конденсаторы. Искры получаются не такими злыми, помех меньше. Со временем конденсатор может выйти из строя.
Смотрим видео, как этот конденсатор можно заменить другим.
Вот и все на сегодня. Удачи вам, до новых встреч!
Источник: https://fast-wolker.ru/kak-proverit-kondensator-multimetrom.html
Как проверить конденсатор мультиметром
Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.
Конденсатор и емкость
Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.
Виды конденсаторов по типу диэлектрика:
- вакуумные;
- с газообразным диэлектриком;
- с неорганическим диэлектриком;
- с органическим диэлектриком;
- электролитические;
- твердотельные.
Обычно используются электролитические конденсаторы
Основные неисправности конденсаторов:
- Электрический пробой. Обычно вызван превышением допустимого напряжения.
- Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
- Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.
Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.
В данном случае присутствует протечка электролита
Перед проверкой конденсатора
Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра.
Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов.
Первый способ является более надежным и дает более точные сведения об электронном элементе.
До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.
Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.
Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.
Измерение емкости в режиме сопротивления
Измерение в режиме сопротивления
Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.
Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.
Измерение в режиме сопротивления
Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент.
Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить.
Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.
Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.
Аналоговое устройство
Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.
Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.
Модели мультиметров на Aliexpress
Измерение емкости конденсатора
Измерение ёмкости
Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.
Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.
При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.
Измерение емкости через напряжение
Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.
Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.
Важно! Напряжение проверяется в самом начале измерения. Это связано с тем, что при подключении конденсатор начинает терять заряд.
Другие способы проверки
Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!
Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком.
При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках.
К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.
Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.
Сложности проверки
Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.
В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.
Как проверить емкость – видео ролики в Youtube
- Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.
- Еще одно видео:
Ис
пошагово, полярный и неполярный конденсатор
Конденсаторы встречаются в самой разной технике. Но они зачастую и приводят к неисправностям механизмов. Для того, чтобы своевременно определить неисправность и устранить её, необходимо понимать общие принципы проверки конденсатора мультиметром. Этот способ является наиболее простым.
Рассмотрим варианты применения недорогого и эффективного прибора, чтобы выявить элементы, вышедшие из строя. В статье подробно представлены различные виды конденсаторов, а также последовательность их проверки. Благодаря практическим советам вы без труда сможете обнаружить неисправность в любой схеме.
Для чего используют конденсатор?
Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:
- автомобилестроении;
- радиотехнике;
- электронике;
- электробытовой технике;
- приборостроении.
Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.
Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.
В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.
Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.
Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.
Неполярные и полярные разновидности
Среди многообразия конденсаторов следует выделить два основных типа: полярные или электролитические, а также неполярные. В качестве диэлектрика в данных приборах используют — стекло, бумагу и воздух.
Специфика полярных конденсаторов
Само название наглядно говорит о том, что они имеют полярность, потому являются электролитическими. Потребуется верное и точное следование схеме, когда их будут подключать — «минус» к «минусу», а «плюс» к «плюсу». Если не соблюдать данное правило, то элемент не только утратит работоспособность, но вполне способен взорваться. Электролит встречается как в состоянии твёрдом, так и в жидком.
В качестве диэлектрика в устройствах применяется бумага, которая пропитана электролитом. Ёмкость варьируется в пределах от 0,1 тыс. и до 100 тыс. МкФ.
Справка! Полярные конденсаторы предназначены для выравнивания электрофильтрации поступающих сигналов. Метка «+» имеет большую длину. Пометка «-» обозначена на самом корпусе.
Когда происходит замыкание пластин, то осуществляется выделение тепла. Под его действием происходит испарение электролита, а затем следует взрыв.
Сверху у конденсаторов современного исполнения имеется крестик и незначительное вдавливание. Толщина вдавлиной части немного меньше, чем остальная поверхность. Если происходит взрыв, тогда верхний участок открывается, как роза. Поэтому при наблюдении за повреждённым элементом можно заметить вспучивание на корпусе.
Отличительные особенности неполярных конденсаторов
Плёночные неполярные части используют диэлектрик из керамики, а также из стекла. Если сравнивать с конденсаторами электролитическими, то у них самозаряд меньше. Это можно объяснить тем, что керамика имеет более высокое сопротивление, чем бумага.
Конденсаторы подразделяются на детали как специального назначения, так и общего. Они бывают следующими:
- Пусковыми. Используются для поддержания надёжной и качественной работы электродвигателей. Увеличивают в двигателе стартовый момент, например, это компрессор или насосная станция, осуществляющие запуск.
- Дозиметрическими. Предназначены для работы в цепях, в которых незначительный показатель токовых нагрузок. У них необъёмный самозаряд, но сопротивление изоляции повышенное. Большей частью это фторопластовые элементы.
- Импульсными. Используются для формирования повышенного скачка напряжения, а также его перевода на принимающую панель устройства.
- Высоковольтными. Применяются в высоковольтных приборах. Производятся в разнообразном исполнении. Встречаются масляные и керамические, плёночные и вакуумные. Они заметно отличаются от других деталей и имеют ограниченный доступ.
- Помехоподавляющими. Предназначены для смягчения в частотной вилке электромагнитного фона. Имеют незначительную собственную индуктивность, что даёт возможность повысить резонансную частоту, а также увеличить полосу сдерживаемых частот.
Если сравнивать в процентном отношении, то наиболее значительное число неисправных элементов приходится на случаи, когда наблюдается подача напряжения превосходящее стандартные показатели. Оплошности в проектировании вполне могут вызвать неисправности элементов.
Когда диэлектрик утрачивает свои характеристики и свойства, то могут возникнуть сбои и перепады в деятельности конденсатора. Например, при его растрескивании, вытекании или высыхании. Ёмкость может сразу измениться. Определить её значение возможно только благодаря измерительным устройствам.
Алгоритм диагностики мультиметром
Тестирование конденсаторов рекомендуется проводить после их изъятия из электроцепи. Таким образом достигаются более верные показатели.
Центральным показателем конденсаторов является способность пропускать только ток переменного характера. Постоянный же ток он способен пропускать лишь небольшой промежуток времени и исключительно в начале процесса. Сопротивление здесь напрямую зависит от ёмкости.
Как произвести тестирование полярного конденсатора
Для диагностики элемента мультиметром, потребуется обеспечить ёмкость, которая не будет превышать показатель равный 0,25 мкФ.
Алгоритм проверки неисправностей конденсатора при помощи мультиметра следующий:
- Потребуется взять электрический компонент за ножки и закоротить его каким-то предметом из металла, например, это может быть пинцет или отвёртка. Это надлежит сделать для разрядки элемента. Искры, которые появятся при этом, дадут знать, что разряд произошел.
- Затем надлежит установить переключатель мультиметра в режим замера данных сопротивления или на прозвонку.
- Далее следует прикоснуться щупами к выводам конденсатора, при этом следует учитывать их полярность, то есть к минусовой ножке подвести щуп чёрного цвета, а к плюсовой — красного. При этом происходит выработка постоянного тока, поэтому через определённый отрезок времени можно ожидать минимальное сопротивление электрического компонента.
В то время, когда щупы располагаются на вводах конденсатора, происходит его подзарядка. Продолжает повышаться сопротивление пока не достигнет максимального уровня.
Если при соединении со щупами прибор начинает пищать, а стрелка его склоняет к нулевой отметке, то это говорит о наличии короткого замыкания. Оно и вывело из строя работу конденсатора. При указании стрелки на единицу, можно предположить, что в конденсаторе произошёл внутренний обрыв. Подобные элементы можно признать испорченными и заменить. Если на приборе, спустя некоторое время, единица высвечивается, то деталь в порядке.
Важно сделать измерения таким образом, чтобы на их качество не повлияло неправильное поведение. Запрещается в продолжении диагностики прикасаться руками к щупам. Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно.
Ток последует по пути наименьшего сопротивления и обойдёт конденсатор. Таким образом мультиметр представит ложный результат измерений. Можно разрядить электрический компонент благодаря лампе накаливания. В подобном случае процесс станет идти более плавным образом.
Разрядку необходимо производить в обязательном порядке, тем паче, если элемент является высоковольтным. Это делают из-за соблюдения норм безопасности, а также, чтобы сам прибор остался в рабочем состоянии. Его способно привести в негодность остаточное напряжение.
Неполярный конденсатор и его диагностика
Такого рода элементы проверить с помощью мультиметра ещё легче. Вначале на самом приборе проставляют предельный показатель измерения на мегаомы. Затем прикладывают щупы. Если данные на приборе будут менее 2 Мом, то это показатель неисправности конденсатора.
В период подзарядки элемента с помощью мультиметра можно продиагностировать его работоспособность, когда ёмкость колеблется от 0,5 мкФ. Если показатель меньше, то измерения будут незаметны на приборе. Когда требуется протестировать элемент менее 0,5 мкФ на мультиметре, то это можно сделать, если будет короткое замыкание между обкладками.
При исследовании неполярного конденсатора, у которого напряжение выше 400 В, то это возможно выполнить при зарядке его от источника, ограждённого от к.з. автоматическим выключателем. По порядку с конденсатором соединяют резистор, сопротивление его должно быть предусмотрено свыше 100 Ом., что ограничит мощность первичного токового броска.
Возможно определить работоспособность конденсатора и другим способом, например, протестировав его на искру. Заряжают электрический компонент до рабочей ёмкости, а потом выводы закорачивают при помощи металлической отвёртки, у которой имеется изолированная ручка. По мощности разряда делают вывод о работоспособности компонента.
До зарядки, а также через время после неё, следует измерить на ножках детали показатели напряжения. Существенным является способность заряда продолжительное время сохраняться. Затем потребуется разрядка конденсатора с помощью резистора, благодаря которому он и производил зарядку.
Определение ёмкости конденсатора
Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.
Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе. Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры.
Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.
Справочная информация! Когда последует писк, то надлежит поменять щупы местами, тогда звук повторится. Его будет слышно при показателях ёмкости в районе от 0,1 мкФ. Чем выше данное значение, тем продолжителльнее воспроизводится звук.
Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.
Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.
На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.
Определение напряжения при помощи мультиметра
Проверить исправную работу конденсатора возможно благодаря измерению напряжения, сравнив затем полученный результат с номиналом. Для выполнения диагностики, необходим источник питания, у которого напряжение должно быть немного меньше, чем у исследуемого элемента.
Например, если у конденсатора показатель в 25 В, то подойдёт 9-вольтный источник. Подсоединяют щупы к ножкам, предварительно обращая внимание на полярность, затем ждут немного времени — примерно несколько секунд. Случается, что время прошло, а просроченный компонент всё еще функционирует, хотя характеристики приведены иные. В подобном случае его требуется систематически контролировать.
Мультиметр следует настроить на режим определения напряжения и производят диагностику. При быстром появлении на дисплее значения равного номинальному, элемент полностью годен к использованию. В противоположном случае конденсатор надлежит поменять.
Проверка конденсаторов без выпаивания из платы
Можно обойтись без выпаивания из платы конденсаторов для их тестирования. Главное условие, чтобы сама плата была полностью обесточена. После обесточивания потребуется определённое время подождать, чтобы электрические компоненты разрядились.
Следует знать, что для получения 100% результата, невозможно будет обойтись без выпаивания элемента из платы. Детали, которые располагаются рядом, мешают достоверной проверке. Надлежит удостовериться лишь в отсутствии пробоя.
Для проверки исправного функционирования конденсатора, не выпаивая, необходимо к выводам элемента прикоснуться щупами для измерения сопротивления. Исходя из разновидности конденсатора, будет отличаться и диагностика самого параметра.
Советы по проверке электронных компонентов (конденсаторов)
У конденсаторных элементов имеется одно не очень приятное свойство. Дело в том, что при пайке, когда происходит воздействие на детали тепла, они часто не подлежат восстановлению. Однако качественно исследовать элемент возможно лишь, если выпаять его из схемы. В ином случае детали, которые находятся поблизости, станут его шунтировать. По данной причине необходимо учитывать определённые нюансы.
Когда продиагностированный конденсатор можно будет снова впаять в схему, потребуется ввести в работу ремонтируемый прибор. Это позволит отследить его работу. Если работоспособность благополучно возобновилась, устройство стало функционировать эффективнее, то протестированный компонент меняет на новый.
Важная информация! Для сокращения проверки, следует выпаивать не два, а лишь один из выводов. Требуется учитывать и понимать, что для подавляющего большинства электролитических элементов данный способ нельзя применять. Это связано со специфическими конструктивными особенностями самого корпуса.
Если схема сложная и включает в себя значительное количество конденсаторов, то дефекты вычисляют благодаря измерению напряжения на них. При несоответствии параметра требованиям, деталь, которая вызывает подозрение, надлежит убрать и произвести проверку.
При фиксировании в схеме сбоев, требуется перепроверить дату изготовления электронного компонента. Усыхание элемента происходит в течение пяти лет функционирования и составляет более 65%. Подобную деталь, даже если она в рабочем состоянии, надлежит заменить. В противоположном случае она станет ухудшать работу всей схемы.
Мультиметры современного поколения отличаются тем, что их наивысшим показателем для измерения является параметр ёмкости, который варьируется в районе 200 мкФ. При превышении данного показателя контрольный прибор способен выйти из рабочего состояния, даже если он и имеет предохранитель. В электротехнике нового поколения есть высокотехнологичные smd электроконденсаторы. Их отличие и преимущество состоит в очень небольших размерах.
Выпаять один вывод от подобного компонента очень непростая задача. Здесь наилучшим выходом будет поднять один из выводов уже после отпаивания, затем произвести изоляцию его от схемы, или вовсе отделить два вывода.
Итоги и практические рекомендации
Нет особого смысла покупать сложное и дорогостоящее оборудование для того, чтобы произвести тестирование конденсаторов. Вполне возможно применять с данной целью обычный мультиметр с подходящим диапазоном. Самое важное — это грамотно и правильно использовать его возможности.
Хотя мультиметр не является узкоспециализированным прибором и его возможности ограничены, для диагностических мероприятий и ремонта огромного количества популярных радиоэлектронных приборов, этого вполне хватит.
Дополняйте, пожалуйста, своим комментариями расположенный ниже блок, публикуйте фотографии и задавайте вопросы любой сложности по предложенной теме статьи. Расскажите о своём опыте, как вы проводили диагностику конденсаторов на эффективность и работоспособность. Делитесь рекомендациями и полезной информацией, которая может пригодится пользователям сайта.
Также вам может быть интересно как соединять провода между собой.
Как прозвонить керамический конденсатор мультиметром — Moy-Instrument.Ru
Проверка конденсатора мультиметром
Конденсатор — незаменимое средство в любой электротехнике. Что он собой представляет, каков принцип его работы и сфера применения? Как осуществляется проверка конденсатора мультиметром? Об этом далее.
Что это такое
Конденсатор является устройством, способным делать накопление заряда электрического тока и передавать его по электрической цепи. Самый простой конденсатор включает в себя несколько пластинчатых электродов, которые разделены с помощью диэлектрика. На этих электродах накапливается заряд, имеющий разную полярность. На одной пластине положительный заряд, а на другой — отрицательный.
Есть множество классификаций устройства конденсатора. Он бывает постоянным и переменным, неполярным и полярным, бумажным и металлобумажным. Последние считаются наиболее привычными и распространенными конденсаторами, которые напоминают прямоугольные кирпичи. Они относятся к неполярным устройствам.
Конденсаторы часто сделаны из керамики. Бывают пленочными, электролитическими и полимерными. Керамический вид позволяет фильтровать различные виды высокочастотных помех энергии. Благодаря их относительной диэлектрической проницаемости, можно создавать многослойные элементы, имеющие емкость, которая сопоставима электролитам. Они не являются полярными.
Пленочные агрегаторы распространены везде, к примеру, их можно встретить в кондиционерах. Они отличаются тем, что у них малый ток утечки, небольшая емкость, высокое рабочее напряжение и отсутствие чувствительности к полярности приложенного напряжения. Полимерные виды выдерживают различные виды больших импульсных токов, работают при низких температурах.
Обратите внимание! Что касается приборов, оснащенных воздушным диэлектрическим элементом, то самым лучшим конденсатор выступает подстроечный прибор, имеющий резонансный радиоприемный контур. Его могут рекомендовать все пользователи. Емкость подобных элементов маленькая, но удобная в реализации изменений.
К электролитическим относятся агрегаты, напоминающие бочонки или батарейки. Они устанавливаются в сетевые пульсации в блоках питания. Благодаря механизму и принципу действия получается большая емкость при малом размере. Диэлектриком выступает оксид металла. Если в блоке питания используется диэлектрик с алюминиевым электролитом, то, чтобы работал автомобильный конденсатор на высокой частоте, используется танталовый электролит, поскольку обладает меньшим током утечки, большой устойчивостью к внешним воздействиям.
Где используется
Конденсатор используется широко в сфере электротехники. Его используют пиротехники в разных электроцепях. Чаще всего его можно найти в блоке питания, фильтре с высокими и низкими частотами, балластном блоке питания, аккумуляторной зарядке, аналогичном аккумуляторе питания маломощных пассивных устройств, к примеру, в светодиодных лампочках и радиоприемниках.
Как работает
В электрической схеме подобные устройства могут быть использованы с разными цепями, однако их основным предназначением считается сохранение заряда. Таким образом, конденсатор берет ток, но сохраняет его и потом отдает в цепь.
Подключая конденсатор к электроцепи, на конденсаторных электродах накапливается электрозаряд. Сначала конденсаторная зарядка потребляет наибольший электрический ток. По мере того, как заряжается конденсатор, электрический ток снижается и когда конденсаторная емкость наполняется, ток исчезает насовсем.
В момент отключения электроцепи от источника питания и при подключении нагрузки цикла, конденсаторный прибор перестает получать заряд и отдает накопившийся ток иным элементам. Сам выступает в роле источника питания.
Основной технической характеристикой конденсатора является емкость. В свою очередь, емкость — способность устройства делать накопления электрического заряда.
Обратите внимание! Чем больше этот показатель, тем больше заряд сможет быть накоплен и передан к электрической цепи. Конденсаторная емкость измеряется в фарадах. Отличаются устройства друг от друга по конструкции, материалам изготовления и области применения.
Типы неисправностей
Обычно у конденсатора случается обрыв электролита, снижается емкость, получается электролитический пробой, снижается максимально допустимое напряжение и увеличивается внутреннее конденсаторное сопротивление. Пробой возникает из-за того, что превышается допустимое напряжение, обрыв из-за механических повреждений, вибраций, встрясок, некачественной конструкции и нарушения предписанных условий эксплуатации. Утечки случаются из-за изменения сопротивления между обкладками. Это приводит к тому, что снижается конденсаторная емкость, не способная сохранять электрический заряд.
Инструкция по проверке мультиметром
Поскольку аппарат способен аккумулировать в себе электрозаряды, то, перед тем, как проверить конденсатор, его нужно разрядить. Это возможно сделать при помощи отвертки, жалом прикоснувшись к выводам для образования искры. Затем необходимо делать прозвон компонентов. Проверка конденсатора возможна при помощи мультиметра и лампочки с проводами. Первый способ надежнее и точнее, поскольку мультиметр показывает точные данные.
До того, как проверить электролитический конденсатор мультиметром, необходимо посмотреть на конденсатор. В случае наличия трещин с нарушением изоляционного слоя, подтеками либо вздутием, проводить тестирование не имеет смысла из-за поломки конденсатого прибора и необходимости замены. Если внешние дефекты отсутствуют, можно осуществлять проверку.
Обратите внимание! До проведения измерений, необходимо определиться с разновидностью конденсатора. Бывает неполярный и полярный тип. Во втором случае необходимо соблюдать полярность, а в первом — проводить измерения по другой технологии. Определение полярности можно провести, взглянув на метку корпуса. На детали имеется черная полоса с нулевым обозначением. Возле нее есть отрицательный с положительным контактом.
Для начала процедуры с полярным агрегатом, необходимо поставить мультиметр на режим омметра и посмотреть, есть ли обрыв с коротким замыканием или нет. Чтобы проверить неполярный прибор, необходимо выставить цифру 2 МОм в диапазоне измерений, а для полярного прибора выставить 200 Ом.
Сам конденсатор отпаивается от схемы и помещается на поверхность стола. Щупы ставятся к конденсаторным выводам с соблюдением полярности. При соприкосновении щупов, на дисплее будут постепенно расти показатели. Спустя некоторое время измерений на экране появится точное число. При единице прибор исправен. В случае, если загорается сразу единица, это говорит об обрыве. При появлении нуля, это говорит о коротком замыкании. Для неполярного устройства оптимальное значение выше двух.
Керамических конденсаторов
Керамические с бумажными и прочими неполярными конденсаторами можно проверить с помощью мультиметра, настроив прибор на замер сопротивления и максимальный измерительный предел. Далее необходимо прикоснуться с помощью измерительных проводов к контактам. Затем получить результат. Если на экране мультиметра получается значение в 2 МОм и более, можно говорить об исправности прибора. В противоположном случае, необходима замена оборудования.
Обратите внимание! Осуществляя измерения на максимальном режиме сопротивления, необходимо исключить тот факт, чтобы проводящие части соприкасались друг с другом. В противном случае получить достоверные данные невозможно.
Полярных конденсаторов
Чтобы протестировать полярный агрегат, необходимо переключить мультиметр на режим замера сопротивления, установить пределы измерений в 200 тысяч Ом, зафиксировать щупы, соблюдая полярность, и измерить утечку по уровню сопротивления.
Измерение емкости
Емкость — основная конденсаторная характеристика, которую указывают производители на приборе. При тестере делаются замеры реального значения и сравниваются с номиналом. Мультиметровый переключатель переводится в диапазон измерений. Показатель ставится равный или близкий к номинальному. На самом конденсаторе ставятся отверстия —CX+ или щупы. Подключение происходит так же, как и при режиме сопротивления. В случае подключения щупов на мониторе появляется значение сопротивления. Если оно имеет близкое к номинальному число, то можно говорить об исправности конденсатора. В противоположном случае, можно утверждать о пробитом устройстве и срочной замене.
Без выпаивания
В ответ на то, как проверить конденсатор мультиметром не выпаивая, стоит указать, что необходимо параллельное подключение на плате заведомо исправного конденсатора, имеющего такую же емкость. Если устройство будет функционировать, то определить проблему без выпайки просто: она находится в первом неисправном элементе. Необходимо его смена. Подобный способ применим лишь в схемах, где небольшое напряжение.
Иногда осуществляют проверку конденсатора на искры, разрядку и общую неисправность в связи с этим. Для этого нужна подзарядка и при помощи металлического инструмента, имеющего заизолированную рукоятку, замыкание выводов. Должна быть получена высоковольтная искра, имеющая характерный звук. При малом разряде делается вывод о необходимости срочной смены детали.
Проведение подобной процедуры возможно только при помощи резиновых перчаток. Такой метод нужен, чтобы проверить работоспособность мощных пусковых устройств, рассчитанных на работу при более 200 вольт.
Обратите внимание! При этом проверять без выпаивания устройство, не имея измерителя в виде функционального мультиметра, нельзя. Подобные методы могут быть небезопасными из-за возможного получения электрического удара и нарушения объективности картины участка. Точные значения получить будет нельзя, даже вольтметром и амперметром.
Техника безопасности
Замерять устройство нельзя в помещении с повышенной влажностью. Кроме того, нельзя переключать функции измерений при замере. Нужно заменять напряжение с силой тока, если величины больше рассчитанных на мультиметре. Чтобы подсчеты были верны, а измерение было безопасным, необходимо использовать щупы, имеющие исправную изоляцию. Также необходимо проводить измерения в резиновых перчатках во избежание получения микротравм от электрического тока, даже если перед этим оборудование будет разряжаться. Самостоятельно конструировать щупы для проверки прибора при этом не рекомендуется, как и другие части мультиметра. Пользоваться при замерах только измерительным электронным устройством от производителя.
В целом, проверить конденсатор мультиметром можно по представленной выше инструкции, в зависимости от разновидности прибора и его функций. Делать это необходимо, соблюдая технику безопасности.
Как проверить конденсатор мультиметром на работоспособность не выпаивая: возможные поломки, пошаговая инструкция
Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов.
При диагностике или ремонте различной техники может возникнуть следующий вопрос — как проверить конденсатор мультиметром на работоспособность? При этом внешний осмотр не во всех случаях позволяет определить функциональность конденсатора, поэтому требуется проверка прибором. Сегодня мы подробнее рассмотрим этот процесс, а также расскажем о принципе функционирования конденсаторов и распространенных причинах их неисправностей.
Что такое конденсатор?
Если взглянуть на статистику, то больше половины рекомендаций по ремонту оборудования связано с неисправностью такого элемента, как конденсатор. Этот прибор составляет большое количество различных электросхем. Принцип функционирования сводится к поэтапному накоплению электроэнергии с различным потенциалом между обкладками и последующим быстрым разрядом.
Выделяют два наиболее известных типа конденсаторов, которые устанавливаются в современных схемах:
- Полярные (электролитические). Такое название они получили потому, что при подключении в схему требуется задать определенную полярность: «плюс» к «плюсу», а «минус» к «минусу».
- Неполярные. К этой группе относятся любые другие варианты конденсаторов.
Общепринятое обозначение этого элемента на схемах отчетливо показывает его принцип работы.
Строение этого электронного компонента простое – он состоит из двух покрытых изоляционным слоем обкладок, которые проводят ток. С целью изоляции используют всевозможные материалы и компоненты, которые не проводят электричество: кислород, пластинки из керамики, специальную целлюлозу, фольгу.
По внешнему виду такие элементы отличаются миниатюрным размером при внушительной емкости, поэтому в процессе работы с ними следует соблюдать технику безопасности.
Принцип функционирования
Работа такого элемента, как конденсатор, основывается на том, что находясь в электрической схеме, он способствует накоплению зарядов. Это необходимо только в тех схемах, где происходит распределение составляющих тока (переменный ток). В то время как в схемах с постоянным током конденсатор не сможет накапливать энергию.
Где применяется?
Устанавливают конденсаторы различных видов в радиосхемы и бытовые приборы. Как правило, эти устройства имеют небольшую емкость, поэтому их неисправность не провоцирует тяжелых последствий.
Крупногабаритные конденсаторы составляют различные электрические двигатели, где являются элементами пуска. В данном случае они отличаются большим номиналом и такой же емкостью.
Цены на различные виды конденсаторов
Видео – Для чего нужен конденсатор?
Возможные поломки
Поломка радиосхемы или электрического двигателя свидетельствует о неисправности элементов. В то время, как неисправность самого конденсатора часто бывает вызвана следующими причинами:
- Замыканием двух обкладок. Происходит это в результате повышенного напряжения на выводах. Получается, что фрагмент цепи, который должен «разорваться» конденсатором, остается замкнутым.
- Нарушение целостности внутренней цепочки компонента. Произойти это может при сильном ударе или напряжении, из-за чего случится вибрация. Тем не менее, часто причиной является брак во время производства. Получается, что в радиосхеме отсутствует конденсатор, а имеется только разорванная цепочка.
- Утечка тока в недопустимых пределах. Происходит это из-за нарушения целостности изоляционного слоя пластинок. Это приводит к тому, что они не могут сохранять заряд.
- Резкое падение номинальной емкости. Причиной такой проблемы тоже является утечка тока или же брак во время производства. В итоге, радиосхема работает с перебоями или не функционирует совсем.
Видео – Проверка неисправностей конденсаторов
Электролитические компоненты еще отличаются другим недостатком – превышением преобразования сопротивления. Получается, что во время работы в радиосхемах такие конденсаторы не улавливают импульсивные сигналы.
Проверка конденсаторов
Как обнаружить неисправность по внешним характеристикам? Конечно, только лишь по внешним признакам невозможно достоверно судить о работоспособности какого-либо элемента. Тем не менее, таким путем можно заподозрить неисправность, опираясь на признаки:
- отверстия на основании и вытекание электролита, из-за чего конденсатор теряет герметичность;
- нехарактерная, раздутая форма корпуса и множество выступающих бугорков (в нормальном состоянии они имеют форму цилиндра).
Внешняя проверка особенно необходима в том случае, если вы устанавливаете в схему уже использованные конденсаторы. Тем не менее, некоторый процент брака можно обнаружить и среди новых элементов.
Если вы приобрели новый конденсатор, на котором уже имеются дефекты, то его не стоит использовать, ведь со временем это может привести к нарушению целостности всей схемы. Будет разумно приобрести и подсоединить другой элемент.
Повреждения в виде пробоев в основном встречаются на неполярных элементах или на некоторых полярных с высокой чувствительностью к высокому напряжению.
Для того, чтобы предупредить повреждение других частей электросхемы после разрыва конденсатора, производителями была предусмотрена слабая верхняя крышка, на которой располагаются небольшие разрезы. Таким способом создается «слабое» место корпусной части. Это значит, что в случае разрыва электролит вытекает сверху, не затрагивая элементы схемы.
Вздутый конденсатор потребуется немедленно утилизировать, иначе через некоторое время все равно произойдет взрыв (как показано на изображении ниже).
Если у конденсатора начинает вздуваться верхняя часть, то уже не стоит проверять его дополнительными способами. Лучшим решением будет приобретение нового элемента.
Обратить внимание следует и на другой немаловажный признак. Так, у некоторых элементов «слабая» крышка остается целой без каких-либо дефектов, но их можно заметить на нижней части – пробка становится выпуклой. Конечно, такая проблема возникает в редких случаях, но все-таки некоторым пользователям приходится с ней сталкиваться. Даже если причиной такой проблемы является брак, все равно конденсатор рекомендуется утилизировать.
Стоит отметить, что даже при наличии внешних дефектов на корпусе, компонент может соответствовать требованиям после проверки прибором. Тем не менее, использовать его будет опасно.
В другом же случае, когда внешние повреждения отсутствуют, но имеются подозрения плохой функциональности конденсатора, из-за общего падения работоспособности радиосхемы, его понадобится проверить другими методами, поэтому сначала дефективный элемент выпаивают из общей схемы.
Многие «умельцы» склонным к мнению, что проверить компонент можно и без выпаивания. Конечно, такой способ тестирования возможен, но он не гарантирует точных результатов, поэтому конденсаторы желательно демонтировать.
Проверка мультиметром
У непрофессионального мастера в арсенале обычно имеется самый простой прибор – мультиметр. Тем не менее, и с его помощью тоже можно проверить работоспособность компонента.
Цены на различные виды мультиметров
Проверка неполярных конденсаторов
Первым делом любой компонент начинают проверять омметром с целью обнаружения пробоя. Да, это косвенная проверка, но она позволяет выявить определенные дефекты и провести выбраковку элементов. При этом существуют некоторые тонкости, которые зависят от типа и емкости компонента.
Исправный конденсатор не должен постоянно пропускать ток – иметь высокое сопротивление. Ведь как мы уже говорили, причиной утечки часто является нарушение изоляционного слоя между обкладками. В идеале сопротивление должно быть приближено к норме.
Измерение полярного керамического конденсатора: пошаговая инструкция
Шаг 1. Необходимо выставить максимальный диапазон измерений для мультиметре, чтобы привести его в режим омметра.
Шаг 2. Перед началом тестирования конденсатор следует «зачистить» от оставшегося заряда. Если это элемент небольших габаритов с минимальной емкостью, то можно перемкнуть вывод отверткой. Если речь идет о крупногабаритном элементе, то перемыкают его через мощный резистор сопротивления.
Шаг 3. После установки режима необходимо проверить дисплей — на нем должны высвечиваться символы, которые означают отсутствие проводимости между клеммами.
Шаг 4. Теперь необходимо подсоединить клеммы к выводам.
Конечно, такая проверка еще не является точным доказательством работоспособности прибора, ведь нам следует убедиться в отсутствии обрыва в цепочке. В данном случае мультиметр просто не успевает отреагировать на изменения, поэтому потребуется измерение емкости.
Тестирования электролитического компонента с большой емкостью: пошаговая инструкция
Для того чтобы сравнить значения потребуется проверить другой – неполярный конденсатор, у которого имеется высокий показатель емкости.
Шаг 1. Устанавливаем прибор в исходное положение, как в предыдущем случае.
Шаг 2. Мы наблюдаем, как показания на приборе начинаются с нескольких сотен, преодолевают предел мегаом и увеличиваются дальше.
Шаг 3. Необходимо дождаться окончания проверки и взглянуть на прибор.
В данном случае можно сказать, что повреждение отсутствует (как и обрыв), потому что мы контролировали процесс работы конденсатора.
Проверка прибором полярных конденсаторов: пошаговая инструкция
Теперь мы проверим работу полярных компонентов. В таком тестировании не имеется существенных отличий, только диапазон измерений устанавливается в пределах 200 кОм. Ведь только если заряд достигнет этого придела, можно будет с точностью судить об отсутствии повреждения.
Первым делом мы будем проводить тест конденсатора с номиналом 10 uF. Стоит отметить, что при внешнем осмотре на нем отсутствуют повреждения.
Шаг 1. Настраиваем прибор в режим омметра.
Шаг 2. Подсоединяем клеммы к компоненту.
Шаг 3. Останавливаем прибор.
Здесь показатели растут не так быстро как при проверке неполярного элемента, но на этом значении уже стало ясно, что повреждения отсутствуют.
Затем мы будет проверять полярный конденсатор с номиналом 470 uF.При его внешнем осмотре уже заметно разбухание верхней части.
Такой признак свидетельствует о наличии утечки тока, тем не менее, она может быть в разумных пределах, но использовать этот компонент не следует. Проведение опыта тоже лучше остановить, чтобы не разряжать прибор.
Измерение емкости конденсатора
Предыдущим способом тоже можно обнаружить неисправный конденсатор, но все-таки понадобится дополнительная проверка. Это необходимо в ситуациях, когда имеются подозрения на неисправность компонента.
Рассмотрим пример тестирования на неполярном конденсаторе. В данном случае будет осуществляться проверка небольшого керамического компонента с номиналом — 4,7 nF. Для проведения тестирования необходимо установить на приборе режим измерения емкости.
Таким же способом можно проверить на исправность и другие элементы, которые мы тестировали ранее.
Как проверить элемент без выпаивания?
Для того, чтобы провести тестирование компонента без демонтажа, понадобится использовать специальный прибор. Его отличительной особенностью является минимальный уровень напряжения на клеммах, что не позволит нанести вред другим компонентам цепочки.
Тем не менее, не у каждого мастера имеется подобное оборудования, поэтому соорудить его можно даже из стандартного мультиметра, если подключить его через специальную приставку. Схематическое строение приставок можно обнаружить на просторах интернета.
Таблица №1. Другие методы проверки компонента без выпаивания.
Как проверить конденсатор мультиметром
Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.
Как проверить конденсатор мультиметром
Я рад снова видеть все вас на страницах сайта «Электрик в доме». Сегодня мы познакомимся и изучим одну из самых используемых деталей в электронике – конденсатор. История создания первого конденсатора относит нас назад в 1745 год («лейденская банка»).
В наше время, в век технологий нас со всех сторон окружает электротехнические машины и оборудование. Вы конечно хорошо знакомы с конденсатором и если не сталкивались технически, то слышали о нем однозначно.
Одной из самых распространённых причин неисправности электронной техники, это выход из строя конденсатора. Любая электроника, бытовая техника и цифровые процессоры все имеют в своем оборудовании конденсаторы и достаточно одной незначительной неисправности конденсатора, что бы весь механизм прекратил выполнять свои функции.
Вот почему, в случае неисправности оборудования, первым делом необходимо обратить ваше внимание на работоспособность в схеме конденсаторов. И сделать это можно только при помощи электронного прибора, так как визуально определить состояние невозможно, если нет внешних повреждений.
Для этих целей и предназначен недорогой прибор мультиметр, выполняющий многие функции. Об одной из них — проверки сопротивления, я уже знакомил вас в своей предыдущей статье. Этот же материал предназначен для изучения методики проверки конденсатора мультиметром.
С этой проблемой ко мне обратился один из моих подписчиков. Следуя уже своей традиции, я как всегда, буду излагать материал просто и доступно для легко понимания всем желающим.
Проверка конденсатора мультиметром
Для лучшего усвоения материала, начнем с небольшой теории:
- Устройство и принцип работы мультиметра;
- Виды и особенности конденсаторов.
Устройство (прибор) предназначенное для накопления электрического заряда – это основное определение конденсатора. Конструктивно он состоит из определенного корпуса, внутри которого расположены две параллельные металлические пластины. Между пластинами установлена прокладка (диэлектрик). Площадь пластин напрямую влияет на величину электрического заряда. Чем больше площадь пластин, тем больше величина накопленного заряда.
Конденсаторы могут быть двух видов: полярными и неполярными.
Конденсаторы полярные.
Определить какой вид конденсаторов достаточно не сложно, уже название вам дает подсказку, что «полярные» должны иметь полярность, то есть иметь (+ плюс) и (- минус). Их подключение в электросхему строго регламентировано в соответствие полярности. Плюс подключается к плюсу, минус к минусу. При нарушении этого правила — конденсатор не будет работать, а вместе с ним и вся схема.
Все полярные конденсаторы заполнены электролитом (твердым или жидким), поэтому их классифицируют как электролитические. Их физические параметры (емкость) находится в следующих параметрах 0.1 ÷ 100000 мкФ.
Конденсаторы неполярные
Неполярные конденсаторы, как вы уже поняли, не имеют полярности и не требуют строгого соблюдения условий подключений. У них нет ни плюса, ни минуса. Роль диэлектрика у них могут выполнять: бумага, стекло, керамика и слюда. Их физические параметры (емкость) незначительна и находится в следующем диапазоне (от нескольких микрофарад до нескольких пикофарад).
Забегая вперед, сразу хочу ответить на ваши вопросы, зачем нам с вами необходимо знать эти технические тонкости. Это очень важно, так как к каждому типу конденсаторов применима своя методика проверки мультиметром. И пред началом проверки, мы должны первым делом, установить тип конденсатора. Это очень важный момент. Прошу вас обратить на это внимание!
Как проверить конденсатор с помощью приборов
Любую проверку конденсаторов необходимо начинать с внешнего осмотра, на наличие внешних признаков повреждений корпуса (трещин, вздутия). Достаточно часто происходит повреждение электролита, что приводит к повышению давления на внутреннюю поверхность оболочки и последующее ее вздутие.
После того как визуальный осмотр окончен и мы не установили внешних повреждений конденсатора, необходимо продолжить проверку специальным прибором, в нашем случае мультиметром. Этот простейший прибор поможет нам установить емкость конденсатора и обрывы внутри.
Перед проверкой незабываем, установить тип конденсатора, более подробно об этом написано выше. Продолжаем процесс проверки с соблюдением полярности, для этого подключаем плюсовой щуп к плюсовому контакту конденсатора и соответственно минусовой щуп к контакту минус.
Проверяя неполярный конденсатор, подключение мультиметра проводим произвольно без соблюдения правила полярности. Единственное, что здесь необходимо выполнить, это выставить переключатель мультиметра на отметку 2 Мом. Это важно, так как при меньшем значении дисплей прибора отобразит — «1» (единицу), что укажет на неисправность конденсатора.
Проверяем конденсатор мультиметром в режиме омметра
Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектри
Как проверять конденсаторы мультиметром — не выпаивая, емкость и исправность конденсатора
Конденсатор способствует накоплению электрического заряда. И если он неисправен, данное свойство теряется.
Классифицируются они на:
- электролитические, подключение которых в схему должно быть строго определённым;
- неполярные, подключенные в любом порядке.
Для проверки работоспособности конденсатора следует воспользоваться простым мультиметром. Данное оборудование помогает в поиске сбоев в электроцепи (измерение напряжения, ее «прозвон»), и в анализе работоспособности отдельных электродеталей.
Так как конденсатор – составная часть любой электросхемы и его нерабочее состояние часто результат истечения его срока годности, то и тогда придет на помощь мультиметр, который уловит искажения в сигнале электроцепи.
Проверка исправности электролитического конденсатора
Проверка начинается с визуального осмотра детали. Взрыв – естественное явление при увеличенном давлении внутри корпуса электролитов, если они повреждены. Даже при небольшой взрывной мощности вред будет заключаться в разбрызгивании их содержимого вокруг.
Чтобы предотвратить это, в верхней части конденсаторов делается крестообразная насечка, которая способствует стравливанию внутри корпусного давления. Вспучивание и разрыв корпуса уже говорит о неисправности устройства.
В остальных случаях потребуется проверить работоспособность конденсатора мультиметром, который измерит сопротивление батарейки. Для этого производится подключение прибора к выводам конденсатора с соблюдением полярности.
Первоначально сопротивление будет близко к 0 из-за разрежённости устройства. Но при зарядке конденсатора от батареи можно будет наблюдать увеличение показателя сопротивления. При окончании зарядки мультиметр высветит бесконечно большое сопротивление.
До проверки конденсатора потребуется его разрядка, которая может быть осуществлена при замыкании выводов между собой. Предельное значение измерения – максимально возможное. Производится соединение плюсового выхода детали с ее красным аналогом на приборе.
Подключение минусового черного выхода – к другому выходу. Измеряя сопротивление, следят за постоянно увеличивающимися показаниями мультиметра. Не должно быть их уменьшений.
Контакты между выходами должны быть надежными. Процесс не должен быть прерван. Запрещено прикасание к ним из-за сопротивления человеческого тела, которое помешает зарядке и определению работоспособности детали.
Результаты проверочной работы:
- Показания равны 0 и отсутствует их увеличение или оно незначительно. Значит, имеется замыкание между обкладками. И если конденсатор подключить к рабочей схеме, произойдет короткое замыкание.
- Заметное увеличение показаний прибора, но без достижения ими бесконечности. Значит, есть ток утечки, при значительном снижении емкости изделия. Результат – неэффективная работа элемента без полного выполнения им своего функционального назначения. Сигнал будет искажен.
Напряжение мультиметра – до 1,5 В, а в рабочих схемах с конденсатором – значительно больше. Поэтому при наличии утечки у прибора и его установки при рабочем напряжении возможен полный его пробой.
Проверка исправности неполярных конденсаторов
- При зарядке детали от мультиметра есть возможность проверки исправности элементов емкостью от 0,5 мкФ. При этом не важна полярность подключения. Более малая емкость не позволит заметить изменения на приборе. При показателях емкости, определяемых цифровым прибором, больше ее номинального значения элемент считается неисправным. Показания мультиметра верны при очевидном замыкании между обкладками.
- Проверка детали с напряжением от 400 В возможна при ее зарядке от сети в точке, защищенной от короткого замыкания автовыключателя. Также должен быть подключен резистор последовательно с конденсатором, чье сопротивление от 100 Ом, чтобы ограничить первоначальный токовый бросок. В момент после зарядки и спустя время производится измерение напряжения на выводах детали. При этом важно долгое сохранение заряда. После потребуется разрядка элемента с помощью резистора, через который произошла его зарядка.
Как проверить конденсатор, не выпаивая его
К сожалению, при прогреве паяльным прибором при пайке восстановление свойств конденсаторной детали – явление редкое. И, к сожалению, нет универсального метода проверки его исправности без выпаивания данного элемента из схемы. Другие элементы, окружающие его, будут шунтировать его своим сопротивлением.
Поэтому:
- После впаивания прошедшего проверку конденсаторного элемента возможно включение оборудование, которое подверглось ремонту, чтобы понаблюдать за изменениями в его работе. При улучшении или восстановлении работоспособности данного оборудования производится замена проверенной детали на новую;
- Для сокращения времени на проверку производят выпаивание только 1-ого из выводов, что не всегда возможно для большинства деталей электролитического типа из-за особенности конструкции их корпуса;
- При последовательном подключении проверяемого элемента с иным возможно определение его исправности прямо на плате, выпаяв его;
- При сложной схеме с множеством конденсаторов определение неисправности конденсаторных деталей производится измерением напряжений на них. При отклонении данного показателя производится выпаивание подозрительного элемента и его проверка 1-им из вышеперечисленных способов.
Проверка емкости конденсаторов
При значениях конденсаторной емкости до 0,5 мкФ зарядка происходит с такой быстротой, что проследить за этим не под силу ни одному оборудованию. Для этого необходимо определение номинальности емкости детали с помощью измерителя емкости – LC-метра.
Для домашнего пользования возможно использование небольших цифровых измерителей емкости. У них есть щупы подключения, дисплей на жидких кристаллах и переключатель пределов измерения.
Чтобы проверить конденсаторный элемент, первоначально распознают его емкость по обозначениям на его корпусе, осуществляют выбор необходимого предела измерения и подсоединяют его к измерительному прибору. Есть модели, измеряющие емкость без выпаивания элементов из схемы.
При существующем разбросе параметров измеренное значение детали должно входить в регламентируемый допуск. Иначе конденсаторный элемент неисправен.
Можно приобрести мультиметры со встроенной данной функцией. Есть модели со стандартными щупами для подключения проверяемых элементов и гнездами на их корпусе. Однако, пределы данных моделей ограничены.
Блиц-советы
- При сбоях в схеме проверяется дата выпуска конденсаторного элемента. За 5-летний срок эксплуатации возможно «усыхание» данной детали на 55 – 75%. Поэтому слишком старую деталь лучше сразу заменять, потому что даже рабочий элемент будет вносить некоторые искажения.
- Для максимальной точности результатов измерений перед проверочным процессом в оборудование необходимо поставить новую батарейку.
- До проверки конденсатор рекомендуется выпаивать из схемы полностью или только 1-ну ножку. Если элемент большой и имеет подводку проводов, то отсоединению подвергается 1 из них. Иначе результат будет искажен.
- Касание руками выводов конденсатора при его проверке строго запрещено. Это объясняется тем, что человеческое тело имеет сопротивление в 4 Ом, которое способно исказить результат поверки.
- Для современных мультиметров максимальным пределом измерения будет емкость до 200 мкФ. Номинал элементов емкостью до 0.25мкФ подвергаются проверке на наличие короткого замыкания. Если превысить допустимые значения измерения, мультиметру грозит поломка, даже несмотря на установленный внутри него предохранитель.
- При работе с высоковольтными схемами не стоит забывать о технике безопасности. Любой такой ремонт должен начинаться после того, как ремонтируемое оборудование выключено и электрокомпонент разряжен разрядной цепью.
- Чтобы проверить деталь большой емкости, может подойти более экстремальный способ. После того, как элемент зарядится полностью, производят замыкание его выводов на предмете из металла. Предварительно данный предмет должен быть покрыт изолятором, и имеет смысл работать в резиновых перчатках. Появление искры и одновременно характерное звуковое сопровождение будет служить результатом процесса разряда.
Статья была полезна?
0,00 (оценок: 0)
Как прозвонить конденсатор мультиметром — Multimetri.ru
Когда электронное устройство отказывается работать как надо, опытный человек начинает искать причину. Когда осмотр печатной платы через лупу на предмет плохо пропаянных дорожек или дефектов монтажа не даёт результатов, визуальный осмотр элементов также не обнаруживает явно дефектных, мастер берётся за мультиметр.
Какой он, современный мультиметр
Современный мультиметр — цифровой. Позволяет измерять много разного. Но для качественной прозвонки конденсатора необходим прибор, который умеет измерять ёмкость.
Радиолюбитель старой школы скажет, что можно обойтись и без такого режима, измеряя сопротивление. Но, это не совсем так, а для некоторых конденсаторов даже совсем не так.
Поэтому ищем прибор, у которого переключатель можно поставить на одно из значений, включающей латинскую букву F. Эта буква происходит от названия единицы измерения электрической ёмкости — фарада. Названа так единица в честь знаменитого английского физика Майкла Фарадея, а вовсе не актёра Семёна Фарады. Фарадею мы обязаны многими привычными нам электротехническими терминами. И единицей измерения ёмкости.
Читайте также
Как прозванивать светодиоды мультиметром
»
Кроме англичанина Фарадея мультиметр измеряет ещё немца, итальянца и француза — омы, вольты и амперы названы в честь Георга Ома, Алессандро Вольты и Андре-Мари Ампера.
Старые мультиметры — аналоговые, со стрелкой — измерять ёмкость не умеют вовсе. Но умеют заряжать конденсаторы от своей батарейки, чем и пользовались старые радиолюбители. Прикладывали щупы к выводам конденсатора и смотрели за стрелкой. Пошла вверх — значит, конденсатор заряжается. Не пошла — не заряжается. Так себе способ, который не позволяет увидеть ни потерю ёмкости, ни оценить эквивалентное последовательное сопротивление или ESR.
к содержанию ↑Меры предосторожности
Конденсатор перед прозвоном обязательно должен быть разряжен. Для элементов небольшой ёмкости и напряжения — до 100 микрофарад и 60 вольт — можно просто устроить короткое замыкание контактов чем-то проводящим — пинцетом, кабелем, отвёрткой.
Для элементов ёмкостью свыше 20 мкФ простое короткое замыкание применять нельзя. Требуется включить сопротивление на 5-20 КОм, рассчитанное на 1 Вт или 2 Вт, между контактами. Иначе при разрядке проскочит нехилая искра, которая может нанести вред здоровью. Вообще, работать с конденсаторами высокой ёмкости необходимо в защитных очках в любом случае..
Читайте также
Как прозвонить диод мультиметром — готовим мультиметр
»
Если не снять остаточный заряд, есть опасность спалить мультиметр. А хороший, и, главное, недешёвый прибор, в арсенале домашнего мастера никогда не будет лишним.
к содержанию ↑Прозваниваем конденсатор в штатном режиме
Итак, берём тестер с режимом измерения ёмкости, пациента разряжаем и кладём на стол. Читаем надпись на конденсаторе и выставляем предел измерений на мультиметре, выбирая ближайший сверху. Например, при обозначенной ёмкости в 1 мкФ выставляем 2 мкФ, потому что на шкале есть меньше — 200 пкФ, то что надо — 2 мкФ и сильно больше — 20 мкФ.
Прикладываем щупы к контактным выводам обследуемого элемента и смотрим показания.
Читайте также
Как прозвонить транзистор мультиметром. Как работает транзистор
»
Нельзя замыкать щупы на выводах руками. Как правило, тело человека имеет лучшую проводимость, чем рабочий конденсатор. Поэтому ток мультиметра пойдёт по цепи из левой руки в правую — ну или из правой в левую. В любом случае, не через конденсатор. И тестер покажет электрическую ёмкость радиолюбителя, а не конденсатора.
Ток — как вода. Течёт туда, куда легче. Об этой особенности нужно помнить и при прозвонке конденсаторов на печатной плате.
к содержанию ↑Прозваниваем конденсатор во вспомогательном режиме
Если у мультиметра нет режима замера ёмкости, можно попробовать прозвонить конденсатор на сопротивление.
Читайте также
Как прозвонить реле мультиметром. Как работает реле
»
Конденсатор не проводит — или почти не проводит — постоянный ток. Утечкой можно пренебречь, хотя она присутствует. Поэтому сопротивление у исправного элемента высокое. Конкретно — бесконечно высокое. Ведь обкладки не соприкасаются друг с другом напрямую.
Сразу оговоримся, что способ этот работает без гарантии — раз и только для неполярных конденсаторов — два.
Выставляем на мультиметре самую большую шкалу сопротивлений — например, 2 мегаома. Прикладываем щупы, смотрим. Если прибор показывает меньше двух мегаом — можно выбрасывать пациента, он пробит. Если на дисплее ничего или просто циферка «1» — исправен.
Для полярных конденсаторов в исправном состоянии внутреннее сопротивление должно превышать 0,1 мегаома. А для качественных полярных конденсаторов — 1 мегаом.
Читайте также
Как прозванивать ТЭНы мультиметром — проверка работоспособности
»
Сначала разряжаем конденсатор, замыкая контакты кабелем или отвёрткой, только потом прозваниваем.
Ставим на приборе первое значение, большее 0,1 МОм. Обычно, это 0,2 МОм.
Если измеряемое сопротивление больше 0,1 МОм, то в большинстве случаев элемент рабочий.
Следует помнить о том, что ёмкость заряжается от питания мультиметра независимо от того, аналоговым прибором мы пользуемся, или цифровым. То есть, при измерении циферки на дисплее должны возрастать.
В режиме омметра можно проверить конденсаторы на обрыв. Но не все.
У полярных электролитических ёмкостей признаком наличия обрыва является постоянство циферок на дисплее мультиметра после подключения к конденсатору — то есть, конденсатор не заряжается.
Неполярные тестируются только в режиме измерения ёмкости.
Помните, что проверка в режиме омметра — косвенный метод. Он не даёт никаких гарантий.
Как проверить маленькие конденсаторы. Как проверить конденсатор, не выпаивая его.
Не знаете, как проверить конденсатор на работоспособность мультиметром? Технология проверки этого элемента схемы довольно простая, главное – уметь пользоваться тестером и соблюдать несколько простых рекомендаций. Итак, далее мы расскажем с помощью каких приборов легче всего определить исправность конденсатора и как это правильно сделать.
Подготовительные работы
Перед тем, как проверять исправность конденсатора, нужно его обязательно разрядить. Для этого лучше всего использовать обычную отвертку. Жалом Вы должны прикоснуться одновременно к двум выводам бочонка, чтобы возникла искра. После небольшой вспышки можно переходить к проверке работоспособности.
Способ №1 – Мультиметр в помощь
Если конденсатор не работает, то лучше всего проверить его работоспособность мультиметром либо цешкой. Этот прибор позволяет определить емкость «кондера», наличие обрыва внутри бочонка либо возникновение короткого замыкания в цепи. О том, мы уже Вам рассказывали, поэтому изначально рекомендуем ознакомиться с этой статьей. Если Вы умеете работать тестером, то дела обстоят гораздо проще.
Первым делом Вы должны определить, какой конденсатор находится в схеме: полярный (электролитический) или неполярный. Дело в том, что при проверке полярного изделия нужно соблюдать полярность: плюсовой щуп должен быть прижат к плюсовой ножке, а минусовой, соответственно, к минусу. В случае с неполярным вариантом детали соблюдать полярность не нужно, но и проверять его придется по другой технологии (об этом мы расскажем ниже). После того, как Вы определитесь с типом элемента, можно переходить к проверочным работам, которые мы сейчас рассмотрим по очереди.
Измеряем сопротивление
Итак, сначала нужно проверить сопротивление конденсатора мультиметром. Для этого отпаиваем бочонок со схемы и с помощью пинцета аккуратно перемещаем его на рабочую поверхность, к примеру, свободный стол.
После этого переключаем тестер в режим прозвонки (измерение сопротивления) и дотрагиваемся щупами до выводов, соблюдая полярность.
Обращаем Ваше внимание на то, что если Вы перепутаете минус с плюсом, проверка работоспособности может закончиться неудачно, т.к. конденсатор сразу же выйдет из строя. Чтобы такого не произошло, запомните следующий момент – производители всегда отмечают минусовой контакт галочкой!
После того, как Вы дотронетесь щупами до ножек, на дисплее цифрового мультиметра должно появиться первое значение, которое моментально начнет расти. Это связано с тем, что тестер при контакте начнет заряжать конденсатор.
Через некоторое время на дисплее появиться максимальное значение – «1», что говорит об исправности детали.
Если же Вы только начали проверять конденсатор мультиметром, и у Вас появилась «1», значит внутри бочонка произошел обрыв и он неисправен. В то же время появление нуля на табло свидетельствует о том, что внутри кондера произошло .
Если для проверки сопротивления Вы решите использовать аналоговый мультиметр (стрелочный), то определить работоспособность элемента будет еще проще, наблюдая за ходом стрелки. Как и в предыдущем случае, минимальное и максимальное значение будет говорить о поломке детали, а плавное повышение сопротивления будет означать пригодность полярного конденсатора.
Чтобы самостоятельно проверить целостность неполярного кондера в домашних условиях, достаточно без соблюдения полярности прикоснуться щупами тестера к ножкам, выставив диапазон измерений на отметку 2 МОм. На дисплее должно появиться значение больше двойки. Если это не так, конденсатор не рабочий и его нужно заменить.
Следует также отметить, что предоставленный выше способ проверки подойдет только для изделий, емкостью более 0,25 мкФ. Если же номинал элемента схемы меньше, нужно сначала убедиться, что мультиметр способен работать в таком режиме, ну или купить специальный тестер – LC-метр.
Измеряем емкость
Следующий способ проверки работоспособности изделия – на пробой, измерив емкостные характеристики кондера и сравнив их с номинальным значением (указано производителем на внешней оболочке, что наглядно видно на фото).
Самостоятельно измерить емкость конденсатора мультиметром совсем не сложно. Необходимо всего лишь перевести переключатель в диапазон измерений, опираясь на номинал и, если в тестере есть специальные посадочные гнезда, вставить в них деталь, как показано на фото ниже.
Если же такой функции в тестере нет, можно проверить емкость с помощью щупов, аналогично предыдущему методу. При подключении щупов на дисплее должна высветиться емкость, близка по значению к номинальным характеристикам. Если это не так, значит, конденсатор пробит и нужно заменить деталь.
Измеряем напряжение
Еще один способ, позволяющий узнать, рабочий конденсатор или нет – проверить его напряжение вольтметром (ну или «мультиком») и сравнить результат с номиналом. Для проверки Вам понадобится источник питания с немного меньшим напряжением, к примеру, для 25-вольтного кондера достаточно источника напряжения в 9 Вольт. Соблюдая полярность, подключите щупы к ножкам и подождите несколько секунд, чего вполне хватит для зарядки.
После этого переведите тестер в режим измерения напряжения и выполните проверку работоспособности. В самом начале замера на дисплее должно появиться значение, примерно равное номиналу. Если это не так, конденсатор неисправен.
Обращаем Ваше внимание на то, что при подключении вольтметра бочонок будет постепенно терять заряд, поэтому достоверное напряжением можно увидеть только в самом начале замеров!
Тут же хотелось бы сказать пару слов о том, как проверить конденсатор большой емкости простым способом. Сначала Вы должны полностью зарядить элемент в течение нескольких секунд, после чего замкнуть контакты обычной отверткой с изолированной ручкой. Если бочонок рабочий, должна возникнуть яркая искра. Если искры нет либо она очень тусклая, скорее всего, конденсатор не работает, а точнее — не держит заряд.
Какой-либо этап проверки был Вам непонятен? Тогда просмотрите технологию проверки работоспособности конденсатора мультиметром на данном видео уроке:
Способ № 2 – Обойдемся без приборов
Менее качественный способ проверки работоспособности емкостного элемента – с помощью самодельной прозвонки в виде лампочки и двух проводов. Таким способом можно только проверить конденсатор на короткое замыкание. Как и в случае с отверткой, сначала заряжаем деталь, после чего выводами пробника прикасаемся к ножкам. Если кондер работает, произойдет искра, которая моментально его разрядит. О том, мы также рассказывали.
Что еще важно знать?
Не всегда проверка работоспособности конденсатора требует использование мультиметра либо других тестеров. Иногда достаточно визуально посмотреть на внешнее состояние изделия, что проверить его на вздутие либо пробой. Сначала внимательно просмотрите верхнюю часть бочонка, на которой производителем нанесен крестик (слабое место, предотвращающее взрыв кондера при выходе из строя).
Если Вы увидите там подтекание либо разрушение изоляции, значит, конденсатор пробит, и проверять его тестером уже нет смысла. Также внимательно просмотрите, не потемнел либо не взудлся ли этот элемент схемы, что случается очень часто. Ну и не следует забывать о том, что возможно повреждения возникли на самой плате рядом с местом подключения конденсатора. Эту неисправность можно увидеть невооруженным глазом, особенно, когда происходит отслоение дорожек либо изменение цвета платы.
Еще один важный момент, который Вы должны учитывать – проверку изделия нужно выполнять, только демонтировав его с платы. Если Вы хотите проверить конденсатор, не выпаивая из схемы, учтите, что может возникнуть большая погрешность измерений из-за находящихся рядом остальных элементов цепи.
Вот и все, что хотелось рассказать Вам о том, как проверить работоспособность конденсатора мультиметром в домашних условиях. Эту инструкцию мы рекомендуем Вам использовать при либо стиральной машины своими руками, т.к. у данного вида бытовой техники очень часто происходит эта поломка. Помимо этого кондер часто перестает работать на кондиционерах, усилителях и даже видеокартах. Поэтому если Вы желаете что-либо отремонтировать своими силами, надеемся, что эта инструкция Вам поможет!
Также читают:
Как проверить целостность «кондера»
Нравится(0 ) Не нравится(0 )
При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов. О том, как с достоверной точностью проверить исправность конденсаторов перед их использованием и пойдёт речь.
Самым доступным и распространённым прибором, с помощью которого можно проверить практически любой конденсатор, является цифровой мультиметр, включенный в режим омметра.
Наиболее важным является проверка конденсатора на пробой.
Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.
При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки неисправности элемента.
Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальных конденсаторах диэлектрик, несмотря на то, что он является, по сути, изолятором, пропускает незначительный ток. Этот ток для исправного конденсатора очень мал и не учитывается. Он называется током утечки.
Проверка конденсаторов с помощью омметра
Данный способ подходит для проверки неполярных конденсаторов. В неполярных конденсаторах, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух, сопротивление утечки бесконечно большое и если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое сопротивление.
Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.
На практике проверить на пробой любой неполярный конденсатор можно так:
Переключаем цифровой мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов измерения сопротивления. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x это будет предел 2M (2000k), то бишь, 2 Мегаома.
Далее подключаем измерительные щупы к выводам проверяемого конденсатора. При исправном конденсаторе прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки конденсатора более 2 Мегаом. Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, меньшее 2 Мегаом, то, скорее всего, конденсатор неисправен.
Следует учесть, что держаться обеими руками выводов и щупов мультиметра при измерении нельзя. Так как в таком случае прибор зафиксирует сопротивление Вашего тела, а не сопротивление утечки конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Поэтому не стоит забывать о правилах при проведении измерения сопротивления.
Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.
Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных полярных конденсаторов это значение не менее 1 Мегаом. При проверке таких конденсаторов омметром следует сначала разрядить конденсатор, замкнув выводы накоротко.
Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200.000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки конденсатора. Так как электролитические конденсаторы имеют довольно высокую емкость, то при проверке конденсатор начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти, и будет расти до тех пор, пока конденсатор не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности конденсатора.
Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась аналогичным образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелочным прибором росло, в конечном итоге достигая значения сопротивления утечки.
По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем соответственно, была больше ёмкость конденсатора. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости конденсатора, а вот при проверке конденсаторов с большой ёмкостью (1000 мкф и более), стрелка отклонялась значительно медленнее.
Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения ёмкости конденсатора.
При проверке электролитических конденсаторов необходимо перед проведением измерения ёмкости полностью разрядить проверяемый конденсатор. Особенно этого правила стоит придерживаться при проверке полярных конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор.
Например, часто приходиться проверять исправность конденсаторов, которые выполняют роль фильтрующих, и применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче измерительного прибора.
Поэтому такие конденсаторы перед проверкой следует разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью), либо подсоединив к выводам резистор, сопротивлением 5-10 килоОм (для высоковольтных конденсаторов).
При проведении данной операции не стоит касаться руками выводов конденсатора, иначе можно получить неприятный удар током при разряде обкладок. При закорачивании выводов заряженного электролитического конденсатора проскакивает искра. Чтобы исключить появление искры, выводы высоковольтных конденсаторов и закорачивают через резистор.
Одной из существенных неисправностей электролитических конденсаторов является частичная потеря ёмкости, вызванная повышенной утечкой. В таких случаях ёмкость конденсатора заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра довольно сложно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.
Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости.
Для полярных электролитических конденсатором косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления. Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор также имеет очень высокое сопротивление.
Обнаружить обрыв в конденсаторе возможно лишь с помощью приборов для измерения ёмкости конденсатора.
На практике обрыв в конденсаторах встречается довольно редко, в основном при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.
Например, люминесцентные компактные лампы частенько выходят из строя по причине электрического пробоя конденсаторов в электронной схеме преобразователя.
Причиной неисправности телевизора может служить потеря ёмкости электролитического конденсатора в схеме источника питания.
Потеря ёмкости электролитическими конденсаторами легко обнаруживается при замере ёмкости таких конденсаторов с помощью мультиметров с функцией измерения ёмкости. К таким мультиметрам относиться мультиметр Victor VC9805A+, который имеет 5 пределов измерения ёмкости:
20 нФ (20nF)
200 нФ (200nF)
2 мкФ (2uF)
20 мкФ (20uF)
200 мкФ (200uF)
Данный прибор способен измерять ёмкость в диапазоне от 20 нанофарад (20 нФ) до 200 микрофарад (мкФ). Как видно, с помощью этого прибора есть возможность замерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических. Правда, максимальный предел измерения ограничен значением в 200 микрофарад (мкФ).
Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность подключения щупов. Как уже упоминалось, перед измерением ёмкости следует в обязательном порядке полностью разрядить проверяемый конденсатор. Несоблюдение этого правила может привести к порче прибора.
Неисправность конденсатора можно определить при внешнем осмотре, например, корпус электролитических конденсаторов имеет разрыв насечки в верхней части корпуса. Это свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый «взрыв” конденсатора. Корпуса неполярных конденсаторов при значительном превышении рабочего напряжения имеют свойство раскалываться, на поверхности образуются расколы и трещины.
Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозовых разрядов и сильных скачков напряжения электроосветительной сети.
Что сделать перед проверкой:
- С самого начала , тестирующий элемент нужно выпаять из платы, в том случае, если он там находится.
- После этого , конденсатор разряжают — нужно его выходящие контакты замкнуть токопроводящим материалом (подойдёт простой металлический пинцет) или подключить к его выводам сопротивление 5-10 кОм для плавной разрядки, если он имеет большую ёмкость (высоковольтный).
- Не рекомендуется при этом прикасаться руками к выходным контактам элемента в целях личной безопасности. Всё это делается для того, чтобы не вышел из строя сам измерительный прибор, потому как на обкладках измеряемой детали может быть достаточно высокое напряжение.
Порядок проверки
касание контактов щупами
Мультиметр может выявить такие причины неисправности, как пробой, влекущее за собой разрушение диэлектрика, разделяющего пластины, и ток идёт напрямую, при этом, сам конденсатор, по сути, становится простым проводником. Либо делает это частично, теряя свою ёмкость, становясь дополнительно активным сопротивлением в электрической цепи.
Сам конденсатор в силу своего принципа работы пропускает только переменный ток , а постоянный ни в коем случае, поэтому его сопротивление, замеряемое между выводами, достаточно большое и ограничивается очень малым током утечки через диэлектрик, разделяющий его рабочие пластины, накапливающие в себе заряд.
В неполярных конденсаторах, роль диэлектрика которых играет слюда, керамика, бумага, стекло, воздух ток утечки бесконечно мал, а сопротивление очень большое и при его измерении между выводами цифровым мультиметром прибор покажет бесконечность в виде 1 на цифровом табло. Поэтому, в случае пробоя, его сопротивление, замеряемое на выводах, составляет довольно малую величину — до нескольких десятков Ом.
Протестировать на предмет пробоя неполярный конденсатор можно следующим способом:
- Цифровой мультиметр переводим в режим измерения сопротивления, устанавливая его в самый высокий из возможных пределов.
- После , подключаем измерительные щупы прибора к оголённым выводам тестируемого элемента.
- Если он рабочий , то на дисплее мультиметра будет только знак бесконечности — 1. Это показатель того, что внутреннее сопротивление (сопротивление утечки) свыше 2 Мом. Поэтому пробоя нет и, возможно, проверяемый элемент исправен. В противном случае пробой очевиден. Вследствие чего требуется замена его аналогичным или с более большей ёмкостью, с номинальным напряжением не ниже оригинала.
- При проверке нельзя прикасаться руками за оголенные выводы конденсатора или измерительных щупов прибора, потому как будет измерено сопротивление вашего тела, а не измеряемого элемента. Оно будет гораздо меньше, следовательно, результат будет ошибочным.
Полярные электролитические конденсаторы имеют некоторые особенности при замере их внутреннего сопротивления:
- Оно обычно не менее 100 кОм. При качественном изготовлении, сопротивление утечки у них может быть не менее 1 мОм. Как и упоминалось выше, перед проверкой измеряемый элемент должен быть полностью разряжен. Как это делается, описано выше.
- При замере сопротивления предел измерения на мультиметре устанавливается более 100 кОм. После, соблюдая полярность подключения щупов, производим замер. В силу своей сравнительно большой ёмкости, при проверке будет происходить зарядка конденсатора в течение малого количества времени. Процесс зарядки будет протекать с одновременным возрастанием сопротивления, выведенным на дисплей прибора, после окончания, которого замеряемая величина прекратит свой рост и будет иметь фиксированное и окончательное значение.
- Если показатель не более 100 кОм , то с большей долей вероятности это показатель того, что конденсатор рабочий.
При проверке стрелочным мультиметром всё делается аналогичным способом:
- Подготавливается конденсатор (фиксируется и разряжается).
- Выставляется измеряемый параметр (сопротивление не менее максимального предела).
- Делается замер, в некоторых случаях соблюдая полярность.
- Фиксируется результат и сравнивается с рабочими значениями.
Особенность измерения этим способом сопротивления в том, что когда он заряжается сам параметр также пропорционально растёт и соответственно стрелочный прибор, указывающий само значение сопротивления, двигается от нулевой отметки до окончательной фиксированной.
Можно было визуально по времени перемещения стрелки оценивать ёмкость измеряемого элемента. Тем самым, чем дольше стрелка шла до конечного значения, тем больше ёмкость конденсатора и наоборот.
Значение внутреннего сопротивления конденсатора является не основным показателем его работоспособности, поэтому серьёзным аргументом может служить только замеренная мультиметром ёмкость.
Проверка на ёмкость
Изменение ёмкости конденсаторов легко обнаружить при её замере мультиметром, имеющий такой режим измерения.
Замер происходит следующим образом:
- Измерительные щупы подключаются к разъёмам для измерения ёмкости (условное обозначение Cx) с соблюдением их (щупов) полярности. Обязательна полная разрядка конденсатора перед измерением этого параметра.
- Затем , рабочие поверхности щупов присоединяются к выводам измеряемого элемента, также соблюдая полярность в случае снятия показаний с полярного типа измеряемого элемента.
- При показании мультиметра равным 0 или значительно отличающимся по значению от указанных на конденсаторе, последний считать не рабочим и требующим замены.
Возможные причины выхода из строя
Несоблюдение основных параметров эксплуатации, таких как:
- Номинальное напряжение. При увеличении номинального напряжения, на нём возникает пробой в силу электротехнических характеристик диэлектрика, изолирующего пластины конденсатора.
- Расчётная ёмкость. Несоответствие ёмкости (ниже расчётной) влечёт за собой завышение номинального напряжения на рассматриваемом элементе, поэтому при его замене, если нет аналога, ставится элемент с большей ёмкостью.
- Полярность в некоторых случаях . Полярность является обязательным параметром электролитических и танталовых конденсаторов в силу особенности конструкции.
Рабочая температура зависит от соблюдения вышеописанных параметров напрямую. Исключением является старение, возникающее у электролитического типа, и расположения элемента на печатной плате, вследствие которого его рабочая температура может быть выше критической вследствие размещённых рядом других единиц электрической цепи, имеющих более высокий температурный режим.
Это причина выхода из строя оксиднополупроводникового элемента, так как он уже сам по себе представляет собой взрывчатку: там есть тантал, который является горючим и окислитель двуокись марганца.
Каждый компонент — это порошок и всё это смешано воедино. Не гремучая ли смесь? Именно поэтому повышение температуры из-за пробоя или несоблюдения полярности может привести к взрыву, способного вывести из строя не только соседние элементы, но и плату полностью.
Назначение конденсатора
По определению, конденсатор — это элемент электрической цепи, который обладает способностью накапливать и отдавать электрический заряд в нужное работе время. Он похож на миниатюрный аккумулятор с той разницей, что его зарядка при подключении напрямую к цепи постоянного тока и полная разрядка при замыкании выводящих контактов происходит практически мгновенно.
Он представляет собой 2 параллельные пластины, находящиеся на очень малом расстоянии друг от друга и изолированных между собой диэлектриком.
Суть работы заключается в том, что при подключении конденсатора к источнику постоянного тока, когда на одну пластину подключают положительную полярность («+»), а на другую противоположную отрицательную («-«), будет происходить накопление заряда до определённого предела.
Все это происходит потому, что разноимённые заряды притягиваются, а сами пластины изолированы друг от друга диэлектриком и находятся на очень малом расстоянии. Именно это притяжение и позволяет накапливать заряд конденсатору.
Их существует несколько видов:
- Постоянной ёмкости.
- Полярный конденсатор со строго закреплёнными за выходами полярности.
- Подстроечные (переменной ёмкости).
Вот его несколько основных параметров:
- Ёмкость , измеряемая в Фарадах.
- Номинальное напряжение.
- Рабочая частота.
- Полярность (необязательный параметр — зависит от вида).
На эти показатели в основном оказывают влияние:
- Площадь пластин.
- Их расстояние между собой (чем меньше расстояние, тем ёмкость больше).
- Сопротивление диэлектрика (с её увеличением также повышается рассматриваемый параметр).
Конденсаторы широко применяются в:
- Радиоэлектронике (различные частотные фильтры, колебательныеLС контуры, получение тока с различными характеристиками).
- Электротехнике (для работы электродвигателей).
- Некоторые экземпляры с очень большой ёмкостью нужны как вспомогательное устройство для запуска двигателей внутреннего сгорания(пуск двигателя тепловоза на железнодорожном транспорте).
Что такое мультиметр?
Это компактный прибор, позволяющий делать замеры основных параметров как электрической цепи, так и отдельных его элементов для тестирования и выявления неисправностей.
Существуют 2 типа:
Аналоговый
Состоит из следующих элементов:
- Стрелочного магнитоэлектрического индикатора.
- Добавочных резисторов для снятия показаний напряжения,
- Шунтов для измерения тока.
Цифровой
Более сложный и точный прибор (наиболее распространены мультиметры с точностью 1%), состоящий из набора микросхем и цифрового индикатора, который бывает в основном жидкокристаллическим.
Некоторые из замеряемых мультиметром характеристик:
- Напряжение (переменного и постоянного тока).
- Сила тока (переменного и постоянного).
- Сопротивление (со звуковым сигналом, если оно менее 50 Ом).
- Ёмкость.
- Проверка полупроводников на целостность и полярность.
- Температура.
Довольно часто во время ремонта или замены электронных схем у молодых специалистов возникает вопрос, как проверить конденсатор на работоспособность. Большинство таких проверок выполняется с помощью мультиметра. Этот прибор совсем несложен в обращении, требует минимальных знаний и практических навыков. Существуют и другие способы проверки, которые нужно знать на случай отсутствия мультиметра.
Как проверить конденсатор мультиметром
Перед началом проверки конденсатора на исправность, он должен быть обязательно разряжен. Процедуру разрядки можно выполнить с помощью обычной отвертки. Ее жало касается сразу двух выводов прибора до возникновения искры. Небольшая вспышка будет свидетельствовать о разрядке, после чего осуществляется непосредственная проверка работоспособности конденсатора.
Для проверки чаще всего используется мультиметр. С помощью этого прибора возможно определить такие показатели, как емкость, возможный обрыв или короткое замыкание. Прежде всего нужно определить тип проверяемого конденсатора. Они могут быть полярными (электролитическими) или неполярными. В первом случае обязательно соблюдение полярности, то есть щуп должен прижиматься к соответствующей ножке — плюс к плюсу, а минус к минусу.
Неполярный конденсатор не требует соблюдения полярности, для его проверки существует собственная технология. После определения типа прибора, выполняется его поэтапная проверка.
Изме рение сопротивления
Прежде чем выполнять проверку сопротивления, необходимо отпаять конденсатор со своего места и пинцетом перенести на рабочий стол. Далее тестер необходимо переключить в режим изме рения сопротивления, после чего приложить щупы к выводам с соблюдением полярности. Данный момент имеет большое значение, поскольку в случае путаницы плюса и минуса произойдет мгновенный выход из строя конденсатора. Чтобы исключить такую возможность, на каждом устройстве отрицательный контакт отмечается галочкой.
После контакта щупа с ножками, дисплей мультиметра начинает отображать первое значение, которое быстро возрастает. Причиной такого состояния служит зарядка конденсатора при его контакте с изме рительным прибором.Через определенный промежуток времени на дисплее появится цифра 1, которая считается максимальным значением и указывает на исправность проверяемой детали.
Если единица появилась на дисплее сразу же после начала проверки, это свидетельствует о наличии обрыва внутри бочонка и его неисправности. Наличие на табло нуля означает короткое замыкание. Применение аналогового стрелочного мультиметра дает такие же результаты. Определение работоспособности в данном случае очень простое, достаточно только понаблюдать за ходом стрелки. При плавном повышении сопротивления полярный конденсатор считается пригодным к работе. Значение минимума и максимума указывает на неисправность.
Неполярный конденсатор довольно просто проверить самостоятельно в домашних условиях. Для этого нужно коснуться щупом ножек, не соблюдая полярность. Диапазон изме рений должен быть выставлен на значение 2 Мом. Цифровое значение, появившееся на дисплее, должно превышать двойку. Меньшее значение указывает на неисправность детали и необходимость ее замены. Данный способ подходит для проверки тех изделий, емкость которых превышает 0,25 мкФ. Конденсаторы с меньшим номиналом проверяются специальным тестером — LC-метром или мультиметром с функцией проверки таких деталей.
Изме рение емкости
Работоспособность конденсатора на пробой может проверяться путем и последующего их сравнения с номиналом, указанным на внешней оболочке изделия.
Изме рение емкости не представляет особой сложности и может быть выполнено самостоятельно. С этой целью переключатель переводится в изме рительный диапазон в соответствии с номиналом. Сама деталь вставляется в специальные посадочные гнезда.
В случае отсутствия гнезд, проверка емкости может проводиться щупами, так же, как и при изме рении сопротивления. После того как щупы подключены, на дисплее высвечиваются показатели емкости, приближенные к номинальному значению. Если прибор показывает другие цифры, значит деталь считается пробитой и требует замены.
Изме рение напряжения
Одним из способов проверки работоспособности конденсатора является изме рение его напряжения с помощью вольтметра или мультиметра. Для проведения изме рений необходимо воспользоваться источником питания с напряжением, меньшим, чем у конденсатора. Щупы прибора подключаются к ножкам детали с обязательным соблюдением полярности. Затем необходимо выдержать 4-5 секунд, необходимых для зарядки.
Следующим этапом будет перевод мультиметра в режим для изме рений напряжения. В начальной стадии замера на экране должно высветиться значение, сравнимое с номиналом. Если на дисплее будут другие показатели, значит конденсатор находится в нерабочем состоянии. Следует помнить, что подключенный вольтметр, способствует потере заряда конденсатора. Поэтому наиболее точные данные можно зафиксировать только в начальной стадии замера.
Как проверить конденсатор без приборов
Существует простой способ, позволяющий выполнить проверку без каких-либо приборов. Прежде всего это касается конденсаторов с большой емкостью. Вначале производится полная зарядка элемента на протяжении 4-5 секунд. После этого контакты замыкаются с помощью обыкновенной отвертки. При нормальной работоспособности бочонка наблюдается появление яркой искры. Если искра тусклая или ее нет вообще, значит конденсатор нерабочий и неспособен удерживать заряд.
Лампочка и два провода не могут обеспечить высокого качества проверки. Это самодельное средство для прозвонки обеспечивает лишь проверку на наличие короткого замыкания. Вначале нужно зарядить конденсатор, а затем концами проводов прикоснуться к ножкам. В случае нормальной работоспособности, будет хорошо заметна искра, после чего наступит моментальная разрядка конденсатора.
При проверке конденсатора на работоспособность, можно вполне обойтись без изме рительных приборов. В некоторых случаях достаточно визуального осмотра с целью определения внешнего состояния детали. Таким образом, определяется вздутие или пробой. Наиболее тщательно осматривается верхняя часть. Наличие разрушенной изоляции или подтеков прямо указывает на пробитие конденсатора, и дальнейшая проверка приборами уже не имеет смысла.
Рекомендуется очень внимательно осматривать корпус на предмет вздутия или потемнения. Конденсаторы довольно часто оказываются в таком состоянии. Также нужно тщательно проверять саму плату в том месте, где подключена деталь. Подобные неисправности можно заметить визуально, особенно при отслоении дорожек. В некоторых случаях изме няется цвет платы.
Проверка конденсатора должна проводиться только после его демонтажа с платы. Если этого не сделать, то проверка на месте даст большие погрешности в изме рениях, под влиянием элементов, расположенных рядом. Зная, как правильно выполнить проверку, вполне возможно самостоятельно проверить работоспособность конденсатора с помощью изме рительных приборов и подручных средств.
Конденсатор — пассивный компонент, который является одним из самых распространённых элементов электронных и радиотехнических конструкций и устройств. Он применяется в электронных схемах для накопления заряда, сглаживания напряжения в электрической цепи, разделения тока на переменную и постоянную составляющие, а также выполнения других функций.
Электролитические и керамические конденсаторы
По конструктивному исполнению конденсаторы подразделяются на полярные и неполярные. Неполярные состоят из двух пластин и расположенного между ними диэлектрика. Поскольку они не имеют полюсов, то работают как в цепях постоянного, так и переменного напряжения. Полярные — наполнены электролитом и должны включаться в схему в строгом соответствии с указанной полярностью, поэтому работают только в цепях постоянного напряжения.
Наиболее распространёнными являются электролитические (как правило, полярные) и керамические (неполярные) конденсаторы. В керамических (в качестве диэлектрика) используется керамика, благодаря чему они имеют небольшие размеры, отличные температурные характеристики и минимальное отклонение от величины ёмкости при широком температурном диапазоне. В электролитических (в качестве диэлектрика) выступает тонкая оксидная плёнка на поверхности анода, катодом же является электролит. При своих небольших габаритах они обладают достаточно высокой ёмкостью.
Проверка на работоспособность
В процессе изготовления или ремонта электронной техники регулярно возникает потребность в проверке радиокомпонентов, в том числе и конденсаторов, на работоспособность, потому что их неисправность незамедлительно приводит к нарушению нормальной работы оборудования, в котором они используются.
Следует помнить, что после выключения ремонтируемого прибора из сети, электролитические конденсаторы сохраняют электрический заряд в течение некоторого времени, поэтому прежде чем приступать к работе, их необходимо разрядить.
Основные типы неисправностей и причины выхода из строя
Методы проверки без выпаивания из схемы
Как вызвать конденсатор мультиметром: инструкция и советы
Одной из наиболее частых причин выхода из строя электронного оборудования является выход из строя одного или нескольких конденсаторов, которые составляют неотъемлемую часть его платы. А чтобы узнать, какой конденсатор является слабым звеном, необходимо проверить их работоспособность. В этой статье рассказывается, как вызвать конденсатор. Вне зависимости от того, занимаетесь ли вы электронной техникой профессионально или просто любитель, это вполне возможно для вас.Для этого вам понадобится мультиметр. Ниже мы рассмотрим, как самостоятельно проверить конденсатор мультиметром.
Типы конденсаторов и их поверка
Прежде чем разобраться, как мультиметром вызвать конденсатор, давайте выясним, какие типы конденсаторов существуют. Все конденсаторы делятся на полярные и неполярные. Разница между ними в том, что полярные, как можно догадаться по названию, имеют полярность. Проверять их нужно строго соответствующим образом: «плюс» на «плюс», «минус» на «минус», иначе они придут в негодность и могут взорваться.Все полярные конденсаторы электролитические. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев на поверхности предусмотрен специальный участок, который разрывается в определенном направлении и не дает проводящему веществу разбрызгиваться в разные стороны.
Как выполнить проверку зависит от характера неисправности, поскольку мультиметр может проверить конденсатор на работу двумя способами: в режиме измерения сопротивления его диэлектрика и измерения его емкости.Пробой конденсатора
Самая частая проблема конденсаторов — пробой диэлектрика. Диэлектрик — это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, предотвращающее протекание тока между проводниками.
В хорошем конденсаторе небольшой ток, проходящий через этот изолятор, называется «током утечки», и им можно пренебречь. При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обычный проводник.Причина такой поломки, как правило, — резкое падение напряжения в сети, к которой подключено оборудование. Характерные признаки поломки включают образование пузырей на корпусе конденсатора, его потемнение и появление черных пятен. Перед проверкой конденсатора на исправность осмотрите его визуально на предмет внешних дефектов.
Проверка неполярного конденсатора в режиме омметра
Мультиметр для проверки диэлектрического сопротивления в конденсаторе реализован в режиме омметра.В неполярных конденсаторах диэлектрик может быть сделан из стекла, керамики, бумаги или даже в виде воздушного зазора. Таким образом обеспечивается чрезвычайно высокое сопротивление, и в хорошем конденсаторе цифровой мультиметр покажет почти бесконечное значение. В случае электрического пробоя уровень сопротивления будет в пределах нескольких Ом, максимум нескольких десятков.
Перед тем как вызвать мультиметр-конденсатор, включите измерительный прибор в соответствующем режиме, выставив на нем максимально возможный уровень измерения сопротивления.Подведите конденсаторы к выводам измерителя и посмотрите на дисплей: если конденсатор в порядке, то должен появиться одиночный, свидетельствующий о том, что сопротивление выше установленного максимума. Однако, если на дисплее измерителя отображается конкретное значение, которое меньше максимума измерения, это может свидетельствовать о неисправности проверяемого конденсатора.Помните о мерах безопасности и не держите одновременно щупы прибора и выводы конденсатора, потому что из-за меньшего сопротивления электрический ток будет проходить через ваше тело.
Проверка полярного конденсатора в режиме омметра
По сравнению с неполярными конденсаторами неполярное сопротивление диэлектрика на порядок меньше, поэтому максимальное сопротивление на мультиметре следует выставлять соответствующим образом. Большинство этих конденсаторов имеют сопротивление не менее 100 кОм, особенно мощные — до 1 мОм. Прежде чем мультиметр прозвонит конденсатор, закоротите контакты привода, чтобы полностью разрядить его.
Установив соответствующий предел измерения, подключите измерительные провода прибора к конденсатору, соблюдая полярность.Электролитические конденсаторы обладают сравнительно большой емкостью, а потому при подключении сразу начинают заряжаться. В течение этого времени, пока идет зарядка, сопротивление будет увеличиваться прямо пропорционально тому, что будет отображаться на экране устройства. Конденсатор можно считать исправным в большинстве случаев, когда сопротивление превышает 100 кОм.
В качестве мультиметра назовем конденсатор (аналоговый измеритель)
Эту же процедуру можно проделать с помощью аналогового (стрелочного) измерителя.Как проверить конденсатор с помощью мультиметра?
Энергия накапливается в конденсаторах в виде электрических зарядов. Конденсаторы слишком важны, чтобы их игнорировать; это электрические компоненты, которые играют важную роль в вашей электронике.
Конденсаторы выполняют функции зарядки и разрядки, то есть высвобождают заряд в цепь через пластину конденсатора, когда первая заряженная пластина может дольше удерживать ток, накопленный в ней.
Конденсаторы — это части двигателей ваших кондиционеров, обогревателей и компрессоров холодильников.Таким образом, очевидно, что одна из неисправностей вашей электроники может быть связана с конденсатором.
Чтобы проверить конденсатор, вам придется использовать мультиметр (если у вас нет его на Amazon.com, выберите его). Вы должны знать, что мультиметр работает как устройство для поиска и устранения неисправностей, которое измеряет сопротивление, ток и напряжение.
Но вопрос будет: «, как проверить конденсатор с помощью мультиметра ?» Мы бы ответили на этот вопрос, кратко объяснив, как вы можете использовать мультиметры с различными функциями для проверки вашего конденсатора.
Как проверить конденсатор с помощью мультиметра с настройкой емкости
Если у вас есть цифровой мультиметр, который работает с настройками емкости, то вам повезет! Это быстрый и точный способ проведения этого теста.
Емкость измеряется в фарадах, используя мультиметр с настройками емкости, он может измерять конденсаторы от нескольких нанофарад до конденсаторов большего размера в микрофарадах.
- Для проведения этого теста вам необходимо отсоединить конденсатор от печатной платы и полностью разрядить его; вы можете сделать это, подключив его к светодиоду или мощному резистору.Вы можете напечатать как конденсатор, так и номинальное напряжение на внешней стороне конденсатора, поэтому следующее, что нужно сделать, — это принять к сведению эти номиналы.
- Установите ручку цифрового мультиметра в положение емкости, затем подключите щупы к клеммам конденсатора. Чтобы получить правильные показания на электролитическом конденсаторе, подключите красный щуп к положительной клемме, а затем черный к отрицательной клемме. Что касается неэлектролитических, вы можете присоединиться к ним в любом случае; это не имело бы значения.
- После всех этих настроек и размещений теперь вы можете проверить показания мультиметра. Поскольку электролитические конденсаторы могут высохнуть, ваши показания могут быть немного меньше, чем номинальные значения на внешней стороне, но пока они близки к номинальным, ваш конденсатор работает правильно.
Если разница между вашими показаниями и номинальными характеристиками является значительной, то проблема вашего устройства может заключаться в неисправном конденсаторе.
Как проверить конденсатор с помощью мультиметра без настроек емкости
Поскольку у некоторых менее дорогих мультиметров нет настроек емкости, и если один из них принадлежит вам, вы все равно можете проводить с ними испытания своих конденсаторов.
- Как и в мультиметрах с настройкой емкости, вам сначала нужно удалить конденсатор из цепи и убедиться, что он разряжен. Следующее, что нужно сделать, это установить ручку мультиметра в положение Ом для измерения сопротивления и выбрать высокий диапазон.
- Кроме того, как и в предыдущем мультиметре, о котором мы говорили, подключите щупы красный к положительному, а черный к отрицательному в случае электролитических конденсаторов, а в случае неэлектролитических, вы можете разместить их любым способом.
- Цифровой мультиметр будет отображать значение сопротивления, поэтому обратите внимание на это, прежде чем оно изменится на сопротивление разомкнутой цепи, равное бесконечности.
- После этого отсоедините щупы от конденсаторов и повторите процесс несколько раз. Каждый тест должен показывать разные значения сопротивления, чтобы доказать, что конденсатор работает правильно, поэтому, когда он отображает одни и те же результаты по отдельности, у вас есть поврежденный конденсатор.
Тестирование конденсаторов с помощью мультиметров без настройки емкости не может гарантировать точность измерения емкости конденсатора, но вы можете определить, подходит ли конденсатор с ним.
Как проверить конденсатор с помощью мультиметра для измерения напряжения
Мультиметры могут работать как вольтметр, а конденсаторы рассчитаны на максимальное напряжение, которое может быть приложено к ним, поэтому этот тест будет сосредоточен на измерении номинальное напряжение конденсатора.
Для проведения этого теста вы также должны следовать обычному процессу удаления конденсатора из схемы или платы и обеспечения его разрядки.
- Номинальное напряжение, указанное на конденсаторе, является максимальным напряжением, с которым он может работать, поэтому подключение его к источнику питания с более высоким номинальным напряжением может привести к повреждению.Поэтому обратите внимание на номинальное напряжение на внешней стороне конденсатора, затем подключите его к батарее или источнику питания, которые не соответствуют указанным характеристикам. Например, вы можете использовать батарею на 12 Вольт на конденсаторе на 25 Вольт.
- Дайте конденсатору зарядиться на несколько секунд, прежде чем отключать источник питания. Теперь настройте цифровой мультиметр на настройки вольтметра постоянного тока, правильно подключите клеммы конденсатора к щупам мультиметра, положительный к красному и отрицательный к черному, как необходимо, затем измерьте напряжение.
- Обратите внимание на ваши первоначальные показания на мультиметре, если они близки к напряжению батареи или подключенного к нему источника питания, то конденсатор в порядке, а если есть значительная разница, то конденсатор неисправен.
Важно знать, что напряжение постепенно падает, поэтому следует учитывать только первое значение.
Как проверить конденсатор с помощью аналогового мультиметра
Аналоговые мультиметры, как и цифровой мультиметр, могут также использоваться для проверки тока, напряжения и сопротивления.
При использовании этого мультиметра для проверки конденсаторов вы должны использовать функцию Ом.
- Первое, что вы делаете, как обычно, отсоединяете конденсатор от платы и разряжаете его, если ваш аналоговый мультиметр имеет несколько диапазонов Ом, поместите его в положение омметра, но выберите более высокий диапазон.
- Подключите щупы мультиметра к выводам конденсаторов и наблюдайте за показаниями. Аналоговые мультиметры отображают свои показания движением стрелки, что позволяет определить, хороший или плохой конденсатор.
Для рабочего конденсатора стрелка будет показывать низкое значение сопротивления и будет постепенно увеличиваться по мере движения вправо. Конденсатор — это закороченный конденсатор, и его потребуется заменить, если стрелка остается на низком уровне. Если стрелка показывает высокое значение на мультиметре или не движется вообще, значит, конденсатор имеет разомкнутую цепь, что означает, что он неисправен и его необходимо заменить.
Заключение
В заключение мы хотели бы, чтобы вы знали, что, хотя конденсаторы можно разделить на электролитические и неэлектролитические, они выходят из строя по нескольким причинам.
Электролитические конденсаторы выходят из строя из-за слишком большого тока разряда в течение короткого периода времени, а неэлектролитический конденсатор выходит из строя из-за утечек.
Другая причина, по которой любой из обоих классов может быть поврежден, может быть из-за скачков напряжения или скачков напряжения.
Если проверка вашего устройства показывает, что у вас неисправный конденсатор, вы можете сэкономить, наняв техника для ремонта или купив новое устройство, заменив конденсаторы и вернув устройство к нормальной работе.
Часто задаваемые вопросы
Как проверить конденсатор мультиметром в цепи?
Прежде чем мы начнем, вы должны знать, что проверка конденсаторов с помощью мультиметра в цепи может быть опасной и должна выполняться профессионалом.
Если вы считаете, что у вас достаточно опыта и технических знаний для этого, убедитесь, что вы в любом случае принимаете меры предосторожности, и продолжайте читать. При этом процесс тестирования конденсаторов мультиметрами в цепи очень прост.
Для начала нужно взять плоскогубцы и с их помощью разрядить конденсатор. Вы можете сделать это, нажав плоскогубцами как положительный, так и отрицательный выводы конденсатора, просто убедитесь, что ваши плоскогубцы имеют резиновые ручки и не нажимают слишком сильно. В большинстве случаев хватит клещей. После этого возьмите мультиметр и установите t режим измерения емкости.
Если у вас есть мультиметр с автоматическим переключением диапазона, это прекрасно, если вы не убедитесь, что вы установили мультиметр на максимально возможное значение емкости.Определите положительный и отрицательный выводы на конденсаторе
Как проверить конденсатор с помощью мультиметра 5 способами?
I Введение
Два соседних проводника зажаты слоем непроводящей изолирующей среды, образуя конденсатор. Конденсаторы — один из наиболее часто используемых электронных компонентов. Они играют важную роль в таких схемах, как настройка, обход, связь и фильтрация. Например, их часто используют в цепи настройки транзисторного радиоприемника, цепи связи и цепи байпаса цветного телевизора.
Эта статья в основном знакомит с тем, как правильно использовать мультиметры для проверки конденсаторов и алюминиевых электролитических конденсаторов, включая подробные этапы работы, принципы работы, примечания и объяснение некоторых фундаментальных знаний о конденсаторах.
У нас также есть соответствующая статья о том, как проверить пусковые конденсаторы, которые могут вас заинтересовать. Не пропустите!
Как проверить конденсаторы с помощью мультиметра Dgital
Каталог
II Определение конденсатора
Конденсаторы состоят из компонентов, которые накапливают электричество и электрическую энергию (потенциальную энергию).Проводник окружен другим проводником, или все линии электрического поля, излучаемые одним проводником, заканчиваются в проводящей системе другого проводника, называемой конденсатором.
III Причины и последствия тестирования конденсаторов и характеристик выдерживаемого напряжения
3.1 Почему мы должны измерять емкость конденсатора?
Целью измерения значения емкости конденсатора в общем смысле электричества является проверка изменения его значения емкости.Сравнивая измеренное значение со значением, указанным на паспортной табличке, вы можете судить о том, правильна ли внутренняя проводка и не испортилась ли изоляция из-за влаги, сломался ли компонент и вызвало ли утечка масла уменьшение емкости. Так что будьте осторожны во время основной операции.
3.2 Почему конденсаторы должны проходить испытание на выдерживаемое напряжение?
Испытание на выдерживаемое напряжение относится к испытанию способности выдерживать напряжение различных электрических устройств и конструкций.Процесс приложения высокого напряжения к изолирующему материалу или изолирующей конструкции без ухудшения характеристик изоляционного материала считается испытанием на выдерживаемое напряжение. Вообще говоря, основная цель испытания на выдерживаемое напряжение — это проверка способности изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверка того, соответствуют ли характеристики изоляции продукта стандартам безопасности. чтобы проверить способность изоляции выдерживать рабочее напряжение или перенапряжение, а затем проверить, соответствуют ли характеристики изоляции оборудования стандартам безопасности.
Рисунок 1. Тестирование конденсатора
IV Различия между конденсаторами разной емкости в тесте
4.1 Тест конденсатора малой емкости
Емкость конденсатора малой емкости обычно ниже 1 мкФ, потому что емкость слишком мала, зарядка явление неочевидное, и угол руки вправо при измерении невелик. Поэтому измерить его емкость мультиметром, как правило, невозможно, а только определить, есть ли у него утечка или пробой.В нормальных условиях значение сопротивления обоих концов мультиметра R × 10 кОм должно быть бесконечным. Если определенное значение сопротивления измерено или значение сопротивления близко к 0, это означает, что в конденсаторе произошла утечка электричества или он был поврежден в результате пробоя.
4.2 Испытание конденсатора большой емкости
Большую емкость обычно можно проверить с помощью 1–10 кОм, посмотрите развертку измерителя во время зарядки и значение сопротивления, указанное на последнем измерителе. Чем ближе к левому краю, тем лучше.Если сопротивление слишком мало, его нельзя использовать.
4.3 Тест суперконденсатора
Метод измерения суперконденсаторов полностью отличается от других типов конденсаторов. Суперконденсаторы имеют исключительно большие значения емкости, которые невозможно измерить напрямую с помощью стандартного оборудования. Обычными методами проверки емкости этих конденсаторов являются зарядка суперконденсаторов номинальным напряжением и разрядка суперконденсаторов нагрузкой с постоянным током.
Рисунок 2. Разные конденсаторы
В Как проверить конденсаторы с помощью мультиметра?
5.1 Прямой тест с конденсатором
Некоторые цифровые мультиметры имеют функцию измерения емкости, и их диапазоны разделены на пять диапазонов: 2,000p, 20n, 200n, 2μ и 20μ. При измерении вы можете напрямую вставить два контакта разряженного конденсатора в гнездо Cx на плате измерителя и выбрать соответствующий диапазон для чтения отображаемых данных.
файл 2000p, подходит для измерения емкости менее 2000 пФ; Файл 20n, подходящий для измерения емкости от 2000 пФ до 20 нФ; Файл 200n, подходящий для измерения емкости от 20 до 200 нФ; Файл 2μ, подходит для измерения емкости от 200 нФ до 2 мкФ; Диапазон 20 мкФ, подходит для измерения емкости от 2 мкФ до 20 мкФ.
Опыт показал, что некоторые типы цифровых мультиметров (например, DT890B +) допускают значительную ошибку при измерении конденсаторов малой емкости ниже 50 пФ, а эталонное значение для измерения емкости ниже 20 пФ практически отсутствует.В это время емкость малого значения может быть измерена последовательным методом.
Метод: сначала найдите конденсатор примерно 220 пФ, с помощью цифрового мультиметра измерьте его фактическую емкость C1, а затем подключите малый конденсатор, который нужно проверить, параллельно, чтобы измерить его общую емкость C2. Разница между ними (C1-C2) заключается в емкости тестируемых конденсаторов.
С помощью этого метода очень точно измерить малую емкость 1 ~ 20 пФ.
Рисунок 3. Как проверить конденсатор с помощью мультиметра
5.2 Тест с файлом сопротивления
Практика доказала, что процесс зарядки конденсаторов также можно наблюдать с помощью цифрового мультиметра, который фактически отражает изменение зарядного напряжения в дискретных цифровых величинах. . Предполагая, что скорость измерения цифрового мультиметра составляет n раз в секунду, в процессе наблюдения за зарядкой конденсатора вы можете увидеть n показаний, которые не зависят друг от друга и последовательно увеличиваются.В соответствии с этой характеристикой дисплея цифрового мультиметра можно определить качество конденсатора и оценить размер емкости.
Далее описывается метод обнаружения конденсатора с помощью измерителя сопротивления цифрового мультиметра, который имеет практическое значение для приборов без конденсатора. Этот метод подходит для измерения конденсаторов большой емкости от 0,1 мкФ до нескольких тысяч микрофарад.
5.2.1 Операция Метод измерения
Как показано на рисунке 4, установите цифровой мультиметр на соответствующий уровень сопротивления.Красный и черный испытательные провода соответственно касаются двух полюсов проверяемого конденсатора Сх. В это время отображаемое значение будет постепенно увеличиваться с «000» до отображения символа переполнения «1». Если постоянно отображается «000», это означает, что конденсатор имеет внутреннее короткое замыкание; если он отображается постоянно, внутренние полюса конденсатора могут быть разомкнуты или выбранный уровень сопротивления может быть неподходящим. При проверке электролитических конденсаторов обратите внимание на то, что красный измерительный провод (положительный заряд) подключен к положительному электроду конденсатора, а черный измерительный провод подключен к отрицательному электроду конденсатора.
Рисунок 4. Цифровой мультиметр
5.2.2 Принцип измерения
На рисунке 5 показан принцип измерения конденсаторов с помощью файлов сопротивления. Во время измерения положительный источник питания заряжается, измеряемый конденсатор Cx проходит через стандартный резистор R0. В момент начала зарядки Vc = 0, поэтому отображается «000». По мере постепенного увеличения Vc отображаемое значение увеличивается. Когда Vc = 2VR, измеритель начинает отображать символ переполнения «1.«Время зарядки t — это время, необходимое для того, чтобы отображаемое значение изменилось с« 000 »до переполнения. Этот временной интервал можно измерить с помощью кварцевого счетчика.
Рисунок 5. Принцип измерения
5.2.3 Измеренные данные с использованием цифрового мультиметра DT830 для оценки емкости
Принцип выбора диапазона сопротивления: при небольшой емкости следует выбирать высокое сопротивление, а при большой емкости — низкое сопротивление.Если вы используете диапазон высокого сопротивления для оценки конденсатора большой емкости, время измерения продлится долгое время, поскольку процесс зарядки идет очень медленно. Если вы используете диапазон низкого сопротивления для проверки конденсатора малой емкости, измеритель всегда будет показывать переполнение, потому что время зарядки очень короткое, и вы не можете увидеть изменения.
5.3 Тест с файлом напряжения
Обнаружение конденсаторов с помощью мультиметра постоянного тока цифрового мультиметра фактически является косвенным методом измерения.Этот метод позволяет измерять конденсаторы малой емкости от 220 пФ до 1 мкФ и точно измерять ток утечки конденсатора.
5.3.1 Методы и принципы измерения
Схема измерения показана на рисунке 6. E — внешняя сухая батарея на 1,5 В. Установите цифровой мультиметр на диапазон 2 В постоянного тока, подключите красный измерительный провод к одному электроду проверяемого конденсатора Cx, а черный измерительный провод к отрицательному полюсу батареи. Входное сопротивление диапазона 2 В составляет RIN = 10 МОм.После включения питания аккумулятор E заряжает Cx через RIN и начинает устанавливать напряжение Vc. Связь между Vc и временем зарядки t составляет
.Рисунок 6. Схема подключения измерительного конденсатора с блоком напряжения
Здесь, поскольку напряжение на RIN является входным напряжением прибора VIN, RIN фактически выполняет функцию резистора выборки. очевидно,
VIN (t) = E-Vc (t) = Eexp (-t / RINCx) (5-2)
Рисунок 7 — это кривая изменения входного напряжения VIN (t) и напряжения зарядки Vc (t) на испытуемом конденсаторе.Из рисунка видно, что процесс изменения VIN (t) и Vc (t) прямо противоположен. Кривая VIN (t) уменьшается со временем, а Vc (t) увеличивается со временем. Хотя измеритель показывает процесс изменения VIN- (t), он косвенно отражает процесс зарядки тестируемого конденсатора Cx. Во время теста, если Cx открыт (нет емкости), отображаемое значение всегда будет «000». Если Cx имеет внутреннее короткое замыкание, отображаемое значение всегда будет напряжением батареи E и не будет изменяться со временем.
Рисунок7. Кривая изменения VIN (t) и Vc (t)
Уравнение (5-2) показывает, что когда цепь включена, t = 0, VIN = E, начальное отображаемое значение цифрового мультиметра — это напряжение батареи, а затем, когда Vc (t) увеличивается, VIN (t) постепенно уменьшается. Пока VIN = 0V, процесс зарядки Cx заканчивается, в это время
Vcx (t) = E
Используя конденсатор определения уровня напряжения цифрового мультиметра, можно не только проверить конденсаторы малой емкости от 220 пФ до 1 мкФ, но также измерить ток утечки конденсатора.Пусть ток утечки измеряемого конденсатора будет ID, а стабильное значение, отображаемое измерителем в конце, будет VD (единица измерения V), тогда
Рисунок 8. Уравнение (5-3)
5.3.2 Примеры
Пример 1:
Измеренная емкость представляет собой постоянный конденсатор 1 мкФ / 160 В с использованием диапазона 2 В постоянного тока цифрового мультиметра DT830 (RIN = 10 МОм). Подключите схему согласно рисунку 6. Изначально измеритель показывал 1,543 В, а затем отображаемое значение постепенно уменьшалось.Примерно через 2 минуты отображаемое значение стабилизировалось на 0,003 В. Найдите ток утечки проверяемого конденсатора.
Рисунок 9. Уравнение
Ток утечки тестируемого конденсатора составляет всего 0,3 нА, что свидетельствует о хорошем качестве.
Пример 2:
Тестируемый конденсатор представляет собой полиэфирный конденсатор 0,022 мкФ / 63 В. Метод измерения такой же, как в Примере 1. Из-за небольшой емкости этого конденсатора VIN (t) быстро уменьшается во время измерения, и примерно через 3 секунды отображаемое значение уменьшается до 0.002V. Подставив это значение в уравнение (5-3), вычисленный ток утечки составил 0,2 нА.
5.3.3 Примечания
(1) Перед измерением два контакта конденсатора следует замкнуть накоротко и разрядить, в противном случае процесс изменения показаний может не наблюдаться.
(2) Не касайтесь конденсаторного электрода обеими руками во время измерения, чтобы не допустить подскакивания измерителя.
(3) Во время измерения значение VIN (t) изменяется экспоненциально, а вначале быстро уменьшается.С увеличением времени скорость снижения будет все медленнее и медленнее. Когда емкость проверяемого конденсатора Cx составляет менее нескольких тысяч пикофарад, поскольку VIN (t) изначально падает слишком быстро, а скорость измерения измерителя слишком мала, чтобы отражать исходное значение напряжения, начальное отображаемое значение измерителя будет ниже, чем у батареи Напряжение E.
(4) Когда измеряемый конденсатор Cx больше 1 мкФ, для сокращения времени измерения можно использовать файл сопротивления для измерения.Однако, когда емкость тестируемого конденсатора менее 200 пФ, процесс зарядки трудно наблюдать, поскольку изменение показаний очень короткое.
5.4 Тест с зуммером
Используя файл зуммера цифрового мультиметра, вы можете быстро проверить качество электролитического конденсатора. Метод измерения показан на рисунке 10. Установите цифровой мультиметр в положение зуммера и используйте два щупа для контакта с двумя контактами проверяемого конденсатора Cx.Должен быть слышен короткий звуковой сигнал, звук прекратится, и отобразится символ переполнения «1». Затем снова измерьте два измерительных провода, и зуммер должен снова прозвучать, и, наконец, отобразится символ перелива «1», который указывает на то, что проверяемый электролитический конденсатор в основном в норме. В это время вы можете установить высокое сопротивление 20 МОм или 200 МОм, чтобы измерить сопротивление утечки конденсатора, чтобы определить его качество.
Рисунок 10. Схема подключения для проверки электролитического конденсатора с зуммером
Принцип описанного выше процесса измерения заключается в следующем: в начале теста зарядный ток прибора до Cx велик, что эквивалентно длине пути, поэтому звучит зуммер.По мере того, как напряжение на конденсаторе продолжает расти, зарядный ток быстро падает, и, наконец, зуммер перестает звучать.
Если во время теста зуммер продолжает звучать, это означает, что внутри электролитического конденсатора произошло короткое замыкание. Если зуммер продолжает звучать, а измеритель всегда показывает «1», когда ручка измерителя повторно измеряется, это означает, что тестируемый конденсатор открыт или емкость исчезает.
5.5 Использование цифрового мультиметра для измерения емкости более 20 мкФ
Для обычных цифровых мультиметров максимальное значение измерения емкости файла составляет 20 мкФ, что иногда не соответствует требованиям измерения.По этой причине можно использовать следующий простой метод для измерения емкости более 20 мкФ с помощью файла емкости цифрового мультиметра, и можно измерить максимальную емкость в несколько тысяч микрофарад. При использовании этого метода для измерения конденсаторов большой емкости нет необходимости вносить какие-либо изменения в исходную схему цифрового мультиметра.
Принцип измерения этого метода основан на формуле C строка = C1C2 / (C1 + C2) двух последовательно соединенных конденсаторов.Поскольку два конденсатора с разной емкостью подключаются последовательно, общая емкость после последовательного подключения меньше, чем у конденсатора меньшей емкости. Следовательно, если емкость измеряемого конденсатора превышает 20 мкФ, используется только один конденсатор емкостью менее 20 мкФ. Последовательно с ним можно проводить измерения прямо на цифровом мультиметре.
По формуле двух последовательно соединенных конденсаторов легко получить C1 = C2C string / (C2-C string).Используя эту формулу, можно рассчитать значение емкости измеряемого конденсатора. Вот тестовый пример, иллюстрирующий конкретный метод использования этой формулы.
Тестируемый компонент представляет собой электролитический конденсатор с номинальной емкостью 220 мкФ и настроен на C1. Выберите электролитический конденсатор с номинальным значением 10 мкФ в качестве C2, используйте цифровой мультиметр конденсатор 20 мкФ, чтобы измерить фактическое значение этого конденсатора как 9,5 мкФ, и соедините два конденсатора последовательно, чтобы измерить строку C как 9.09 мкФ. Подставляя в формулу C2 = 9,5 мкФ и строку C = 9,09 мкФ, тогда
C1 = строка C2C / (строка C2-C) = 9,5 9,09 / (9,5-9,09) ≈211 (мкФ)
Рисунок 11. Цифровой мультиметр
Примечание: Независимо от того, какая емкость C2 выбрана, конденсатор с большей емкостью должен быть выбран при условии менее 20 мкФ, а C2 в формуле следует заменить на фактическое измеренное значение вместо номинального. значение, которое может уменьшить количество ошибок.Два конденсатора соединены последовательно и измеряются цифровым мультиметром. Из-за погрешности емкости и погрешности измерения самого конденсатора, если фактическое измеренное значение близко к расчетному значению, измеряемый конденсатор C1 считается исправным. вместимость.
Теоретически этим методом можно измерить емкость любой емкости, но если емкость тестируемого конденсатора слишком велика, погрешность возрастет. Ошибка пропорциональна размеру измеряемого конденсатора.
VI Как тестировать алюминиевые электролитические конденсаторы
6.1 Физический осмотр внешнего вида
(1) Сначала проверьте, имеет ли тестируемый конденсатор официальную «Спецификацию продукта», которая включает название продукта, технические характеристики, установочные размеры и т.д. требования к процессу, технические параметры и название поставщика, адрес и контактная информация для обеспечения этого. Серийную продукцию предоставляют штатные производители. Логотип на конденсаторе должен включать товарный знак, рабочее напряжение, стандартную емкость, полярность и диапазон рабочих температур.
(2) Обратитесь к параметрам процесса в «Спецификации продукта» и проверьте, соответствуют ли внешний вид, цвет и материал конденсатора указанным на нем индикаторам процесса.
(3) Используйте штангенциркуль, чтобы подтвердить установочный размер конденсатора, чтобы убедиться, что диаметр, высота, диаметр и расстояние выводных выводов находятся в пределах допуска технологического процесса, а внешние размеры должны соответствовать требования к отбору компании.
(4) Проверьте внешний вид конденсатора, чтобы убедиться, что он аккуратный, без явных деформаций, поломок, трещин, пятен, грязи, ржавчины и т. Д., А его маркировка четкая, прочная, правильная и полная.
(5) Проверьте выводные клеммы, чтобы убедиться, что их выводы прямые, не содержат окисления, ржавчины и не влияют на их проводящие свойства, а выводные выводы не имеют перекосов, деформаций и механических повреждений. что влияет на вставку и удаление.
(6) Убедитесь, что дата изготовления, указанная на электролитическом конденсаторе, не должна превышать шести месяцев, и сделайте запись.
Рисунок 12. Алюминиевый электролитический конденсатор
6.2 Проверка емкости и потерь
(1) Используйте электрический мост, чтобы проверить, соответствует ли фактическая емкость номинальной емкости (электролитический конденсатор обычно имеет диапазон погрешности ± 20%). Значение тангенса угла потерь tanθ (то есть значение D) соответствует стандарту.
(2) Как использовать тестер моста Zen tech: после правильного подключения источника питания нажмите кнопку «POWER», чтобы включить рабочее напряжение тестера; нажмите кнопку «LCR», чтобы выбрать тип теста (L: индуктивность, C: емкость, R: сопротивление).
(3) Нажимайте кнопки «ВВЕРХ» и «ВНИЗ», чтобы выбрать диапазон тестирования (мкФ, нФ, пФ), и нажмите кнопку «FREQ», чтобы выбрать частоту тестирования (100 Гц,
(120 Гц, 1 кГц) может выбрать требуемую частоту тестирования в соответствии с техническими параметрами, предоставленными производителем, тест в этой статье выбирает «100 Гц».
(4) Нажмите «ПОСЛЕДОВАТЕЛЬНОСТЬ» (параллельная) и «ПАРАЛЛЕЛЬНАЯ» (параллельная), чтобы выбрать режим подключения для теста, малая емкость (менее 10 мкФ)
Чтобы использовать параллельный режим, используйте большой режим (10 мкФ и выше) в последовательном режиме.
(5) После завершения настройки подключите тестовые порты моста («НИЗКИЙ» и «ВЫСОКИЙ») к двум концам конденсатора и используйте этикеточную бумагу для записи значения емкости и значения потерь на дисплее соответственно. И прикрепите этикеточную бумагу к соответствующему конденсатору для последующего анализа.
6.3 Проверка пульсации напряжения
(1) Подключите схему, как показано ниже, и подключите проверяемый конденсатор к регулируемому источнику питания постоянного тока (обратите внимание, что положительный и отрицательный полюсы не подключены наоборот). Подключите положительный электрод пробника осциллографа с неиндуктивным конденсатором (1 мкФ, 1200 В постоянного тока) последовательно к положительному электроду проверяемого конденсатора.
Рисунок 13. Цепь проверки пульсирующего напряжения
(2) Для настройки осциллографа сначала необходимо установить его в положение испытания постоянного тока, а ручку точной настройки напряжения осциллографа необходимо заблокировать.
(3) Во время испытания напряжение постоянного тока следует медленно повышать до номинального напряжения с помощью регулятора напряжения, а изменения, отображаемые осциллографом, следует тщательно контролировать. Следует выбрать правильный диапазон, чтобы обеспечить точное считывание напряжения по осциллограмме осциллографа.
(4) Снимите форму волны пульсации с помощью камеры и запишите диапазон и деление осциллографа с помощью этикеточной бумаги (то есть вычислите напряжение пульсаций и вставьте его на соответствующий конденсатор для последующего анализа и сравнения.
(5) После завершения записи отключите источник питания постоянного тока, разрядите проверяемый конденсатор и неиндуктивный конденсатор с помощью ламповой нагрузки, а затем удалите проверяемый конденсатор с испытательного стенда.
6.4 Испытание на ток утечки
6.4.1 Первый метод косвенного измерения
Подключите, как показано ниже. Подключите резистор 1 кОм последовательно с тестируемым конденсатором и подключите его к регулируемому источнику питания постоянного тока. Используйте пробник осциллографа для подключения к обоим концам резистора.Косвенно рассчитайте ток утечки конденсатора, который будет измерен, путем выборки сигнала напряжения на резисторе.
Основы эксплуатации и меры предосторожности: После подключения цепи отрегулируйте регулируемый источник питания постоянного тока на номинальное напряжение конденсатора. После того, как цепь уравновесится в течение двух минут, считайте значение напряжения на резисторе. При считывании показаний осциллографа ручка регулировки напряжения должна быть заблокирована. Запишите максимальное значение формы волны напряжения как значение напряжения и разделите его на значение сопротивления, чтобы получить значение тока утечки.Слишком большой ток, и резистор перегорел. После испытания конденсатор следует разрядить, а затем удалить, чтобы избежать несчастных случаев.
Рисунок14. Схема
6.4.2 Второй метод косвенного измерения
Подключите проводку, как показано на рисунке, и последовательно добавьте воздушный переключатель между конденсатором и источником питания постоянного тока. Сначала замкните S1 и S2 соответственно и настройте регулятор напряжения на номинальное напряжение, чтобы зарядить конденсатор в течение двух минут.
Рисунок15. Схема
После этого отключаются и S1, и S2. В это время регулируемый источник питания находится на номинальном значении. Не шевелись. Добавьте миллиамперметр между S1 и S2, как показано на рисунке ниже: S1 и S2 оба замкнуты, и ток утечки может быть непосредственно считан миллиамперметром после одной минуты стабилизации.
Рисунок16. Схема
6.4.3 Меры предосторожности
Помните, что нельзя подключать миллиамперметр к линии напрямую, когда конденсатор не заряжен, так как начальный зарядный ток велик, миллиамперметр может сгореть случайно.В процессе разборки сначала разрядите конденсатор ламповой нагрузкой. При разрядке сначала снимите миллиамперметр и убедитесь, что разрядный ток не проходит через испытательный резистор, чтобы предотвратить повреждение испытательного резистора и миллиметра.
6.4.4 Ток утечки при 1,2Un
Отрегулируйте напряжение постоянного тока так, чтобы оно в 1,2 раза превышало номинальное напряжение электролитического конденсатора, снова измерьте его ток утечки и сравните разные образцы.
6.5 Испытание на взрыв
6.5.1 Испытание постоянным током
Подайте обратное постоянное напряжение на проверяемый конденсатор, медленно отрегулируйте регулируемое постоянное напряжение и внимательно наблюдайте за током с помощью токоизмерительных клещей. Установка мощности постоянного тока обычно не превышает 30 В. Текущее значение устанавливается в соответствии с размером конденсатора следующим образом:
При диаметре конденсатора 6 мм ≤ 22,4 мм ток не может превышать 1 А; когда диаметр конденсатора> 22,4 мм, ток не может превышать 10 А.
6.5.2 Наблюдение за температурой поверхности конденсатора
Во время эксперимента используйте термометр, чтобы внимательно наблюдать за температурой поверхности конденсатора (чувствительный контакт термометра можно обернуть вокруг конденсатора лентой). Обратите внимание, что начальный ток очень мал и почти равен нулю. При повышении температуры конденсатора (примерно 35-40 ° C) ток значительно увеличивается. В это время следует внимательно наблюдать. Когда ток достигает или приближается к 10А, необходимо снизить напряжение, чтобы обеспечить контроль тока в пределах 10А.
6.5.3 Конденсаторный предохранительный клапан
В течение 30 минут после начала испытания предохранительный клапан конденсатора должен быть открыт. Если предохранитель конденсатора перегорел, следует немедленно отключить питание (электролитический конденсатор на 350 В 6800F автоматически откроется при следующих условиях, ток около 8 А, температура поверхности около 45-60 ° C), если ток близок к 10А, и через 30 минут предохранитель все еще горит. Если он не включен, эта функция отсутствует.
Рисунок17. Цифровой вольтметр постоянного тока
6.6 Температурный тест
Емкость конденсатора будет изменяться в зависимости от температуры окружающей среды. Как правило, емкость увеличивается при повышении температуры. Температурный тест предназначен для проверки изменения емкости после уравновешивания при заданной температуре.
6.6.1 Высокотемпературный тест
(1) Подключите два небольших провода к выводной клемме конденсатора, который нужно проверить, соответственно, и проверьте емкость двух выводов при нормальной температуре и пометьте их для записи.
(2) Поместите конденсатор в камеру для испытания на переменную влажность и нагрев при высоких и низких температурах и оставьте провода за пределами испытательной камеры для проверки емкости.
(3) Включите кнопку переключателя тестового блока, нажмите «Настройка температуры» на экране, установите температуру на 100 ° C и нажмите «Выполнить», чтобы запустить тестовый блок.
(4) Еще раз проверьте емкость примерно через 2 часа после того, как температура достигнет 100 ° C, и вычислите процентное изменение емкости (первоначальное измерение разницы).
6.6.2 Испытание при низких температурах
(1) Поместите тестируемый конденсатор в тестовую коробку (будьте осторожны, не используйте конденсаторы, испытанные при высоких температурах, за исключением особых случаев).
(2) Включите кнопку переключателя тестового блока, нажмите на экране «установка температуры», установите температуру на -25 ° C и нажмите «запустить».
(3) Проверьте емкость еще раз примерно через 2 часа после того, как температура достигнет -25 ° C, и рассчитайте процентное изменение емкости (первоначальное измерение разницы).
6.6.3 Меры предосторожности
При испытании следует обратить особое внимание на то, есть ли какие-либо очевидные изменения в конденсаторе. При возникновении серьезных условий, таких как растрескивание поверхности конденсатора и открытие предохранительного клапана, испытательную камеру следует немедленно остановить. Во время испытания следует строго соблюдать рабочие процедуры испытательного бокса, и дверь испытательного бокса не должна открываться по желанию. В конце высокотемпературного испытания конденсатор можно вынуть только после того, как температура внутри испытательного бокса упадет, чтобы предотвратить несчастные случаи, такие как ожоги.
Рисунок 18. Конденсаторы
VII Рекомендации по тестированию конденсаторов
(1) При измерении с помощью мультиметра выберите редуктор в соответствии с номинальным напряжением конденсатора. Например, напряжение конденсатора, обычно используемое в электронном оборудовании, низкое, всего от нескольких вольт до десятков вольт. Если для измерения используется мультиметр RX10k, напряжение батареи в измерителе составляет 12 ~ 22,5 В, что может вызвать пробой конденсатора.Следовательно, следует использовать файл RXlk. измерения.
(2) Для конденсатора, только что снятого с линии, обязательно разрядите конденсатор перед измерением, чтобы предотвратить разряд конденсатора на счетчике и его повреждение.
(3) Для конденсаторов с высоким рабочим напряжением и большой емкостью конденсаторы должны быть достаточно разряжены, и оператор должен иметь защитные меры для предотвращения поражения электрическим током во время разряда.
8.1 Вопрос
Что делать при проверке конденсатора омметром?
8.2 Ответ
Убрать конденсатор из схемы.
Обычно легко снять пусковой или рабочий конденсатор — достаточно просто отсоединить его от жгута и отсоединить провода. Однако будьте осторожны, чтобы не прикасаться к клеммам конденсатора. Если конденсатор не разряжен, возможно, он полностью заряжен, и в таком случае вы можете получить серьезный шок.
Как использовать мультиметр с Electric Paint
Различные значения сопротивления
Мы можем использовать сопротивление, которое мы измеряем с помощью мультиметра, для сравнения значений для различных форм.Как уже упоминалось выше, сопротивление меняется в зависимости от того, на какую форму вы наносите краску. На изображении справа вы можете увидеть разные значения сопротивления для разной формы и толщины электрокрасочной краски.
Точка и первые три линии были нарисованы тюбиком электрокрасочной краски. Остальные линии и квадраты были нанесены по трафарету с помощью банки с краской Electric Paint. Сопротивление измеряли от одного конца линии до другого или от угла одной стороны квадрата или прямоугольника до угла противоположной стороны.
Если вы посмотрите на третью и четвертую строки, отмеченные значениями 1276 Ом и 1028 Ом, вы увидите, что они идентичны по длине. Но линия с сопротивлением 1276 Ом была нарисована трубкой и толще линии с сопротивлением 1028 Ом, нанесенной по трафарету с сосудом. Линия, сделанная из трубки, имеет более высокое сопротивление, и из этих примеров мы видим, что форма и толщина влияют на сопротивление.
Если вы посмотрите на два квадрата справа, вы увидите, что, хотя они и являются квадратами, их сопротивление не составляет 55 Ом.Это потому, что они были измерены мультиметром, а не четырехконтактным датчиком. Кроме того, квадраты были нанесены кистью по трафарету, поэтому слои наносятся неравномерно. Тем не менее, сопротивление, которое измеряется мультиметром, указывает на то, как сопротивление уменьшается при нанесении краски Electric Paint в виде квадрата, а не линии.
Электронные компоненты: как считывать значения емкости конденсатора
- Программирование
- Электроника
- Компоненты
- Электронные компоненты: как считывать значения емкости на конденсаторе
Дуг Лоу
Если достаточно на конденсаторе, большинство производителей электронных компонентов печатают емкость непосредственно на конденсаторе вместе с другой информацией, такой как рабочее напряжение и, возможно, допуски.Однако в небольших конденсаторах для всего этого недостаточно места. Многие производители конденсаторов используют сокращенные обозначения для обозначения емкости на маленьких крышках.
Если у вас есть конденсатор, на котором не напечатано ничего, кроме трехзначного числа, третья цифра представляет количество нулей, добавляемых к концу первых двух цифр. Получившееся число — это емкость в пФ. Например, 101 представляет 100 пФ: цифры 10, за которыми следует один дополнительный ноль.
Если указаны только две цифры, это просто емкость в пФ.Таким образом, цифры 22 указывают на конденсатор 22 пФ.
Это показывает, как некоторые общие значения конденсаторов представлены с использованием этого обозначения:
Маркировка | Емкость (пФ) | Емкость (мкФ) |
---|---|---|
101 | 100 пФ | 0,0001 мкФ |
221 | 220 пФ | 0,00022 мкФ |
471 | 470 пФ | 0,00047 мкФ |
102 | 1000 пФ | 0.001 мкФ |
222 | 2200 пФ | 0,0022 µF |
472 | 4700 пФ | 0,0047 µF |
103 | 10000 пФ | 0,01 мкФ |
223 | 22000 пФ | 0,022 µF |
473 | 47000 пФ | 0,047 µF |
104 | 100000 пФ | 0,1 мкF |
224 | 220 000 пФ | 0.22 мкF |
474 | 470 000 пФ | 0,47 мF |
105 | 1000000 пФ | 1 мкF |
225 | 2,200,000 пФ | 2.2 µF |
475 | 4,700,000 пФ | 4,7 мкF |
Вы также можете увидеть букву, напечатанную на конденсаторе, чтобы указать допуск. Букву допуска можно интерпретировать следующим образом:
Письмо | Допуск |
---|---|
А | ± 0.05 пФ |
B | ± 0,1 пФ |
С | ± 0,25 пФ |
D | ± 0,5 пФ |
E | ± 0,5% |
Ф | ± 1% |
G | ± 2% |
H | ± 3% |
Дж | ± 5% |
К | ± 10% |
л | ± 15% |
M | ± 20% |
N | ± 30% |
п | –0%, + 100% |
S | –20%, + 50% |
Вт | –0%, + 200% |
х | –20%, + 40% |
Z | –20%, + 80% |
Обратите внимание, что допуски для кодов от P до Z немного странные.Для кодов P и W производитель обещает, что емкость будет не меньше заявленного значения, но может быть на 100% или 200% больше указанного значения.
Для кодов S, X и Z фактическая емкость может быть на 20% ниже указанного значения или на 50%, 40% или 80% выше указанного значения. Например, если маркировка 101P, фактическая емкость составляет не менее 100 пФ, но может достигать 200 пФ. Если маркировка 101Z, емкость составляет от 80 до 180 пФ.
Об авторе книги
Дуг Лоу до сих пор имеет набор экспериментатора электроники, который дал ему отец, когда ему было 10 лет. Хотя он стал программистом и написал книги по различным языкам программирования, Microsoft Office, веб-программированию и ПК (включая 30+ книг для чайников), Дуг никогда не забывал свою первую любовь: электронику.Как вызвать конденсатор мультиметром: инструкция и советы
Одной из наиболее частых причин выхода из строя электронного оборудования является выход из строя одного или нескольких конденсаторов, которые составляют неотъемлемую часть его платы.А чтобы узнать, какой конденсатор является слабым звеном, необходимо проверить их работоспособность. В этой статье рассказывается, как вызвать конденсатор. Вне зависимости от того, занимаетесь ли вы электронной техникой профессионально или просто любитель, это вполне возможно для вас. Для этого вам понадобится мультиметр. Ниже мы рассмотрим, как самостоятельно проверить конденсатор мультиметром.
Типы конденсаторов и их поверка
Прежде чем разобраться, как мультиметром вызвать конденсатор, давайте выясним, какие типы конденсаторов существуют.Все конденсаторы делятся на полярные и неполярные. Разница между ними в том, что полярные, как можно догадаться по названию, имеют полярность. Проверять их нужно строго соответствующим образом: «плюс» на «плюс», «минус» на «минус», иначе они придут в негодность и могут взорваться. Все полярные конденсаторы электролитические. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев на поверхности предусмотрен специальный участок, который разрывается в определенном направлении и не дает проводящему веществу разбрызгиваться в разные стороны.
Как выполнить проверку зависит от характера неисправности, поскольку мультиметр может проверить конденсатор на работу двумя способами: в режиме измерения сопротивления его диэлектрика и измерения его емкости.Пробой конденсатора
Самая частая проблема конденсаторов — пробой диэлектрика. Диэлектрик — это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, предотвращающее протекание тока между проводниками.
В хорошем конденсаторе небольшой ток, проходящий через этот изолятор, называется «током утечки», и им можно пренебречь.При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обычный проводник. Причина такой поломки, как правило, — резкое падение напряжения в сети, к которой подключено оборудование. Характерные признаки поломки включают образование пузырей на корпусе конденсатора, его потемнение и появление черных пятен. Перед проверкой конденсатора на исправность осмотрите его визуально на предмет внешних дефектов.